US20140173509A1 - Device, Method and User Interface for Emphasizing Divisions in Data - Google Patents

Device, Method and User Interface for Emphasizing Divisions in Data Download PDF

Info

Publication number
US20140173509A1
US20140173509A1 US14/098,509 US201314098509A US2014173509A1 US 20140173509 A1 US20140173509 A1 US 20140173509A1 US 201314098509 A US201314098509 A US 201314098509A US 2014173509 A1 US2014173509 A1 US 2014173509A1
Authority
US
United States
Prior art keywords
data
divisions
plurality
set
set dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/098,509
Inventor
Michael Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lithium Technologies LLC
Original Assignee
Lithium Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261734927P priority Critical
Application filed by Lithium Technologies LLC filed Critical Lithium Technologies LLC
Priority to US14/098,509 priority patent/US20140173509A1/en
Priority claimed from PCT/US2013/073625 external-priority patent/WO2014089460A2/en
Assigned to LITHIUM TECHNOLOGIES, INC. reassignment LITHIUM TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WU, MICHAEL
Publication of US20140173509A1 publication Critical patent/US20140173509A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/904Browsing; Visualisation therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • G06F3/04842Selection of a displayed object
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Abstract

A device with one or more processors and memory displays, in a data display panel, a first representation of data from a data set. The data is selected in accordance divisions in a first data-set dimension and divisions in a second data-set dimension, and is organized to emphasize the divisions in the first data-set dimension. The device receives an input corresponding to switching the dimension selector from a first state to a second state. In response to receiving the input, the device displays, in the data display panel, a second representation of a second subset of data from the data set, where the second subset of data is selected from the data set in accordance with the divisions in the first data-set dimension and the divisions in the second data-set dimension, and is organized to emphasize the divisions in the second data-set dimension.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data” which is incorporated herein by reference in its entirety.
  • This application is related to the following applications: U.S. patent application Ser. No. ______, “Device, Method and User Interface for Presenting Analytic Data,” filed ______, (Attorney Docket No. 070407-5001US); U.S. patent application Ser. No. ______, “Device, Method and User Interface for Determining a Correlation between a Received Sequence of Numbers and Data that Corresponds to Metrics,” filed ______, (Attorney Docket No. 070407-5009US); U.S. patent application Ser. No. ______, “Device, Method and User Interface for Displaying Relationships between Different Sets of Data,” filed ______, (Attorney Docket No. 070407-5010US); and U.S. patent application Ser. No. ______, “Device, Method and User Interface for Switching between Graphical Representations of Data,” filed ______, (Attorney Docket No. 070407-5011US), which are incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • The disclosed implementations relate generally to methods of data visualization.
  • BACKGROUND
  • An online community is a website designed for users to interact with each other, usually with some common theme. Unlike a traditional website, in which the website owner controls all of the content, an online community enables and encourages users to participate in the content. Users post comments, replies to comments, questions, and answers to other users' questions; more experienced users develop articles and knowledge bases, and lead forum discussions or blogs.
  • Business entities now recognize the value of having an online community for the business. In this case, the community focus is on the products or services of the business, and users participate in the community just like any other online community. While online communities can be beneficial for marketing, online communities are not just a marketing gimmick. For example, real users post real questions, and the questions are frequently answered by other users in the community. Of course an online community is much more than just a question and answer board.
  • SUMMARY
  • It is import to measure the success and “health” of an online community. To make these measurements, an abundance of data is tracked about user interactions with the community. Every interaction is tracked, as well as information about the interaction, such as where it originated, what time, what type of computing device the user was using, the content of the interaction itself (such as a post), as well as subsequent responses to the interaction, such as other users designating the comment or answer as useful. This abundance of data is almost too much, and previous methods of reviewing the data have been cumbersome or ineffective. Because of the shortcoming of previous attempts, implementations of the present invention provide simpler and more effective ways of reviewing interaction data for an online community.
  • In some implementations, a method includes, at a computing device with a display, displaying, in a data display panel, a first representation of a first subset of data from a data set. The first subset of data is selected from the data set in accordance with both a first plurality of divisions in a first data-set dimension and a second plurality of divisions in a second data-set dimension, where the first data-set dimension is different from the second data-set dimension. The first representation of the data is organized to emphasize the first plurality of divisions in the first data-set dimension. The method further includes receiving an input corresponding to switching a current state of the dimension selector from a first state to a second state, and, in response to receiving the input, displaying, in the data display panel, a second representation of a second subset of data from the data set. The second subset of data is selected from the data set in accordance with both the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension. The second representation of the data is organized to emphasize the second plurality of divisions in the second data-set dimension.
  • In accordance with some embodiments, a computer system (e.g., a search client system or search server system) includes one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing the operations of the method described above. In accordance with some embodiments, a non-transitory computer readable storage medium has stored therein instructions which when executed by one or more processors, cause a computer system (e.g., a search client system or search server system) to perform the operations of the methods described above.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a conceptual block diagram of an online community in accordance with some implementations.
  • FIG. 2 is a block diagram of a client device in accordance with some implementations.
  • FIG. 3 is a block diagram illustrating the structure of web servers, database servers, and application servers in accordance with some implementations.
  • FIGS. 4A-4B are flow diagrams illustrating a method of changing which divisions of data are emphasized in a data viewing interface in accordance with some implementations.
  • FIGS. 5A-5VV illustrate methods of presenting, selecting, and changing views of data in accordance with some implementations.
  • FIG. 6 illustrates an example of a data flow and architecture for collection of analytics data for an online community and presentation of analytic data for that online community in accordance with some implementations.
  • Like reference numerals refer to corresponding parts throughout the several views of the drawings.
  • DESCRIPTION OF IMPLEMENTATIONS
  • Reference will now be made in detail to implementations, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the implementations.
  • FIG. 1 illustrates an example of an environment in which disclosed implementations operate. In the middle is one or more communication networks 112, such as the Internet, that link together the various computing devices. Users 102 are individual people who access the communication networks 112 using electronic devices 104, such as desktop computers, laptop computers, tablet computers, smartphones, PDA's, etc. The communication networks are also connected to one or more Social Media sites 106, such as Facebook, Youtube, etc.
  • Also connected to the communication network 112 is an online community 100 for a business entity. An online community 100 provides public forums, bulletin boards, blogs, and other information. Unlike a traditional business website, an online community is maintained by everyone, including the users 102. Users 102, for example, can post questions about products or services provided by the business entity, or can post answers to other users questions. An online community can increase profitability of the business entity in many ways, including reducing the costs for customer support (users find the information in the community) and reducing the cost of search engine optimization (for example, because search engines review the user generated community content).
  • An online community 100 includes one or more web servers 114 that handle the incoming web requests, and one or more application server 116 that provide the user interface functionality for the community. The online community 100 also includes one or more database servers 118 that store the data for the community, including logs of user interactions. In some implementations, the database servers 118 also store binary files, image files, video files, and so on. In some implementations, binary, image, and video files are stored on the application servers 116, of other file servers (not shown).
  • In addition to the users 102 who interact directly with the online community 100, managers, stakeholders, and executives 108 of the business entity review the community interaction data. As described in more detail below, some people (e.g., managers, stakeholders and/or executives) 108 review the raw data, and other people 108 review analytic computed data. The people 108 utilize client devices 110 to access the interaction data over the communication network 112. Like a user device, a client devices can be desktop computers, laptop computers, tablet computers, smartphones, PDA's, etc.
  • Although FIG. 1 illustrates Web Servers 114, application servers 116, and database servers 118 as physically distinct devices, the functionality can be combined in various different ways. For example, the web server software and application server software optionally runs on the same server(s).
  • FIG. 2 illustrates an example of a client device 110. A client device 110 generally includes one or more processing units (CPUs) 202, one or more network or other communications interfaces 204, memory 214, and one or more communication buses 212 for interconnecting these components. The communication buses 212 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. A client device 110 also includes a user interface 206, for instance a display 208 and a keyboard or other input mechanism 210. Some client devices 110 display a keyboard 210 on the display 208 as needed. Some client devices 110 utilize a touchscreen or touch-sensitive display 208. Memory 214 optionally includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 214 optionally includes mass storage that is remotely located from the central processing unit(s) 202. Memory 214, or alternately the non-volatile memory device(s) within memory 214, comprises a computer readable storage medium. In some implementations, memory 214 or the computer readable storage medium of memory 214 stores the following programs, modules and data structures, or a subset thereof:
      • an operating system 216 (e.g., Windows, Mac OS X, iOS, Android, or Linux) that generally includes procedures for handling various basic system services and for performing hardware dependent tasks;
      • a network communications module 218 that is used for connecting the client device 110 to servers or other computing devices via one or more communication networks, such as the Internet, other wide area networks, local area networks, metropolitan area networks, and the like;
      • a web browser 220 (e.g., Internet Explorer, Safari, Chrome) that is used to access web pages, web applications, and other resources over a communication network, such as the Internet, other wide area networks, local area networks, metropolitan area networks, and the like;
      • a metric explorer interface 5000, enabling a user to graphically view data from user interaction with an online community or other social media, and to select many different aspects (or dimensions) of what data is viewed, and how the data is viewed. The metric explorer interface is described in more detail with reference to FIGS. 5A-5VV below and FIGS. 9-005 to 9-141 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”;
      • an actionable analytics interface 222, enabling a user to graphically review calculated analytic data based on users' interactions with an online community or other social media. The actionable analytics interface 222 is described in more detail with reference to FIGS. 9-142 to 9-206 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”;
      • a return on investment (ROI) calculation interface 224, enabling a user to compute the return on investment for an online community 100, or compute correlations between business key performance indicators (KPIs) and various metrics. The ROI calculation interface 224 is described in greater detail with reference to FIGS. 9-207 to 9-236 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”; and
      • one or more browser cookies 226, which save state or other information for a web page or web application.
  • FIG. 3 illustrates an example of a server, such as a web server 114, an application server 116, or a database server 118. A server 114/116/118 generally includes one or more processing units (CPUs) 302, one or more network or other communications interfaces 304, memory 314, and one or more communication buses 312 for interconnecting these components. The communication buses 312 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. The server 114/116/118 optionally includes a user interface 306, for instance, a display 308 and a keyboard or other input device 310. Memory 314 optionally includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 314 optionally includes mass storage that is remotely located from the central processing unit(s) 302. Memory 314, or alternately the non-volatile memory device(s) within memory 314, comprises a computer readable storage medium. In some implementations, memory 314 or the computer readable storage medium of memory 314 stores the following programs, modules and data structures, or a subset thereof:
      • an operating system 316 (e.g., Linux or Unix) that generally includes procedures for handling various basic system services and for performing hardware dependent tasks;
      • a network communications module 318 that is used for connecting the server 114/116/118 to other servers or other computing devices via one or more communication networks, such as the Internet, other wide area networks, local area networks, metropolitan area networks, and the like;
      • web server software 320 (e.g. Apache web server or Apache Tomcat) that receives web requests, and delivers appropriate web pages or other resources in response to the requests;
      • database server software 322 (e.g., MySQL or other structured query language (SQL) database engine), which stores organized relational data for the online community 100, and provides the data as needed;
      • a database 324 that contains one or more community interaction logs. The log database(s) track information about user interactions with the online community. For example, clicking to view a web page generates a “page view” event, which is logged. The log record for this event optionally includes the user name or ID, the time of the page view, which page was viewed, etc.;
      • a forum database 326, which includes data for one or more community forums. This includes all data and metadata for posts to each forum, as well as configuration information about each forum;
      • a blog database 328, which stores blogs for one or more individuals, including all of the content of the blog, as well as comments, etc.;
      • a tribal knowledge base database 330, which is an organized collection of articles that have generally proceeded through a review process, providing useful information on a topic (e.g., how to utilize a feature of a product provided by the business entity);
      • an application server 332, which provides the functionality of the online community 100 and functionality to access the interaction data 324 generated by users 102 of the online community 100;
      • one or more community interaction applications or interfaces 334, which are used by users 102 who participate in the online community 100;
      • a metric explorer interface 5000, which is used by users (e.g., Managers) to review the raw interaction data. This is described in more detail with reference to FIGS. 5A-5VV below and FIGS. 9-005 to 9-141 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”;
      • an actionable analytics interface 222, which is used by users (e.g., Stakeholders) to review computed analytic data based on the interactions of users 102 with the online community 100. The actionable analytics interface 222 is described in more detail with reference to FIGS. 9-142 to 9-206 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”;
      • a KPI/ROI calculation interface 224, which is used by users (e.g., Executives) to evaluate the return on investment for an online community. In some implementations, the interface 224 computes correlations between business key performance indicators and community metrics. This is described in greater detail with reference to FIGS. 9-207 to 9-236 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”;
      • a KPI calculation engine 336, which computes correlation coefficients between sets of data;
      • a data export application 338, which converts retrieved data into various external file formats, including CSV (comma separated values), PDF (portable document format), PNG (portable network graphics), and XLS (Microsoft Excel).
  • Although FIG. 3 shows examples of servers, it is intended more as functional description of the various features which are, in some circumstances, present in a set of servers than as a structural schematic of the implementations described herein. In practice, and as recognized by those of ordinary skill in the art, items shown separately could be combined and some items could be separated. For example, some items shown separately in FIGS. 1 and 3 could be implemented on single servers and single items could be implemented by one or more servers. The actual number of servers used to implement the web servers, application servers, and database servers, and how features are allocated among them will vary from one implementation to another, and optionally depends in part on the amount of data traffic that the system must handle during peak usage periods as well as during average usage periods.
  • Each of the methods described herein are, optionally, performed by instructions that are stored in a computer readable storage medium and that are executed by one or more processors of one or more servers or clients. Each of the operations shown in FIGS. 4A-4B optionally correspond to instructions stored in a computer memory or computer readable storage medium.
  • Methods for Displaying Data
  • FIGS. 4A-4B are flow diagrams illustrating a method 400 of changing which divisions of data are emphasized in a data viewing interface in accordance with some implementations. The method 400 is performed at a computing device (e.g., Client Device 110 in FIG. 2, Web Server 114 in FIG. 3, Application Server 116 in FIG. 3, or Database Server 118 in FIG. 3) with a display and an input device (e.g., a mouse, a trackpad, a touch screen or voice control module). Some operations in method 400 are, optionally, be combined and/or the order of some operations is, optionally, be changed. As described below, the method 400 provides an intuitive way to change which divisions of data are emphasized in a data viewing interface. The method reduces the cognitive burden on a user when viewing data, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to view data faster and more efficiently conserves power and increases the time between battery charges.
  • The device displays (402), in a data display panel, a first representation of a first subset of data from a data set. The first subset of data is selected (404) from the data set in accordance with both a first plurality of divisions in a first data-set dimension and a second plurality of divisions in a second data-set dimension. The first data-set dimension is different from the second data-set dimension (e.g., the first subset of data is selected so as to exclude data that is not in at least one division of the first plurality of divisions and at least one division of the second plurality of divisions). In some implementations, the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension are selected (406) in response to inputs received from a user (e.g., as shown in FIGS. 5I-5VV). For example, the first plurality of divisions and the second plurality of divisions are selected based on selection of options in data-selection interfaces adjacent to the data display field, as described herein with reference to method 400.
  • The first representation of the data is organized (408) to emphasize the first plurality of divisions in the first data-set dimension (e.g., the first plurality of divisions are prominently displayed in the visualization of the data displayed in the data display panels, for example, by displaying the divisions as separate bars in a bar chart or separate lines in a line graph). In some implementations, the first representation visually aggregates (410) data by the second plurality of divisions (e.g., only data from the second plurality of divisions is included in the subset of data) and visually separates the aggregated data in accordance with the first plurality of divisions. For example, the first representation is a line graph with different lines corresponding to different divisions in the user dimension of the data set. In some implementations, the first representation visually groups (412) data by the first plurality of divisions and shows subdivisions corresponding to the second plurality of divisions. For example, the first representation is a bar chart with different bars corresponding to different divisions in the first user dimension of the data set as shown in FIGS. 5I-5R, 5W-5X, and 5CC-5JJ.
  • In some implementations, the device displays (414) a visual indication of the first plurality of divisions in a first data-selection interface (e.g., panel) extending in a first direction from the data display panel. For example, the data-selection interface includes options corresponding to divisions in the data-source dimension is described herein with reference to the region on the top side of the central data display panel in FIGS. 5I-5VV. In some implementations, the device displays (416) a visual indication of the second plurality of divisions in a second data-selection interface (e.g., panel) extending in a second direction from the data display panel, where the first direction is different from the second direction. For example, the data-selection interface including options corresponding to divisions in the user dimension is described herein with reference to the region on the right side of the central data display panel in FIGS. 5I-5VV. In some implementations, the device displays (418) a dimension priority icon (e.g., user interface element 5132 in FIGS. 5I-5VV) that indicates that the first plurality of divisions in the first data-set dimension are emphasized over the second plurality of divisions in the second data-set dimension.
  • After displaying the first representation of the first subset of the data in the data-display panel, the device receives (420) an input (e.g., from the input device) corresponding to switching a current state of the dimension selector from a first state to a second state. In response to receiving the input, the device displays (422), in the data display panel, a second representation of a second subset of data from the data set. In some implementations, the first subset of data is (424) the same as the second subset of data. In some implementations, the first subset of data is organized or displayed differently from the second subset of data. The second subset of data is selected (426) from the data set in accordance with both the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension (e.g., the first subset of data is selected so as to exclude data that is not in at least one division of the first plurality of divisions and at least one division of the second plurality of divisions). The second representation of the data is organized (428) to emphasize the second plurality of divisions in the second data-set dimension (e.g., as shown in FIGS. 5I-5VV).
  • In some implementations, the second representation visually aggregates (430) data by the first plurality of divisions (e.g., only data from the second plurality of divisions is included in the subset of data) and visually separates the aggregated data in accordance with the first plurality of divisions. For example, the first representation is a line graph with different lines corresponding to different divisions in the data-source dimension of the data set, as shown in FIGS. 5A-5E). In some implementations, visually aggregating respective data includes displaying a data visualization that includes one or more elements corresponding to an aggregation of the respective data. In some implementations, the second representation visually groups (432) data by the second plurality of divisions and shows subdivisions corresponding to the first plurality of divisions. For example, the first representation is a bar chart with different bars corresponding to different divisions in the data-source dimension of the data set as shown in as shown in FIGS. 5S-5V, 5Y-5BB, and 5KK-5VV.
  • In some implementations, prior to receiving the input, the subdivisions corresponding to the second plurality of divisions include a first subdivision shown in a first color and a second subdivision shown in a second color, and after receiving the input, the subdivisions corresponding to the first plurality of divisions include (434) a first subdivision shown in the first color and a second subdivision shown in the second color. Thus, in some implementations, the colors used to show subdivisions for the representation of the data remain the same, but prior to detecting the input, the colors are assigned to divisions in the first data-set dimension and after detecting the input, the same colors are assigned to divisions in the second data-set dimension. For example, as shown in FIG. 5JJ, user divisions are displayed in blue, orange, green and purple, while the data-source divisions are emphasized by grouping the user divisions into bar graphs by data-source division. In contrast, in FIG. 5KK, data-source divisions are displayed in blue, orange, green and purple, while the user divisions are emphasized by grouping the data-source divisions into bar graphs by user division.
  • In some implementations, prior to detecting the input, the device displays a dimension priority icon (e.g., user interface element 5132 in FIGS. 5I-5VV) that indicates that the first plurality of divisions in the first data-set dimension are emphasized over the second plurality of divisions in the second data-set dimension (e.g., by pointing at the first data-selection interface, as shown in FIG. 5JJ). In some implementations, after detecting the input, the device changes (436) display of the dimension priority icon to indicate that the second plurality of divisions in the second data-set dimension are emphasized over the first plurality of divisions in the first data-set dimension. For example the device changes display of the dimension priority icon so that it points at the second data-selection interface, as shown in FIG. 5KK.
  • It should be understood that the particular order in which the operations in FIGS. 4A-4B have been described is merely an example and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described in U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data” with respect to other methods described therein (e.g., methods 400, 600, 700 and 800 in U.S. Provisional Patent Application No. 61/734,927) are also applicable in an analogous manner to method 400 described above with respect to FIGS. 4A-4B. For example, the inputs, data display panels, data selection interfaces, and data-set dimensions described above with reference to method 400 optionally have one or more of the characteristics of the inputs, data display panels, data selection interfaces, and data-set dimensions described in U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data” with reference to other methods described therein (e.g., methods 400, 600, 700 and 800 in U.S. Provisional Patent Application No. 61/734,927). For brevity, these details are not repeated here.
  • Participation in an online community or other social media generates a lot of data. For example, when a user posts a question, comment, or answer, the post itself is recorded, as well as the date/time of the post, who made the post, etc. Different people related to the community or social media are interested in different aspects of the data. In some implementations, the parties who review the data (e.g., users of the device described above) are categorized into three roles, including Managers, Stakeholders, and Executives.
  • A manager is someone who participates in the day-to-day management of an online community platform. Manager reviews the direct measurements of participation by community members. For example, a manager would review raw metrics such as the total number of posts, the total number of posts of specific types (e.g., questions, answers), the number of fans, the number of discussion threads and the lengths of those threads, the number of times particular content is viewed by users, the comments or ratings received by each particular user and/or posts, and so on. These quantities are directly measurable by clicks, button presses, and other recorded user interactions, and constitute level 1 data. In general, the level 1 data reviewed by managers comprises raw metrics and simple reports based on the raw metrics.
  • A business stakeholder is someone who derives business value from the online community. Business stakeholders are less interested in the raw metrics collected about a community, and are more interested in data that shows the success or effectiveness of an online community or other social media. For example, a stakeholder reviews market share or share of the advertising in the market, or other data that demonstrates how well the media content resonates with the participants of the community. The data of interest to the business stakeholders are actionable analytics generated from the raw metrics. Various statistical and analytical techniques can be used to generate the analytics from the raw metrics. Frequently the actionable analytics have complex and non-linear relationships with the raw metrics from which the analytics are derived. The level 2 data reviewed by business stakeholders comprises actionable analytics.
  • Finally, business executives review data that ties social media directly to business objectives. Generally, the business objectives are financial, such as revenue or profit, but also include less tangible objectives such as customer satisfaction. The level 3 data reviewed by business executives comprise key performance indicators (KPI's), return on investment (ROI), and so on. The level 3 data is derived from the raw metrics and the actionable analytics associated with the community, as well as additional data (e.g., returns, revenues, and customer satisfaction metrics) provided by the entity using the community to promote its business objectives.
  • FIGS. 5A-5VV below describe a user interface displayed on a display that is coupled to a computing device with one or more processors and memory that store programs that are configured to be executed by the one or more processors. Below, when a user is described as performing an operation associated with a displayed user interface (e.g., selecting an option, activating an affordance, or the like), the computer is detecting an input provided by the user (e.g., using a user input device such as a mouse, a touchpad, a keyboard, voice commands, etc.), and the computing device is responding to the detected input by updating the user interface and/or performing an associated operation in accordance with the detected input. Thus, for example, when a user “selects a time range to be displayed,” the device is detecting an input generated by a user with an input device (e.g., a mouse, trackpad or keyboard) that corresponds to selecting the time range, and the device is responding to the input that corresponds to selecting the time range by selecting the time range.
  • FIGS. 5A-5VV illustrate various implementations that provide a simpler and more effective user interface for displaying level 1 data and level 2 data. The level 1 data and the level 2 data are examples of a multi-dimensional data set, where data units within the multi-dimensional data set can be selectively displayed in the user interface using various data selection interfaces (or data selectors). In some implementations, each data set dimension represents a respective aspect of the data set. For example, dimensions of the data set can be related to the “who”, “what”, “when”, and “where” aspects of the data set, respectively. In some implementations, each data set dimension further includes multiple “divisions”, where each division represents a filter for a subset of the available data. For example, divisions in the “who” dimension can include various categories, roles, and/or ranks of users. Divisions in the “what” dimension can include various types of raw metrics and analytics (collectively called “metrics”). Divisions in the “what” dimension can be further filtered or limited by a “how” dimension, which provides attributes or context for the data in the “what” dimension. Divisions in the “when” dimension can include various time periods and/or time ranges. Divisions in the “where” dimension can include various sources or channels from which the data is collected. For example, the “where” dimension can include various channels (e.g., community, various other third-party social media sites, and so on) from which the metrics data is collected. Sometimes, the “where” dimension also include subdivisions representing sub-topics and/or sub-communities within a community or data channel. The “who”, “what”, “when”, and “where” data-set dimensions are merely illustrative for the kinds of data-set dimensions that can be represented by the data selection interfaces shown below. Not all dimensions need to be present in a data set, and not all dimensions present in the data set need to have a respective data selection interface in various implementations.
  • In FIG. 5A, the “community Suggestions” node or forum 5118 has been selected in the channel selector interface, so the graph 5124 (e.g., a graph of the number of posts in the “Community Suggestions” forum of the “Li” community over time) corresponding to the node 5118 is presented in the data display panel 5028. In this implementation, the blue color of the graph 5124 corresponds to the blue highlighting of the “Community Suggestions” node 5118. In FIG. 5B, the node “Show us your Home Theater!” 5122 is selected in addition to the “Community Suggestions” node, and graph 5126 (e.g., a graph of the number of posts in the “Show us your Home Theater!” forum of the “Li” community over time) corresponding to the node 5122 displays in the data panel 5028. The green color of the graph 5126 corresponds to the green highlighting of the node 5122. As noted previously with the selection of users, some implementations use shading, patterns, or labels to correlate graphs with selected options (in this case, nodes or sub-domains). In FIG. 5C, the “Community Suggestions” node 5118 has been unselected, so only the graph 5126 corresponding to the “Show us your Home Theater” node 5122 is displayed in the data display panel 5028. Comparison of FIG. 5B to FIG. 5C illustrates that some implementations adjust the range on the y-axis based on the data range(s) for the selected graphs(s). Whereas graph 5124 required the larger range of 10 to 70, graph 5126 can be displayed in the smaller range of 15 to 45. In FIG. 5C, the graph 5126 extends more vertically because of the change in scaling of the y-axis. In FIG. 5D, the “Community Suggestions” node 5118 has been reselected, and thus graphs 5124 and 5126 both appear in the data display panel 5028 (as in FIG. 5B).
  • In FIG. 5E, the “HiFi Ideas” node 5120 has been selected in addition to the nodes 5118 and 5122, so three graphs 5124, 5126, and 5128 are displayed in the data display panel 5028. The orange color of the graph 5128 (e.g., a graph of the number of posts in the “HIFI Ideas” forum of the “Li” community over time) corresponds to the orange highlighting of the “HiFi Ideas” node 5120. Because the post counts for the “HiFi Ideas” node 5120 are much greater than the post counts for the other two nodes, the device (e.g., device 110) displaying the user interface shown in FIG. 5E has adjusted the scale on the y-axis. The graphs 5124 and 5126 are the same as in FIG. 5D, but are compressed vertically so that they can appear with the graph 5128.
  • FIGS. 5A-5E illustrate variations in the channel selection without changing any of the other selectors. Each of these figures uses the “post count” metric, with no specific attribute selections, for the time period mid July, 2010 to mid November, 2010, and includes data for all users.
  • FIGS. 5F-5H illustrate how data is displayed in the data panel 5028 when a user selects multiple nodes in the channel selector 5018 and multiple users (or multiple groups of users using ranks or roles) in the user selector 5026. As explained earlier, selection of multiple users or user groups generally results in a graph for each of the users or groups of users; similarly, selection of multiple nodes in the channel selector generally results in a graph for each of the nodes. In some implementations (not illustrated), there is a separate graph for each (node, user selection) combination. In the example in FIG. 5F, there are three selected nodes in the channel selector, and three selected user roles in the user selector, so nine distinct (node, user role) graphs are optionally displayed in the data display panel 5028. Because each graph corresponds to a node/role combination, colors, shading, and patterns are insufficient to identify a combination. In some implementations, each graph is given a label, which identifies a respective combination of options selected in two different dimensions (e.g., the channel and user dimensions).
  • Creating a separate graph for each (node, user selection) combination is both visually hard to understand, and generally does not correspond to what a user wants to see. Instead, preferred implementations enable grouping of the selected data. For example, if a user wants a separate graph for each selected role, then the data for the selected nodes can be grouped together for each selected role. Conversely, if the user wants a graph for each of the nodes, then the data for all of the selected roles can be grouped together for each of the selected nodes. In some implementations, this is implemented using a “Group By” arrow button 5132 (i.e., an example of a dimension selector). In some of some implementations, there is a label “Group By” 5130 adjacent to the arrow button 5132 to provide more information to the user using the user interface shown in FIGS. 5F-5H.
  • As will be shown in later figures, when the group by arrow 5132 points to the user selector 5026, there is a single graph for each of the selected roles. The data for each graph is limited to the selected nodes rather than using data for the entire community.
  • Similarly, as will be shown in later figures, when the group by arrow 5132 points to the channel selector 5018, as illustrated in FIG. 5H, there is a single graph for each of the selected nodes. The data for each graph is limited to the selected users (e.g., selected roles “Advanced Studio,” “BlogAuthor,” and “HiFi_Employee.”)
  • In some implementations the “Group By” label 5130 and group by arrow 5132 only appear when there are multiple selections for both nodes and users/user groups.
  • FIGS. 5I-5V illustrate graphical displays in the data display panel 5028 when there is a single time grain selected and the user selection is not “all users.” As shown in FIG. 5I, the device (e.g., device 110) displaying the user interface shown in FIGS. 5I-5V displays the “group by” label 5130 and group by arrow 5132. Once a user has selected one or more roles, such as “Advanced Studio” 5174, “CategoryExpert” 5176, and “HiFi_Employee” 5178, corresponding bar graphs are displayed in the data panel 5028. The data for each of these bars is limited to the node “Engage with HiFi” 5172. In FIGS. 5K and 5L, roles “TKB Editor” 5180 and “VIP” 5182 are selected, so the device (e.g., device 110) displaying the user interface shown in FIGS. 5I-5V displays corresponding bar graphs in the display panel 5028 that show post counts by users in the selected roles aggregated over the selected time period.
  • In FIGS. 5M-5O, additional nodes “HiFi Ideas” 5184, “Coder Ideas” 5186 (FIG. 5N), and “CodeCave Blog” 5188 (FIG. 5O) are selected, and the device (e.g., device 110) displaying the user interface shown in FIG. 5M-5O updates the bar graphs accordingly. Because the data is grouped by roles (the “group by” arrow 5132 is pointing to the user roles), the total length of each bar corresponds to the sum of the data for each of the nodes. In some implementations, each bar is subdivided to indicate the contribution from each of the nodes, as indicated in FIGS. 5M-5O. In some implementations, each node that is selected is highlighted with a different color, and the corresponding color is used in the bar graphs to identify the graph portion corresponding to each node. For example, in the bar graph for users in the “VIP” role 5182, the blue portion 5190 indicates the number of posts in the “Engage with HiFi” node 5172. Similarly, in this same bar graph, the orange portion 5192 identifies the number of posts to the “HiFi Ideas” node 5184, the green portion 5194 identifies the number of posts to the “Coder Ideas” node 5186, and the purple portion 5196 identifies the number of posts to the “CodeCave Blog” node 5188 by users in the various roles. Just like the blue portion 5190, these other portions are limited to users in the “VIP” role 5182. In some implementations, the colors of the bars used to display metric values in the data display panel for respective nodes correspond to the colors of the font (or other features of the selection icon) used to indicate selection of the respective nodes. For example, as shown in FIG. 5O, the font and bars for the “Engage with HiFi” and “HiFi Ideas” nodes are blue and orange respectively.
  • In FIGS. 5P and 5Q, a user unselects nodes 5184 and 5186, so the corresponding portions are removed from the bar graphs. As shown here, some implementations continue to display the unselected nodes 5184 and 5186 in the channel selector 5018. FIGS. 5P and 5Q also illustrate that the scaling on the x-axis automatically adapts based on the new sizes of the bars. In this example, the maximum x-axis scale (post count) in FIG. 5O is 300, which drops to 200 in FIG. 5P, and drops further to 160 in FIG. 5Q. In FIG. 5R, a user has unselected user role “TKB Editor” 5180, and the device (e.g., device 110) displaying the user interface shown in FIGS. 5P-5Q has thus removed the corresponding bar graph. Because the bar for the “TKB Editor” 5180 was the longest one in the bar graph in FIG. 5Q, removing the bar causes the x-axis of the bar graph to be resealed again.
  • In FIG. 5S, a user has switched the “group by” arrow 5132, so that the graph in the data panel 5128 is now grouped by nodes. In this case, there are only two selected nodes “Engage with HiFi” 5172 and “CodeCave Blog” 5188, so there are only two bars. In FIG. 5S, the bars are vertical, corresponding to the new selection for grouping. This change of grouping also illustrates some other features of some implementations. In the illustrated implementation, the node selectors 5172 and 5188 are no longer colored. Because they are selected, they appear in a bold font, whereas the unselected nodes 5184 and 5186 appear in a standard (non bold) font. Now that the grouping is by node, colors are associated with each of the selected roles. In this example, each of the select roles 5174, 5176, 5178, and 5182 is highlighted with a different color, and the corresponding color in the bars identify the portion of the posts for the corresponding role. In some implementations, shading, patterns, or labels are used instead of colors to identify the correspondence between roles and portions of the bar graphs.
  • In FIG. 5T, the user role “VIP” has been unselected, and thus the device (e.g., device 110) displaying the user interface shown in FIG. 5T has removed the purple portion of the bar graphs in the data panel 5028. In FIGS. 5U and 5V, a user reselects nodes “Coder Ideas” 5186, and “HiFi Ideas” 5184, so the user interface displays corresponding bar graphs in the data panel 5028.
  • As illustrated in FIG. 5W, when a user switches the “group by” arrow 5132 back to “roles,” the grouping is by roles, the bars in the graph are horizontal, and the colors correspond to the nodes.
  • In some implementations, the user interface provides an option to view the bar graphs as relative percentages. In some implementations, there is an indicator or button 5198 that identifies the current view (either by numbers or relative percentages). In FIG. 5W, indicator 5198 shows that the data is displayed as total counts. In some implementations, the indicator is button control, which a user can use to switch the view. In some implementations, the option to switch between counts and relative percentages is selected from a menu or toolbar icon (not shown). When selected, the scale on the axis becomes 0% to 100%, as illustrated in the data panel 5028 in FIG. 5X. The display view is indicated by indicator or button 5200 (which is, optionally, the same as indicator/button 5198). In FIG. 5X, there are three bars, corresponding to the three selected user roles 5174, 5176, and 5178, and each bar consists of four shaded portions that correspond to the selected nodes 5172, 5184, 5186, and 5188. When reviewing relative percentages of the total, the bar size represents percent of the total, and not the number of actual post counts. For example, FIG. 5W shows that the total post count for the “HiFi_Employee” role 5178 is much less than the post count for the “CategoryExpert” role 5176, but in FIG. 5X the bars for roles 5178 and 5176 are the same size (representing 100% of the total number of post counts for each role).
  • In FIG. 5Y, the group by arrow 5132 is switched to group by nodes, but the option to view relative percentages is still active, so the bars in the data panel now represent nodes, and each bar illustrates the relative percentages of each user role.
  • In FIG. 5Z, the “VIP” role 5182 has been selected as well, so the relative percentages shown in the bar graphs are adjusted to include the VIP role. By adding an additional role, the total post count for each node is different (in general), so the relative percentages for each of the other roles is reduced.
  • FIGS. 5AA and 5BB illustrate changes in the displayed data in response to a user flipping back and forth between total post counts (in FIG. 5AA) and relative percentages of the total post count (in FIG. 5BB). In FIG. 5CC, a user has switched the “group by” arrow 5132 back to grouping by role, so the bar graphs in the data panel 5028 update accordingly, each bar corresponding to one of the selected roles, and showing the relative percent of posts from each of the selected nodes.
  • FIGS. 5DD-5II illustrate how some implementations display data for an individual bar segment as a user hovers the cursor 5038 over the bar segment. In FIG. 5DD, a user has unselected the VIP role 5182, so there are only bar graphs for roles “Advanced Studio” 5174, “Category Expert” 5176, and “HiFi_Employee” 5178. In FIG. 5EE, a user has hovered the cursor/pointer 5038 over the region 5202 at least a predetermined length of time (e.g., 1 second or 2 seconds). The region 5202 corresponds to role “Advanced Studio” 5174 and node “Engage with HiFi” 5172. The displayed percentage “3.3%” identifies the percentage of posts by “Advanced Studio” users 5174 for the “Engage with HiFi” node/forum 5172. In FIGS. 5FF-5HH, the user hovers the cursor 5038 over the regions 5204, 5206, and 5208, and in each case when the cursor is hovering over a respective region, the corresponding percentage for the respective region is displayed by the device displaying the metric explorer user interface. These are all for the role “Advanced Studio” 5174, each corresponding to a node or forum. In this implementation, the correspondence is directly visible because the color of each bar segment (5204, 5206, and 5208) corresponds to the highlighting color of the node (5184, 5186, and 5188 respectively). Because of rounding, each of the percentages, the total of the percentages is not exactly 100% (3.3%+56.5%+29.4%+10.7%=99.9%). In some implementations, the user interface employs rounding techniques so that the sum is guaranteed to be 100%. FIGS. 5II and 5JJ illustrate the display of the numeric percentages (37.9% and 14.8%) for the “CodeCave Blog” node 5188 for the user roles “Category Expert” 5176 and “HiFi_Employee” 5178. The percentages display generally over the corresponding regions 5210 and 5212.
  • FIGS. 5KK-5OO illustrate the display of relative percentages when the data is grouped by nodes rather than user roles. In FIG. 5KK, a user has switched the “group by” indicator 5132, and thus the bars are displaying vertically, with region sizes as a percentage of posts for each node. FIGS. 5LL-5OO illustrate hovering over regions 5214, 5216, 5218, and 5220 with cursor 5038. Each of these regions corresponds to the user role “Category Expert” 5176, but the percentage is based on the nodes 5172, 5184, 5186, and 5188 respectively.
  • Comparison of FIGS. 5II-5OO illustrates how the relative percent for a bar region depends on how the data is viewed. In FIG. 5II, bar region 5210 corresponds to the “CodeCave Blog” node 5188 and the “CategoryExpert” user role 5176, and this region is 37.9% of the total post count for the user role 5176. In FIG. 5OO, the bar region 5220 corresponds to the “CodeCave Blog” node 5188 and the “CategoryExpert” user role 5176 (just like bar region 5210 in FIG. 5II), but in FIG. 5OO, the bar region 5220 represents 73.9% of the post count for the “CodeCave Blog” node 5188.
  • FIGS. 5PP-5VV further illustrate display of numeric data for a bar region when the cursor hovers over a region for a predetermined period of time. In FIG. 5PP, the user role 5182 is reselected, and thus the bars in the bar graphs include this user role. As shown in the upper left corner of the data panel 5128, the view indicator/button 5200 indicates that the device (e.g., device 110) displaying the user interface shown in FIGS. 5PP-5VV is displaying bar graphs with each bar region shown as a relative percent. In this view mode, all of the bars have the same length, corresponding to 100%. In FIG. 5QQ, a user has switched the view mode, now viewing data based on the counts. (The currently selected metric is “post count” as shown in the metric selector panel 5020.) In some implementations, the selector 5200 itself acts as a button, so that a user can switch view modes by clicking on the button 5200. In some implementations, the view mode is selected from a menu or toolbar icon (not illustrated). In some implementations, the menu or toolbar selection options are in addition to the indicator button 5200. As shown in FIG. 5QQ, the view mode indicator 5198 shown that the view mode is by number/count. In some implementations, the symbol “#” indicates viewing of data by counts. As illustrated in FIG. 5QQ, when viewing data by counts rather than percentages, the bars of unequal length when different quantities of data are associated with the different nodes (e.g., different aggregate post counts for “Engage with HIFI,” “HIFI Ideas,” “Coder Ideas,” and “CodeCave Blog”).
  • FIGS. 5RR-5UU illustrate the display of post counts for the VIP role 5182 for each of the four nodes 5172, 5184, 5186, and 5188. The user interface displays the count for a region when the cursor hovers over the region for a predetermined length of time, and the user interface removes the displayed count for a region when a user moves the cursor 5038 outside of the region. In some implementations, there is a slight delay before removing the displayed number (e.g., half a second). In some implementations, the predetermined length of time that constitutes “hovering” is configurable, either for an individual user using the user interface, or for a community, or for other logical groups of individuals who use the user interface. As shown in FIGS. 5RR and 5SS, the numeric display of the count for a region will, in some circumstances, exceed the size of the region. In these circumstances, the numeric display is placed as much as possible within the boundary of the region so that the user viewing the user interface can readily correlate the data to a region. As illustrated in FIG. 5VV, when the cursor 5038 moves to a location that is not above any graph regions, no numeric counts are displayed.
  • FIG. 6 illustrates examples of a data flow and architecture supporting the level 1, level 2 and/or level 3 data reporting and visualization, e.g., in the metric explorers described above. FIG. 6 is merely illustrative, and in actual implementations, more or fewer components are, optionally, used than those shown. In addition, some components optionally support a different set of functions than those described.
  • As shown in FIG. 6, application 5602 (“LIA”) provides the platform that supports one or more online communities, e.g., online communities associated with various business entities (e.g., retailers, cosmetic companies, consumer electronics companies, etc.). The users (e.g., users 102 in FIG. 1) of the online communities generate content (e.g., blog posts, reviews, comments, ratings, answers, replies, etc.), and data related to their interactions (e.g., posting, rating content, registration, replying to questions, providing comments, etc.) with the communities are stored in persistent log 5604. Persistent log 5604 is scalable, fault tolerant, and has built-in redundancy to guard against failures. Persistent log 5604 stores all the data associated with the user interaction with the online communities (e.g., community interaction logs 324, forum data 326 and the like are stored at a database server 118 that is associated with online community 100 as shown in FIGS. 1 and 3). The data includes, for example, data related to the “who”, “what”, “when”, and “where” aspects of the user interactions with the online communities. In addition, attributes information (related to the “how” aspect) is also stored in association with the “what” aspect of the data.
  • In some implementations, as shown in FIG. 6, metrics and attributes are defined by the designer of application 5602, and the definitions of the metrics and attributes are stored in a definition store 5606. In general, metrics are raw data concerning various actions or interactions performed by the users of the communities. Examples of metrics include page views, posts, kudos, answers, replies, registrations, comments, logins, etc. Attributes generally refer to the context information (e.g., device type, time, community name, topics, keywords, etc.) associated with particular actions or metrics. Sometimes, attributes also include environmental variables associated with particular actions or metrics. In some implementations, the definitions of metrics and attributes are stored as definition files, and definitions files can be modified, added, and/or deleted from the definition store 5606.
  • In some implementations, as shown in FIG. 6, based on the definitions of metrics and attributes, some standard aggregation 5608 are defined and stored. Examples of standard aggregations 5608 include total views, average number of posts per day, average response time, total number of posts, etc. These standard aggregations are simple computations (e.g., additions, multiplications, averages, etc.) based on the raw interaction data recorded for the communities and stored in the persistent logs 5604. The standard aggregations 5608 can be easily defined using various scripting language, and can be retrieved by queries.
  • In some implementations, as shown in FIG. 6, standard aggregations computed based on actual data recorded on the communities are stored as standard view data 5610. The standard view data 5610 can be quickly retrieved and displayed to a viewer (e.g., a community manager, stakeholder and/or executive) via the metric explorers described above. As shown in FIG. 6, metric explorer 5612 (e.g., the user interfaces described with reference to FIGS. 9-005 to 9-141 and 9-171 to 9-206 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”), and widgets (e.g., the widgets described with reference to FIGS. 9-207 to 9-236 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”) and dashboard 5614 are supported by a general purpose visualization engine 5616. The metric explorer 5612, widgets and dashboard 5614, and the general purpose visualization engine 5616 access the standard view data 5610 directly and present the standard aggregations and raw metrics to the user, e.g., using the example user interfaces described earlier. One advantage of computing and storing the standard view data 5610 is fast response time during interaction with the metric explorer 5612 and the widget and dashboard 5614, as indicated in FIG. 6.
  • In some implementations, in addition to the standard aggregations, more complex analytics and metrics (also referred to as advanced analytics 5618) are defined, as shown in FIG. 6. For example, advanced analytics algorithms are used to compute various community health factors (e.g., CHI, FEI, etc.). Other advanced analytics include metrics for measuring influence of users, hotness of topics, etc. Typically, these more advanced analytics are not simple aggregations of raw interactions data recorded on the communities. Instead, more complex algorithms (e.g., statistical methods, machine learning methods, non-linear analysis, etc.) are used to derive these analytics. Typically, these analytics have a non-linear relationship with the various metrics used to derive the analytics. In addition, these advanced analytics typically are based on a large number (e.g., hundreds) of standard metrics.
  • In some implementations, the definitions of the advanced analytics 5618 (also referred to as “derivative definitions”) are stored with the metric definitions and attribute definitions in the definition store 5606. In some implementations, the advanced analytics algorithms are implemented using various computing languages (e.g., matlab, Java, etc.), as shown in FIG. 6. In some implementations, as shown in FIG. 6, persistent log 5604 and standard view data 5610 both serve as the data sources for computing the advanced analytics 5618. In some implementations, data derivatives 5620 computed based on actual metrics data according to the advanced analytics algorithms are stored with the standard view data 5610, for quick retrieval and presentation by the metric explorer 5612 and widget and dashboard 5614, as shown in FIG. 6.
  • In some implementations, as shown in FIG. 6, an offline data derivative archive 5622 is implemented to store prior versions of the data derivatives. In some implementations, the advanced analytics algorithms are continuously improved and revised overtime, and the data derivatives 5620 derived using the older versions of the advanced analytics algorithms are stored in the offline data derivative archive 5622 with the their respective version numbers. In some implementations, the data stored in the offline data derivatives archive 5622 are used to evaluate the effectiveness of the advanced analytics algorithms, and provide benchmarking and comparison data for evaluating and validating the algorithms.
  • As described in earlier parts of the specification and shown in FIG. 6, a customer intelligence center 5624 is used to provide integrated data service for community managers, and stakeholders and executives of business entities providing the online communities. The customer intelligence center 5624 is an integrated suite of services, providing the metric explorer, and widgets and dashboard for users to selectively review data associated with various online communities. As described earlier, the customer intelligence center 5624 (e.g., as illustrated by the user interfaces shown in FIGS. 9-150 to 9-161 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”) not only provides standard, predefined metrics, advanced analytics to the users, but also allows users to define customized metrics and customized user interfaces (e.g., metrics explorers, widgets and dashboards), customized reports and visualizations. In addition, the customer intelligence center 5624 also allows a user (e.g., community manager, stakeholder, and executive) to establish a notification system which sends an alert to the user when certain predefined trigger conditions have been met. For example, a trigger condition can be a threshold value of a particular metric or data derivative, and/or a combination of different threshold values for a number of metrics and data derivatives. The customer intelligence center 5624 access data stored in the standard view data 5610 and data derivatives 5620 to support its functions.
  • Since the customer intelligence center 5624 allows a user to customize the metrics, aggregations, and data derivatives that can be reviewed in the customer intelligence center 5624. The definitions 5626 of the customized metrics, aggregations, and data derivatives are stored with the standard aggregations 5608. In some implementations, a metric/attribute to script/query translator 5628 is implemented and used to provide an interface between the customer intelligence center 5624 and the customized aggregations 5626 and standard aggregations 5608.
  • In some implementations, the data calculated according to the customized metrics, aggregations, and analytics are stored as custom view data 5630. The custom view data 5630, standard view data 5610, and data derivatives 5620 (e.g., as stored in database server(s) 118) together serve as the data source for the reports and visualizations shown to users via the metric explorer (e.g., as described above with reference to FIGS. 5A-5VV) and the standard and customized widgets and dashboards (e.g., the user interfaces described with reference to FIGS. 9-142 to 9-236 of U.S. Provisional Patent Application No. 61/734,927, filed Dec. 7, 2012, entitled “Systems and Methods for Presenting Analytic Data”). By storing the custom view data 5630, standard view data 5610, and data derivatives 5620, the responsiveness for the metric explorer and widgets and dashboards can be improved.
  • In some implementations, as shown in FIG. 6, definitions of the customized metrics, aggregations, widgets, and reports are stored in the definition store 5606, together with the definitions of standard metrics, attributes, and data derivatives. In some implementations, the stored definitions of the customized metrics, aggregation, widgets, and reports are reused by their creators. In some implementations, the stored definitions of the customized metrics, aggregation, widgets, and reports searchable and utilized by other users who, in some circumstances, will find them useful for reviewing their own community data in the customer intelligence center 5624.
  • In some implementations, the customer intelligence center 5624 allows a user (e.g., community manager, stakeholder and/or executives) to establish the criteria for having notifications sent to a user-specified recipient. In some implementations, a general purpose notification system 5632 is utilized. A user defines the trigger event for the notification, the type of information to be included in the notification, the format of the notification, and a rate limit for the notification. Examples of trigger events for a notification include a community health indicator (e.g., CHI) value having dropped below a threshold value, an average response time for a particular sub-community having reached a maximum acceptable value, new registration rate having dropped below a minimum threshold value, etc. In some implementations, a trigger event can also be a combination of several conditions. In some implementations, the user is allowed to specify what information the notification would include. For example, the user can require the notification to include actual values of certain metrics and data derivatives, and/or visualizations and reports of certain metrics/time periods/channels/users, etc. In some implementations, the notifications are provided as an email alert, a text message, or some other kinds of messages. In some implementations, the user is allowed to specify a preferred rate limit for the notifications. For example, a rate limit of 2 notifications per day means even if a trigger event has been met more than twice in a particular day, only two notifications are sent to the user. In some implementations, each notification sent to the user can include an aggregated report related to multiple trigger events that have occurred in the past but not yet been notified to the user due to the rate limit. The rate limit allows the user to control the number of notifications received each month/day/hour, so that the user is not overwhelmed by too many notification messages.
  • As described earlier, the metric explore 5612 is able to present community data on various metrics filtered by various attributes. The metrics explorer 5612 obtains the definitions of the metrics and attributes from the definition store 5606. In addition to the interaction data recorded on the online communities supported by the platform application 5602, in some implementations, the metric explorer also provides data from other third-party channels 5634, as shown in FIG. 6. For example, data from third-party channels, such as third-party blogs, micro-blogs (e.g., twitter), social networks (e.g., Facebook, Google+, etc.), and other social media (e.g., Youtube, Flickr, etc.), can be selectively presented in the metric explorer as well. The integration of social media channels 5634 into the metric explorer allows users to have a broader view of the impact and health of their online communities and business objectives.
  • In some implementations, as shown in FIG. 6, persistent logs 5604 also store data related to the usage of the customer intelligence center 5624, such as what customization the user has made to the metrics explorer, widgets and dashboards, what customized metrics, aggregations, reports, and widgets have been created by the customers, what notifications have been implemented by the customers, how frequently each types of metrics, aggregations, data derivatives are reviewed by the customers, what times periods the customers typically wish to review, etc. The data related to the usage of the customer intelligence center 5624 can be used to generate additional definitions that are useful for many other customers. The usage data can also be used to determine what standard and customer view data to compute and store for easy and fast access. The usage data is in general useful for improving the overall efficiency and usability of the customer intelligence center.
  • The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various implementations with various modifications as are suited to the particular use contemplated.

Claims (19)

What is claimed is:
1. A method, comprising:
at a computing device with a display:
displaying, in a data display panel, a first representation of a first subset of data from a data set, wherein:
the first subset of data is selected from the data set in accordance with both a first plurality of divisions in a first data-set dimension and a second plurality of divisions in a second data-set dimension, wherein the first data-set dimension is different from the second data-set dimension; and
the first representation of the data is organized to emphasize the first plurality of divisions in the first data-set dimension;
receiving an input corresponding to switching a current state of the dimension selector from a first state to a second state; and
in response to receiving the input, displaying, in the data display panel, a second representation of a second subset of data from the data set, wherein:
the second subset of data is selected from the data set in accordance with both the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension; and
the second representation of the data is organized to emphasize the second plurality of divisions in the second data-set dimension.
2. The method of claim 1, wherein the first subset of data is the same as the second subset of data.
3. The method of claim 1, wherein the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension are selected in response to inputs received from a user.
4. The method of claim 1, comprising, displaying a visual indication of the first plurality of divisions in a first data-selection interface extending in a first direction from the data display panel.
5. The method of claim 4, comprising, displaying a visual indication of the second plurality of divisions in a second data-selection interface extending in a second direction from the data display panel, wherein the first direction is different from the second direction.
6. The method of claim 1, further comprising:
prior to detecting the input, displaying a dimension priority icon that indicates that the first plurality of divisions in the first data-set dimension are emphasized over the second plurality of divisions in the second data-set dimension; and
after detecting the input, changing display of the dimension priority icon to indicate that the second plurality of divisions in the second data-set dimension are emphasized over the first plurality of divisions in the first data-set dimension.
7. The method of claim 1, wherein the first representation visually aggregates data by the second plurality of divisions and visually separates the aggregated data in accordance with the first plurality of divisions.
8. The method of claim 7, wherein the second representation visually aggregates data by the first plurality of divisions and visually separates the aggregated data in accordance with the first plurality of divisions.
9. The method of claim 1, wherein the first representation visually groups data by the first plurality of divisions and shows subdivisions corresponding to the second plurality of divisions.
10. The method of claim 9, wherein the second representation visually groups data by the second plurality of divisions and shows subdivisions corresponding to the first plurality of divisions.
11. The method of claim 10, wherein:
prior to receiving the input, the subdivisions corresponding to the second plurality of divisions include a first subdivision shown in a first color and a second subdivision shown in a second color; and
after receiving the input, the subdivisions corresponding to the first plurality of divisions include a first subdivision shown in the first color and a second subdivision shown in the second color.
12. A computing device, comprising:
one or more processors; and
memory;
one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:
displaying, in a data display panel, a first representation of a first subset of data from a data set, wherein:
the first subset of data is selected from the data set in accordance with both a first plurality of divisions in a first data-set dimension and a second plurality of divisions in a second data-set dimension, wherein the first data-set dimension is different from the second data-set dimension; and
the first representation of the data is organized to emphasize the first plurality of divisions in the first data-set dimension;
receiving an input corresponding to switching a current state of the dimension selector from a first state to a second state; and
in response to receiving the input, displaying, in the data display panel, a second representation of a second subset of data from the data set, wherein:
the second subset of data is selected from the data set in accordance with both the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension; and
the second representation of the data is organized to emphasize the second plurality of divisions in the second data-set dimension.
13. The device of claim 12, wherein the first subset of data is the same as the second subset of data.
14. The device of claim 12, wherein the one or more programs include instructions for, displaying a visual indication of the first plurality of divisions in a first data-selection interface extending in a first direction from the data display panel.
15. The device of claim 14, wherein the one or more programs include instructions for, displaying a visual indication of the second plurality of divisions in a second data-selection interface extending in a second direction from the data display panel, wherein the first direction is different from the second direction.
16. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by a computing device with one or more processors cause the device to:
display, in a data display panel, a first representation of a first subset of data from a data set, wherein:
the first subset of data is selected from the data set in accordance with both a first plurality of divisions in a first data-set dimension and a second plurality of divisions in a second data-set dimension, wherein the first data-set dimension is different from the second data-set dimension; and
the first representation of the data is organized to emphasize the first plurality of divisions in the first data-set dimension;
receive an input corresponding to switching a current state of the dimension selector from a first state to a second state; and
in response to receiving the input, display, in the data display panel, a second representation of a second subset of data from the data set, wherein:
the second subset of data is selected from the data set in accordance with both the first plurality of divisions in the first data-set dimension and the second plurality of divisions in the second data-set dimension; and
the second representation of the data is organized to emphasize the second plurality of divisions in the second data-set dimension.
17. The non-transitory computer readable storage medium of claim 16, wherein the first subset of data is the same as the second subset of data.
18. The non-transitory computer readable storage medium of claim 16, comprising instructions which, when executed by the computing device, cause the computing device to display a visual indication of the first plurality of divisions in a first data-selection interface extending in a first direction from the data display panel.
19. The non-transitory computer readable storage medium of claim 18, comprising instructions, which when executed by the computing device, cause the computing device to display a visual indication of the second plurality of divisions in a second data-selection interface extending in a second direction from the data display panel, wherein the first direction is different from the second direction.
US14/098,509 2012-12-07 2013-12-05 Device, Method and User Interface for Emphasizing Divisions in Data Abandoned US20140173509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201261734927P true 2012-12-07 2012-12-07
US14/098,509 US20140173509A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Emphasizing Divisions in Data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/098,509 US20140173509A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Emphasizing Divisions in Data
PCT/US2013/073625 WO2014089460A2 (en) 2012-12-07 2013-12-06 Device, method and user interface for presenting analytic data

