US20140194148A1 - Tagging A Location By Pairing Devices - Google Patents

Tagging A Location By Pairing Devices Download PDF

Info

Publication number
US20140194148A1
US20140194148A1 US14/202,498 US201414202498A US2014194148A1 US 20140194148 A1 US20140194148 A1 US 20140194148A1 US 201414202498 A US201414202498 A US 201414202498A US 2014194148 A1 US2014194148 A1 US 2014194148A1
Authority
US
United States
Prior art keywords
mobile device
location
rendezvous
further
current location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/202,498
Inventor
Jason Tyler Griffin
Scott David REEVE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
BlackBerry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/013,564 priority Critical patent/US8792916B2/en
Application filed by BlackBerry Ltd filed Critical BlackBerry Ltd
Priority to US14/202,498 priority patent/US20140194148A1/en
Assigned to RESEARCH IN MOTION LIMITED reassignment RESEARCH IN MOTION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRIFFIN, JASON TYLER, REEVE, SCOTT DAVID
Publication of US20140194148A1 publication Critical patent/US20140194148A1/en
Assigned to BLACKBERRY LIMITED reassignment BLACKBERRY LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH IN MOTION LIMITED
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/3673Labelling using text of road map data items, e.g. road names, POI names
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/003Maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0025Near field system adaptations
    • H04B5/0031Near field system adaptations for data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72522With means for supporting locally a plurality of applications to increase the functionality
    • H04M1/72525With means for supporting locally a plurality of applications to increase the functionality provided by software upgrading or downloading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72522With means for supporting locally a plurality of applications to increase the functionality
    • H04M1/72544With means for supporting locally a plurality of applications to increase the functionality for supporting a game or graphical animation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72563Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status with means for adapting by the user the functionality or the communication capability of the terminal under specific circumstances
    • H04M1/72572Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status with means for adapting by the user the functionality or the communication capability of the terminal under specific circumstances according to a geographic location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/10Details of telephonic subscriber devices including a GPS signal receiver

