US20140302545A1 - Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same - Google Patents

Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same Download PDF

Info

Publication number
US20140302545A1
US20140302545A1 US14/345,835 US201214345835A US2014302545A1 US 20140302545 A1 US20140302545 A1 US 20140302545A1 US 201214345835 A US201214345835 A US 201214345835A US 2014302545 A1 US2014302545 A1 US 2014302545A1
Authority
US
United States
Prior art keywords
proteins
enzyme treatment
hollow fiber
peptides
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/345,835
Other versions
US9598717B2 (en
Inventor
Duk Jin Kang
Sang Ryoul Park
Sook-Kyung Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Research Institute of Standards and Science KRISS
Original Assignee
Korea Research Institute of Standards and Science KRISS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Research Institute of Standards and Science KRISS filed Critical Korea Research Institute of Standards and Science KRISS
Assigned to KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE reassignment KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, DUK JIN, KIM, SOOK-KYUNG, PARK, SANG RYOUL
Publication of US20140302545A1 publication Critical patent/US20140302545A1/en
Application granted granted Critical
Publication of US9598717B2 publication Critical patent/US9598717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • C12M25/12Hollow fibers or tubes the culture medium flowing outside the fiber or tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types

Definitions

  • the present invention relates to an enzyme treatment apparatus for proteins using a hollow fiber membrane, and an on-line proteomics method using the same.
  • an enzyme treatment process for various proteins recovered through a multi-dimensional separation process is an essential protein pre-treatment process in a proteomics research field based on a mass spectrometer.
  • proteins may be digested into peptides by a reaction process at 37° C. for 12 to 18 using enzymes such as trypsin, LYs-C, or the like.
  • nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS-MS) through a primary separation process of the peptide mixture recovered through the enzyme treatment process according to hydrophobicity of the peptides and a secondary mass spectrometry using a tandem mass spectrometer.
  • nanoLC-ESI-MS-MS nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry
  • a series of enzyme treatment processes for protein as described above may be a most basic and important sample pre-treatment process for proteomic research, but there is a disadvantage in that the enzyme treatment process has a large influence on qualitative and quantitative analysis for standard protein due to complexity and low reproducibility of a conventional enzyme pre-treatment process.
  • the enzyme treatment method using the enzyme-fixed column and external energy has problems in that additional apparatus configuration is essential and reproducibility of enzyme activity is low due to unbalance of external energy.
  • additional apparatus configuration is essential and reproducibility of enzyme activity is low due to unbalance of external energy.
  • PTMs post-translational modifications
  • An object of the present invention is to provide an enzyme treatment apparatus for proteins using a micro-hollow fiber membrane for efficient analysis of a proteome sample.
  • Another object of the present invention is to provide an enzyme treatment method using a micro-hollow fiber membrane for efficient analysis of a proteome sample.
  • an enzyme treatment apparatus for proteins using a hollow fiber membrane may include:
  • a hollow fiber membrane connected to the injection unit and having a closed distal end opposite to the injection unit;
  • a collection unit connected to the outside of the hollow fiber membrane and collecting peptides digested by the enzyme in the hollow fiber membrane to pass through the hollow fiber membrane;
  • a discharge unit for elution of the collected peptides connected to the collection unit of the peptides.
  • the enzyme treatment apparatus may further include a unit for concentrating and desalting of the collected and eluted peptides connected to the discharge unit, and the enzyme treatment apparatus may further include a separation unit according to mass or a degree of hydrophobicity of peptides.
  • the hollow fiber membrane may have a molecular weight (M.W.) cutoff value of 10 kDa and a volume of 1 to 10 ⁇ l.
  • M.W. molecular weight
  • the hollow fiber membrane of the present invention is to separate protein according to a molecular weight thereof, and any hollow fiber membrane may be used as long as it is used to the above-mentioned purpose.
  • a hallow fiber membrane has a molecular weight cutoff value of 10 kDa, an inner diameter of about 200 to 600 ⁇ m an outer diameter of about 500 to 1000 ⁇ m and a volume of 1 to 10 ⁇ m and is made of polystyrene sulfonate, poly vinyl chloride, polyacrylonitrile, or a mixture thereof.
  • the unit for concentrating and desalting of the collected and eluted peptides may be a reverse trapping column, the separation unit according to the degree of hydrophobicity of peptides may be a reverse C18 column, and the separation unit according to the mass of peptides may be an electrospray ionization device.
  • the enzyme treatment apparatus for proteins may reproducibly and highly efficiently recover peptides by a simple pre-treatment process of digesting protein in the hollow fiber membrane using enzymes, separate peptides by performing nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoflow LC-ESI-MS-MS) on the recovered peptides, and compare mass spectrum with protein database to automatically analyze a protein sample.
  • nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry
  • an enzyme treatment method for proteins using a hollow fiber membrane may include:
  • the enzyme treatment method for protein may further include concentrating and desalting the collected and eluted peptides and further include separating peptides according to mass or a degree of hydrophobicity thereof.
  • the protein may be glycoprotein.
  • glycoprotein each of the glycoproteins may be prepared according to various kinds of cell lines, tissue sites in cells, tissues of organ, presence or absence or degrees of drug administration, diet and a nutrition state related to the diet, or presence or absence or progress degree of diseases and be used a sample for diagnosing cancer, but is not limited thereto.
  • the hollow fiber membrane may have a molecular weight (M.W.) cutoff value of 10 kDa and a volume of 1 to 10 ⁇ l.
  • M.W. molecular weight
  • the concentrating and desalting of the collected and eluted peptides may be performed using a reverse trapping column.
