US20140306491A1 - Increased stiffness underbody panel - Google Patents

Increased stiffness underbody panel Download PDF

Info

Publication number
US20140306491A1
US20140306491A1 US13/861,748 US201313861748A US2014306491A1 US 20140306491 A1 US20140306491 A1 US 20140306491A1 US 201313861748 A US201313861748 A US 201313861748A US 2014306491 A1 US2014306491 A1 US 2014306491A1
Authority
US
United States
Prior art keywords
vehicle
cradle
frame
panel
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/861,748
Other versions
US8875834B1 (en
Inventor
Liviu Octavian Sirbu
Benjamin W. Michajlyszyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to US13/861,748 priority Critical patent/US8875834B1/en
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICHAJLYSZYN, BENJAMIN W, SIRBU, LIVIU OCTAVIAN
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY INTEREST Assignors: GM Global Technology Operations LLC
Publication of US20140306491A1 publication Critical patent/US20140306491A1/en
Application granted granted Critical
Publication of US8875834B1 publication Critical patent/US8875834B1/en
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST COMPANY
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/10Understructures, i.e. chassis frame on which a vehicle body may be mounted in which the main member is plate-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/02Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
    • B62D21/03Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members transverse members providing body support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/02Arrangement or mounting of internal-combustion or jet-propulsion units with the engine main axis, e.g. crankshaft axis, substantially in or parallel to the longitudinal centre line of the vehicle

Definitions

  • the panel may include a first portion and a second portion fused together to form a boxed cross-section.
  • the cradle may include a first cross-member spanning the distance between the first and second frame rails and a second cross-member spanning the distance between the first and second frame rails.
  • the panel may be attached to each of the first and second cross-members.
  • the cradle may include a first side section and a second side section, and first, second, third, and fourth cast node sections.
  • the first and second cast node sections may attach the first cross-member to the first and second side sections, respectively, and the third and fourth cast node sections may attach the second cross-member to the first and second side sections, respectively.
  • the panel may then be attached to each of the first, second, third, and fourth cast node sections.
  • the shown portion of frame 16 may be part of perimeter framed heavier-duty work vehicle, such as a pick-up truck or a van, or a unibody structure, as is typically employed in passenger vehicles.
  • the disclosed vehicle structure 12 may be used in a rear-wheel drive, front-wheel drive, or four-wheel drive configuration.
  • the first and/or second portions 36 - 1 , 36 - 2 may define apertures or voids 36 - 5 in areas experiencing minimal stress when the panel 36 is installed and subjected to loads in the vehicle 10 .
  • the panel 36 is attached to the cradle 28 proximate the first end 28 - 1 and proximate the second end 28 - 2 , and to each of the first and second frame rails 16 A, 16 B.
  • the panel 36 may also be attached directly to each of the first and second frame rails 16 A, 16 B and a cradle that is constructed similar to cradle 28 , but positioned proximate the rear portion 12 - 2 to support the differential 25 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

A vehicle structure includes a frame having a first frame rail and a second frame rail. The first and second frame rails are spaced apart by a distance and are substantially parallel to one another. The vehicle structure also includes a vehicle body attached to the frame. The vehicle structure also includes a cradle mounted under the vehicle body to each of the first and second frame rails and configured to support a vehicle drivetrain subassembly. The vehicle structure additionally includes a panel attached to each of the first and second frame rails and the cradle, and configured to stiffen the vehicle structure.

Description

    TECHNICAL FIELD
  • The present disclosure relates to an increased-stiffness underbody panel for a vehicle.
  • BACKGROUND OF THE INVENTION
  • Typically, a vehicle includes a structure for enclosing and supporting various vehicle systems, as well as the vehicle passengers. Heavy-duty vehicles, such as pick-up trucks and vans, commonly employ a frame to support a body and a powertrain of the vehicle. On the other hand, light-duty vehicles, such as a majority of passenger cars, often employ a monocoque or unibody construction that eschews a separate body and frame, in favor of a lighter, integrated structure. Additionally, some lighter-duty vehicles employ a combination monocoque structure with a subframe for carrying the vehicle's powertrain. Frequently, additional structural members are used to buttress the vehicle structure, as well as for supporting various chassis and powertrain subsystems.
  • SUMMARY OF THE INVENTION
  • A vehicle structure includes a frame having a first frame rail and a second frame rail. The first and second frame rails are spaced apart by a distance and are substantially parallel to one another. The vehicle structure also includes a vehicle body attached to the frame. The vehicle structure also includes a cradle mounted under the vehicle body to each of the first and second frame rails and configured to support a vehicle drivetrain subassembly. The vehicle structure additionally includes a panel attached to each of the first and second frame rails and the cradle, and configured to stiffen the vehicle structure.
  • The cradle may be defined by a first end and a second end. Also, the cradle may be mounted to the first frame rail proximate the first end and proximate the second end, as well as to the second frame rail proximate the first end and proximate the second end. Additionally, the panel may be attached to the cradle proximate the first end and proximate the second end, and to each of the first and second frame rails.
  • The panel may include a first portion and a second portion fused together to form a boxed cross-section.
  • Each of the first portion and the second portion may be formed from aluminum. In such a case, the first and second portions may be fused together via a weld bead.
  • The cross-section may include a plurality of apertures extending therethrough. Additionally, each of the plurality of apertures may be configured to accept a fastener for attachment of the panel to one of the cradle and the rails.
  • The cradle may include a first cross-member spanning the distance between the first and second frame rails and a second cross-member spanning the distance between the first and second frame rails. In such a case, the panel may be attached to each of the first and second cross-members.
  • The cradle may include a first side section and a second side section, and first, second, third, and fourth cast node sections. The first and second cast node sections may attach the first cross-member to the first and second side sections, respectively, and the third and fourth cast node sections may attach the second cross-member to the first and second side sections, respectively. The panel may then be attached to each of the first, second, third, and fourth cast node sections.
  • The vehicle body may be characterized by a longitudinal centerline. Additionally, the first and second frame rails and the cradle may each be arranged substantially symmetrically with respect to the centerline. Furthermore, the plurality of apertures may be configured as a pattern that is arranged substantially symmetrically with respect to the centerline.
  • The vehicle drivetrain subassembly may include a powertrain having at least one of an internal combustion engine, a motor-generator, a fuel cell, and a transmission. The vehicle drivetrain subassembly may also include a differential gear-set.
  • The panel may be characterized by a generally continuous surface between the first end and the second end such that aerodynamic disturbance under the vehicle body is minimized.
  • The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of the embodiment(s) and best mode(s) for carrying out the described invention when taken in connection with the accompanying drawings and appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic top view of a vehicle structure supporting a vehicle drivetrain.
  • FIG. 2 is a schematic perspective bottom view of the vehicle structure shown in FIG. 1, specifically depicting a frame, a powertrain cradle, and a structure-stiffening panel.
  • FIG. 3 is a perspective bottom view of the powertrain cradle shown in FIG. 2.
  • FIG. 4 is a view of a cross-section of the structure-stiffening panel shown in FIG. 2.
  • FIG. 5 is a top view of the structure-stiffening panel shown in FIG. 2.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to the drawings, wherein like reference numbers refer to like components, FIG. 1 shows a perspective schematic view of a vehicle 10 having a vehicle structure 12 having a front portion 12-1 and a rear portion 12-2. The vehicle structure 12 is made up of a vehicle body 14 constructed from a number of components and sub-structures, as understood by those skilled in the art, and a frame 16. The vehicle body 14 is characterized by a longitudinal centerline C. The vehicle body 14 is attached to the frame 16, thus enabling a support structure for a vehicle suspension (not shown) and wheels, while also supporting a vehicle drivetrain subassembly 18, passengers, and cargo.
  • As shown, the frame 16 includes two frame rails, 16A and 16B, separated in vehicle structure 12 by a distance D. The frame rails 16A and 16B may be substantially parallel with respect to each other, e.g., within +/−5° of true parallel. The first and second frame rails 16A, 16B are arranged substantially symmetrically with respect to the centerline C. As used herein, the term “substantially symmetrically” may denote a positioning of specified components that is within +/−5 cm of true symmetry with respect to the centerline C. Frame rails 16A and 16B are typically made from steel, and are formed by any appropriate method, such as hydro-forming, roll-forming, stamping, and welding. The shown portion of frame 16 may be part of perimeter framed heavier-duty work vehicle, such as a pick-up truck or a van, or a unibody structure, as is typically employed in passenger vehicles. As appreciated by those skilled in the art, the disclosed vehicle structure 12 may be used in a rear-wheel drive, front-wheel drive, or four-wheel drive configuration.
  • The drivetrain subassembly 18 includes a powertrain 20 having an internal combustion engine 22 coupled to a transmission assembly 24. The powertrain 20 may be positioned proximate the front portion 12-1 (as shown in FIGS. 1-2) of the vehicle structure 12, or proximate the rear portion 12-2. The drivetrain 18 may also include a driveshaft 26 coupled to the transmission assembly 24 and configured to transmit torque of the engine 22 to driven wheels via a differential 25, which may be positioned proximate the rear portion 12-2, as shown in FIG. 1. In addition to engine 22 and the transmission assembly 24, powertrain 18 may also include an electric motor/generator (not shown) for hybrid propulsion of the subject vehicle, or a fuel-cell, as understood by those skilled in the art. Transmission assembly 24 may also include a gear train and torque transmitting members (not shown) operatively connecting the engine 22 and the driveshaft 26, and arranged to enable selection of appropriate gear ratios for most effective propulsion of the vehicle 10.
  • The vehicle structure 12 also includes a cradle 28 mounted under the body 14 to each of the first and second frame rails 16A, 16B. The cradle 28 is each arranged substantially symmetrically with respect to the centerline C. The powertrain 20 is mounted to the cradle 28 via a pair of engine mounts 30, with one mount positioned on either side of the engine (due to the perspective view shown in FIG. 1, only a single mount is shown). Mounts 30 are specially designed to support the mass of engine 20, as well as to absorb vibration of a running engine, and withstand the torque couple that is generated by the engine during propulsion of the vehicle 10. The mass and vibration of the transmission assembly 24, as well as the torque couple generated by engine 18 during propulsion may be fully supported by the cradle 28 or an additional support via a separate transmission mount (not shown) may be employed.
  • As shown in FIG. 3, the cradle 28 is a multi-component support sub-structure defined by a first end 28-1 and a second end 28-2. The cradle 28 includes a first cross-member 30-1 and a second cross-member 30-2, each arranged substantially transverse to the centerline C and spanning the distance D between the first and second frame rails 16A, 16B. The cradle also includes a first side section 32-1 and a second side section 32-2, and a first cast node section 34-1, a second cast node section 34-2, a third cast node section 34-3, and a fourth cast node section 34-4. The first cast node section 34-1 and the second cast node section 34-2 attach the first cross-member 30-1 to the first and second side sections 32-1, 32-2, respectively. The third cast node section 34-3 and the fourth cast node section 34-4 attach the second cross-member 30-2 to the first and second side sections 32-1, 32-2, respectively. The cradle 28 is mounted to the first frame rail 16A proximate the first end 28-1 and proximate the second end 28-2. Additionally, the cradle 28 is mounted to the second frame rail 16B proximate the first end 28-1 and proximate the second end 28-2. Mounted in such fashion, the cradle 28 forms a rigid structure for supporting the powertrain 20 with the frame 16.
  • As shown in FIG. 2, the vehicle structure 12 also includes a structure-stiffening panel 36. The panel 36 is attached to each of the first and second frame rails 16A, 16B and the cradle 28. The panel 36 is attached to the cradle 28 proximate the first end 28-1 and proximate the second end 28-2, and to each of the first and second frame rails 16A, 16B. The panel 36 includes a first portion 36-1 and a second portion 36-2. As shown, the first portion 36-1 and the second portion 36-2 are fused together via weld beads 36-3 to form a boxed cross-section 4-4 having enhanced strength and bending resistance, i.e. stiffness, as shown in FIG. 4. Each of the first and second portions 36-1, 36-2 may be formed from a suitable high strength material, such as aluminum, carbon fiber, multi-layer composite, or steel. Accordingly, although the weld beads 36-3 are shown, the specific mechanism for fusing the first and second portions 36-1, 36-2 depends on the selected materials. As shown in FIG. 5, the second portion 36-2 may include a stiffening rib or network of ribs 36-4 to further enhance stiffness of the panel 36. Furthermore, as also shown, to lighten the panel 36, the first and/or second portions 36-1, 36-2 may define apertures or voids 36-5 in areas experiencing minimal stress when the panel 36 is installed and subjected to loads in the vehicle 10. The panel 36 is attached to the cradle 28 proximate the first end 28-1 and proximate the second end 28-2, and to each of the first and second frame rails 16A, 16B. Although not specifically shown, the panel 36 may also be attached directly to each of the first and second frame rails 16A, 16B and a cradle that is constructed similar to cradle 28, but positioned proximate the rear portion 12-2 to support the differential 25.
  • As shown in FIG. 4, the cross-section 4-4 defines a plurality of apertures 38 extending there through. Each of the plurality of apertures 38 is configured to accept a fastener 40 for attachment of the panel 36 to one of the cradle 28 and the rails 16A and 16B. More specifically, as shown in FIG. 2, the panel 36 may be attached to each of the first and second cross-members 30-1, 30-2 and each of the first, second, third, and fourth cast node sections 34-1, 34-2, 34-3, and 34-4 of the cradle 28 via the fasteners 40. As shown, the plurality of apertures 38 is configured as a pattern that is arranged substantially symmetrically with respect to the centerline C such that the load is distributed substantially evenly between all the fasteners 40.
  • The panel 36 is configured, i.e., designed and positioned, to increase stiffness of the vehicle structure 12. Specifically, when positioned as shown in FIG. 2, the panel 36 increases the stiffness of the vehicle structure 12 near the powertrain 20 at the front of the vehicle 10, which generally also positions the vehicle steering system for turning vehicle's steered wheels. Vehicle wheels, especially the steered wheels, typically bear significant loads during cornering of the vehicle, and as such benefit from being attached to a rigid vehicle structure 12. Furthermore, high-performance vehicles that are designed to provide rapid transitions from acceleration to braking, generate elevated cornering speeds and lateral g-loads, and offer sharp response to steering input require a rigid vehicle structure 12, such that response of suspension components, such as springs and dampers, may be tuned, i.e., selected, more precisely. For such high-performance vehicle applications, the enhanced stiffness provided by the panel 36 enables more precise tuning of the vehicle suspension components.
  • As may be additionally seen from FIG. 2, the panel 36 may be characterized by a generally continuous surface 36-1 between the first end 28-1 and the second end 28-2. The depicted surface 36-1 is configured, i.e., designed and shaped, to be generally continuous such that aerodynamic disturbance under the vehicle body 14 is minimized. As would be understood by those skilled in the art, reduced aerodynamic disturbance around the vehicle 10 enhances vehicle performance such as vehicle top speed and acceleration. Additionally, reduced aerodynamic disturbance created by the vehicle 10 in turn reduces energy consumption of the powertrain 20 required to achieve and sustain desired vehicle speed. As a side benefit, the panel 36 may also serve to protect components of the drivetrain subassembly 18, such as an oil sump of the engine 22, which may otherwise be exposed to impacts from road debris.
  • The detailed description and the drawings or figures are supportive and descriptive of the invention, but the scope of the invention is defined solely by the claims. While some of the best modes and other embodiments for carrying out the claimed invention have been described in detail, various alternative designs and embodiments exist for practicing the invention defined in the appended claims. Furthermore, the embodiments shown in the drawings or the characteristics of various embodiments mentioned in the present description are not necessarily to be understood as embodiments independent of each other. Rather, it is possible that each of the characteristics described in one of the examples of an embodiment can be combined with one or a plurality of other desired characteristics from other embodiments, resulting in other embodiments not described in words or by reference to the drawings. Accordingly, such other embodiments fall within the framework of the scope of the appended claims.

Claims (20)

1. A vehicle structure comprising:
a frame having a first frame rail and a second frame rail, wherein the first and second frame rails are spaced apart by a distance and are substantially parallel to one another;
a vehicle body attached to the frame;
a cradle mounted under the vehicle body to each of the first and second frame rails and configured to support a vehicle drivetrain subassembly; and
a panel attached to each of the first and second frame rails and the cradle, and configured to stiffen the vehicle structure;
wherein the panel includes a first portion and a second portion fused together to form a boxed cross-section.
2. The vehicle structure of claim 1, wherein:
the cradle is defined by a first end and a second end;
the cradle is mounted to the first frame rail proximate the first end and proximate the second end, and to the second frame rail proximate the first end and proximate the second end; and
the panel is attached to the cradle proximate the first end and proximate the second end, and to each of the first and second frame rails.
3. (canceled)
4. The vehicle structure of claim 1, wherein each of the first portion and the second portion is formed from aluminum, and the first and second portions are fused together via a weld bead.
5. The vehicle structure of claim 1, wherein the cross-section includes a plurality of apertures extending therethrough, and wherein each of the plurality of apertures is configured to accept a fastener for attachment of the panel to one of the cradle and the rails.
6. The vehicle structure of claim 5, wherein the cradle includes a first cross-member spanning the distance between the first and second frame rails and a second cross-member spanning the distance between the first and second frame rails, and the panel is attached to each of the first and second cross-members.
7. The vehicle structure of claim 6, wherein:
the cradle includes a first side section and a second side section, and first, second, third, and fourth cast node sections;
the first and second cast node sections attach the first cross-member to the first and second side sections, respectively, and the third and fourth cast node sections attach the second cross-member to the first and second side sections, respectively; and
the panel is attached to each of the first, second, third, and fourth cast node sections.
8. The vehicle structure of claim 7, wherein:
the vehicle body is characterized by a longitudinal centerline;
the first and second frame rails and the cradle are each arranged substantially symmetrically with respect to the centerline; and
the plurality of apertures is configured as a pattern that is arranged substantially symmetrically with respect to the centerline.
9. The vehicle structure of claim 1, wherein the vehicle drivetrain subassembly includes a powertrain having at least one of an internal combustion engine, a motor-generator, a fuel cell, and a transmission.
10. The vehicle structure of claim 2, wherein the panel is characterized by a generally continuous surface between the first end and the second end of the cradle such that aerodynamic disturbance under the vehicle body is minimized.
11. A vehicle comprising:
a vehicle drivetrain subassembly; and
a vehicle structure including:
a frame having a first frame rail and a second frame rail, wherein the first and second frame rails are spaced apart by a distance and are substantially parallel to one another;
a vehicle body attached to the frame;
a cradle mounted under the vehicle body to each of the first and second frame rails and configured to support the drivetrain subassembly; and
a panel attached to each of the first and second frame rails and the cradle, and configured to stiffen the vehicle structure wherein the panel includes a first portion and a second portion fused together to form a boxed cross-section.
12. The vehicle of claim 11, wherein:
the cradle is defined by a first end and a second end;
the cradle is mounted to the first frame rail proximate the first end and proximate the second end, and to the second frame rail proximate the first end and proximate the second end; and
the panel is attached to the cradle proximate the first end and proximate the second end, and to each of the first and second frame rails.
13. (canceled)
14. The vehicle of claim 11, wherein each of the first portion and the second portion is formed from aluminum, and the first and second portions are fused together via a weld bead.
15. The vehicle of claim 11, wherein the cross-section includes a plurality of apertures extending therethrough, and wherein each of the plurality of apertures is configured to accept a fastener for attachment of the panel to one of the cradle and the rails.
16. The vehicle of claim 15, wherein the cradle includes a first cross-member spanning the distance between the first and second frame rails and a second cross-member spanning the distance between the first and second frame rails, and the panel is attached to each of the first and second cross-members.
17. The vehicle of claim 16, wherein:
the cradle includes a first side section and a second side section, and first, second, third, and fourth cast node sections;
the first and second cast node sections attach the first cross-member to the first and second side sections, respectively, and the third and fourth cast node sections attach the second cross-member to the first and second side sections, respectively; and
the panel is attached to each of the first, second, third, and fourth cast node sections.
18. The vehicle of claim 17, wherein:
the vehicle body is characterized by a longitudinal centerline;
the first and second frame rails and the cradle are each arranged substantially symmetrically with respect to the centerline; and
the plurality of apertures is configured as a pattern that is arranged substantially symmetrically with respect to the centerline.
19. The vehicle of claim 11, wherein the vehicle drivetrain subassembly includes a powertrain having at least one of an internal combustion engine, a motor-generator, a fuel cell, and a transmission.
20. The vehicle of claim 12, wherein the panel is characterized by a generally continuous surface between the first end and the second end of the cradle such that aerodynamic disturbance under the vehicle body is minimized.
US13/861,748 2013-04-12 2013-04-12 Increased stiffness underbody panel Expired - Fee Related US8875834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/861,748 US8875834B1 (en) 2013-04-12 2013-04-12 Increased stiffness underbody panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/861,748 US8875834B1 (en) 2013-04-12 2013-04-12 Increased stiffness underbody panel

Publications (2)

Publication Number Publication Date
US20140306491A1 true US20140306491A1 (en) 2014-10-16
US8875834B1 US8875834B1 (en) 2014-11-04

Family

ID=51686285

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/861,748 Expired - Fee Related US8875834B1 (en) 2013-04-12 2013-04-12 Increased stiffness underbody panel

Country Status (1)

Country Link
US (1) US8875834B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081423A1 (en) * 2015-04-15 2016-10-19 Toyota Jidosha Kabushiki Kaisha Powertrain unit
DE102018128004A1 (en) * 2018-11-08 2020-05-14 Bayerische Motoren Werke Aktiengesellschaft Axle carrier of a vehicle with a push field

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819476B2 (en) * 2017-06-16 2021-01-27 トヨタ自動車株式会社 Vehicle front structure
CN110891850B (en) * 2017-07-28 2022-09-02 德纳重型车辆系统集团有限责任公司 Bracket component of electric vehicle axle assembly
US10550927B2 (en) 2017-11-20 2020-02-04 Ford Global Technologies, Llc Multi-function transmission crossmember
US11299206B2 (en) * 2019-09-12 2022-04-12 GM Global Technology Operations LLC Vehicle structure for a cross-vehicle load path
US11713080B2 (en) * 2020-08-13 2023-08-01 Ford Global Technologies, Llc Double subframes with isolation couplings
DE102022106541A1 (en) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Underbody paneling for a motor vehicle and motor vehicle with such an underbody paneling

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2718288A (en) * 1952-10-22 1955-09-20 Kaiser Aluminium Chem Corp Take-up member for vehicle floor assemblies
US4263980A (en) * 1979-05-30 1981-04-28 General Motors Corporation Powertrain cradle for front-wheel-drive vehicle
JPS58170607A (en) * 1982-03-31 1983-10-07 Nissan Motor Co Ltd Support member for suspension system
JPH0525284Y2 (en) * 1986-03-13 1993-06-25
JP2657319B2 (en) * 1989-08-08 1997-09-24 本田技研工業株式会社 Automobile power unit support device
JP3182938B2 (en) * 1992-11-02 2001-07-03 トヨタ自動車株式会社 Reinforcement structure of car floor tunnel
JP3461387B2 (en) * 1994-07-26 2003-10-27 本田技研工業株式会社 Fuel tank fixing structure
JP2721312B2 (en) * 1994-09-29 1998-03-04 本田技研工業株式会社 Subframe structure
US5879026A (en) * 1995-12-19 1999-03-09 Chrysler Corporation Vehicle suspension and steering cradle
US5992926A (en) * 1997-07-30 1999-11-30 Dana Corporation Vehicular skid plate and cross member assembly
JP3464756B2 (en) * 1997-12-12 2003-11-10 本田技研工業株式会社 Impact absorbing body structure for vehicles
JP3089472B2 (en) * 1999-02-19 2000-09-18 本田技研工業株式会社 Front subframe structure
DE19909945C1 (en) * 1999-03-06 2000-10-26 Porsche Ag Subframe for a motor vehicle
JP2001088736A (en) * 1999-09-24 2001-04-03 Suzuki Motor Corp Suspension frame structure
US6409216B2 (en) * 2000-03-17 2002-06-25 Suzuki Motor Corporation Suspension frame construction
EP1188643B1 (en) * 2000-09-19 2006-10-11 Mazda Motor Corporation Sub-frame structure of motor vehicle
FR2814425B1 (en) * 2000-09-22 2003-02-21 Peguform France ENGINE FAIRING FOR IMPROVED RESISTANCE VEHICLE
DE10153272B4 (en) * 2000-11-01 2009-04-16 Honda Giken Kogyo K.K. Die-cast subframe
US6869090B2 (en) * 2001-03-28 2005-03-22 Fuji Jukogyo Kabushiki Kaisha Supporting structure of sub-frame in suspension system for vehicle
US7520514B2 (en) * 2004-03-31 2009-04-21 Honda Motor Co., Ltd. Body frame structure
DE102004028161B4 (en) * 2004-06-09 2018-07-12 Volkswagen Ag Underride protection for passenger vehicles for arrangement under the longitudinal beam level in front of a subframe or axle as an additional Crashebene
DE102004035435A1 (en) * 2004-07-21 2006-03-16 GM Global Technology Operations, Inc., Detroit Reinforcing element for a lower portion of a front bumper, and thus equipped front bumper for a motor vehicle
JP4325530B2 (en) * 2004-10-14 2009-09-02 日産自動車株式会社 Suspension member
JP4655654B2 (en) * 2005-02-04 2011-03-23 日産自動車株式会社 Lower body structure
JP4550673B2 (en) * 2005-06-17 2010-09-22 本田技研工業株式会社 Vehicle subframe
JP4422668B2 (en) * 2005-10-19 2010-02-24 ヤンマー株式会社 Tractor loader backhoe frame structure
EP2048063B1 (en) * 2007-10-10 2009-10-14 HONDA MOTOR CO., Ltd. Front vehicle body structure
KR20100045800A (en) * 2008-10-24 2010-05-04 현대자동차주식회사 Sub-frame mount for suspension
DE102009050495A1 (en) * 2009-10-23 2011-04-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft subframe
JP5573413B2 (en) * 2010-06-28 2014-08-20 マツダ株式会社 Lower body structure of the vehicle
CN102971162B (en) * 2010-06-30 2015-04-01 马自达汽车株式会社 Vehicle suspension apparatus
EP2623401B1 (en) * 2010-09-30 2015-03-25 Honda Motor Co., Ltd. Car body forepart structure
CA2820147C (en) * 2010-12-06 2015-10-27 Honda Motor Co., Ltd. Subframe structure
WO2012093528A1 (en) * 2011-01-07 2012-07-12 本田技研工業株式会社 Lid-fastening structure
FR2987093B1 (en) * 2012-02-16 2014-03-28 Peugeot Citroen Automobiles Sa RELAY BEARING SUPPORT DEVICE OF A MOTOR VEHICLE TRANSMISSION HAVING IMPACT IMPACT FUNCTION; AND APPLICATION TO AN ASSEMBLY COMPRISING A MOTOR PROPELLER GROUP OF A MOTOR VEHICLE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081423A1 (en) * 2015-04-15 2016-10-19 Toyota Jidosha Kabushiki Kaisha Powertrain unit
US9505446B2 (en) 2015-04-15 2016-11-29 Toyota Jidosha Kabushiki Kaisha Powertrain unit
KR101786321B1 (en) * 2015-04-15 2017-10-17 도요타 지도샤(주) Powertrain unit
DE102018128004A1 (en) * 2018-11-08 2020-05-14 Bayerische Motoren Werke Aktiengesellschaft Axle carrier of a vehicle with a push field

Also Published As

Publication number Publication date
US8875834B1 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
US8875834B1 (en) Increased stiffness underbody panel
US10525781B2 (en) Mounting assembly for a suspension and wheel assembly of a vehicle, and vehicle including same
JP7190269B2 (en) Vehicle battery pack support device
US8870224B2 (en) Engine cradle with deflector device
US20130241237A1 (en) Vehicle body
US10189428B1 (en) Mounting assembly for mounting a bumper assembly and a radiator assembly to a vehicle, a vehicle frame, and a vehicle
US10800470B2 (en) Modular frame assembly for a vehicle and vehicle having same
US8317227B2 (en) Car body for a motor vehicle
JP2014128988A (en) Sub frame structure of vehicle
JP7172875B2 (en) frame car body structure
US20120104803A1 (en) Automotive vehicle composite body structure
US20220388385A1 (en) Support Device for Vehicle Battery Pack and Electric Vehicle
CN101791940A (en) Rear mount structure of engine
US10081245B2 (en) Cradle to body joint release mechanism
US11642953B2 (en) Mounting arrangement for a powertrain of a four-wheeled vehicle
US8424913B1 (en) Chassis frame of a vehicle
JP2002542102A (en) Load carrying structure for vehicles
US9580106B2 (en) Automotive frame rail reinforcing member to manage an offset, frontal applied load
US11001304B2 (en) Vehicle structure for side impact load path management
CN113302114A (en) Structural frame for a body of a motor vehicle
JP2021075111A (en) Support device of battery pack for vehicle
CN115593517A (en) Front longitudinal beam structure integrating auxiliary frame function and front engine room assembly
US11299206B2 (en) Vehicle structure for a cross-vehicle load path
RU2623275C2 (en) Structural frame with a cooling device
US20110198890A1 (en) Closed-section structural member for a vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIRBU, LIVIU OCTAVIAN;MICHAJLYSZYN, BENJAMIN W;REEL/FRAME:030207/0356

Effective date: 20130408

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS LLC;REEL/FRAME:033135/0336

Effective date: 20101027

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034287/0601

Effective date: 20141017

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20221104