Abstract

A method of tagging a location using a mobile device entails obtaining position data for a current location of the mobile device, detecting a proximity of another device using a short-range wireless interface, and automatically storing the position data for the current location of the mobile device in response to the detecting of the proximity of the other device. The proximity detector may comprise a near field communication (NFC) interface, a Bluetooth® transceiver or another short-range wireless technology that may be employed to detect the proximity of another device. This technology enables two devices to store a current location to facilitate a subsequent rendezvous back at that same location.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/013,564 filed Jan. 14, 2008.
  • TECHNICAL FIELD
  • The present technology relates generally to mobile devices and, in particular, to location-aware mobile devices.
  • BACKGROUND
  • An increasing number of wireless communications devices or mobile devices have Global Positioning System (GPS) chipsets that provide position data. This position data may be used for navigation or other location-based services. Another use of position data is location tagging in which the mobile device stores location data (e.g. location coordinates) for the current location of the device. This enables the user of the device to remember a specific location or to return to that location at a later time. One of the primary shortcomings of current location tagging techniques is that it requires manual input from the user to signal to the device that the current location coordinates are to be stored in memory. If the user of the device forgets to manually tag the location, then the device will not store the location data for subsequent usage.
  • Techniques for automatically tagging a location would thus be highly desirable.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further features and advantages of the present technology will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
  • FIG. 1 is a schematic depiction of a wireless communications device as one example of a mobile device on which the present technology can be implemented;
  • FIG. 2 is a flowchart outlining main steps of a novel method of tagging a location;
  • FIG. 3 is a flowchart outlining main steps of a related method of providing navigation instructions for returning to the tagged location;
  • FIG. 4 is a schematic depiction of an initial act of pairing two mobile devices to automatically tag a location for a subsequent rendezvous;
  • FIG. 5 is a schematic depiction of the mobile devices after they have strayed from the tagged location;
  • FIG. 6 is a schematic depiction of a map displayed on a mobile device to enable the user of the device to navigate back to the tagged location;
  • FIG. 7 is a schematic depiction of a variant of the user interface presented in FIG. 6 that further includes a directional arrow for indicating a direction back to the tagged location.
  • It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
  • DETAILED DESCRIPTION
  • The present technology generally provides a novel method, computer-readable medium and mobile device for automatic location tagging. A short-range proximity detector on the device triggers the storage of position data for the current location of the device. For example, the short-range proximity detector may comprise a near field communications (NFC) interface. Other short-range wireless technologies, e.g. Bluetooth® may be utilized. By simply bringing two mobile devices into close proximity with one another, the devices can be “paired” (connected). This connection or pairing may constitute a proximity detection event that triggers the storage of position data for the current location of the two paired devices. This establishes a rendezvous location to facilitate the task of returning to the rendezvous location. The proximity detector may also be configured to trigger the storage of position data when the devices lose connectivity (as opposed to establishing connectivity).
  • Accordingly, an aspect of the present technology is a method of tagging a location using a mobile device. The method entails obtaining position data for a current location of the mobile device, detecting a proximity of another device using a short-range wireless interface, and automatically storing the position data for the current location of the mobile device in response to the detecting of the proximity of the other device.
  • Another aspect of the present technology is a computer readable medium upon which are stored instructions in code that are configured to perform the steps of the foregoing method when the computer readable medium is loaded into memory and executed on a processor of a mobile device.
  • Another aspect of the present technology is a mobile device mobile device for tagging a location. The mobile device comprising a short-range proximity detector, a positioning system for generating position data for a current location of the mobile device, and a processor operatively connected to a memory for storing the position data for the current location of the mobile device in response to a detection event of the proximity detector.
  • The details and particulars of these aspects of the technology will now be described below, by way of example, with reference to the attached drawings.
  • FIG. 1 is a schematic depiction of a wireless communications device as one example of a mobile device 100 on which the present technology can be implemented. It should be expressly understood that this figure is intentionally simplified to show only certain main components. The mobile device 100 may include other components beyond what is illustrated in FIG. 1.
  • As depicted in FIG. 1, the mobile device 100 includes a microprocessor 110 (or simply a “processor”) which interacts with memory in the form of random access memory (RAM) 120 and flash memory 130. The mobile device includes one or more input/output devices or user interfaces 140, such as a display screen 150 (e.g. a small LCD screen or touch-sensitive display screen), and a keyboard or keypad 155. The user interface may also include a thumbwheel, trackball, trackpad or optical jog pad 160. The device may also include a USB port or serial port for connecting to peripheral equipment.
  • Where the mobile device is a wireless communications device, the device further includes a radiofrequency (RF) transceiver 170 for communicating wirelessly with one or more base stations. The mobile device may include a Subscriber Identity Module (SIM) card 112 for GSM-type devices or a Re-Usable Identification Module (RUIM) card for CDMA-type devices.
  • For telephony, the mobile device may include a microphone 180 and a speaker 182 (and optionally an earphone jack).
  • The mobile device 100 may also include a positioning system such as a Global Positioning System (GPS) receiver (chipset) 190 for receiving GPS radio signals transmitted from one or more orbiting GPS satellites 192.
  • Although the present disclosure refers to expressly to the “Global Positioning System”, it should be understood that this term and its abbreviation “GPS” are being used expansively to include any satellite-based navigation-signal broadcast system, and would therefore include other systems used around the world including the Beidou (COMPASS) system being developed by China, the multi-national Galileo system being developed by the European Union, in collaboration with China, Israel, India, Morocco, Saudi Arabia and South Korea, Russia's GLONASS system, India's proposed Regional Navigational Satellite System (IRNSS), and Japan's proposed QZSS regional system.
  • The mobile device 100 also includes a short-range proximity detector 200. This short-range proximity detector 200 may include a transceiver chip, e.g. a Bluetooth® transceiver 210. The device may also include a near-field communications (NFC) chip 220 (also referred to herein as an NFC transceiver or NFC interface).
  • This novel mobile device 100 thus enables tagging of a location. The short-range proximity detector 200 detects the presence of another nearby device. This is referred to herein as a detection event. When a detection event occurs, the device automatically stores position data for the current location of the device. In some instances, where the GPS chipset is already in tracking mode, the device will have ready access to this position data. In other instances, where the GPS chipset is turned off, e.g. to save battery, the detection event will cause the device to automatically activate the GPS chipset and obtain a position fix. Thus, in one implementation, where the GPS chip is already in tracking mode, the detection event triggers storage of already available position data whereas in another implementation, where the GPS chip is off, the detection event triggers a first step of obtaining a GPS position fix and a second step of storing this position data. In other words, the processor 110 and memory 120, 130 then cooperate to store the position data in response to the detection event.
  • Position data for the current location may be obtained by a positioning system such as an onboard GPS chipset. Although GPS represents the best mode of implementing this technology presently known to the applicant(s), the mobile device could determine its location using another technique such as triangulation of signals from in-range base towers, such as used for Wireless E911. As is known in the art, Wireless Enhanced 911 services enable a cell phone or other wireless device to be located geographically using radiolocation techniques such as (i) angle of arrival (AOA) which entails locating the caller at the point where signals from two towers intersect; (ii) time difference of arrival (TDOA), which uses multilateration like GPS, except that the networks determine the time difference and therefore the distance from each tower; and (iii) location signature, which uses “fingerprinting” to store and recall patterns (such as multipath) which mobile phone signals exhibit at different locations in each cell.
  • Location data may also be passed from one mobile device to the other. For example, a first mobile device may pass data to a second mobile device if the first mobile device has its GPS receiver on and the second device does not, or if the location accuracy of the first mobile device's location-determining subsystem is known to be better than that of the second mobile device. This sharing of location information could be accomplished via NFC, Bluetooth® or over the wireless network. In some variants, there could be a negotiation between mobile devices after the tagging has taken place over the network or Bluetooth® to establish which device has the more accurate location so that both use the same specific location information. It should be understood that a rendezvous location may be established between two devices but shared with a group having more than two devices, i.e. the location details may be shared with others in a group.
  • Alternatively, more granular position data may be obtained using other location-determining technique including identification of the nearest base station tower, identification of the current Visitor Location Register (VLR) etc. Of course, in these cases, the location data might be insufficient for certain purposes, e.g. an actual rendezvous, since the location data might simply indicate in which city or district the devices met.
  • The proximity detector 200 may use NFC, Bluetooth® or any other suitable short-range wireless connectivity technology. Specific implementations involving NFC and Bluetooth® will now be described below.
  • Automatic Location Tagging Using NFC
  • In one main implementation, the short-range proximity detector 200 comprises a near field communications (NFC) interface 220 or transceiver.
  • When two devices approach to within a few centimetres (a predetermined proximity threshold), the NFC interface performs a “handshake” between the two devices. This handshake may be manually triggered or automatically triggered (using an auto-discover mode that probes for or senses the proximity of other such devices). As noted above, the NFC proximity detector triggers the storage of location data for the current location of the device.
  • NFC is a short-range wireless technology that relies on magnetic field induction to enable communication between electronic devices in close proximity. This enables users of two or more mobile devices to connect the devices simply by touching or bringing the devices into close proximity with one another.
  • As is known in the art, NFC operates in the 13.56 MHz frequency band over a distance of approximately 20 centimetres while providing data transfer rates of about 100-400 kilobits per second. The NFC pairing event (detection event) may be used as a simple trigger for each device to collect and store its own location data. In a variant, one device collects and stores the location data and then shares (transmits) this data to the other device. This communication of data may be done via e-mail, SMS, or any other suitable communications protocol. The exchange of data may also be done using the NFC link that has been established. For two mobile devices to communicate using NFC, one mobile device must have an NFC reader/writer and one must have an NFC tag (i.e. an integrated circuit that stores data that can be read and written by the reader). This would enable unilateral communication from one device to another. This is also known as passive NFC mode, since only one device generates a radio field, while the other uses load modulation to transfer data. Bilateral communication may also be implemented so that either one of the devices can transmit data to the other. This is referred to as active NFC mode since both mobile devices broadcast RF signals.
  • Automatic Location Tagging Using Bluetooth®
  • In another main implementation, the short-range proximity detector 200 comprises a Bluetooth® transceiver 210.
  • Bluetooth® is a standard communications protocol primarily designed for low-power consumption, with a short-range capability (Class 1 for up to 100 m, Class 2 for up to 10 m and Class 3 for up to 1 m). The Bluetooth transceiver microchip in the mobile device broadcasts an RF signal in the 2.4 GHz short-range radio frequency band.
  • In yet other implementations, the short-range proximity detector may utilize another wireless technology such as, for example, WiFi, ZigBee®, or Ultra Wide Band (UWB).
  • The detection event that triggers location data storage may be the establishment of connectivity (i.e. when two devices are brought into close proximity with one another) or it may be the loss of connectivity (when two paired devices move away from each other such that communication link is severed). In some implementations, the detection event may be based on a predetermined signal strength threshold which is used to establish proximity. For example, the software on the device may decide to not register a weak Bluetooth® signal, but when the signal becomes strong, (exceeds a signal threshold) than the proximity tag is established.
  • In one implementation, the mobile device 100 includes a user input device adapted to receive user input requesting a route back to a previously tagged location. Upon receipt of this input, the device is configured to determine this route and to present the route in a suitable manner to the user of the device. This may entail, for example, displaying the route using a highlighted path that the user would follow to return to the previously tagged location.
  • In another implementation, the mobile device 100 includes a magnetometer for determining a compass direction. In this implementation, the display further presents a compass showing the direction back to the previously tagged location.
  • The foregoing technology also provides a novel method of tagging a location using a mobile device. This method, for which a flowchart is presented in FIG. 2, entails an initial step 300 of obtaining position data for a current location of the mobile device. At step 310, the device detects a proximity of another device using a short-range wireless interface. At step 320, the device automatically stores the position data for the current location of the mobile device in response to the detecting of the proximity of the other device.
  • FIG. 3 is a flowchart outlining main steps of a related method of providing navigation instructions for returning to the tagged location. This presumes that the devices have been paired and a common location has been established for a subsequent rendezvous. As shown in FIG. 3, at step 330, the method then includes a step of receiving user input to request a route for returning to a previously tagged location. The method further includes a step 340 of displaying the route for returning to the previously tagged location. Audible navigation instructions may also be provided along with the visual route directions.
  • In a variant, the method further comprises an optional step 350 of displaying a compass indicating a direction to the previously tagged location.
  • In a further variant, the method further comprises providing a list or map of all previously tagged locations to enable the user to manage, view, edit, delete or share these previously tagged locations. For example, the user may have received a phone call saying that the contact no longer wishes to rendezvous at the previously tagged location. In that case, the user may wish to delete the previously tagged location. As another example, the user may wish to invite a third party to also rendezvous at the previously tagged location. The previously tagged location can thus be e-mailed or otherwise sent to a third party by attaching the location data, optionally with predetermined text inviting the third party to the previously tagged location.
  • For still greater clarity, FIGS. 4-7 illustrate the operation of the present technology.
  • FIG. 4 is a schematic depiction of an initial act of pairing two mobile devices 100 to automatically tag a location for a subsequent rendezvous. By bringing the two mobile devices 100 into close proximity with one another, as depicted in FIG. 4, the NFC chip inside each device 100 triggers the automatic registration (storage) of location data. This sets a rendezvous point for the devices so that their respective users can easily navigate back to the rendezvous point. In a variant, the devices may interact with a calendar application to set a reminder for returning to the rendezvous point. The devices may prompt each respective user to enter a time when they should be back. An audible and/or visual alarm or notification will automatically remind the user, depending on both the user's new location and the current time, to give the user sufficient time to return to the rendezvous location for the pre-agreed time. Determining the sufficient time to return to the rendezvous location may be based on the time taken to reach the new location from the rendezvous location or the expected travel time based on the most direct route back to the rendezvous location. Alternatively, one device may set the rendezvous time and communicate it to the other device in the form of an appointment that is automatically linked to the rendezvous point.
  • FIG. 5 is a schematic depiction of the mobile devices 100 after they have strayed from the tagged location. When the devices are remote from each other, the rendezvous time and/or location may be modified. In other words, the devices may be configured to enable the users to modify the location and/or time of their rendezvous by sending a message (e.g. e-mail, SMS or other communication) from one device to the other device. The message may be in a format that the device automatically recognizes as a rendezvous modification message, thus permitting the device receiving this message to automatically change the stored rendezvous parameters. Upon receipt of the rendezvous modification message, the recipient is notified that a request to modify the rendezvous time and/or location has been received, prompting the user to accept or reject the proposed change. Upon acceptance by the recipient, the rendezvous parameters are changed automatically and an acceptance message is sent back to the other device to indicate that the new rendezvous is acceptable and that the modification request has been accepted. Alternatively, in response to the rendezvous modification message, the device may present an option to propose a new time and/or location for the rendezvous.
  • FIG. 6 is a schematic depiction of a map 400 may be presented on one of the mobile devices to enable the user of the device to navigate back to the tagged location 410 from the new current location 420 of the device. The map 400 may present the route with a highlighted or dashed-line path, a sequence of arrows 425, a set of textual directions or audible directions, or any suitable combination thereof.
  • FIG. 7 is a schematic depiction of a variant of the user interface presented in FIG. 6 that further includes a directional arrow 430 for indicating a direction back to the tagged location. Optionally, a distance and/or travel time estimate 440 may also be displayed onscreen. The directional arrow will point in the direction back to the previously tagged location. Where the device is storing more than one tagged location, the user interface permits the user to view all of the tagged locations and to switch between the tagged locations.
  • In a variant, the map may be configured to automatically zoom (change scale) to encompass both the current location of the mobile device and the rendezvous location. This automatic re-zooming facilitates navigation back to the rendezvous location.
  • In another variant, the travel time estimate may take into account weather, road condition data, and real-time traffic data received by the mobile device. The weather, road condition and/or real-time traffic data may be used to calculate how long it will presently take to travel back to the rendezvous location given the current road and traffic conditions. The alarm/notification function on the mobile device (which notifies the user when he or she should begin to return to the rendezvous location) may also be responsive to any real-time traffic conditions, thereby dynamically adjusting the time when the alarm is triggered based on the changing travel time estimate. Historical traffic data may also be useful for determining when to trigger the alarm. For example, if the user is traveling through a location known to have extreme rush hour traffic, then the alert may be triggered pre-emptively to signal to the user that he should depart now to the rendezvous lest he get stuck in heavy rush hour traffic.
  • The foregoing technology may be used in a variety of applications such as, for example, setting up a rendezvous point for two mobile device users, as discussed above, remembering where a car is parked, remembering where a hotel room is situated, and remembering where the user's other mobile device has been placed, to name but a few. The technology can not only be used to pair two mobile devices (to establish a rendezvous point) but also between a single mobile device and other types of machines, equipment or apparatuses that may also be equipped with short-range wireless transceivers such as a desktop computer, a smart appliance, an automobile, a boat, an aircraft, etc.
  • In the foregoing examples, the detection event was the establishing of a communication link (NFC, Bluetooth® etc.) or the loss of connectivity. However, the detection event may also be events such as turning off a device (Bluetooth®-equipped car, Bluetooth®-equipped laptop, mobile device, etc.). Activating (turning on) a device, appliance or machine may also constitute the detection event for triggering the automatic storage of location data. Yet other events may be used to constitute the detection event. For example, closing a hotel door that has an NFC card reader may also trigger the storage of location data on the mobile device.
  • This new technology has been described in terms of specific implementations and configurations which are intended to be exemplary only. Persons of ordinary skill in the art will appreciated, having read this disclosure that many obvious variations, modification and refinements may be made without departing from the inventive concepts presented herein. The scope of the exclusive right sought by the Applicant(s) is therefore intended to be limited solely by the appended claims.

Claims (19)

1. A method of tagging a location using a first mobile device, the method comprising:
pairing the first mobile device with a second mobile device; and
storing current location data for a current location of the first mobile device in response to the pairing.
2. The method as claimed in claim 1 further comprising:
defining the current location as a rendezvous location;
receiving user input to request a route for returning to rendezvous location; and
displaying the route for returning to the rendezvous location.
3. The method as claimed in claim 2 further comprising:
changing the rendezvous location; and
notifying the second mobile device of a change in the rendezvous location.
4. The method as claimed in claim 2 further comprising sending a message that includes the rendezvous location to a third mobile device.
5. The method as claimed in claim 1 further comprising displaying multiple stored locations.
6. The method as claimed in claim 1 further comprising deleting one or more of the multiple stored locations.
7. A first mobile device for tagging a location, the mobile first device comprising:
a short-range wireless transceiver;
a processor configured to interact with the short-range wireless transceiver to pair the first mobile device with a second mobile device;
a position-determining subsystem for determining current location data for a current location of the first mobile device; and
a memory that cooperates with the processor and position-determining subsystem to store the current location data for the current location of the first mobile device in response to the pairing.
8. The mobile device as claimed in claim 7 wherein the short-range wireless transceiver is a near field communication (NFC) interface.
9. The first mobile device as claimed in claim 7 wherein the short-range wireless transceiver is a Bluetooth® transceiver.
10. The first mobile device as claimed in claim 7 further comprising:
a magnetometer; and
a display that displays a virtual compass showing a direction back to a stored location.
11. The first mobile device as claimed in claim 7 wherein the processor is configured to:
define the current location as a rendezvous location;
receive user input to request a route for returning to rendezvous location; and
display the route for returning to the rendezvous location.
12. The first mobile device as claimed in claim 11 further comprising:
changing the rendezvous location; and
notifying the second mobile device of a change in the rendezvous location.
13. The first mobile device as claimed in claim 11 further comprising a radiofrequency transceiver for sending a message that includes the rendezvous location to a third mobile device.
14. A non-transitory computer-readable medium comprising instructions in code which when loaded into a memory and executed by a processor of a first mobile device causes the first mobile device to:
pair the first mobile device with a second mobile device; and
store current location data for a current location of the first mobile device in response to the pairing.
15. The computer-readable medium as claimed in claim 14 further comprising code that causes the first mobile device to:
define the current location as a rendezvous location;
receive user input to request a route for returning to rendezvous location; and
display the route for returning to the rendezvous location.
16. The computer-readable medium as claimed in claim 15 further comprising code that causes the first mobile device to:
change the rendezvous location; and
notify the second mobile device of a change in the rendezvous location.
17. The computer-readable medium as claimed in claim 15 further comprising code that causes the first mobile device to send a message that includes the rendezvous location to a third mobile device.
18. The computer-readable medium as claimed in claim 14 further comprising code that causes the first mobile device to display multiple stored locations.
19. The computer-readable medium as claimed in claim 14 further comprising code that causes the first mobile device to delete one or more of the multiple stored locations.
US14/202,498 2008-01-14 2014-03-10 Tagging A Location By Pairing Devices Abandoned US20140194148A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/013,564 US8792916B2 (en) 2008-01-14 2008-01-14 Dynamic prioritization of label downloads
US14/202,498 US20140194148A1 (en) 2008-01-14 2014-03-10 Tagging A Location By Pairing Devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/202,498 US20140194148A1 (en) 2008-01-14 2014-03-10 Tagging A Location By Pairing Devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/013,564 Continuation US8792916B2 (en) 2008-01-14 2008-01-14 Dynamic prioritization of label downloads

Publications (1)

Publication Number Publication Date
US20140194148A1 true US20140194148A1 (en) 2014-07-10

Family

ID=40851083

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/013,564 Active 2030-12-14 US8792916B2 (en) 2008-01-14 2008-01-14 Dynamic prioritization of label downloads
US14/202,498 Abandoned US20140194148A1 (en) 2008-01-14 2014-03-10 Tagging A Location By Pairing Devices
US14/332,662 Active US9049554B2 (en) 2008-01-14 2014-07-16 Dynamic prioritization of label downloads

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/013,564 Active 2030-12-14 US8792916B2 (en) 2008-01-14 2008-01-14 Dynamic prioritization of label downloads

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/332,662 Active US9049554B2 (en) 2008-01-14 2014-07-16 Dynamic prioritization of label downloads

Country Status (1)

Country Link
US (3) US8792916B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557912B2 (en) * 2015-06-15 2017-01-31 Lg Electronics Inc. Display device and controlling method thereof
US10027616B2 (en) 2016-07-18 2018-07-17 Plexus Meet, Inc. Proximity discovery system and method
US10502582B2 (en) * 2016-09-26 2019-12-10 Uber Technologies, Inc. Modifying map configurations based on established location points

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT462956T (en) * 2006-03-31 2010-04-15 Research In Motion Ltd Method for controlling card versions and device for upgrading the use of networked card data records for mobile communication devices
US8463424B2 (en) * 2007-11-07 2013-06-11 Research In Motion Limited System and method for displaying address information on a map
AU2009338855A1 (en) * 2009-01-30 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Presentation of a digital map
WO2011106797A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Projection triggering through an external marker in an augmented reality eyepiece
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US8315791B2 (en) 2010-06-18 2012-11-20 Nokia Coporation Method and apparatus for providing smart zooming of a geographic representation
US8184069B1 (en) 2011-06-20 2012-05-22 Google Inc. Systems and methods for adaptive transmission of data
US9063951B1 (en) * 2011-11-16 2015-06-23 Google Inc. Pre-fetching map data based on a tile budget
WO2013096923A1 (en) * 2011-12-22 2013-06-27 Earthsweep Llc Method and system for electronic monitoring
US8983778B2 (en) 2012-06-05 2015-03-17 Apple Inc. Generation of intersection information by a mapping service
US9418672B2 (en) 2012-06-05 2016-08-16 Apple Inc. Navigation application with adaptive instruction text
US9997069B2 (en) 2012-06-05 2018-06-12 Apple Inc. Context-aware voice guidance
US9482296B2 (en) * 2012-06-05 2016-11-01 Apple Inc. Rendering road signs during navigation
US9230556B2 (en) 2012-06-05 2016-01-05 Apple Inc. Voice instructions during navigation
US9886794B2 (en) 2012-06-05 2018-02-06 Apple Inc. Problem reporting in maps
US10176633B2 (en) 2012-06-05 2019-01-08 Apple Inc. Integrated mapping and navigation application
US9052197B2 (en) 2012-06-05 2015-06-09 Apple Inc. Providing navigation instructions while device is in locked mode
US8930139B2 (en) * 2012-06-21 2015-01-06 Telecommunication Systems, Inc. Dynamically varied map labeling
JP6021487B2 (en) * 2012-07-18 2016-11-09 キヤノン株式会社 Information processing system, control method, server, information processing apparatus, and computer program
US9408178B2 (en) * 2013-01-22 2016-08-02 Apple Inc. Detecting mobile access points
US9448754B2 (en) 2013-05-15 2016-09-20 Google Inc. Resolving label collisions on a digital map
US9396697B2 (en) 2013-06-01 2016-07-19 Apple Inc. Intelligently placing labels
DE102014203665A1 (en) * 2014-02-28 2015-09-03 Bayerische Motoren Werke Aktiengesellschaft Dynamic filtering of navigation panel labels
US9665924B2 (en) 2015-04-01 2017-05-30 Microsoft Technology Licensing, Llc Prioritized requesting of mapping layers
EP3296768A4 (en) * 2015-05-13 2018-05-23 Panasonic Intellectual Property Management Co., Ltd. Positioning method and terminal
US9794309B2 (en) * 2015-05-15 2017-10-17 Spotify Ab Method and a media device for pre-buffering media content streamed to the media device from a server system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254721A1 (en) * 2001-10-29 2004-12-16 Masahiro Saiki Navigation system
US20060206264A1 (en) * 2004-03-23 2006-09-14 Rasmussen Jens E Combined map scale and measuring tool
US20060223518A1 (en) * 2005-04-04 2006-10-05 Haney Richard D Location sharing and tracking using mobile phones or other wireless devices
US20070008129A1 (en) * 2005-05-03 2007-01-11 Soliman Samir S System and method for 3-D position determination using RFID
US20080076431A1 (en) * 2006-09-23 2008-03-27 Fletcher Ben J Method, apparatus or software for determining a position of a mobile device
US20090098907A1 (en) * 2007-10-15 2009-04-16 Gm Global Technology Operations, Inc. Parked Vehicle Location Information Access via a Portable Cellular Communication Device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002764A1 (en) 1984-10-22 1986-05-09 Etak, Inc. Apparatus and method for displaying a map
US4914605A (en) * 1984-10-22 1990-04-03 Etak, Inc. Apparatus and method for displaying a map
US6321158B1 (en) * 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US5684940A (en) * 1995-03-13 1997-11-04 Rutgers, The States University Of New Jersey Computer-implemented method and apparatus for automatically labeling area regions of maps using two-step label placing procedure and for curved labeling of point features
US5991690A (en) * 1997-07-02 1999-11-23 Trimble Navigation Limited Navigation system incorporating simplified location display
JPH1165436A (en) * 1997-08-21 1999-03-05 Toyota Motor Corp Data selection support device, and map data processing system and processor including same support device
US6154219A (en) * 1997-12-01 2000-11-28 Microsoft Corporation System and method for optimally placing labels on a map
EP1035531B1 (en) * 1999-03-05 2006-04-26 Hitachi, Ltd. Information providing system for mobile units
US6553308B1 (en) * 1999-04-29 2003-04-22 Donnelly Corporation Vehicle-based navigation system with smart map filtering, portable unit home-base registration and multiple navigation system preferential use
US7047309B2 (en) * 2000-08-23 2006-05-16 International Business Machines Corporation Load balancing and dynamic control of multiple data streams in a network
WO2003093767A1 (en) * 2002-04-30 2003-11-13 Telmap Ltd. Template-based map distribution system
US7783530B2 (en) * 2003-06-10 2010-08-24 At&T Intellectual Property I, L.P. Parking reservation systems and related methods
US7425968B2 (en) * 2003-06-16 2008-09-16 Gelber Theodore J System and method for labeling maps
CN1985490B (en) * 2004-07-09 2013-03-27 科德马特公司 Peer of peer-to-peer network and such network
US7430473B2 (en) 2004-10-01 2008-09-30 Bose Corporation Vehicle navigation display
JP4832811B2 (en) 2005-06-23 2011-12-07 株式会社駅探 Map data output device, map data output program, route map output device, route map output system, and route map output program
US20070229538A1 (en) * 2006-03-31 2007-10-04 Research In Motion Limited Methods and apparatus for dynamically labeling map objects in visually displayed maps of mobile communication devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254721A1 (en) * 2001-10-29 2004-12-16 Masahiro Saiki Navigation system
US20060206264A1 (en) * 2004-03-23 2006-09-14 Rasmussen Jens E Combined map scale and measuring tool
US20060223518A1 (en) * 2005-04-04 2006-10-05 Haney Richard D Location sharing and tracking using mobile phones or other wireless devices
US20070008129A1 (en) * 2005-05-03 2007-01-11 Soliman Samir S System and method for 3-D position determination using RFID
US20080076431A1 (en) * 2006-09-23 2008-03-27 Fletcher Ben J Method, apparatus or software for determining a position of a mobile device
US20090098907A1 (en) * 2007-10-15 2009-04-16 Gm Global Technology Operations, Inc. Parked Vehicle Location Information Access via a Portable Cellular Communication Device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557912B2 (en) * 2015-06-15 2017-01-31 Lg Electronics Inc. Display device and controlling method thereof
US10027616B2 (en) 2016-07-18 2018-07-17 Plexus Meet, Inc. Proximity discovery system and method
US10250542B2 (en) 2016-07-18 2019-04-02 Plexus Meet, Inc. Proximity discovery system and method
US10502582B2 (en) * 2016-09-26 2019-12-10 Uber Technologies, Inc. Modifying map configurations based on established location points

Also Published As

Publication number Publication date
US8792916B2 (en) 2014-07-29
US9049554B2 (en) 2015-06-02
US20090181650A1 (en) 2009-07-16
US20140329549A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
US8285247B2 (en) Locator system
EP2115390B1 (en) Use of previously-calculated position fix for location-based query
ES2313998T3 (en) Mobile terminal and system and method to determine the geographical location of a mobile terminal.
US9823342B2 (en) System and method for mobile monitoring of non-associated tags
US10009756B2 (en) Functional management of mobile devices
US6859171B2 (en) Mobile object locator
US6771972B2 (en) System and method for a distributed search for a lost asset
EP2547080B1 (en) Location status indicator for mobile phones
CN101228532B (en) Equipment and method for operating multifunctional near-field communication equipment supporting a plurality of data formats
EP2119173B1 (en) Appratus for providing location information of hand-held device and method thereof
US20060030334A1 (en) Position information management system
US9185525B2 (en) Automatic activation of speed measurement in mobile device based on available motion indicia
US6885337B2 (en) Methods and apparatus for determining the position of a mobile terminal using localized source assistance information
CN103262644B (en) NFC system and the correlation technique of near-field communication (NFC) geographic position authentication are provided
US20080311957A1 (en) Establishing wireless links via orientation
US6563459B2 (en) Portable terminal apparatus and the positional information communication method using it
US7155238B2 (en) Wireless location determining device
US20100205242A1 (en) Friend-finding system
ES2473865T3 (en) Use a wireless feature in order to activate the generation of a position fix
US20140204000A1 (en) Information processing device, information processing method, and program
JP4763810B2 (en) System and method for direction finding using a portable device
US8395547B2 (en) Location tracking for mobile computing device
KR101873671B1 (en) Power efficient proximity detection
JP5856675B2 (en) Method and system for providing advanced location-based information to a wireless handset
US20020049064A1 (en) Mobile telephone, mobile telephone system, and base station used therein

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESEARCH IN MOTION LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRIFFIN, JASON TYLER;REEVE, SCOTT DAVID;REEL/FRAME:032393/0755

Effective date: 20100816

AS Assignment

Owner name: BLACKBERRY LIMITED, ONTARIO

Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH IN MOTION LIMITED;REEL/FRAME:034161/0093

Effective date: 20130709

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION