US20140336701A1 - C-spring suture for primary closure of surgical incisions - Google Patents

C-spring suture for primary closure of surgical incisions Download PDF

Info

Publication number
US20140336701A1
US20140336701A1 US14271387 US201414271387A US2014336701A1 US 20140336701 A1 US20140336701 A1 US 20140336701A1 US 14271387 US14271387 US 14271387 US 201414271387 A US201414271387 A US 201414271387A US 2014336701 A1 US2014336701 A1 US 2014336701A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
suture
skin
attachment
spring
center piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14271387
Inventor
Anthony Barr McLorg
Original Assignee
DERMAL THERAPIES LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B17/085Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound with adhesive layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B2017/081Tissue approximator

Abstract

A c-spring suture for primary closure of surgical incisions comprises a “C” shaped, lenticular center spring hingedly connected at each end with surgical tape. In one embodiment, the tape is connected to the center spring through a tape clamp and pin hinge. In another embodiment, the tape is connected to the center spring through welding flanges attached to membrane hinges. In operation, when the c-spring suture is in place on a wound or incision line, the distal ends of the surgical tape relative to the center spring, in conjunction with the center spring, are adapted to produce closure forces along the incision line that are remote from the incision, enabling such forces to act through the thickness of the skin through shear force transfer and provide closure force at the dermal level of the skin that is initially applied at the epidermal level, thus overcoming the problem of skin inversion at incision line common to skin tapes of the prior art.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of and incorporates by reference co-pending U.S. provisional patent application Ser. No. 61/821,334, filed May 9, 2013.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a side perspective view of a c-spring suture built in accordance with a pin hinge embodiment of the present invention and with a partial sectional view of its surgical tape.
  • FIG. 1B is a side perspective view of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention and with a partial sectional view of its surgical tape.
  • FIG. 2A is a side perspective view of a c-spring suture, built in accordance with a pin hinge embodiment of the present invention, with its spring in a non-stressed state and a partial sectional view of its surgical tape.
  • FIG. 2B is a side perspective view of a c-spring suture, built in accordance with a pin hinge embodiment of the present invention, with its spring in a fully stressed state and a partial sectional view of its surgical tape.
  • FIG. 2C is a side perspective view of a c-spring suture, built in accordance with a pin hinge embodiment of the present invention, with its spring in a retracted state and a partial sectional view of its surgical tape.
  • FIG. 3A is a side perspective view of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with its spring in a non-stressed state and a partial sectional view of its surgical tape.
  • FIG. 3B is a side perspective view of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with its spring in a fully stressed state and a partial sectional view of its surgical tape.
  • FIG. 3C is a side perspective view of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with its spring in a retracted state and a partial sectional view of its surgical tape.
  • FIG. 4A is a top plan view of a plurality of c-spring sutures packaged side to side, in sterile packaging for commercial distribution.
  • FIG. 4B is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention, in sterile packaging for commercial distribution.
  • FIG. 4C is an enlarged, partial side elevational view of a cross section of the central section of c-spring suture built in accordance with a membrane hinge embodiment of the present invention, in sterile packaging for commercial distribution.
  • FIG. 4D is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention with its end sections enlarged, in sterile packaging for commercial distribution.
  • FIG. 5 is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention, in sterile packaging for commercial distribution.
  • FIG. 6 is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention and having been removed from its packaging.
  • FIG. 7A is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a non-stressed state and with one end section attached to a wearer.
  • FIG. 7B is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with one end section attached to a wearer and with a pre-stressed spring.
  • FIG. 7C is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with both end sections attached to a wearer and with a pre-stressed spring.
  • FIG. 7D is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a retracted state and with both end sections attached to a wearer.
  • FIG. 8A is a partial side elevational view of a cross section of an enlarged central section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a non-stressed state, prior to being attached to a wearer.
  • FIG. 8B is a partial side elevational view of a cross section of an enlarged central section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with both end sections attached to a wearer and with a pre-stressed spring prior to retraction of the spring.
  • FIG. 8C is a side elevational view of a cross section of an enlarged central section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a retracted state and with both end sections attached to a wearer.
  • FIG. 9 is a top plan view of a plurality of c-spring sutures applied to a wearer, in an arc pattern, for closure and treatment of a large incision.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings and in particular FIG. 1A, a pin hinge c-spring suture 10′ for primary closure of surgical incisions is shown having a center spring 1′ hingedly attached through pin hinge 2′ at each end, to a tape clamp 3′ attached to surgical tape 4′, together with distal end 5′. A “C” shaped lenticular spring defines the center spring 1′ and enables the center spring 1′, when mechanically stretched apart, to store energy from being stretched and use it to exert an opposing compression force. In this regard, the center spring 1′ provides a resilient means for storing and releasing mechanical energy. In this embodiment, a pin hinge 2′ defines each hinge member. By such a mechanism, when the center spring 1′ of the c-spring suture 10′ is stretched from its non-stressed, convex lenticular form to a stressed, flattened lenticular form, through the application of manual force, the center spring 1′ automatically exerts a specific compression force biasing the center spring 1′ to return to its original convex lenticular form
  • Tape clamps 3′ are attached to pin hinges 2′ at each end of the center spring 1′ and serve to fasten the center spring 1′ to the surgical tape 4′, 5′. The surgical tape 4′, 5′ is embodied as conventional surgical tape and provides an attachment means that is connected to the center spring 1′ for supplying energy to the center spring 1′ and transferring energy released from center spring 1′ to skin. The surgical tape 4′, 5′ is shown as having a proximal surgical tape end 4′ and a distal surgical tape end 5′. When the c-spring suture 10′ is in place on a wound or incision line, the distal surgical tape ends 5′, in conjunction with the center spring 1′, produce closure forces along the wound or incision line that are remote from the incision, enabling such forces to act by shear force transfer, through the thickness of the skin to provide closure force at the dermal level of the skin that is initially applied at the epidermal level.
  • Referring now to FIG. 1B, a membrane hinge c-spring suture 10 for primary closure of surgical incisions is shown having a center spring 1 hingedly attached at each end to a welding flange 3 through a membrane hinge member 2, with surgical tape 4, 5 extending from each welding flange 3. In contrast to the pin hinge c-spring suture embodiment, in the membrane hinge c-spring suture 10 membrane hinges 2 define the hinge members, supplying a hinge joint on either side of the center spring 1 as well as welding flanges 3 to enable the attachment of surgical tape 4, 5. Together, each membrane hinge 2 and welding flange 3 assembly defines a connecting means for hingedly attaching the tape 4 and 5 to the spring 1. Both proximal ends of the surgical tape 4 are attached to the welding flanges 3 through thermal bonding. It is contemplated, however, that other permanent attachment mechanisms, such as a discrete adhesive, may be employed.
  • In the preferred version of this embodiment, the center spring 1, membrane hinges 2 and the welding flanges 3 are defined as a continuous extrusion that is attached to the surgical tape 4, 5. Such a construction enables the manufacture of an entire sheet of a c-spring assembly, which is then slit to make the individual suture strips, or alternately as a continuous line process.
  • Despite any structural variations, however, the mechanical action of a c-spring suture, whether embodied with a pin hinge or a membrane hinge, is essentially similar to that of the center spring acting through the distal ends of two opposing surgical tapes for the provision of dermal level closure forces.
  • Referring now to FIGS. 2A and 3A, embodiments of the c-spring suture 101′, 101 are shown in the non-stressed state of operation. The non-stressed state defines the c-spring suture 101′, 101 as it would be manufactured, once the packaging and tape release strips (not shown here) have been removed, or otherwise when it is not in use. In the non-stressed state, the center spring 111′, 111 maintains its resting, convex lenticular form, with the hinge members 211′, 211 enabling movement in one plane, of the surgical tape 511′, 511 relative to the center spring 111′, 111 by the action of vertical swinging 411′, 411.
  • Referring now to FIGS. 2B and 3B, the c-spring suture 102′, 102 is shown in its fully stressed state of operation. To be placed in this fully stressed state, force in a stressing direction 312′, 312 must be placed on the surgical tape 512′, 512 on at least one side of the center spring 112′, 112. Accordingly, it is contemplated that the c-spring suture 102′, 102 can be placed in its fully stressed state by exerting force in the stressing direction 312′, 312 on the surgical tape 512′, 512 on one side of the center spring 112′, 112 if the surgical tape 512′, 512 on the other side is held in place or by exerting force in the stressing direction 312′, 312 on the surgical tape 512′, 512 on both sides of the center spring 112′, 112 simultaneously.
  • When force in the stressing direction is placed on the surgical tape 512′, 512 in such a manner, the center spring 112′, 112 moves in a vertical flattening direction 422′, 422, with the hinge members 212′, 212 enabling the center spring 112′, 112 to swing in a flattening direction 412′, 412 relative to the surgical tape 512′, 512. The flattening of the center spring 112′, 112 stores the mechanical energy employed and places it at a self gauging level of pre-stress. Unlike prior art spring sutures, commonly embodied as either cylindrical, coil or leaf form, the center spring 112′, 112 embodied as a “C” shaped lenticular spring, has a geometrical limit to the amount of pre-stress that may be applied thereto before the c-spring suture 102′, 102 is placed on the incision or wound that is to be closed. This closure pre-stress is applied to the dermal level as partly described in the description of FIGS. 1A and 1B. It is contemplated that variation in the section detail of the “C” shaped lenticular spring and the specific mechanical qualities of the material of manufacture, elasticity, strength, etc., can offer different levels of closure pre-stress as may be suitable for different areas of the body, face, abdomen etc. In contrast, in prior art spring sutures, the correct amount of closure pre-stress is left unreferenced and solely to the skill of the applier.
  • Referring now to FIGS. 2C and 3C, the c-spring suture 103′, 103 is shown in its retracted state of operation. In the retracted state, the center spring 113′, 113 releases a portion of the mechanical energy stored when the c-spring suture 103′, 103 was placed in a stressed state, exerting force in a horizontal retracting direction 313′, 313 and motion in a vertical rising direction 423′, 423 of the central spring 113′, 113. The twisting motion 413′, 413 is coincidental with the vertical rising direction of the spring 113′, 113 is isolated from the retracting force 313′, 313 and motion in the tape 513′, 513 by the hinges 213′, 213. The c-spring suture 103′, 103 is constructed so that the surgical tape 513′, 513 on both sides of the center spring 113′, 113 can be attached to the skin of a wearer on either side of a targeted wound or incision. Thus, when force in horizontal retracting direction 313′, 313 is applied by the center spring 113′, 113, of a c-spring suture 103′, 103 in place on a wearer, pre-stress is applied to the skin, remote from the wound or incision, so as to act through shear in the skin, down to the dermal level, to provide closure pre-stress at that level. More specifically, as the two sections of the surgical tape 513′, 513 are drawn inward, in the closing direction 313′, 313, by the force invested in the center spring 113′, 113, the skin is drawn toward the wound or incision. The upper layer of skin acts through shear on the lower dermal layers so that they are also draw toward the incision from both sides. This causes compression at the dermal level, at the line of the incision. In order to let this compression act to result in abutment of the lower layers of the skin, relief space is provided for the swelled volume of the compressed upper layers of skin, under the spring, as the central part of the spring rises simultaneously, as it retracts.
  • It understood that the hinge members 213′, 213 enable the c-spring suture 103′, 103 to isolate the flexure forces in the center spring 113′, 113 from the surgical tape 513′, 513 while in use on a wearer. Such isolation prevents the twisting forces of the center spring 113′, 113 from being applied to the skin around the wound or incision, thereby preventing distortion and misalignment of the skin which is detrimental to healing.
  • Referring now to FIGS. 4A, 4B, 4C, 4D, 5, 6, and 8A, the c-spring suture 610 is shown in various states of the preferred commercial packaging and deployment therefrom. The c-spring suture 610 is typically distributed as a sterile package 620, containing a plurality of discrete c-spring sutures 610 packaged side by side. The sterile package 620 typically includes a sterility wrapper 621 that includes a peeling edge 625 and a packing card 622. A doubled back tape release strip 623 having a free end 624 is additionally included to improve the ease of application of the c-spring sutures 610 at the incision.
  • Each discrete c-spring suture 610 includes a “C” shaped, lenticular center spring 601, a membrane hinge 602 and a welding flange 603, all of which are nominally nylon or similar polymer, extruded together as one. Connection is made between the center elements, the spring 601, the hinge 602 and the welding flange 603, and the surgical tape 604, at the welding flange 603. The bond is made by thermal weld between the nylon extrusion and the conventional surgical tape normally made of spun bonded nylon. The doubled back tape release strip 623 is included with the surgical tape 604 when the tape and the center are connected.
  • While the surgical tape 604 generally exerts force from the center spring 601 on the skin of a wearer, it is understood that because it stretches less easily than skin, the surgical tape's distal end 605 primarily supplies the transfer closure force from the c-spring suture 610 structure to the surface of the skin, remotely from the edges of the wound or incision at the distal end 605.
  • Referring now to FIG. 7A, the c-spring suture 700 is shown being placed over an incision 2001 on the skin 2000 of a wearer. The c-spring suture 700 has the tape release strip 723 removed (not shown) on the surgical tape 705 on the left side of the center spring 701, with the surgical tape 705 on the left side of the center spring 701 applied to the skin 2000 of a wearer, affixing it thereto. The c-spring suture 700 is positioned on the wearer so that the center spring 701 is disposed over the target incision 2001. On the right side the tape release strip 723 has been partly removed to partly expose the adhesive on the underside of the surgical tape 705, but remains at the end to enable the distal end of the surgical tape 705 to be grasped for stretching. As the c-spring suture 700 is shown prior to being stretched, the center spring 701 is shown in its resting, convex lenticular shape.
  • Referring now to FIG. 7B, the c-spring suture 800 is shown being stretched over an incision 2101 on the skin 2100 of a wearer. The surgical tape 805 on the left side of the center spring 801 affixed to the skin 2100 of a wearer, and force in a stretching (or stressing) direction 850 is being placed on the surgical tape 805 on the right side of the center spring 801. The application of the force in a stretching direction 850 is required to pre-stress the center spring 801, in preparation for the of the application of the surgical tape 805 on the right side of the c-spring suture 800 to the skin 2100 on the right side of the incision 2101.
  • Referring now to FIGS. 7C and 8B, the c-spring suture 900 is shown with both sides of the surgical tape 905 applied to the skin 2200 on either side of the incision 2201. The pre-stress is maintained in the center spring 901, following the application of the second side of the surgical tape 905 to the skin 2200, by the stretching force 950, maintained prior to the release of the tape 905, by the applier. The incision 2201 is shown closed at the top as the edges thereof have been manually drawn tightly together, by the applier, at the epidermal level.
  • Referring now to FIGS. 7D and 8C, the c-spring suture 1000 is shown retracted in place on the skin 2300 of a wearer, over a target incision 2301. Following the initial application of the c-spring suture 1000, as shown in FIGS. 7C and 8B, the release of the stored force in the center spring 1001 from the manual stretching causes the c-spring suture 1000 to take its retracted position. In the retracted position, the center spring 1001 exerts force in a retracting (or closing) direction 1050. This force is transferred to the epidermal level of the skin 2310, by the distal ends of the c-spring suture 1000 through the attachment of the surgical tape 1005 to the skin 2300, with the distal ends at a location remote from the incision 2301. This force in a retracting direction 1050 on the epidermal level of the skin 2310, acts through shear in the skin down to the dermal level 2311, to provide dermal closure force 1051, through skin compression, resulting in abutment at the line of the incision 2301. The incision 2301 is shown closed at the dermal level 2311 of the skin 2300. During this process, the compressed tissue around the incision 2301 rises into the recess that develops under the center spring as it retracts, rising as it tends to return to its original convex lenticular form.
  • It is contemplated that the application of closure pre-stress to the skin, remote from the line of the wound or incision, then acting through shear in the skin to provide dermal level compression closure force in conjunction with providing a relief space for the compressed tissue enables the c-spring suture to overcome the classical problem of skin inversion common to prior art skin tapes, while maintaining the advantage over staples or stitches, of being non invasive, that is also common to prior art skin tapes.
  • Referring now to FIGS. 8A, 8B, and 8C, it is recognized that the horizontal span of the c-spring suture 600, 900, 1000 varies depending on whether the c-spring suture is in a non-stressed state 600, a stressed state 900 or a retracted state 1000. A non-stressed state c-spring suture 600, defined by its un-stressed central spring 601, will have the smallest horizontal span.
  • A fully stressed state c-spring suture 900, defined by a center spring 901 under the effect of the applied stretching direction 950, has the largest horizontal span. It is appreciated that the flattening of the center spring 901 acts as an inherent limit to the stretch of the center spring 901, making the self gauging property of the center spring 901 possible. This self gauging action enables the automatic provision of the correct, designed level of closure force, for any particular application of any particular version of c-spring suture.
  • A retracted state c-spring suture 1000, defined by the center spring 1001 in an intermediate position between unstressed and stressed and exerting force in a retracting direction 1050 on attached surgical tape 1005, has a horizontal span between that of the non-stressed c-spring suture 620 and a stressed c-spring suture 900. The application of the force in a retracting direction 1050 at the surface of the skin 2300 through the surgical tape 1005 is transferred through shear to become dermal closure force 1051 at the base of the skin, against the underlying tissue (not shown). The dermal closure force 1051 at the dermal level provides the compression force that allows dermal level closure. The self gauging aspect of the spring geometry allows for the magnitude of the closure force to be designed to be correct for the specific application on a structural level, through selection of i.e. cross section geometry and elastic modulus of material.
  • The independence of the linear closure forces 1050, 1051 acting on the skin 2300, from the twisting flexural forces in the center spring 1001, is ensured through the hinge members 1011 disposed on opposite sides of the center spring 1001, respectively. The independence of the forces allowed by the hinge members 1011, in conjunction with the designable, self gauging level of closure force, provide for wound or incision closure of the highest accuracy. This in turn provides for minimum blood clotting volume, therefore minimum scarring and most rapid healing.
  • Referring now to FIG. 9, a plurality of c-spring sutures 1101 are shown attached to the surface of a wearer's skin 1100 in an arc pattern as might be the case in an actual application. The c-spring sutures 1101 are shown spaced for easy application to the skin 1100 but close enough together so that when acting remotely from the incision line provide essentially continuous closure force 1150 across the incision line 1102 to provide completed closure as shown. A polymerizing skin adhesive 1110 may be applied to the distal ends of the c-spring sutures 1101, typically on the surgical tape thereof, once the accuracy of the final closure has been confirmed. Acrylates that are compatible with skin 1100 are contemplated for this purpose, to provide maximum security of the closure. The structure of the c-spring sutures 1101, particularly the lack of any adhesive on the actual incision, make it appropriate for use with an anti-biotic ointment 1111 to keep the wound clean and free from infection as well as to keep it from scabbing so as to minimize superficial scarring and discomfort, following the primary closure of surgical incisions. It is contemplated that such an ointment 1111 may be applied over and between the sutures and may occupy a slender interstitial space between the base of the center spring and the top of the enclosed skin.
  • The present invention has been shown and described herein in what is considered to be the most practical and preferred embodiment. It is recognized, however, that departures may be made therefrom within the scope of the invention and that obvious modifications will occur to a person skilled in the art.

Claims (20)

    What is claimed is:
  1. 1. A suture for primary closure of surgical incisions, comprising:
    a resilient center piece having a first end and a second end;
    a first attachment strip connected to said first end of said center piece, wherein said first attachment strip includes a distal end opposite the connection to the center piece and is adapted to be attached to the skin of a wearer of the suture;
    a second attachment strip connected to said second end of said center piece, wherein said second attachment strip includes a distal end opposite the connection to the center piece and is adapted to be attached to the skin of a wearer of the suture; and
    wherein said first attachment strip are and second attachment strip are adapted to enable the center piece to be stretched from a first position into a second position defined by the center piece having self gauging level of pre-stress, over a wearer's surgical incision, then attached to the wearer's skin, transferring recoiling force from the center piece through the thickness of the skin through shear force transfer to provide closure force initially applied at the epidermal level at the dermal level of the skin.
  2. 2. The suture of claim 1, wherein said resilient center piece is a “C” shaped, lenticular spring center configured to provide relief space while in retracted form for compressed tissue below.
  3. 3. The suture of claim 1, wherein said first attachment strip and said second attachment strip are connected to the center piece through an attachment member and a hinge member disposed on the first end and an attachment member and a hinge member disposed on the second end, respectively.
  4. 4. The suture of claim 3, wherein a pin hinge defines at least one of said hinge members.
  5. 5. The suture of claim 4, wherein a tape clamp defines at least one of said attachment members.
  6. 6. The suture of claim 3, wherein a membrane hinge defines at least one of said hinge members.
  7. 7. The suture of claim 6, wherein a welding flange defines at least one of said attachment members.
  8. 8. The suture of claim 7, wherein welding flange and hinge member disposed on said first end, said center piece, and said welding flange and hinge member disposed on said first end comprise a single, continuous extrusion.
  9. 9. The suture of claim 1, wherein surgical tape defines at least one of said first attachment strip and said second attachment strip.
  10. 10. The suture of claim 1, wherein the distal ends of said first attachment strip and of said second attachment strip attach to a wearers skin through a polymerizing skin adhesive.
  11. 11. A suture for primary closure of surgical incisions, comprising:
    a resilient means for storing and releasing mechanical energy;
    a first attachment means connected to said resilient means for supplying energy to said resilient means and transferring energy released from the resilient means to skin; and
    a second attachment means connected to said resilient means for supplying energy to said resilient means and transferring energy released from the resilient means to skin.
  12. 12. The suture of claim 11, wherein:
    said first attachment means is attached to the resilient means through a first connecting means for hingedly attaching; and
    said second attachment means is attached to the resilient means through a second connecting means for hingedly attaching.
  13. 13. A method of closing surgical incisions, comprising the steps of
    providing a resilient center piece having a first end and a second end;
    providing a first attachment strip connected to said first end of said center piece, wherein said first attachment strip includes a distal end opposite the connection to the center piece and is adapted to be attached to the skin of a wearer of the suture;
    providing a second attachment strip connected to said second end of said center piece, wherein said second attachment strip includes a distal end opposite the connection to the center piece and is adapted to be attached to the skin of a wearer of the suture; and
    stretching said center piece from a first position into a second position defined by the center piece having self gauging level of pre-stress, over a wearer's surgical incision; and
    attaching at least one of said first attachment strip and said second attachment strip to the wearer's skin, enabling said first attachment strip and said second attachment strip to transfer recoiling force from the center piece through the thickness of the skin through shear force transfer to provide closure force initially applied at the epidermal level at the dermal level of the skin.
  14. 14. The method of claim 13, wherein said resilient center piece is a “C” shaped, lenticular spring center.
  15. 15. The method of claim 13, wherein said first attachment strip and said second attachment strip are connected to the center piece through an attachment member and a hinge member disposed on the first end and an attachment member and a hinge member disposed on the second end, respectively.
  16. 16. The method of claim 15, wherein:
    a pin hinge defines at least one of said hinge members; and
    a tape clamp defines at least one of said attachment members.
  17. 17. The method of claim 15, wherein:
    a membrane hinge defines at least one of said hinge members; and
    a welding flange defines at least one of said attachment members.
  18. 18. The method of claim 17, wherein welding flange and hinge member disposed on said first end, said center piece, and said welding flange and hinge member disposed on said first end comprise a single, continuous extrusion.
  19. 19. The method of claim 13, wherein surgical tape defines at least one of said first attachment strip and said second attachment strip.
  20. 20. The method of claim 13, wherein the distal ends of said first attachment strip and of said second attachment strip attach to a wearers skin through a polymerizing skin adhesive.
US14271387 2013-05-09 2014-05-06 C-spring suture for primary closure of surgical incisions Abandoned US20140336701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201361821334 true 2013-05-09 2013-05-09
US14271387 US20140336701A1 (en) 2013-05-09 2014-05-06 C-spring suture for primary closure of surgical incisions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14271387 US20140336701A1 (en) 2013-05-09 2014-05-06 C-spring suture for primary closure of surgical incisions

Publications (1)

Publication Number Publication Date
US20140336701A1 true true US20140336701A1 (en) 2014-11-13

Family

ID=51865340

Family Applications (1)

Application Number Title Priority Date Filing Date
US14271387 Abandoned US20140336701A1 (en) 2013-05-09 2014-05-06 C-spring suture for primary closure of surgical incisions

Country Status (1)

Country Link
US (1) US20140336701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105342656A (en) * 2015-10-19 2016-02-24 张新平 Skin wound tension reducing device
WO2018075879A1 (en) * 2016-10-21 2018-04-26 Emrge, Llc. Force modulating tissue bridges, associated tools, kits and methods

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018517A (en) * 1933-04-01 1935-10-22 Fetter Edward Elastic adhesive bandage
US2371978A (en) * 1941-12-13 1945-03-20 Roy G Perham Clamp for retaining the edges of a wound in apposition
US3487836A (en) * 1968-07-16 1970-01-06 Benjamin W Niebel Surgical strip stitch
US4605005A (en) * 1982-04-12 1986-08-12 Kells Medical, Inc. Wound closure device and method for using same
US4815468A (en) * 1987-01-09 1989-03-28 Annand David S Sutureless closure
US5022389A (en) * 1990-05-25 1991-06-11 Cornucopia Medical Products, Inc. Nasal splint device
US5047047A (en) * 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
US5147698A (en) * 1986-09-30 1992-09-15 Minnesota Mining And Manufacturing Company Pressure sensitive adhesive film article having high moisture vapor transmission rate
US6176868B1 (en) * 1999-11-22 2001-01-23 Didier Detour Device for the non-invasive sutureless closure of the open edges of wound in the skin of a mammal
US6470883B1 (en) * 1996-05-10 2002-10-29 Wallace J. Beaudry Nasal epidermal lifting mechanism
US20030236479A1 (en) * 2002-06-19 2003-12-25 Dennis Michael R. Pressure-evenizing low-rebound wound dressing
US20060200198A1 (en) * 2004-08-31 2006-09-07 Riskin Daniel J Systems and methods for closing a tissue opening
US20080146982A1 (en) * 2006-12-02 2008-06-19 Rastegar Jahangir S Shape and pressure adjustable dressing
US20090099496A1 (en) * 2005-10-05 2009-04-16 Medtreo, Llc Pressure bandage with medication delivery system
US20090240186A1 (en) * 2008-03-19 2009-09-24 Hsu-Cheng Fang Wound rebuilding band-aid without need of stitches
US20110106026A1 (en) * 2009-04-10 2011-05-05 Kenneth Wu Methods and devices for applying closed incision negative pressure wound therapy
US20120221044A1 (en) * 2005-05-12 2012-08-30 Canica Design, Inc. Dynamic Tensioning System and Method
US20120238931A1 (en) * 2011-01-02 2012-09-20 Omnitek Partners Llc Shape and Pressure Adjustable Dressing

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018517A (en) * 1933-04-01 1935-10-22 Fetter Edward Elastic adhesive bandage
US2371978A (en) * 1941-12-13 1945-03-20 Roy G Perham Clamp for retaining the edges of a wound in apposition
US3487836A (en) * 1968-07-16 1970-01-06 Benjamin W Niebel Surgical strip stitch
US4605005A (en) * 1982-04-12 1986-08-12 Kells Medical, Inc. Wound closure device and method for using same
US5147698A (en) * 1986-09-30 1992-09-15 Minnesota Mining And Manufacturing Company Pressure sensitive adhesive film article having high moisture vapor transmission rate
US4815468A (en) * 1987-01-09 1989-03-28 Annand David S Sutureless closure
US5047047A (en) * 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
US5022389A (en) * 1990-05-25 1991-06-11 Cornucopia Medical Products, Inc. Nasal splint device
US6470883B1 (en) * 1996-05-10 2002-10-29 Wallace J. Beaudry Nasal epidermal lifting mechanism
US6176868B1 (en) * 1999-11-22 2001-01-23 Didier Detour Device for the non-invasive sutureless closure of the open edges of wound in the skin of a mammal
US20030236479A1 (en) * 2002-06-19 2003-12-25 Dennis Michael R. Pressure-evenizing low-rebound wound dressing
US20060200198A1 (en) * 2004-08-31 2006-09-07 Riskin Daniel J Systems and methods for closing a tissue opening
US20120221044A1 (en) * 2005-05-12 2012-08-30 Canica Design, Inc. Dynamic Tensioning System and Method
US20090099496A1 (en) * 2005-10-05 2009-04-16 Medtreo, Llc Pressure bandage with medication delivery system
US20080146982A1 (en) * 2006-12-02 2008-06-19 Rastegar Jahangir S Shape and pressure adjustable dressing
US20090240186A1 (en) * 2008-03-19 2009-09-24 Hsu-Cheng Fang Wound rebuilding band-aid without need of stitches
US20110106026A1 (en) * 2009-04-10 2011-05-05 Kenneth Wu Methods and devices for applying closed incision negative pressure wound therapy
US20120238931A1 (en) * 2011-01-02 2012-09-20 Omnitek Partners Llc Shape and Pressure Adjustable Dressing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105342656A (en) * 2015-10-19 2016-02-24 张新平 Skin wound tension reducing device
WO2018075879A1 (en) * 2016-10-21 2018-04-26 Emrge, Llc. Force modulating tissue bridges, associated tools, kits and methods

Similar Documents

Publication Publication Date Title
US5618310A (en) Tissue, expansion and approximation device
US5258011A (en) Corneal rivet
US5425740A (en) Endoscopic hernia repair clip and method
US765793A (en) Surgical bridge.
US5336219A (en) Skin closure system
US4924866A (en) Wound-closing device
US20040204740A1 (en) Method and apparatus for closing wounds without sutures
US8920444B2 (en) Medical devices and methods useful for applying bolster material
US7361185B2 (en) Clinical and surgical system and method for moving and stretching plastic tissue
US7683234B2 (en) Devices and bandages for the treatment or prevention of scars and/or keloids and methods and kits therefor
US4222383A (en) Surgical drape and suture
US7354446B2 (en) Device for laceration or incision closure
US20060200198A1 (en) Systems and methods for closing a tissue opening
US5047047A (en) Wound closing device
US20050020956A1 (en) Device for laceration or incision closure
US5584859A (en) Suture assembly
US20060064125A1 (en) Button anchor system for moving tissue
US20100256675A1 (en) Absorbable surgical staple
US6176868B1 (en) Device for the non-invasive sutureless closure of the open edges of wound in the skin of a mammal
US7455681B2 (en) Wound closure product
US4539990A (en) Sutureless closure system
US4881546A (en) Wound-closure device and method
US20120046586A1 (en) Skin treatment devices and methods with pre-stressed configurations
US4742826A (en) Cicatrisive strip with bias
US20090248066A1 (en) Elastic barbed suture and tissue support system

Legal Events

Date Code Title Description
AS Assignment

Owner name: DERMAL THERAPIES, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCLORG, ANTHONY BARR;REEL/FRAME:036456/0381

Effective date: 20140703

AS Assignment

Owner name: MCLORG, ANTHONY BARR, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DERMAL THERAPIES, LLC;REEL/FRAME:045751/0882

Effective date: 20180503