  • the separating of the peptides according to the degree of hydrophobicity of the peptides may be performed using a reverse non-polar column, more preferably, a reverse C18 column, and the separating of the peptides according to the mass of the peptide may be performed using an electrospray ionization device.
  • endoproteinase capable of attacking a specific amino acid residue in a protein chain to digest the protein
  • one or more selected from a group consisting of trypsin, papain, pepsin, peptide N-glycosidase F (PNGase) may be used as the endoproteinase.
  • the digesting of the protein using the enzyme may be performed at 30 to 60 for 30 minutes to 3 hours through sufficient hydrolysis reactions, and in the case of using the enzyme treatment method for proteins, effects such as reproducibility, accuracy, a decrease in time for analysis, low cost, simplicity, and the like, may be obtained.
  • the enzyme treatment apparatus for proteins according to the present invention may increase the recovery rate of peptides recovered through the enzyme treatment process, by basically solving the problem of low reproducibility of the enzyme activity which may occur during the conventional enzyme treatment process, and may also decrease the time for purification and provide higher yield by performing separation and purification through a single step.
  • the enzyme treatment method for proteins using the apparatus may simply and cheaply break protein into peptides in the enzyme treatment process for protein for a series of proteomics studies.
  • the present invention may be usefully applied for developing a disease-specific protein biomarker through a statistical analysis method having highly efficient detectability for proteins in research for finding biomarkers related to human diseases.
  • FIG. 1 is a perspective view of an enzyme treatment apparatus for protein using a hollow fiber membrane according to the present disclosure and a module for a hollow fiber membrane therein;
  • FIG. 2 is a schematic configuration view of an enzyme treatment apparatus for protein according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic mimetic view of an enzyme treatment method for protein according to the present invention.
  • FIG. 4 is a schematic mimetic view of an enzyme treatment method for protein according to an exemplary embodiment of the present disclosure
  • BSA bovine serum albumin
  • FIG. 6 shows tandem mass spectrometry results for alpha-1-acid glycoprotein (AGP) peptide, which is standard glycoprotein, using the enzyme treatment apparatus for protein according to the exemplary embodiment of the present invention.
  • AGP alpha-1-acid glycoprotein
  • FIG. 1 is a view showing an entire structural feature of an on-line micro-hollow fiber enzymatic reactor, which is an enzyme treatment apparatus using a hollow fiber membrane according to the present invention.
  • FIG. 1 a coupling structure of the hollow fiber membrane and injection/discharge tubings is shown in an upper portion of FIG. 1
  • the hollow fiber membrane importantly considered in the present invention and a module for the hollow fiber membrane designed for smooth movement of peptides passing through the hollow fiber membrane to the discharge tubing is shown in a lower portion of FIG. 1 .
  • a discharge hole portion of the hollow fiber membrane is closed by epoxy.
  • a structural feature of the enzyme treatment apparatus is that an injection hole of the hollow fiber membrane is connected to an injection hole of the module, but a discharge hole of the hollow fiber membrane is not connected but closed.
  • FIG. 2 shows the entire structure in which the on-line micro-hollow fiber enzymatic reactor corresponding to the enzyme treatment apparatus using a hollow fiber membrane according to the present invention is connected to a shotgun proteomics analyzer for peptide analysis using conventional nanoLC-ESI-MS-MS, and this structure may be variously changed according to application fields.
  • FIG. 2 shows a characteristic structure in which a micro pump capable of being controlled at a flow rate of 10 ⁇ l/min or less for movement and injection of protein or enzyme and an sample injector (or autosampler) capable of on-line injecting the protein and enzyme are connected to the on-line micro-hollow fiber enzymatic reactor.
  • a micro pump capable of being controlled at a flow rate of 10 ⁇ l/min or less for movement and injection of protein or enzyme
  • an sample injector or autosampler
  • the protein and enzyme injected by the micro pump and the sample injector are digested into peptides in the on-line micro-hollow fiber enzymatic reactor, which is the enzyme treatment apparatus using a hollow fiber membrane according to the present invention, and pass through the hollow fiber membrane. Thereafter, the passed peptides move to a reverse trapping column connected to the 10-port valve, such that a on-line concentration and desalting process of the peptides may be performed.
  • the peptides concentrated in the reverse trapping column are finally separated by a reverse C18 column according to degrees of hydrophobicity of the peptides by changing a channel of the 10-port valve so as to be connected to a flow of the nanoflow binary pump shown in FIG. 2 , and then, information on the peptides may be obtained through the tandem mass spectrometer.
  • this configuration may be changed according to application fields.
  • a recovery method of multi-dimensional peptides formed through a structure standard and enzyme reaction of the on-line micro-hollow fiber enzymatic reactor as the enzyme treatment apparatus using a hollow fiber membrane according to the present invention and a proteomics mass spectrometry for the proteins recovered by the recovered method will be described in detail with reference to FIGS. 1 and 2 .
  • Proteins or glycoproteins and enzymes are injected into a hollow fiber membrane having a volume of about 10 ⁇ l shown in FIG. 1 at a flow rate of 5 ⁇ l/min by the micro pump and the sample injector.
  • the collected proteins in the enzymatic reactor need to be easily denatured by using 50 mM ammonium bicarbonate containing 10 mM dithiothreitol (DTT) heated to 37° C. as a solvent.
  • DTT dithiothreitol
  • a composition and temperature adjustment of a protein denaturation solvent according to the present invention are not limited, and a solvent composition of the existing column heater or capable of denaturizing protein may be used.
  • a flow rate of the solvent used to move the protein may be adjusted suitable for a volume and characteristics of the hollow fiber membrane used in the enzymatic reactor.
  • a structural feature of the on-line micro-hollow fiber enzymatic reactor is that a capillary pipe having an inner diameter of 100 to 200 mm and an outer diameter of 360 mm is used as the injection and discharge tubings used for injection and discharge of the proteins and enzymes in the present invention.
  • a capillary pipe having an inner diameter of 100 to 200 mm and an outer diameter of 360 mm is used as the injection and discharge tubings used for injection and discharge of the proteins and enzymes in the present invention.
  • all kinds of tubings capable of being used in movement of the solvent channel may be used, but it is preferable that a tubing having a small inner diameter is used for smooth movement and recovery of proteins and enzymes.
  • a capillary pipe having an inner diameter of 200 ⁇ m and an outer diameter of 360 ⁇ m is injected into the hollow fiber membrane (inner diameter: 400 ⁇ m outer diameter: 800 ⁇ m) made of polysulfone and having a size of 6 cm and an end closed using epoxy and then fixed using 1/32-inch fitting (model: F-125) offered from Upchurch Scientific Corp.
  • 1/32-inch fitting model: F-125
  • an acrylic module self-manufactured so as to be suitable for the outer diameter of the hollow fiber membrane is used in addition to using the 1/32-inch fitting (See the lower portion of FIG. 1 ), but the module may be manufactured in various shapes so as to be suitable for the composition and flow rate of the used solvent in addition to the inner diameter and the outer diameter of the hollow fiber membrane.
  • the protein collected through the pump and sample injector is digested into peptides for about 30 minutes by the enzyme injected together with the protein.
  • molecular weights of the peptides are smaller than a molecular weight cutoff value of the hollow fiber membrane having a molecular weight cutoff value of 10 kDa, the peptides automatically pass through the hollow fiber membrane to thereby move and be concentrated in the reverse trapping column through the discharge hole.
  • a capillary pipe having an inner diameter of 50 mm and an outer diameter of 360 mm is used in all of the connection tubings except for the injection/discharge tubing of the hollow fiber enzymatic reactor, and the connection tubing may be freely used according to mechanical properties.
  • the peptides recovered through the on-line micro-hollow fiber enzymatic reactor are automatically and directly connected to a channel of a nanoLC-ESI-MS-MS apparatus through a channel change of the 10-port valve, and when the peptides are eluted according to the degree of hydrophobicity of the peptides through a nanoLC column filled with C18 according to a reverse solvent gradient, the eluted peptides are introduced into the tandem mass spectrometer through an electrospray ionization process, such that the peptides generated through the enzyme treatment process may be qualitatively and quantitatively analyzed.
  • a direction of the channel of the on-line micro-hollow fiber enzymatic reactor is automatically changed due to the channel change of the 10-port valve, such that a washing process is performed on the proteins or enzymes used in enzyme treatment during a process of the nanoLC-ESI-MS-MS. Therefore, multi-dimensional enzyme treatment for proteins may be performed.
  • FIG. 5 shows tandem mass spectrometry results of bovine serum albumin (BSA, 65 kDa) peptides recovered through the on-line micro-hollow fiber enzymatic reactor, which is the enzyme treatment apparatus for protein using a hollow fiber membrane according to the present invention.
  • BSA bovine serum albumin
  • a base peak chromatogram (BPC) of the nanoLC-ESI-MS-MS obtained by repeatedly performed a trypsin enzyme treatment process on the BSA protein three times is shown in a lower portion of FIG. 5
  • all of the probability score values of data obtained from each of the three experiments were 120 or more, which means high reliability.
  • reproducible peptide qualitative analysis may be performed on LFTFHADICTLPDTEK peptide of which a concentration was commonly low in three repetitive analysis using the on-line micro-hollow fiber enzymatic reactor, such that it may be confirmed that the hollow fiber enzymatic reactor has high enzyme treatment efficiency.
  • This result indicates that the hollow fiber enzymatic reactor has high applicability in qualitative-quantitative analysis of peptides generated due to low efficiency of the existing enzyme treatment apparatus for proteins.
  • FIG. 6 shows nanoLC-ESI-MS-MS results analyzed using alpha-1-acid glycoprotein (AGP), which is standard glycoprotein, as a result of applying the on-line micro-hollow fiber enzymatic reactor, which is the enzyme treatment apparatus for protein using a hollow fiber membrane according to the exemplary embodiment of the present invention, in multi-dimensional on-line glycoproteomics study.
  • AGP alpha-1-acid glycoprotein
  • glycoprotein As a biochemical feature of glycoprotein, glycoprotein has a structure in which glycan having various forms is linked to asaparagine N in amino acid sequences. Particularly, in these researches into glycoproteins, research for applying lectin proteins having a selective affinity for a specific glycan among several thousand protein mixtures has been conducted. In the present invention, on-line analysis of glycoprotein is performed using concanavalin A (ConA, 20 kDa) having a selective affinity to high mannose among the lectin proteins.
  • ConA concanavalin A
  • AGP as the standard glycoprotein peptide and ConA were injected to the hollow fiber enzymatic reactor using the micro pump and the sample injector, and as a result, non-glycopeptides that do not have an affinity for ConA lectin protein primarily passed through the hollow fiber membrane to thereby be automatically concentrated in the C18 reverse trapping column, and BPC and tandem mass spectrometry results of peptides collected through the channel change of the 10-port valve obtained by the nanoLC-ESI-MS-MS were shown in an upper portion of FIG. 6 .
  • peptide N-glycosidase which is one of the N-linked endoglycosidases
  • PNGase peptide N-glycosidase
  • Binding sites of glycan and peptides of the N-linked glycopeptides bound to ConA to thereby not pass through the hollow fiber membrane were separated by addition of PNGase F, such that glycopeptides bound to ConA automatically passed through the hollow fiber membrane to thereby be concentrated in the C18 reverse trapping column, and BPC and qualitative analysis results of the peptides obtained by the nanoLC-ESI-MS-MS were shown in a lower portion of FIG. 6 .
  • the on-line micro-hollow fiber enzymatic reactor according to the present invention significantly contributes to research into glycoprotein.
  • the on-line micro-hollow fiber enzymatic reactor may obtain reproducible result in research for fining glycoprotein biomarkers related to human diseases.

Abstract

Provided are an enzyme treatment apparatus for proteins using a hollow fiber membrane and an on-line proteomics method using same. The enzyme treatment apparatus for proteins according to the present invention can increase a recovery rate of peptides, which are recovered through an enzyme treatment process, by basically solving the problem of low reproducibility of an enzyme activity which may occur during a conventional enzyme treatment process, and can also reduce a time for purification and provide higher yield by performing separation and purification through a single step. In particular, the present invention can be usefully applied for developing a disease-specific protein biomarker through a statistical analysis method having highly efficient detectability for proteins in research for finding biomarkers related to human diseases.

Description

    TECHNICAL FIELD
  • The present invention relates to an enzyme treatment apparatus for proteins using a hollow fiber membrane, and an on-line proteomics method using the same.
  • BACKGROUND ART
  • Recently, research capability has been concentrated on national key scientific technologies from a basic science field up to applied science field. Particularly, various researches into the development of a key original technology associated with diagnosis and treatment of diseases, which is a main interest in bio-medical research fields, have been conducted at home and aboard. In researches into a technology of identifying and finding proteins related to diseases in a novel drug industry field and a bio-life science field, a separating and identifying step of proteins is an essential basic technology and has been importantly used to diagnose, treat, and prevent hard-to-cure diseases such as cancer in the overall research into life science fields. Currently, research into a technology of performing a two-dimensional separation process on each of the protein mixtures using two-dimensional electrophoresis (2DE) or multi-dimensional liquid chromatography analysis of proteins extracted from a normal person and a cancer patient, performing a recovery and enzyme treatment process, and then performing qualitative and quantitative evaluation on two samples using tandem mass spectrometry to thereby find a disease specific protein biomarker has been conducted at home and aboard as a research method through proteomics.
  • Meanwhile, an enzyme treatment process for various proteins recovered through a multi-dimensional separation process is an essential protein pre-treatment process in a proteomics research field based on a mass spectrometer. In the enzyme treatment process for proteins, after performing a denaturation and alkylation/reduction process on serum, cell lysates, or the like, proteins may be digested into peptides by a reaction process at 37° C. for 12 to 18 using enzymes such as trypsin, LYs-C, or the like. Then, qualitative and quantitative analysis may be performed on the peptides using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS-MS) through a primary separation process of the peptide mixture recovered through the enzyme treatment process according to hydrophobicity of the peptides and a secondary mass spectrometry using a tandem mass spectrometer. A series of enzyme treatment processes for protein as described above may be a most basic and important sample pre-treatment process for proteomic research, but there is a disadvantage in that the enzyme treatment process has a large influence on qualitative and quantitative analysis for standard protein due to complexity and low reproducibility of a conventional enzyme pre-treatment process.
  • Recently, in order to solve the above-mentioned problem, research for increasing enzyme treatment efficiency by applying various external energy such as an ultrasonic wave, pressure, or the like, in the enzyme treatment process in addition to an on-line enzyme treatment method of using an enzyme-fixed column has been reported.
  • However, the enzyme treatment method using the enzyme-fixed column and external energy has problems in that additional apparatus configuration is essential and reproducibility of enzyme activity is low due to unbalance of external energy. In addition, there is a limitation in that it is impossible to perform an on-line two-dimensional enzyme treatment for post-translational modifications (PTMs) analysis after translation of various proteins.
  • DISCLOSURE Technical Problem
  • While conducting continuous studies in order to solve the above-mentioned problems, the present inventors found that problems such as low reproducibility and recovery rate generated in a conventional enzyme treatment process may be basically solved by using an enzyme treatment apparatus for proteins using a micro-hollow fiber membrane in order to efficiently analyze a proteome sample and at the same time, more accurate results of qualitative and quantitative analysis for various proteins may be provided using an automated enzyme treatment process, thereby completing the present invention.
  • An object of the present invention is to provide an enzyme treatment apparatus for proteins using a micro-hollow fiber membrane for efficient analysis of a proteome sample.
  • Another object of the present invention is to provide an enzyme treatment method using a micro-hollow fiber membrane for efficient analysis of a proteome sample.
  • Technical Solution
  • In one general aspect, an enzyme treatment apparatus for proteins using a hollow fiber membrane may include:
  • an injection unit for injecting protein and enzyme;
  • a hollow fiber membrane connected to the injection unit and having a closed distal end opposite to the injection unit;
  • a collection unit connected to the outside of the hollow fiber membrane and collecting peptides digested by the enzyme in the hollow fiber membrane to pass through the hollow fiber membrane; and
  • a discharge unit for elution of the collected peptides connected to the collection unit of the peptides.
  • The enzyme treatment apparatus may further include a unit for concentrating and desalting of the collected and eluted peptides connected to the discharge unit, and the enzyme treatment apparatus may further include a separation unit according to mass or a degree of hydrophobicity of peptides.
  • The hollow fiber membrane may have a molecular weight (M.W.) cutoff value of 10 kDa and a volume of 1 to 10 μl.
  • In more detail, the hollow fiber membrane of the present invention is to separate protein according to a molecular weight thereof, and any hollow fiber membrane may be used as long as it is used to the above-mentioned purpose. However, it is preferable that a hallow fiber membrane has a molecular weight cutoff value of 10 kDa, an inner diameter of about 200 to 600 μm an outer diameter of about 500 to 1000 μm and a volume of 1 to 10 μm and is made of polystyrene sulfonate, poly vinyl chloride, polyacrylonitrile, or a mixture thereof.
  • The unit for concentrating and desalting of the collected and eluted peptides may be a reverse trapping column, the separation unit according to the degree of hydrophobicity of peptides may be a reverse C18 column, and the separation unit according to the mass of peptides may be an electrospray ionization device.
  • The enzyme treatment apparatus for proteins may reproducibly and highly efficiently recover peptides by a simple pre-treatment process of digesting protein in the hollow fiber membrane using enzymes, separate peptides by performing nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoflow LC-ESI-MS-MS) on the recovered peptides, and compare mass spectrum with protein database to automatically analyze a protein sample.
  • In other general aspect, an enzyme treatment method for proteins using a hollow fiber membrane may include:
  • injecting proteins and enzymes into a hollow fiber membrane having a closed distal end opposite to an end to which the proteins and enzymes are injected;
  • digesting the proteins using the enzyme in the hollow fiber membrane;
  • collecting peptides digested by the enzyme in the hollow fiber membrane to thereby pass through the hollow fiber membrane; and
  • eluting and discharging the collected peptides.
  • The enzyme treatment method for protein may further include concentrating and desalting the collected and eluted peptides and further include separating peptides according to mass or a degree of hydrophobicity thereof.
  • The protein may be glycoprotein. As the glycoprotein, each of the glycoproteins may be prepared according to various kinds of cell lines, tissue sites in cells, tissues of organ, presence or absence or degrees of drug administration, diet and a nutrition state related to the diet, or presence or absence or progress degree of diseases and be used a sample for diagnosing cancer, but is not limited thereto.
  • The hollow fiber membrane may have a molecular weight (M.W.) cutoff value of 10 kDa and a volume of 1 to 10 μl.
  • The concentrating and desalting of the collected and eluted peptides may be performed using a reverse trapping column.
  • The separating of the peptides according to the degree of hydrophobicity of the peptides may be performed using a reverse non-polar column, more preferably, a reverse C18 column, and the separating of the peptides according to the mass of the peptide may be performed using an electrospray ionization device.
  • As the enzyme, which is non-specific enzyme, endoproteinase capable of attacking a specific amino acid residue in a protein chain to digest the protein may be used, and one or more selected from a group consisting of trypsin, papain, pepsin, peptide N-glycosidase F (PNGase) may be used as the endoproteinase.
  • The digesting of the protein using the enzyme may be performed at 30 to 60 for 30 minutes to 3 hours through sufficient hydrolysis reactions, and in the case of using the enzyme treatment method for proteins, effects such as reproducibility, accuracy, a decrease in time for analysis, low cost, simplicity, and the like, may be obtained.
  • Advantageous Effects
  • The enzyme treatment apparatus for proteins according to the present invention may increase the recovery rate of peptides recovered through the enzyme treatment process, by basically solving the problem of low reproducibility of the enzyme activity which may occur during the conventional enzyme treatment process, and may also decrease the time for purification and provide higher yield by performing separation and purification through a single step.
  • In addition, the enzyme treatment method for proteins using the apparatus may simply and cheaply break protein into peptides in the enzyme treatment process for protein for a series of proteomics studies. In particularly, the present invention may be usefully applied for developing a disease-specific protein biomarker through a statistical analysis method having highly efficient detectability for proteins in research for finding biomarkers related to human diseases.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective view of an enzyme treatment apparatus for protein using a hollow fiber membrane according to the present disclosure and a module for a hollow fiber membrane therein;
  • FIG. 2 is a schematic configuration view of an enzyme treatment apparatus for protein according to an exemplary embodiment of the present disclosure;
  • FIG. 3 is a schematic mimetic view of an enzyme treatment method for protein according to the present invention;
  • FIG. 4 is a schematic mimetic view of an enzyme treatment method for protein according to an exemplary embodiment of the present disclosure;
  • FIG. 5 shows tandem mass spectrometry results for bovine serum albumin (BSA), which is standard protein, using the enzyme treatment apparatus for protein according to the exemplary embodiment of the present invention and MS/MS spectra of LFTFHADICTLPDTEK (m/z=926.20, [M+2H+]2+) peptide that is detected to be quantitatively low among the tandem mass spectrometry results; and
  • FIG. 6 shows tandem mass spectrometry results for alpha-1-acid glycoprotein (AGP) peptide, which is standard glycoprotein, using the enzyme treatment apparatus for protein according to the exemplary embodiment of the present invention.
  • (A: Nnon-glycopeptide, B: glycopeptide)
  • BEST MODE
  • Hereinafter, an exemplary embodiment of the present invention will be described in detail with reference to accompanying drawings.
  • FIG. 1 is a view showing an entire structural feature of an on-line micro-hollow fiber enzymatic reactor, which is an enzyme treatment apparatus using a hollow fiber membrane according to the present invention.
  • In more detail, a coupling structure of the hollow fiber membrane and injection/discharge tubings is shown in an upper portion of FIG. 1, and the hollow fiber membrane importantly considered in the present invention and a module for the hollow fiber membrane designed for smooth movement of peptides passing through the hollow fiber membrane to the discharge tubing is shown in a lower portion of FIG. 1. Particularly, in order to enable all of the injected proteins and enzymes to move through the hollow fiber membrane, a discharge hole portion of the hollow fiber membrane is closed by epoxy. A structural feature of the enzyme treatment apparatus is that an injection hole of the hollow fiber membrane is connected to an injection hole of the module, but a discharge hole of the hollow fiber membrane is not connected but closed.
  • FIG. 2 shows the entire structure in which the on-line micro-hollow fiber enzymatic reactor corresponding to the enzyme treatment apparatus using a hollow fiber membrane according to the present invention is connected to a shotgun proteomics analyzer for peptide analysis using conventional nanoLC-ESI-MS-MS, and this structure may be variously changed according to application fields.
  • FIG. 2 shows a characteristic structure in which a micro pump capable of being controlled at a flow rate of 10 μl/min or less for movement and injection of protein or enzyme and an sample injector (or autosampler) capable of on-line injecting the protein and enzyme are connected to the on-line micro-hollow fiber enzymatic reactor. Particularly, flow paths of all of channels are operated using a 10-port valve for on-line multi-dimensional separation in the present invention, but the flow path may be adjusted suitable for features of an experiment.
  • The protein and enzyme injected by the micro pump and the sample injector are digested into peptides in the on-line micro-hollow fiber enzymatic reactor, which is the enzyme treatment apparatus using a hollow fiber membrane according to the present invention, and pass through the hollow fiber membrane. Thereafter, the passed peptides move to a reverse trapping column connected to the 10-port valve, such that a on-line concentration and desalting process of the peptides may be performed.
  • The peptides concentrated in the reverse trapping column are finally separated by a reverse C18 column according to degrees of hydrophobicity of the peptides by changing a channel of the 10-port valve so as to be connected to a flow of the nanoflow binary pump shown in FIG. 2, and then, information on the peptides may be obtained through the tandem mass spectrometer. However, this configuration may be changed according to application fields.
  • A recovery method of multi-dimensional peptides formed through a structure standard and enzyme reaction of the on-line micro-hollow fiber enzymatic reactor as the enzyme treatment apparatus using a hollow fiber membrane according to the present invention and a proteomics mass spectrometry for the proteins recovered by the recovered method will be described in detail with reference to FIGS. 1 and 2.
  • Proteins or glycoproteins and enzymes are injected into a hollow fiber membrane having a volume of about 10 μl shown in FIG. 1 at a flow rate of 5 μl/min by the micro pump and the sample injector. In this case, the collected proteins in the enzymatic reactor need to be easily denatured by using 50 mM ammonium bicarbonate containing 10 mM dithiothreitol (DTT) heated to 37° C. as a solvent. However, a composition and temperature adjustment of a protein denaturation solvent according to the present invention are not limited, and a solvent composition of the existing column heater or capable of denaturizing protein may be used. Particularly, a flow rate of the solvent used to move the protein may be adjusted suitable for a volume and characteristics of the hollow fiber membrane used in the enzymatic reactor.
  • A structural feature of the on-line micro-hollow fiber enzymatic reactor is that a capillary pipe having an inner diameter of 100 to 200 mm and an outer diameter of 360 mm is used as the injection and discharge tubings used for injection and discharge of the proteins and enzymes in the present invention. However, all kinds of tubings capable of being used in movement of the solvent channel may be used, but it is preferable that a tubing having a small inner diameter is used for smooth movement and recovery of proteins and enzymes.
  • In order to fix the hollow fiber membrane and the injection tubing shown in FIG. 1, according to the present invention, a capillary pipe having an inner diameter of 200 μm and an outer diameter of 360 μm is injected into the hollow fiber membrane (inner diameter: 400 μm outer diameter: 800 μm) made of polysulfone and having a size of 6 cm and an end closed using epoxy and then fixed using 1/32-inch fitting (model: F-125) offered from Upchurch Scientific Corp. Particularly, in the present invention, an acrylic module self-manufactured so as to be suitable for the outer diameter of the hollow fiber membrane is used in addition to using the 1/32-inch fitting (See the lower portion of FIG. 1), but the module may be manufactured in various shapes so as to be suitable for the composition and flow rate of the used solvent in addition to the inner diameter and the outer diameter of the hollow fiber membrane.
  • The protein collected through the pump and sample injector is digested into peptides for about 30 minutes by the enzyme injected together with the protein. When molecular weights of the peptides are smaller than a molecular weight cutoff value of the hollow fiber membrane having a molecular weight cutoff value of 10 kDa, the peptides automatically pass through the hollow fiber membrane to thereby move and be concentrated in the reverse trapping column through the discharge hole. In the entire channel tubings used in the present disclosure, a capillary pipe having an inner diameter of 50 mm and an outer diameter of 360 mm is used in all of the connection tubings except for the injection/discharge tubing of the hollow fiber enzymatic reactor, and the connection tubing may be freely used according to mechanical properties.
  • The peptides recovered through the on-line micro-hollow fiber enzymatic reactor are automatically and directly connected to a channel of a nanoLC-ESI-MS-MS apparatus through a channel change of the 10-port valve, and when the peptides are eluted according to the degree of hydrophobicity of the peptides through a nanoLC column filled with C18 according to a reverse solvent gradient, the eluted peptides are introduced into the tandem mass spectrometer through an electrospray ionization process, such that the peptides generated through the enzyme treatment process may be qualitatively and quantitatively analyzed.
  • In addition, a direction of the channel of the on-line micro-hollow fiber enzymatic reactor is automatically changed due to the channel change of the 10-port valve, such that a washing process is performed on the proteins or enzymes used in enzyme treatment during a process of the nanoLC-ESI-MS-MS. Therefore, multi-dimensional enzyme treatment for proteins may be performed.
  • FIG. 5 shows tandem mass spectrometry results of bovine serum albumin (BSA, 65 kDa) peptides recovered through the on-line micro-hollow fiber enzymatic reactor, which is the enzyme treatment apparatus for protein using a hollow fiber membrane according to the present invention. A base peak chromatogram (BPC) of the nanoLC-ESI-MS-MS obtained by repeatedly performed a trypsin enzyme treatment process on the BSA protein three times is shown in a lower portion of FIG. 5, and MS/MS spectra of LFTFHADICTLPDTEK (m/z=926.20, [M+2H+]2+) peptide that is detected to be quantitatively low among the tandem mass spectrometry results confirmed in the lower portion of FIG. 5 are shown in an upper portion of FIG. 5.
  • As shown in FIG. 5, it may be appreciated from analysis results of the BAS peptides generated through the enzyme treatment process of the on-line micro-hollow fiber enzymatic reactor that qualitative and quantitative reproducibility of the generated peptides were significantly high. In addition, as a result of the tandem mass spectrometry of each of the peptide mixtures, it may be confirmed that peptide sequence coverage of BAS was 99.1±1.0%, which shows that qualitative reproducibility due to reproducibility of enzyme treatment may be secured.
  • In more detail, the upper portion of FIG. 5 shows the MS/MS spectra of LFTFHADICTLPDTEK (m/z=926.20, [M+2H+]2+) peptide eluted at 52.12 to 52.98 minutes among the peptides confirmed through the each of the nanoLC-ESI-MS-MS, and LFTFHADICTLPDTEK peptide is represented by a black dotted line in the BPC. As a confirmation result using protein database searching algorithm, all of the probability score values of data obtained from each of the three experiments were 120 or more, which means high reliability. Particularly, reproducible peptide qualitative analysis may be performed on LFTFHADICTLPDTEK peptide of which a concentration was commonly low in three repetitive analysis using the on-line micro-hollow fiber enzymatic reactor, such that it may be confirmed that the hollow fiber enzymatic reactor has high enzyme treatment efficiency. This result indicates that the hollow fiber enzymatic reactor has high applicability in qualitative-quantitative analysis of peptides generated due to low efficiency of the existing enzyme treatment apparatus for proteins.
  • FIG. 6 shows nanoLC-ESI-MS-MS results analyzed using alpha-1-acid glycoprotein (AGP), which is standard glycoprotein, as a result of applying the on-line micro-hollow fiber enzymatic reactor, which is the enzyme treatment apparatus for protein using a hollow fiber membrane according to the exemplary embodiment of the present invention, in multi-dimensional on-line glycoproteomics study.
  • Meanwhile, recently, various researches into glycoprotein as an importance indicator of researches into a technology of fining a biomarker related to human diseases have been conducted at home and aboard. As a biochemical feature of glycoprotein, glycoprotein has a structure in which glycan having various forms is linked to asaparagine N in amino acid sequences. Particularly, in these researches into glycoproteins, research for applying lectin proteins having a selective affinity for a specific glycan among several thousand protein mixtures has been conducted. In the present invention, on-line analysis of glycoprotein is performed using concanavalin A (ConA, 20 kDa) having a selective affinity to high mannose among the lectin proteins.
  • In more detail, AGP as the standard glycoprotein peptide and ConA were injected to the hollow fiber enzymatic reactor using the micro pump and the sample injector, and as a result, non-glycopeptides that do not have an affinity for ConA lectin protein primarily passed through the hollow fiber membrane to thereby be automatically concentrated in the C18 reverse trapping column, and BPC and tandem mass spectrometry results of peptides collected through the channel change of the 10-port valve obtained by the nanoLC-ESI-MS-MS were shown in an upper portion of FIG. 6.
  • Further, after tandem mass spectrometry of primary non-glycopeptides, peptide N-glycosidase (PNGase), which is one of the N-linked endoglycosidases, was injected into the hollow fiber enzyme reactor through the sample injector. Binding sites of glycan and peptides of the N-linked glycopeptides bound to ConA to thereby not pass through the hollow fiber membrane were separated by addition of PNGase F, such that glycopeptides bound to ConA automatically passed through the hollow fiber membrane to thereby be concentrated in the C18 reverse trapping column, and BPC and qualitative analysis results of the peptides obtained by the nanoLC-ESI-MS-MS were shown in a lower portion of FIG. 6.
  • Qualitative and quantitative differences in BPC between glycopeptides and non-glycopeptides may be easily distinguished from the results shown in FIG. 6. Particularly, among peptides confirmed through PNGase F, a MS/MS spectrum of SVQEIQATFFYFTPN*KTEDTIFLR(m/z=1449.37, [M+2H+]2+), which is a glycosylation site reported through the existing studies, is shown as Example.
  • It may be confirmed from the above-mentioned results that the on-line micro-hollow fiber enzymatic reactor according to the present invention significantly contributes to research into glycoprotein. In addition, it may be confirmed that the on-line micro-hollow fiber enzymatic reactor may obtain reproducible result in research for fining glycoprotein biomarkers related to human diseases.

Claims (20)

1. An enzyme treatment apparatus for proteins using a hollow fiber membrane, the enzyme treatment apparatus for proteins comprising:
an injection unit for injecting protein and enzyme;
a hollow fiber membrane connected to the injection unit and having a closed distal end opposite to the injection unit;
a collection unit connected to the outside of the hollow fiber membrane and collecting peptides digested by the enzyme in the hollow fiber membrane to pass through the hollow fiber membrane; and
a discharge unit for elution of the collected peptides connected to the collection unit of the peptides.
2. The enzyme treatment apparatus for proteins of claim 1, further comprising a unit for concentrating and desalting of the collected and eluted peptides connected to the discharge unit.
3. The enzyme treatment apparatus for proteins of claim 2, further comprising a separation unit according to mass or a degree of hydrophobicity of peptides.
4. The enzyme treatment apparatus for proteins of claim 1, wherein the hollow fiber membrane has a molecular weight (M.W.) cutoff value of 10 kDa.
5. The enzyme treatment apparatus of claim 1, wherein the hollow fiber membrane has a volume of 1 to 10 μl.
6. The enzyme treatment apparatus for proteins of claim 2, wherein the unit for concentrating and desalting of the collected and eluted peptides is a reverse trapping column.
7. The enzyme treatment apparatus for proteins of claim 3, wherein the separation unit according to the degree of hydrophobicity of peptides is a reverse C18 column.
8. The enzyme treatment apparatus for proteins of claim 3, wherein the separation unit according to the mass of peptides is an electrospray ionization device.
9. An enzyme treatment method for proteins using a hollow fiber membrane, the enzyme treatment method for proteins comprising:
injecting proteins and enzymes into a hollow fiber membrane having a closed distal end opposite to an end to which the proteins and enzymes are injected;
digesting the proteins using the enzyme in the hollow fiber membrane;
collecting peptides digested by the enzyme in the hollow fiber membrane to thereby pass through the hollow fiber membrane; and
eluting and discharging the collected peptides.
10. The enzyme treatment method for proteins of claim 9, further comprising concentrating and desalting the collected and eluted peptides.
11. The enzyme treatment method for proteins of claim 10, further comprising separating peptides according to mass or a degree of hydrophobicity thereof.
12. The enzyme treatment method for proteins of claim 9, wherein the hollow fiber membrane has a molecular weight (M.W.) cutoff value of 10 kDa.
13. The enzyme treatment method for proteins of claim 9, wherein the hollow fiber membrane has a volume of 1 to 10 μl.
14. The enzyme treatment method for proteins of claim 10, wherein the concentrating and desalting of the collected and eluted peptides is performed using a reverse trapping column.
15. The enzyme treatment method for proteins of claim 11, wherein the separating of the peptides according to the degree of hydrophobicity of the peptides is performed using a reverse C18 column.
16. The enzyme treatment method for proteins of claim 11, wherein the separating of the peptides according to the mass of the peptide is performed using an electrospray ionization device.
17. The enzyme treatment method for proteins of claim 9, wherein the protein is glycoprotein.
18. The enzyme treatment method for proteins of claim 9, wherein the enzyme is a non-specific enzyme.
19. The enzyme treatment method for proteins of claim 18, wherein the enzyme is one or more selected from a group consisting of trypsin, papain, pepsin, peptide N-glycosidase F (PNGase F).
20. The enzyme treatment method for proteins of claim 9, wherein the digesting of the protein using the enzyme is performed at 30 to 60° C. for 30 minutes to 3 hours.
US14/345,835 2011-09-19 2012-09-18 Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same Active US9598717B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0093950 2011-09-19
KR1020110093950A KR101298527B1 (en) 2011-09-19 2011-09-19 Apparatus for on-line micro-hollow fiber enzymatic reactor and method for on-line proteomics using the same
PCT/KR2012/007451 WO2013042917A2 (en) 2011-09-19 2012-09-18 Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same

Publications (2)

Publication Number Publication Date
US20140302545A1 true US20140302545A1 (en) 2014-10-09
US9598717B2 US9598717B2 (en) 2017-03-21

Family

ID=47914999

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/345,835 Active US9598717B2 (en) 2011-09-19 2012-09-18 Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same

Country Status (4)

Country Link
US (1) US9598717B2 (en)
EP (1) EP2759591A4 (en)
KR (1) KR101298527B1 (en)
WO (1) WO2013042917A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675303B1 (en) * 2014-08-19 2016-11-11 한국표준과학연구원 Monoclonal antibody-based phosphoproteomic method using online mHFER-tandem mass spectrometry
GB201706799D0 (en) * 2017-04-28 2017-06-14 Univ Oslo Enzyme reactor vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315819A (en) * 1978-06-12 1982-02-16 Monsanto Company Hollow fiber permeator apparatus
US4443540A (en) * 1980-05-09 1984-04-17 University Of Illinois Foundation Protein hydrolysis
US20070037242A1 (en) * 2005-08-10 2007-02-15 Zhenghua Ji On-line enzymatic digestion in separation-detection methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795010B2 (en) 2004-01-21 2010-09-14 Toray Industries, Inc. Fractionator and method of fractionation
KR100792683B1 (en) 2006-05-09 2008-01-09 연세대학교 산학협력단 - An Apparatus for Protein Separation Using Capillary Isoelectric Focusing-Hollow Fiber Flow Field Flow Fractionation and Method Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315819A (en) * 1978-06-12 1982-02-16 Monsanto Company Hollow fiber permeator apparatus
US4443540A (en) * 1980-05-09 1984-04-17 University Of Illinois Foundation Protein hydrolysis
US20070037242A1 (en) * 2005-08-10 2007-02-15 Zhenghua Ji On-line enzymatic digestion in separation-detection methods

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Aisimo. kiloDalton. Datasheet [online]. Aisimo Corp., Copyright 2009 [retrieved on 2015-09-21]. Retrieved from the Internet: , pg. 1. *
Aisimo. kiloDalton. Datasheet [online]. Aisimo Corp., Copyright 2009 [retrieved on Sep. 21, 2015]. Retrieved from the Internet: , p. 1. *
Luytjes, W. et al. 1987. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161: 479-487. specif. p. 479. *
Luytjes, W. et al. 1987. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161: 479-487. specif. pg. 479 *
Smiley, K.L. et al. 1976 April. Alpha-galactosidase production and use in a hollow-fiber reactor. Applied and Environmental Microbiology 31(4): 615-617., specif. pp. 615, 616 *
Smiley, K.L. et al. Apr. 1976 Alpha-galactosidase production and use in a hollow-fiber reactor. Applied and Environmental Microbiology 31(4): 615-617., specif. pp. 615, 616. *

Also Published As

Publication number Publication date
EP2759591A4 (en) 2015-04-29
EP2759591A2 (en) 2014-07-30
WO2013042917A2 (en) 2013-03-28
KR101298527B1 (en) 2013-08-22
KR20130030464A (en) 2013-03-27
WO2013042917A3 (en) 2013-05-23
US9598717B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
US20110195430A1 (en) High pressure enzymatic digestion system for protein characterization
US7422866B2 (en) On-line enzymatic digestion in separation-detection methods
WO2007144606A2 (en) Mass spectrometry biomarker assay
JP2004500567A (en) Protein separation and presentation
US10955420B2 (en) Identification and monitoring of cleaved immunoglobulins by molecular mass
EP2015076A1 (en) Protein labelling with tags comprising isotope-coded sub-tags and isobaric sub-tags
US20050230315A1 (en) Protein microarray system
US9598717B2 (en) Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same
Shively et al. Highlights of protein structural analysis
EP1587840B1 (en) Method to form a protein microarray system
WO2023185840A1 (en) Mass spectrometry-based method for detecting medium- and low-abundance proteins in bodily fluid sample
WO2018213112A1 (en) Systems and methods for automated design of an analytical study for the structural characterization of a biologic composition
CN110873766B (en) Mass spectrometry method for screening protein with structure and interaction change caused by drug
CN112924562A (en) Qualitative and quantitative method for protein variants
CN113466354B (en) N-glycopeptide terminal sialic acid alpha 2,6 and alpha 2,3 connection isomerism relative quantitative method
US20080153711A1 (en) Protein microarray system
R Rebecchi et al. Recent mass spectrometric based methods in quantitative N-linked glycoproteomics
WO2008128029A2 (en) Solution fragmentation systems and processes for proteomics analysis
Namasivayam Proteomics: techniques, applications and challenges
CN116893215A (en) Clinical marker for monitoring CRS (cancer therapy) process after CAR-T treatment and application thereof
CN117129550A (en) Clinical marker for distinguishing severe and mild CRS after CAR-T treatment and application thereof
WO2011130521A1 (en) High pressure enzymatic digestion system for protein characterization
Zhou Comprehensive LC-MS and MS/MS studies of N-glycans derived from biological samples
Urlaub et al. Quantitative mass spectrometry: Elucidation of the transduction cascade triggered by B cell receptors.
Bischoff et al. LC–MS in Proteomics

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANG, DUK JIN;PARK, SANG RYOUL;KIM, SOOK-KYUNG;REEL/FRAME:032817/0833

Effective date: 20140408

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4