Publications (1)

Publication Number Publication Date
US20140173509A1 true US20140173509A1 (en) 2014-06-19

Family

ID=50932491

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/098,492 Active 2034-08-23 US9619531B2 (en) 2012-12-07 2013-12-05 Device, method and user interface for determining a correlation between a received sequence of numbers and data that corresponds to metrics
US14/098,480 Abandoned US20140173501A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Presenting Analytic Data
US14/098,509 Abandoned US20140173509A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Emphasizing Divisions in Data
US14/098,501 Abandoned US20140173444A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Displaying Relationships between Different Sets of Data
US14/098,505 Abandoned US20140181728A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Switching between Graphical Representations of Data

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/098,492 Active 2034-08-23 US9619531B2 (en) 2012-12-07 2013-12-05 Device, method and user interface for determining a correlation between a received sequence of numbers and data that corresponds to metrics
US14/098,480 Abandoned US20140173501A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Presenting Analytic Data

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/098,501 Abandoned US20140173444A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Displaying Relationships between Different Sets of Data
US14/098,505 Abandoned US20140181728A1 (en) 2012-12-07 2013-12-05 Device, Method and User Interface for Switching between Graphical Representations of Data

Country Status (1)

Country Link
US (5) US9619531B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150242067A1 (en) * 2012-05-04 2015-08-27 Google Inc. Touch interpretation for displayed elements
US20180107462A1 (en) * 2016-10-14 2018-04-19 Linkedin Corporation Tool for rendering different user interfaces
US10346449B2 (en) 2017-10-12 2019-07-09 Spredfast, Inc. Predicting performance of content and electronic messages among a system of networked computing devices
US10594773B2 (en) 2018-01-22 2020-03-17 Spredfast, Inc. Temporal optimization of data operations using distributed search and server management

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9671944B2 (en) * 2013-07-12 2017-06-06 Microsoft Technology Licensing, Llc Inclusion/exclusion user interface controls for range filters
US9886669B2 (en) * 2014-02-26 2018-02-06 Microsoft Technology Licensing, Llc Interactive visualization of machine-learning performance
US10049138B1 (en) * 2014-03-05 2018-08-14 Google Llc Reputation and engagement system for online community management
US9210056B1 (en) 2014-10-09 2015-12-08 Splunk Inc. Service monitoring interface
US10198155B2 (en) 2015-01-31 2019-02-05 Splunk Inc. Interface for automated service discovery in I.T. environments
US9146962B1 (en) 2014-10-09 2015-09-29 Splunk, Inc. Identifying events using informational fields
US10193775B2 (en) 2014-10-09 2019-01-29 Splunk Inc. Automatic event group action interface
US10474680B2 (en) 2014-10-09 2019-11-12 Splunk Inc. Automatic entity definitions
US9864797B2 (en) 2014-10-09 2018-01-09 Splunk Inc. Defining a new search based on displayed graph lanes
US10305758B1 (en) 2014-10-09 2019-05-28 Splunk Inc. Service monitoring interface reflecting by-service mode
US10209956B2 (en) 2014-10-09 2019-02-19 Splunk Inc. Automatic event group actions
US9130832B1 (en) 2014-10-09 2015-09-08 Splunk, Inc. Creating entity definition from a file
US10417108B2 (en) 2015-09-18 2019-09-17 Splunk Inc. Portable control modules in a machine data driven service monitoring system
US10235638B2 (en) 2014-10-09 2019-03-19 Splunk Inc. Adaptive key performance indicator thresholds
US10417225B2 (en) 2015-09-18 2019-09-17 Splunk Inc. Entity detail monitoring console
US9146954B1 (en) 2014-10-09 2015-09-29 Splunk, Inc. Creating entity definition from a search result set
US9967351B2 (en) 2015-01-31 2018-05-08 Splunk Inc. Automated service discovery in I.T. environments
US9584374B2 (en) 2014-10-09 2017-02-28 Splunk Inc. Monitoring overall service-level performance using an aggregate key performance indicator derived from machine data
US9760240B2 (en) 2014-10-09 2017-09-12 Splunk Inc. Graphical user interface for static and adaptive thresholds
US10536353B2 (en) 2014-10-09 2020-01-14 Splunk Inc. Control interface for dynamic substitution of service monitoring dashboard source data
US10505825B1 (en) 2014-10-09 2019-12-10 Splunk Inc. Automatic creation of related event groups for IT service monitoring
US9491059B2 (en) 2014-10-09 2016-11-08 Splunk Inc. Topology navigator for IT services
US9158811B1 (en) 2014-10-09 2015-10-13 Splunk, Inc. Incident review interface
JP5988450B2 (en) * 2014-10-23 2016-09-07 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method for displaying nodes, computer for displaying nodes, and computer program therefor
US10025491B2 (en) * 2014-12-30 2018-07-17 PIQPIQ, Inc. Social messaging system for real-time selection and sorting of photo and video content
US10567522B2 (en) * 2015-01-02 2020-02-18 Dell Products L.P. Workflow to automatically generate reports for different component-level metadata after interacting with multiple web services
US20170277738A1 (en) * 2015-01-29 2017-09-28 Palantir Technologies Inc. Temporal representation of structured information in an object model
US20160364770A1 (en) 2015-05-29 2016-12-15 Nanigans, Inc. System for high volume data analytic integration and channel-independent advertisement generation
US20170011418A1 (en) * 2015-05-29 2017-01-12 Claude Denton System and method for account ingestion
US10176075B1 (en) * 2016-11-10 2019-01-08 VCE IP Holding Company LLC Methods, systems, and computer readable mediums for generating key performance indicator metric test data
US10586196B2 (en) * 2017-05-11 2020-03-10 International Business Machines Corporation Intelligent key performance indicator catalog

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707454B1 (en) * 1999-07-01 2004-03-16 Lucent Technologies Inc. Systems and methods for visualizing multi-dimensional data in spreadsheets and other data structures
US20100119053A1 (en) * 2008-11-13 2010-05-13 Buzzient, Inc. Analytic measurement of online social media content

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650355B1 (en) 1999-05-21 2010-01-19 E-Numerate Solutions, Inc. Reusable macro markup language
US20020070953A1 (en) * 2000-05-04 2002-06-13 Barg Timothy A. Systems and methods for visualizing and analyzing conditioned data
US7548241B2 (en) * 2002-01-04 2009-06-16 Intel Corporation Determining a node path through a node graph
US7917382B2 (en) 2003-03-05 2011-03-29 Teradata Us, Inc. Integration of visualizations, reports, and data
US7825929B2 (en) * 2003-04-04 2010-11-02 Agilent Technologies, Inc. Systems, tools and methods for focus and context viewing of large collections of graphs
CA2569449A1 (en) * 2005-11-30 2007-05-30 Oculus Info Inc. System and method for visualizing configurable analytical spaces in time for diagrammatic context representations
US8027549B2 (en) * 2006-06-12 2011-09-27 D&S Consultants, Inc. System and method for searching a multimedia database using a pictorial language
US8006187B1 (en) * 2007-02-10 2011-08-23 Adobe Systems Incorporated Checkpoint sequence fallout metrics management during path analysis
US20080294680A1 (en) 2007-05-22 2008-11-27 Dominic George Thomas Powell Data Navigation Module, Apparatus and Method
US8677279B2 (en) 2009-05-06 2014-03-18 Business Objects Software Limited Visual hierarchy explorer
US20110153603A1 (en) * 2009-12-17 2011-06-23 Yahoo! Inc. Time series storage for large-scale monitoring system
US8768804B2 (en) 2011-05-06 2014-07-01 SynerScope B.V. Data analysis system
US9021361B1 (en) * 2011-10-11 2015-04-28 Google Inc. System and method for flow visualization and interaction with network traffic
US20140067520A1 (en) * 2012-08-28 2014-03-06 SmartBridge, LLC Methods, Systems and Apparatuses for Analyzing and Comparing Performance of Marketing Channels in Integrated Marketing Campaigns
US10515386B2 (en) * 2013-01-15 2019-12-24 Datorama Technologies, Ltd. System and method for performing cross-platform big data analytics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707454B1 (en) * 1999-07-01 2004-03-16 Lucent Technologies Inc. Systems and methods for visualizing multi-dimensional data in spreadsheets and other data structures
US20100119053A1 (en) * 2008-11-13 2010-05-13 Buzzient, Inc. Analytic measurement of online social media content

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jelen, Bill and Alexander, Michael, Pivot Table Data Crunching: Microsoft Excel 2010. Que, 20 Oct. 2010. E-book *
Jelen, Bill and Alexander, Michael. Pivot Table Data Crunching: Microsoft Excel 2010. Que, 20 Oct. 2010. E-book *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150242067A1 (en) * 2012-05-04 2015-08-27 Google Inc. Touch interpretation for displayed elements
US9235324B2 (en) * 2012-05-04 2016-01-12 Google Inc. Touch interpretation for displayed elements
US10409420B1 (en) * 2012-05-04 2019-09-10 Google Llc Touch interpretation for displayed elements
US20180107462A1 (en) * 2016-10-14 2018-04-19 Linkedin Corporation Tool for rendering different user interfaces
US10346449B2 (en) 2017-10-12 2019-07-09 Spredfast, Inc. Predicting performance of content and electronic messages among a system of networked computing devices
US10601937B2 (en) 2017-11-22 2020-03-24 Spredfast, Inc. Responsive action prediction based on electronic messages among a system of networked computing devices
US10594773B2 (en) 2018-01-22 2020-03-17 Spredfast, Inc. Temporal optimization of data operations using distributed search and server management

Also Published As

Publication number Publication date
US20140173501A1 (en) 2014-06-19
US9619531B2 (en) 2017-04-11
US20140181087A1 (en) 2014-06-26
US20140173444A1 (en) 2014-06-19
US20140181728A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US10235016B2 (en) Systems and methods for consumer-generated media reputation management
US10331742B2 (en) Thresholds for key performance indicators derived from machine data
JP2017010580A (en) Methods for electronic document searching and graphically representing electronic document searches
US20160321369A1 (en) Graphically Selectable Filter Parameters for Field Data in a Set of Machine Data
AU2014201568B2 (en) Event matrix based on integrated data
US20160134580A1 (en) Computer implemented methods and apparatus for providing near real-time predicted engagement level feedback to a user composing a social media message
US20160117402A1 (en) Systems and methods for integrating personal social networks within an organization
US9836502B2 (en) Panel templates for visualization of data within an interactive dashboard
US20150332187A1 (en) Managing Crowdsourcing Environments
US10209956B2 (en) Automatic event group actions
US20170052977A1 (en) Apparatus and Method for Collaboratively Analyzing Data Snapshot Visualizations from Disparate Data Sources
Snead Social media use in the US Executive branch
US9678652B2 (en) Automatic data sharing between multiple graph elements
US10261659B2 (en) Orbit visualization for displaying hierarchical data
US9967351B2 (en) Automated service discovery in I.T. environments
US20190102809A1 (en) System, methods, and media for evaluating companies based on social performance
US10193775B2 (en) Automatic event group action interface
US10235638B2 (en) Adaptive key performance indicator thresholds
US8745066B2 (en) Apparatus, systems and methods for dynamic on-demand context sensitive cluster analysis
US20150142888A1 (en) Determining information inter-relationships from distributed group discussions
US20180150771A1 (en) Multi-dimensional visualization of temporal information
US20140297569A1 (en) Data center analytics and dashboard
US8572080B2 (en) Methods and systems for analyzing a network feed in a multi-tenant database system environment
US8996536B2 (en) Facet-based filtering of social network update data
US20150106748A1 (en) Document exploration, analysis, and collaboration techniques

Legal Events

Date Code Title Description
AS Assignment

Owner name: LITHIUM TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WU, MICHAEL;REEL/FRAME:031735/0949

Effective date: 20131206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION