US20140246684A1 - Nano structured leds - Google Patents

Nano structured leds Download PDF

Info

Publication number
US20140246684A1
US20140246684A1 US14/274,448 US201414274448A US2014246684A1 US 20140246684 A1 US20140246684 A1 US 20140246684A1 US 201414274448 A US201414274448 A US 201414274448A US 2014246684 A1 US2014246684 A1 US 2014246684A1
Authority
US
United States
Prior art keywords
nanowire
led
light
substrate
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/274,448
Inventor
Munib Wober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zena Technologies Inc
Original Assignee
Zena Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/945,492 priority Critical patent/US9515218B2/en
Priority to US14/274,448 priority patent/US20140246684A1/en
Assigned to Zena Technologies, Inc. reassignment Zena Technologies, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOBER, MUNIB
Application filed by Zena Technologies Inc filed Critical Zena Technologies Inc
Publication of US20140246684A1 publication Critical patent/US20140246684A1/en
Priority to US14/503,598 priority patent/US9410843B2/en
Priority to US14/516,402 priority patent/US20160111460A1/en
Priority to US14/516,162 priority patent/US20160111562A1/en
Priority to US14/632,739 priority patent/US9601529B2/en
Priority to US14/704,143 priority patent/US20150303333A1/en
Priority to US14/705,380 priority patent/US9337220B2/en
Priority to US15/057,153 priority patent/US20160178840A1/en
Priority to US15/082,514 priority patent/US20160211394A1/en
Priority to US15/090,155 priority patent/US20160216523A1/en
Priority to US15/093,928 priority patent/US20160225811A1/en
Priority to US15/149,252 priority patent/US20160254301A1/en
Priority to US15/225,264 priority patent/US20160344964A1/en
Assigned to WU, XIANHONG reassignment WU, XIANHONG SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to HABBAL, FAWWAZ reassignment HABBAL, FAWWAZ SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to PILLSBURY WINTHROP SHAW PITTMAN LLP reassignment PILLSBURY WINTHROP SHAW PITTMAN LLP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0012Devices characterised by their operation having p-n or hi-lo junctions p-i-n devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • Nanowires can be used for constructing light emitting diodes (LED).
  • LED light emitting diodes
  • Nano-structured LEDs produce light with very high efficiency. They provide a wide range in the choice of materials thereby allowing access to a wide range of wavelengths including red, green and blue light. It is well known, however, that PIN junction LEDs have a light output and wavelength that varies with temperature. Thus, even though the concept of an LED television (TV) is known, the practical application of LEDs for TV has not hitherto been possible.
  • TV LED television
  • FIG. 1 is a schematic of a nanowire-containing light emitting diode (LED) with optical feedback.
  • FIG. 2 is a schematic of a pinned photodiode.
  • FIG. 3 is a schematic of tessellations for the LED array.
  • FIG. 4 is a schematic of a chip partitioned to include the LED array and optical feedback.
  • nanowire refers to a structure that has a thickness or diameter of the order of several nanometers, for example, 100 nanometers or less and an unconstrained length.
  • An active nanowire is generally capable of converting photons into excitons.
  • Nanowires could exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they could be referred to as 1-dimensional materials. Nanowires could have many interesting properties that are not seen in bulk or 3-D materials. This is because electrons in nanowires could be quantum confined laterally and thus occupy energy levels that could be different from the traditional continuum of energy levels or bands found in bulk materials. As a result, nanowires could have discrete values of electrical and optical conductance.
  • Nanowires could include metallic (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO 2 , TiO 2 ) materials.
  • Molecular nanowires are composed of repeating molecular units either organic or inorganic. Examples of nanowires include inorganic molecular nanowires (Mo 6 S 9-x I x , Li 2 Mo 6 Se 6 ), which could have a diameter of 0.9 nm, and can be hundreds of micrometers long. Other examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO 2 , TiO 2 ), or metals (e.g.
  • An active-pixel sensor also commonly written active pixel sensor, is an image sensor consisting of an integrated circuit containing an array of pixel sensors, each pixel containing a photodetector and an active amplifier.
  • a passive-pixel sensor is a pixel sensor without its own amplifier.
  • excitons refers to electron-hole pairs.
  • An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements include in embodiments disclosed herein, but are not limited to, an active nanowire, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes.
  • a waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries.
  • the selective wavelength is a function of the diameter of the waveguide.
  • An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide could be considered to be “active” and within the genus of an active element.
  • An optical pipe is an element to confine and transmit an electromagnetic radiation.
  • the optical pipe can include a core and a cladding.
  • the core could be a nanowire.
  • the optical pipe could be configured to separate wavelengths of an electromagnetic radiation beam at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core.
  • a core and a cladding are generally complimentary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam at a selective wavelength through the core and cladding.
  • a photogate is a gate used in an optoelectronic device.
  • the photogate comprises a metal-oxide-semiconductor (MOS) structure.
  • MOS metal-oxide-semiconductor
  • the photogate controls the accumulation of photons generated charges during the integration time of the photodiode and controls the transfer of charges when integration is over.
  • a photodiode comprises a pn junction, however, a photogate can be placed on any type semiconductor material.
  • a vertical photogate is a new structure. Normally, photogates are placed horizontally on planar photodiode devices. In a nanowire device, however, the photogate can be formed in a vertical direction. That is, the photogate can be oriented standing up covering the lateral surface of the nanowire.
  • a transfer gate is a gate of a switch transistor used in a pixel.
  • the transfer gate's role is to transfer the charges from one side of a device to another.
  • the transfer gate is used to transfer the charges from the photodiode to the sensing node (or floating diffusion).
  • a reset gate is a gate used for resetting a device.
  • the reset gate is the sense node that is formed by an n+ region.
  • Reset means to restore to original voltage level set by a certain voltage.
  • the voltage of the reset drain (RD) is the voltage used as a reset level.
  • Reset means to clear any pending errors or events and bring a system to normal condition or initial state, usually in a controlled manner. Rest is usually done in response to an error condition or completion of events when it is impossible or undesirable for a processing activity to proceed.
  • the ability for an electronic device to be able to reset itself in case of error, abnormal power loss or completion of events could be an aspect of embedded system design and programming.
  • An intrinsic semiconductor also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present.
  • the number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.
  • the conductivity of intrinsic semiconductors can be due to crystal defects or to thermal excitation.
  • the number of electrons in the conduction band is equal to the number of holes in the valence band.
  • a SOC (system on a chip) is a single integrated circuit, i.e., a processor, a bus, and/or other elements on a single monolithic substrate.
  • a system on a chip may include a configurable logic unit.
  • the configurable logic unit may include a processor, interface, and a programmable logic on the same substrate.
  • a system-on-chip IC may include various reusable functional blocks, such as microprocessors, interfaces, memory arrays, and DSPs (digital signal processors). Such pre-designed functional blocks are commonly called cores.
  • the SOC may include a plurality of cores in a single chip. The cores embedded in the SOC may be separately designed and tested before being combined in a chip.
  • SOCs may have significant advantages over electronic systems created on boards with discrete components.
  • An integrated circuit having an SOC is generally much smaller than a circuit board based system.
  • the reduction in size afforded by SOCs also may lead to improvements in power consumption and device speed.
  • SOCs may combine fixed and programmable intellectual property cores with custom logic and memory, connected through a bus, on a single piece of silicon, thereby greatly reducing its overall cost.
  • a chip is a semiconducting material (usually silicon) on which an integrated circuit is embedded.
  • a typical chip can contain millions of electronic components (transistors).
  • CPU chips also called microprocessors
  • memory chips contain blank memory.
  • An integrated circuit also known as IC, microchip, silicon chip, computer chip or chip
  • IC integrated circuit
  • microchip silicon chip
  • computer chip or chip is a device that may include many electronic components (transistors, capacitors, resistors, diodes, and other circuit components). These components are often interconnected to form multiple circuit components (e.g., gates, cells, memory units, arithmetic units, controllers, decoders, etc.) on the IC.
  • An example of an integrated circuit is a central processing unit (CPU) in a computer.
  • CPU central processing unit
  • An integrated circuit may implement one or more cores that perform the various functions of the integrated circuit as well as circuitry for communicating with other integrated circuits and devices external to the integrated circuit.
  • Integrated circuits typically comprise a semiconductor substrate on which several component layers have been formed to produce a large number of laterally-distributed transistors and other circuit devices. Additional connection layers may be formed on top of the component layers to provide interconnections among and power to the circuit devices, and input and output signal connections to the devices.
  • An integrated circuit is generally fabricated utilizing a chip of silicon or other semiconductor material, also referred to as a die.
  • the die consists of a substrate composed of a semiconductor material such as silicon or germanium.
  • One side of the substrate may be provided with a plurality of circuit structures that makeup the integrated circuit and the other may be left as relatively bare substrate material that is normally planarized via a polishing step.
  • a die is typically installed in a package, and electrically connected to leads of the package.
  • a hybrid integrated circuit is a miniaturized electronic circuit constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board. Integrated circuits can be classified into analog integrated circuits, digital integrated circuits and mixed signal integrated circuits (both analog and digital on the same chip).
  • a digital signal processor is a specialized microprocessor designed specifically for digital signal processing such as video signal processing, generally in real-time computing.
  • Digital signal processing algorithms typically require a large number of mathematical operations to be performed quickly on a set of data. Signals are converted from analog to digital, manipulated digitally, and then converted again to analog form.
  • a PN junction is a junction formed by combining p-type and n-type semiconductors together in very close contact.
  • a PIN junction is a junction formed by combining a lightly doped ‘near’ intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor regions. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts.
  • junction refers to the region where the two regions of the semiconductor meet. It can be thought of as the border region between the p-type and n-type blocks.
  • An embodiment relates to a nanostrucuted LED with an optical feedback comprising a substrate, a nanowire protruding from a first side the substrate, an active region to produce light, a optical sensor and a electronic circuit, wherein the optical sensor is configured to detect at least a first portion of the light produced in the active region, and the electronic circuit is configured to control an electrical parameter that controls a light output of the active region.
  • the nanostructured LED in one example implementation, may further comprise a volume element epitaxially connected to the nanowire. The volume element could provide a high doping degree for the formation of the active region, typically within or close to the nanowire, with or without requiring the nanowire itself to be doped.
  • the nanostructured LED without optical feedback would be the combination of the substrate, the nanowire and a volume element, wherein a portion of the nanowire and a portion of the volume element are configured to form the active region.
  • the volume element could be a cylindrical bulb, but is not limited to a cylindrical bulb with a dome-shaped top, a spherical/ellipsoidal, and pyramidal.
  • the volume element can extend in three dimensions; can have a large volume, and a large surface.
  • the volume element/nanowire architecture enhances both electrical and optical performance of a LED.
  • the nanowire material composition can be chosen to propagate into the volume element in order to decrease the optical disturbance by the connection with the nanowire.
  • the nanostructured LED of an embodiment may include a PN or PIN-junction that could produce an active region to produce light within the structure during use.
  • the nanowire, a part of the nanowire, or a structure in connection with the nanowire, could form a waveguide directing at least a portion of the light produced in the active region in a given direction.
  • the nanowire and the volume element could be embedded in a low index material like SiO 2 .
  • the low index region e.g., a cover layer
  • This metal ring may also aid in the local removal of heat generated by each LED.
  • a nano-structured LED makes it possible to use a very large fraction of the light produced by the LED. This is at least partly achieved by the nanowire being used as a waveguide, directing the light produced in the junction out of the surface.
  • nanowire as a waveguide offers a possibility to direct light in well defined directions.
  • light beams can be focused, or dispersed, depending on the intended use.
  • a concave surface on the nanowire and the silica surrounding it would help provide a focused beam of light suitable for a display system.
  • the nanowire technology offers possibilities in choices of materials and material combinations not possible in conventional bulk layer techniques. This could be used in the nano-structured LED to provide LEDs producing light in wavelength regions not accessible by conventional techniques, for example violet and UV.
  • the nano-structured LED allows for inclusions of heterostructures as well as areas of different doping within the nanowire, facilitating optimization of electrical and/or optical properties.
  • an optical feedback loop to create a uniformity of light emission is highly desirable.
  • Such a feedback loop would include an optical sensor to measure a fraction of the light output of the LED in real time and an electronic circuit to use the measurement to adjust the operating point of the LED.
  • An embodiment could include a nano-structured LED grown on a substrate that already has an embedded photodiode such as pinned photodiode.
  • the light from the nano-structured LED is partially transmitted to the substrate where a photodiode measures and provides a signal proportional to the intensity of the light generated by the LED. This signal in turn is used in a feedback loop to control the bias point of the LED such that a stable light output is maintained at the desired intensity.
  • the nanowire-containing LED with optical feedback could further comprise a partially reflective layer on the substrate surrounding and/or within the nanowire, wherein the partially reflective layer is configured to allow a first portion of the light to transmit through the partially reflective layer to the optical sensor and to allow at least a second portion of the light to reflect from a surface of the partially reflective layer.
  • the NWLOF could further comprise one or more cladding layers surrounding the nanowire, wherein the one or more cladding layers are configured such that the nanowire is configured to form a waveguide.
  • the NWLOF could further comprise a low-index material having a lower refractive index surrounding the nanowire and a metal layer surrounding the low-index material.
  • the NWLOF could further comprise a volume element, wherein a portion of the nanowire and a portion of the volume element are configured to form the active region.
  • FIG. 1 provides an example implementation of this concept.
  • the LED could be composed of the p region in the substrate over which it is grown, the intrinsic nanowire made out of any of the suitable materials listed above and an n type epitaxial region surrounding and contacting the nanowire.
  • a photodiode is embedded into the substrate on which the nanowire is grown.
  • An example of a pinned photodiode is illustrated in FIG. 2 .
  • FIG. 1 is an example implementation. Another possible implementation (not shown in FIG. 1 ) would place the LED on the back side of the substrate containing the photodiode. This would require thinning the substrate such that photons from the LED can easily be collected by the potential well (the n+ region in FIG. 1 ) of the photodiode.
  • a nanostructured LED according to the embodiments comprises of an upstanding nanowire.
  • an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown from the substrate, preferably by as vapor-liquid-solid (VLS) grown nanowires.
  • VLS vapor-liquid-solid
  • the angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions.
  • nanowires and substrates of zinc-blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table can be grown in the [111] directions and then be grown in the normal direction to any ⁇ 111 ⁇ substrate surface.
  • Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70, 53° ⁇ 111 ⁇ , 54, 73° ⁇ 100 ⁇ , and 35, 27° and 90°, both to ⁇ 110 ⁇ .
  • the nanowires define one, or a limited set, of directions.
  • a part of the nanowire or structure formed from the nanowire could be used as a waveguide directing and confining at least a portion of the light created in ⁇ in or from/out of? ⁇ the nanostructured LED in a direction given by the upstanding nanowire.
  • the waveguiding nanostructured LED structure could include a high refractive index nanowire with one or more surrounding cladding with refractive indices less than that of the core.
  • the structure could be either circular symmetrical or close to being circular symmetrical.
  • Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare-earth-doped fiber optic devices. However, one difference is that fiber amplifier are optically pumped to enhance the light guided through them while the described nanostructured LED can be seen as an efficient light to electricity converter and vice versa.
  • an output of the optical sensor is an input to the electronic circuit.
  • the electrical parameter comprises voltage or current.
  • the electronic circuit is configured to control voltage or current such that the light output is maintained substantially constant irrespective of a temperature of the active region within an operating temperature range of the active region.
  • the optical sensor comprises a pn or p-i-n photodiode having a performance characteristic that is substantially insensitive to a temperature in an operating temperature range of the active region.
  • at least a portion of the light produced in the active region is directed in a direction given by the nanowire.
  • the nanowire is configured to both produce light and form a waveguide.
  • the volume element comprises a doping layer configured to provide a p or n region and a well layer.
  • the optical sensor comprises a pinned photodiode in the substrate.
  • the one or more cladding layers are configured to provide a graded refractive index such that a refractive index of the nanowire is higher than that of the one or more cladding layer.
  • the NWLOF comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of the light.
  • the NWLOF comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of the light.
  • the NWLOF comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of the light and the NWLOF comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of the light.
  • the nanowire and the volume element are arranged to direct the light through the nanowire and the substrate such that the light is emitted from a second side of the substrate opposite the first side.
  • the substrate contains a photodiode that is optically coupled to the nanowire.
  • the volume element is configured to spread the light by dispersion at a junction between the nanowire and the volume element.
  • the electronic circuit comprises a controller configured to calibrate the electrical parameter.
  • the controller comprises memory, the memory comprising values for controlling the electrical parameter so that the light output is set by the values stored in the memory.
  • the controller comprises memory; wherein the controller is configured to calibrate the electrical parameter to cause the light output to more closely match a target output based on target values of the light output stored in the memory.
  • the target values represent current values for different colors of the light.
  • the target values represent target brightness levels.
  • the waveguiding properties of the nanowire can be improved in different ways.
  • the nanowire could have a first effective refractive index, n w , and a cladding surrounding at least a portion of the nanowire could have a second effective refractive index, n c , and by assuring that the first refractive index is larger than the second refractive index, n w >n c , good wave-guiding properties could be provided to the nanowire.
  • the waveguiding properties may be further improved by introducing an optically active cladding.
  • the high index material in the nanowire could, for example, be silicon nitride having a refractive index of about 2.0.
  • the lower index cladding layer material could, for example, be a glass, for example a material selected from Table I, having a refractive index about 1.5.
  • PESiN refers to plasma enhanced Si 3 N 4 and PESiO refers to plasma enhanced SiO 2 .
  • a variety of materials can be used, such as: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, InP, InAsP, GalnP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb among others.
  • Si and doped Si materials are preferable.
  • the typical values of the refractive indexes for III-V semiconductor nanowire material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as SiO 2 or Si 3 N 4 ) having refractive indexes ranging from 1.4 to 2.3, satisfying the waveguiding requirement, n w >n c .
  • NA Numerical Aperture
  • a nanostructured LED according to the embodiments could comprise a substrate and a nanowire epitaxially grown from the substrate in a defined angle ⁇ .
  • a portion of the nanowire is enclosed by a volume element.
  • the volume element is preferably epitaxially connected to the nanowire.
  • a portion of or all of the nanowire could be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide.
  • the nanowire could have a diameter in the order of 50 nm to 500 nm.
  • the length of the nanowire could be of the order of 1 to 10 ⁇ m.
  • the pn-junction results in an active region arranged in the nanowire.
  • the materials of the different members of the nanostructured LED are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.
  • the nanowire has a first refracting index, n w , the material surrounding the nanowire in wave guide portion, typically a cover layer, a second refractive index, n c , and the a volume element, a third refractive then n ve , then n w >n c and n w >n ve .
  • Typical values for the nanostructured LED are n w ⁇ 4, n c ⁇ 1.5 and n ve ⁇ 3.
  • the nanowire may be provided with one or more layers.
  • a first layer may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire.
  • Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics.
  • the optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material.
  • the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilized, the refractive index of the nanowire, n w , should define an effective refractive index for both the nanowire and the layers.
  • the ability to grow nanowires with well defined diameters could be to optimize the waveguiding properties of the nanowire with regards to the wavelength of the light confined in the nanostructured LED.
  • the diameter of the nanowire could be chosen so as to have a favorable correspondence to the wavelength of the desired light.
  • the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire.
  • the nanowire generally is sufficiently wide to capture the desired light.
  • a rule of thumb would be that diameter must be larger than ⁇ /2n w , wherein ⁇ is the wavelength of the desired light and n w is the refractive index of the nanowire.
  • a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light in a silicon nanowire.
  • a diameter above 100 nm would be sufficient.
  • An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and could be in the order of 500 nm.
  • the length of the nanowire is typically and preferably in the order of 1-10 ⁇ m, providing enough volume for the active region.
  • a reflective layer could be in one embodiment, provided on the substrate and extending under the wire.
  • the reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film.
  • An alternative approach to getting a reflection in the lower end of the nanowire could be to arrange a reflective layer in the substrate underneath the nanowire.
  • Yet another alternative could be to introduce reflective means within the waveguide.
  • Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiN x /SiO x (dielectric) or GaAs/AlGaAs (semiconductor).
  • Such repeated layers with controlled thickness could also serve as optical grating filters to precisely control the output wavelength of the LED to mitigate wavelength drift for example with temperature.
  • a major part of the produced light is directed by the waveguide of the nanowire in a downward direction through the substrate.
  • the light can be directed through the entire thickness of the substrate, or alternatively the substrate could be provided with a cut out beneath the base of the nanowire in order to reduce the thickness of the substrate and thereby reduce the scattering or absorption of light in the substrate.
  • the substrate is preferably made of transparent material.
  • a portion, or preferably the entire outer surface of the volume element may be covered by a reflective layer that increases the radiation of the produced light through the waveguide.
  • the reflective layer for example formed of a metal, may additionally serve as a contact.
  • Part of the nanowire and the substrate could optionally covered by a protective layer of SiC or SiN, for example.
  • the volume element can be arranged to be a dispersive element, giving a light radiation that is essentially evenly distributed over a wide angle.
  • a dispersive element giving a light radiation that is essentially evenly distributed over a wide angle.
  • the active region may be arranged in the nanowire but alternatively may be within the volume element, and above the upper end of the nanowire, or radially outwards of the nanowire and possibly above.
  • the nanowire should preferably at its lower end be provided with some of the reflective means, for example a reflective material within the nanowire, in order to redirect light upwards.
  • the geometry of the volume element can be designed to further disperse the light. Dispersion is provided at the junction between the nanowire waveguide and the volume element and further at the edge formed by the upper boundary of the volume element.
  • the height and width of the volume element can be chosen so that the edge disperses light further.
  • One embodiment can be optimized for providing a collected and directionally oriented beam.
  • the nanowire of relatively large diameter, preferably above 150 nm, can extend to the upper surface of the volume element.
  • the nanowire can be provided with a concave lens like exit surface on the upper end.
  • Nanowires acting as waveguides, can be used to improve the performance of conventional planar LEDs.
  • a plurality of nanowires can be arranged on the surface of a planar LED.
  • Light is produced in the active region, which could be an active layer of the planar LED, for example of GaAsP.
  • the nanowires can be epitaxially connected on top of the planar LED layers in order to get a good matching of the different parts.
  • the nanowires may be coated by a cladding layer protecting the nanowires and/or improving the properties, for example Si 3 N 4 .
  • the surface in between the nanowires can be preferably coated with a reflective layer, for example of Au. At least a part of the light, produced in the active region, could enter the nanowires that are acting as waveguides and leading the light away from the substrate plane.
  • Suitable materials for LED have to be matched with suitable materials for the photo diodes based on the wavelength of the light being emitted/detected by the system. Both the LED and the photo diode should work as intended in the wavelength range of light for which the system is configured to operate.
  • the nanowire based technology allows for defect free combinations of materials that otherwise would be impossible to combine.
  • the III-V semiconductors are of particular interest due to their properties facilitating high speed and low power electronics.
  • Suitable materials for the substrate include, but is not limited to: Si, GaAs, GaP, GaP:Zn, InAs, InP, GaN, Al 2 O 3 , SiC, Ge, GaSb, ZnO, InSb, SOI (silicon-on-insulator), CdS, ZnSe, CdTe.
  • a Si substrate is preferred since it embeds a CMOS photodiode underneath the LED.
  • Si could be used in the photo diode.
  • GaAs in photodiodes for LED in the range of 800-1500 nm, e.g., 850 nm; and InGaAs/InP in the range 1310-1550 nm.
  • Suitable materials for the nanowire include, but is not limited to: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GalnP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb.
  • the nano wire materials are carefully selected from the list above and the Table 1 below to produce red, green and blue light.
  • wavelength and bandgap energy may be obtained from:
  • a stream of photons with a wavelength of 532 nm (green light) would have an energy of approximately 2.33 eV.
  • 1 eV would correspond to a stream of infrared photons of wavelength 1240 nm, and so on.
  • Possible donor dopants for example include GaP, Te, Se, S, etc, and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc.
  • acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc.
  • the nanowire technology makes it possible to use nitrides such as SiN, GaN, InN and AlN, which facilitates fabrication of LEDs detecting light in wavelength regions not easily accessible by conventional technique.
  • Other combination of particular commercial interest include, but is not limited to GaAs, GalnP, GaAlInP, GaP systems. Typical doping levels range from 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 .
  • low resistivity contact materials are dependent on the material to be deposited on, but metal, metal alloys, as well as non-metal compounds, like: Al, Al—Si, TiSi 2 , TiN, W, MoSi 2 , PtSi, CoSi 2 , WSi 2 , In, AuGa, AuSb, AuGe, PdGe, Ti/Pt/Au, Ti/Al/Ti/Au, Pd/Au, ITO (InSnO), etc. and combinations of, e.g., metal and ITO can be used.
  • the substrate could be an integral part of the device, since it also contains the photodiodes necessary to detect light that has not been confined to the nanowire.
  • the substrate in addition also contains standard CMOS circuits to control the biasing, amplification and readout of the LED as well as any other CMOS circuit deemed necessary and useful.
  • the substrate includes substrates having active devices therein. Suitable materials for the substrates include silicon and silicon-containing materials.
  • each sensor element of the embodiment includes a nanostructured LED structure comprising a nanowire, a cladding enclosing at least a portion of the nanowire, a coupler and two contacts.
  • GaAs circuitry can be used with the appropriate light emitting materials for those wavelengths.
  • a micro lens could be located on the LED, for example, as shown in FIG. 1 .
  • the micro lens may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials.
  • the lens layers could be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers, if present, or the patterned planarizing layer. Polymeric materials should preferably have a high degree of stability with temperature to act as micro lenses for LEDs since this device needs to perform at high temperatures.
  • the micro lens of FIG. 1 does not require a new material; simply patterning the clad material to the right shape forms it.
  • a method of fabricating nanostructured LED is to first grow a nanowire. Part of the nanowire could then be masked and the volume element could be grown selectively. The volume element grows both axially and radial, hence, when the nanowire is masked partly, the nanowire becomes enclosed in the volume element.
  • Appropriate masking materials are e.g. silicon nitride, silicon oxide etc.
  • nanowire growth is locally enhanced by a substance, as VLS grown nanowires
  • the ability to alter between radial and axial growth by altering growth conditions enables the procedure (nanowire growth, mask formation, and subsequent selective growth) and can be repeated to form nanowire/3D-sequences of higher order.
  • the nanowire growth and selective growth are not distinguished by separate growth conditions it may be better to first grow the nanowire along the length and by different selective growth steps grow different types of 3D regions or volume elements.
  • the substrate could be Si containing the photodiode.
  • the substrate could be Si containing the photodiode.
  • the substrate could be Si containing the photodiode.
  • silicon nanowires could be grown on a layer of silicon.
  • the process could apply for growing Si NW on dielectric layer, or for III-V compound grown on the appropriate substrate, including Si substrate with or without a thin Molybdenum layer.
  • the silicon nanowire of the embodiments disclosed herein could be made as follows.
  • a substrate is provided which comprises silicon having a silicon dioxide surface.
  • the surface can be modified to remove an oxide layer with a surface treatment to promote adsorption of a gold nanoparticle, or gold alloys nanoparticle like AuGa.
  • a Si substrate preferably have the ⁇ 111 ⁇ plane, (Au is used to create the Si—Au eutectic point and grow the Si nanowire when SiH4 is introduced), the gold nanoparticle can be formed by deposition of a gold layer, followed by removal of the gold layer over regions other than desired location of the gold nanoparticle.
  • the silicon nanowire can be grown, for example, by plasma enhanced vapor-liquid-solid growth.
  • a catalyst particle typically gold or gold alloy
  • EBL electron beam lithography
  • Other processes for depositing catalysts, such as electroless plating may also be used.
  • the diameters of nanowires after growth are generally determined by the area of the catalyst particles. Therefore, a desired diameter of the nanowire can be synthesized by depositing a catalyst particle with an appropriate size. This step typically determines the functionality of the nanowire pixel because the nanowire diameter should be of an appropriate cross-section area to allow the transmission of light with specific wavelengths and long enough to allow the light absorption and creation of excitons (electron-hole pairs).
  • a single nanowire can be grown from the catalyst particle under proper conditions.
  • a suitable nanowire can be grown using the vapor-liquid-solid (VLS) process with presence of SiH 4 at, for example, temperature at 650 C and pressure of 200 mTorr.
  • VLS vapor-liquid-solid
  • a temperature below 450 C is advisable for the integration compatibility of CMOS circuits and nanowire synthesis.
  • Many researchers have been able to synthesize silicon nanowires at 430 C or even below 400 C by using some special techniques, for example, using aluminum catalysts or plasma enhanced growth.
  • the silicon nanowire can be doped to create a p + -i(intrinsic)-n + structure by introducing B 2 H 6 , H 2 and PH 3 , respectively.
  • Nanowires have a higher surface-to-volume ratio than the corresponding bulk materials. Therefore the surface states of nanowires play a more important role in their electronic and optical properties. The impact of nanowire surface states, however, can be minimized by surface passivation after the nanowire synthesis.
  • surface passivation can be achieved with a monolayer of materials to react with silicon dangling bonds at the surface of the nanowire. This is accomplished with the formation of stable bonds after reaction.
  • passivation has almost no effect on the nanowire physical dimension since it is only one-monolayer thick.
  • Subsequent steps could relate to the forming of an epitaxial layer that is n or p doped covering the nanowire or of one or more of the dielectric layers around the nanowire.
  • the epitaxial n or p doped layer covering the nanowire could be grown using vapor-phase epitaxy (VPE), a modification of chemical vapor deposition.
  • VPE vapor-phase epitaxy
  • MBE and LPE liquid-phase epitaxy
  • SPE solid-phase epitaxy
  • a dopant could be added into the epitaxially grown layer during the epitaxial layer growth process.
  • a conformal dielectric coating around the nanowire could be made by chemical vapor deposition (CVD), atomic layer deposition (ALD), oxidation or nitration could be made around the nanowire.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • oxidation or nitration could be made around the nanowire.
  • doped glass dielectric layer could be formed on the conformal dielectric coating by plasma enhanced chemical vapor deposition, spin-on coating or sputtering, optionally with an initial atomic layer deposition.
  • the deposited doped glass dielectric layer could be etched back by chemical-mechanical planarization or other methods of etching.
  • a funnel and a lens on the funnel to channel electromagnetic radiation such as light out of the nanowire waveguide could be made as follows: deposition of a glass/oxide/dielectric layer by CVD, sputter deposition or spin-on coating; application of a photoresist on the deposited glass/oxide/dielectric layer; removal of the photoresist outside an opening centered over the nanowire within the deep cavity; and forming a coupler by semi-isotropic etching in the glass/oxide/dielectric layer.
  • Additional steps could relate to the forming of a metal or metal oxide ring layer around the one or more dielectric layers by depositing a metal such a copper on the vertical walls of the one or more dielectric layers.
  • the growth process can be varied in known ways to include heterostructures in the nanowires, provide reflective layers etc.
  • the stem in some embodiment can be provided by first growing a thin nanowire, depositing a reflective layer or a selective growth mask covering the lower part, and radial growing a cladding layer or increasing the nanowire thickness.
  • the nanowire-containing LEDs with optical feedback could be used in an image display device having a large number of identical display elements, generally greater than 1 million, in a grid.
  • the embodiments disclosed here would allow the manufacture of such a grid of NWLOF.
  • a large plurality of nanostructured LEDs can be provided in one image display device.
  • a plurality of nanostructured LEDs can be epitaxially grown on a Zn-doped GaP substrate.
  • the nanowires of the LEDs can be of intrinsic GaAs, and provided with a concentric layer of undoped InGaP.
  • the volume elements can comprise of Si-doped InGaP.
  • the lower parts of the nanowires and the substrate can be covered by a SiO 2 -layer.
  • a back plane contact can be provided on the substrate connecting a plurality of LEDs, and each individual LED can be provided with a wrap around contact on the volume elements. The wrap around contacts can be connected for a group-wise addressing of the LEDs.
  • the inherent property that nanowires grow in a limited set of preferred directions can be used to grown nanowires in the same direction, or one of a limited set of directions.
  • the direction of the grown nanowires could be perpendicular to the substrate or at an angle from the perpendicular to the substrate.
  • the LEDs can be arranged to produce fairly directed light beams. Adjacent to the group of LEDs a reflective material can be provided, with an angle to the substrate corresponding to the direction of the LEDs so that the light emitted from the LEDs can be reflected by the reflective material in a desired direction.
  • a light emitting surface with different pixels There are three types of pixels, each emitting one color: red, blue or green.
  • the display color is constructed from the combination of the three (red, blue and green) colors.
  • the eye human views the surface directly through a magnifying lens and thus sees the image.
  • the image could change with time to display moving objects and the like.
  • the first relates to a display such as TV, computer screen and the like, and the other is to an electronic projector.
  • FIG. 4 An illustration of how a chip of the image display device could be partitioned is shown in FIG. 4 to create a system on a chip (SOC).
  • the video image from the LED array is focused through a lens and is viewed either directly as in a head mounted display or is projected onto a screen
  • the plurality of NWLOFs comprises at least a first active region for emitting a first color, a second active region for emitting a second color, and a third active region for emitting a third color.
  • the image display does not include a color filter.
  • the image display device could have three chips to produce red, green and blue and the light, respectively, from each chip and to be interleaved by an external circuit and optical system.
  • Each chip may only consist of a single color array of LEDs for the ease of manufacturing.
  • the plurality of NWLOFs comprises at least a first electrical parameter to control emission of the first color, a second electrical parameter to control emission of the second color, and a third electrical parameter to control emission of the third color.
  • the image display comprises a display device, a microdisplay, a computer display, TV and a display system on a chip.
  • Such a device could be a system on a chip (SoC) made on a silicon substrate, for example.
  • SoC system on a chip
  • the display (such as that shown in FIG. 4 ) could be a self contained display device that has the following circuits: a NWLOF grid; a row column addressing circuitry; a video signal processing chain for the photodiode array; a feedback loop circuitry for the bias circuits of the nanowire LED; power supplies and regulation circuits; digital circuits to decode standard video signals; and a thermally sound design that would allow for the management of all heat generated by the device.
  • FIG. 2 illustrates a cross sectional diagram of the devices used in creating the sensor of the present invention. This is the result of integration of an active pixel sensor (APS) architecture typically fabricated in CMOS technology with a pinned photodiode device (item12 PPD in FIG. 2 ) using a mixed process technology.
  • APS active pixel sensor
  • the PPD becomes the photoactive element in an XY-addressable area array.
  • the uniformity of the photodiode array is first ensured by dark and uniform illumination of the entire array with an external source while the nano wire LEDs are turned off.
  • the gains, the black levels of the three color channels, and whatever other controls available in the circuits are then adjusted to their initial values.
  • the pixel to pixel uniformity of the LED array is ensured by setting the loop gain values of the photodiode/LED pair either individually or in mapped groups through an initial calibration process.
  • the LED output will retain immunity to temperature variation to the degree that the pinned photodiode allows.
  • this approach will mitigate the development of non-uniformity and local or global drift in brightness, including fixed pattern noise due to manufacturing non-uniformity, in the display generated by the LED array during operation.
  • the entire processing, memory, control, and driver system may be generally referred to as a controller.
  • Various other types of circuitry may also act as the controller, and the embodiment is not limited to a particular circuitry used.

Abstract

An embodiment relates to a nanowire-containing LED device with optical feedback comprising a substrate, a nanowire protruding from a first side the substrate, an active region to produce light, a optical sensor and a electronic circuit, wherein the optical sensor is configured to detect at least a first portion of the light produced in the active region, and the electronic circuit is configured to control an electrical parameter that controls a light output of the active region. Yet, another embodiment relates to an image display having the nanowire-containing LED device with optical feedback.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/573,582, filed Oct. 5, 2009, now allowed, and is hereby expressly incorporated by reference and each assigned to the assignee hereof.
  • BACKGROUND
  • PCT International Publication WO 2008/079076, published on Jul. 3, 2008, shows that nanowires can be used for constructing light emitting diodes (LED). Nano-structured LEDs produce light with very high efficiency. They provide a wide range in the choice of materials thereby allowing access to a wide range of wavelengths including red, green and blue light. It is well known, however, that PIN junction LEDs have a light output and wavelength that varies with temperature. Thus, even though the concept of an LED television (TV) is known, the practical application of LEDs for TV has not hitherto been possible.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic of a nanowire-containing light emitting diode (LED) with optical feedback.
  • FIG. 2 is a schematic of a pinned photodiode.
  • FIG. 3 is a schematic of tessellations for the LED array.
  • FIG. 4 is a schematic of a chip partitioned to include the LED array and optical feedback.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
  • The term nanowire refers to a structure that has a thickness or diameter of the order of several nanometers, for example, 100 nanometers or less and an unconstrained length. An active nanowire is generally capable of converting photons into excitons. Nanowires could exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they could be referred to as 1-dimensional materials. Nanowires could have many interesting properties that are not seen in bulk or 3-D materials. This is because electrons in nanowires could be quantum confined laterally and thus occupy energy levels that could be different from the traditional continuum of energy levels or bands found in bulk materials. As a result, nanowires could have discrete values of electrical and optical conductance. Nanowires could include metallic (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO2, TiO2) materials. Molecular nanowires are composed of repeating molecular units either organic or inorganic. Examples of nanowires include inorganic molecular nanowires (Mo6S9-xIx, Li2Mo6Se6), which could have a diameter of 0.9 nm, and can be hundreds of micrometers long. Other examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO2, TiO2), or metals (e.g. Ni, Pt). An active-pixel sensor (APS), also commonly written active pixel sensor, is an image sensor consisting of an integrated circuit containing an array of pixel sensors, each pixel containing a photodetector and an active amplifier. A passive-pixel sensor is a pixel sensor without its own amplifier.
  • The term excitons refers to electron-hole pairs.
  • An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements include in embodiments disclosed herein, but are not limited to, an active nanowire, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes.
  • A waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries. Preferably, the selective wavelength is a function of the diameter of the waveguide. An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide could be considered to be “active” and within the genus of an active element.
  • An optical pipe is an element to confine and transmit an electromagnetic radiation. The optical pipe can include a core and a cladding. The core could be a nanowire. The optical pipe could be configured to separate wavelengths of an electromagnetic radiation beam at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core. A core and a cladding are generally complimentary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam at a selective wavelength through the core and cladding.
  • A photogate is a gate used in an optoelectronic device. Typically the photogate comprises a metal-oxide-semiconductor (MOS) structure. The photogate controls the accumulation of photons generated charges during the integration time of the photodiode and controls the transfer of charges when integration is over. A photodiode comprises a pn junction, however, a photogate can be placed on any type semiconductor material. A vertical photogate is a new structure. Normally, photogates are placed horizontally on planar photodiode devices. In a nanowire device, however, the photogate can be formed in a vertical direction. That is, the photogate can be oriented standing up covering the lateral surface of the nanowire.
  • A transfer gate is a gate of a switch transistor used in a pixel. The transfer gate's role is to transfer the charges from one side of a device to another. In some embodiments, the transfer gate is used to transfer the charges from the photodiode to the sensing node (or floating diffusion).
  • A reset gate is a gate used for resetting a device. In some embodiments, the reset gate is the sense node that is formed by an n+ region. Reset means to restore to original voltage level set by a certain voltage. In some embodiments, the voltage of the reset drain (RD) is the voltage used as a reset level. Reset means to clear any pending errors or events and bring a system to normal condition or initial state, usually in a controlled manner. Rest is usually done in response to an error condition or completion of events when it is impossible or undesirable for a processing activity to proceed. The ability for an electronic device to be able to reset itself in case of error, abnormal power loss or completion of events could be an aspect of embedded system design and programming.
  • An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors, the number of excited electrons and the number of holes are equal: n=p. The conductivity of intrinsic semiconductors can be due to crystal defects or to thermal excitation. In an intrinsic semiconductor, the number of electrons in the conduction band is equal to the number of holes in the valence band.
  • A SOC (system on a chip) is a single integrated circuit, i.e., a processor, a bus, and/or other elements on a single monolithic substrate. A system on a chip may include a configurable logic unit. The configurable logic unit may include a processor, interface, and a programmable logic on the same substrate. A system-on-chip IC may include various reusable functional blocks, such as microprocessors, interfaces, memory arrays, and DSPs (digital signal processors). Such pre-designed functional blocks are commonly called cores. Generally, the SOC may include a plurality of cores in a single chip. The cores embedded in the SOC may be separately designed and tested before being combined in a chip. SOCs may have significant advantages over electronic systems created on boards with discrete components. An integrated circuit having an SOC is generally much smaller than a circuit board based system. The reduction in size afforded by SOCs also may lead to improvements in power consumption and device speed. SOCs may combine fixed and programmable intellectual property cores with custom logic and memory, connected through a bus, on a single piece of silicon, thereby greatly reducing its overall cost.
  • A chip is a semiconducting material (usually silicon) on which an integrated circuit is embedded. A typical chip can contain millions of electronic components (transistors). There are different types of chips. For example, CPU chips (also called microprocessors) contain an entire processing unit, whereas memory chips contain blank memory.
  • An integrated circuit (also known as IC, microchip, silicon chip, computer chip or chip) is a device that may include many electronic components (transistors, capacitors, resistors, diodes, and other circuit components). These components are often interconnected to form multiple circuit components (e.g., gates, cells, memory units, arithmetic units, controllers, decoders, etc.) on the IC. An example of an integrated circuit is a central processing unit (CPU) in a computer. An integrated circuit may implement one or more cores that perform the various functions of the integrated circuit as well as circuitry for communicating with other integrated circuits and devices external to the integrated circuit. Integrated circuits typically comprise a semiconductor substrate on which several component layers have been formed to produce a large number of laterally-distributed transistors and other circuit devices. Additional connection layers may be formed on top of the component layers to provide interconnections among and power to the circuit devices, and input and output signal connections to the devices. An integrated circuit is generally fabricated utilizing a chip of silicon or other semiconductor material, also referred to as a die. The die consists of a substrate composed of a semiconductor material such as silicon or germanium. One side of the substrate may be provided with a plurality of circuit structures that makeup the integrated circuit and the other may be left as relatively bare substrate material that is normally planarized via a polishing step. A die is typically installed in a package, and electrically connected to leads of the package. A hybrid integrated circuit is a miniaturized electronic circuit constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board. Integrated circuits can be classified into analog integrated circuits, digital integrated circuits and mixed signal integrated circuits (both analog and digital on the same chip).
  • A digital signal processor (DSP) is a specialized microprocessor designed specifically for digital signal processing such as video signal processing, generally in real-time computing. Digital signal processing algorithms typically require a large number of mathematical operations to be performed quickly on a set of data. Signals are converted from analog to digital, manipulated digitally, and then converted again to analog form.
  • A PN junction is a junction formed by combining p-type and n-type semiconductors together in very close contact. A PIN junction is a junction formed by combining a lightly doped ‘near’ intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor regions. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts.
  • The term junction refers to the region where the two regions of the semiconductor meet. It can be thought of as the border region between the p-type and n-type blocks.
  • An embodiment relates to a nanostrucuted LED with an optical feedback comprising a substrate, a nanowire protruding from a first side the substrate, an active region to produce light, a optical sensor and a electronic circuit, wherein the optical sensor is configured to detect at least a first portion of the light produced in the active region, and the electronic circuit is configured to control an electrical parameter that controls a light output of the active region. The nanostructured LED in one example implementation, may further comprise a volume element epitaxially connected to the nanowire. The volume element could provide a high doping degree for the formation of the active region, typically within or close to the nanowire, with or without requiring the nanowire itself to be doped. Preferably, the nanostructured LED without optical feedback would be the combination of the substrate, the nanowire and a volume element, wherein a portion of the nanowire and a portion of the volume element are configured to form the active region. The volume element could be a cylindrical bulb, but is not limited to a cylindrical bulb with a dome-shaped top, a spherical/ellipsoidal, and pyramidal. The volume element can extend in three dimensions; can have a large volume, and a large surface. The volume element/nanowire architecture enhances both electrical and optical performance of a LED. By using different material compositions in the nanowire and the volume element, the nanowire material composition can be chosen to propagate into the volume element in order to decrease the optical disturbance by the connection with the nanowire.
  • The nanostructured LED of an embodiment may include a PN or PIN-junction that could produce an active region to produce light within the structure during use. The nanowire, a part of the nanowire, or a structure in connection with the nanowire, could form a waveguide directing at least a portion of the light produced in the active region in a given direction.
  • The nanowire and the volume element could be embedded in a low index material like SiO2. In one possible implementation the low index region (e.g., a cover layer) is in turn enclosed by a cylindrical ring of metal to provide optical isolation of the each LED from its neighbors. This metal ring may also aid in the local removal of heat generated by each LED.
  • A nano-structured LED makes it possible to use a very large fraction of the light produced by the LED. This is at least partly achieved by the nanowire being used as a waveguide, directing the light produced in the junction out of the surface.
  • The use of the nanowire as a waveguide offers a possibility to direct light in well defined directions. By using concepts from the area of fiber optics light beams can be focused, or dispersed, depending on the intended use. In this case a concave surface on the nanowire and the silica surrounding it would help provide a focused beam of light suitable for a display system.
  • The nanowire technology offers possibilities in choices of materials and material combinations not possible in conventional bulk layer techniques. This could be used in the nano-structured LED to provide LEDs producing light in wavelength regions not accessible by conventional techniques, for example violet and UV.
  • The nano-structured LED allows for inclusions of heterostructures as well as areas of different doping within the nanowire, facilitating optimization of electrical and/or optical properties.
  • In embodiments herein that require precise control of the light output of an LED or the uniformity of multiple LEDs, arranged in a two dimensional grid for display purposes, an optical feedback loop to create a uniformity of light emission is highly desirable. Such a feedback loop would include an optical sensor to measure a fraction of the light output of the LED in real time and an electronic circuit to use the measurement to adjust the operating point of the LED.
  • An embodiment could include a nano-structured LED grown on a substrate that already has an embedded photodiode such as pinned photodiode. The light from the nano-structured LED is partially transmitted to the substrate where a photodiode measures and provides a signal proportional to the intensity of the light generated by the LED. This signal in turn is used in a feedback loop to control the bias point of the LED such that a stable light output is maintained at the desired intensity.
  • The nanowire-containing LED with optical feedback (NWLOF) could further comprise a partially reflective layer on the substrate surrounding and/or within the nanowire, wherein the partially reflective layer is configured to allow a first portion of the light to transmit through the partially reflective layer to the optical sensor and to allow at least a second portion of the light to reflect from a surface of the partially reflective layer.
  • The NWLOF could further comprise one or more cladding layers surrounding the nanowire, wherein the one or more cladding layers are configured such that the nanowire is configured to form a waveguide. The NWLOF could further comprise a low-index material having a lower refractive index surrounding the nanowire and a metal layer surrounding the low-index material.
  • The NWLOF could further comprise a volume element, wherein a portion of the nanowire and a portion of the volume element are configured to form the active region.
  • FIG. 1 provides an example implementation of this concept. The LED could be composed of the p region in the substrate over which it is grown, the intrinsic nanowire made out of any of the suitable materials listed above and an n type epitaxial region surrounding and contacting the nanowire. A photodiode is embedded into the substrate on which the nanowire is grown. An example of a pinned photodiode is illustrated in FIG. 2.
  • In embodiments herein, there are a variety of possible implementations of photodiodes and nano-structured LEDs. FIG. 1 is an example implementation. Another possible implementation (not shown in FIG. 1) would place the LED on the back side of the substrate containing the photodiode. This would require thinning the substrate such that photons from the LED can easily be collected by the potential well (the n+ region in FIG. 1) of the photodiode.
  • A nanostructured LED according to the embodiments comprises of an upstanding nanowire. For the purpose of this application an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown from the substrate, preferably by as vapor-liquid-solid (VLS) grown nanowires. The angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions. For example nanowires and substrates of zinc-blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table, such nanowires can be grown in the [111] directions and then be grown in the normal direction to any {111} substrate surface. Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70, 53° {111}, 54, 73° {100}, and 35, 27° and 90°, both to {110}. Thus the nanowires define one, or a limited set, of directions.
  • According to the embodiments, a part of the nanowire or structure formed from the nanowire could be used as a waveguide directing and confining at least a portion of the light created in {in or from/out of?} the nanostructured LED in a direction given by the upstanding nanowire. The waveguiding nanostructured LED structure could include a high refractive index nanowire with one or more surrounding cladding with refractive indices less than that of the core. The structure could be either circular symmetrical or close to being circular symmetrical. Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare-earth-doped fiber optic devices. However, one difference is that fiber amplifier are optically pumped to enhance the light guided through them while the described nanostructured LED can be seen as an efficient light to electricity converter and vice versa.
  • Preferably, an output of the optical sensor is an input to the electronic circuit. Preferably, the electrical parameter comprises voltage or current. Preferably, the electronic circuit is configured to control voltage or current such that the light output is maintained substantially constant irrespective of a temperature of the active region within an operating temperature range of the active region. Preferably, the optical sensor comprises a pn or p-i-n photodiode having a performance characteristic that is substantially insensitive to a temperature in an operating temperature range of the active region. Preferably, at least a portion of the light produced in the active region is directed in a direction given by the nanowire. Preferably, the nanowire is configured to both produce light and form a waveguide.
  • Preferably, the volume element comprises a doping layer configured to provide a p or n region and a well layer. Preferably, the optical sensor comprises a pinned photodiode in the substrate. Preferably, the one or more cladding layers are configured to provide a graded refractive index such that a refractive index of the nanowire is higher than that of the one or more cladding layer. Preferably, the NWLOF comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of the light. Preferably, the NWLOF comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of the light. Preferably, the NWLOF comprises a plurality of the nanowires comprising different materials emit different ranges of wavelengths of the light and the NWLOF comprises a plurality of the nanowires comprising different diameters that form waveguides for different ranges of wavelengths of the light. Preferably, the nanowire and the volume element are arranged to direct the light through the nanowire and the substrate such that the light is emitted from a second side of the substrate opposite the first side. Preferably, The substrate contains a photodiode that is optically coupled to the nanowire. Preferably, the volume element is configured to spread the light by dispersion at a junction between the nanowire and the volume element. Preferably, the electronic circuit comprises a controller configured to calibrate the electrical parameter. Preferably, the controller comprises memory, the memory comprising values for controlling the electrical parameter so that the light output is set by the values stored in the memory. Preferably, the controller comprises memory; wherein the controller is configured to calibrate the electrical parameter to cause the light output to more closely match a target output based on target values of the light output stored in the memory. Preferably, the target values represent current values for different colors of the light. Preferably, the target values represent target brightness levels.
  • The waveguiding properties of the nanowire can be improved in different ways. The nanowire could have a first effective refractive index, nw, and a cladding surrounding at least a portion of the nanowire could have a second effective refractive index, nc, and by assuring that the first refractive index is larger than the second refractive index, nw>nc, good wave-guiding properties could be provided to the nanowire. The waveguiding properties may be further improved by introducing an optically active cladding.
  • The high index material in the nanowire could, for example, be silicon nitride having a refractive index of about 2.0. The lower index cladding layer material could, for example, be a glass, for example a material selected from Table I, having a refractive index about 1.5.
  • TABLE I
    Typical Material Index of Refraction
    PESiN 2.00
    PESiO 1.46
    SiO2 1.46
  • In Table I, PESiN refers to plasma enhanced Si3N4 and PESiO refers to plasma enhanced SiO2.
  • For a LED operating in different wavelengths from the visible to the IR and deep in the micrometer wavelengths, a variety of materials can be used, such as: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, InP, InAsP, GalnP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb among others. To create CMOS circuits, Si and doped Si materials are preferable.
  • In one embodiment, the typical values of the refractive indexes for III-V semiconductor nanowire material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as SiO2 or Si3N4) having refractive indexes ranging from 1.4 to 2.3, satisfying the waveguiding requirement, nw>nc.
  • One consideration in the optimization of light extraction is to make the Numerical Aperture (NA) vary along the nanowire structure to optimize light extraction from the structure. In general, it is ideal to have the NA be highest when the light generation takes place furthest away from the exit location. This will maximize the light captured and guided toward the exit. In contrast, closer to the exit end of the structure, the NA can be made smaller since light generated will radiate in random directions and most of the radiate light will hit the top and side of the top part of the structure and exit. Having a lower NA in the top part of the structure also minimizes the light captures and guide back down through the structure that may not be ideal unless a reflector is inserted in the bottom of the structure. A low NA can be obtained by surrounding the III-V nanowire core with another III-V cladding of different composition with slightly less refractive index.
  • A nanostructured LED according to the embodiments could comprise a substrate and a nanowire epitaxially grown from the substrate in a defined angle θ. A portion of the nanowire is enclosed by a volume element. The volume element is preferably epitaxially connected to the nanowire. A portion of or all of the nanowire could be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide. The nanowire could have a diameter in the order of 50 nm to 500 nm. The length of the nanowire could be of the order of 1 to 10 μm. The pn-junction results in an active region arranged in the nanowire.
  • The materials of the different members of the nanostructured LED are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.
  • If the nanowire has a first refracting index, nw, the material surrounding the nanowire in wave guide portion, typically a cover layer, a second refractive index, nc, and the a volume element, a third refractive then nve, then nw>nc and nw>nve. Typical values for the nanostructured LED are nw˜4, nc˜1.5 and nve˜3.
  • In addition, the nanowire may be provided with one or more layers. A first layer may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire. Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics. The optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material. Alternatively the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilized, the refractive index of the nanowire, nw, should define an effective refractive index for both the nanowire and the layers.
  • The ability to grow nanowires with well defined diameters could be to optimize the waveguiding properties of the nanowire with regards to the wavelength of the light confined in the nanostructured LED. The diameter of the nanowire could be chosen so as to have a favorable correspondence to the wavelength of the desired light. Preferably the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire. The nanowire generally is sufficiently wide to capture the desired light. A rule of thumb would be that diameter must be larger than λ/2nw, wherein λ is the wavelength of the desired light and nw is the refractive index of the nanowire. As an example a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light in a silicon nanowire.
  • In the infrared and near infrared a diameter above 100 nm would be sufficient. An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and could be in the order of 500 nm. The length of the nanowire is typically and preferably in the order of 1-10 μm, providing enough volume for the active region.
  • A reflective layer could be in one embodiment, provided on the substrate and extending under the wire. The reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film.
  • An alternative approach to getting a reflection in the lower end of the nanowire could be to arrange a reflective layer in the substrate underneath the nanowire. Yet another alternative could be to introduce reflective means within the waveguide. Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiNx/SiOx (dielectric) or GaAs/AlGaAs (semiconductor). Such repeated layers with controlled thickness could also serve as optical grating filters to precisely control the output wavelength of the LED to mitigate wavelength drift for example with temperature.
  • In a further embodiment, a major part of the produced light is directed by the waveguide of the nanowire in a downward direction through the substrate. The light can be directed through the entire thickness of the substrate, or alternatively the substrate could be provided with a cut out beneath the base of the nanowire in order to reduce the thickness of the substrate and thereby reduce the scattering or absorption of light in the substrate. The substrate is preferably made of transparent material. A portion, or preferably the entire outer surface of the volume element may be covered by a reflective layer that increases the radiation of the produced light through the waveguide. The reflective layer, for example formed of a metal, may additionally serve as a contact. Part of the nanowire and the substrate could optionally covered by a protective layer of SiC or SiN, for example.
  • In an embodiment, the volume element can be arranged to be a dispersive element, giving a light radiation that is essentially evenly distributed over a wide angle. Such device can be well suited for illuminating purposes wherein an even illumination is required. The active region may be arranged in the nanowire but alternatively may be within the volume element, and above the upper end of the nanowire, or radially outwards of the nanowire and possibly above. The nanowire should preferably at its lower end be provided with some of the reflective means, for example a reflective material within the nanowire, in order to redirect light upwards. The geometry of the volume element can be designed to further disperse the light. Dispersion is provided at the junction between the nanowire waveguide and the volume element and further at the edge formed by the upper boundary of the volume element. The height and width of the volume element can be chosen so that the edge disperses light further. One embodiment can be optimized for providing a collected and directionally oriented beam. The nanowire of relatively large diameter, preferably above 150 nm, can extend to the upper surface of the volume element. The nanowire can be provided with a concave lens like exit surface on the upper end.
  • Nanowires, acting as waveguides, can be used to improve the performance of conventional planar LEDs. In an embodiment, a plurality of nanowires can be arranged on the surface of a planar LED. Light is produced in the active region, which could be an active layer of the planar LED, for example of GaAsP. The nanowires can be epitaxially connected on top of the planar LED layers in order to get a good matching of the different parts. The nanowires may be coated by a cladding layer protecting the nanowires and/or improving the properties, for example Si3N4. The surface in between the nanowires can be preferably coated with a reflective layer, for example of Au. At least a part of the light, produced in the active region, could enter the nanowires that are acting as waveguides and leading the light away from the substrate plane.
  • Depending on the intended use of the nanostructured LED, availability of suitable production processes and cost for materials etc., a wide range of materials can be used for the different parts of the structure. Suitable materials for LED have to be matched with suitable materials for the photo diodes based on the wavelength of the light being emitted/detected by the system. Both the LED and the photo diode should work as intended in the wavelength range of light for which the system is configured to operate.
  • In addition, the nanowire based technology allows for defect free combinations of materials that otherwise would be impossible to combine. The III-V semiconductors are of particular interest due to their properties facilitating high speed and low power electronics. Suitable materials for the substrate include, but is not limited to: Si, GaAs, GaP, GaP:Zn, InAs, InP, GaN, Al2O3, SiC, Ge, GaSb, ZnO, InSb, SOI (silicon-on-insulator), CdS, ZnSe, CdTe. In the case of the present invention (i.e. for creating display structure in the visible light), a Si substrate is preferred since it embeds a CMOS photodiode underneath the LED. For wavelengths between blue and near IR, Si could be used in the photo diode. For wavelengths outside the range of light detected by Si, such as IR or UV light, it is possible to use GaAs in photodiodes for LED in the range of 800-1500 nm, e.g., 850 nm; and InGaAs/InP in the range 1310-1550 nm.
  • Suitable materials for the nanowire include, but is not limited to: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GalnP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb. For this application the nano wire materials are carefully selected from the list above and the Table 1 below to produce red, green and blue light.
  • TABLE 1
    List of band gaps
    Band gap (eV) @
    Material 
    Figure US20140246684A1-20140904-P00001
    Symbol 
    Figure US20140246684A1-20140904-P00001
    300K 
    Figure US20140246684A1-20140904-P00001
    Silicon Si 1.11
    Selenium Se 1.74
    Germanium Ge 0.67
    Silicon carbide SiC 2.86
    Aluminum phosphide AlP 2.45
    Aluminium arsenide AlAs 2.16
    Aluminium antimonide AlSb 1.6
    Aluminium nitride AlN 6.3
    Diamond C 5.5
    Gallium(III) phosphide GaP 2.26
    Gallium(III) arsenide GaAs 1.43
    Gallium(III) nitride GaN 3.4
    Gallium(II) sulfide GaS 2.5 (@ 295K)
    Gallium antimonide GaSb 0.7
    Indium(III) nitride InN 0.7
    Indium(III) phosphide InP 1.35
    Indium(III) arsenide InAs 0.36
    Zinc oxide ZnO 3.37
    Zinc sulfide ZnS 3.6
    Zinc selenide ZnSe 2.7
    Zinc telluride ZnTe 2.25
    Cadmium sulfide CdS 2.42
    Cadmium selenide CdSe 1.73
    Cadmium telluride CdTe 1.49
    Lead(II) sulfide PbS 0.37
    Lead(II) selenide PbSe 0.27
    Lead(II) telluride PbTe 0.29
    Copper(II) oxide CuO 1.2
  • The relationship between wavelength and bandgap energy may be obtained from:
  • E = hv = hc λ = ( 4.13566733 × 10 - 15 eV s ) ( 3 × 10 8 m / s ) λ
  • Where E is the energy, v is the frequency, λ is the wavelength of a photon, h is Planck's constant, and c is the Speed of light. For quick calculations, this reduces to
  • E ( eV ) = 1240 λ ( nm )
  • A stream of photons with a wavelength of 532 nm (green light) would have an energy of approximately 2.33 eV. Similarly, 1 eV would correspond to a stream of infrared photons of wavelength 1240 nm, and so on.
  • 1 eV=8065.5447 cm−1
  • Possible donor dopants for example include GaP, Te, Se, S, etc, and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc. It should be noted that the nanowire technology makes it possible to use nitrides such as SiN, GaN, InN and AlN, which facilitates fabrication of LEDs detecting light in wavelength regions not easily accessible by conventional technique. Other combination of particular commercial interest include, but is not limited to GaAs, GalnP, GaAlInP, GaP systems. Typical doping levels range from 1×1018 cm−3 to 1×1020 cm−3.
  • The appropriateness of low resistivity contact materials are dependent on the material to be deposited on, but metal, metal alloys, as well as non-metal compounds, like: Al, Al—Si, TiSi2, TiN, W, MoSi2, PtSi, CoSi2, WSi2, In, AuGa, AuSb, AuGe, PdGe, Ti/Pt/Au, Ti/Al/Ti/Au, Pd/Au, ITO (InSnO), etc. and combinations of, e.g., metal and ITO can be used.
  • The substrate could be an integral part of the device, since it also contains the photodiodes necessary to detect light that has not been confined to the nanowire. For this application, the substrate in addition also contains standard CMOS circuits to control the biasing, amplification and readout of the LED as well as any other CMOS circuit deemed necessary and useful. The substrate includes substrates having active devices therein. Suitable materials for the substrates include silicon and silicon-containing materials. Generally, each sensor element of the embodiment includes a nanostructured LED structure comprising a nanowire, a cladding enclosing at least a portion of the nanowire, a coupler and two contacts. Similarly, for light in higher wavelengths, GaAs circuitry can be used with the appropriate light emitting materials for those wavelengths.
  • In one embodiment, a micro lens could be located on the LED, for example, as shown in FIG. 1. The micro lens may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials. Typically the lens layers could be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers, if present, or the patterned planarizing layer. Polymeric materials should preferably have a high degree of stability with temperature to act as micro lenses for LEDs since this device needs to perform at high temperatures. The micro lens of FIG. 1 does not require a new material; simply patterning the clad material to the right shape forms it.
  • A method of fabricating nanostructured LED is to first grow a nanowire. Part of the nanowire could then be masked and the volume element could be grown selectively. The volume element grows both axially and radial, hence, when the nanowire is masked partly, the nanowire becomes enclosed in the volume element. Appropriate masking materials are e.g. silicon nitride, silicon oxide etc.
  • Considering systems where nanowire growth is locally enhanced by a substance, as VLS grown nanowires, the ability to alter between radial and axial growth by altering growth conditions enables the procedure (nanowire growth, mask formation, and subsequent selective growth) and can be repeated to form nanowire/3D-sequences of higher order. For systems where the nanowire growth and selective growth are not distinguished by separate growth conditions it may be better to first grow the nanowire along the length and by different selective growth steps grow different types of 3D regions or volume elements.
  • According to the present invention, in order to fabricate a light emitting pn diode/array with active nanowire region(s) formed of GaAs and InGaP, comprises the steps of: Preferably, the substrate could be Si containing the photodiode. Subsequently, to grow a GaAs nano wire, for example, one could lay down an epitaxial layer of p+GaP on the silicon substrate.
  • 1. Defining of local catalyst/catalysts on a p+GaP substrate by lithography.
  • 2. Growing GaAs nanowire from local catalyst. The growth parameters adjusted for catalytic wire growth.
  • 3. Radial growing of thin InGaP concentric layer around the nanowire (cladding layer).
  • 4. Depositing of SiO2 as mask material.
  • 5. Back etching of mask to open up the upper parts of the nanowires.
  • 6. Selective growing of n+InGaP volume element. The growth parameters adjusted to give radial growth.
  • 7. Forming contacts on the volume element and to the substrate.
  • In the embodiments herein, silicon nanowires (NW) could be grown on a layer of silicon. The process could apply for growing Si NW on dielectric layer, or for III-V compound grown on the appropriate substrate, including Si substrate with or without a thin Molybdenum layer.
  • The silicon nanowire of the embodiments disclosed herein could be made as follows. A substrate is provided which comprises silicon having a silicon dioxide surface. The surface can be modified to remove an oxide layer with a surface treatment to promote adsorption of a gold nanoparticle, or gold alloys nanoparticle like AuGa. Onto this modified surface, preferably a Si substrate have the {111} plane, (Au is used to create the Si—Au eutectic point and grow the Si nanowire when SiH4 is introduced), the gold nanoparticle can be formed by deposition of a gold layer, followed by removal of the gold layer over regions other than desired location of the gold nanoparticle. The silicon nanowire can be grown, for example, by plasma enhanced vapor-liquid-solid growth. In a first step, a catalyst particle (typically gold or gold alloy) may be deposited on top of the substrate by either a standard electron beam lithography (EBL) process or using self-assembly of prefabricated catalyst colloids. Other processes for depositing catalysts, such as electroless plating may also be used.
  • The diameters of nanowires after growth are generally determined by the area of the catalyst particles. Therefore, a desired diameter of the nanowire can be synthesized by depositing a catalyst particle with an appropriate size. This step typically determines the functionality of the nanowire pixel because the nanowire diameter should be of an appropriate cross-section area to allow the transmission of light with specific wavelengths and long enough to allow the light absorption and creation of excitons (electron-hole pairs).
  • A single nanowire can be grown from the catalyst particle under proper conditions. Using silicon as an example, a suitable nanowire can be grown using the vapor-liquid-solid (VLS) process with presence of SiH4 at, for example, temperature at 650 C and pressure of 200 mTorr. A temperature below 450 C is advisable for the integration compatibility of CMOS circuits and nanowire synthesis. Many researchers have been able to synthesize silicon nanowires at 430 C or even below 400 C by using some special techniques, for example, using aluminum catalysts or plasma enhanced growth. During the VLS process, the silicon nanowire can be doped to create a p+-i(intrinsic)-n+ structure by introducing B2H6, H2 and PH3, respectively.
  • Nanowires have a higher surface-to-volume ratio than the corresponding bulk materials. Therefore the surface states of nanowires play a more important role in their electronic and optical properties. The impact of nanowire surface states, however, can be minimized by surface passivation after the nanowire synthesis. Typically, surface passivation can be achieved with a monolayer of materials to react with silicon dangling bonds at the surface of the nanowire. This is accomplished with the formation of stable bonds after reaction. Advantageously, passivation has almost no effect on the nanowire physical dimension since it is only one-monolayer thick.
  • Subsequent steps could relate to the forming of an epitaxial layer that is n or p doped covering the nanowire or of one or more of the dielectric layers around the nanowire.
  • The epitaxial n or p doped layer covering the nanowire could be grown using vapor-phase epitaxy (VPE), a modification of chemical vapor deposition. Molecular-beam epitaxy, liquid-phase epitaxy (MBE and LPE) and solid-phase epitaxy (SPE) could also be used. In each of these processes, a dopant could be added into the epitaxially grown layer during the epitaxial layer growth process.
  • A conformal dielectric coating around the nanowire, if needed, could be made by chemical vapor deposition (CVD), atomic layer deposition (ALD), oxidation or nitration could be made around the nanowire. Then, doped glass dielectric layer could be formed on the conformal dielectric coating by plasma enhanced chemical vapor deposition, spin-on coating or sputtering, optionally with an initial atomic layer deposition. The deposited doped glass dielectric layer could be etched back by chemical-mechanical planarization or other methods of etching.
  • In one embodiment, a funnel and a lens on the funnel to channel electromagnetic radiation such as light out of the nanowire waveguide could be made as follows: deposition of a glass/oxide/dielectric layer by CVD, sputter deposition or spin-on coating; application of a photoresist on the deposited glass/oxide/dielectric layer; removal of the photoresist outside an opening centered over the nanowire within the deep cavity; and forming a coupler by semi-isotropic etching in the glass/oxide/dielectric layer.
  • Additional steps could relate to the forming of a metal or metal oxide ring layer around the one or more dielectric layers by depositing a metal such a copper on the vertical walls of the one or more dielectric layers.
  • The growth process can be varied in known ways to include heterostructures in the nanowires, provide reflective layers etc. The stem in some embodiment can be provided by first growing a thin nanowire, depositing a reflective layer or a selective growth mask covering the lower part, and radial growing a cladding layer or increasing the nanowire thickness.
  • The nanowire-containing LEDs with optical feedback could be used in an image display device having a large number of identical display elements, generally greater than 1 million, in a grid. The embodiments disclosed here would allow the manufacture of such a grid of NWLOF.
  • In some implementations a large plurality of nanostructured LEDs can be provided in one image display device. A plurality of nanostructured LEDs can be epitaxially grown on a Zn-doped GaP substrate. The nanowires of the LEDs can be of intrinsic GaAs, and provided with a concentric layer of undoped InGaP. The volume elements can comprise of Si-doped InGaP. The lower parts of the nanowires and the substrate can be covered by a SiO2-layer. A back plane contact can be provided on the substrate connecting a plurality of LEDs, and each individual LED can be provided with a wrap around contact on the volume elements. The wrap around contacts can be connected for a group-wise addressing of the LEDs.
  • In one embodiment the inherent property that nanowires grow in a limited set of preferred directions, as discussed above, can be used to grown nanowires in the same direction, or one of a limited set of directions. The direction of the grown nanowires could be perpendicular to the substrate or at an angle from the perpendicular to the substrate. Preferably the LEDs can be arranged to produce fairly directed light beams. Adjacent to the group of LEDs a reflective material can be provided, with an angle to the substrate corresponding to the direction of the LEDs so that the light emitted from the LEDs can be reflected by the reflective material in a desired direction.
  • Additional features of the image display devices disclosed herein are: (1) A light emitting surface with different pixels. There are three types of pixels, each emitting one color: red, blue or green. The display color is constructed from the combination of the three (red, blue and green) colors. The eye (human) views the surface directly through a magnifying lens and thus sees the image. The image could change with time to display moving objects and the like. (2) There could be the same pixel configuration as in feature (1), but the light emitted from the surface is focused through a lens, and then the final image is displayed on a non-active surface such as a screen. Both cases are viable embodiments. The first relates to a display such as TV, computer screen and the like, and the other is to an electronic projector. An illustration of how a chip of the image display device could be partitioned is shown in FIG. 4 to create a system on a chip (SOC). The video image from the LED array is focused through a lens and is viewed either directly as in a head mounted display or is projected onto a screen
  • Preferably, the plurality of NWLOFs comprises at least a first active region for emitting a first color, a second active region for emitting a second color, and a third active region for emitting a third color. Preferably, the image display does not include a color filter.
  • Optionally, the image display device could have three chips to produce red, green and blue and the light, respectively, from each chip and to be interleaved by an external circuit and optical system. Each chip may only consist of a single color array of LEDs for the ease of manufacturing.
  • Preferably, the plurality of NWLOFs comprises at least a first electrical parameter to control emission of the first color, a second electrical parameter to control emission of the second color, and a third electrical parameter to control emission of the third color. Preferably, the image display comprises a display device, a microdisplay, a computer display, TV and a display system on a chip.
  • According to embodiments herein, it is possible to manufacture a device that has other complex circuits besides the NWLOF. Such a device could be a system on a chip (SoC) made on a silicon substrate, for example.
  • For example, the display (such as that shown in FIG. 4) could be a self contained display device that has the following circuits: a NWLOF grid; a row column addressing circuitry; a video signal processing chain for the photodiode array; a feedback loop circuitry for the bias circuits of the nanowire LED; power supplies and regulation circuits; digital circuits to decode standard video signals; and a thermally sound design that would allow for the management of all heat generated by the device. Once this SoC is accomplished, it would now be possible to design a single chip display system that requires nothing other than a lens to operate as display SoC.
  • These are the major circuit blocks required for a display chip:
      • 1) A nano wired LED array in a tessellation described in FIG. 3.
      • 2) Row column decode circuitry to individually address an LED and its associated photodiode or to a mapping of a group of contiguous LEDs to a single photodiode.
      • 3) A major analog circuit block to provide the Video Signal Processing Chain for read out of photodiode array to provide the input to the controller circuit, the controller circuit itself being for stabilizing the light output of the LED array individually or in groups, power supplies and regulators for the LED array and the photodiode array.
      • 4) A digital video decoding circuit to convert standard video input into a form necessary for all other circuits to operate in the chip.
      • 5) Memory blocks, both dynamic and static, to be used as video data buffers and program storage.
      • 6) Microprocessor, which is optional, could be included to carry out any of the functions capable of a microprocessor.
  • With the appropriate choice of materials for the nano-wire, the epitaxial layer and the diameter of the nanowire, Red, Green and Blue LEDs can be implemented. The preferred tessellations for the LED array is shown in FIGS. 3( a) and 3(b). There are a number of other possible arrangements, for example:
  • R G B R G B R G B R G B R G B R G B R G B R G B
    B G R B G R B G R B G R B G R B G R B G R B G R
    R G B R G B R G B R G B R G B R G B R G B R G B
  • The pinned photodiode shown in FIG. 2 is described in U.S. Pat. No. 6,100,551, which is incorporated herein in their entirety by reference. FIG. 2 illustrates a cross sectional diagram of the devices used in creating the sensor of the present invention. This is the result of integration of an active pixel sensor (APS) architecture typically fabricated in CMOS technology with a pinned photodiode device (item12 PPD in FIG. 2) using a mixed process technology. The PPD becomes the photoactive element in an XY-addressable area array.
  • The uniformity of the photodiode array is first ensured by dark and uniform illumination of the entire array with an external source while the nano wire LEDs are turned off. The gains, the black levels of the three color channels, and whatever other controls available in the circuits are then adjusted to their initial values. Similarly, the pixel to pixel uniformity of the LED array is ensured by setting the loop gain values of the photodiode/LED pair either individually or in mapped groups through an initial calibration process.
  • In subsequent operation the LED output will retain immunity to temperature variation to the degree that the pinned photodiode allows. In addition this approach will mitigate the development of non-uniformity and local or global drift in brightness, including fixed pattern noise due to manufacturing non-uniformity, in the display generated by the LED array during operation.
  • The entire processing, memory, control, and driver system may be generally referred to as a controller. Various other types of circuitry may also act as the controller, and the embodiment is not limited to a particular circuitry used.
  • All references mentioned in the application are incorporated herein in their entirety by reference.

Claims (21)

What is claimed:
1. A device comprising a nanowire comprising a light-emitting diode (LED) portion, wherein the LED portion of the nanowire has a structure that supplies an electrical bias to the LED portion of the nanowire in combination with an optical sensor.
2. The device of claim 1, wherein the LED portion comprises a PN junction or a PIN-junction.
3. The device of claim 1, further comprising an electrical circuit configured to control the electrical bias.
4. The device of claim 3, wherein an output of the optical sensor is an input to the electrical circuit.
5. The device of claim 3, wherein the electrical circuit is configured to control the electrical bias such that light output of the LED portion is maintained substantially constant irrespective of a temperature of the LED portion within an operating temperature range of the LED portion.
6. The device of claim 3, wherein the electrical circuit is configured to control the electrical bias such that light output of the LED portion is maintained substantially constant irrespective of composition variations of the LED portion.
7. The device of claim 1, further comprising a substrate, wherein the optical sensor is in the substrate and surrounds the nanowire.
8. The device of claim 1, wherein the optical sensor is configured to detect at least a first portion of a light produced by the LED portion.
9. The device of claim 1, wherein at least a portion of light emitted from the LED portion is infrared.
10. The device of claim 1, wherein the nanowire has a diameter above 100 nm.
11. The device of claim 1, wherein the nanowire comprises GaAs.
12. An image display comprising the device of claim 1.
13. A device comprising a nanowire comprising a light-emitting diode (LED) portion, a structure that supplies an electrical bias to the LED portion, an optical sensor configured to measure an intensity of light produced by the LED portion, and a controller configured to control the electrical bias based on the intensity.
14. The device of claim 13, wherein the optical sensor surrounds the nanowire.
15. The device of claim 13, wherein the controller is configured to maintain light output of the LED portion substantially constant, irrespective of a temperature of the LED portion, composition variations of the LED portion, or both.
16. An image display comprising the device of claim 13.
17. An image display comprising a plurality of pixels, wherein at least one of the plurality of pixels comprises a nanowire wherein the nanowire comprises a light-emitting diode (LED) portion, wherein the LED portion of the nanowire has a structure that supplies an electrical bias to the LED portion of the nanowire in combination with an optical sensor; wherein the LED portion is operable to emit a first color.
18. The image display of claim 17, wherein the device comprises a second LED for emitting a second color different from the first color, and a third LED for emitting a third color different from both the first and second colors.
19. The image display of claim 17, wherein the image display does not include a color filter.
20. The image display of claim 17, wherein the image display comprises a television system on a chip or a micro-display.
21. The image display of claim 17, further comprising a lens configured to project the image.
US14/274,448 2008-09-04 2014-05-09 Nano structured leds Abandoned US20140246684A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US12/945,492 US9515218B2 (en) 2008-09-04 2010-11-12 Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US14/274,448 US20140246684A1 (en) 2009-10-05 2014-05-09 Nano structured leds
US14/503,598 US9410843B2 (en) 2008-09-04 2014-10-01 Nanowire arrays comprising fluorescent nanowires and substrate
US14/516,162 US20160111562A1 (en) 2008-09-04 2014-10-16 Multispectral and polarization-selective detector
US14/516,402 US20160111460A1 (en) 2008-09-04 2014-10-16 Back-lit photodetector
US14/632,739 US9601529B2 (en) 2008-09-04 2015-02-26 Light absorption and filtering properties of vertically oriented semiconductor nano wires
US14/704,143 US20150303333A1 (en) 2008-09-04 2015-05-05 Passivated upstanding nanostructures and methods of making the same
US14/705,380 US9337220B2 (en) 2008-09-04 2015-05-06 Solar blind ultra violet (UV) detector and fabrication methods of the same
US15/057,153 US20160178840A1 (en) 2008-09-04 2016-03-01 Optical waveguides in image sensors
US15/082,514 US20160211394A1 (en) 2008-11-13 2016-03-28 Nano wire array based solar energy harvesting device
US15/090,155 US20160216523A1 (en) 2008-09-04 2016-04-04 Vertical waveguides with various functionality on integrated circuits
US15/093,928 US20160225811A1 (en) 2008-09-04 2016-04-08 Nanowire structured color filter arrays and fabrication method of the same
US15/149,252 US20160254301A1 (en) 2008-09-04 2016-05-09 Solar blind ultra violet (uv) detector and fabrication methods of the same
US15/225,264 US20160344964A1 (en) 2008-09-04 2016-08-01 Methods for fabricating and using nanowires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/573,582 US8791470B2 (en) 2009-10-05 2009-10-05 Nano structured LEDs
US14/274,448 US20140246684A1 (en) 2009-10-05 2014-05-09 Nano structured leds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/573,582 Continuation US8791470B2 (en) 2008-09-04 2009-10-05 Nano structured LEDs

Publications (1)

Publication Number Publication Date
US20140246684A1 true US20140246684A1 (en) 2014-09-04

Family

ID=43822512

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/573,582 Expired - Fee Related US8791470B2 (en) 2008-09-04 2009-10-05 Nano structured LEDs
US14/274,448 Abandoned US20140246684A1 (en) 2008-09-04 2014-05-09 Nano structured leds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/573,582 Expired - Fee Related US8791470B2 (en) 2008-09-04 2009-10-05 Nano structured LEDs

Country Status (3)

Country Link
US (2) US8791470B2 (en)
TW (2) TWI470783B (en)
WO (1) WO2011044101A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534595A (en) * 2018-08-24 2021-12-09 マシュー ハーテンスヴェルド Nanowire light emitting switch device and its method
US11604354B2 (en) * 2020-04-03 2023-03-14 Magic Leap, Inc. Wearable display systems with nanowire LED micro-displays

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2091862B1 (en) * 2006-12-22 2019-12-11 QuNano AB Elevated led and method of producing such
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
CN102144298B (en) * 2008-09-04 2013-07-31 昆南诺股份有限公司 Nanostructured photodiode
DE102012109460B4 (en) 2012-10-04 2024-03-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing a light-emitting diode display and light-emitting diode display
FR3011381B1 (en) * 2013-09-30 2017-12-08 Aledia OPTOELECTRONIC DEVICE WITH LIGHT EMITTING DIODES
US9059337B1 (en) * 2013-12-24 2015-06-16 Christie Digital Systems Usa, Inc. Method, system and apparatus for dynamically monitoring and calibrating display tiles
DE102014104240A1 (en) * 2014-03-26 2015-10-01 Sick Ag Optical sensor
FR3041153B1 (en) * 2015-09-10 2018-07-27 Aledia LIGHT EMITTING DEVICE WITH INTEGRATED LIGHT SENSOR
FR3041152B1 (en) * 2015-09-10 2018-07-27 Aledia LIGHT EMITTING DEVICE WITH INTEGRATED LIGHT SENSOR
US9865714B2 (en) * 2016-04-06 2018-01-09 International Business Machines Corporation III-V lateral bipolar junction transistor
US10529696B2 (en) * 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
CN109831925A (en) * 2016-09-29 2019-05-31 加利福尼亚大学董事会 Visible light communication system on chip
US10177195B2 (en) * 2016-09-30 2019-01-08 Intel Corporation Micro-LED displays
CN106444250A (en) * 2016-10-28 2017-02-22 江苏新广联半导体有限公司 Projector module for micro-display with three-typed LEDs
FR3058570B1 (en) * 2016-11-10 2019-05-24 Valeo Vision LIGHT SOURCE WITH LIGHT EMITTING UNITS WITH DETECTION FUNCTION
JP6999877B2 (en) 2017-07-31 2022-01-19 セイコーエプソン株式会社 Luminous device and projector
KR102420787B1 (en) * 2017-10-20 2022-07-13 엘지디스플레이 주식회사 Light emitting diode applying anisotropic nano rod and light emitting apparatus having thereof
US10818816B2 (en) 2017-11-22 2020-10-27 Advanced Semiconductor Engineering, Inc. Optical device with decreased interference
FR3077653A1 (en) * 2018-02-06 2019-08-09 Aledia OPTOELECTRONIC DEVICE WITH ELECTRONIC COMPONENTS AT THE REAR-SIDE OF THE SUBSTRATE AND METHOD OF MANUFACTURE
US20230116053A1 (en) * 2021-09-29 2023-04-13 International Business Machines Corporation Device integration using carrier wafer
CN116682843B (en) * 2023-08-03 2023-11-28 浙江大学 Nanowire light-emitting device and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292512A (en) * 1978-06-19 1981-09-29 Bell Telephone Laboratories, Incorporated Optical monitoring photodiode system
US20050009224A1 (en) * 2003-06-20 2005-01-13 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7326915B2 (en) * 2005-04-01 2008-02-05 Em4, Inc. Wavelength stabilization for broadband light sources
US8154127B1 (en) * 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same

Family Cites Families (438)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918848A (en) 1929-04-26 1933-07-18 Norwich Res Inc Polarizing refracting bodies
US3903427A (en) 1973-12-28 1975-09-02 Hughes Aircraft Co Solar cell connections
US4017332A (en) 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4357415A (en) 1980-03-06 1982-11-02 Eastman Kodak Company Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier
FR2495412A1 (en) * 1980-12-02 1982-06-04 Thomson Csf DIRECTLY MODULATED INFORMATION TRANSMISSION SYSTEM FOR OPTICALLY BANDWIDTH OPTICALLY LINKED LIGHT EXTENDED TO LOW FREQUENCIES AND CONTINUOUS
US4400221A (en) 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4387265A (en) 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5247349A (en) 1982-11-16 1993-09-21 Stauffer Chemical Company Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure
US4678772A (en) 1983-02-28 1987-07-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions containing glycyrrhizin
US4513168A (en) 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
US4620237A (en) 1984-10-22 1986-10-28 Xerox Corporation Fast scan jitter measuring system for raster scanners
JPS61250605A (en) 1985-04-27 1986-11-07 Power Reactor & Nuclear Fuel Dev Corp Image fiber with optical waveguide
US4827335A (en) 1986-08-29 1989-05-02 Kabushiki Kaisha Toshiba Color image reading apparatus with two color separation filters each having two filter elements
EP0275063A3 (en) 1987-01-12 1992-05-27 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
CA1309519C (en) * 1987-03-17 1992-10-27 Antonio Cantoni Transfer of messages in a multiplexed system
JPH0721562B2 (en) 1987-05-14 1995-03-08 凸版印刷株式会社 Color filter
JPH0288498A (en) 1988-06-13 1990-03-28 Sumitomo Electric Ind Ltd Diamond laser crystal and its formation
FR2633101B1 (en) 1988-06-16 1992-02-07 Commissariat Energie Atomique PHOTODIODE AND MATRIX OF PHOTODIODES ON HGCDTE AND METHODS OF MAKING SAME
US5311047A (en) 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor
US5124543A (en) 1989-08-09 1992-06-23 Ricoh Company, Ltd. Light emitting element, image sensor and light receiving element with linearly varying waveguide index
US5401968A (en) 1989-12-29 1995-03-28 Honeywell Inc. Binary optical microlens detector array
US4971928A (en) 1990-01-16 1990-11-20 General Motors Corporation Method of making a light emitting semiconductor having a rear reflecting surface
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
GB9025837D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Light emitting diamond device
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5374841A (en) 1991-12-18 1994-12-20 Texas Instruments Incorporated HgCdTe S-I-S two color infrared detector
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
DE59403063D1 (en) 1993-02-17 1997-07-17 Hoffmann La Roche Optical component
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5625210A (en) 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5747796A (en) 1995-07-13 1998-05-05 Sharp Kabushiki Kaisha Waveguide type compact optical scanner and manufacturing method thereof
JP3079969B2 (en) 1995-09-14 2000-08-21 日本電気株式会社 Complete contact image sensor and method of manufacturing the same
US5767507A (en) 1996-07-15 1998-06-16 Trustees Of Boston University Polarization sensitive photodetectors and detector arrays
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5723945A (en) 1996-04-09 1998-03-03 Electro Plasma, Inc. Flat-panel display
US5853446A (en) 1996-04-16 1998-12-29 Corning Incorporated Method for forming glass rib structures
GB2312524A (en) 1996-04-24 1997-10-29 Northern Telecom Ltd Planar optical waveguide cladding by PECVD method
US6074892A (en) 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US5986297A (en) 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
US5612780A (en) 1996-06-05 1997-03-18 Harris Corporation Device for detecting light emission from optical fiber
US5943463A (en) 1996-06-17 1999-08-24 Sharp Kabushiki Kaisha Color image sensor and a production method of an optical waveguide array for use therein
JP2917920B2 (en) 1996-06-27 1999-07-12 日本電気株式会社 Solid-state imaging device and method of manufacturing the same
AUPO281896A0 (en) 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6388648B1 (en) 1996-11-05 2002-05-14 Clarity Visual Systems, Inc. Color gamut and luminance matching techniques for image display systems
US5798535A (en) 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
AU747383B2 (en) * 1997-02-18 2002-05-16 E-Parcel, Llc Robust delivery system
ATE224228T1 (en) 1997-04-17 2002-10-15 De Beers Ind Diamond SINTERING PROCESS FOR DIAMONDS AND DIAMOND GROWING
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US5968528A (en) 1997-05-23 1999-10-19 The Procter & Gamble Company Skin care compositions
US5857053A (en) 1997-06-17 1999-01-05 Lucent Technologies Inc. Optical fiber filter
US5900623A (en) 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
US6046466A (en) 1997-09-12 2000-04-04 Nikon Corporation Solid-state imaging device
CA2248490C (en) * 1997-10-31 2002-08-27 Lucent Technologies Inc. Access to communications systems
KR100250448B1 (en) 1997-11-06 2000-05-01 정선종 Fabrication of silicon nano-structures using silicon nitride
US5880495A (en) 1998-01-08 1999-03-09 Omnivision Technologies, Inc. Active pixel with a pinned photodiode
KR20010040506A (en) 1998-02-02 2001-05-15 유니액스 코포레이션 Image Sensors Made from Organic Semiconductors
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
US6301420B1 (en) 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
KR100619598B1 (en) * 1998-10-01 2006-12-01 엘지전자 주식회사 Signal Format Method in Mobile Communication System
US6606313B1 (en) * 1998-10-05 2003-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
US6463204B1 (en) 1998-12-18 2002-10-08 Fujitsu Network Communications, Inc. Modular lightpipe system
US6326649B1 (en) 1999-01-13 2001-12-04 Agere Systems, Inc. Pin photodiode having a wide bandwidth
US7307990B2 (en) * 1999-01-19 2007-12-11 Cisco Technology, Inc. Shared communications network employing virtual-private-network identifiers
WO2000052765A1 (en) 1999-03-01 2000-09-08 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
GB2348399A (en) 1999-03-31 2000-10-04 Univ Glasgow Reactive ion etching with control of etch gas flow rate, pressure and rf power
JP3706527B2 (en) 1999-06-30 2005-10-12 Hoya株式会社 Electron beam drawing mask blanks, electron beam drawing mask, and method of manufacturing electron beam drawing mask
PT1353448E (en) * 1999-07-07 2005-03-31 Samsung Electronics Co Ltd DEVICE FOR THE CHANNEL ALLOCATION AND METHOD FOR TRANSMISSION IN A COMMON PACKAGE CHANNEL, IN A WCDMA COMMUNICATIONS SYSTEM
US6694148B1 (en) * 1999-07-26 2004-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control for MCPA-equipped based stations
US6124167A (en) 1999-08-06 2000-09-26 Micron Technology, Inc. Method for forming an etch mask during the manufacture of a semiconductor device
US6407439B1 (en) 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
US6805139B1 (en) 1999-10-20 2004-10-19 Mattson Technology, Inc. Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
FI19992695A (en) * 1999-12-15 2001-06-16 Nokia Networks Oy Procedure for channel allocation in a cellular radio system
US6465824B1 (en) 2000-03-09 2002-10-15 General Electric Company Imager structure
GB0007337D0 (en) * 2000-03-28 2000-05-17 Koninkl Philips Electronics Nv Radio communication system
JP3507809B2 (en) * 2000-04-10 2004-03-15 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド Data transmission method for hybrid automatic retransmission request 2/3 scheme in uplink of broadband wireless communication system
US6610351B2 (en) 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US20020020846A1 (en) 2000-04-20 2002-02-21 Bo Pi Backside illuminated photodiode array
FR2809577B1 (en) * 2000-05-25 2002-10-18 Mitsubishi Electric Inf Tech DATA TRANSMISSION METHOD COMBATING THE DEGRADATION OF QUALITY OF SERVICE
JP2002057359A (en) 2000-06-01 2002-02-22 Sharp Corp Laminated solar battery
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
KR100419409B1 (en) * 2000-06-24 2004-02-19 삼성전자주식회사 Apparatus and method for synchronization of uplink synchronous transmission scheme in cdma communication system
US6690871B2 (en) 2000-07-10 2004-02-10 Massachusetts Institute Of Technology Graded index waveguide
AU2001281132A1 (en) 2000-08-11 2002-02-25 Bellataire International Llc High pressure and high temperature production of diamonds
US6681115B1 (en) * 2000-08-14 2004-01-20 Vesuvius Inc. Communique subscriber handoff between a narrowcast cellular communication network and a point-to-point cellular communication network
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
EP1314189B1 (en) 2000-08-22 2013-02-27 President and Fellows of Harvard College Electrical device comprising doped semiconductor nanowires and method for its production
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
CN1245818C (en) * 2000-10-09 2006-03-15 西门子公司 Method for transmission of data packets via radio interface of mobile radio system
KR20020030367A (en) * 2000-10-17 2002-04-25 오길록 Random Access Transmission and Procedure for Mobile Satellite Communication Systems
JP2002151715A (en) 2000-11-08 2002-05-24 Sharp Corp Thin-film solar cell
US6800870B2 (en) 2000-12-20 2004-10-05 Michel Sayag Light stimulating and collecting methods and apparatus for storage-phosphor image plates
EP1344392B1 (en) 2000-12-21 2006-02-22 STMicroelectronics N.V. Image sensor device comprising central locking
EP1365455A4 (en) 2001-01-31 2006-09-20 Shinetsu Handotai Kk Solar cell and method for producing the same
JP3809342B2 (en) 2001-02-13 2006-08-16 喜萬 中山 Light emitting / receiving probe and light emitting / receiving probe apparatus
US7171088B2 (en) 2001-02-28 2007-01-30 Sony Corporation Image input device
MXPA03008935A (en) 2001-03-30 2004-06-30 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US20040058407A1 (en) 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20030006363A1 (en) 2001-04-27 2003-01-09 Campbell Scott Patrick Optimization of alignment between elements in an image sensor
US6709929B2 (en) 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US7529548B2 (en) * 2001-06-28 2009-05-05 Intel Corporation Method and system for adapting a wireless link to achieve a desired channel quality
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
KR100802618B1 (en) * 2001-07-07 2008-02-13 엘지전자 주식회사 Method and apparatus for setting user equipment identifier in a wireless communications system
JP3591498B2 (en) * 2001-08-31 2004-11-17 三菱電機株式会社 Bandwidth update method
US7076248B2 (en) * 2001-09-10 2006-07-11 Telefonaktiebolaget Lm Ericsson (Publ) Recovery of mobile station(s) in connected mode upon RNC failure
US8816443B2 (en) 2001-10-12 2014-08-26 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes with CMOS
WO2003043259A1 (en) * 2001-11-12 2003-05-22 Nokia Corporation Method and device for retransmission of transmitted units
US7109517B2 (en) 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
WO2003047155A1 (en) * 2001-11-28 2003-06-05 Telefonaktiebolaget L M Ericsson (Publ) Method and system of retransmission
FR2832995B1 (en) 2001-12-04 2004-02-27 Thales Sa CATALYTIC GROWTH PROCESS OF NANOTUBES OR NANOFIBERS COMPRISING A DIFFUSION BARRIER OF THE NISI ALLOY TYPE
US6987258B2 (en) 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle
SE0200308D0 (en) * 2001-12-27 2002-02-04 Ericsson Telefon Ab L M A method and apparatus relating to transmission of data
US7016343B1 (en) * 2001-12-28 2006-03-21 Cisco Technology, Inc. PSTN call routing control features applied to a VoIP
US6720594B2 (en) 2002-01-07 2004-04-13 Xerox Corporation Image sensor array with reduced pixel crosstalk
US6566723B1 (en) 2002-01-10 2003-05-20 Agilent Technologies, Inc. Digital color image sensor with elevated two-color photo-detector and related circuitry
RU2317395C2 (en) 2002-01-14 2008-02-20 Чайна Петролеум Энд Кемикал Корпорейшн Fluid-driven percussion device and method of usage thereof
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US7430206B2 (en) * 2002-05-10 2008-09-30 Interdigital Technology Corporation Wireless communication method and apparatus for detecting and correcting transmission errors
US7313116B2 (en) * 2002-05-13 2007-12-25 Samsung Electronics Co., Ltd. Method of performing inter-RAT measurement for a handover from NB-TDD to GSM
US6852619B2 (en) 2002-05-31 2005-02-08 Sharp Kabushiki Kaisha Dual damascene semiconductor devices
US6660930B1 (en) 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
US7311889B2 (en) 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
KR20030097559A (en) * 2002-06-22 2003-12-31 엘지전자 주식회사 Multimedia service method for universal mobile telecommication system
US7277963B2 (en) * 2002-06-26 2007-10-02 Sandvine Incorporated TCP proxy providing application layer modifications
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
KR100876730B1 (en) * 2002-07-08 2008-12-31 삼성전자주식회사 Efficient Initial Transmission Format Coupling Factor Setting Method for Wideband Code Division Multiple Access
AU2003261205A1 (en) 2002-07-19 2004-02-09 President And Fellows Of Harvard College Nanoscale coherent optical components
KR100541320B1 (en) 2002-07-19 2006-01-10 동부아남반도체 주식회사 A pinned photodiode for a CMOS image sensor and fabricating method thereof
EP2399970A3 (en) 2002-09-05 2012-04-18 Nanosys, Inc. Nanocomposites
JP3672900B2 (en) 2002-09-11 2005-07-20 松下電器産業株式会社 Pattern formation method
US8120079B2 (en) 2002-09-19 2012-02-21 Quantum Semiconductor Llc Light-sensing device for multi-spectral imaging
KR101011571B1 (en) * 2002-09-27 2011-01-27 텔레폰악티에볼라겟엘엠에릭슨(펍) Requesting and controlling access in a wireless communications network
JP2004128060A (en) 2002-09-30 2004-04-22 Canon Inc Growth method of silicon film, manufacturing method of solar cell, semiconductor substrate, and solar cell
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
WO2004031746A1 (en) 2002-10-02 2004-04-15 Lumen Health Innovations, Inc. Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US7507293B2 (en) 2002-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Photonic crystals with nanowire-based fabrication
DE60333715D1 (en) 2002-10-30 2010-09-23 Hitachi Ltd Process for the preparation of functional substrates having columnar microcolumns
GB0227261D0 (en) 2002-11-21 2002-12-31 Element Six Ltd Optical quality diamond material
US7163659B2 (en) 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
AU2003294822A1 (en) 2002-12-09 2004-06-30 Quantum Semiconductor Llc Cmos image sensor
US6969897B2 (en) 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US6837212B2 (en) 2002-12-19 2005-01-04 Caterpillar Inc. Fuel allocation at idle or light engine load
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US7110771B2 (en) * 2003-04-17 2006-09-19 Interdigital Technology Corporation Method for implementing fast-dynamic channel allocation call admission control for radio link reconfiguration in radio resource management
US7061028B2 (en) 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7050660B2 (en) 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US6888974B2 (en) 2003-04-23 2005-05-03 Intel Corporation On-chip optical signal routing
US8212138B2 (en) 2003-05-16 2012-07-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Reverse bias protected solar array with integrated bypass battery
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7465661B2 (en) 2003-05-28 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy High aspect ratio microelectrode arrays
US20070025504A1 (en) 2003-06-20 2007-02-01 Tumer Tumay O System for molecular imaging
US7416911B2 (en) 2003-06-24 2008-08-26 California Institute Of Technology Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
US7170001B2 (en) 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
DE102004031950A1 (en) 2003-06-26 2005-02-10 Kyocera Corp. Semiconductor / electrode contact structure and such a semiconductor device using
US7649141B2 (en) 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7148528B2 (en) 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7335259B2 (en) 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
KR100651405B1 (en) * 2003-07-24 2006-11-29 삼성전자주식회사 Apparatus and method for transmission/reception of control information mbms mobile communication
KR100735277B1 (en) * 2003-07-30 2007-07-03 삼성전자주식회사 Method for ranging in broadband wireless access communication system
KR100640461B1 (en) * 2003-07-30 2006-10-30 삼성전자주식회사 Apparatus and method for assigning sub channel in a communication system using orthogonal frequency division multiple access scheme
US7917163B2 (en) * 2003-08-27 2011-03-29 Qualcomm, Incorporated Intra-frequency searching in the presence of frequency gaps
US7328017B2 (en) * 2003-09-15 2008-02-05 Motorola, Inc. Resource negotiation in wireless communications networks and methods
US7689239B2 (en) * 2003-09-16 2010-03-30 Motorola, Inc. System, method, and apparatus for establishing headroom for a mobile station
KR100929094B1 (en) * 2003-09-20 2009-11-30 삼성전자주식회사 System and method for dynamic resource allocation in a communication system using orthogonal frequency division multiple access scheme
KR100964684B1 (en) * 2003-09-29 2010-06-21 엘지전자 주식회사 Method for providing broadcast and multicast service in mobile communication system
SE0302654D0 (en) * 2003-10-06 2003-10-06 Ericsson Telefon Ab L M Method and arrangement in a telecommunication system
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US6960526B1 (en) 2003-10-10 2005-11-01 The United States Of America As Represented By The Secretary Of The Army Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors
US7019402B2 (en) 2003-10-17 2006-03-28 International Business Machines Corporation Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor
US7823783B2 (en) 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
US20050116271A1 (en) 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US6969899B2 (en) 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7208094B2 (en) 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
DE10360274A1 (en) 2003-12-18 2005-06-02 Tesa Ag Optical data storer with a number of superposed storage sites each having a reflection layer, preferably a metal layer, where the absorption or reflection can be altered selectively by thermal treatment useful for storage of optical data
JP2007515639A (en) 2003-12-22 2007-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical nanowire biosensor based on energy transfer
EP1700329A2 (en) 2003-12-22 2006-09-13 Koninklijke Philips Electronics N.V. Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires
JP2007516620A (en) 2003-12-23 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Semiconductor device having PN heterojunction
US7647695B2 (en) 2003-12-30 2010-01-19 Lockheed Martin Corporation Method of matching harnesses of conductors with apertures in connectors
US7052927B1 (en) 2004-01-27 2006-05-30 Raytheon Company Pin detector apparatus and method of fabrication
US6969568B2 (en) 2004-01-28 2005-11-29 Freescale Semiconductor, Inc. Method for etching a quartz layer in a photoresistless semiconductor mask
US6927145B1 (en) 2004-02-02 2005-08-09 Advanced Micro Devices, Inc. Bitline hard mask spacer flow for memory cell scaling
JP2005252210A (en) 2004-02-03 2005-09-15 Sharp Corp Solar cell
US7184792B2 (en) * 2004-02-10 2007-02-27 Qualcomm Incorporated Delayed data transmission in a wireless communication system after physical layer reconfiguration
US7254287B2 (en) 2004-02-12 2007-08-07 Panorama Labs, Pty Ltd. Apparatus, method, and computer program product for transverse waveguided display system
JP2005251804A (en) 2004-03-01 2005-09-15 Canon Inc Imaging device
US7471428B2 (en) 2004-03-12 2008-12-30 Seiko Epson Corporation Contact image sensor module and image reading device equipped with the same
US7638808B2 (en) 2004-03-18 2009-12-29 Phoseon Technology, Inc. Micro-reflectors on a substrate for high-density LED array
US7115971B2 (en) 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
KR20050101006A (en) * 2004-04-16 2005-10-20 삼성전자주식회사 Method for the efficient transmission of the control message for mbms in mobile communication
US7061106B2 (en) 2004-04-28 2006-06-13 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
CA2564220A1 (en) 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
US8280214B2 (en) 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
KR101058729B1 (en) * 2004-05-19 2011-08-22 삼성전자주식회사 An apparatus and method for efficiently processing voice packet data in a mobile communication system providing a voice service using a packet network
KR101746412B1 (en) 2004-06-04 2017-06-14 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
KR100889866B1 (en) * 2004-06-14 2009-03-24 엘지전자 주식회사 Method for processing data unit in transmission system of radio protocol layer
WO2005125044A1 (en) * 2004-06-22 2005-12-29 Nortel Networks Limited Closed loop mimo systems and methods
JP2006013403A (en) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell, solar cell module, its manufacturing method, and its reparing method
US8035142B2 (en) 2004-07-08 2011-10-11 Micron Technology, Inc. Deuterated structures for image sensors and methods for forming the same
US7427798B2 (en) 2004-07-08 2008-09-23 Micron Technology, Inc. Photonic crystal-based lens elements for use in an image sensor
FR2873492B1 (en) 2004-07-21 2006-11-24 Commissariat Energie Atomique PHOTOACTIVE NANOCOMPOSITE AND METHOD OF MANUFACTURING THE SAME
ES2317039T3 (en) * 2004-07-27 2009-04-16 Telecom Italia S.P.A. TRANSMISSION OF MULTIMEDIA CONTENTS TO A PLURALITY OF MOBILE USERS.
US20060025079A1 (en) * 2004-08-02 2006-02-02 Ilan Sutskover Channel estimation for a wireless communication system
WO2006013890A1 (en) 2004-08-04 2006-02-09 Matsushita Electric Industrial Co., Ltd. Coherent light source
WO2006023536A2 (en) * 2004-08-16 2006-03-02 Zte San Diego, Inc. Fast cell search and accurate sznchronization in wireless communications
US7713849B2 (en) 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
KR100606049B1 (en) * 2004-08-27 2006-07-28 삼성전자주식회사 Random Access Method for Multi-cell OFDMA Networks
WO2006024320A1 (en) * 2004-08-31 2006-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Data unit sender and data unit relay device
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
KR100965659B1 (en) * 2004-09-14 2010-06-25 삼성전자주식회사 Method for indicating cell selection when session stop in mbms system and system thereof
CN102759466A (en) 2004-09-15 2012-10-31 英特基因有限公司 Microfluidic devices
US20060071290A1 (en) 2004-09-27 2006-04-06 Rhodes Howard E Photogate stack with nitride insulating cap over conductive layer
EP1643565B1 (en) 2004-09-30 2020-03-04 OSRAM Opto Semiconductors GmbH Radiation detector
US20080260225A1 (en) 2004-10-06 2008-10-23 Harold Szu Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera
US7544977B2 (en) 2006-01-27 2009-06-09 Hewlett-Packard Development Company, L.P. Mixed-scale electronic interface
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
TWI256979B (en) * 2004-11-16 2006-06-21 L & C Lighting Technology Corp Method of making nanowire of single crystal tungsten oxide
KR100745595B1 (en) 2004-11-29 2007-08-02 삼성전자주식회사 Microlens of an image sensor and method for forming the same
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
TWI263802B (en) 2004-12-03 2006-10-11 Innolux Display Corp Color filter
US7342268B2 (en) 2004-12-23 2008-03-11 International Business Machines Corporation CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom
US7235475B2 (en) 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
US20100014430A1 (en) * 2005-01-18 2010-01-21 Matsushita Electric Industrial Co., Ltd. Resource allocation method and base station device
KR100688542B1 (en) 2005-03-28 2007-03-02 삼성전자주식회사 Vertical type nanotube semiconductor device and method of manufacturing the same
US7655860B2 (en) 2005-04-01 2010-02-02 North Carolina State University Nano-structured photovoltaic solar cell and related methods
US20070238265A1 (en) 2005-04-05 2007-10-11 Keiichi Kurashina Plating apparatus and plating method
TWI364996B (en) * 2005-04-05 2012-05-21 Innovative Sonic Ltd Method and apparatus for detecting an erroneous sequence number in a status report in a wireless communication system
KR101145146B1 (en) 2005-04-07 2012-05-14 엘지디스플레이 주식회사 TFT and method of fabricating of the same
US7272287B2 (en) 2005-05-11 2007-09-18 Fitel Usa Corp Optical fiber filter for suppression of amplified spontaneous emission
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
TWI429066B (en) 2005-06-02 2014-03-01 Sony Corp Semiconductor image sensor module and manufacturing method thereof
GB0511300D0 (en) 2005-06-03 2005-07-13 Ct For Integrated Photonics Th Control of vertical axis for passive alignment of optical components with wave guides
US7262408B2 (en) 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8084728B2 (en) 2005-07-06 2011-12-27 Capella Microsystems, Corp. Optical sensing device
DE102005033455A1 (en) 2005-07-18 2007-01-25 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Drive device for linear movement of elongated bodies
KR100703287B1 (en) * 2005-07-20 2007-04-03 삼성전자주식회사 System and method for transmitting/receiving resource allocation information in a communication system
US20090153961A1 (en) 2005-07-22 2009-06-18 Zeon Corporation Grid Polarizer and Method for Manufacturing the Same
ATE392013T1 (en) 2005-07-29 2008-04-15 Imec Inter Uni Micro Electr WAVELENGTH SENSITIVE PHOTO DETECTOR WITH ENGINEERED NANOSTRUCTURES
US7683407B2 (en) 2005-08-01 2010-03-23 Aptina Imaging Corporation Structure and method for building a light tunnel for use with imaging devices
US7307327B2 (en) 2005-08-04 2007-12-11 Micron Technology, Inc. Reduced crosstalk CMOS image sensors
KR100750933B1 (en) 2005-08-14 2007-08-22 삼성전자주식회사 Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
US7485908B2 (en) 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
US7265328B2 (en) 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
US7623746B2 (en) 2005-08-24 2009-11-24 The Trustees Of Boston College Nanoscale optical microscope
JP2009506546A (en) 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ Apparatus and method for solar energy conversion using nanoscale co-metallic structures
US7649665B2 (en) 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7736954B2 (en) 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
US8592136B2 (en) 2005-09-13 2013-11-26 Affymetrix, Inc. Methods for producing codes for microparticles
US7608823B2 (en) 2005-10-03 2009-10-27 Teledyne Scientific & Imaging, Llc Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7286740B2 (en) 2005-10-07 2007-10-23 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line, optical module and optical transmission system
US7585474B2 (en) 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
CN1956223A (en) 2005-10-26 2007-05-02 松下电器产业株式会社 Semiconductor device and method for fabricating the same
US20070104441A1 (en) 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
WO2007056753A2 (en) 2005-11-08 2007-05-18 General Atomics Apparatus and methods for use in flash detection
US7728277B2 (en) 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US7262400B2 (en) 2005-12-02 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same
JP2007158119A (en) 2005-12-06 2007-06-21 Canon Inc Electric element having nano wire and its manufacturing method, and electric element assembly
US7439560B2 (en) 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
US7524694B2 (en) 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
JP4745816B2 (en) 2005-12-20 2011-08-10 富士通セミコンダクター株式会社 Image processing circuit and image processing method
US7368779B2 (en) 2006-01-04 2008-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Hemi-spherical structure and method for fabricating the same
US20070155025A1 (en) 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
KR101211807B1 (en) * 2006-01-05 2012-12-12 엘지전자 주식회사 Method for managing synchronization state for mobile terminal in mobile communication system
KR100767629B1 (en) 2006-01-05 2007-10-17 한국과학기술원 Complementary Metal Oxide Semiconductor image sensor having high photosensitivity and method for fabricating thereof
WO2007078165A1 (en) * 2006-01-05 2007-07-12 Lg Electronics Inc. Transmitting information in mobile communications system
JP4952227B2 (en) 2006-01-06 2012-06-13 富士通株式会社 Fine particle size sorter
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
JP2007201091A (en) 2006-01-25 2007-08-09 Fujifilm Corp Process for fabricating solid state image sensor
US20070187787A1 (en) 2006-02-16 2007-08-16 Ackerson Kristin M Pixel sensor structure including light pipe and method for fabrication thereof
US7358583B2 (en) 2006-02-24 2008-04-15 Tower Semiconductor Ltd. Via wave guide with curved light concentrator for image sensing devices
WO2008048704A2 (en) 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
US7859587B2 (en) 2006-03-24 2010-12-28 Panasonic Corporation Solid-state image pickup device
US7718347B2 (en) 2006-03-31 2010-05-18 Applied Materials, Inc. Method for making an improved thin film solar cell interconnect using etch and deposition process
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
US7381966B2 (en) 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7582857B2 (en) 2006-04-18 2009-09-01 The Trustees Of The University Of Pennsylvania Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane
TWI297223B (en) * 2006-04-25 2008-05-21 Gigno Technology Co Ltd Package module of light emitting diode
US7924413B2 (en) 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US20070272828A1 (en) 2006-05-24 2007-11-29 Micron Technology, Inc. Method and apparatus providing dark current reduction in an active pixel sensor
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
US7579593B2 (en) 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
US20080044984A1 (en) 2006-08-16 2008-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors
WO2008024282A2 (en) * 2006-08-21 2008-02-28 Interdigital Technology Corporation Method and apparatus for controlling arq and harq transmissions and retranmissions in a wireless communication system
US7786376B2 (en) 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US7893348B2 (en) 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
JP4321568B2 (en) 2006-08-29 2009-08-26 ソニー株式会社 Solid-state imaging device and imaging device
JP2008066497A (en) 2006-09-07 2008-03-21 Sony Corp Photodetector and method for manufacturing photodetector
CN101140637A (en) 2006-09-08 2008-03-12 鸿富锦精密工业(深圳)有限公司 System and method for turn electric order list to work list
EP2064744A2 (en) 2006-09-19 2009-06-03 QuNano AB Assembly of nanoscaled field effect transistors
US7361989B1 (en) 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
JP4296193B2 (en) 2006-09-29 2009-07-15 株式会社東芝 Optical device
KR100772114B1 (en) 2006-09-29 2007-11-01 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
US7525170B2 (en) 2006-10-04 2009-04-28 International Business Machines Corporation Pillar P-i-n semiconductor diodes
US7427525B2 (en) 2006-10-13 2008-09-23 Hewlett-Packard Development Company, L.P. Methods for coupling diamond structures to photonic devices
US7608905B2 (en) 2006-10-17 2009-10-27 Hewlett-Packard Development Company, L.P. Independently addressable interdigitated nanowires
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US7537951B2 (en) 2006-11-15 2009-05-26 International Business Machines Corporation Image sensor including spatially different active and dark pixel interconnect patterns
US7781781B2 (en) 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
EP1926211A3 (en) 2006-11-21 2013-08-14 Imec Diamond enhanced thickness shear mode resonator
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
KR101232179B1 (en) 2006-12-04 2013-02-12 엘지디스플레이 주식회사 Apparatus And Method of Fabricating Thin Film Pattern
KR100993056B1 (en) 2006-12-05 2010-11-08 주식회사 엘지화학 Method for high resolution ink-jet print using pre-patterned substrate and conductive substrate manufactured using the same
JP4795214B2 (en) 2006-12-07 2011-10-19 チェイル インダストリーズ インコーポレイテッド Wire grid polarizer and manufacturing method thereof
KR20090096704A (en) 2006-12-22 2009-09-14 큐나노 에이비 Led with upstanding nanowire structure and method of producing such
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
US8183587B2 (en) 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
KR100830587B1 (en) 2007-01-10 2008-05-21 삼성전자주식회사 Image sensor and method of displaying a image using the same
WO2008084830A1 (en) 2007-01-10 2008-07-17 Nec Corporation Optical control element
US8003883B2 (en) 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US7960807B2 (en) 2007-02-09 2011-06-14 Intersil Americas Inc. Ambient light detectors using conventional CMOS image sensor process
US8440997B2 (en) 2007-02-27 2013-05-14 The Regents Of The University Of California Nanowire photodetector and image sensor with internal gain
EP1971129A1 (en) 2007-03-16 2008-09-17 STMicroelectronics (Research & Development) Limited Improvements in or relating to image sensors
US20080233280A1 (en) 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
SE532485C2 (en) 2007-03-27 2010-02-02 Qunano Ab Nanostructure for charge storage
US7906778B2 (en) 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7803698B2 (en) 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
US8027086B2 (en) 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
EP2432015A1 (en) 2007-04-18 2012-03-21 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
ATE545036T1 (en) 2007-04-19 2012-02-15 Oerlikon Solar Ag TEST EQUIPMENT FOR AUTOMATED QUALITY CONTROL OF THIN FILM SOALR MODULES
US7719688B2 (en) 2007-04-24 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US8212235B2 (en) 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
US7719678B2 (en) 2007-04-25 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
EP2156471A2 (en) 2007-05-07 2010-02-24 Nxp B.V. A photosensitive device and a method of manufacturing a photosensitive device
TW200915551A (en) 2007-05-10 2009-04-01 Koninkl Philips Electronics Nv Spectrum detector and manufacturing method therefore
JP2008288243A (en) 2007-05-15 2008-11-27 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
KR100901236B1 (en) 2007-05-16 2009-06-08 주식회사 동부하이텍 Image Sensor and Method for Manufacturing thereof
KR101426941B1 (en) 2007-05-30 2014-08-06 주성엔지니어링(주) Solar cell and method for fabricating the same
US7812692B2 (en) 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
CN106206780B (en) 2007-06-19 2017-12-05 昆南诺股份有限公司 Solar battery structure based on nano wire
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7663202B2 (en) 2007-06-26 2010-02-16 Hewlett-Packard Development Company, L.P. Nanowire photodiodes and methods of making nanowire photodiodes
CN101842909A (en) 2007-07-19 2010-09-22 加利福尼亚技术学院 Structures of ordered arrays of semiconductors
SG177175A1 (en) 2007-08-01 2012-01-30 Silverbrook Res Pty Ltd Handheld printer
JP5285880B2 (en) 2007-08-31 2013-09-11 シャープ株式会社 Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
US8885987B2 (en) 2007-09-06 2014-11-11 Quantum Semiconductor Llc Photonic via waveguide for pixel arrays
US7786440B2 (en) 2007-09-13 2010-08-31 Honeywell International Inc. Nanowire multispectral imaging array
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
US8619168B2 (en) 2007-09-28 2013-12-31 Regents Of The University Of Minnesota Image sensor with high dynamic range imaging and integrated motion detection
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
FR2923602B1 (en) 2007-11-12 2009-11-20 Commissariat Energie Atomique ELECTROMAGNETIC RADIATION DETECTOR WITH NANOFIL THERMOMETER AND METHOD OF MAKING SAME
US7822300B2 (en) 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
US8588920B2 (en) 2007-11-21 2013-11-19 The Trustees Of Boston College Apparatus and methods for visual perception using an array of nanoscale waveguides
KR101385250B1 (en) 2007-12-11 2014-04-16 삼성전자주식회사 CMOS image sensor
KR101000064B1 (en) 2007-12-18 2010-12-10 엘지전자 주식회사 Hetero-junction silicon solar cell and fabrication method thereof
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US7880207B2 (en) 2008-01-14 2011-02-01 International Business Machines Corporation Photo detector device
US8030729B2 (en) 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US20090189145A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Photodetectors, Photovoltaic Devices And Methods Of Making The Same
US20090188552A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same
US20090199597A1 (en) 2008-02-07 2009-08-13 Danley Jeffrey D Systems and methods for collapsing air lines in nanostructured optical fibers
US20090201400A1 (en) 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
WO2009102280A1 (en) 2008-02-15 2009-08-20 Agency For Science, Technology And Research Photodetector with valence-mending adsorbate region and a method of fabrication thereof
US20090206405A1 (en) 2008-02-15 2009-08-20 Doyle Brian S Fin field effect transistor structures having two dielectric thicknesses
WO2009142787A2 (en) 2008-02-18 2009-11-26 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
US8101526B2 (en) 2008-03-12 2012-01-24 City University Of Hong Kong Method of making diamond nanopillars
US8016993B2 (en) 2008-03-14 2011-09-13 Stuart Alfred Hoenig Electrostatic desalination and water purification
WO2009116018A2 (en) 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
KR101448152B1 (en) 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
JP4770857B2 (en) 2008-03-27 2011-09-14 日本テキサス・インスツルメンツ株式会社 Semiconductor device
KR20090105732A (en) 2008-04-03 2009-10-07 삼성전자주식회사 Solar cell
CN102084467A (en) 2008-04-14 2011-06-01 班德加普工程有限公司 Process for fabricating nanowire arrays
KR20090109980A (en) 2008-04-17 2009-10-21 한국과학기술연구원 Visible-range semiconductor nanowire-based photosensor and method for manufacturing the same
WO2009135078A2 (en) 2008-04-30 2009-11-05 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US7902540B2 (en) 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US8138493B2 (en) 2008-07-09 2012-03-20 Qunano Ab Optoelectronic semiconductor device
KR101435519B1 (en) 2008-07-24 2014-08-29 삼성전자주식회사 Image sensor having light focusing structure
US7863625B2 (en) 2008-07-24 2011-01-04 Hewlett-Packard Development Company, L.P. Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
US8198796B2 (en) 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same
US8198706B2 (en) 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
US8995421B2 (en) * 2008-08-08 2015-03-31 Qualcomm Incorporated Processing polling requests from radio link control peers
WO2010019887A1 (en) 2008-08-14 2010-02-18 Brookhaven Science Associates Structured pillar electrodes
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
CN102144298B (en) 2008-09-04 2013-07-31 昆南诺股份有限公司 Nanostructured photodiode
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US7646943B1 (en) 2008-09-04 2010-01-12 Zena Technologies, Inc. Optical waveguides in image sensors
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US20100304061A1 (en) 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
KR101143706B1 (en) 2008-09-24 2012-05-09 인터내셔널 비지네스 머신즈 코포레이션 Nanoelectronic device
US7972885B1 (en) 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
US20110247676A1 (en) 2008-09-30 2011-10-13 The Regents Of The University Of California Photonic Crystal Solar Cell
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20100090341A1 (en) 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
EP2180526A2 (en) 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
FR2937791B1 (en) 2008-10-24 2010-11-26 Thales Sa POLARIMETRIC IMAGING DEVICE OPTIMIZED IN RELATION TO THE POLARIZATION CONTRAST
WO2010048607A2 (en) 2008-10-24 2010-04-29 Carnegie Institution Of Washington Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing
US8932940B2 (en) 2008-10-28 2015-01-13 The Regents Of The University Of California Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
KR20100063536A (en) 2008-12-03 2010-06-11 삼성에스디아이 주식회사 Light emission device and display device using same as light source
CN102326258A (en) 2008-12-19 2012-01-18 惠普开发有限公司 Photovoltaic structure and on short column, adopt the manufacturing approach of nano wire
KR20100079058A (en) 2008-12-30 2010-07-08 주식회사 동부하이텍 Image sensor and method for manufacturing thereof
US20100200065A1 (en) 2009-02-12 2010-08-12 Kyu Hyun Choi Photovoltaic Cell and Fabrication Method Thereof
TW201034212A (en) 2009-03-13 2010-09-16 guo-hong Shen Thin-film solar cell structure
US7888155B2 (en) 2009-03-16 2011-02-15 Industrial Technology Research Institute Phase-change memory element and method for fabricating the same
US8242353B2 (en) 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
US20100244108A1 (en) 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
TWI425643B (en) 2009-03-31 2014-02-01 Sony Corp Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
JP2012523365A (en) 2009-04-09 2012-10-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Glass composition used in conductors for photovoltaic cells
CN102395873A (en) 2009-04-13 2012-03-28 奥林巴斯株式会社 Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
WO2010129163A2 (en) 2009-05-06 2010-11-11 Thinsilicon Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US8809672B2 (en) 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
JP5504695B2 (en) 2009-05-29 2014-05-28 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US8211735B2 (en) 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
WO2010144866A2 (en) 2009-06-11 2010-12-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microgrid imaging polarimeters with frequency domain reconstruction
US8304759B2 (en) 2009-06-22 2012-11-06 Banpil Photonics, Inc. Integrated image sensor system on common substrate
US8558336B2 (en) 2009-08-17 2013-10-15 United Microelectronics Corp. Semiconductor photodetector structure and the fabrication method thereof
EP2290718B1 (en) 2009-08-25 2015-05-27 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
US8115097B2 (en) 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
US8563395B2 (en) 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
JP5608384B2 (en) 2010-02-05 2014-10-15 東京エレクトロン株式会社 Semiconductor device manufacturing method and plasma etching apparatus
US8194197B2 (en) 2010-04-13 2012-06-05 Sharp Kabushiki Kaisha Integrated display and photovoltaic element
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8324010B2 (en) 2010-06-29 2012-12-04 Himax Imaging, Inc. Light pipe etch control for CMOS fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292512A (en) * 1978-06-19 1981-09-29 Bell Telephone Laboratories, Incorporated Optical monitoring photodiode system
US20050009224A1 (en) * 2003-06-20 2005-01-13 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7326915B2 (en) * 2005-04-01 2008-02-05 Em4, Inc. Wavelength stabilization for broadband light sources
US8154127B1 (en) * 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534595A (en) * 2018-08-24 2021-12-09 マシュー ハーテンスヴェルド Nanowire light emitting switch device and its method
JP7285491B2 (en) 2018-08-24 2023-06-02 マシュー ハーテンスヴェルド Nanowire luminescence switch device and method
US11604354B2 (en) * 2020-04-03 2023-03-14 Magic Leap, Inc. Wearable display systems with nanowire LED micro-displays
US11841511B2 (en) 2020-04-03 2023-12-12 Magic Leap, Inc. Wearable display systems with nanowire LED micro-displays

Also Published As

Publication number Publication date
TW201133815A (en) 2011-10-01
WO2011044101A1 (en) 2011-04-14
US20110079796A1 (en) 2011-04-07
US8791470B2 (en) 2014-07-29
TW201511247A (en) 2015-03-16
TWI470783B (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US8791470B2 (en) Nano structured LEDs
US9082673B2 (en) Passivated upstanding nanostructures and methods of making the same
US9304035B2 (en) Vertical waveguides with various functionality on integrated circuits
US9123841B2 (en) Nanowire photo-detector grown on a back-side illuminated image sensor
US8710488B2 (en) Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
KR101468369B1 (en) Vertically structured passive pixel arrays and methods for fabricating the same
US9177985B2 (en) Array of nanowires in a single cavity with anti-reflective coating on substrate
US8889455B2 (en) Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US20100148221A1 (en) Vertical photogate (vpg) pixel structure with nanowires
US9397282B2 (en) Active matrix light emitting diode array and projector display comprising it
TWI714826B (en) Optical device
US20220320373A1 (en) Light emitting devices and arrays with semi-conductor layer pockets
Zhang et al. 31.1: Invited Paper: Monochromatic active matrix micro‐LED micro‐displays with> 5,000 dpi pixel density fabricated using monolithic hybrid integration process
WO2020069467A1 (en) Micro light emitting devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENA TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WOBER, MUNIB;REEL/FRAME:032864/0505

Effective date: 20090925

AS Assignment

Owner name: WU, XIANHONG, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041901/0038

Effective date: 20151015

AS Assignment

Owner name: HABBAL, FAWWAZ, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041941/0895

Effective date: 20161230

AS Assignment

Owner name: PILLSBURY WINTHROP SHAW PITTMAN LLP, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:042107/0543

Effective date: 20170320

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION