US20140142697A1 - Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel - Google Patents

Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel Download PDF

Info

Publication number
US20140142697A1
US20140142697A1 US14/166,016 US201414166016A US2014142697A1 US 20140142697 A1 US20140142697 A1 US 20140142697A1 US 201414166016 A US201414166016 A US 201414166016A US 2014142697 A1 US2014142697 A1 US 2014142697A1
Authority
US
United States
Prior art keywords
graft ligament
screw
bone
proximal end
bone tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/166,016
Inventor
Joseph H. Sklar
Charles L. Beck, Jr.
Greta Jo Hays
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/756,413 external-priority patent/US5899938A/en
Priority claimed from US09/248,523 external-priority patent/US6533816B2/en
Application filed by Individual filed Critical Individual
Priority to US14/166,016 priority Critical patent/US20140142697A1/en
Publication of US20140142697A1 publication Critical patent/US20140142697A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0817Structure of the anchor
    • A61F2002/0823Modular anchors comprising a plurality of separate parts
    • A61F2002/0835Modular anchors comprising a plurality of separate parts with deformation of anchor parts, e.g. expansion of dowel by set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0847Mode of fixation of anchor to tendon or ligament
    • A61F2002/0858Fixation of tendon or ligament between anchor and bone, e.g. interference screws, wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0847Mode of fixation of anchor to tendon or ligament
    • A61F2002/0864Fixation of tendon or ligament between anchor elements, e.g. by additional screws in the anchor, anchor crimped around tendon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0876Position of anchor in respect to the bone
    • A61F2002/0882Anchor in or on top of a bone tunnel, i.e. a hole running through the entire bone

Definitions

  • This invention relates to medical apparatus and methods in general, and more particularly to apparatus and methods for reconstructing ligaments.
  • Ligaments are tough bands of tissue which serve to connect the articular extremities of bones, or to support and/or retain organs in place within the body.
  • Ligaments are typically composed of coarse bundles of dense white fibrous tissue which are disposed in a parallel or closely interlaced manner, with the fibrous tissue being pliant and flexible but not significantly extensible.
  • the anterior and posterior cruciate ligaments extend between the top end of the tibia and the bottom end of the femur.
  • the ACL and PCL cooperate, together with other ligaments and soft tissue, to provide both static and dynamic stability to the knee.
  • the anterior cruciate ligament i.e., the ACL
  • the ACL is ruptured or torn as a result of, for example, a sports-related injury. Consequently, various surgical procedures have been developed for reconstructing the ACL so as to restore substantially normal function to the knee.
  • the ACL may be reconstructed by replacing the ruptured ACL with a graft ligament.
  • bone tunnels are generally formed in the top end of the tibia and the bottom end of the femur, with one end of the graft ligament being positioned in the femoral tunnel and the other end of the graft ligament being positioned in the tibial tunnel.
  • the two ends of the graft ligament are anchored in place in various ways well known in the art so that the graft ligament extends between the bottom end of the femur and the top end of the tibia in substantially the same way, and with substantially the same function, as the original ACL.
  • This graft ligament then cooperates with the surrounding anatomical structures so as to restore substantially normal function to the knee.
  • the graft ligament may be a ligament or tendon which is harvested from elsewhere in the patient; in other circumstances, the graft ligament may be a synthetic device.
  • graft ligament all of the foregoing are collectively referred to as a “graft ligament”.
  • fixation screw graft ligament anchor assembly and method which affords full advancement of a fixation screw, but at the same time permits the screw to be engaged all around in the cortical portion of the tibia or other bone.
  • An object of the invention is to provide a fixation screw configured for disposition in cortical bone portions, so as to strengthen the retention of the screw in the bone.
  • Another object of the invention is to provide a fixation screw which, when the screw is fully implanted, substantially conforms to a surrounding bone surface at a proximal end of the screw.
  • a further object of the invention is to provide a graft ligament anchor assembly for improved retention in a bone, such as a tibia, and which in operative position conforms to a surrounding bone surface.
  • a still further object is to provide a method for securing a graft ligament in a bone tunnel so as to improve retention of the graft ligament in the bone, and so as to provide for conformance of a graft ligament anchor and fixation screw to a surface of surrounding hone.
  • a fixation screw for fastening a graft ligament in a bone tunnel.
  • the screw comprises an elongated shank having a distal end and a proximal end, and a central axis extending from the distal end to the proximal end. Screw threads are disposed on the shank and extend from the distal end to the proximal end.
  • the proximal end defines an end plane disposed transversely to the axis and at an angle thereto other than a normal angle.
  • a fixation screw comprising an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank and extend from the distal end portion to the proximal end.
  • the proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle.
  • a fixation screw for fastening a graft ligament in a bone tunnel.
  • the screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank, and extend from the distal end portion to the proximal end.
  • the proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning the end surface as generally a continuation of surrounding hone surface of a body in which the graft ligament is fastened.
  • a graft ligament anchor assembly comprising a tubular body having a bore therethrough, and proximal and distal ends.
  • the tubular body is adapted for placement in a bone tunnel proximate an opening thereof in a bone surface.
  • the tubular body comprises a deferrable wall and defines, at least in part, a chamber for receiving a graft ligament therein.
  • a fixation screw is provided for insertion into the tubular body axially of the tubular body, for impinging upon the deferrable wall so as to press the deformable wall, and hence the graft ligament received in the chamber, toward a wall of the bore, to fix the graft ligament in the bone tunnel.
  • the screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank and extend from the distal end portion to the proximal end.
  • the proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning as generally a continuation of surrounding bone surface of a body in which the graft ligament is fastened.
  • a method for securing a graft ligament in a bone tunnel having an end opening in a bone surface, a free end of the graft ligament extending out of the bone tunnel end opening comprises the steps of providing a fixation screw for insertion into the bone tunnel adjacent the graft ligament for impinging upon the graft ligament and a wall of the bone tunnel to fix the graft ligament in the bone tunnel.
  • the screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end.
  • Screw threads are disposed on the shank and extend from the distal end portion to the proximal end.
  • the proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning as generally a continuation of surrounding portions of the bone surface.
  • the method further comprises the steps of pulling the graft ligament taut, inserting the screw into the bone tunnel and advancing the screw therein to threadedly engage the graft ligament and a wall of the bone tunnel to fix the graft ligament in the bone tunnel, and turning the screw until the shank proximal end surface thereof is substantially a continuation of the surrounding bone surface.
  • a method for securing a graft ligament in a bone tunnel having an end opening in a bone surface, a free end of the graft ligament extending out of the hone tunnel end opening comprises the step of providing a graft ligament anchor comprising a tubular body having a bore therethrough and proximal and distal ends, the tubular body comprising a deformable wall and defining at least in part a chamber, and a fixation screw.
  • the screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end.
  • Screw threads are disposed on the shank and extend from the distal end portion to the proximal end.
  • the proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning as generally a continuation of surrounding portions of the bone surface.
  • the method includes the further steps of extending the graft ligament free end through the chamber, placing the tubular body in the end opening and in the bone tunnel, pulling the graft ligament taut, inserting the screw into the tubular body and advancing the screw therein to press the deformable wall, and hence the graft ligament received in the chamber, toward the wall of the bore, to fix the graft ligament in the bone tunnels and turning the screw until the proximal end surface thereof is substantially a continuation of the bone surface therearound.
  • FIG. 1 is a perspective view of one form, of a fixation screw for fastening a graft ligament in a bone tunnel, illustrative of an embodiment of the invention
  • FIG. 2 is a side elevational view of an alternative embodiment of fixation screw
  • FIG. 3 is a diagrammatic illustration of the screw of FIG. 1 in operation
  • FIG. 4 is a diagrammatic illustration of a graft ligament anchor assembly including the screw of FIG. 1 and illustrating an anchor assembly in operation;
  • FIG. 5 is a diagrammatic illustration of still another embodiment of the present invention.
  • an illustrative fixation screw 10 includes an elongated shank 12 having a distal end portion 14 , which may be generally conically-shaped, as shown in FIG. 1 , and have a generally pointed distal end 16 .
  • the shank 12 is further provided with a proximal end 18 defining an end plane b-b.
  • a central axis a-a extends from the distal end 16 to the proximal end 18 .
  • the plane b-b is disposed transversely to the axis a-a and at an angle c thereto, the angle c being other than a normal angle, and preferably of about 40°-55°.
  • the proximal end 18 may comprise a generally planar surface 22 , as illustrated in FIG. 1 .
  • Screw threads 28 are disposed on the shank 12 and extend from the distal end 16 to the proximal end 18 .
  • the fixation screw 10 may be of tubular structure and provided with apertures 24 extending through sidewalls 26 thereof, facilitating ingrowth of bone to further secure the screw in place over time.
  • the distal end portion 14 of the screw 10 may be other than conical, such as generally cylindrical, and the distal end 16 of the screw 10 may be other than pointed, such as defining a plane normal to the axis a-a.
  • FIG. 3 there is illustrated a manner in which the fixation screw 10 of FIG. 1 or FIG. 2 may be used to secure a graft ligament 30 in a bone tunnel 32 having an end opening 34 in a bone surface 36 .
  • the bones shown for illustrative purposes are major bones of a knee joint, including a femur 38 and tibia 40 .
  • the invention presumes that one end 42 of the ligament 30 has been secured in the femur in accordance with known methods and that another end portion 44 extends from the end opening 34 .
  • an operator pulls the ligament 30 taut by manipulation of the exposed ligament end portion 44 .
  • the screw 10 is then inserted into the bone tunnel 32 , by way of the end opening 34 .
  • the screw 10 is advanced into the bone tunnel 32 , threadedly engaging the ligament 30 and a wall 46 of the bone tunnel 32 , to secure the ligament 30 in the bone tunnel 32 .
  • the screw is turned until the shank proximal end surface 22 is disposed so as to be substantially flush with, and form substantially a continuation of, the surrounding bone surface 36 .
  • the exposed ligament end portions 44 may be snipped off along lines 50 , shown in FIG. 3 (the “snipped off” portions of ligament end portions 44 are shown in phantom in FIG. 3 ).
  • FIG. 3 the “snipped off” portions of ligament end portions 44 are shown in phantom in FIG. 3 ).
  • FIG. 4 there is shown a graft ligament anchor 60 in a tibia 40 .
  • the anchor 60 includes the screw 10 , as described hereinabove, and a tubular body 62 having a bore 64 therethrough and having distal and proximal ends 66 , 68 .
  • the tubular body 62 is adapted for placement in the bone tunnel 32 proximate the end opening 34 thereof in the bone surface 36 .
  • a deformable wall 70 is disposed in the tubular body, defining at least in part a chamber 72 for receiving the graft ligament 30 therein.
  • the ligament end portions 44 are extended through the tubular body chamber 72 by an operator.
  • the tubular body 62 is inserted in the end opening 34 of the bone tunnel 32 .
  • the ligament 30 is pulled taut by the operator.
  • the fixation screw 10 is then inserted into the tubular body 62 and advanced to press the graft ligament 30 and deformable wall 70 toward the wall 46 of the bone tunnel 32 , to fix the ligament to the bone tunnel wall 46 .
  • the screw 10 is turned until the screw proximal end surface 22 is disposed so as to be flush with, and substantially a continuation of, the bone surface 36 therearound.
  • tubular body 62 and the ligament end portions 44 may then be snipped off to provide a relatively smooth surface in the area of the closed opening 34 (the “snipped off” portions of tubular body 62 and the ligament end portions 44 are shown in phantom in FIG. 4 ).
  • the threads 20 of the screw 10 do not directly engage the cortical bone 48 ; however, the threads 20 force the tubular body 62 into engagement with the cortical bone 48 , providing stronger fixation than if similarly engaged with a cancellous portion 74 of the bone 40 .
  • fixation screw graft ligament anchor assembly and methods for fixing ligaments in bone tunnels.
  • Bone tunnel liner 100 which may be positioned within a bone tunnel 32 of a bone 40 .
  • Bone tunnel liner 100 includes a central bore 102 extending from its distal end 104 to its proximal end 106 .
  • the outer surface of bone tunnel liner 100 includes screw threads 108 and preferably includes openings 110 .
  • bone tunnel liner 100 is positioned in bone tunnel 32 in bone 40 , the graft ligament's end portions are extended through chambers 72 of tubular body 62 , tubular body 62 is inserted into bone tunnel liner 100 , and fixation screw 10 is inserted into the central bore of tubular body 62 and advanced distally so as to press the tubular body's deferrable walls, and hence the graft ligament, toward bone tunnel liner 100 , whereby to secure the graft ligament in the bone tunnel.
  • the proximal end 106 of bone tunnel liner 100 is preferably formed with an end surface which is set at an angle to the longitudinal axis of the bone tunnel liner, whereby the proximal end of the bone tunnel liner may be disposed flush with, and substantially a continuation of, the bone surface 36 therearound.

Abstract

A fixation screw, graft ligament anchor assembly, and method for fastening a graft ligament in a bone tunnel. The screw comprises an elongated shank having a distal end and a proximal end, and a central axis extending from the distal end to the proximal end. Screw threads are disposed on the shank and extend from the distal end to the proximal end. The proximal end defines an end plane disposed transversely to the axis and at an angle thereto other than a normal angle.

Description

    FIELD OF THE INVENTION
  • This invention relates to medical apparatus and methods in general, and more particularly to apparatus and methods for reconstructing ligaments.
  • BACKGROUND OF THE INVENTION
  • Ligaments are tough bands of tissue which serve to connect the articular extremities of bones, or to support and/or retain organs in place within the body. Ligaments are typically composed of coarse bundles of dense white fibrous tissue which are disposed in a parallel or closely interlaced manner, with the fibrous tissue being pliant and flexible but not significantly extensible.
  • In many cases ligaments are torn or ruptured as a result of accidents. Various procedures have been developed to repair or replace such damaged ligaments.
  • For example, in the human knee, the anterior and posterior cruciate ligaments (i.e., the “ACL” and “PCL”) extend between the top end of the tibia and the bottom end of the femur. The ACL and PCL cooperate, together with other ligaments and soft tissue, to provide both static and dynamic stability to the knee. Often, the anterior cruciate ligament (i.e., the ACL) is ruptured or torn as a result of, for example, a sports-related injury. Consequently, various surgical procedures have been developed for reconstructing the ACL so as to restore substantially normal function to the knee.
  • In many instances, the ACL may be reconstructed by replacing the ruptured ACL with a graft ligament. More particularly, in such procedures, bone tunnels are generally formed in the top end of the tibia and the bottom end of the femur, with one end of the graft ligament being positioned in the femoral tunnel and the other end of the graft ligament being positioned in the tibial tunnel. The two ends of the graft ligament are anchored in place in various ways well known in the art so that the graft ligament extends between the bottom end of the femur and the top end of the tibia in substantially the same way, and with substantially the same function, as the original ACL. This graft ligament then cooperates with the surrounding anatomical structures so as to restore substantially normal function to the knee.
  • In some circumstances, the graft ligament may be a ligament or tendon which is harvested from elsewhere in the patient; in other circumstances, the graft ligament may be a synthetic device. For the purposes of the present invention, all of the foregoing are collectively referred to as a “graft ligament”.
  • It has been found that in securing graft tendons to tibias, because of the surface configuration of the tibia bone it often is necessary to advance a fixation screw well into a bone tunnel in the tibia, often so far that for one side of the screw to be substantially flush with the bone tunnel opening, the other side of the screw will have advanced past the outer dense hard cortical bone and entered the inner and softer cancellous bone.
  • It has further been found that to refrain from advancing the fixation screw to the aforementioned location (that is, to leave a portion of the screw in cortical bone all around the screw) requires that a proximal portion of the screw remain outside the bone tunnel and project from the tibia.
  • Thus, there is a need for a fixation screw, graft ligament anchor assembly and method which affords full advancement of a fixation screw, but at the same time permits the screw to be engaged all around in the cortical portion of the tibia or other bone.
  • OBJECTS OF THE INVENTION
  • An object of the invention is to provide a fixation screw configured for disposition in cortical bone portions, so as to strengthen the retention of the screw in the bone.
  • Another object of the invention is to provide a fixation screw which, when the screw is fully implanted, substantially conforms to a surrounding bone surface at a proximal end of the screw.
  • A further object of the invention is to provide a graft ligament anchor assembly for improved retention in a bone, such as a tibia, and which in operative position conforms to a surrounding bone surface.
  • A still further object is to provide a method for securing a graft ligament in a bone tunnel so as to improve retention of the graft ligament in the bone, and so as to provide for conformance of a graft ligament anchor and fixation screw to a surface of surrounding hone.
  • SUMMARY OF THE INVENTION
  • With the above and other objects in view, as will hereinafter appear, there is provided a fixation screw for fastening a graft ligament in a bone tunnel. The screw comprises an elongated shank having a distal end and a proximal end, and a central axis extending from the distal end to the proximal end. Screw threads are disposed on the shank and extend from the distal end to the proximal end. The proximal end defines an end plane disposed transversely to the axis and at an angle thereto other than a normal angle.
  • In accordance with a further feature of the invention there is provided a fixation screw comprising an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank and extend from the distal end portion to the proximal end. The proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle.
  • In accordance with a further feature of the invention, there is provided a fixation screw for fastening a graft ligament in a bone tunnel. The screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank, and extend from the distal end portion to the proximal end. The proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning the end surface as generally a continuation of surrounding hone surface of a body in which the graft ligament is fastened.
  • In accordance with a further feature of the invention, there is provided a graft ligament anchor assembly comprising a tubular body having a bore therethrough, and proximal and distal ends. The tubular body is adapted for placement in a bone tunnel proximate an opening thereof in a bone surface. The tubular body comprises a deferrable wall and defines, at least in part, a chamber for receiving a graft ligament therein. A fixation screw is provided for insertion into the tubular body axially of the tubular body, for impinging upon the deferrable wall so as to press the deformable wall, and hence the graft ligament received in the chamber, toward a wall of the bore, to fix the graft ligament in the bone tunnel. The screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank and extend from the distal end portion to the proximal end. The proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning as generally a continuation of surrounding bone surface of a body in which the graft ligament is fastened.
  • In accordance with a still further feature of the invention, there is provided a method for securing a graft ligament in a bone tunnel having an end opening in a bone surface, a free end of the graft ligament extending out of the bone tunnel end opening. The method comprises the steps of providing a fixation screw for insertion into the bone tunnel adjacent the graft ligament for impinging upon the graft ligament and a wall of the bone tunnel to fix the graft ligament in the bone tunnel. The screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank and extend from the distal end portion to the proximal end. The proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning as generally a continuation of surrounding portions of the bone surface. The method further comprises the steps of pulling the graft ligament taut, inserting the screw into the bone tunnel and advancing the screw therein to threadedly engage the graft ligament and a wall of the bone tunnel to fix the graft ligament in the bone tunnel, and turning the screw until the shank proximal end surface thereof is substantially a continuation of the surrounding bone surface.
  • In accordance with another feature of the invention, there is provided a method for securing a graft ligament in a bone tunnel having an end opening in a bone surface, a free end of the graft ligament extending out of the hone tunnel end opening. The method comprises the step of providing a graft ligament anchor comprising a tubular body having a bore therethrough and proximal and distal ends, the tubular body comprising a deformable wall and defining at least in part a chamber, and a fixation screw. The screw comprises an elongated shank having a generally conically-shaped distal end portion, a proximal end, and a central axis extending from the distal end portion to the proximal end. Screw threads are disposed on the shank and extend from the distal end portion to the proximal end. The proximal end comprises a generally planar end surface disposed transversely to the axis and at an angle thereto other than a normal angle, and appropriate for positioning as generally a continuation of surrounding portions of the bone surface. The method includes the further steps of extending the graft ligament free end through the chamber, placing the tubular body in the end opening and in the bone tunnel, pulling the graft ligament taut, inserting the screw into the tubular body and advancing the screw therein to press the deformable wall, and hence the graft ligament received in the chamber, toward the wall of the bore, to fix the graft ligament in the bone tunnels and turning the screw until the proximal end surface thereof is substantially a continuation of the bone surface therearound.
  • The above and other features of the invention, including various novel details of construction and combinations of parts and method steps will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular devices and method steps embodying the invention are shown by way of illustration only and not as limitations of the invention. The principles and features of this invention may be employed in various and numerous embodiments without departing from the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which are to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
  • FIG. 1 is a perspective view of one form, of a fixation screw for fastening a graft ligament in a bone tunnel, illustrative of an embodiment of the invention;
  • FIG. 2 is a side elevational view of an alternative embodiment of fixation screw;
  • FIG. 3 is a diagrammatic illustration of the screw of FIG. 1 in operation;
  • FIG. 4 is a diagrammatic illustration of a graft ligament anchor assembly including the screw of FIG. 1 and illustrating an anchor assembly in operation; and
  • FIG. 5 is a diagrammatic illustration of still another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, it will be seen that an illustrative fixation screw 10 includes an elongated shank 12 having a distal end portion 14, which may be generally conically-shaped, as shown in FIG. 1, and have a generally pointed distal end 16. The shank 12 is further provided with a proximal end 18 defining an end plane b-b. A central axis a-a extends from the distal end 16 to the proximal end 18. The plane b-b is disposed transversely to the axis a-a and at an angle c thereto, the angle c being other than a normal angle, and preferably of about 40°-55°. The proximal end 18 may comprise a generally planar surface 22, as illustrated in FIG. 1. Screw threads 28 are disposed on the shank 12 and extend from the distal end 16 to the proximal end 18.
  • Referring to FIG. 2, it will be seen that the fixation screw 10 may be of tubular structure and provided with apertures 24 extending through sidewalls 26 thereof, facilitating ingrowth of bone to further secure the screw in place over time. Further, as shown in FIG. 2, the distal end portion 14 of the screw 10 may be other than conical, such as generally cylindrical, and the distal end 16 of the screw 10 may be other than pointed, such as defining a plane normal to the axis a-a.
  • in FIG. 3, there is illustrated a manner in which the fixation screw 10 of FIG. 1 or FIG. 2 may be used to secure a graft ligament 30 in a bone tunnel 32 having an end opening 34 in a bone surface 36. In FIG. 3, the bones shown for illustrative purposes are major bones of a knee joint, including a femur 38 and tibia 40. The invention presumes that one end 42 of the ligament 30 has been secured in the femur in accordance with known methods and that another end portion 44 extends from the end opening 34.
  • In the method illustrated in FIG. 3, an operator pulls the ligament 30 taut by manipulation of the exposed ligament end portion 44. The screw 10 is then inserted into the bone tunnel 32, by way of the end opening 34. The screw 10 is advanced into the bone tunnel 32, threadedly engaging the ligament 30 and a wall 46 of the bone tunnel 32, to secure the ligament 30 in the bone tunnel 32. As the screw 10 advances to nearly full insertion, the screw is turned until the shank proximal end surface 22 is disposed so as to be substantially flush with, and form substantially a continuation of, the surrounding bone surface 36.
  • Thus, threaded portions of the screw 10 are engaged throughout 360° with cortical portions 48 of the tibia 40, or other selected bone, to securely retain the screw in place. With the screw 10 in place, the exposed ligament end portions 44 may be snipped off along lines 50, shown in FIG. 3 (the “snipped off” portions of ligament end portions 44 are shown in phantom in FIG. 3). As noted above, when the embodiment of fixation screw shown in FIG. 2 is used, over time material from the bone wall 46 will migrate through the apertures 24, to further lock the screw in place.
  • In FIG. 4, there is shown a graft ligament anchor 60 in a tibia 40. The anchor 60 includes the screw 10, as described hereinabove, and a tubular body 62 having a bore 64 therethrough and having distal and proximal ends 66, 68. The tubular body 62 is adapted for placement in the bone tunnel 32 proximate the end opening 34 thereof in the bone surface 36. A deformable wall 70 is disposed in the tubular body, defining at least in part a chamber 72 for receiving the graft ligament 30 therein.
  • In the anchor assembly 60 shown in FIG. 4, the tubular body 62 itself forms a deformable wall 70. In pending prior U.S. patent application Ser. No. 09/248,523, filed Feb. 9, 1999 by Joseph H. Sklar for GRAFT LIGAMENT ANCHOR AND METHOD FOR ATTACHING A GRAFT LIGAMENT TO A BONE, which pending prior patent application is hereby incorporated herein by reference, there are disclosed several ligament anchor assemblies having tubular bodies with alternative arrangements of deformable walls and appropriate for use in the anchor assembly presented herein.
  • In use of the graft ligament anchor assembly, the ligament end portions 44 are extended through the tubular body chamber 72 by an operator. The tubular body 62 is inserted in the end opening 34 of the bone tunnel 32. The ligament 30 is pulled taut by the operator. The fixation screw 10 is then inserted into the tubular body 62 and advanced to press the graft ligament 30 and deformable wall 70 toward the wall 46 of the bone tunnel 32, to fix the ligament to the bone tunnel wall 46. As the proximal end 18 of the screw 10 draws near the bone surface 36, the screw 10 is turned until the screw proximal end surface 22 is disposed so as to be flush with, and substantially a continuation of, the bone surface 36 therearound.
  • The tubular body 62 and the ligament end portions 44 may then be snipped off to provide a relatively smooth surface in the area of the closed opening 34 (the “snipped off” portions of tubular body 62 and the ligament end portions 44 are shown in phantom in FIG. 4).
  • In the embodiment shown in FIG. 4, the threads 20 of the screw 10 do not directly engage the cortical bone 48; however, the threads 20 force the tubular body 62 into engagement with the cortical bone 48, providing stronger fixation than if similarly engaged with a cancellous portion 74 of the bone 40.
  • There is thus provided an improved fixation screw, graft ligament anchor assembly and methods for fixing ligaments in bone tunnels.
  • In the aforementioned U.S. patent application Ser. No. 09/248,523, which patent application has already been incorporated herein by reference, there are also disclosed bone tunnel liners for lining the wall of a bone tunnel prior to securing a graft ligament therein.
  • Looking now at FIG. 5, there is shown a bone tunnel liner 100 which may be positioned within a bone tunnel 32 of a bone 40. Bone tunnel liner 100 includes a central bore 102 extending from its distal end 104 to its proximal end 106. The outer surface of bone tunnel liner 100 includes screw threads 108 and preferably includes openings 110. In use, bone tunnel liner 100 is positioned in bone tunnel 32 in bone 40, the graft ligament's end portions are extended through chambers 72 of tubular body 62, tubular body 62 is inserted into bone tunnel liner 100, and fixation screw 10 is inserted into the central bore of tubular body 62 and advanced distally so as to press the tubular body's deferrable walls, and hence the graft ligament, toward bone tunnel liner 100, whereby to secure the graft ligament in the bone tunnel.
  • In accordance with the present invention, the proximal end 106 of bone tunnel liner 100 is preferably formed with an end surface which is set at an angle to the longitudinal axis of the bone tunnel liner, whereby the proximal end of the bone tunnel liner may be disposed flush with, and substantially a continuation of, the bone surface 36 therearound.
  • It is to be understood that the present invention is by no means limited to the particular construction and method steps herein disclosed and/or shown in the drawings, but also comprises any modification or equivalent within the scope of the claims. For example, it will be apparent that the particular inclination of the proximal end plane to the shank central axis is selected to match the bone surface 36. The angle is determined by the application site morphology.

Claims (2)

1.-24. (canceled)
25. A bone tunnel liner for lining the wall of a bone tunnel which is to have a graft ligament fastened therein, said bone tunnel liner comprising;
a tube having a distal end and a proximal end, and a central axis extending from said distal end to said proximal end; and
screw threads disposed on said tube and extending from said distal end to said proximal end;
wherein said proximal end defines an end plane disposed transversely to the central axis and at an angle thereto other than a normal angle.
US14/166,016 1996-11-27 2014-01-28 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel Abandoned US20140142697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/166,016 US20140142697A1 (en) 1996-11-27 2014-01-28 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US08/756,413 US5899938A (en) 1996-11-27 1996-11-27 Graft ligament anchor and method for attaching a graft ligament to a bone
US09/248,523 US6533816B2 (en) 1999-02-09 1999-02-09 Graft ligament anchor and method for attaching a graft ligament to a bone
US30488599A 1999-05-04 1999-05-04
US09/715,714 US7083647B1 (en) 1996-11-27 2000-11-17 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US11/492,697 US8636799B2 (en) 1996-11-27 2006-07-25 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US14/166,016 US20140142697A1 (en) 1996-11-27 2014-01-28 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/492,697 Division US8636799B2 (en) 1996-11-27 2006-07-25 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel

Publications (1)

Publication Number Publication Date
US20140142697A1 true US20140142697A1 (en) 2014-05-22

Family

ID=36710480

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/715,714 Expired - Fee Related US7083647B1 (en) 1996-11-27 2000-11-17 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US11/492,697 Expired - Fee Related US8636799B2 (en) 1996-11-27 2006-07-25 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US14/166,016 Abandoned US20140142697A1 (en) 1996-11-27 2014-01-28 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/715,714 Expired - Fee Related US7083647B1 (en) 1996-11-27 2000-11-17 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US11/492,697 Expired - Fee Related US8636799B2 (en) 1996-11-27 2006-07-25 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel

Country Status (1)

Country Link
US (3) US7083647B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894661B2 (en) 2007-08-16 2014-11-25 Smith & Nephew, Inc. Helicoil interference fixation system for attaching a graft ligament to a bone
US8979865B2 (en) 2010-03-10 2015-03-17 Smith & Nephew, Inc. Composite interference screws and drivers
US9155531B2 (en) 2013-03-15 2015-10-13 Smith & Nephew, Inc. Miniaturized dual drive open architecture suture anchor
US9579188B2 (en) 2010-03-10 2017-02-28 Smith & Nephew, Inc. Anchor having a controlled driver orientation
US9775702B2 (en) 2010-03-10 2017-10-03 Smith & Nephew, Inc. Composite interference screws and drivers
US9808298B2 (en) 2013-04-09 2017-11-07 Smith & Nephew, Inc. Open-architecture interference screw
US9808337B2 (en) 2010-03-10 2017-11-07 Smith & Nephew, Inc. Composite interference screws and drivers
US9901355B2 (en) 2011-03-11 2018-02-27 Smith & Nephew, Inc. Trephine
US9924934B2 (en) 2011-06-07 2018-03-27 Smith & Nephew, Inc. Surgical anchor delivery system
US10130377B2 (en) 2016-02-08 2018-11-20 Crossroads Extremity Systems, Llc Plantar plate repair

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554862B2 (en) * 1996-11-27 2003-04-29 Ethicon, Inc. Graft ligament anchor and method for attaching a graft ligament to a bone
US6387129B2 (en) * 1998-03-18 2002-05-14 Arthrex, Inc. Bicortical tibial fixation of ACL grafts
US6497726B1 (en) 2000-01-11 2002-12-24 Regeneration Technologies, Inc. Materials and methods for improved bone tendon bone transplantation
US20030023304A1 (en) * 2000-01-11 2003-01-30 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US6887271B2 (en) * 2001-09-28 2005-05-03 Ethicon, Inc. Expanding ligament graft fixation system and method
GB0208667D0 (en) 2002-04-16 2002-05-29 Atlantech Medical Devices Ltd A transverse suspension device
CN1306913C (en) * 2002-06-26 2007-03-28 斯恩蒂斯有限公司 Bone fixing element
US7235078B2 (en) * 2002-11-26 2007-06-26 Hs West Investments Llc Protective devices for use with angled interference screws
US7648509B2 (en) 2003-03-10 2010-01-19 Ilion Medical Llc Sacroiliac joint immobilization
US7326247B2 (en) 2003-10-30 2008-02-05 Arthrex, Inc. Method for creating a double bundle ligament orientation in a single bone tunnel during knee ligament reconstruction
WO2005112788A2 (en) * 2004-05-17 2005-12-01 Arthrocare Corporation Bone anchor
US20050278023A1 (en) * 2004-06-10 2005-12-15 Zwirkoski Paul A Method and apparatus for filling a cavity
EP1781195A4 (en) * 2004-08-18 2013-10-16 Scandius Biomedical Inc Method and apparatus for reconstructing a ligament
US20080208253A1 (en) 2006-05-18 2008-08-28 Dreyfuss Peter J Self-punching swivel anchor and method for knotless fixation of tissue
US20090192546A1 (en) * 2005-03-30 2009-07-30 Reinhold Schmieding Fenestrated suture anchor and method for knotless fixation of tissue
US11801043B2 (en) 2005-03-30 2023-10-31 Arthrex, Inc. Suture anchor for knotless fixation of tissue
US20090187216A1 (en) 2006-05-18 2009-07-23 Arthrex, Inc. Fenestrated swivel anchor for knotless fixation of tissue
US20070233123A1 (en) * 2006-02-21 2007-10-04 Osteomed, L.P. Bone fixation device
AU2007202269B2 (en) 2006-05-18 2013-01-24 Arthrex, Inc. Swivel anchor and method for knotless fixation of tissue
US8226714B2 (en) 2006-09-29 2012-07-24 Depuy Mitek, Inc. Femoral fixation
GR20060100566A (en) * 2006-10-12 2008-05-21 Γεωργιος Στεφανουδακης Tendon grafts securing device.
US7686838B2 (en) 2006-11-09 2010-03-30 Arthrocare Corporation External bullet anchor apparatus and method for use in surgical repair of ligament or tendon
US20080288069A1 (en) * 2006-11-14 2008-11-20 Wolf Alan W Threaded pulley anchor apparatus and method for use in surgical repair of ligament or tendon
US20090024174A1 (en) 2007-07-17 2009-01-22 Stark John G Bone screws and particular applications to sacroiliac joint fusion
US20090125071A1 (en) * 2007-10-23 2009-05-14 Skinlo David M Shape-changing anatomical anchor
US8740912B2 (en) 2008-02-27 2014-06-03 Ilion Medical Llc Tools for performing less invasive orthopedic joint procedures
US20090264924A1 (en) * 2008-04-19 2009-10-22 James Ushiba Surgical device and method
CN102119007A (en) * 2008-06-19 2011-07-06 斯恩蒂斯有限公司 Bone screw purchase augmentation implants, systems and techniques
JP5306900B2 (en) * 2009-05-19 2013-10-02 メイラ株式会社 Transplanted tendon anchor with bone fragment for ligament reconstruction
US8449612B2 (en) * 2009-11-16 2013-05-28 Arthrocare Corporation Graft pulley and methods of use
US8460340B2 (en) * 2010-08-30 2013-06-11 Depuy Mitek, Llc Knotless suture anchor
US8435264B2 (en) 2010-08-30 2013-05-07 Depuy Mitek, Llc Knotless suture anchor and driver
US8469998B2 (en) 2010-08-30 2013-06-25 Depuy Mitek, Llc Knotless suture anchor
US9131937B2 (en) * 2011-11-16 2015-09-15 VentureMD Innovations, LLC Suture anchor
US10470756B2 (en) 2011-11-16 2019-11-12 VentureMD Innovations, LLC Suture anchor and method
US20130158610A1 (en) * 2011-12-16 2013-06-20 Depuy Mitek, Inc. Bone graft fixation systems and methods
WO2014134328A1 (en) * 2013-02-27 2014-09-04 Coorstek Medical Llc D/B/A Imds Graft fixation
US20150289866A1 (en) * 2014-04-10 2015-10-15 Bowen Mark K Locking Device and Method of Use
FR3024351B1 (en) * 2014-08-01 2021-11-19 Ldr Medical BONE IMPLANTS
US10034742B2 (en) 2014-10-23 2018-07-31 Medos International Sarl Biceps tenodesis implants and delivery tools
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools
US10076374B2 (en) 2014-10-23 2018-09-18 Medos International Sárl Biceps tenodesis delivery tools
US10729419B2 (en) 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US11045239B2 (en) 2018-09-14 2021-06-29 Voom Medical Devices, Inc. Orthopedic bone screw
US11903813B2 (en) 2019-04-15 2024-02-20 Kevin L. Harreld Intraosseous screw with cortical window and system and method for associating soft tissue with bone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387129B2 (en) * 1998-03-18 2002-05-14 Arthrex, Inc. Bicortical tibial fixation of ACL grafts
US6533816B2 (en) * 1999-02-09 2003-03-18 Joseph H. Sklar Graft ligament anchor and method for attaching a graft ligament to a bone
US6589245B1 (en) * 1999-10-21 2003-07-08 Karl Storz Gmbh & Co. Kg Interference screw
US6863671B1 (en) * 1999-10-21 2005-03-08 Storz Gmbh & Co. Kg Biodegradable fixation element
US20120265299A1 (en) * 2006-09-29 2012-10-18 Depuy Mitek, Inc. Femoral fixation

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353851A (en) 1941-09-27 1944-07-18 Rosan Joseph Tubular insert
US3153975A (en) 1954-01-21 1964-10-27 Illinois Tool Works Fastener unit
FR1300817A (en) 1961-06-22 1962-08-10 Anchor anchor
GB1123932A (en) 1966-03-07 1968-08-14 Ft Products Ltd An improved rivet
CH485129A (en) 1966-11-09 1970-01-31 Berner Albert Fa Expansion anchor
DK125488B (en) 1969-05-30 1973-02-26 L Mortensen Tubular expansion dowel body or similar fastener and method of making the same.
US3678798A (en) 1969-12-29 1972-07-25 Eaton Corp Fastening device
US3731724A (en) 1971-07-30 1973-05-08 U & M Corp Self-locking threaded insert
US3765295A (en) 1971-08-18 1973-10-16 Fastway Fasteners Plastic drive pin anchor
FR2165159A5 (en) 1971-12-21 1973-08-03 Talan Maryan
US3976079A (en) 1974-08-01 1976-08-24 Samuels Peter B Securing devices for sutures
CA1015989A (en) 1974-11-08 1977-08-23 Adolph D. Russo Expandable fastener
US4083289A (en) 1977-02-14 1978-04-11 Illinois Tool Works Inc. Plastic fastener
US4085651A (en) 1977-02-14 1978-04-25 Illinois Tool Works Inc. Plastic fastener
JPS56127067A (en) 1980-03-12 1981-10-05 Ietatsu Ono Calcium capsule
CH648197A5 (en) * 1980-05-28 1985-03-15 Synthes Ag IMPLANT AND SCREW FASTENING ON ITS BONE.
GB2084468B (en) 1980-09-25 1984-06-06 South African Inventions Surgical implant
GB2136075B (en) 1983-03-07 1986-11-05 Avdel Ltd Rivet
US4535925A (en) 1983-08-10 1985-08-20 Micro Plastics, Inc. Semi-automatic pneumatic expansion rivet gun
US4672957A (en) 1983-10-04 1987-06-16 South African Inventions Development Corporation Surgical device
CN1006954B (en) 1985-03-11 1990-02-28 阿图尔·费希尔 Fastening elements for osteosynthesis
US4744793A (en) 1985-09-06 1988-05-17 Zimmer, Inc. Prosthetic ligament connection assembly
FR2590792B1 (en) 1985-12-04 1992-09-18 Breard Francis LIGAMENT CLIP, PARTICULARLY FOR THE IMPLANTATION OF ARTIFICIAL ARTICULAR LIGAMENTS
US4708132A (en) 1986-01-24 1987-11-24 Pfizer-Hospital Products Group, Inc. Fixation device for a ligament or tendon prosthesis
US4708397A (en) 1986-08-12 1987-11-24 Weinmann Paul R Motor vehicle wheel mounting means and method
US4755183A (en) 1987-02-09 1988-07-05 Pfizer Hospital Products Group, Inc. Ligament prosthesis
US4940467A (en) 1988-02-03 1990-07-10 Tronzo Raymond G Variable length fixation device
US4828562A (en) 1988-02-04 1989-05-09 Pfizer Hospital Products Group, Inc. Anterior cruciate ligament prosthesis
US4944742A (en) 1988-06-06 1990-07-31 Johnson & Johnson Orthopaedics, Inc. Bone pin
US4960420A (en) 1988-08-23 1990-10-02 Marlowe Goble E Channel ligament clamp and system
IT1227216B (en) 1988-09-23 1991-03-27 Cremascoli Spa G ARTIFICIAL LIGATURE, WITH INTEGRATED BONE FIXATION, FOR THE CONNECTION OF BONE JOINTS
DE8914308U1 (en) 1988-12-07 1990-03-22 Letsch, Rainer, Dr.Med., 4300 Essen, De
US4870957A (en) 1988-12-27 1989-10-03 Marlowe Goble E Ligament anchor system
US4950270A (en) 1989-02-03 1990-08-21 Boehringer Mannheim Corporation Cannulated self-tapping bone screw
US4950271A (en) 1989-02-06 1990-08-21 Regents Of The University Of Minnesota Ligament graft apparatus and method
US4927421A (en) 1989-05-15 1990-05-22 Marlowe Goble E Process of endosteal fixation of a ligament
US5151104A (en) 1989-10-26 1992-09-29 Pfizer Hospital Products Group, Inc. Self-locking joint connector
US5062843A (en) 1990-02-07 1991-11-05 Mahony Iii Thomas H Interference fixation screw with integral instrumentation
US5013316A (en) 1990-03-26 1991-05-07 Marlowe Goble E Soft tissue anchor system
US5236445A (en) 1990-07-02 1993-08-17 American Cyanamid Company Expandable bone anchor and method of anchoring a suture to a bone
US5037422A (en) 1990-07-02 1991-08-06 Acufex Microsurgical, Inc. Bone anchor and method of anchoring a suture to a bone
DE59102908D1 (en) 1990-07-06 1994-10-20 Sulzer Ag Band anchoring.
WO1992003980A1 (en) 1990-09-04 1992-03-19 Hip Developments Pty. Ltd. Surgical screw
US5725529A (en) 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
DE69130681T2 (en) 1990-09-25 1999-06-10 Innovasive Devices Inc BONE FIXING DEVICE
CA2062012C (en) * 1991-03-05 2003-04-29 Randall D. Ross Bioabsorbable interference bone fixation screw
US5152790A (en) 1991-03-21 1992-10-06 American Cyanamid Company Ligament reconstruction graft anchor apparatus
US5480403A (en) 1991-03-22 1996-01-02 United States Surgical Corporation Suture anchoring device and method
US5147362A (en) 1991-04-08 1992-09-15 Marlowe Goble E Endosteal ligament fixation device
FR2676356A1 (en) 1991-05-13 1992-11-20 Cendis Medical Fixation element for ligaments
DE9109381U1 (en) 1991-07-30 1991-09-19 Eska Medical Luebeck Medizintechnik Gmbh & Co, 2400 Luebeck, De
DE4127550A1 (en) 1991-08-20 1993-02-25 Telos Herstellung Und Vertrieb Implantable surgical connecting plate - is used for attaching strap to bone and has two parallel slots to hold strap to plate
JPH05300917A (en) 1991-09-20 1993-11-16 Yoshiomi Kuriwaka End fixture of ligament or the like
US5360448A (en) 1991-10-07 1994-11-01 Thramann Jeffrey J Porous-coated bone screw for securing prosthesis
US5562669A (en) 1994-01-13 1996-10-08 Mcguire; David A. Cruciate ligament reconstruction with tibial drill guide
US5234430A (en) 1991-12-18 1993-08-10 Huebner Randall J Orthopedic fixation screw and method
US5534031A (en) 1992-01-28 1996-07-09 Asahi Kogaku Kogyo Kabushiki Kaisha Prosthesis for spanning a space formed upon removal of an intervertebral disk
US5211647A (en) 1992-02-19 1993-05-18 Arthrex Inc. Interference screw and cannulated sheath for endosteal fixation of ligaments
IT228979Y1 (en) 1992-03-09 1998-06-05 Giannini Sandro BIODEGRADABLE PROSTHESIS FOR READY FOOT CORRECTION.
US5314427A (en) 1992-10-13 1994-05-24 Marlowe Goble E Channel ligament clamp
EP0596829B1 (en) 1992-11-02 2000-11-22 Sulzer Orthopädie AG Anchor for synthetic ligament
DE59209122D1 (en) 1992-11-02 1998-02-12 Sulzer Orthopaedie Ag Anchoring for an artificial ligament, in particular a cruciate ligament of a knee joint
US5380334A (en) 1993-02-17 1995-01-10 Smith & Nephew Dyonics, Inc. Soft tissue anchors and systems for implantation
US5312438A (en) 1993-05-03 1994-05-17 Lanny L. Johnson Suture anchor and method of use
US5632748A (en) 1993-06-14 1997-05-27 Linvatec Corporation Endosteal anchoring device for urging a ligament against a bone surface
US5425707A (en) 1993-06-28 1995-06-20 Goldberg; Larry Method for non-surgical treatment of carpal tunnel syndrome
US5584835A (en) 1993-10-18 1996-12-17 Greenfield; Jon B. Soft tissue to bone fixation device and method
US5324308A (en) 1993-10-28 1994-06-28 Javin Pierce Suture anchor
US5454811A (en) 1993-11-08 1995-10-03 Smith & Nephew Dyonics, Inc. Cam lock orthopedic fixation screw and method
US5618314A (en) 1993-12-13 1997-04-08 Harwin; Steven F. Suture anchor device
US5486197A (en) 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
US5458601A (en) 1994-03-28 1995-10-17 Medical University Of South Carolina Adjustable ligament anchor
US5489210A (en) 1994-05-13 1996-02-06 Hanosh; Frederick N. Expanding dental implant and method for its use
US5645589A (en) 1994-08-22 1997-07-08 Li Medical Technologies, Inc. Anchor and method for securement into a bore
US5464427A (en) 1994-10-04 1995-11-07 Synthes (U.S.A.) Expanding suture anchor
FR2725615B1 (en) 1994-10-17 1997-06-13 Caffiniere Jean Yves De BONE ANCHORING DEVICE FOR FIXATION THREADS USED IN ORTHOPEDIC SURGERY
US5782865A (en) 1995-08-25 1998-07-21 Grotz; Robert Thomas Stabilizer for human joints
FR2740324B1 (en) 1995-10-27 1997-12-26 Bgci LIGAMENTARY ANCHORING DEVICE
US5702397A (en) 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
US5948001A (en) 1996-10-03 1999-09-07 United States Surgical Corporation System for suture anchor placement
US5948000A (en) 1996-10-03 1999-09-07 United States Surgical Corporation System for suture anchor placement
AU738044B2 (en) 1996-11-21 2001-09-06 Ethicon Inc. Apparatus and methods for anchoring autologous or artificial tendon grafts in bone
US5899938A (en) 1996-11-27 1999-05-04 Joseph H. Sklar Graft ligament anchor and method for attaching a graft ligament to a bone
US6554862B2 (en) 1996-11-27 2003-04-29 Ethicon, Inc. Graft ligament anchor and method for attaching a graft ligament to a bone
US5707395A (en) 1997-01-16 1998-01-13 Li Medical Technologies, Inc. Surgical fastener and method and apparatus for ligament repair
US5918604A (en) 1997-02-12 1999-07-06 Arthrex, Inc. Method of loading tendons into the knee
DE69840110D1 (en) 1997-02-13 2008-11-20 Boston Scient Ltd Attachment for sewing thread with quick-release
US5906632A (en) 1997-10-03 1999-05-25 Innovasive Devices, Inc. Intratunnel attachment device and system for a flexible load-bearing structure and method of use
US6099530A (en) 1998-04-09 2000-08-08 Smith & Nephew, Inc. Soft-tissue intra-tunnel fixation device
US6355066B1 (en) 1998-08-19 2002-03-12 Andrew C. Kim Anterior cruciate ligament reconstruction hamstring tendon fixation system
US6283973B1 (en) * 1998-12-30 2001-09-04 Depuy Orthopaedics, Inc. Strength fixation device
EP1110510B1 (en) 1999-12-23 2002-03-27 Karl Storz GmbH & Co. KG Screw driven non-centrally
US6673094B1 (en) 2000-02-23 2004-01-06 Ethicon, Inc. System and method for attaching soft tissue to bone
US6746483B1 (en) 2000-03-16 2004-06-08 Smith & Nephew, Inc. Sheaths for implantable fixation devices
DE10015902A1 (en) 2000-03-30 2001-10-04 Fischer Artur Werke Gmbh Dowels for attachment to hollow and solid building materials
US6623524B2 (en) 2000-06-09 2003-09-23 Arthrex, Inc. Method for anterior cruciate ligament reconstruction using cross-pin implant with eyelet
ES2271032T3 (en) 2000-06-14 2007-04-16 Teppo Jarvinen ANCHORAGE OF FIXATION.
US6517579B1 (en) 2000-09-06 2003-02-11 Lonnie E. Paulos Method and apparatus for securing a soft tissue graft to bone during an ACL reconstruction
US6887271B2 (en) 2001-09-28 2005-05-03 Ethicon, Inc. Expanding ligament graft fixation system and method
US20040068262A1 (en) 2002-10-02 2004-04-08 Mark Lemos Soft tissue fixation implant
DE20305713U1 (en) 2003-04-09 2003-07-10 Willmen Hans Rainer bone dowel
US7309355B2 (en) 2003-06-27 2007-12-18 Depuy Mitek, Inc. Flexible tibial sheath
US20050159748A1 (en) 2003-12-19 2005-07-21 Ron Clark Compression bio-compatible fixation for soft tissue bone fixation
EP1781195A4 (en) 2004-08-18 2013-10-16 Scandius Biomedical Inc Method and apparatus for reconstructing a ligament
US7468074B2 (en) 2004-10-29 2008-12-23 Arthrex, Inc. Ligament fixation using graft harness
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US20060149258A1 (en) 2004-12-14 2006-07-06 Sousa Joaquim P G Surgical tool and method for fixation of ligaments
US20060189991A1 (en) 2005-01-11 2006-08-24 Bickley Barry T Graft anchor
US8197509B2 (en) 2005-06-29 2012-06-12 Depuy Mitek, Inc. Suture anchor with improved torsional drive head
DE102005035631A1 (en) 2005-07-29 2007-02-01 Jungheinrich Ag Three-sided stacker, has guide tracks on side thrust frame parallel to gear rods whilst distance rollers on torsion shaft interact with guide tracks to fix distance of gear wheels from gear rods
US20080154314A1 (en) 2006-08-16 2008-06-26 Mcdevitt Dennis M Composite interference screw for attaching a graft ligament to a bone, and other apparatus for making attachments to bone
US8147546B2 (en) 2007-03-13 2012-04-03 Biomet Sports Medicine, Llc Method and apparatus for graft fixation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387129B2 (en) * 1998-03-18 2002-05-14 Arthrex, Inc. Bicortical tibial fixation of ACL grafts
US6533816B2 (en) * 1999-02-09 2003-03-18 Joseph H. Sklar Graft ligament anchor and method for attaching a graft ligament to a bone
US6589245B1 (en) * 1999-10-21 2003-07-08 Karl Storz Gmbh & Co. Kg Interference screw
US6863671B1 (en) * 1999-10-21 2005-03-08 Storz Gmbh & Co. Kg Biodegradable fixation element
US20120265299A1 (en) * 2006-09-29 2012-10-18 Depuy Mitek, Inc. Femoral fixation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992612B2 (en) 2006-08-16 2015-03-31 Smith & Nephew, Inc. Helicoil interference fixation system for attaching a graft ligament to a bone
US8894661B2 (en) 2007-08-16 2014-11-25 Smith & Nephew, Inc. Helicoil interference fixation system for attaching a graft ligament to a bone
US9808337B2 (en) 2010-03-10 2017-11-07 Smith & Nephew, Inc. Composite interference screws and drivers
US9579188B2 (en) 2010-03-10 2017-02-28 Smith & Nephew, Inc. Anchor having a controlled driver orientation
US9775702B2 (en) 2010-03-10 2017-10-03 Smith & Nephew, Inc. Composite interference screws and drivers
US9788935B2 (en) 2010-03-10 2017-10-17 Smith & Nephew, Inc. Composite interference screws and drivers
US8979865B2 (en) 2010-03-10 2015-03-17 Smith & Nephew, Inc. Composite interference screws and drivers
US9901355B2 (en) 2011-03-11 2018-02-27 Smith & Nephew, Inc. Trephine
US9924934B2 (en) 2011-06-07 2018-03-27 Smith & Nephew, Inc. Surgical anchor delivery system
US9155531B2 (en) 2013-03-15 2015-10-13 Smith & Nephew, Inc. Miniaturized dual drive open architecture suture anchor
US9788828B2 (en) 2013-03-15 2017-10-17 Smith & Nephew, Inc. Miniaturized dual drive open architecture suture anchor
US9808298B2 (en) 2013-04-09 2017-11-07 Smith & Nephew, Inc. Open-architecture interference screw
US10130377B2 (en) 2016-02-08 2018-11-20 Crossroads Extremity Systems, Llc Plantar plate repair
US10799250B2 (en) 2016-02-08 2020-10-13 Crossroads Extremity Systems, Llc Plantar plate repair

Also Published As

Publication number Publication date
US20070032870A1 (en) 2007-02-08
US8636799B2 (en) 2014-01-28
US7083647B1 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US7083647B1 (en) Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
US10441409B2 (en) Femoral fixation
US10143547B2 (en) Graft ligament anchor and method for attaching a graft ligament to a bone
EP1419747B1 (en) Apparatus for anchoring autologous or artificial tendon grafts in bone.
EP1006934B1 (en) Apparatus for anchoring autologous or artificial tendon grafts in bone
US8496705B2 (en) Method of anchoring autologous or artificial tendon grafts in bone
US20070055255A1 (en) Bioabsorbable Endosteal Fixation Device and Method of Use
EP1946722B1 (en) Apparatus for reconstructing a ligament
AU5070602A (en) Methods for anchoring autologous or artificial tendon grafts in bone

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION