US20140123806A1 - Double clutch powertrain for vehicle - Google Patents

Double clutch powertrain for vehicle Download PDF

Info

Publication number
US20140123806A1
US20140123806A1 US14/026,244 US201314026244A US2014123806A1 US 20140123806 A1 US20140123806 A1 US 20140123806A1 US 201314026244 A US201314026244 A US 201314026244A US 2014123806 A1 US2014123806 A1 US 2014123806A1
Authority
US
United States
Prior art keywords
input shaft
gear
powertrain
gear stage
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/026,244
Inventor
Seung Ho Lee
Jong Min Kim
Hyung Wook CHO
Sang Won Seo
Jong Sool Park
Byeong Wook Jeon
Joung Chul Kim
Chang Yeon CHO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Assigned to HYUNDAI MOTOR COMPANY reassignment HYUNDAI MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, CHANG YEON, CHO, HYUNG WOOK, JEON, BYEONG WOOK, KIM, JONG MIN, KIM, JOUNG CHUL, LEE, SEUNG HO, PARK, JONG SOOL, SEO, SANG WON
Publication of US20140123806A1 publication Critical patent/US20140123806A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • B60Y2400/4242Friction clutches of dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/428Double clutch arrangements; Dual clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • F16H2003/007Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths with two flow paths, one being directly connected to the input, the other being connected to the input though a clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19014Plural prime movers selectively coupled to common output

Definitions

  • the present invention relates generally to powertrains for vehicles and, more particularly, to a gear shift mechanism for a vehicle using a double clutch.
  • Double clutch transmissions use the existing manual transmission mechanism and are provided two clutches to increase the power transmission efficiency and, particularly, prevent torque from being reduced when shifting gears.
  • the use of double clutch transmissions is becoming increasingly common.
  • the typical double clutch transmissions use dry type clutches. Therefore, in a starting or gear shift operation of a vehicle, for reasons such as a limit of thermal capacity, etc., it is difficult for the vehicle to be smoothly started. Particularly, when starting a vehicle facing uphill, there is the possibility of the vehicle being pushed rearwards because of a clutch slip phenomenon. Moreover, there is a problem of shifting shock, etc. resulting from reduced shift time.
  • Various aspects of the present invention provide for a double clutch powertrain for a vehicle which makes smooth starting and smooth gear shifting possible despite using a dry type double clutch and makes regenerative braking and power generation possible when the vehicle decelerates, thus improving the driving characteristics of the vehicle, and enhancing the fuel efficiency of the vehicle.
  • a double clutch powertrain for a vehicle including: a first input shaft configured to intermittently receive power from a power source; a second input shaft provided coaxially with the first input shaft and configured to intermittently receive power from a power source; and a motor generator provided to transmit power to the first input shaft and receive power therefrom, wherein the first input shaft and the second input shaft, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios, and either the first input shaft or the second input shaft forms a reverse-gear stage.
  • the present invention provides a double clutch powertrain for a vehicle, including: a first input shaft configured to intermittently receive power from a power source; a second input shaft comprising a hollow shaft provided coaxially with the first input shaft, the second input shaft being configured to intermittently receive power from a power source; and a motor generator provided to transmit power to the second input shaft and receive power therefrom, wherein the first input shaft and the second input shaft, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios, and either the first input shaft or the second input shaft forms a reverse-gear stage.
  • FIG. 1 is a schematic view showing the construction of an exemplary double-clutch powertrain according to the present invention.
  • FIG. 2 is a table illustrating the gear shift operation of the exemplary powertrain for a vehicle according to the present invention
  • FIG. 3A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 3B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 4A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 4B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 5A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 5B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 6A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 6B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 7A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 7B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 8A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 8B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 9A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 9B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 10A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 10B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 11A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 11B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 12A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 12B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 13A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 13B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 14 is a schematic view showing the construction of another exemplary double-clutch powertrain for a vehicle, according to the present invention.
  • FIG. 15 is a schematic view showing the construction of another exemplary double-clutch powertrain for a vehicle, according to the present invention.
  • FIG. 16 is a schematic view showing the construction of another exemplary double-clutch powertrain for a vehicle, according to the present invention.
  • a double clutch powertrain for a vehicle includes a first input shaft INPUT# 1 which intermittently receives power from a power source, a second input shaft INPUT# 2 which is provided coaxially with the first input shaft INPUT# 1 and intermittently receives power from the power source; and a motor generator MG which transmits power to the first input shaft INPUT# 1 or receives power therefrom.
  • the first input shaft INPUT# 1 and the second input shaft INPUT# 2 along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios. Either the first input shaft INPUT# 1 or the second input shaft INPUT# 2 can also form an R-gear stage.
  • the power source is an engine that is an internal combustion engine.
  • Each of the first and second input shafts INPUT# 1 and INPUT# 2 is configured such that it is converted between a state capable of receiving power from the engine and an interruption state.
  • the motor generator MG is provided such that it can transmit power to the first input shaft INPUT# 1 or receive power from the first input shaft INPUT# 1 .
  • Each of the first and second input shafts INPUT# 1 and INPUT# 2 can form gear stages in the same mechanism as that of the typical manual transmission.
  • the first input shaft INPUT# 1 is connected to the power source by a first clutch CL 1 .
  • the second input shaft INPUT# 2 is connected to the power source by a second clutch CL 2 .
  • the motor generator MG is connected to the first input shaft INPUT# 1 by a third clutch CL 3 .
  • the motor generator MG includes a stator which is fixed in place, and a rotor which is rotatable. The rotor is connected to the first input shaft INPUT# 1 by the third clutch CL 3 .
  • the rotor may be directly connected to the first input shaft INPUT# 1 without using the third clutch CL 3 .
  • the motor generator MG is disposed coaxially with the first input shaft INPUT# 1 and second input shaft INPUT# 2 .
  • the motor generator MG is coaxially connected to the first input shaft INPUT# 1 such that transmission of power is directly controlled by the third clutch CL 3 without using an external gear between the motor generator MG and the first input shaft INPUT# 1 , thus making the construction of the powertrain compact.
  • the separate gear shift apparatus includes a first output shaft OUTPUT# 1 and a second output shaft OUTPUT# 2 which are disposed parallel to the first input shaft INPUT# 1 and second input shaft INPUT# 2 and form the gear stages along with the first input shaft INPUT# 1 and second input shaft INPUT# 2 in a constant engagement synchromesh type gear shift mechanism.
  • the first input shaft INPUT# 1 , the second input shaft INPUT# 2 , the first output shaft OUTPUT# 1 and the second output shaft OUTPUT# 2 are provided therebetween with the shift gears that constantly engage with each other.
  • the shift gears change the gear stages in such a way that connection of the shift gears to the first output shaft OUTPUT# 1 or the second output shaft OUTPUT# 2 is controlled by the conventional synchronizer.
  • the first input shaft INPUT# 1 forms a first gear stage and a third gear stage between the first input shaft INPUT# 1 and the first output shaft OUTPUT# 1 and forms a fifth gear stage and a seventh gear stage between the first input shaft INPUT# 1 and the second output shaft OUTPUT# 2 .
  • the first input shaft INPUT# 1 forms odd-number-gear stages.
  • the second input shaft INPUT# 2 forms a second gear stage and a sixth gear stage between the second input shaft INPUT# 2 and the first output shaft OUTPUT# 1 and forms a fourth gear stage and an R-gear stage between the second input shaft INPUT# 2 and the second output shaft OUTPUT# 2 .
  • the second input shaft INPUT# 2 forms even-number-gear stages.
  • the first input shaft INPUT# 1 and the second input shaft INPUT# 2 alternately form a series of gear stages from the first to the seventh gear stages.
  • the second input shaft INPUT# 2 forms the R-gear stage along with the second output shaft OUTPUT# 2 and a separate reverse idler shaft RS.
  • the motor generator MG is configured such that it is connected to the first input shaft INPUT# 1 at a position opposite to the first clutch CL 1 while the gear shift apparatus including the shift gears is disposed between the motor generator MG and the first input shaft lNPUT# 1 .
  • the gear stages from the first gear stage to the seventh gear stage and the R-gear stage that is a reverse gear stage are embodied by selectively operating the first, second and third clutches CL 1 , CL 2 and CL 3 .
  • the formation of the gear stages is successively illustrated in FIGS. 3 through 13 with line graphs.
  • the double clutch powertrain can embody an N-gear stage at which a battery can be charged with electricity generated by the operation of the motor generator MG.
  • the first clutch CL 1 and the third clutch CL 3 enter the engaged states so that power generated from the engine can operate the motor generator MG through the first input shaft INPUT# 1 .
  • the motor generator MG generates electricity, thus charging a battery.
  • FIG. 5A and 5B illustrate an example of a D-gear stage starting of the vehicle.
  • the vehicle is started by the power of the motor generator MG while the engine is in the stopped state. Therefore, the third clutch CL 3 is in the engaged state.
  • a synchronizer S for the first and third gear stages connects a first stage gear to the first output shaft OUTPUT# 1 so that the vehicle is started by the power of the motor generator MG at a first gear ratio.
  • the slip phenomenon of the first clutch CL 1 or the second clutch CL 2 can be prevented.
  • the durability of the clutches can be maintained, and the vehicle can start smoothly and reliably.
  • FIGS. 5A and 5B The state of FIGS. 5A and 5B is substantially the same as that of FIGS. 13A and 3B .
  • the corresponding vehicle runs in an EV mode that is a pure electric vehicle mode.
  • the vehicle can continuously run in the EV mode at another gear stage rather than the first gear stage.
  • FIG. 14 illustrates an example differing with those described above in that the first input shaft INPUT# 1 forms even-number gear stages including the second, fourth and sixth gear stages and the R-gear stage, and the second input shaft INPUT# 2 forms odd-number gear stages including the first, third, fifth and seventh gear stages. Except for this, the construction and operation remains essentially the same as that described above.
  • FIGS. 15 and 16 respectively illustrate various embodiments in which the motor generator MG is connected, by the third clutch CL 3 , to the second input shaft INPUT# 2 that has a hollow shaft structure and is coaxially provided on the first input shaft INPUT# 1 , rather than being connected to the first input shaft INPUT# 1 .
  • the first input shaft INPUT# 1 forms the odd-number gear stages
  • the second input shaft INPUT# 2 forms the even-number-gear stages and R-gear stage.
  • the first input shaft INPUT# 1 forms the even-number gear stages and R-gear stage
  • the second input shaft INPUT# 2 forms the odd-number gear stages.
  • the motor generator MG is disposed between the gear shift apparatus and the second clutch CL 2 , unlike some of the embodiments described above.
  • a double clutch powertrain for a vehicle makes smooth starting of the vehicle and smooth gear shifting possible despite using a dry type double clutch and makes regenerative braking and power generation possible when the vehicle decelerates, thus improving the driving characteristics of the vehicle, and enhancing the fuel efficiency of the vehicle.

Abstract

A double clutch powertrain for a vehicle makes smooth starting of the vehicle and smooth gear shifting possible despite using a dry type double clutch and makes regenerative braking and power generation possible when the vehicle decelerates, thus improving the driving characteristics of the vehicle, and enhancing the fuel efficiency of the vehicle.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims priority of Korean Patent Application Number 10-2012-0126219 filed Nov. 8, 2012, the entire contents of which application is incorporated herein for all purposes by this reference.
  • BACKGROUND OF INVENTION
  • 1. Field of Invention
  • The present invention relates generally to powertrains for vehicles and, more particularly, to a gear shift mechanism for a vehicle using a double clutch.
  • 2. Description of Related Art
  • Double clutch transmissions use the existing manual transmission mechanism and are provided two clutches to increase the power transmission efficiency and, particularly, prevent torque from being reduced when shifting gears. The use of double clutch transmissions is becoming increasingly common.
  • However, the typical double clutch transmissions use dry type clutches. Therefore, in a starting or gear shift operation of a vehicle, for reasons such as a limit of thermal capacity, etc., it is difficult for the vehicle to be smoothly started. Particularly, when starting a vehicle facing uphill, there is the possibility of the vehicle being pushed rearwards because of a clutch slip phenomenon. Moreover, there is a problem of shifting shock, etc. resulting from reduced shift time.
  • An exemplar of the prior art is Korean Patent Application Publication No. KR 1020100064726 A.
  • The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.
  • BRIEF SUMMARY
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art.
  • Various aspects of the present invention provide for a double clutch powertrain for a vehicle which makes smooth starting and smooth gear shifting possible despite using a dry type double clutch and makes regenerative braking and power generation possible when the vehicle decelerates, thus improving the driving characteristics of the vehicle, and enhancing the fuel efficiency of the vehicle.
  • Various aspects of the present invention provide for a double clutch powertrain for a vehicle, including: a first input shaft configured to intermittently receive power from a power source; a second input shaft provided coaxially with the first input shaft and configured to intermittently receive power from a power source; and a motor generator provided to transmit power to the first input shaft and receive power therefrom, wherein the first input shaft and the second input shaft, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios, and either the first input shaft or the second input shaft forms a reverse-gear stage.
  • In other aspects, the present invention provides a double clutch powertrain for a vehicle, including: a first input shaft configured to intermittently receive power from a power source; a second input shaft comprising a hollow shaft provided coaxially with the first input shaft, the second input shaft being configured to intermittently receive power from a power source; and a motor generator provided to transmit power to the second input shaft and receive power therefrom, wherein the first input shaft and the second input shaft, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios, and either the first input shaft or the second input shaft forms a reverse-gear stage.
  • The methods and apparatuses of the present invention have other features and advantages which will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view showing the construction of an exemplary double-clutch powertrain according to the present invention.
  • FIG. 2 is a table illustrating the gear shift operation of the exemplary powertrain for a vehicle according to the present invention;
  • FIG. 3A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 3B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 4A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 4B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 5A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 5B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 6A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 6B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 7A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 7B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 8A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 8B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 9A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 9B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 10A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 10B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 11A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 11B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 12A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 12B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 13A is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 13B is a schematic view and corresponding line graph illustrating conditions of the powertrain of FIG. 1 when it is in each gear;
  • FIG. 14 is a schematic view showing the construction of another exemplary double-clutch powertrain for a vehicle, according to the present invention;
  • FIG. 15 is a schematic view showing the construction of another exemplary double-clutch powertrain for a vehicle, according to the present invention; and
  • FIG. 16 is a schematic view showing the construction of another exemplary double-clutch powertrain for a vehicle, according to the present invention.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to various embodiments of the present invention(s), examples of which are illustrated in the accompanying drawings and described below. While the invention(s) will be described in conjunction with exemplary embodiments, it will be understood that present description is not intended to limit the invention(s) to those exemplary embodiments. On the contrary, the invention(s) is/are intended to cover not only the exemplary embodiments, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended claims.
  • Referring to FIG. 1, a double clutch powertrain for a vehicle according to various embodiments of the present invention includes a first input shaft INPUT# 1 which intermittently receives power from a power source, a second input shaft INPUT# 2 which is provided coaxially with the first input shaft INPUT# 1 and intermittently receives power from the power source; and a motor generator MG which transmits power to the first input shaft INPUT# 1 or receives power therefrom. The first input shaft INPUT# 1 and the second input shaft INPUT# 2, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios. Either the first input shaft INPUT# 1 or the second input shaft INPUT# 2 can also form an R-gear stage.
  • In detail, the power source is an engine that is an internal combustion engine. Each of the first and second input shafts INPUT# 1 and INPUT# 2 is configured such that it is converted between a state capable of receiving power from the engine and an interruption state. Separately, the motor generator MG is provided such that it can transmit power to the first input shaft INPUT# 1 or receive power from the first input shaft INPUT# 1. Each of the first and second input shafts INPUT# 1 and INPUT# 2 can form gear stages in the same mechanism as that of the typical manual transmission.
  • The first input shaft INPUT# 1 is connected to the power source by a first clutch CL1. The second input shaft INPUT# 2 is connected to the power source by a second clutch CL2. The motor generator MG is connected to the first input shaft INPUT# 1 by a third clutch CL3.
  • The motor generator MG includes a stator which is fixed in place, and a rotor which is rotatable. The rotor is connected to the first input shaft INPUT# 1 by the third clutch CL3.
  • Of course, depending on the kind of motor generator MG, the rotor may be directly connected to the first input shaft INPUT# 1 without using the third clutch CL3.
  • The motor generator MG is disposed coaxially with the first input shaft INPUT# 1 and second input shaft INPUT# 2. In other words, the motor generator MG is coaxially connected to the first input shaft INPUT# 1 such that transmission of power is directly controlled by the third clutch CL3 without using an external gear between the motor generator MG and the first input shaft INPUT# 1, thus making the construction of the powertrain compact.
  • The separate gear shift apparatus includes a first output shaft OUTPUT# 1 and a second output shaft OUTPUT# 2 which are disposed parallel to the first input shaft INPUT# 1 and second input shaft INPUT# 2 and form the gear stages along with the first input shaft INPUT# 1 and second input shaft INPUT# 2 in a constant engagement synchromesh type gear shift mechanism.
  • That is, as shown in the drawings, the first input shaft INPUT# 1, the second input shaft INPUT# 2, the first output shaft OUTPUT# 1 and the second output shaft OUTPUT# 2 are provided therebetween with the shift gears that constantly engage with each other. The shift gears change the gear stages in such a way that connection of the shift gears to the first output shaft OUTPUT# 1 or the second output shaft OUTPUT# 2 is controlled by the conventional synchronizer.
  • The first input shaft INPUT# 1 forms a first gear stage and a third gear stage between the first input shaft INPUT# 1 and the first output shaft OUTPUT# 1 and forms a fifth gear stage and a seventh gear stage between the first input shaft INPUT# 1 and the second output shaft OUTPUT# 2. In other words, the first input shaft INPUT# 1 forms odd-number-gear stages. The second input shaft INPUT# 2 forms a second gear stage and a sixth gear stage between the second input shaft INPUT# 2 and the first output shaft OUTPUT# 1 and forms a fourth gear stage and an R-gear stage between the second input shaft INPUT# 2 and the second output shaft OUTPUT# 2. In other words, the second input shaft INPUT# 2 forms even-number-gear stages. The first input shaft INPUT# 1 and the second input shaft INPUT# 2 alternately form a series of gear stages from the first to the seventh gear stages. The second input shaft INPUT# 2 forms the R-gear stage along with the second output shaft OUTPUT# 2 and a separate reverse idler shaft RS.
  • In various embodiments, the motor generator MG is configured such that it is connected to the first input shaft INPUT# 1 at a position opposite to the first clutch CL1 while the gear shift apparatus including the shift gears is disposed between the motor generator MG and the first input shaft lNPUT# 1.
  • In the double clutch powertrain according to the present invention having the above-mentioned construction, as shown in the gear shift operation table of FIG. 2, the gear stages from the first gear stage to the seventh gear stage and the R-gear stage that is a reverse gear stage are embodied by selectively operating the first, second and third clutches CL1, CL2 and CL3. The formation of the gear stages is successively illustrated in FIGS. 3 through 13 with line graphs.
  • Meanwhile, the double clutch powertrain can embody an N-gear stage at which a battery can be charged with electricity generated by the operation of the motor generator MG. As shown in FIG. 4A and 4B, the first clutch CL1 and the third clutch CL3 enter the engaged states so that power generated from the engine can operate the motor generator MG through the first input shaft INPUT# 1. Thereby, the motor generator MG generates electricity, thus charging a battery.
  • FIG. 5A and 5B illustrate an example of a D-gear stage starting of the vehicle. The vehicle is started by the power of the motor generator MG while the engine is in the stopped state. Therefore, the third clutch CL3 is in the engaged state. A synchronizer S for the first and third gear stages connects a first stage gear to the first output shaft OUTPUT# 1 so that the vehicle is started by the power of the motor generator MG at a first gear ratio. Thus, the slip phenomenon of the first clutch CL1 or the second clutch CL2 can be prevented. As a result, the durability of the clutches can be maintained, and the vehicle can start smoothly and reliably.
  • The state of FIGS. 5A and 5B is substantially the same as that of FIGS. 13A and 3B. In this case, the corresponding vehicle runs in an EV mode that is a pure electric vehicle mode. Of course, here, if another gear stage is formed by the operation of another synchronizer while the first clutch CL1 and second clutch CL2 are in the released state, the vehicle can continuously run in the EV mode at another gear stage rather than the first gear stage.
  • The formation of other gear stages and operation of the double clutch powertrain at each gear stage will be easily understood with reference to FIGS. 2 through 13 from the conventional double clutch transmission and manual transmission mechanism, therefore further explanation thereof will be omitted.
  • FIG. 14 illustrates an example differing with those described above in that the first input shaft INPUT# 1 forms even-number gear stages including the second, fourth and sixth gear stages and the R-gear stage, and the second input shaft INPUT# 2 forms odd-number gear stages including the first, third, fifth and seventh gear stages. Except for this, the construction and operation remains essentially the same as that described above.
  • FIGS. 15 and 16 respectively illustrate various embodiments in which the motor generator MG is connected, by the third clutch CL3, to the second input shaft INPUT# 2 that has a hollow shaft structure and is coaxially provided on the first input shaft INPUT# 1, rather than being connected to the first input shaft INPUT# 1.
  • As shown in FIG. 15, the first input shaft INPUT# 1 forms the odd-number gear stages, and the second input shaft INPUT# 2 forms the even-number-gear stages and R-gear stage. On the other hand, the first input shaft INPUT# 1 forms the even-number gear stages and R-gear stage, and the second input shaft INPUT# 2 forms the odd-number gear stages.
  • In various embodiments, as shown in FIGS. 15 and 16, the motor generator MG is disposed between the gear shift apparatus and the second clutch CL2, unlike some of the embodiments described above.
  • The operation of the various embodiments is almost the same as that described above, so detailed explanation thereof is deemed unnecessary.
  • As described above, a double clutch powertrain for a vehicle according to the present invention makes smooth starting of the vehicle and smooth gear shifting possible despite using a dry type double clutch and makes regenerative braking and power generation possible when the vehicle decelerates, thus improving the driving characteristics of the vehicle, and enhancing the fuel efficiency of the vehicle.
  • For convenience in explanation and accurate definition in the appended claims, the terms rearward and etc. are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures.
  • The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described in order to explain certain principles of the invention and their practical application, to thereby enable others skilled in the art to make and utilize various exemplary embodiments of the present invention, as well as various alternatives and modifications thereof It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims (12)

What is claimed is:
1. A double clutch powertrain for a vehicle, comprising:
a first input shaft configured to intermittently receive power from a power source;
a second input shaft provided coaxially with the first input shaft and configured to intermittently receive power; and
a motor generator provided to transmit power to the first input shaft and receive power therefrom,
wherein the first input shaft and the second input shaft, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios, and either the first input shaft or the second input shaft forms a reverse-gear stage.
2. The double clutch powertrain as set forth in claim 1, wherein the first input shaft is connected to the power source by a first clutch,
the second input shaft is connected to the power source by a second clutch, and
the motor generator is connected to the first input shaft by a third clutch.
3. The double clutch powertrain as set forth in claim 2, wherein the motor generator is provided coaxially with the first input shaft and the second input shaft.
4. The double clutch powertrain as set forth in claim 3, wherein the separate gear shift apparatus comprises:
a first output shaft and a second output shaft disposed parallel to the first input shaft and the second input shaft, the first and second output shafts forming the gear stages along with the first input shaft and the second input shaft in a constant engagement synchromesh type gear shift mechanism.
5. The double clutch powertrain as set forth in claim 4, wherein the motor generator is connected to the first input shaft at a position opposite to the first clutch while the gear shift apparatus is disposed between the motor generator and the first input shaft.
6. A double clutch powertrain for a vehicle, comprising:
a first input shaft configured to intermittently receive power from a power source;
a second input shaft comprising a hollow shaft provided coaxially with the first input shaft, the second input shaft being configured to intermittently receive power; and
a motor generator provided to transmit power to the second input shaft and receive power therefrom,
wherein the first input shaft and the second input shaft, along with a separate gear shift apparatus, alternately form gear stages determined depending on a series of gear ratios, and
either the first input shaft or the second input shaft forms a reverse-gear stage.
7. The double clutch powertrain as set forth in claim 6, wherein the first input shaft is connected to the power source by a first clutch,
the second input shaft is connected to the power source by a second clutch, and
the motor generator is connected to the second input shaft by a third clutch.
8. The double clutch powertrain as set forth in claim 7, wherein the motor generator is provided coaxially with the first input shaft and the second input shaft.
9. The double clutch powertrain as set forth in claim 8, wherein the separate gear shift apparatus comprises:
a first output shaft and a second output shaft disposed parallel to the first input shaft and the second input shaft, the first and second output shafts forming the gear stages along with the first input shaft and the second input shaft in constant engagement synchromesh type gear shift mechanism.
10. The double clutch powertrain as set forth in claim 9, wherein the motor generator is disposed between the gear shift apparatus and the second clutch.
11. The double clutch powertrain as set forth in claim 6, wherein the first input shaft embodies odd-number gear stages, such as a first gear stage, a third gear stage, a fifth gear stage and a seventh gear stage, along with the separate gear shift apparatus, and
the second input shaft embodies even-number gear stages, such as a second gear stage, a fourth gear stage and a sixth gear stage, along with the separate gear shift apparatus.
12. The double clutch powertrain as set forth in claim 6, wherein the first input shaft embodies even-number gear stages, such as a second gear stage, a fourth gear stage and a sixth gear stage, along with the separate gear shift apparatus, and
the second input shaft embodies odd-number gear stages, such as a first gear stage, a third gear stage, a fifth gear stage and a seventh gear stage, along with the separate gear shift apparatus.
US14/026,244 2012-11-08 2013-09-13 Double clutch powertrain for vehicle Abandoned US20140123806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0126219 2012-11-08
KR1020120126219A KR20140059917A (en) 2012-11-08 2012-11-08 Double clutch powertrain for vehicle

Publications (1)

Publication Number Publication Date
US20140123806A1 true US20140123806A1 (en) 2014-05-08

Family

ID=50489907

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/026,244 Abandoned US20140123806A1 (en) 2012-11-08 2013-09-13 Double clutch powertrain for vehicle

Country Status (5)

Country Link
US (1) US20140123806A1 (en)
JP (1) JP2014094735A (en)
KR (1) KR20140059917A (en)
CN (1) CN103807368A (en)
DE (1) DE102013111028A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091056A1 (en) * 2014-09-29 2016-03-31 Hyundai Motor Company Hybrid transmission for vehicle
US20160102742A1 (en) * 2014-10-13 2016-04-14 Hyundai Motor Company Power transmission apparatus for hybrid electric vehicle
US20180231066A1 (en) * 2015-08-20 2018-08-16 Schaeffler Technologies AG & Co. KG Clutch device for a hybrid drive
US11273699B2 (en) * 2016-09-28 2022-03-15 Byd Company Limited Power-driven system for vehicle and vehicle
US11365785B2 (en) * 2016-11-30 2022-06-21 Dana Heavy Vehicle Systems Group, Llc Electric axle transmission for electric and hybrid electric vehicles

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108928B1 (en) * 2014-09-18 2020-05-12 현대자동차(주) Hybrid transmission for vehicle
KR101637281B1 (en) * 2014-09-23 2016-07-07 현대자동차 주식회사 Power transmission apparatus for hybrid electric vehicle
KR101637279B1 (en) 2014-09-23 2016-07-21 현대자동차 주식회사 Power transmission apparatus for hybrid electric vehicle
KR20160035759A (en) * 2014-09-24 2016-04-01 현대자동차주식회사 Power transmission apparatus for vehicle
KR101601176B1 (en) * 2014-09-26 2016-03-08 현대자동차주식회사 Power transmission apparatus for hybrid electric vehicle
WO2016112655A1 (en) * 2015-01-16 2016-07-21 Byd Company Limited Power transmission system and vehicle comprising the same
US9889733B2 (en) * 2015-01-16 2018-02-13 Byd Company Limited Power transmission system and vehicle comprising the same
CN105172588A (en) * 2015-08-24 2015-12-23 王亚 Power coupling module based on dual-clutch transmission of parallel type hybrid power system
KR101694071B1 (en) * 2015-10-30 2017-01-09 현대자동차주식회사 Control method of dual clutch transmission for vehicle and control system for the same
CN106347096A (en) * 2016-09-12 2017-01-25 四川大学 Automotive three-clutch hybrid power transmission system
CN113348101B (en) * 2019-03-01 2023-08-01 舍弗勒技术股份两合公司 Hybrid power system
CN113147354B (en) * 2021-05-07 2023-05-12 一汽解放汽车有限公司 Hybrid power system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269895B1 (en) * 1997-10-08 2001-08-07 Aisin Aw Co., Ltd. Hybrid drive system
US20020033059A1 (en) * 2000-07-18 2002-03-21 Thomas Pels Gearbox
US20020088291A1 (en) * 2001-01-10 2002-07-11 Bowen Thomas C. Twin clutch automated transmission with integrated transfer case
US6702709B2 (en) * 2001-04-09 2004-03-09 New Venture Gear, Inc. Drivetrain for hybrid motor vehicle
US6941830B2 (en) * 2000-03-10 2005-09-13 Hitachi, Ltd. Automatic transmission, dynamo-electric machine, and car
US7082850B2 (en) * 2003-12-30 2006-08-01 Eaton Corporation Hybrid powertrain system
US7108626B2 (en) * 2001-09-26 2006-09-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drive assembly
US20110184599A1 (en) * 2009-07-21 2011-07-28 Ferrari S.P.A. Transmission for a road vehicle with hybrid propulsion
US8123656B2 (en) * 2008-10-06 2012-02-28 GM Global Technology Operations LLC Hybrid transmission with disconnect clutch and method of starting an engine using same
US8608615B2 (en) * 2010-02-15 2013-12-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive system, in particular for a motor vehicle
US8622862B2 (en) * 2009-03-24 2014-01-07 Honda Motor Co., Ltd. Power transmitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634589B1 (en) * 2003-12-24 2006-10-13 현대자동차주식회사 A double clutch transmission for hybrid electric vehicle and operating method by mode thereof
JP4093370B2 (en) * 2004-05-20 2008-06-04 日野自動車株式会社 Hybrid vehicle with dual clutch transmission
KR101063616B1 (en) 2008-12-05 2011-09-07 현대자동차주식회사 Double Clutch Transmission Powertrain
JP4607222B2 (en) * 2009-01-27 2011-01-05 本田技研工業株式会社 Hybrid vehicle
JP2012001094A (en) * 2010-06-16 2012-01-05 Honda Motor Co Ltd Transmission of hybrid vehicle
KR20120126219A (en) 2011-05-11 2012-11-21 윤인수 Custodian Stay Type Fixed Deep Sea Cage

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269895B1 (en) * 1997-10-08 2001-08-07 Aisin Aw Co., Ltd. Hybrid drive system
US6941830B2 (en) * 2000-03-10 2005-09-13 Hitachi, Ltd. Automatic transmission, dynamo-electric machine, and car
US20020033059A1 (en) * 2000-07-18 2002-03-21 Thomas Pels Gearbox
US6634247B2 (en) * 2000-07-18 2003-10-21 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Double-clutch transmission
US20020088291A1 (en) * 2001-01-10 2002-07-11 Bowen Thomas C. Twin clutch automated transmission with integrated transfer case
US6702709B2 (en) * 2001-04-09 2004-03-09 New Venture Gear, Inc. Drivetrain for hybrid motor vehicle
US7108626B2 (en) * 2001-09-26 2006-09-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drive assembly
US7082850B2 (en) * 2003-12-30 2006-08-01 Eaton Corporation Hybrid powertrain system
US8123656B2 (en) * 2008-10-06 2012-02-28 GM Global Technology Operations LLC Hybrid transmission with disconnect clutch and method of starting an engine using same
US8622862B2 (en) * 2009-03-24 2014-01-07 Honda Motor Co., Ltd. Power transmitting device
US20110184599A1 (en) * 2009-07-21 2011-07-28 Ferrari S.P.A. Transmission for a road vehicle with hybrid propulsion
US8297141B2 (en) * 2009-07-21 2012-10-30 Ferrari S.P.A. Transmission for a road vehicle with hybrid propulsion
US8608615B2 (en) * 2010-02-15 2013-12-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive system, in particular for a motor vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091056A1 (en) * 2014-09-29 2016-03-31 Hyundai Motor Company Hybrid transmission for vehicle
US9677667B2 (en) * 2014-09-29 2017-06-13 Hyundai Motor Company Hybrid transmission for vehicle
US20160102742A1 (en) * 2014-10-13 2016-04-14 Hyundai Motor Company Power transmission apparatus for hybrid electric vehicle
US9682614B2 (en) * 2014-10-13 2017-06-20 Hyundai Motor Company Power transmission apparatus for hybrid electric vehicle
US20180231066A1 (en) * 2015-08-20 2018-08-16 Schaeffler Technologies AG & Co. KG Clutch device for a hybrid drive
US10851847B2 (en) * 2015-08-20 2020-12-01 Schaeffler Technologies AG & Co. KG Clutch device for a hybrid drive
US11273699B2 (en) * 2016-09-28 2022-03-15 Byd Company Limited Power-driven system for vehicle and vehicle
US11365785B2 (en) * 2016-11-30 2022-06-21 Dana Heavy Vehicle Systems Group, Llc Electric axle transmission for electric and hybrid electric vehicles

Also Published As

Publication number Publication date
KR20140059917A (en) 2014-05-19
JP2014094735A (en) 2014-05-22
DE102013111028A1 (en) 2014-05-08
CN103807368A (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US20140123806A1 (en) Double clutch powertrain for vehicle
CN104747661B (en) Power transmission device for vehicle
US9744840B2 (en) Power transmission apparatus for vehicle
US8661941B2 (en) Hybrid drive system
US8590425B2 (en) Hybrid propulsion system for a motor vehicle
US9586470B2 (en) Powertrain for hybrid vehicle
US9346462B2 (en) Powertrain for hybrid vehicle
US7249537B2 (en) Double clutch transmission for a hybrid electric vehicle and method for operating the same
KR101481304B1 (en) Hybrid powertrain used double clutch transmission
US20130345019A1 (en) Hybrid drive of a motor vehicle and method for controlling a hybrid drive
US20150167803A1 (en) Power transmission apparatus for hybrid electric vehicle
US9623744B2 (en) Power transmission apparatus for vehicle
US20150184731A1 (en) Power transmission apparatus for vehicle
KR101744837B1 (en) Power transmission system of hybrid electric vehicle
EP3476637A1 (en) Power drive system and vehicle
KR101807153B1 (en) Power transmission system of hybrid electric vehicle
US8955412B2 (en) Hybrid drivetrain
US9682700B2 (en) Hybrid system control device
US20190168599A1 (en) Multi-stage dual clutch transmission for hybrid vehicle
JP2013169831A (en) Hybrid vehicle
US20190225074A1 (en) Power drive system and vehicle
US20140011634A1 (en) Automated manual transmission for vehicle
WO2015034025A1 (en) Hybrid vehicle drive device
JP6118078B2 (en) Vehicle transmission
US20220126676A1 (en) Hybrid Transmission Device and Motor Vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SEUNG HO;KIM, JONG MIN;CHO, HYUNG WOOK;AND OTHERS;SIGNING DATES FROM 20130322 TO 20130830;REEL/FRAME:031202/0230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION