US20140258514A1 - Media delivery system and method for transporting media to desired target devices - Google Patents

Media delivery system and method for transporting media to desired target devices Download PDF

Info

Publication number
US20140258514A1
US20140258514A1 US14/280,415 US201414280415A US2014258514A1 US 20140258514 A1 US20140258514 A1 US 20140258514A1 US 201414280415 A US201414280415 A US 201414280415A US 2014258514 A1 US2014258514 A1 US 2014258514A1
Authority
US
United States
Prior art keywords
media
media feed
target
computing device
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/280,415
Inventor
Luc Julia
Rafael Cortina
John Grundback
Maklouf Serghine
Yohan Le Nerriec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Qualcomm Atheros Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/888,606 external-priority patent/US8819140B2/en
Priority claimed from US10/888,745 external-priority patent/US7937484B2/en
Priority claimed from US10/888,633 external-priority patent/US9077766B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US14/280,415 priority Critical patent/US20140258514A1/en
Assigned to ORB NETWORKS, INC. reassignment ORB NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRUNDBACK, JOHN, CORTINA, RAFAEL, JULIA, LUC, LE NERRIEC, YOHAN, SERGHINE, MAKLOUF
Assigned to QUALCOMM ISKOOT, INC. reassignment QUALCOMM ISKOOT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORB NETWORKS, INC.
Assigned to QUALCOMM CONNECTED EXPERIENCES, INC. reassignment QUALCOMM CONNECTED EXPERIENCES, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: QUALCOMM ISKOOT, INC.
Publication of US20140258514A1 publication Critical patent/US20140258514A1/en
Assigned to QUALCOMM ATHEROS, INC. reassignment QUALCOMM ATHEROS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUALCOMM CONNECTED EXPERIENCES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H04L65/608
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level

Definitions

  • the disclosed embodiments relate generally to the field of media content delivery over networks.
  • FIG. 1 is an illustration of a system or technique for transmitting target data corresponding to media to a target location or device, under an embodiment of the invention.
  • FIG. 2 illustrates a method for transmitting target data corresponding to media to a target device using profile information associated with that device, under an embodiment of the invention.
  • FIG. 3 illustrates a method for providing media from a user's defined network to a target device, under an embodiment of the invention.
  • FIG. 4 illustrates an architecture for delivering media from various sources to a target, under an embodiment of the invention.
  • FIG. 5 illustrates a method for re-streaming media streams from external sources to targets, under an embodiment of the invention.
  • FIGS. 6A-6D illustrate techniques by which target data may be transmitted to a target, under one or more embodiments of the invention.
  • Embodiments described in this application provide the ability for a user to take media from any one of many sources and deliver media from that source to a selected target device or location in a form that is suited for that device or location.
  • One or more embodiments described herein enable data corresponding to that media to be generated which is suitable or even optimal for a target device or location, when the media in its native form is actually not suitable for the target.
  • target data corresponding to media may be generated and delivered to the target to accommodate capabilities and limitations of the target.
  • Examples of the limitations and capabilities that may need to be accounted for in generating the target data include the available bandwidth of the target; the target's processing and/or memory resources; the applications involved in handling media on the target, including web browser or media player; the display size or resolution of the target; and audio hardware on the target.
  • Embodiments described herein provide that media received or maintained on a network enabled system of a user may be transported across one or more networks to a desired target device or location. Any form of digital media is contemplated, including media files (e.g. MP3 files), television media received through a set top box or stored in a digital video recorder, or streaming media.
  • media source identified by the request may be identified and accessed.
  • Media data from the source may be analyzed or inspected to determine its native characteristics.
  • a profile for the target is accessed, and profile information is used to determine desired characteristics for the generation of target data that is to correspond to the media.
  • the target data is generated from the media data or media source with the desired characteristics. If native characteristics of the media data/source are incompatible or otherwise different from the desired characteristics specified in the profile information, the target data is generated to include the desired characteristics, and not the native characteristics.
  • the target data is then transmitted to the target.
  • An embodiment such as described may be performed programmatically, or as a computer-implemented method.
  • Programmatically means through the use of code, or computer-executable instructions.
  • a particular type of media source contemplated for use with one or more embodiments is a streaming media source, such as provided through a streaming media service on the Internet.
  • the media source provides a media stream over the Internet or other network.
  • a media delivery system and technique are described to enable the media stream to be received at one end on a user's computer, and then re-streamed to a target device in a form that is suitable for that target.
  • a streaming video and/or audio feed may be received on a user's media center, then re-streamed to a user's designated target device.
  • the target device may correspond to, for example, another computer, a cell phone, a personal digital assistant, a laptop, a network-enabled audio or media system for an automobile, or some other media output device.
  • the act of re-streaming the media stream may correspond to one or more of the following processes being performed: (i) the media stream being reformatted from one data type or extension to another; (ii) a transmission size of the media stream being reduced; and (iii) a display size of the media stream being re-sized.
  • processes mentioned above may also be performed for media from sources other than streaming sources. Furthermore, other processes may be performed on data generated from the media source for purpose of making the generated target data suitable for the target device or location.
  • the media sources may provide data having a particular set of native characteristics. These native characteristics may be different than desired characteristics for the target data, as specified in the profile information.
  • target data is generated by reconfiguring or reformatting data from the media sources so that the native characteristics are changed into the desired characteristics.
  • the characteristics of the target data are identical to the native characteristics, meaning the media data in its original form is suitable for the target, at least according to the profile information.
  • a module may include a program, a subroutine, a portion of a program, or a software component or a hardware component capable of performing one or more stated tasks or functions.
  • a module can exist on a hardware component such as a server independently of other modules, or a module can be a shared element or process of other modules, programs or machines.
  • a module may reside on one machine, such as on a client or on a server, or a module may be distributed amongst multiple machines, such as on multiple clients or server machines.
  • one or more embodiments described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium.
  • Machines shown in figures below provide examples of processing resources and computer-readable mediums on which instructions for implementing embodiments of the invention can be carried and/or executed.
  • the numerous machines shown with embodiments of the invention include processor(s) and various forms of memory for holding data and instructions.
  • Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers.
  • Other examples of computer storage mediums include portable storage units, such as CD or DVD units, flash memory (such as carried on many cell phones and personal digital assistants (PDAs)), and magnetic memory.
  • Computers, terminals, network enabled devices e.g. mobile devices such as cell phones) are all examples of machines and devices that utilize processors, memory, and instructions stored on computer-readable mediums.
  • FIG. 1 illustrates a system for delivering media to a target device, under an embodiment of the invention.
  • a media delivery system 120 may be part of a user's personal network or network enabled system.
  • the media delivery system 120 enables the user to distribute a variety of different media that is available from his or her defined network or network enabled device to locations that are remote to his network location.
  • an embodiment enables the user to distribute media to one or more selected roaming devices.
  • Roaming devices include devices that communicate on cellular networks, satellite networks, or which are portable and can be connected to the Internet intermittingly. Furthermore, as described elsewhere in this document, the distribution may be made at the request of the target.
  • the user may operate his own media player-enabled cellular phone to request music files from his connected media center (which may run on a desktop computer).
  • his connected media center which may run on a desktop computer.
  • Various types of media sources available to the home network or network user are contemplated for this type of media distribution, including, for example, stored media files, live video captured by the user on his own connected video camera, streaming media from an Internet streaming service, and television/audio cable and satellite feeds.
  • the media delivery system 120 uses media source data 112 from one or more media sources 110 to deliver target data 116 to one or more targets 130 .
  • the media delivery system 120 may access profile 125 to obtain target information 124 .
  • the target information 124 may dictate how data from the media source is to be configured in the generation of target data 116 .
  • target data 116 is configured for the target 130 , even though media source data 112 in its original form may not be suitable for the target.
  • An embodiment such as described enables any network enabled device or location to receive target data 116 that is suited for the particular device/location, and thus allow that device/location to generate media output corresponding to the media source data 112 .
  • the media sources 110 may correspond to one or more different types, including, for example, stored media files, streaming media from external sources or services, and media feed data from cable or satellite links.
  • Media may correspond to audio data, image data or a combination thereof.
  • Image data may correspond to both still and video data.
  • the target 130 corresponds to a device that the media delivery system 120 can communicate with through one or more networks.
  • the target 130 corresponds to a mobile or roaming device, such as a device that uses a cellular network to transmit voice or other data. Examples of such devices include smart phones (such as those that run on the SYMBIAN operating system), wireless phone and messaging devices (e.g. TREO 650, manufactured by PALMONE, INC.), personal digital assistants with roaming or cellular capabilities, and devices with roaming or cellular cards.
  • the target corresponds to any network-enabled machine, such as a laptop.
  • the target 130 may correspond to a network location, such as an Internet address, which a user can access from a standard Internet connection.
  • media may be delivered to the target 130 (in the form of target data 116 ) in response to a request 118 from the target.
  • the request to deliver target data 116 to the target 130 may originate from another terminal or network location.
  • the user may specify the request on one machine, and receive the target data 116 on another.
  • the user may send the request from a work terminal or even from a terminal on which the media delivery system 110 operates, to receive media on-the-go through his cell phone.
  • the initiation of media delivery to the target 130 may be programmatic or event driven (e.g. such as through use of a calendar or scheduler).
  • the media delivery system 120 may receive the media source data 112 in its native form, meaning the media source data 112 may have a set of native characteristics 113 .
  • native characteristics 113 include, for example, transmission size, data format, and display size (for image data).
  • the media delivery system 120 may have full capabilities to receive and handle media from numerous media sources. This may include broadband Internet access, video and audio processing resources, memory to buffer or cache (large RAM), and a large display.
  • An example of media delivery system 120 would be a desktop machine that runs MICROSOFT MEDIA CENTER. For a given media source, some or all of the native characteristics 113 may be unsuitable or unwanted for the target 130 .
  • the media delivery system 120 generates the target data 116 to have target characteristics 117 using the target information 124 .
  • the target characteristics 117 and the native characteristics 113 may be the same or substantially similar, so that the target data 116 and the media source data 112 are also substantially similar.
  • the target data 116 may simply be a copy of the media source data 112 .
  • the target data 116 may be generated by implementing a conversion process on the media source data 112 .
  • one or more of the resulting target characteristics 117 of the target data 116 may be different than the native characteristics 113 of the media source data 112 .
  • one or more of the characteristics transmission size, data format, and display size may be different for the target data 116 , as compared to the media source data 112 .
  • the media delivery system 120 may access one or more target profiles 125 associated with the target 130 to obtain target information 124 .
  • the target profiles 125 may correspond to a list of device capabilities and/or a list of user-preferences.
  • the profile information may include information on how to configure or format the target data to accommodate, for example, the following capabilities or limitations of the target: the network bandwidth available to the target; the target's processing and/or memory resources; the applications involved in handling media on the target, including web browser or media player; the display size or resolution of the target; and audio hardware on the target.
  • Some or all of the target information 124 may be determined programmatically, or at least without user-input. For example, target information 124 corresponding to a device profile may be retrieved from a library based on initial device information identified from the user's communication, either through user-input or through other means.
  • Embodiments of the invention enable users to establish a media center from within the confines of a network that is under their control, and to use the media center to stream media of their choosing to devices and locations of their designation. This enables the user to make his or her media library available to numerous devices and/or locations of his choosing.
  • An example of an application of an embodiment described herein includes a user making a music library or video library accessible for streaming playback on a cellular phone or portable computing device, where the music or video library is stored on the user's hard drive, on a computer within his home network.
  • a system may be implemented in which streaming media from a source outside of the user's network is streamed to a station or component within the user's network, then re-streamed to the user's end device.
  • FIG. 2 illustrates a method for transmitting media data to a target, under an embodiment of the invention.
  • Methods such as described by FIG. 2 or FIG. 3 may be performed on a user's defined network.
  • the user's defined network may correspond to a subnet of one or more computers under a user's control that are interconnected by a local network connection (e.g. Ethernet) or a through a local connection (e.g. through a serial buss).
  • a local network connection e.g. Ethernet
  • a local connection e.g. through a serial buss
  • One example of a user-defined network for use with an embodiment of the invention is a personal network, such as described in U.S. patent application Ser. No. 10/888,606.
  • a personal network is a networked system that uses individual software and/or hardware components as satellites.
  • the satellites are (i) interconnected and aware of each other's status and capabilities (at least when it is relevant), and (ii) able to use each other's functionality.
  • alternative embodiments may be implemented in which a system achieves functionality such as described using non-satellite components.
  • the user defined network may include a home network, or a home network combined with an external station that are not aware of each other's status and/or capabilities.
  • a user-defined network is a home network, in which a portal or gateway may be used to interconnect one or more computers with a user's home or space to a public network such as the Internet.
  • a user's defined network may contain a media library of stored media files, media sources (e.g. cable television or satellite feed, live video camera) contained within the user-defined network or under its control, and external media sources that are accessible to the user-defined network over networks such as the Internet (e.g. streaming media services).
  • media sources e.g. cable television or satellite feed, live video camera
  • external media sources that are accessible to the user-defined network over networks such as the Internet (e.g. streaming media services).
  • Step 210 provides that a media source is identified.
  • the media source may be based on a request or identification provided by the user, made at any time.
  • the media source may correspond to any source from which media data may be retrieved, generated or received, such as a stored file or a live or ongoing media transmission.
  • the media data provided by the media source may be in the form of audio, video, or a combination thereof.
  • the media source may be internal or external to a user's defined network or computer system.
  • the media data may be from anyone of numerous sources, and in anyone of various formats.
  • the media data may be received as streaming media, retrieved from a stored location, from a cable or satellite media feed, or from a connected device that records media (e.g. video recorder).
  • target data is generated from the media source, or from media data provided from the media source, to accommodate a profile associated with the target.
  • the profile may be based on the capabilities of the target and/or the preferences of the user.
  • the profile specifies formatting and configurations for the target data.
  • the profile specifies the one or more of the following characteristics for the target data: data format, transmission size, and display size. If the native characteristics of the media source do not conform with the characteristics specified by the profile, a conversion or configuration process is performed on media data from the media source in order to make the target data have the desired characteristics.
  • a conversion process may be performed to convert the data format of data provided by the media source from a native format to the desired data format.
  • additional conversion or configuration processes may be performed on data generated from the media source in order to generate the target data with desired transmission size or display size.
  • Step 230 provides that the target data is transmitted to the target.
  • the data transmission may be performed in response to the target device accessing or making a request for data (pull), or it may be performed by transmitting the target data without the request from the target device (push).
  • the target is a mobile device (such as one that is cellular enabled)
  • the target data may be streamed.
  • the mobile or receiving device may respond to receipt of a portion of the overall transmission and initiate playback before the transmission is complete.
  • the streaming process usually requires buffering on the receiving end.
  • Another embodiment may use another form of data transmission for the target data.
  • the target data may be transmitted as one file to the target, such as in the form of an email attachment.
  • one or more (e.g. a series) of Multimedia Messaging Service (MMS) messages may carry the target data to the target.
  • MMS Multimedia Messaging Service
  • a method such as described by FIG. 2 may differ, depending on the type of media source involved.
  • the media source corresponds to one or more media files stored locally within the control of the user-defined network
  • a temporary copy or conversion file may be formed as a result of step 220 .
  • a buffer may be used to capture the stream while the media delivery system re-streams the data to the target device.
  • FIG. 3 illustrates a more detailed method for enabling media to be transmitted from a user-defined network to a target device, under an embodiment of the invention.
  • a method such as described in FIG. 3 assumes the target is a device that is accessible to the user-defined network using data networks such as the Internet and/or cellular networks.
  • a user of the user-defined network provides information about the target device.
  • the information may include information about the type or capabilities of the target. Additionally, information may be provided for locating the target device and/or for identifying or verifying the device.
  • Step 320 provides that profile information is associated with the target device.
  • the profile information may correspond to information that identifies known capabilities of the target device, or of the target device's ability to handle media. For example, in the preceding step, the user may identify his cellular model, and a module or program on the user-defined network may correlate the device model with a list of pertinent capabilities of that device. In the same example, the user may also specify his media player, his cellular network, additional memory (e.g. smart card) or other information.
  • a library may be maintained with information about different devices. The library may be programmatically accessed by, for example, a media delivery system (such as illustrated with FIG. 4 ) to determine how target data is to be configured.
  • Examples of what type of information may be maintained in the library based on device capabilities include one or more of the following: media player type, display size, operating system, cellular network (if applicable), processing or memory capabilities, maximum transmission size. Additionally, profile information may include one or more user preferences. For example, the user may specify a desired transmission size that is less than the maximum transmission size. The user may also specify, for example, alternative display sizes, or implement filters.
  • step 330 conversion and configuration processes may be established or otherwise made available to the user-defined network for purpose of enabling the media delivery system 120 to perform on-the-fly processes to generate target data with desired characteristics specified in the profile information.
  • the target data is generated with the desired characteristics specified by the profile information by performing conversion or configuration processes on data from the media source.
  • the processes identified in this step may accommodate any one of a variety of media sources, including media sources that are both internal and external to the user-defined network.
  • processes may be identified to convert media files from any one of a plurality of data formats into a desired data type that is compatible with a particular type of media player on the target device.
  • processes may be identified to convert streaming data from external sources, having any given data type, transmission size, or display size, into streaming data of a particular data type, transmission size and/or display size. Since the processes may be performed on-the-fly, streaming media from a media source external to the user-defined network may be converted/configured and transmitted to the target concurrently with transmission of the stream from the external source. If the native form of the media source is compatible with the characteristics specified in the profile information, then the target data may be generated by, for example, copying and/or buffering the media file or media data from the media source.
  • step 340 provides that a request for media is made from the target.
  • the request may include identifiers for identifying the media source, or when applicable, particular data available from the media source.
  • the identifier may identify a streaming media source, a particular file, a uniform resource locator (URL) (or partial URL), or a media channel in the user's network (such as a channel designating a cable television channel, or a channel that represents a media feed from the user's own video recorder).
  • URL uniform resource locator
  • the user may select an icon representing an action (get media from a streaming media service) or a source.
  • the user may enter text data (through key strokes or even through voice recognition) to select the media source.
  • the target device may be equipped with a user-interface that displays media in a user's defined network, as well as media sources that the user has access to from his or her network.
  • a user-interface is described in U.S. patent application Ser. No. 10/888,606, the aforementioned application being hereby incorporated by reference.
  • the user may select an icon from a graphical user interface (GUI) where the icon corresponds to a “channel”, and the channel may correspond to, for example, a streaming media source, such as an Internet radio site.
  • GUI graphical user interface
  • Another icon on the same interface may represent another media source, of a different type (stored files of an album, or channel from a television cable feed).
  • selectable user-interface features may be provided on a single interface for connecting the user's remote or roaming device with distinct media sources, possibly of different types.
  • icons on one interface may represent a stored audio collection, cable television channel, and Internet streaming service.
  • Internet streaming services or sites specific media available from those services and sites may further be indicated.
  • the specific station on an Internet radio site may be specified in the request.
  • Step 350 provides that the requested media source is accessed for media data.
  • the requested media source may be an external streaming media source, such as an Internet radio or television site, in which case the web site and/or uniform resource locator (URL) for that site is used to retrieve media data from the media source from within the defined network.
  • the media data may be buffered.
  • stored media files may be opened in this step, and/or the contents of the media files may be copied for the processes that are to be performed (if any).
  • a set of characteristics of the media data and/or the requested media source are identified.
  • the identification of the characteristics may be performed programmatically.
  • the particular characteristics that are sought for identification in this step may be designated by the profile associated with the target device. Thus, for example, different characteristics may be evaluated for different target devices.
  • Specific media data characteristics that may be identified include, for example, data format, transmission size, and display size for image data.
  • Step 370 provides that target data is generated from the data of the requested media sources.
  • the target data is generated with consideration or use of the established conversion and configuration processes.
  • characteristics identified in step 360 are incompatible or different than what was specified in the profile information associated with the target, corresponding processes are performed to make the data conforming to the desired characteristics specified by the profile information.
  • conversion or configuration processes are necessary, the processes that are to be performed may be selected from a library of processes established in step 330 . If, however, the characteristics identified in the step 360 are completely conforming to the desired characteristics specified in the profile information, then no configuration or conversion processes need to be performed.
  • the target data generation then becomes a process to buffer and/or copy some or all of the media source data.
  • Step 380 the target data is transmitted to the target device.
  • the target data may be streamed to the target device.
  • the target data may be messaged, such as through an attachment to an email.
  • an alternative messaging medium such as Multimedia Messaging Service (MMS) may be used. Examples of different transmission techniques are shown in greater detail with FIGS. 6A-6D and elsewhere in the application.
  • MMS Multimedia Messaging Service
  • FIG. 4 illustrates a system for delivering media to a target location or device, under an embodiment of the invention.
  • a system such as shown and described may be implemented as part or within a user's defined network.
  • the system shown may operate at least partially within a desktop computer used to manage a home network, or a computer on which Microsoft Media Center (manufactured by the Microsoft Corporation) is running.
  • a user's defined network may extend to network locations that are provided by third-party services, for which the user has permission to access and use (for example, an account).
  • the user's defined network is maintained substantially within a gateway or firewall, interconnected by a local network such as WiFi and/or Ethernet.
  • the user's network may extend to physical locations that are reachable across the Internet or other public networks, so that the user's defined network may include one or more externally located stations, terminals, computer clusters etc.
  • a system such as described in FIG. 4 may be implemented through use of a personal network as described in U.S. patent application Ser. No. 10/888,606.
  • a system archives functionality such as described using non-satellite components.
  • the network enabled system shown in FIG. 4 may correspond to a home network, or a home network combined with an external station each of which are not aware of each other's status and/or capabilities.
  • Another example of a network enabled system includes two or more devices locally connected and network enabled from behind a gateway.
  • a network enabled system 402 that includes a media delivery system 410 .
  • the media delivery system 410 communicates with one or more targets, including, for example, a target device 420 and/or a network location 422 .
  • the targets may reside outside of the network enabled system 402 and be reachable through one or more networks 404 , such as the Internet and one or more cellular networks.
  • the target device 420 may correspond to, for example, a cellular or smart phone, a media player with a network connection (the network connection may be wireless or landline), a notebook computer, an automobile having satellite media delivery, or a workstation.
  • the target network location 422 may be on a site that is accessible to an audience of target devices or users.
  • the network location 422 may correspond to a web service or web page through which media can be streamed.
  • components of media delivery system 410 include a determination module 412 , a reducer 414 , a display sizer 415 , a formatting component 416 , and a transmission module 418 . Each of these components may be implemented as a module.
  • the media delivery system 410 is capable of receiving media from anyone of a plurality of sources and locations, including internal and external sources. Thus, media data 425 may be received by the media delivery system 410 from a plurality of sources.
  • One or more profile structures 426 may exist as a source for profile information 427 .
  • the profile structures 426 may store profile information 427 corresponding to capabilities and limitations of the target device. These may include, for example, information indicating what the device can handle based on processing and memory resources (e.g. cache) of the target, the media player type or web browser used by the target, the modem connection (if any) of the target, the display size and/or resolution of the target, the operating system running on the target device, congestion characteristics or bandwidth information on the communication networks used by the target device, and the type or model of the target.
  • Profile information 427 about the target device(s) may be determined programmatically or manually.
  • the first communication in the form of a request for target data from the target device's web browser may be used to programmatically determine the type of web browser in use on that device.
  • programmatic timing mechanisms may be used to determine available bandwidth for the device, particularly at a given instance.
  • Other information may be manually entered by the user.
  • the profile information may also correspond to specific preferences of the user. For example, the user may have a preference as to the transmission size of streaming media (low quality), or to the particular media player he or she wants to use.
  • the determination module 412 inspects the media data 425 for its native characteristics.
  • the determination module 412 may also access profile information 427 from a user/device profile 426 to determine what native characteristics of the media data 425 need to be changed or unchanged. Using profile information 427 , the determination module 412 determines what components are to be used.
  • Examples of media sources that can be accessed by the media delivery system 410 include internal (to the network enabled system 402 ) sources such as individual files in a media file system 432 , a satellite outlet 434 or a cable outlet 436 .
  • Another specific example of a media source includes a specific file contained in the memory drive of a digital video recorder (e.g. TiVo).
  • Another example of an internal media source includes a local media recorder 438 (video camera) from which live media streams are generated.
  • External media sources may include streaming media sites and services, such as an Internet Television/Radio 431 site or streaming services 433 (e.g. RHAPSODY, STREAMWAVE).
  • the sources of media are diverse and increasing with time. For example, “podcasting” sites provide non-streaming media files to users, and are contemplated for use with embodiments of the invention.
  • the following processes may be performed in order to convert or configure media resources, based on the results of the determination module 412 inspecting the media data 425 .
  • the determination module 412 may have one or more data reduction processes performed on the media data.
  • the transmission size may correspond to a bit rate for the transmission.
  • the bit rate is a function of a frame rate and picture quality.
  • the bit rate is normally determined by the media source, which uses a high bit rate to improve picture quality and/or frame rate.
  • the data reduction parameters may be set as one of preference or necessity. For example, in order to free network bandwidth, the user may have a preference as to lower transmission size. Additionally, the network bandwidth a device may need may be determined independent of the device's capabilities. Rather, the available bandwidth may be a function of the bandwidth on the communication channel to the device.
  • this profile information is determined programmatically, by sending a test message or communication to a specific target and measuring a response time. For example, an image or media clip may be transmitted periodically to the end target device from a component on the user's network system, and the component may measure the time it takes for a programmatic response or receipt to that message to be received back from the target. Based on response time, the profile information indicating bandwidth and/or data reduction parameters may be set.
  • the determination module 412 may use profile information 427 to determine information about the data type of media that can be handled by the target. For example, the profile information 427 may identify the type of media player on the target device 420 . If inspection of the media data 425 determines that the format of the media data is not compatible with the media player on the target device 420 , then the formatting component 416 may be used to convert the data format. Implementation of the formatting component 416 may correspond to identification of a specific process that converts the media data from its native format to another format suitable for consumption by the target device 420 . For example, a process may be called to convert the media data 425 from WMP to AAC.
  • the determination module 412 may inspect media data 425 to determine whether image data 411 is contained in the media data 425 . If image data 411 is contained, then the determination module 412 may use profile information 427 to determine if any size constraints exist for the target that is to receive the media data. For example, cellular phones have size limitations in their dimension and screen resolution. The determination module 412 may size the image data portion (sized image data 413 ) of the media data 425 in order to make the video or images of the media data compatible with the display hardware of the target device 420 . In addition to size limitations, some target devices may have alternative size capabilities. For example, the device may have an elongated display and alternative display mode operations where the device may be operated in a landscape mode. The sizer 415 may accommodate the landscape settings with the image data, even by extrapolating or stretching image data.
  • the network enabled system 402 may include components to interface and handle interface with the media sources, handle media data from the media resources, and even control the media sources.
  • One or more application program interfaces 460 may be used to receive and connect to the different interfaces of the media sources.
  • a media library interface 433 may provide a programmatic mechanism for retrieving media data from the media file system 432 in response to individual requests of the user.
  • Media library data 452 may be generated form individual files in the media file system 432 .
  • Other internal media sources, such as cable media source 436 or satellite media source 434 may feed raw media data into a set top box or tuner 435 .
  • a connection may be established between the tuner 435 of the respective satellite media source 434 or cable media resource 436 , and the interface 460 of the media delivery system 410 .
  • a media feed 441 may be transmitted across the connection as output of the tuner 435 .
  • the local media recorder 438 may also transmit recorded media feed (albeit of a different type) to the interface 460 of the media delivery system 410 .
  • Embodiments of the invention enable the media delivery system, such as described in FIG. 4 , to receive and transmit streaming media that comes from a media source outside of the system 402 .
  • external media sources may be accessible to receive media data in the form of streaming network transmissions.
  • an external stream handler (ESH) 470 may be used in conjunction with the media delivery system 410 .
  • the ESH 470 and the media delivery system 410 may form locally interconnected components, or even reside within the same network enabled machine.
  • the ESH 470 and the media delivery system 410 may communicate over a direct or local communication link, such as through a WiFi connection, over a LAN or across a Universal Serial Bus connection.
  • the ESH 470 and the media delivery system may reside within the same machine as software components. In this way, the media delivery system 410 and the ESH 470 may share a common firewall or gateway architecture to the Internet.
  • the ESH 470 includes one or more buffers that operate in conjunction with the user's browser component 472 , which could be, for example, a web browser or a media player, to receive streaming media of various types, sources and transmission size.
  • the browser component 472 may be instructed to access network sites or locations as specified by the user's request. Other user-initiated or programmatic instructions may be employed to cause the browser component 472 to retrieve the specific desired media from the accessed site.
  • the browser component 472 may be used to select a link to a specific radio station or television station on a web page of an accessed site, and on selection of the link, streaming media data may be received by the web browser and directed to the ESH 470 .
  • Functions performed by the ESH 470 include receiving and buffering media streams 475 from external streaming media sources 431 , 433 , and then moving streaming data 476 to the media delivery system 410 .
  • the ESH 470 directs buffered media data 476 from one portion of a transmission of media stream 475 , concurrently while receiving transmission of another portion of the same media stream 475 .
  • ESH 470 operates in coordination with a browser component 476 , such as a web browser or a browser-enabled media player. The browser component is used to access the network site from which the media stream is received.
  • the media delivery system 410 performs the functions of converting and configuring the data in the media streams 475 for transmission to the targets, as described above.
  • the performance of the media delivery system 410 in the context of delivering media corresponding to external streaming media may be described with FIG. 5 .
  • step 510 streaming media data from the media streams 475 are buffered. While a streaming transmission is being received, step 520 provides that a set of characteristic about the media stream is identified. In an implementation such as shown in FIG. 4 , this step may be performed by forwarding streaming data 476 to the determination module 412 while the transmission of the media stream 475 is ongoing.
  • the determination module 412 uses profile information 427 to determine which of the processes of the media delivery system 410 are needed in order to make the streaming data 476 conform to the desired characteristics for the target. Accordingly, in step 540 , a determination is made as to whether the data type format of the streaming data 476 is compatible with or in accordance with the desired data type for the particular target.
  • the formatting component 416 may be used to convert the media stream 475 from its native format to the desired format in step 550 .
  • some media sites may provide streaming media in the form of WMP, while the media player on the target device 420 is a REAL player requiring the data type to be of type RM.
  • the formatting component 416 identifies the correct conversion process to reformat the media data.
  • the formatting component 416 may include or have access to a library of conversion processes for changing the data type of the streaming data 476 .
  • another determination 560 may be made as whether the transmission size is within the range specified in the profile information 427 .
  • the transmission size may correspond to a bit rate, which is a product of the frame quality and the frame rate.
  • the media source provides media of high-quality, such as comparable to Compact Disc or DVD playback. Such data may be provided at high bit-rates (e.g. 1.5 MB/second).
  • ESH 470 may include a large buffer that communicates with responsive processing resources to move data from the buffer to the media delivery system 410 .
  • the target may not be capable of receiving the transmission at the same bit rate.
  • step 570 may provide for the reducer to reduce the overall bit rate.
  • the reducer 414 may lower the bit rate by lowering the frame quality or by lowering the frame rate.
  • the profile information 427 may specify as to whether reduction should be performed with a setting of high quality frames and low frame rates, high frame rates and low quality frames, or a setting in between. This setting may be set by user preference, target device capabilities or limitations, and/or communication channel bandwidth or congestion.
  • Media stream 475 may include audio and/or video.
  • a determination is made in step 580 as to whether the media stream 475 includes image data, either in the form of still images or video.
  • the determination may be made by the determination module 412 through inspection of streaming data 476 . If image data is contained, then profile information 427 may be used to determine in step 585 whether the image data is sized appropriately for a display of the target. This includes determining whether the lines of resolution and display dimensions of target device 420 can accommodate the entire span required by the image data in the media stream 475 . If the image data is not sized correctly, the image data in the streaming data 476 may be resized in step 590 .
  • the display sizer component 415 may re-size the image data (usually to reduce the dimension or resolution). If no image data is contained in the media stream 475 , or if the image data is sized correctly, no action is taken on the image data.
  • the target data is transmitted.
  • the target data 405 is streamed to the target.
  • the media delivery system 410 performs its operations on incoming media streams 475 in an on-the-fly or responsive manner.
  • the determination module 412 may inspect the external media data 476 responsive to the ESH 470 receiving the media stream 475 , and the components and processes for performing configurations, conversions and alterations to the external media data may be performed while the original stream is being received. The effect is that the ESH 470 and the media delivery system 410 combine to receive media streams and to “re-stream” the media streams to the targets.
  • the reception of the media streams 475 from the external media sources 431 , 433 may be performed concurrently while the re-streaming to the targets takes place.
  • the media delivery system 410 it is possible for the media delivery system 410 to re-stream media stream 475 in near real-time.
  • the external media sources 431 , 433 may correspond to any source of media data that resides outside of the local environment which interconnects ESH 470 and the media delivery system 410 . Furthermore, the external media sources 431 , 433 may be subject to third-party ownership and/or control. In order to optimize performance, the ESH 470 may connect to the Internet using a high-speed Internet connection (e.g. T1 or DSL).
  • a high-speed Internet connection e.g. T1 or DSL.
  • ESH 470 buffers and forwards the streaming data 476 to the media delivery system without alteration or change.
  • the properties of streaming data 476 are not relevant to the operation of the ESH 470 .
  • the determination module 412 may inspect the streaming data 476 to determine the properties of the media stream 475 .
  • embodiments of the invention may provide numerous buffers, cache, or other memory resources that may be used throughout the media delivery system 410 to store processed or to-be processed media data 425 for delivery to the targets.
  • a specific media file may be converted and configured for delivery to the target in a first instance.
  • a copy of the configured or converted media may be stored in cache or other memory so the next request for that media source avoids performance of the processes in the media delivery system 410 . Rather, the appropriately converted/configured data may be retrieved from cache.
  • streaming data from external sources may be delivered to the targets concurrently or in near real-time
  • an embodiment contemplates the streaming data being stored or buffered for delayed transmission to the target. For example, the transmission to the target may be delayed until the user is ready, until the user has adequate network bandwidth, the user is finished taking a phone call or for other reasons.
  • the target that receives target data from the media delivery system may be machine, device or network location.
  • the media delivery system 410 may be implemented to transfer data to any type of target.
  • One type of target for target data provided by the media delivery system 410 is a roaming device.
  • a roaming device may correspond to a device that is network enabled while being mobile, so that is has physical locations and can use different network connections to connect to the Internet.
  • An example of a roaming device is a smart cellular phone, a personal digital assistant with network capabilities (e.g. WiFi or cellular), or a laptop computer that is used with Hot Spots or other locations of Internet connectivity.
  • FIG. 6A illustrates an embodiment for transferring target data 612 directly to a target that is a device 610 , such as a roaming device.
  • the target data 612 may generate a request 608 that results in the transmission of the target data 612 .
  • the request 608 is made to a network service 620 , which has access to portions of the user-defined network.
  • the network service 620 may have a network location that is accessible to the target device through use of a browser or other web-enabled component.
  • the service 620 may be provided through selectable iconic representation on a GUI of the target device, the selection of which corresponds to the web browser activating a URL to the service.
  • the service 620 gains access to the user-defined network 602 (or other network enabled system of the user) using a network such as the Internet.
  • the service 620 communicates the network location of the device 610 to the media delivery system 615 within the user-defined network 602 , and the media delivery system within the user's network establishes a peer-to-peer connection with the target. It is over the peer-to-peer connection that target data is transmitted.
  • the service 620 performs functions such as authenticating and/or verifying the user of the roaming device.
  • the service 620 may also determine information about the user's device, such as information about the capabilities of the target device (e.g. what type of browser made the request).
  • the service 620 acts as an intermediary between the target device 610 and the media delivery system 615 .
  • target data 612 is sent to a target that is a network location hosted by the service 620 .
  • the target device 620 is directed to access that location to receive the target data.
  • the target device and the media delivery system may rely on messaging.
  • the target device 610 may send a message 632 corresponding to the request for target data.
  • the media delivery system may then message (e.g. media file as email attachment) the target data 634 back to the target device. More than one message may be needed to communicate the target data.
  • FIG. 6D illustrates an implementation in which the user's defined network 612 and the target device 610 communicate to establish their own network location for which target data is to be relayed.
  • the media delivery system of the user's network sends an invitation message 640 , such as in the form of a Short Message Service transmission, communicating the network location for which the browser of the target device 610 is to access.
  • the target data is then transmitted to that network location 642 (which may correspond to the target 412 , as shown in FIG. 4 ).
  • the target device 610 then accesses the network location to receive the target data.

Abstract

A media delivery system and technique are described to enable a media stream to be received at one end on a user's computer, and then re-streamed to a target device in a form that is suitable for that target. As an example of an implementation of such an embodiment, a streaming video and/or audio feed may be received on a user's media center, then re-streamed to a user's designated target device. The target device may correspond to, for example, another computer, a cell phone, or some other media output device.

Description

    RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 11/531,182, filed Sep. 12, 2006, titled MEDIA DELIVERY SYSTEM AND METHOD FOR TRANSPORTING MEDIA TO DESIRED TARGET DEIVCES, which is a continuation-in-part of the following, co-pending U.S. Patent Applications: U.S. patent application Ser. No. 10/888,606, entitled “System and Method for Enabling the Establishment of a Personal Network,” filed Jul. 9, 2004; U.S. patent application Ser. No. 10/888,633, entitled “System and Method for Combining Memory Resources for Use on a Personal Network,” filed Jul. 9, 2004; and U.S. patent application Ser. No. 10/888,745, entitled “System and Method for Remotely Controlling Network Resources,” filed Jul. 9, 2004, now U.S. Pat. No. 7,937,484; application Ser. No. 11/531,182 also claims priority to provisional U.S. Provisional Application No. 60/718,119, filed on Sep. 16, 2005, entitled MEDIA DELIVERY SYSTEM AND METHOD FOR TRANSPORTING MEDIA TO DESIRED TARGET DEVICES. All of the aforementioned priority applications are hereby incorporated by reference in their entirety for all purposes.
  • TECHNICAL FIELD
  • The disclosed embodiments relate generally to the field of media content delivery over networks.
  • BACKGROUND
  • There are an increasingly large number of devices that have network connectivity. Over the years, network connectivity has been extended to appliances such as refrigerators, home entertainment centers, and interactive box sets for use with television sets, digital cameras, and cell phones. With the evolution of these devices, there have been developments in home networks. For example, WiFi technology enables users to interconnect various network enabled devices wirelessly to form their own local area network. Various services and applications currently exist with the goal of establishing data connectivity between different network locations. The growth of the Internet and other types of networks has contributed to the numerous networking applications that currently exist.
  • There is also an interest in extending network connectivity to devices that can roam. These devices include cell phones, personal digital assistants (PDAs), and stations that can be assembled on vehicles or airplanes. While wireless networks for such roaming devices exist, these networks tend to have limited bandwidth, and can be expensive. In addition, it is difficult for operators of such devices to interact with networks, given that these devices often have poor user-interface features, and limited processing/memory resources for tasks that are often desired from them.
  • Currently, there are various interoperability issues when different types of network enabled devices are coupled. Often, the different devices operate on incompatible platforms or operating systems. This can cause problems in how these devices share data with one another. Furthermore, connected devices may use different data types (.WAV versus MPEG) and/or data formats that hinder the user's ability to share data amongst devices. As an example, the size of the screen display on a cell phone is typically too small to render images from a digital camera, even if the cell phone is camera-enabled. Often, the result is that when users want to share data amongst connected devices, that user must perform numerous manual steps, such as manually converting data formats.
  • Even as various computer and electronic devices increase their functionality, their hardware components, environment and form-factor become limitations that need to be accounted for when devices are sought to operate with one another. For example, many devices are capable of rendering or playing back rich media (e.g. music or video), but these devices have different levels of suitability for these functions. For example, a cell phone may have a music player software application, but limited speaker output for truly enjoyable music listening experience. As another example, cellular phones with cameras are common and widely used, but their images are not as good as devices that are primarily digital cameras.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of a system or technique for transmitting target data corresponding to media to a target location or device, under an embodiment of the invention.
  • FIG. 2 illustrates a method for transmitting target data corresponding to media to a target device using profile information associated with that device, under an embodiment of the invention.
  • FIG. 3 illustrates a method for providing media from a user's defined network to a target device, under an embodiment of the invention.
  • FIG. 4 illustrates an architecture for delivering media from various sources to a target, under an embodiment of the invention.
  • FIG. 5 illustrates a method for re-streaming media streams from external sources to targets, under an embodiment of the invention.
  • FIGS. 6A-6D illustrate techniques by which target data may be transmitted to a target, under one or more embodiments of the invention.
  • DETAILED DESCRIPTION
  • Embodiments described in this application provide the ability for a user to take media from any one of many sources and deliver media from that source to a selected target device or location in a form that is suited for that device or location. One or more embodiments described herein enable data corresponding to that media to be generated which is suitable or even optimal for a target device or location, when the media in its native form is actually not suitable for the target. As such, target data corresponding to media may be generated and delivered to the target to accommodate capabilities and limitations of the target. Examples of the limitations and capabilities that may need to be accounted for in generating the target data include the available bandwidth of the target; the target's processing and/or memory resources; the applications involved in handling media on the target, including web browser or media player; the display size or resolution of the target; and audio hardware on the target.
  • Embodiments described herein provide that media received or maintained on a network enabled system of a user may be transported across one or more networks to a desired target device or location. Any form of digital media is contemplated, including media files (e.g. MP3 files), television media received through a set top box or stored in a digital video recorder, or streaming media. In response to receiving an instruction for delivery of media from a target device, media source identified by the request may be identified and accessed. Media data from the source may be analyzed or inspected to determine its native characteristics. A profile for the target is accessed, and profile information is used to determine desired characteristics for the generation of target data that is to correspond to the media. The target data is generated from the media data or media source with the desired characteristics. If native characteristics of the media data/source are incompatible or otherwise different from the desired characteristics specified in the profile information, the target data is generated to include the desired characteristics, and not the native characteristics. The target data is then transmitted to the target.
  • An embodiment such as described may be performed programmatically, or as a computer-implemented method. Programmatically means through the use of code, or computer-executable instructions.
  • A particular type of media source contemplated for use with one or more embodiments is a streaming media source, such as provided through a streaming media service on the Internet. In one embodiment, the media source provides a media stream over the Internet or other network. A media delivery system and technique are described to enable the media stream to be received at one end on a user's computer, and then re-streamed to a target device in a form that is suitable for that target. As an example of an implementation of such an embodiment, a streaming video and/or audio feed may be received on a user's media center, then re-streamed to a user's designated target device. The target device may correspond to, for example, another computer, a cell phone, a personal digital assistant, a laptop, a network-enabled audio or media system for an automobile, or some other media output device.
  • Under an embodiment of the invention, the act of re-streaming the media stream may correspond to one or more of the following processes being performed: (i) the media stream being reformatted from one data type or extension to another; (ii) a transmission size of the media stream being reduced; and (iii) a display size of the media stream being re-sized.
  • As will be described, the processes mentioned above may also be performed for media from sources other than streaming sources. Furthermore, other processes may be performed on data generated from the media source for purpose of making the generated target data suitable for the target device or location.
  • The media sources may provide data having a particular set of native characteristics. These native characteristics may be different than desired characteristics for the target data, as specified in the profile information. In one embodiment, target data is generated by reconfiguring or reformatting data from the media sources so that the native characteristics are changed into the desired characteristics. However, it is also possible for a result in which the characteristics of the target data are identical to the native characteristics, meaning the media data in its original form is suitable for the target, at least according to the profile information.
  • One or more embodiments described herein may be implemented using modules. A module may include a program, a subroutine, a portion of a program, or a software component or a hardware component capable of performing one or more stated tasks or functions. As used herein, a module can exist on a hardware component such as a server independently of other modules, or a module can be a shared element or process of other modules, programs or machines. A module may reside on one machine, such as on a client or on a server, or a module may be distributed amongst multiple machines, such as on multiple clients or server machines.
  • Furthermore, one or more embodiments described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium. Machines shown in figures below provide examples of processing resources and computer-readable mediums on which instructions for implementing embodiments of the invention can be carried and/or executed. In particular, the numerous machines shown with embodiments of the invention include processor(s) and various forms of memory for holding data and instructions. Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers. Other examples of computer storage mediums include portable storage units, such as CD or DVD units, flash memory (such as carried on many cell phones and personal digital assistants (PDAs)), and magnetic memory. Computers, terminals, network enabled devices (e.g. mobile devices such as cell phones) are all examples of machines and devices that utilize processors, memory, and instructions stored on computer-readable mediums.
  • FIG. 1 illustrates a system for delivering media to a target device, under an embodiment of the invention. A media delivery system 120 may be part of a user's personal network or network enabled system. The media delivery system 120 enables the user to distribute a variety of different media that is available from his or her defined network or network enabled device to locations that are remote to his network location. In particular, an embodiment enables the user to distribute media to one or more selected roaming devices. Roaming devices include devices that communicate on cellular networks, satellite networks, or which are portable and can be connected to the Internet intermittingly. Furthermore, as described elsewhere in this document, the distribution may be made at the request of the target. For example, the user may operate his own media player-enabled cellular phone to request music files from his connected media center (which may run on a desktop computer). Various types of media sources available to the home network or network user are contemplated for this type of media distribution, including, for example, stored media files, live video captured by the user on his own connected video camera, streaming media from an Internet streaming service, and television/audio cable and satellite feeds.
  • In an embodiment, the media delivery system 120 uses media source data 112 from one or more media sources 110 to deliver target data 116 to one or more targets 130. The media delivery system 120 may access profile 125 to obtain target information 124. The target information 124 may dictate how data from the media source is to be configured in the generation of target data 116. As such, target data 116 is configured for the target 130, even though media source data 112 in its original form may not be suitable for the target. An embodiment such as described enables any network enabled device or location to receive target data 116 that is suited for the particular device/location, and thus allow that device/location to generate media output corresponding to the media source data 112.
  • As will be described, the media sources 110 may correspond to one or more different types, including, for example, stored media files, streaming media from external sources or services, and media feed data from cable or satellite links. Media may correspond to audio data, image data or a combination thereof. Image data may correspond to both still and video data.
  • In an embodiment, the target 130 corresponds to a device that the media delivery system 120 can communicate with through one or more networks. According to one embodiment, the target 130 corresponds to a mobile or roaming device, such as a device that uses a cellular network to transmit voice or other data. Examples of such devices include smart phones (such as those that run on the SYMBIAN operating system), wireless phone and messaging devices (e.g. TREO 650, manufactured by PALMONE, INC.), personal digital assistants with roaming or cellular capabilities, and devices with roaming or cellular cards. In another implementation, the target corresponds to any network-enabled machine, such as a laptop. Still further, the target 130 may correspond to a network location, such as an Internet address, which a user can access from a standard Internet connection.
  • In one implementation, media may be delivered to the target 130 (in the form of target data 116) in response to a request 118 from the target. In another implementation, the request to deliver target data 116 to the target 130 may originate from another terminal or network location. The user may specify the request on one machine, and receive the target data 116 on another. For example, the user may send the request from a work terminal or even from a terminal on which the media delivery system 110 operates, to receive media on-the-go through his cell phone. Still further, rather than receive the request 118 from the user, the initiation of media delivery to the target 130 may be programmatic or event driven (e.g. such as through use of a calendar or scheduler).
  • The media delivery system 120 may receive the media source data 112 in its native form, meaning the media source data 112 may have a set of native characteristics 113. Such native characteristics 113 include, for example, transmission size, data format, and display size (for image data). The media delivery system 120 may have full capabilities to receive and handle media from numerous media sources. This may include broadband Internet access, video and audio processing resources, memory to buffer or cache (large RAM), and a large display. An example of media delivery system 120 would be a desktop machine that runs MICROSOFT MEDIA CENTER. For a given media source, some or all of the native characteristics 113 may be unsuitable or unwanted for the target 130. The media delivery system 120 generates the target data 116 to have target characteristics 117 using the target information 124. In the case where the media source 110 is completely compatible with the target 130, the target characteristics 117 and the native characteristics 113 may be the same or substantially similar, so that the target data 116 and the media source data 112 are also substantially similar. In such a case, for example, the target data 116 may simply be a copy of the media source data 112. In the case where one or more native characteristics 113 are not compatible or are unwanted, the target data 116 may be generated by implementing a conversion process on the media source data 112. In such a case, one or more of the resulting target characteristics 117 of the target data 116 may be different than the native characteristics 113 of the media source data 112. For example, one or more of the characteristics transmission size, data format, and display size may be different for the target data 116, as compared to the media source data 112.
  • The media delivery system 120 may access one or more target profiles 125 associated with the target 130 to obtain target information 124. The target profiles 125 may correspond to a list of device capabilities and/or a list of user-preferences. The profile information may include information on how to configure or format the target data to accommodate, for example, the following capabilities or limitations of the target: the network bandwidth available to the target; the target's processing and/or memory resources; the applications involved in handling media on the target, including web browser or media player; the display size or resolution of the target; and audio hardware on the target. Some or all of the target information 124 may be determined programmatically, or at least without user-input. For example, target information 124 corresponding to a device profile may be retrieved from a library based on initial device information identified from the user's communication, either through user-input or through other means.
  • Embodiments of the invention enable users to establish a media center from within the confines of a network that is under their control, and to use the media center to stream media of their choosing to devices and locations of their designation. This enables the user to make his or her media library available to numerous devices and/or locations of his choosing. An example of an application of an embodiment described herein includes a user making a music library or video library accessible for streaming playback on a cellular phone or portable computing device, where the music or video library is stored on the user's hard drive, on a computer within his home network. In another embodiment, a system may be implemented in which streaming media from a source outside of the user's network is streamed to a station or component within the user's network, then re-streamed to the user's end device.
  • Methodology
  • FIG. 2 illustrates a method for transmitting media data to a target, under an embodiment of the invention. Methods such as described by FIG. 2 or FIG. 3 may be performed on a user's defined network. The user's defined network may correspond to a subnet of one or more computers under a user's control that are interconnected by a local network connection (e.g. Ethernet) or a through a local connection (e.g. through a serial buss). One example of a user-defined network for use with an embodiment of the invention is a personal network, such as described in U.S. patent application Ser. No. 10/888,606. A personal network is a networked system that uses individual software and/or hardware components as satellites. The satellites are (i) interconnected and aware of each other's status and capabilities (at least when it is relevant), and (ii) able to use each other's functionality. However, alternative embodiments may be implemented in which a system achieves functionality such as described using non-satellite components. For example, as mentioned, the user defined network may include a home network, or a home network combined with an external station that are not aware of each other's status and/or capabilities.
  • Another example of a user-defined network is a home network, in which a portal or gateway may be used to interconnect one or more computers with a user's home or space to a public network such as the Internet. According to embodiments described herein, a user's defined network may contain a media library of stored media files, media sources (e.g. cable television or satellite feed, live video camera) contained within the user-defined network or under its control, and external media sources that are accessible to the user-defined network over networks such as the Internet (e.g. streaming media services). These examples of user-defined networks (personal network, home network) and other network enabled systems are contemplated for performing methods such as described in FIG. 2 and FIG. 3. In describing the methods provided below, reference may be made to elements of FIG. 1 or other embodiments described in this application. Such reference is made for purpose of illustrating a suitable element or component for performing a step or sub-step being described.
  • Step 210 provides that a media source is identified. The media source may be based on a request or identification provided by the user, made at any time. The media source may correspond to any source from which media data may be retrieved, generated or received, such as a stored file or a live or ongoing media transmission. The media data provided by the media source may be in the form of audio, video, or a combination thereof. The media source may be internal or external to a user's defined network or computer system. As will be described below, the media data may be from anyone of numerous sources, and in anyone of various formats. For example, the media data may be received as streaming media, retrieved from a stored location, from a cable or satellite media feed, or from a connected device that records media (e.g. video recorder).
  • In step 220, target data is generated from the media source, or from media data provided from the media source, to accommodate a profile associated with the target. The profile may be based on the capabilities of the target and/or the preferences of the user. The profile specifies formatting and configurations for the target data. In an embodiment, the profile specifies the one or more of the following characteristics for the target data: data format, transmission size, and display size. If the native characteristics of the media source do not conform with the characteristics specified by the profile, a conversion or configuration process is performed on media data from the media source in order to make the target data have the desired characteristics. Thus, for example, if a media player of the target requires data to be of a certain type, then a conversion process may be performed to convert the data format of data provided by the media source from a native format to the desired data format. As additional examples, additional conversion or configuration processes may be performed on data generated from the media source in order to generate the target data with desired transmission size or display size.
  • Step 230 provides that the target data is transmitted to the target. The data transmission may be performed in response to the target device accessing or making a request for data (pull), or it may be performed by transmitting the target data without the request from the target device (push). In an embodiment where the target is a mobile device (such as one that is cellular enabled), the target data may be streamed. When data is streamed, the mobile or receiving device may respond to receipt of a portion of the overall transmission and initiate playback before the transmission is complete. Thus, the streaming process usually requires buffering on the receiving end. Another embodiment may use another form of data transmission for the target data. Under one embodiment, the target data may be transmitted as one file to the target, such as in the form of an email attachment. Alternatively, one or more (e.g. a series) of Multimedia Messaging Service (MMS) messages may carry the target data to the target. Numerous data transmission techniques may be used, some of which are described below (see e.g. FIG. 6A-FIG. 6D).
  • The manner in which a method such as described by FIG. 2 is performed may differ, depending on the type of media source involved. For example, in a case where the media source corresponds to one or more media files stored locally within the control of the user-defined network, a temporary copy or conversion file may be formed as a result of step 220. In the case where the media source is an external streaming source, a buffer may be used to capture the stream while the media delivery system re-streams the data to the target device.
  • FIG. 3 illustrates a more detailed method for enabling media to be transmitted from a user-defined network to a target device, under an embodiment of the invention. A method such as described in FIG. 3 assumes the target is a device that is accessible to the user-defined network using data networks such as the Internet and/or cellular networks.
  • In step 310, a user of the user-defined network provides information about the target device. The information may include information about the type or capabilities of the target. Additionally, information may be provided for locating the target device and/or for identifying or verifying the device.
  • Step 320 provides that profile information is associated with the target device. The profile information may correspond to information that identifies known capabilities of the target device, or of the target device's ability to handle media. For example, in the preceding step, the user may identify his cellular model, and a module or program on the user-defined network may correlate the device model with a list of pertinent capabilities of that device. In the same example, the user may also specify his media player, his cellular network, additional memory (e.g. smart card) or other information. To this end, a library may be maintained with information about different devices. The library may be programmatically accessed by, for example, a media delivery system (such as illustrated with FIG. 4) to determine how target data is to be configured. Examples of what type of information may be maintained in the library based on device capabilities include one or more of the following: media player type, display size, operating system, cellular network (if applicable), processing or memory capabilities, maximum transmission size. Additionally, profile information may include one or more user preferences. For example, the user may specify a desired transmission size that is less than the maximum transmission size. The user may also specify, for example, alternative display sizes, or implement filters.
  • In step 330, conversion and configuration processes may be established or otherwise made available to the user-defined network for purpose of enabling the media delivery system 120 to perform on-the-fly processes to generate target data with desired characteristics specified in the profile information. In particular, embodiments provide that in instances where the media source is, in its native form, incompatible or inconsistent with characteristics specified by the profile information, then the target data is generated with the desired characteristics specified by the profile information by performing conversion or configuration processes on data from the media source. The processes identified in this step may accommodate any one of a variety of media sources, including media sources that are both internal and external to the user-defined network. For example, processes may be identified to convert media files from any one of a plurality of data formats into a desired data type that is compatible with a particular type of media player on the target device. As another example, processes may be identified to convert streaming data from external sources, having any given data type, transmission size, or display size, into streaming data of a particular data type, transmission size and/or display size. Since the processes may be performed on-the-fly, streaming media from a media source external to the user-defined network may be converted/configured and transmitted to the target concurrently with transmission of the stream from the external source. If the native form of the media source is compatible with the characteristics specified in the profile information, then the target data may be generated by, for example, copying and/or buffering the media file or media data from the media source.
  • Once the target is identified, the profile is established, and the conversion/configuration processes are identified, the target may be used to retrieve and playback media from the user's defined network. In an embodiment, step 340 provides that a request for media is made from the target. The request may include identifiers for identifying the media source, or when applicable, particular data available from the media source. For example, the identifier may identify a streaming media source, a particular file, a uniform resource locator (URL) (or partial URL), or a media channel in the user's network (such as a channel designating a cable television channel, or a channel that represents a media feed from the user's own video recorder). Different implementations are contemplated for the form in which the request can be made. For example, the user may select an icon representing an action (get media from a streaming media service) or a source. The user may enter text data (through key strokes or even through voice recognition) to select the media source.
  • According to one embodiment, the target device may be equipped with a user-interface that displays media in a user's defined network, as well as media sources that the user has access to from his or her network. Such a user-interface is described in U.S. patent application Ser. No. 10/888,606, the aforementioned application being hereby incorporated by reference. Thus, for example, the user may select an icon from a graphical user interface (GUI) where the icon corresponds to a “channel”, and the channel may correspond to, for example, a streaming media source, such as an Internet radio site. Another icon on the same interface may represent another media source, of a different type (stored files of an album, or channel from a television cable feed). Thus, selectable user-interface features may be provided on a single interface for connecting the user's remote or roaming device with distinct media sources, possibly of different types. For example, icons on one interface may represent a stored audio collection, cable television channel, and Internet streaming service. With regard to Internet streaming services or sites, specific media available from those services and sites may further be indicated. For example, the specific station on an Internet radio site may be specified in the request.
  • Step 350 provides that the requested media source is accessed for media data. The requested media source may be an external streaming media source, such as an Internet radio or television site, in which case the web site and/or uniform resource locator (URL) for that site is used to retrieve media data from the media source from within the defined network. In the case of streaming media sites, the media data may be buffered. As an example of another implementation, stored media files may be opened in this step, and/or the contents of the media files may be copied for the processes that are to be performed (if any).
  • In step 360, a set of characteristics of the media data and/or the requested media source are identified. The identification of the characteristics may be performed programmatically. The particular characteristics that are sought for identification in this step may be designated by the profile associated with the target device. Thus, for example, different characteristics may be evaluated for different target devices. Specific media data characteristics that may be identified include, for example, data format, transmission size, and display size for image data.
  • Step 370 provides that target data is generated from the data of the requested media sources. The target data is generated with consideration or use of the established conversion and configuration processes. Thus, if characteristics identified in step 360 are incompatible or different than what was specified in the profile information associated with the target, corresponding processes are performed to make the data conforming to the desired characteristics specified by the profile information. If conversion or configuration processes are necessary, the processes that are to be performed may be selected from a library of processes established in step 330. If, however, the characteristics identified in the step 360 are completely conforming to the desired characteristics specified in the profile information, then no configuration or conversion processes need to be performed. The target data generation then becomes a process to buffer and/or copy some or all of the media source data.
  • Step 380, the target data is transmitted to the target device. Different modes of data transmission are contemplated by embodiments of the invention. In particular, the target data may be streamed to the target device. Alternatively, the target data may be messaged, such as through an attachment to an email. As another example, an alternative messaging medium such as Multimedia Messaging Service (MMS) may be used. Examples of different transmission techniques are shown in greater detail with FIGS. 6A-6D and elsewhere in the application.
  • Architecture for Media Delivery System
  • FIG. 4 illustrates a system for delivering media to a target location or device, under an embodiment of the invention. A system such as shown and described may be implemented as part or within a user's defined network. For example, the system shown may operate at least partially within a desktop computer used to manage a home network, or a computer on which Microsoft Media Center (manufactured by the Microsoft Corporation) is running. However, a user's defined network may extend to network locations that are provided by third-party services, for which the user has permission to access and use (for example, an account). In many cases, the user's defined network is maintained substantially within a gateway or firewall, interconnected by a local network such as WiFi and/or Ethernet. However, the user's network may extend to physical locations that are reachable across the Internet or other public networks, so that the user's defined network may include one or more externally located stations, terminals, computer clusters etc.
  • According to one embodiment, a system such as described in FIG. 4 may be implemented through use of a personal network as described in U.S. patent application Ser. No. 10/888,606. However, alternative embodiments may be implemented in which a system archives functionality such as described using non-satellite components. For example, as mentioned, the network enabled system shown in FIG. 4 may correspond to a home network, or a home network combined with an external station each of which are not aware of each other's status and/or capabilities. Another example of a network enabled system includes two or more devices locally connected and network enabled from behind a gateway.
  • In FIG. 4, a network enabled system 402 that includes a media delivery system 410. The media delivery system 410 communicates with one or more targets, including, for example, a target device 420 and/or a network location 422. The targets may reside outside of the network enabled system 402 and be reachable through one or more networks 404, such as the Internet and one or more cellular networks. The target device 420 may correspond to, for example, a cellular or smart phone, a media player with a network connection (the network connection may be wireless or landline), a notebook computer, an automobile having satellite media delivery, or a workstation. The target network location 422 may be on a site that is accessible to an audience of target devices or users. For example, the network location 422 may correspond to a web service or web page through which media can be streamed.
  • According to an embodiment, components of media delivery system 410 include a determination module 412, a reducer 414, a display sizer 415, a formatting component 416, and a transmission module 418. Each of these components may be implemented as a module. In one embodiment, the media delivery system 410 is capable of receiving media from anyone of a plurality of sources and locations, including internal and external sources. Thus, media data 425 may be received by the media delivery system 410 from a plurality of sources.
  • One or more profile structures 426 may exist as a source for profile information 427. The profile structures 426 may store profile information 427 corresponding to capabilities and limitations of the target device. These may include, for example, information indicating what the device can handle based on processing and memory resources (e.g. cache) of the target, the media player type or web browser used by the target, the modem connection (if any) of the target, the display size and/or resolution of the target, the operating system running on the target device, congestion characteristics or bandwidth information on the communication networks used by the target device, and the type or model of the target. Profile information 427 about the target device(s) may be determined programmatically or manually. For example, in one embodiment, the first communication in the form of a request for target data from the target device's web browser may be used to programmatically determine the type of web browser in use on that device. As described elsewhere, programmatic timing mechanisms may be used to determine available bandwidth for the device, particularly at a given instance. Other information may be manually entered by the user. In addition to profile information 427 accommodating specific device capabilities or limitations, the profile information may also correspond to specific preferences of the user. For example, the user may have a preference as to the transmission size of streaming media (low quality), or to the particular media player he or she wants to use.
  • According to an embodiment, the determination module 412 inspects the media data 425 for its native characteristics. The determination module 412 may also access profile information 427 from a user/device profile 426 to determine what native characteristics of the media data 425 need to be changed or unchanged. Using profile information 427, the determination module 412 determines what components are to be used.
  • Examples of media sources that can be accessed by the media delivery system 410 include internal (to the network enabled system 402) sources such as individual files in a media file system 432, a satellite outlet 434 or a cable outlet 436. Another specific example of a media source includes a specific file contained in the memory drive of a digital video recorder (e.g. TiVo). Another example of an internal media source includes a local media recorder 438 (video camera) from which live media streams are generated. External media sources may include streaming media sites and services, such as an Internet Television/Radio 431 site or streaming services 433 (e.g. RHAPSODY, STREAMWAVE). However, it should be noted that the sources of media are diverse and increasing with time. For example, “podcasting” sites provide non-streaming media files to users, and are contemplated for use with embodiments of the invention.
  • In an embodiment, the following processes may be performed in order to convert or configure media resources, based on the results of the determination module 412 inspecting the media data 425.
  • Data Reduction: If the media data 425 is incoming (external stream, cable television etc.) and has an inherently large transmission size, the determination module 412 may have one or more data reduction processes performed on the media data. The transmission size may correspond to a bit rate for the transmission. The bit rate is a function of a frame rate and picture quality. The bit rate is normally determined by the media source, which uses a high bit rate to improve picture quality and/or frame rate. The data reduction parameters may be set as one of preference or necessity. For example, in order to free network bandwidth, the user may have a preference as to lower transmission size. Additionally, the network bandwidth a device may need may be determined independent of the device's capabilities. Rather, the available bandwidth may be a function of the bandwidth on the communication channel to the device. In one embodiment, this profile information is determined programmatically, by sending a test message or communication to a specific target and measuring a response time. For example, an image or media clip may be transmitted periodically to the end target device from a component on the user's network system, and the component may measure the time it takes for a programmatic response or receipt to that message to be received back from the target. Based on response time, the profile information indicating bandwidth and/or data reduction parameters may be set.
  • Formatting: The determination module 412 may use profile information 427 to determine information about the data type of media that can be handled by the target. For example, the profile information 427 may identify the type of media player on the target device 420. If inspection of the media data 425 determines that the format of the media data is not compatible with the media player on the target device 420, then the formatting component 416 may be used to convert the data format. Implementation of the formatting component 416 may correspond to identification of a specific process that converts the media data from its native format to another format suitable for consumption by the target device 420. For example, a process may be called to convert the media data 425 from WMP to AAC.
  • Image Sizing: The determination module 412 may inspect media data 425 to determine whether image data 411 is contained in the media data 425. If image data 411 is contained, then the determination module 412 may use profile information 427 to determine if any size constraints exist for the target that is to receive the media data. For example, cellular phones have size limitations in their dimension and screen resolution. The determination module 412 may size the image data portion (sized image data 413) of the media data 425 in order to make the video or images of the media data compatible with the display hardware of the target device 420. In addition to size limitations, some target devices may have alternative size capabilities. For example, the device may have an elongated display and alternative display mode operations where the device may be operated in a landscape mode. The sizer 415 may accommodate the landscape settings with the image data, even by extrapolating or stretching image data.
  • The particular order that the processes are performed are design implementations. It is also possible to perform some or all of the processes of the individual components concurrently.
  • For different media sources, the network enabled system 402 may include components to interface and handle interface with the media sources, handle media data from the media resources, and even control the media sources. One or more application program interfaces 460 may be used to receive and connect to the different interfaces of the media sources. In one embodiment, a media library interface 433 may provide a programmatic mechanism for retrieving media data from the media file system 432 in response to individual requests of the user. Media library data 452 may be generated form individual files in the media file system 432. Other internal media sources, such as cable media source 436 or satellite media source 434 may feed raw media data into a set top box or tuner 435. A connection may be established between the tuner 435 of the respective satellite media source 434 or cable media resource 436, and the interface 460 of the media delivery system 410. A media feed 441 may be transmitted across the connection as output of the tuner 435. The local media recorder 438 may also transmit recorded media feed (albeit of a different type) to the interface 460 of the media delivery system 410.
  • External Media Handling
  • Embodiments of the invention enable the media delivery system, such as described in FIG. 4, to receive and transmit streaming media that comes from a media source outside of the system 402. In an embodiment, external media sources may be accessible to receive media data in the form of streaming network transmissions. To handle such media data, an external stream handler (ESH) 470 may be used in conjunction with the media delivery system 410. In one implementation, the ESH 470 and the media delivery system 410 may form locally interconnected components, or even reside within the same network enabled machine. As locally interconnected components, the ESH 470 and the media delivery system 410 may communicate over a direct or local communication link, such as through a WiFi connection, over a LAN or across a Universal Serial Bus connection. Alternatively, the ESH 470 and the media delivery system may reside within the same machine as software components. In this way, the media delivery system 410 and the ESH 470 may share a common firewall or gateway architecture to the Internet.
  • In one embodiment, the ESH 470 includes one or more buffers that operate in conjunction with the user's browser component 472, which could be, for example, a web browser or a media player, to receive streaming media of various types, sources and transmission size. The browser component 472 may be instructed to access network sites or locations as specified by the user's request. Other user-initiated or programmatic instructions may be employed to cause the browser component 472 to retrieve the specific desired media from the accessed site. For example, the browser component 472 may be used to select a link to a specific radio station or television station on a web page of an accessed site, and on selection of the link, streaming media data may be received by the web browser and directed to the ESH 470. Functions performed by the ESH 470 include receiving and buffering media streams 475 from external streaming media sources 431, 433, and then moving streaming data 476 to the media delivery system 410. In one embodiment, the ESH 470 directs buffered media data 476 from one portion of a transmission of media stream 475, concurrently while receiving transmission of another portion of the same media stream 475. In one embodiment, ESH 470 operates in coordination with a browser component 476, such as a web browser or a browser-enabled media player. The browser component is used to access the network site from which the media stream is received.
  • The media delivery system 410 performs the functions of converting and configuring the data in the media streams 475 for transmission to the targets, as described above. The performance of the media delivery system 410 in the context of delivering media corresponding to external streaming media may be described with FIG. 5.
  • In step 510, streaming media data from the media streams 475 are buffered. While a streaming transmission is being received, step 520 provides that a set of characteristic about the media stream is identified. In an implementation such as shown in FIG. 4, this step may be performed by forwarding streaming data 476 to the determination module 412 while the transmission of the media stream 475 is ongoing.
  • In step 530, the determination module 412 uses profile information 427 to determine which of the processes of the media delivery system 410 are needed in order to make the streaming data 476 conform to the desired characteristics for the target. Accordingly, in step 540, a determination is made as to whether the data type format of the streaming data 476 is compatible with or in accordance with the desired data type for the particular target.
  • If the data type of the external streaming data 476 is not a desired data type, the formatting component 416 may be used to convert the media stream 475 from its native format to the desired format in step 550. For example, some media sites may provide streaming media in the form of WMP, while the media player on the target device 420 is a REAL player requiring the data type to be of type RM. In response to determining the WMP format, the formatting component 416 identifies the correct conversion process to reformat the media data. The formatting component 416 may include or have access to a library of conversion processes for changing the data type of the streaming data 476.
  • Following the determination of step 540, another determination 560 may be made as whether the transmission size is within the range specified in the profile information 427. With streaming media, the transmission size may correspond to a bit rate, which is a product of the frame quality and the frame rate. In a typical application, the media source provides media of high-quality, such as comparable to Compact Disc or DVD playback. Such data may be provided at high bit-rates (e.g. 1.5 MB/second). To accommodate this much data, ESH 470 may include a large buffer that communicates with responsive processing resources to move data from the buffer to the media delivery system 410. However, the target may not be capable of receiving the transmission at the same bit rate. If the determination is that reduction is needed, step 570 may provide for the reducer to reduce the overall bit rate. In one embodiment, the reducer 414 may lower the bit rate by lowering the frame quality or by lowering the frame rate. The profile information 427 may specify as to whether reduction should be performed with a setting of high quality frames and low frame rates, high frame rates and low quality frames, or a setting in between. This setting may be set by user preference, target device capabilities or limitations, and/or communication channel bandwidth or congestion.
  • Media stream 475 may include audio and/or video. In one embodiment, a determination is made in step 580 as to whether the media stream 475 includes image data, either in the form of still images or video. In one implementation, the determination may be made by the determination module 412 through inspection of streaming data 476. If image data is contained, then profile information 427 may be used to determine in step 585 whether the image data is sized appropriately for a display of the target. This includes determining whether the lines of resolution and display dimensions of target device 420 can accommodate the entire span required by the image data in the media stream 475. If the image data is not sized correctly, the image data in the streaming data 476 may be resized in step 590. The display sizer component 415 may re-size the image data (usually to reduce the dimension or resolution). If no image data is contained in the media stream 475, or if the image data is sized correctly, no action is taken on the image data.
  • In step 595, the target data is transmitted. In the case where the target data corresponds to media stream 475, the target data 405 is streamed to the target. As described, embodiments of the invention provide that the media delivery system 410 performs its operations on incoming media streams 475 in an on-the-fly or responsive manner. Thus, the determination module 412 may inspect the external media data 476 responsive to the ESH 470 receiving the media stream 475, and the components and processes for performing configurations, conversions and alterations to the external media data may be performed while the original stream is being received. The effect is that the ESH 470 and the media delivery system 410 combine to receive media streams and to “re-stream” the media streams to the targets.
  • Furthermore, under an embodiment, the reception of the media streams 475 from the external media sources 431, 433 may be performed concurrently while the re-streaming to the targets takes place. Thus, it is possible for the media delivery system 410 to re-stream media stream 475 in near real-time.
  • As described, the external media sources 431, 433 may correspond to any source of media data that resides outside of the local environment which interconnects ESH 470 and the media delivery system 410. Furthermore, the external media sources 431, 433 may be subject to third-party ownership and/or control. In order to optimize performance, the ESH 470 may connect to the Internet using a high-speed Internet connection (e.g. T1 or DSL).
  • In one embodiment, ESH 470 buffers and forwards the streaming data 476 to the media delivery system without alteration or change. As implemented with such an embodiment, the properties of streaming data 476 are not relevant to the operation of the ESH 470. Within the media delivery system 410, the determination module 412 may inspect the streaming data 476 to determine the properties of the media stream 475.
  • Depending on design implementations, embodiments of the invention may provide numerous buffers, cache, or other memory resources that may be used throughout the media delivery system 410 to store processed or to-be processed media data 425 for delivery to the targets. For example, in one scenario, a specific media file may be converted and configured for delivery to the target in a first instance. A copy of the configured or converted media may be stored in cache or other memory so the next request for that media source avoids performance of the processes in the media delivery system 410. Rather, the appropriately converted/configured data may be retrieved from cache. Likewise, while streaming data from external sources may be delivered to the targets concurrently or in near real-time, an embodiment contemplates the streaming data being stored or buffered for delayed transmission to the target. For example, the transmission to the target may be delayed until the user is ready, until the user has adequate network bandwidth, the user is finished taking a phone call or for other reasons.
  • Transmission to Target
  • As described herein, the target that receives target data from the media delivery system may be machine, device or network location. In one embodiment, the media delivery system 410 may be implemented to transfer data to any type of target. One type of target for target data provided by the media delivery system 410 is a roaming device. A roaming device may correspond to a device that is network enabled while being mobile, so that is has physical locations and can use different network connections to connect to the Internet. An example of a roaming device is a smart cellular phone, a personal digital assistant with network capabilities (e.g. WiFi or cellular), or a laptop computer that is used with Hot Spots or other locations of Internet connectivity.
  • FIG. 6A illustrates an embodiment for transferring target data 612 directly to a target that is a device 610, such as a roaming device. The target data 612 may generate a request 608 that results in the transmission of the target data 612. In one embodiment, the request 608 is made to a network service 620, which has access to portions of the user-defined network. The network service 620 may have a network location that is accessible to the target device through use of a browser or other web-enabled component. For example, the service 620 may be provided through selectable iconic representation on a GUI of the target device, the selection of which corresponds to the web browser activating a URL to the service. In turn, the service 620 gains access to the user-defined network 602 (or other network enabled system of the user) using a network such as the Internet. In one embodiment, the service 620 communicates the network location of the device 610 to the media delivery system 615 within the user-defined network 602, and the media delivery system within the user's network establishes a peer-to-peer connection with the target. It is over the peer-to-peer connection that target data is transmitted.
  • In a variation, the service 620 performs functions such as authenticating and/or verifying the user of the roaming device. The service 620 may also determine information about the user's device, such as information about the capabilities of the target device (e.g. what type of browser made the request).
  • In another variation shown by FIG. 6B, the service 620 acts as an intermediary between the target device 610 and the media delivery system 615. Thus, target data 612 is sent to a target that is a network location hosted by the service 620. At the same time, the target device 620 is directed to access that location to receive the target data.
  • In yet another variation shown by FIG. 6C, rather than use the service 620, the target device and the media delivery system may rely on messaging. For example, the target device 610 may send a message 632 corresponding to the request for target data. The media delivery system may then message (e.g. media file as email attachment) the target data 634 back to the target device. More than one message may be needed to communicate the target data.
  • FIG. 6D illustrates an implementation in which the user's defined network 612 and the target device 610 communicate to establish their own network location for which target data is to be relayed. In one implementation, the media delivery system of the user's network sends an invitation message 640, such as in the form of a Short Message Service transmission, communicating the network location for which the browser of the target device 610 is to access. The target data is then transmitted to that network location 642 (which may correspond to the target 412, as shown in FIG. 4). The target device 610 then accesses the network location to receive the target data.
  • CONCLUSION
  • Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments. As such, many modifications and variations will be apparent to practitioners skilled in this art. Accordingly, it is intended that the scope of the invention be defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mentioned of the particular feature. This, the absence of describing combinations should not preclude the inventor from claiming rights to such combinations.

Claims (30)

What is claimed is:
1. A method for transmitting content, the method being implemented by one or more processors and comprising:
receiving, on a first computing device, status information for one or more of multiple computing devices that are interconnected to form a personal network, wherein the status information indicates that each of the one or more computing devices is connected to a network and operating as part of the personal network;
providing one or more interfaces to a user on the first computing device to enable the user to select (i) a media feed, and (ii) a target that can correspond to one or more of the multiple devices of the personal network that is indicated as being available based on the status information;
detecting selection of the media feed, and selection of a second device of the multiple computing devices as the target; and
transmitting at least a portion of the media feed to the second device as the media feed is received on a resource of the personal network, the media feed being transmitted to accommodate one or more characteristics of the second device.
2. The method of claim 1, further comprising receiving the media feed from a source external to the personal network.
3. The method of claim 1, wherein transmitting at least the portion of the media feed includes configuring the media feed for the one or more characteristics of the second device.
4. The method of claim 1, wherein transmitting at least the portion of the media feed is performed on the first computing device.
5. The method of claim 1, wherein in response to detecting selection of the media feed, the method further comprises communicating, from the first computing device, with a third computing device of the personal network on which the resource is provided, in order to receive the media feed on the third computing device from a source external to the personal network.
6. The method of claim 5, wherein transmitting at least the portion of the media feed is performed on the third computing device.
7. The method of claim 6, further comprising configuring, on the third computing device, at least the portion of the media feed for one or more characteristics of the second computing device.
8. The method of claim 1, wherein the first computing device corresponds to a roaming device that communicates with at least the second computing device using the Internet.
9. The method of claim 1, wherein the media feed corresponds to a streaming media source.
10. The method of claim 1, wherein the media feed corresponds to a cable or broadcast feed.
11. A computer system comprising:
a memory that stores a set of instructions;
one or more processors that execute the set of instructions to:
form a personal network that includes multiple devices that are interconnected using one or more networks;
receive, at a first location of the personal network, status information for one or more of the multiple computing devices of the personal network, wherein the status information indicates that each of the one or more computing devices is connected to a network and operating as part of the personal network;
provide one or more interfaces to a user at the first location of the personal network to enable the user to select (i) a media feed, and (ii) a target that can correspond to one or more of the multiple devices of the personal network that is indicated as being available based on the status information;
detect selection of the media feed, and selection of a second device of the multiple computing devices as the target; and
transmit at least a portion of the media feed to the second device as the media feed is received on a resource of the personal network, the media feed being transmitted to accommodate one or more characteristics of the second device.
12. The computer system of claim 11, wherein the one or more processors execute the instructions to receive the media feed from a source that is external to the personal network.
13. The computer system of claim 11, wherein the one or more processors execute the instructions to configure the media feed for the one or more characteristics of the second device.
14. The computer system of claim 11, wherein the one or more processors execute the instructions to transmit at least the portion of the media feed from a first computing device of the personal network on which the first location is provided.
15. The computer system of claim 11, wherein in response to detecting selection of the media feed, the one or more processors execute the instructions to communicate with a third computing device of the personal network on which the resource is provided to receive the media feed from an external source.
16. The computer system of claim 15, wherein the one or more processors execute the instructions to transmit the media feed from the third device to the second device using one or more networks.
17. The computer system of claim 16, wherein the one or more processors execute the instructions to configure at least the portion of the media feed for one or more characteristics of the second computing device.
18. The computer system of claim 11, wherein the first location is provided on a first computing device of the personal network, the first computing device corresponding to a roaming device that communicates with at least the second computing device using the Internet.
19. The computer system of claim 11, wherein the media feed corresponds to a streaming media source.
20. The computer system of claim 11, wherein the media feed corresponds to a cable or broadcast feed.
21. A non-transitory computer-readable medium that stores instructions that, when executed by one or more processors of a computer system, cause the computer system to perform operations comprising:
receiving, on a first computing device, status information for one or more of multiple computing devices that are interconnected to form a personal network, wherein the status information indicates that each of the one or more computing devices is connected to a network and operating as part of the personal network;
providing one or more interfaces to a user on the first computing device to enable the user to select (i) a media feed, and (ii) a target that can correspond to one or more of the multiple devices of the personal network that is indicated as being available based on the status information;
detecting selection of the media feed, and selection of a second device of the multiple computing devices as the target; and
transmitting at least a portion of the media feed to the second device as the media feed is received on a resource of the personal network, the media feed being transmitted to accommodate one or more characteristics of the second device.
22. The non-transitory computer-readable medium of claim 21, further comprising instructions that, when executed by one or more processors, cause the computer system to perform operations that include receiving the media feed from a source external to the personal network.
23. The non-transitory computer-readable medium of claim 21, wherein transmitting at least the portion of the media feed includes configuring the media feed for the one or more characteristics of the second device.
24. The non-transitory computer-readable medium of claim 21, wherein transmitting at least the portion of the media feed is performed on the first computing device.
25. The non-transitory computer-readable medium of claim 21, further comprising instructions that, when executed by one or more processors, cause the computer system to perform operations that include, in response to detecting selection of the media feed, communicating, from the first computing device, with a third computing device of the personal network on which the resource is provided, in order to receive the media feed on the third computing device from a source external to the personal network.
26. The non-transitory computer-readable medium of claim 25, wherein transmitting at least the portion of the media feed is performed on the third computing device.
27. The non-transitory computer-readable medium of claim 26, further comprising instructions that, when executed by one or more processors, cause the computer system to perform operations that include configuring, on the third computing device, at least the portion of the media feed for one or more characteristics of the second computing device.
28. The non-transitory computer-readable medium of claim 21, wherein the first computing device corresponds to a roaming device that communicates with at least the second computing device using the Internet.
29. The non-transitory computer-readable medium of claim 21, wherein the media feed corresponds to a streaming media source.
30. The non-transitory computer-readable medium of claim 21, wherein the media feed corresponds to a cable or broadcast feed.
US14/280,415 2004-07-09 2014-05-16 Media delivery system and method for transporting media to desired target devices Abandoned US20140258514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/280,415 US20140258514A1 (en) 2004-07-09 2014-05-16 Media delivery system and method for transporting media to desired target devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/888,606 US8819140B2 (en) 2004-07-09 2004-07-09 System and method for enabling the establishment and use of a personal network
US10/888,745 US7937484B2 (en) 2004-07-09 2004-07-09 System and method for remotely controlling network resources
US10/888,633 US9077766B2 (en) 2004-07-09 2004-07-09 System and method for combining memory resources for use on a personal network
US71811905P 2005-09-16 2005-09-16
US11/531,182 US8787164B2 (en) 2004-07-09 2006-09-12 Media delivery system and method for transporting media to desired target devices
US14/280,415 US20140258514A1 (en) 2004-07-09 2014-05-16 Media delivery system and method for transporting media to desired target devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/531,182 Continuation US8787164B2 (en) 2004-07-09 2006-09-12 Media delivery system and method for transporting media to desired target devices

Publications (1)

Publication Number Publication Date
US20140258514A1 true US20140258514A1 (en) 2014-09-11

Family

ID=37903130

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/531,182 Expired - Fee Related US8787164B2 (en) 2004-07-09 2006-09-12 Media delivery system and method for transporting media to desired target devices
US14/280,415 Abandoned US20140258514A1 (en) 2004-07-09 2014-05-16 Media delivery system and method for transporting media to desired target devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/531,182 Expired - Fee Related US8787164B2 (en) 2004-07-09 2006-09-12 Media delivery system and method for transporting media to desired target devices

Country Status (1)

Country Link
US (2) US8787164B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077766B2 (en) 2004-07-09 2015-07-07 Qualcomm Incorporated System and method for combining memory resources for use on a personal network
US9166879B2 (en) 2004-07-09 2015-10-20 Qualcomm Connected Experiences, Inc. System and method for enabling the establishment and use of a personal network
US10681122B2 (en) * 2014-12-09 2020-06-09 Samsung Electronics Co., Ltd. Method and apparatus for converting content using cloud

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002039A1 (en) * 1998-06-12 2002-01-03 Safi Qureshey Network-enabled audio device
US20060277318A1 (en) * 2004-07-09 2006-12-07 Luc Julia System and method for extending communications with a device network
US7937484B2 (en) 2004-07-09 2011-05-03 Orb Networks, Inc. System and method for remotely controlling network resources
US8195744B2 (en) * 2004-07-09 2012-06-05 Orb Networks, Inc. File sharing system for use with a network
US8738693B2 (en) * 2004-07-09 2014-05-27 Qualcomm Incorporated System and method for managing distribution of media files
US8107010B2 (en) * 2005-01-05 2012-01-31 Rovi Solutions Corporation Windows management in a television environment
US20060173974A1 (en) * 2005-02-02 2006-08-03 Victor Tang System and method for providing mobile access to personal media
KR100655600B1 (en) * 2005-12-06 2006-12-11 한국전자통신연구원 Streaming service providing method and apparatus for p2p based network
US7961086B2 (en) * 2006-04-17 2011-06-14 James Roy Bradley System and method for vehicular communications
US20080059631A1 (en) * 2006-07-07 2008-03-06 Voddler, Inc. Push-Pull Based Content Delivery System
US20080033725A1 (en) * 2006-07-24 2008-02-07 Liquidtalk, Inc. Methods and a system for providing digital media content
US8973072B2 (en) * 2006-10-19 2015-03-03 Qualcomm Connected Experiences, Inc. System and method for programmatic link generation with media delivery
US20080207233A1 (en) * 2007-02-28 2008-08-28 Waytena William L Method and System For Centralized Storage of Media and for Communication of Such Media Activated By Real-Time Messaging
US20080205389A1 (en) * 2007-02-26 2008-08-28 Microsoft Corporation Selection of transrate and transcode processes by host computer
US8862747B2 (en) 2007-03-10 2014-10-14 Bridge And Post, Inc. Method and apparatus for tagging network traffic using extensible fields in message headers
US8955030B2 (en) * 2007-03-23 2015-02-10 Wi-Lan, Inc. System and method for personal content access
US20080235587A1 (en) * 2007-03-23 2008-09-25 Nextwave Broadband Inc. System and method for content distribution
US8549550B2 (en) * 2008-09-17 2013-10-01 Tubemogul, Inc. Method and apparatus for passively monitoring online video viewing and viewer behavior
US8577996B2 (en) * 2007-09-18 2013-11-05 Tremor Video, Inc. Method and apparatus for tracing users of online video web sites
US9100716B2 (en) * 2008-01-07 2015-08-04 Hillcrest Laboratories, Inc. Augmenting client-server architectures and methods with personal computers to support media applications
US8601521B2 (en) * 2008-02-01 2013-12-03 At&T Intellectual Property I, Lp Method and apparatus for managing media content from an optical drive
US20090259551A1 (en) * 2008-04-11 2009-10-15 Tremor Media, Inc. System and method for inserting advertisements from multiple ad servers via a master component
US9529820B2 (en) * 2008-05-23 2016-12-27 International Business Machines Corporation Automated content tracking and conversion
US20090320082A1 (en) * 2008-06-19 2009-12-24 Iwatchnow Inc. Method of delivering content data
US20100088614A1 (en) * 2008-09-02 2010-04-08 Frank Barbieri Just-in-time media delivery system
US9612995B2 (en) 2008-09-17 2017-04-04 Adobe Systems Incorporated Video viewer targeting based on preference similarity
US9405939B2 (en) 2008-10-07 2016-08-02 Arm Limited Data processing on a non-volatile mass storage device
US8544046B2 (en) * 2008-10-09 2013-09-24 Packetvideo Corporation System and method for controlling media rendering in a network using a mobile device
US20130124242A1 (en) 2009-01-28 2013-05-16 Adobe Systems Incorporated Video review workflow process
US20100241684A1 (en) * 2009-03-17 2010-09-23 Microsoft Corporation Oarchitectures for supporting diverse client types in transactional systems
US9049271B1 (en) 2009-07-16 2015-06-02 Teradici Corporation Switch-initiated congestion management method
EP2473927A4 (en) * 2009-09-04 2016-05-11 Iii Holdings 2 Llc System and method for managing internet media content
CA2824745A1 (en) * 2009-09-26 2011-03-31 Disternet Technology Inc. System and method for micro-cloud computing
US20110139867A1 (en) * 2009-12-10 2011-06-16 Deutsche Telekom Ag Method for information retrieval in a communication network
US8433238B2 (en) * 2009-12-16 2013-04-30 Panasonic Automotive Systems Company Of America Vehicle media and communications access
KR20120006259A (en) * 2010-07-12 2012-01-18 삼성전자주식회사 Apparatus and method to report uplink transmission power status in a mobile communication system
US9237239B2 (en) * 2010-08-20 2016-01-12 Genband Us Llc Method for augmenting a voice call
US8301645B1 (en) * 2010-08-26 2012-10-30 Adobe Systems Incorporated Aggregated web analytics request systems and methods
KR101727143B1 (en) * 2010-12-16 2017-04-14 한국전자통신연구원 Method and Apparatus for Device Capability Information based Incompatible Media Contents Transformation
US20130060840A1 (en) * 2011-02-22 2013-03-07 Savtira Corporation, Inc. System and method for optimizing the delivery of a streamed application
US8422348B2 (en) 2011-04-11 2013-04-16 Datatronics Technology, Inc. Reproducing system for mediums and method for reproducing digital data and identifying the same
US8279735B1 (en) * 2011-04-11 2012-10-02 Datatronics Technology, Inc. Reproducing system for mediums and method for identifying digital data of the mediums and reproducing the same
KR101810403B1 (en) * 2011-05-13 2017-12-19 삼성전자주식회사 Apparatus and method for storing data of peripheral device in portable terminal
CN102656894B (en) * 2011-11-28 2014-07-09 华为技术有限公司 Implementation method and system for mobile stream media
JP5857691B2 (en) * 2011-12-05 2016-02-10 株式会社リコー Image information processing apparatus and image information processing method
US9559859B2 (en) 2012-01-05 2017-01-31 Dell Products L.P. Home hub
US9705835B2 (en) * 2012-11-02 2017-07-11 Pandexio, Inc. Collaboration management systems
GB2514543B (en) * 2013-04-23 2017-11-08 Gurulogic Microsystems Oy Server node arrangement and method
US9336113B2 (en) * 2013-07-29 2016-05-10 Bose Corporation Method and device for selecting a networked media device
US9705736B2 (en) 2014-03-14 2017-07-11 Ray Wang Method and system for a personal network
CN104038843A (en) * 2014-06-20 2014-09-10 青岛四方车辆研究所有限公司 Train comprehensive service platform on basis of gigabit Ethernet and WIFI (wireless fidelity) technology
US20160057173A1 (en) * 2014-07-16 2016-02-25 Genband Us Llc Media Playback Synchronization Across Multiple Clients
US10050912B2 (en) * 2014-10-27 2018-08-14 At&T Intellectual Property I, L.P. Subscription-based media push service
US9390284B1 (en) 2015-04-03 2016-07-12 Ray Wang Method for secure and private computer file
US9705936B2 (en) 2015-04-24 2017-07-11 Mersive Technologies, Inc. System and method for interactive and real-time visualization of distributed media
US10575120B2 (en) 2016-02-27 2020-02-25 Ray Wang Method of autonomous social media system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302490B1 (en) * 2000-05-03 2007-11-27 Microsoft Corporation Media file format to support switching between multiple timeline-altered media streams
US20100041380A1 (en) * 2003-05-16 2010-02-18 M-Qube, Inc. System and method for determining and delivering appropriate multimedia content to data communication devices
US8018850B2 (en) * 2004-02-23 2011-09-13 Sharp Laboratories Of America, Inc. Wireless video transmission system

Family Cites Families (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926255A (en) 1986-03-10 1990-05-15 Kohorn H Von System for evaluation of response to broadcast transmissions
US5132992A (en) 1991-01-07 1992-07-21 Paul Yurt Audio and video transmission and receiving system
US6002720A (en) 1991-01-07 1999-12-14 H. Lee Browne, D/B/A Greenwich Information Technologies Llc Audio and video transmission and receiving system
US5253275A (en) 1991-01-07 1993-10-12 H. Lee Browne Audio and video transmission and receiving system
US6157621A (en) 1991-10-28 2000-12-05 Teledesic Llc Satellite communication system
US5719786A (en) 1993-02-03 1998-02-17 Novell, Inc. Digital media data stream network management system
US5638412A (en) 1994-06-15 1997-06-10 Qualcomm Incorporated Method for providing service and rate negotiation in a mobile communication system
US5515098A (en) 1994-09-08 1996-05-07 Carles; John B. System and method for selectively distributing commercial messages over a communications network
US5774170A (en) 1994-12-13 1998-06-30 Hite; Kenneth C. System and method for delivering targeted advertisements to consumers
US6209132B1 (en) 1995-06-15 2001-03-27 Intel Corporation Host apparatus for simulating two way connectivity for one way data streams
US6742022B1 (en) 1995-12-11 2004-05-25 Openwave Systems Inc. Centralized service management system for two-way interactive communication devices in data networks
US5831664A (en) 1995-12-15 1998-11-03 Mediaone Group, Inc. Method and system for synchronizing data between at least one mobile interface device and an interactive terminal
US7130888B1 (en) 1996-02-16 2006-10-31 G&H Nevada-Tek Method and apparatus for controlling a computer over a TCP/IP protocol network
US5966653A (en) 1996-06-24 1999-10-12 Ericsson Inc. Validating a forward-to-number within a mobile telecommunications system
US6732183B1 (en) * 1996-12-31 2004-05-04 Broadware Technologies, Inc. Video and audio streaming for multiple users
BR9807467B1 (en) 1997-01-06 2010-11-16 method and system for monitoring the use of television media distribution network.
US6674477B1 (en) 1997-03-17 2004-01-06 Matsushita Electric Industrial Co., Ltd. Method and apparatus for processing a data series including processing priority data
US6209028B1 (en) 1997-03-21 2001-03-27 Walker Digital, Llc System and method for supplying supplemental audio information for broadcast television programs
US6310886B1 (en) 1997-08-28 2001-10-30 Tivo, Inc. Method and apparatus implementing a multimedia digital network
US6101534A (en) 1997-09-03 2000-08-08 Rothschild; Leigh M. Interactive, remote, computer interface system
US6212282B1 (en) 1997-10-31 2001-04-03 Stuart Mershon Wireless speaker system
US6097441A (en) 1997-12-31 2000-08-01 Eremote, Inc. System for dual-display interaction with integrated television and internet content
US6545722B1 (en) 1998-01-09 2003-04-08 Douglas G. Brown Methods and systems for providing television related services via a networked personal computer
US20020002039A1 (en) 1998-06-12 2002-01-03 Safi Qureshey Network-enabled audio device
IL123288A (en) 1998-02-13 2001-05-20 Nds Ltd Electronic game guide system
ES2546173T3 (en) 1998-03-13 2015-09-21 Canon Kabushiki Kaisha Apparatus and procedure for information processing
US6211856B1 (en) 1998-04-17 2001-04-03 Sung M. Choi Graphical user interface touch screen with an auto zoom feature
KR100607215B1 (en) 1998-05-07 2006-08-01 삼성전자주식회사 Method and apparatus for user and device command and control in a network
US6496122B2 (en) 1998-06-26 2002-12-17 Sharp Laboratories Of America, Inc. Image display and remote control system capable of displaying two distinct images
AR020608A1 (en) 1998-07-17 2002-05-22 United Video Properties Inc A METHOD AND A PROVISION TO SUPPLY A USER REMOTE ACCESS TO AN INTERACTIVE PROGRAMMING GUIDE BY A REMOTE ACCESS LINK
US6437836B1 (en) 1998-09-21 2002-08-20 Navispace, Inc. Extended functionally remote control system and method therefore
US6327608B1 (en) 1998-09-25 2001-12-04 Microsoft Corporation Server administration tool using remote file browser
US8332478B2 (en) 1998-10-01 2012-12-11 Digimarc Corporation Context sensitive connected content
US6161133A (en) 1998-10-19 2000-12-12 Lexton Systems, Inc. Method and apparatus for configuration of an internet appliance
US6532592B1 (en) 1998-11-09 2003-03-11 Sony Corporation Bi-directional remote control unit and method of using the same
FR2786640A1 (en) 1998-12-01 2000-06-02 Koninkl Philips Electronics Nv REQUEST MECHANISM FOR COMMUNICATION SYSTEM BETWEEN INTERACTIVE TERMINALS AND HEAD STATION
US20020013852A1 (en) 2000-03-03 2002-01-31 Craig Janik System for providing content, management, and interactivity for thin client devices
US6757906B1 (en) 1999-03-30 2004-06-29 Tivo, Inc. Television viewer interface system
US6611654B1 (en) 1999-04-01 2003-08-26 Koninklijke Philips Electronics Nv Time- and location-driven personalized TV
US6470378B1 (en) 1999-03-31 2002-10-22 Intel Corporation Dynamic content customization in a clientserver environment
US6430603B2 (en) 1999-04-28 2002-08-06 World Theatre, Inc. System for direct placement of commercial advertising, public service announcements and other content on electronic billboard displays
US6424998B2 (en) 1999-04-28 2002-07-23 World Theatre, Inc. System permitting the display of video or still image content on selected displays of an electronic display network according to customer dictates
US6430605B2 (en) 1999-04-28 2002-08-06 World Theatre, Inc. System permitting retail stores to place advertisements on roadside electronic billboard displays that tie into point of purchase displays at stores
US7213061B1 (en) 1999-04-29 2007-05-01 Amx Llc Internet control system and method
US6928490B1 (en) 1999-05-20 2005-08-09 St. Louis University Networking infrastructure for an operating room
US6263503B1 (en) 1999-05-26 2001-07-17 Neal Margulis Method for effectively implementing a wireless television system
US20020056112A1 (en) 1999-06-03 2002-05-09 Vincent Dureau Home digital assistant
US6349410B1 (en) 1999-08-04 2002-02-19 Intel Corporation Integrating broadcast television pause and web browsing
US6670974B1 (en) 1999-10-12 2003-12-30 Gateway, Inc. Persistent usage context
US7239346B1 (en) 1999-10-18 2007-07-03 Priddy Dennis G System and architecture that supports a multi-function semiconductor device between networks and portable wireless communications products
US6959235B1 (en) 1999-10-28 2005-10-25 General Electric Company Diagnosis and repair system and method
US6816703B1 (en) 1999-11-30 2004-11-09 Leapfrog Enterprises, Inc. Interactive communications appliance
US6870547B1 (en) 1999-12-16 2005-03-22 Eastman Kodak Company Method and apparatus for rendering a low-resolution thumbnail image suitable for a low resolution display having a reference back to an original digital negative and an edit list of operations
US6629163B1 (en) 1999-12-29 2003-09-30 Implicit Networks, Inc. Method and system for demultiplexing a first sequence of packet components to identify specific components wherein subsequent components are processed without re-identifying components
US6754904B1 (en) 1999-12-30 2004-06-22 America Online, Inc. Informing network users of television programming viewed by other network users
JP4310674B2 (en) 2000-01-11 2009-08-12 ソニー株式会社 Method for selecting device connected to electronic apparatus and electronic apparatus equipped with this selection method
US20020059637A1 (en) 2000-01-14 2002-05-16 Rakib Selim Shlomo Home gateway for video and data distribution from various types of headend facilities and including digital video recording functions
US20010052942A1 (en) 2000-01-31 2001-12-20 Maccollum George O. Electronic camera system with modular printer and base
US20010052019A1 (en) 2000-02-04 2001-12-13 Ovt, Inc. Video mail delivery system
US6721705B2 (en) 2000-02-04 2004-04-13 Webley Systems, Inc. Robust voice browser system and voice activated device controller
US6956833B1 (en) 2000-02-08 2005-10-18 Sony Corporation Method, system and devices for wireless data storage on a server and data retrieval
US6754907B1 (en) 2000-02-09 2004-06-22 Sprint Communications Company, L.P. Remote control of video-on-demand system
US7483964B1 (en) 2000-02-25 2009-01-27 Nortel Networks, Limited System, device, and method for providing personalized services in a communication system
US7468744B2 (en) 2000-03-06 2008-12-23 Sony Corporation System and method for automatically transferring data from an electronic camera
US6748278B1 (en) 2000-03-13 2004-06-08 Microsoft Corporation Remote controlled system with computer-based remote control facilitator
US7187947B1 (en) 2000-03-28 2007-03-06 Affinity Labs, Llc System and method for communicating selected information to an electronic device
JP4124402B2 (en) 2000-03-31 2008-07-23 株式会社リコー Image input device
US20030208472A1 (en) 2000-04-11 2003-11-06 Pham Peter Manh Method and apparatus for transparent keyword-based hyperlink
US6580950B1 (en) 2000-04-28 2003-06-17 Echelon Corporation Internet based home communications system
US6658461B1 (en) 2000-05-25 2003-12-02 International Business Machines Corporation Method of, system for, and computer program product for providing a user interface for configuring connections between a local workstation file system and a remote host file system
US6611863B1 (en) 2000-06-05 2003-08-26 Intel Corporation Automatic device assignment through programmable device discovery for policy based network management
US7219136B1 (en) 2000-06-12 2007-05-15 Cisco Technology, Inc. Apparatus and methods for providing network-based information suitable for audio output
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20010053274A1 (en) 2000-06-20 2001-12-20 Koninklijke Philips Electronics N.V. System and method for remote control of consumer electronics over data network with visual feedback
US9038108B2 (en) 2000-06-28 2015-05-19 Verizon Patent And Licensing Inc. Method and system for providing end user community functionality for publication and delivery of digital media content
US20020002707A1 (en) 2000-06-29 2002-01-03 Ekel Sylvain G. System and method to display remote content
US7487112B2 (en) 2000-06-29 2009-02-03 Barnes Jr Melvin L System, method, and computer program product for providing location based services and mobile e-commerce
US8789114B2 (en) 2000-06-30 2014-07-22 Jlb Ventures Llc Remote control of program scheduling
CA2453037A1 (en) 2000-07-06 2002-01-17 Home-Portal, Inc. Method and system for controlling and coordinating devices and appliances, such as from a central portal and via a wide/area communications network
US6918131B1 (en) 2000-07-10 2005-07-12 Nokia Corporation Systems and methods for characterizing television preferences over a wireless network
US6968179B1 (en) 2000-07-27 2005-11-22 Microsoft Corporation Place specific buddy list services
US20020026507A1 (en) 2000-08-30 2002-02-28 Sears Brent C. Browser proxy client application service provider (ASP) interface
WO2002021838A1 (en) 2000-09-06 2002-03-14 Robert Agresta Entertainment server with portable terminal
US7689510B2 (en) 2000-09-07 2010-03-30 Sonic Solutions Methods and system for use in network management of content
EP1316209B1 (en) 2000-09-08 2016-03-30 ACK Ventures Holdings, LLC Video interaction
US20050144240A1 (en) 2000-09-13 2005-06-30 Janko Mrsic-Flogel Data communications
EP1189402A1 (en) 2000-09-15 2002-03-20 Deutsche Thomson-Brandt Gmbh Hand-held device and the method for using it
US20040015820A1 (en) 2000-09-25 2004-01-22 Edward Balassanian Method and system for dynamic delivery of beads
US20020069309A1 (en) 2000-09-25 2002-06-06 Edward Balassanian Method and system for data metering
JP2002117110A (en) * 2000-10-06 2002-04-19 Riso Kagaku Corp System and method for delivering media and information transmitter
US20020046406A1 (en) 2000-10-18 2002-04-18 Majid Chelehmal On-demand data system
US7260600B1 (en) 2000-11-17 2007-08-21 International Business Machines Corporation User specified parallel data fetching for optimized web access
US7487122B2 (en) * 2000-12-06 2009-02-03 Lipper Iii Arthur Dynamic security price and value comparator and indexer
US20020083342A1 (en) 2000-12-21 2002-06-27 Webb Brian T. Systems, methods and computer program products for accessing devices on private networks via clients on a public network
US20020105534A1 (en) 2001-01-04 2002-08-08 Edward Balassanian Universal media bar for controlling different types of media
US20020108125A1 (en) 2001-02-07 2002-08-08 Joao Raymond Anthony Apparatus and method for facilitating viewer or listener interaction
US6973667B2 (en) * 2001-03-01 2005-12-06 Minerva Networks, Inc. Method and system for providing time-shifted delivery of live media programs
US8117313B2 (en) 2001-03-19 2012-02-14 International Business Machines Corporation System and method for adaptive formatting of image information for efficient delivery and presentation
US20020142721A1 (en) 2001-03-29 2002-10-03 Motorola, Inc. Method and device for selecting a wireless communication path
US20020146237A1 (en) 2001-04-06 2002-10-10 General Instrument Corporation Portable content by way of a set-top device/home-gateway
US20020147686A1 (en) 2001-04-06 2002-10-10 General Instrument Corporation Method and apparatus for a playback area network
US6904265B1 (en) 2001-04-11 2005-06-07 Hughes Electronics Corporation Capacity management in a broadband satellite communications system
US20020162120A1 (en) 2001-04-25 2002-10-31 Slade Mitchell Apparatus and method to provide supplemental content from an interactive television system to a remote device
US7139834B1 (en) 2001-04-26 2006-11-21 Avvenu, Inc. Data routing monitoring and management
US20060167985A1 (en) 2001-04-26 2006-07-27 Albanese Michael J Network-distributed data routing
US7895445B1 (en) 2001-04-26 2011-02-22 Nokia Corporation Token-based remote data access
US6836786B1 (en) 2001-04-30 2004-12-28 Microsoft Corporation Method and apparatus for terminal server addressability via URL specification
WO2002089441A1 (en) 2001-05-01 2002-11-07 Meta4Hand Inc. Wireless network computing
US20020188556A1 (en) 2001-05-02 2002-12-12 James Colica System and method for monitoring and analyzing exposure data
US7065778B1 (en) 2001-05-25 2006-06-20 Enreach Technologies, Inc. Method and system for providing media from remote locations to a viewer
US20020188867A1 (en) 2001-06-08 2002-12-12 Bushey Robert D. System and method for appliance adaptation and evolution
US7010002B2 (en) 2001-06-14 2006-03-07 At&T Corp. Broadband network with enterprise wireless communication method for residential and business environment
US6975836B2 (en) 2001-06-28 2005-12-13 Kabushiki Kaisha Toshiba Data broadcasting system, receiving terminal device, contents providing server, and contents providing method
US8063923B2 (en) 2001-07-13 2011-11-22 Universal Electronics Inc. System and method for updating information in an electronic portable device
US7010608B2 (en) 2001-09-28 2006-03-07 Intel Corporation System and method for remotely accessing a home server while preserving end-to-end security
US7363258B2 (en) 2001-10-01 2008-04-22 Qurio Holdings, Inc. Method and system for distributing affiliate images in a peer-to-peer (P2P) photosharing network through affiliate branding
US6757684B2 (en) 2001-10-01 2004-06-29 Ipac Acquisition Subsidiary I, Llc Network-based photosharing architecture
US20030093791A1 (en) 2001-11-09 2003-05-15 Julia Luc E. System and method for interactive television
US20030105831A1 (en) 2001-12-04 2003-06-05 O'kane Robert Peer-to-peer (P2P) and internet content delivery based user based digital acknowledgement trigger used for file transfer
AUPR947701A0 (en) 2001-12-14 2002-01-24 Activesky, Inc. Digital multimedia publishing system for wireless devices
US20030115284A1 (en) 2001-12-18 2003-06-19 Henry Steven G. Method and apparatus for accessing network data associated with a document
US7027460B2 (en) 2001-12-21 2006-04-11 Intel Corporation Method and system for customized television viewing using a peer-to-peer network
US7724281B2 (en) 2002-02-04 2010-05-25 Syniverse Icx Corporation Device facilitating efficient transfer of digital content from media capture device
US20030149874A1 (en) 2002-02-06 2003-08-07 Xerox Corporation Systems and methods for authenticating communications in a network medium
US7526314B2 (en) 2002-02-20 2009-04-28 Hewlett-Packard Development Company, L.P. Remote data storage and retrieval for portable electronics
US7127261B2 (en) 2002-02-22 2006-10-24 Julian Van Erlach Enhanced telecommunication services
US9122808B2 (en) 2002-02-25 2015-09-01 Csr Technology Inc. Network interface to a video device
US20040072584A1 (en) 2002-03-01 2004-04-15 Kern Ronald J. Wireless distribution of multimedia content
EP1343303A3 (en) 2002-03-06 2006-05-03 Canon Kabushiki Kaisha Information processing system, apparatus and method, and storage medium that stores program readable by information processing apparatus
US8302144B2 (en) 2002-03-13 2012-10-30 Cox Communications, Inc. Distribution of content in an information distribution system
US8255968B2 (en) 2002-04-15 2012-08-28 Universal Electronics, Inc. System and method for adaptively controlling the recording of program material using a program guide
JP2003309664A (en) 2002-04-17 2003-10-31 Sony Corp Terminal device, data transmission/reception system, and method of starting data transmission/reception
US7324857B2 (en) 2002-04-19 2008-01-29 Gateway Inc. Method to synchronize playback of multicast audio streams on a local network
US7024207B2 (en) 2002-04-30 2006-04-04 Motorola, Inc. Method of targeting a message to a communication device selected from among a set of communication devices
US6957086B2 (en) * 2002-05-01 2005-10-18 Microsoft Corporation Method for wireless capability discovery and protocol negotiation, and wireless device including same
KR100440583B1 (en) 2002-05-16 2004-07-19 한국전자통신연구원 A Method and Apparatus of Management and Control of UPnP Device in Home Network from the Internet
US20040003097A1 (en) 2002-05-17 2004-01-01 Brian Willis Content delivery system
US6995803B2 (en) 2002-05-23 2006-02-07 Microsoft Corporation Anti-aliasing characters for improved display on an interlaced television monitor
US8611919B2 (en) 2002-05-23 2013-12-17 Wounder Gmbh., Llc System, method, and computer program product for providing location based services and mobile e-commerce
EP1512069B1 (en) * 2002-05-24 2020-12-09 Telefonaktiebolaget LM Ericsson (publ) An address generation unit for a processor
US7098772B2 (en) 2002-05-28 2006-08-29 Cohen Richard S Method and apparatus for remotely controlling a plurality of devices
US20030229667A1 (en) 2002-06-10 2003-12-11 Nils-Johan Pedersen System, computer product and method for delivering pictures electronically
JP4591083B2 (en) 2002-06-19 2010-12-01 パナソニック株式会社 Server apparatus, electronic device, external device, information processing system using them, and setting / status acquisition method of electronic device
US20040004663A1 (en) 2002-07-02 2004-01-08 Lightsurf Technologies, Inc. Imaging system providing automatic organization and processing of images based on location
US7535492B2 (en) 2002-07-02 2009-05-19 Lightsurf Technologies, Inc. Imaging system providing automated fulfillment of image photofinishing based on location
AU2003252024A1 (en) 2002-07-16 2004-02-02 Bruce L. Horn Computer system for automatic organization, indexing and viewing of information from multiple sources
US6763226B1 (en) 2002-07-31 2004-07-13 Computer Science Central, Inc. Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (qos) communications, unified messaging, and video conferencing via the internet
US20080259818A1 (en) 2002-08-07 2008-10-23 Edward Balassanian Home-to-home delivery of media content via cable
US7038581B2 (en) * 2002-08-21 2006-05-02 Thomson Licensing S.A. Method for adjusting parameters for the presentation of multimedia objects
DE10238546A1 (en) 2002-08-22 2004-03-11 Siemens Ag Process for the provision of resources in communication networks
US7376696B2 (en) 2002-08-27 2008-05-20 Intel Corporation User interface to facilitate exchanging files among processor-based devices
US7284046B1 (en) 2002-09-04 2007-10-16 At & T Bls Intellectual Property, Inc. Coordination of communication with devices
US7165224B2 (en) 2002-10-03 2007-01-16 Nokia Corporation Image browsing and downloading in mobile networks
US8931010B2 (en) 2002-11-04 2015-01-06 Rovi Solutions Corporation Methods and apparatus for client aggregation of media in a networked media system
US7561299B2 (en) 2002-11-06 2009-07-14 Shutterfly, Inc. Personalized gift cards for imaging products and services
US7130582B2 (en) 2002-11-19 2006-10-31 Timothy Barilovits Wireless communication system
US7333474B2 (en) 2002-11-19 2008-02-19 Cisco Technology, Inc. Extended handset functionality and mobility
US8650601B2 (en) 2002-11-26 2014-02-11 Concurrent Computer Corporation Video on demand management system
US7379464B2 (en) 2002-11-27 2008-05-27 At&T Bls Intellectual Property, Inc. Personal digital gateway
US7224698B2 (en) 2002-11-27 2007-05-29 Bellsouth Intellectual Property Corporation Edge side assembler
US20040117442A1 (en) 2002-12-10 2004-06-17 Thielen Kurt R. Handheld portable wireless digital content player
US8209382B2 (en) 2002-12-11 2012-06-26 Broadcom Corporation Media exchange network supporting consumption of broadcast and user captured media
US7088238B2 (en) 2002-12-11 2006-08-08 Broadcom, Inc. Access, monitoring, and control of appliances via a media processing system
US7496647B2 (en) 2002-12-11 2009-02-24 Broadcom Corporation Personal inter-home media exchange network
US8621102B2 (en) 2002-12-11 2013-12-31 Broadcom Corporation Automated routing of media through a media exchange network
US7424534B2 (en) 2002-12-11 2008-09-09 Broadcom Corporation Common media consumption across multiple media processing systems via single user control
US8059537B2 (en) 2002-12-11 2011-11-15 Broadcom Corporation Quality of service support in a media exchange network
US7496665B2 (en) 2002-12-11 2009-02-24 Broadcom Corporation Personal access and control of media peripherals on a media exchange network
US7170882B2 (en) 2002-12-11 2007-01-30 Broadcom Corporation Media exchange network supporting remote peripheral access
US7970854B2 (en) 2003-01-15 2011-06-28 Qurio Holdings, Inc. Method and system for requesting image prints in an online photosharing system
US7233990B1 (en) 2003-01-21 2007-06-19 Hewlett-Packard Development Company, L.P. File processing using mapping between web presences
US7945618B2 (en) 2003-02-10 2011-05-17 Oren Asher Peer-to-peer service designer
US7489671B2 (en) 2003-02-14 2009-02-10 Marsico Robert G Telephone management system and method
US7617279B2 (en) 2003-02-27 2009-11-10 Fujifilm Corporation Image-printing system using peer-to-peer network
US7873706B2 (en) 2003-03-19 2011-01-18 Cgi Communications, Inc. System and method for seamlessly providing video content to client systems over a network
AU2003901931A0 (en) 2003-04-23 2003-05-15 Thiss Pty Ltd Radio network assignment and access system
US7089066B2 (en) 2003-04-24 2006-08-08 Colorado Vnet, Llc Distributed control systems and methods
NO322710B1 (en) 2003-04-29 2006-11-27 Telenor Asa An interface device with open and closed devices for communicating services in a personal network.
WO2004098173A1 (en) 2003-04-29 2004-11-11 Koninklijke Philips Electronics N.V. Identical recordings on p2p network mapped onto single query result
US7103772B2 (en) 2003-05-02 2006-09-05 Giritech A/S Pervasive, user-centric network security enabled by dynamic datagram switch and an on-demand authentication and encryption scheme through mobile intelligent data carriers
EP1625476A4 (en) 2003-05-16 2008-02-27 Picasa Inc Networked chat and media sharing systems and methods
US20040250205A1 (en) 2003-05-23 2004-12-09 Conning James K. On-line photo album with customizable pages
US7328173B2 (en) 2003-06-19 2008-02-05 Shutterfly, Inc. Automated printing system for producing copyright protected image-based product
US7177872B2 (en) 2003-06-23 2007-02-13 Sony Corporation Interface for media publishing
US7177881B2 (en) 2003-06-23 2007-02-13 Sony Corporation Network media channels
US7376901B2 (en) 2003-06-30 2008-05-20 Mitsubishi Electric Research Laboratories, Inc. Controlled interactive display of content using networked computer devices
US7603022B2 (en) 2003-07-02 2009-10-13 Macrovision Corporation Networked personal video recording system
US20050005025A1 (en) * 2003-07-04 2005-01-06 Michael Harville Method for managing a streaming media service
US20050242971A1 (en) 2003-07-15 2005-11-03 Gregory Dryer System and method for safe disablement of mobile pieces of equipment (MPEs)
US7010657B2 (en) 2003-07-21 2006-03-07 Motorola, Inc. Avoiding deadlock between storage assignments by devices in a network
US20050153707A1 (en) 2003-07-25 2005-07-14 Liza Ledyard Portable service identification, notification and location device and method
US7236738B2 (en) 2003-08-01 2007-06-26 Pathfire, Inc. Multicast control systems and methods for dynamic, adaptive time, bandwidth,frequency, and satellite allocations
JP2005063189A (en) 2003-08-14 2005-03-10 Fujitsu Ltd Electronic equipment and processing method, and program
US20050055455A1 (en) 2003-09-10 2005-03-10 Oren Asher Development platform for peer-to-peer applications
US7271780B2 (en) 2003-09-23 2007-09-18 Eastman Kodak Company Display device and system
US20050078620A1 (en) 2003-10-10 2005-04-14 Kumar Balachandran Mobile-terminal gateway
US7280533B2 (en) 2003-10-15 2007-10-09 Nokia Corporation System and method for presence-based routing of communication requests over a network
US7567987B2 (en) 2003-10-24 2009-07-28 Microsoft Corporation File sharing in P2P group shared spaces
US20050256934A1 (en) 2003-11-07 2005-11-17 Tetsuro Motoyama Method and system for controlling and communicating with machines using multiple communication formats
US7213766B2 (en) 2003-11-17 2007-05-08 Dpd Patent Trust Ltd Multi-interface compact personal token apparatus and methods of use
US20050114490A1 (en) 2003-11-20 2005-05-26 Nec Laboratories America, Inc. Distributed virtual network access system and method
KR100621092B1 (en) 2003-11-27 2006-09-08 삼성전자주식회사 Method and apparatus for sharing application using P2P
US20050120391A1 (en) 2003-12-02 2005-06-02 Quadrock Communications, Inc. System and method for generation of interactive TV content
US20050138560A1 (en) 2003-12-18 2005-06-23 Kuo-Chun Lee Method and apparatus for broadcasting live personal performances over the internet
JP2005182481A (en) 2003-12-19 2005-07-07 Hitachi Ltd Network device
US20050183120A1 (en) 2004-01-13 2005-08-18 Saurabh Jain Multi-user personalized digital multimedia distribution methods and systems
US7702728B2 (en) 2004-01-30 2010-04-20 Microsoft Corporation Mobile shared group interaction
US7246009B2 (en) 2004-02-02 2007-07-17 Glacier Northwest, Inc. Resource management system, for example, tracking and management system for trucks
CA2557143C (en) 2004-02-27 2014-10-14 Sesame Networks Inc. Trust inheritance in network authentication
US20050198040A1 (en) 2004-03-04 2005-09-08 Cohen Michael S. Network information management system
US20050215194A1 (en) 2004-03-09 2005-09-29 Boling Brian M Combination service request and satellite radio system
US7123693B2 (en) 2004-03-13 2006-10-17 Intrado Inc. Method and apparatus for increasing the reliability of an emergency call communication network
US20050201358A1 (en) 2004-03-13 2005-09-15 Intrado Inc. Rotating media channels between resources of an emergency services network and conforming emergency systems
US20060020960A1 (en) 2004-03-24 2006-01-26 Sandeep Relan System, method, and apparatus for secure sharing of multimedia content across several electronic devices
US8234414B2 (en) 2004-03-31 2012-07-31 Qurio Holdings, Inc. Proxy caching in a photosharing peer-to-peer network to improve guest image viewing performance
US20050229243A1 (en) 2004-03-31 2005-10-13 Svendsen Hugh B Method and system for providing Web browsing through a firewall in a peer to peer network
US20080279098A1 (en) 2004-04-02 2008-11-13 Heonchul Park Wireless Receiver Code Download and Boot Sequence
US20050246757A1 (en) 2004-04-07 2005-11-03 Sandeep Relan Convergence of network file system for sharing multimedia content across several set-top-boxes
US20050240558A1 (en) 2004-04-13 2005-10-27 Reynaldo Gil Virtual server operating on one or more client devices
US8009608B2 (en) 2004-04-16 2011-08-30 Broadcom Corporation Method and system for extended network access services advertising via a broadband access gateway
US20050235329A1 (en) 2004-04-19 2005-10-20 Broadcom Corporation Systems and methods for integrated control within a home entertainment system
US20050235048A1 (en) 2004-04-20 2005-10-20 Jose Costa-Requena Exchanging multimedia data via a communications device
WO2005103881A2 (en) 2004-04-20 2005-11-03 Shapiro Aaron M Systems and methods for improved data sharing and content transformation
US20060253894A1 (en) 2004-04-30 2006-11-09 Peter Bookman Mobility device platform
US7277726B2 (en) 2004-05-03 2007-10-02 Motorola, Inc. Controlling wireless mobile devices from a remote device
US20060015649A1 (en) 2004-05-06 2006-01-19 Brad Zutaut Systems and methods for managing, creating, modifying, and distributing media content
US20050286497A1 (en) 2004-05-06 2005-12-29 Brad Zutaut Directional facilitator system for transferring media content between a computer and a mobile device via a data network
US20060010270A1 (en) 2004-05-10 2006-01-12 Guobiao Zhang Portable Wireless Smart Hard-Disk Drive
US20050251597A1 (en) 2004-05-10 2005-11-10 Guobiao Zhang Wireless Smart Hard-Disk Drive
US7962544B2 (en) 2004-05-25 2011-06-14 Siemens Medical Solutions Usa, Inc. Patient and device location dependent healthcare information processing system
US8346605B2 (en) 2004-06-07 2013-01-01 Sling Media, Inc. Management of shared media content
US7975062B2 (en) 2004-06-07 2011-07-05 Sling Media, Inc. Capturing and sharing media content
BRPI0511858B1 (en) 2004-06-07 2020-12-22 Sling Media, Inc. personal media transmitter and respective transmission system, methods of providing access to the audio / visual source at a remote location of the audio / visual source and media signal streaming to a remote subscriber location
US20050289264A1 (en) 2004-06-08 2005-12-29 Daniel Illowsky Device and method for interoperability instruction set
US7613893B2 (en) 2004-06-22 2009-11-03 Intel Corporation Remote audio
US20070067407A1 (en) 2004-06-30 2007-03-22 Bettis Sonny R Delivery of video mail and video mail receipt notifications
US7937484B2 (en) 2004-07-09 2011-05-03 Orb Networks, Inc. System and method for remotely controlling network resources
US9077766B2 (en) 2004-07-09 2015-07-07 Qualcomm Incorporated System and method for combining memory resources for use on a personal network
US8738693B2 (en) 2004-07-09 2014-05-27 Qualcomm Incorporated System and method for managing distribution of media files
US8195744B2 (en) 2004-07-09 2012-06-05 Orb Networks, Inc. File sharing system for use with a network
US8819140B2 (en) 2004-07-09 2014-08-26 Qualcomm Incorporated System and method for enabling the establishment and use of a personal network
US20060277318A1 (en) 2004-07-09 2006-12-07 Luc Julia System and method for extending communications with a device network
US7188312B2 (en) 2004-08-12 2007-03-06 Ap-Mobile Technology Inc. Remote document viewing system, device, and method thereof
US20060085826A1 (en) 2004-10-18 2006-04-20 Funk James M Aggregated program guide for download and view video on demand service
US7348047B2 (en) * 2004-10-29 2008-03-25 Mary Ellen Snell Multi-layered structural corrosion resistant composite liner
US20070157240A1 (en) 2005-12-29 2007-07-05 United Video Properties, Inc. Interactive media guidance system having multiple devices
US8046411B2 (en) 2006-04-28 2011-10-25 Yahoo! Inc. Multimedia sharing in social networks for mobile devices
US9602512B2 (en) 2006-05-08 2017-03-21 At&T Intellectual Property I, Lp Methods and apparatus to distribute media delivery to mobile devices
US8230098B2 (en) 2006-05-10 2012-07-24 At&T Intellectual Property Ii, L.P. System and method for streaming media objects
US20070280138A1 (en) 2006-06-01 2007-12-06 Stern Donald S Information broadcasting system and method
US8973072B2 (en) 2006-10-19 2015-03-03 Qualcomm Connected Experiences, Inc. System and method for programmatic link generation with media delivery
US7957357B2 (en) 2006-12-22 2011-06-07 Research In Motion Limited Method and system for presenting lists of wireless local area network Profile information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302490B1 (en) * 2000-05-03 2007-11-27 Microsoft Corporation Media file format to support switching between multiple timeline-altered media streams
US20100041380A1 (en) * 2003-05-16 2010-02-18 M-Qube, Inc. System and method for determining and delivering appropriate multimedia content to data communication devices
US8018850B2 (en) * 2004-02-23 2011-09-13 Sharp Laboratories Of America, Inc. Wireless video transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077766B2 (en) 2004-07-09 2015-07-07 Qualcomm Incorporated System and method for combining memory resources for use on a personal network
US9166879B2 (en) 2004-07-09 2015-10-20 Qualcomm Connected Experiences, Inc. System and method for enabling the establishment and use of a personal network
US9374805B2 (en) 2004-07-09 2016-06-21 Qualcomm Atheros, Inc. System and method for combining memory resources for use on a personal network
US10681122B2 (en) * 2014-12-09 2020-06-09 Samsung Electronics Co., Ltd. Method and apparatus for converting content using cloud

Also Published As

Publication number Publication date
US20070078948A1 (en) 2007-04-05
US8787164B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
US8787164B2 (en) Media delivery system and method for transporting media to desired target devices
US9232457B2 (en) Mobile communications device access from personal computer
US8195744B2 (en) File sharing system for use with a network
US9166879B2 (en) System and method for enabling the establishment and use of a personal network
US8738730B2 (en) System and method for remotely controlling network resources
US9374805B2 (en) System and method for combining memory resources for use on a personal network
US8655404B1 (en) Systems and methods for distributing content with a portable electronic device
CN103166941A (en) Data sharing method and device
EP2055105A1 (en) Method and apparatus for multimedia encoding, broadcast and storage
US20080183839A1 (en) System For Computer To Mobile Device Place Shifting
US7904529B2 (en) Method and system for transmitting and recording synchronized data streams
US20080184123A1 (en) System And Method For Providing A Secure Connection Between A Computer And A Mobile Device
US10225292B2 (en) Selectively porting meeting objects
CA3143824A1 (en) Special effect synchronization method, device, and storage medium
WO2009004415A1 (en) Integrated internet multimedia and computing access interactive communication device
CA2594301C (en) Mobile communications device access from personal computer
US20100131998A1 (en) Multimedia Frame Capture
KR101406942B1 (en) Real time relay system using wireless mobile phone
CN113852666A (en) Method for acquiring HTTP (hyper text transport protocol) resources in real time through FTP (file transfer protocol)
TWI496010B (en) Method and system for processing data or file through network

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORB NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JULIA, LUC;CORTINA, RAFAEL;GRUNDBACK, JOHN;AND OTHERS;SIGNING DATES FROM 20061207 TO 20061214;REEL/FRAME:033608/0620

Owner name: QUALCOMM CONNECTED EXPERIENCES, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:QUALCOMM ISKOOT, INC.;REEL/FRAME:033616/0409

Effective date: 20130611

Owner name: QUALCOMM ISKOOT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORB NETWORKS, INC.;REEL/FRAME:033608/0757

Effective date: 20130501

AS Assignment

Owner name: QUALCOMM ATHEROS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM CONNECTED EXPERIENCES, INC.;REEL/FRAME:036750/0463

Effective date: 20150928

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION