US20140092525A1 - Dielectric composition and multilater ceramic electronic component manufactured using the same - Google Patents

Dielectric composition and multilater ceramic electronic component manufactured using the same Download PDF

Info

Publication number
US20140092525A1
US20140092525A1 US13/842,764 US201313842764A US2014092525A1 US 20140092525 A1 US20140092525 A1 US 20140092525A1 US 201313842764 A US201313842764 A US 201313842764A US 2014092525 A1 US2014092525 A1 US 2014092525A1
Authority
US
United States
Prior art keywords
dielectric
grain
rare earth
earth elements
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/842,764
Other versions
US9382162B2 (en
Inventor
Sung Hyung Kang
Doo Young Kim
Chang Hak Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment SAMSUNG ELECTRO-MECHANICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, CHANG HAK, KANG, SUNG HYUNG, KIM, DOO YOUNG
Publication of US20140092525A1 publication Critical patent/US20140092525A1/en
Priority to US14/572,368 priority Critical patent/US20150098166A1/en
Application granted granted Critical
Publication of US9382162B2 publication Critical patent/US9382162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Definitions

  • the present invention relates to a dielectric composition having excellent dielectric properties and electrical properties and a multilayer ceramic electronic component manufactured using the same.
  • a perovskite powder, a ferroelectric ceramic material has been used as a raw material of electronic components, such as a multilayer ceramic capacitor (MLCC), a ceramic filter, a piezoelectric element, a ferroelectric memory, a thermistor, a varistor, and the like.
  • MLCC multilayer ceramic capacitor
  • a ceramic filter a ceramic filter
  • piezoelectric element a ferroelectric memory
  • a thermistor a varistor
  • Barium titanate (BaTiO 3 ) is a high dielectric material having a perovskite structure, and has been used as a dielectric material for a multilayer ceramic capacitor.
  • the barium titanate powder is required to be finely-granulated.
  • An aspect of the present invention provides a dielectric composition having excellent dielectric properties and electrical properties and a multilayer ceramic electronic component manufactured using the same.
  • a dielectric composition including: a dielectric grain having a perovskite structure represented by ABO 3 , wherein, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.05 to 2.0 times a content of rare earth elements in the center of the dielectric grain.
  • the A may include one or more selected from a group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca).
  • the B may include one or more selected from a group consisting of titanium (Ti) and zirconium (Zr).
  • the rare earth elements may include a trivalent ion.
  • the rare earth elements may include one or more selected from a group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru).
  • Sc scandium
  • Y yttrium
  • La actinium
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Pm promethium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho hol
  • the dielectric grain may include one or more selected from a group consisting of Ba m TiO 3 (0.995 ⁇ m ⁇ 1.010), (Ba 1-x Ca x ) m (Ti 1-y Zr y )O 3 (0.995 ⁇ m ⁇ 1.010, 0 ⁇ x ⁇ 0.10, 0 ⁇ y ⁇ 0.20), and Ba m (Ti 1-x Zr x )O 3 (0.995 ⁇ m ⁇ 1.010, x ⁇ 0.10); and Ba m TiO 3 (0.995 ⁇ m ⁇ 1.010), (Ba 1-x Ca x ) m (Ti 1-y Zr y )O 3 (0.995 ⁇ m ⁇ 1.010, 0 ⁇ x ⁇ 0.10, 0 ⁇ y ⁇ 0.20), and Ba m (Ti 1-x Zr x )O 3 (0.995 ⁇ m ⁇ 1.010, x ⁇ 0.10), in which one or more rare earth elements are partially dissolved.
  • a multilayer ceramic electronic component including: a ceramic body including dielectric layers each having an average thickness of 0.48 ⁇ m or less; and internal electrodes disposed to face each other with the dielectric layer therebetween within the ceramic body, wherein the dielectric layer includes a dielectric composition, the dielectric composition including a dielectric grain having a perovskite structure represented by ABO 3 , in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain is 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.05 to 2.0 times a content of rare earth elements in the center of the dielectric grain.
  • the A may include one or more selected from a group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca).
  • the B may include one or more selected from a group consisting of titanium (Ti) and zirconium (Zr).
  • the rare earth elements may include a trivalent ion.
  • the rare earth elements may include one or more selected from a group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru).
  • Sc scandium
  • Y yttrium
  • La actinium
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Pm promethium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho hol
  • the dielectric layer may have a dielectric constant of 4000 or greater.
  • FIG. 1 is a schematic view showing a core-shell structure of a dielectric grain according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of area S of FIG. 1 ;
  • FIG. 3 is a perspective view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line B-B′ of FIG. 3 .
  • FIG. 1 is a schematic view showing a core-shell structure of a dielectric grain, according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of area S of FIG. 1 .
  • a dielectric composition according to an embodiment of the present invention may include a dielectric grain 10 having a perovskite structure represented by ABO 3 .
  • ABO 3 a dielectric grain 10 having a perovskite structure represented by ABO 3 .
  • the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • the dielectric composition may include the dielectric grain 10 having a perovskite structure represented by ABO 3 .
  • the A may include one or more selected from the group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca), but is not limited thereto.
  • any material that can be situated in site B in the perovskite structure may be used, but is not particularly limited thereto, and examples thereof may include one or more selected from the group consisting of titanium (Ti) and zirconium (Zr).
  • the dielectric grain may include one or more selected from a group consisting of Ba m TiO 3 (0.995 ⁇ m ⁇ 1.010), (Ba 1-x Ca x ) m (Ti 1-y Zr y )O 3 (0.995 ⁇ m ⁇ 1.010, 0 ⁇ x ⁇ 0.10, 0 ⁇ y ⁇ 0.20), and Ba m (Ti 1-x Zr x )O 3 (0.995 ⁇ m ⁇ 1.010, x ⁇ 0.10); and Ba m TiO 3 (0.995 ⁇ m ⁇ 1.010), (Ba 1-x Ca x ) m (Ti 1-y Zr y )O 3 (0.995 ⁇ m ⁇ 1.010, 0 ⁇ x ⁇ 0.10, 0 ⁇ y ⁇ 0.20), and Ba m (Ti 1-x Zr x )O 3 (0.995 ⁇ m ⁇ 1.010, x ⁇ 0.10), in which one or more rare earth elements are partially dissolved, but is not limited thereto.
  • the dielectric grain included in the dielectric composition is finely-granulated and a dielectric layer of a multilayer ceramic electronic component manufactured using the dielectric grain has a reduced thickness, short circuit defects, reliability defects, and the like, may occur.
  • a dielectric grain having rare earth elements completely dissolved therein and a perovskite structure oxide as a base material may be preferably used.
  • the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of the B-site ion.
  • the dielectric grain 10 may include a core 1 and a shell 2 and have a core-shell structure.
  • the content of rare earth elements may be a content thereof in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C of the dielectric grain 10 when an imaginary line is drawn in the direction from the center C of the dielectric grain 10 to the grain boundary b thereof.
  • FIG. 1 shows a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C of the dielectric grain 10 when an imaginary line is drawn in the direction from the center C of the dielectric grain 10 to the grain boundary b thereof.
  • the imaginary line drawn in the direction from the center C of the dielectric grain 10 to the grain boundary b thereof is not particularly limited thereto, and for example, the imaginary line may be drawn from the center C of the dielectric grain 10 to the grain boundary b thereof in which the shell is thickest.
  • the content of rare earth elements By controlling the content of rare earth elements to satisfy 0.5 to 2.5 at %, based on 100 at % of the B-site ion, short circuit defects, reliability defects, and the like, of the multilayer ceramic electronic component manufactured by using the dielectric composition including the dielectric grain can be solved.
  • the dielectric grain 10 has a core-shell structure the same as a core-shell structure of a dielectric grain according to the related art, which may be ineffective in improvements in reliability.
  • the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.05 to 2.0 times the content of rare earth elements in the center C of the dielectric grain 10 .
  • the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof is controlled to be 0.05 to 2.0 times the content of rare earth elements in the center C of the dielectric grain 10 , whereby the multilayer ceramic electronic component manufactured using the dielectric grain 10 may secure a high dielectric constant and improved reliability.
  • the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof is less than 0.05 times the content of rare earth elements in the center C of the dielectric grain 10 , improvements in reliability may not be obtained.
  • the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof is more than 2.0 times the content of rare earth elements in the center C of the dielectric grain 10 , a desired high dielectric constant may not be obtained.
  • the content of rare earth elements in the center C of the dielectric grain is not particularly limited, and may be for example 0.05 to 2.0 at %, based on 100 at % of the B-site ion.
  • the rare earth elements may include a trivalent ion, but is not limited thereto.
  • the rare earth elements may not be particularly limited, and may include one or more selected from the group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru), for example.
  • Sc scandium
  • Y yttrium
  • La actinium
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Pm promethium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy
  • the dielectric grain of the dielectric composition according to the embodiment of the present invention may be produced by the following method.
  • the perovskite powder is powder having a structure of ABO 3 .
  • a metal oxide is an element source corresponding to site B and a metal salt is an element source corresponding to site A.
  • a perovskite particle nucleus may be formed by mixing the metal salt and the metal oxide.
  • the metal oxide may be one or more selected from the group consisting of titanium (Ti) and zirconium (Zr).
  • Titania and zirconia are very easily hydrolysable, and thus, if they are mixed with pure water without additional additive, hydrous titanium or hydrous zirconium may be precipitated in a gel form.
  • the hydrous metal oxide may be washed to remove impurities therefrom.
  • the hydrous metal oxide is filtered by pressure, to remove a residual solution, and then filtered while being washed with pure water, to remove impurities present on a particle surface.
  • pure water and acid or a base may be added to the hydrous metal oxide.
  • the pure water may be put into hydrous metal oxide powder obtained after filtering, and then the mixture was stirred by a high-viscosity stirrer at a temperature of 0° C. to 60° C. for 0.1 to 72 hours, thereby preparing a hydrous metal oxide slurry.
  • Acid or a base may be added to the prepared slurry.
  • the acid or base may be used as a peptizing agent, and may be added in 0.00001 to 0.2 moles, based on the content of hydrous metal oxide.
  • the acid is not particularly limited as long as it is commonly used, and examples thereof may include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, polycarboxylic acid, and the like, which may be used alone or in combination of at least two thereof.
  • the base is not particularly limited as long as it is commonly used, and examples thereof may include tetramethyl ammonium hydroxide, tetra ethyl ammonium hydroxide, and the like, which may be used alone or in combination of at least two thereof.
  • the metal salt may be barium hydroxide or a combination of a rare earth salt and barium hydroxide.
  • the rare earth salt may be scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), ruthenium (Ru) or the like, but are not limited thereto.
  • the forming of the perovskite particle nucleus may performed at 60° C. to 150° C.
  • the perovskite particle nucleus is input into a hydrothermal reactor and subjected to hydrothermal treatment, such that the perovskite particle nucleus may be grown in the hydrothermal reactor.
  • an aqueous metal salt solution is inputted into the hydrothermal reactor by using a high-pressure pump, to prepare a mixture liquid.
  • the mixture liquid is heated to obtain a dielectric grain having a perovskite structure represented by ABO 3 .
  • the aqueous metal salt solution is not particularly limited, and may be, for example, one or more selected from the group consisting of nitrate and acetate.
  • FIG. 3 is a perspective view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line B-B′ of FIG. 3 .
  • a multilayer ceramic electronic component may include: a ceramic body 110 including dielectric layers 11 each having an average thickness of 0.48 ⁇ m or less; and internal electrodes 21 and 22 disposed to face each other with the dielectric layer 11 therebetween within the ceramic body 110 .
  • the dielectric layer 11 may include the dielectric composition, the dielectric composition including the dielectric grain 10 having a perovskite structure represented by ABO 3 , in which when an imaginary line is drawn in a direction from the center C of the dielectric grain 10 to the grain boundary b thereof, the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of the B-site ion.
  • the multilayer ceramic electronic component according to the embodiment of the present invention particularly, the multilayer ceramic capacitor, will be described, but the present invention is not limited thereto.
  • “length direction”, “width direction”, and “thickness direction” will be defined as the ‘L’ direction, the ‘W’ direction, and the ‘T’ direction, of FIG. 3 .
  • the ‘thickness direction’ may be used to have the same concept as a direction in which dielectric layers are laminated, that is, a ‘lamination direction’.
  • a raw material for forming the dielectric layer 11 is not particularly limited as long as sufficient capacitance can be obtained thereby.
  • the raw material may be a barium titanate (BaTiO 3 ) powder.
  • the multilayer ceramic capacitor manufactured by using the barium titanate (BaTiO 3 ) powder has a high room-temperature dielectric constant and excellent insulation resistance and withstand voltage characteristics, and thus, reliability thereof can be improved.
  • the multilayer ceramic capacitor according to the embodiment of the present invention may include the dielectric grain in which when an imaginary line is drawn in a direction from the center C of the dielectric grain to the grain boundary b thereof, the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of the B-site ion, such that the multilayer ceramic capacitor has a high room-temperature dielectric constant and excellent insulation resistance and withstand voltage characteristics, and thus, reliability thereof can be improved.
  • various ceramic additives, organic solvents, plasticizers, binders, dispersants, or the like may be added to powder, such as the barium titanate (BaTiO 3 ) powder, depending on the objects of the present invention.
  • the average thickness of the dielectric layer 11 may be, but is not particularly limited to, for example, 0.48 ⁇ m or less.
  • the dielectric composition according to the embodiment of the present invention has better effects when the average thickness of the dielectric layer 11 is 0.48 ⁇ m or less. That is, the multilayer ceramic capacitor manufactured by using the dielectric composition has excellent reliability when the average thickness of the dielectric layer is 0.48 ⁇ m or less.
  • the dielectric constant of the dielectric layer 11 may be, but is not particularly limited to, for example, 4000 or greater.
  • a material for forming the first and second internal electrodes 21 and 22 is not particularly limited.
  • they may be formed by using a conductive paste made of one or more of silver (Ag), lead (Pb), platinum (Pt), nickel (Ni) and copper (Cu).
  • the multilayer ceramic capacitor according to the embodiment of the present invention may further include a first external electrode 31 electrically connected to the first internal electrode 21 and a second external electrode 32 electrically connected to the second internal electrode 22 .
  • the first and second external electrodes 31 and 32 may be electrically connected to the respective first and second internal electrodes 21 and 22 so as to form capacitance, and the second external electrode 32 may be connected to a potential different from that of the first external electrode 31 .
  • a material for forming the first and second external electrodes 31 and 32 is not particularly limited as long as the first and second external electrodes 31 and 32 can be electrically connected to the first and second internal electrodes 21 and 22 so as to form capacitance, and may include one or more selected from the group consisting of copper (Cu), nickel (Ni), silver (Ag), and silver-palladium (Ag—Pd).
  • Examples of the present invention were manufactured by using a dielectric composition including a dielectric grain having a perovskite structure represented by ABO 3 , in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center thereof may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • Comparative Examples were manufactured by preparing a dielectric composition including a dielectric grain having the same composition as that of the examples of the present invention, except that numeral ranges were outside of the foregoing numeral ranges of the present invention.
  • Table 1 shows results in which capacitance and dielectric loss were compared according to the content of rare earth elements in a different position of the dielectric grain.
  • the capacitance and the dielectric loss were measured at 1 kHz and 0.5V by using an LCR meter, after the dielectric composition was heated and then one hour had elapsed. Reliability evaluation was performed by counting the number of defective samples among 40 samples under the conditions of 130° C., 8V, and 4 hours.
  • Capacitances of the samples were measured, and the samples were determined to be good or bad, based on 2.68 as a minimum capacitance.
  • each of Samples 1, 3 to 7, 9, 10, 12 to 14, and 16 was a multilayer ceramic capacitor manufactured by using the dielectric grain satisfying the numeral range of the present invention, and capacitance thereof was high and reliability thereof was excellent.
  • the multilayer ceramic capacitor according to the embodiment of the present invention was manufactured by using a dielectric composition including a dielectric grain having a perovskite structure represented by ABO 3 , in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center thereof has a content of 0.5 to 2.5 at %, based on 100 at % of a B-site ion, and thus had a high room-temperature dielectric constant, high capacitance and excellent reliability.
  • ABO 3 a dielectric composition including a dielectric grain having a perovskite structure represented by ABO 3 , in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center thereof has a content of 0.5 to 2.5 at %, based on 100 at
  • the multilayer ceramic electronic component manufactured using the dielectric composition can have excellent reliability and secure a high dielectric constant.

Abstract

There are provided a dielectric composition and a multilayer ceramic electronic component manufactured using the same, the dielectric composition including a dielectric grain having a perovskite structure represented by ABO3, wherein, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion, so that the multilayer ceramic electronic component manufactured using the dielectric composition can have excellent reliability and secure a high dielectric constant.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority of Korean Patent Application No. 10-2012-0108744 filed on Sep. 28, 2012, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a dielectric composition having excellent dielectric properties and electrical properties and a multilayer ceramic electronic component manufactured using the same.
  • 2. Description of the Related Art
  • A perovskite powder, a ferroelectric ceramic material, has been used as a raw material of electronic components, such as a multilayer ceramic capacitor (MLCC), a ceramic filter, a piezoelectric element, a ferroelectric memory, a thermistor, a varistor, and the like.
  • Barium titanate (BaTiO3) is a high dielectric material having a perovskite structure, and has been used as a dielectric material for a multilayer ceramic capacitor.
  • Today, with the trend for slimness, compactness, high capacitance, high reliability, and the like, in electronic components, a ferroelectric particle is required to have a small size as well as an excellent dielectric constant and reliability.
  • If the particle diameter of a barium titanate powder, a main component of a dielectric layer, is large, surface roughness of the dielectric layer may be increased, and thus, a short circuit ratio may be increased and insulation resistance may be defective.
  • For this reason, as a main component of the dielectric layer, the barium titanate powder is required to be finely-granulated.
  • However, as a barium titanate powder is finely granulated and the dielectric layer of a multilayer ceramic electronic component is thinner, a reduction in capacitance, short circuit defects, reliability defects, and the like, may occur.
  • For this reason, the development of multilayer ceramic electronic components securing a dielectric constant in a dielectric layer and having excellent reliability is still in demand.
  • RELATED ART DOCUMENT
    • (Patent Document 1) Japanese Patent Laid-Open Publication No. 2008-239407
    SUMMARY OF THE INVENTION
  • An aspect of the present invention provides a dielectric composition having excellent dielectric properties and electrical properties and a multilayer ceramic electronic component manufactured using the same.
  • According to an aspect of the present invention, there is provided a dielectric composition including: a dielectric grain having a perovskite structure represented by ABO3, wherein, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • The content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.05 to 2.0 times a content of rare earth elements in the center of the dielectric grain.
  • Here, the A may include one or more selected from a group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca).
  • Here, the B may include one or more selected from a group consisting of titanium (Ti) and zirconium (Zr).
  • The rare earth elements may include a trivalent ion.
  • The rare earth elements may include one or more selected from a group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru).
  • The dielectric grain may include one or more selected from a group consisting of BamTiO3(0.995≦m≦1.010), (Ba1-xCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10); and BamTiO3(0.995≦m≦1.010), (Ba1-xCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10), in which one or more rare earth elements are partially dissolved.
  • According to another aspect of the present invention, there is provided a multilayer ceramic electronic component, including: a ceramic body including dielectric layers each having an average thickness of 0.48 μm or less; and internal electrodes disposed to face each other with the dielectric layer therebetween within the ceramic body, wherein the dielectric layer includes a dielectric composition, the dielectric composition including a dielectric grain having a perovskite structure represented by ABO3, in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain is 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • The content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain may be 0.05 to 2.0 times a content of rare earth elements in the center of the dielectric grain.
  • Here, the A may include one or more selected from a group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca).
  • Here, the B may include one or more selected from a group consisting of titanium (Ti) and zirconium (Zr).
  • The rare earth elements may include a trivalent ion.
  • The rare earth elements may include one or more selected from a group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru).
  • The dielectric layer may have a dielectric constant of 4000 or greater.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a schematic view showing a core-shell structure of a dielectric grain according to an embodiment of the present invention;
  • FIG. 2 is an enlarged view of area S of FIG. 1;
  • FIG. 3 is a perspective view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention; and
  • FIG. 4 is a cross-sectional view taken along line B-B′ of FIG. 3.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the shapes and dimensions of elements may be exaggerated for clarity, and the same reference numerals will be used throughout to designate the same or like elements.
  • FIG. 1 is a schematic view showing a core-shell structure of a dielectric grain, according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of area S of FIG. 1.
  • Referring to FIGS. 1 and 2, a dielectric composition according to an embodiment of the present invention may include a dielectric grain 10 having a perovskite structure represented by ABO3. Here, when an imaginary line is drawn in a direction from a center C of the dielectric grain 10 to a grain boundary b thereof, the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • Hereinafter, the dielectric composition according to the embodiment of the present invention will be described in detail.
  • According to the embodiment of the present invention, the dielectric composition may include the dielectric grain 10 having a perovskite structure represented by ABO3.
  • In addition, the A may include one or more selected from the group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca), but is not limited thereto.
  • As the B, any material that can be situated in site B in the perovskite structure may be used, but is not particularly limited thereto, and examples thereof may include one or more selected from the group consisting of titanium (Ti) and zirconium (Zr).
  • The dielectric grain may include one or more selected from a group consisting of BamTiO3(0.995≦m≦1.010), (Ba1-xCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10); and BamTiO3(0.995≦m≦1.010), (Ba1-xCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10), in which one or more rare earth elements are partially dissolved, but is not limited thereto.
  • Generally, as the dielectric grain included in the dielectric composition is finely-granulated and a dielectric layer of a multilayer ceramic electronic component manufactured using the dielectric grain has a reduced thickness, short circuit defects, reliability defects, and the like, may occur.
  • Moreover, it is difficult to perform dispersion at the time of preparing slurry using a fine-granulated dielectric powder, which may cause reliability degradation in the multilayer ceramic electronic component manufactured by using the dielectric composition.
  • In order to overcome deterioration in reliability, a dielectric grain having rare earth elements completely dissolved therein and a perovskite structure oxide as a base material may be preferably used.
  • That is, in order to solve short circuit defects, reliability defects, and the like, due to the dielectric layer of the multilayer ceramic electronic component having a reduced thickness, it is necessary to control the content of rare earth elements in the dielectric grain having a perovskite structure.
  • According to the embodiment of the present invention, when an imaginary line is drawn in a direction from the center C of the dielectric grain 10 to the grain boundary b thereof, the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of the B-site ion.
  • The dielectric grain 10 may include a core 1 and a shell 2 and have a core-shell structure.
  • The content of rare earth elements may be a content thereof in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C of the dielectric grain 10 when an imaginary line is drawn in the direction from the center C of the dielectric grain 10 to the grain boundary b thereof.
  • FIG. 1 shows a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C of the dielectric grain 10 when an imaginary line is drawn in the direction from the center C of the dielectric grain 10 to the grain boundary b thereof.
  • The imaginary line drawn in the direction from the center C of the dielectric grain 10 to the grain boundary b thereof is not particularly limited thereto, and for example, the imaginary line may be drawn from the center C of the dielectric grain 10 to the grain boundary b thereof in which the shell is thickest.
  • By controlling the content of rare earth elements to satisfy 0.5 to 2.5 at %, based on 100 at % of the B-site ion, short circuit defects, reliability defects, and the like, of the multilayer ceramic electronic component manufactured by using the dielectric composition including the dielectric grain can be solved.
  • If the content of rare earth elements is below 0.5 at %, based on 100 at % of the B-site ion, the dielectric grain 10 has a core-shell structure the same as a core-shell structure of a dielectric grain according to the related art, which may be ineffective in improvements in reliability.
  • Meanwhile, if the content of rare earth elements is above 2.5 at %, based on 100 at % of the B-site ion, a desired high dielectric constant may not be obtained.
  • According to the embodiment of the present invention, the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.05 to 2.0 times the content of rare earth elements in the center C of the dielectric grain 10.
  • The content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof is controlled to be 0.05 to 2.0 times the content of rare earth elements in the center C of the dielectric grain 10, whereby the multilayer ceramic electronic component manufactured using the dielectric grain 10 may secure a high dielectric constant and improved reliability.
  • If the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof is less than 0.05 times the content of rare earth elements in the center C of the dielectric grain 10, improvements in reliability may not be obtained.
  • If the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof is more than 2.0 times the content of rare earth elements in the center C of the dielectric grain 10, a desired high dielectric constant may not be obtained.
  • The content of rare earth elements in the center C of the dielectric grain is not particularly limited, and may be for example 0.05 to 2.0 at %, based on 100 at % of the B-site ion.
  • The rare earth elements may include a trivalent ion, but is not limited thereto.
  • The rare earth elements may not be particularly limited, and may include one or more selected from the group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru), for example.
  • The dielectric grain of the dielectric composition according to the embodiment of the present invention may be produced by the following method.
  • The perovskite powder is powder having a structure of ABO3. In the embodiment of the present invention, a metal oxide is an element source corresponding to site B and a metal salt is an element source corresponding to site A.
  • First, a perovskite particle nucleus may be formed by mixing the metal salt and the metal oxide.
  • The metal oxide may be one or more selected from the group consisting of titanium (Ti) and zirconium (Zr).
  • Titania and zirconia are very easily hydrolysable, and thus, if they are mixed with pure water without additional additive, hydrous titanium or hydrous zirconium may be precipitated in a gel form.
  • The hydrous metal oxide may be washed to remove impurities therefrom.
  • More specifically, the hydrous metal oxide is filtered by pressure, to remove a residual solution, and then filtered while being washed with pure water, to remove impurities present on a particle surface.
  • Next, pure water and acid or a base may be added to the hydrous metal oxide.
  • The pure water may be put into hydrous metal oxide powder obtained after filtering, and then the mixture was stirred by a high-viscosity stirrer at a temperature of 0° C. to 60° C. for 0.1 to 72 hours, thereby preparing a hydrous metal oxide slurry.
  • Acid or a base may be added to the prepared slurry. Here, the acid or base may be used as a peptizing agent, and may be added in 0.00001 to 0.2 moles, based on the content of hydrous metal oxide.
  • The acid is not particularly limited as long as it is commonly used, and examples thereof may include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, polycarboxylic acid, and the like, which may be used alone or in combination of at least two thereof.
  • The base is not particularly limited as long as it is commonly used, and examples thereof may include tetramethyl ammonium hydroxide, tetra ethyl ammonium hydroxide, and the like, which may be used alone or in combination of at least two thereof.
  • The metal salt may be barium hydroxide or a combination of a rare earth salt and barium hydroxide.
  • The rare earth salt may be scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), ruthenium (Ru) or the like, but are not limited thereto.
  • The forming of the perovskite particle nucleus may performed at 60° C. to 150° C.
  • Next, the perovskite particle nucleus is input into a hydrothermal reactor and subjected to hydrothermal treatment, such that the perovskite particle nucleus may be grown in the hydrothermal reactor.
  • Next, an aqueous metal salt solution is inputted into the hydrothermal reactor by using a high-pressure pump, to prepare a mixture liquid. The mixture liquid is heated to obtain a dielectric grain having a perovskite structure represented by ABO3.
  • The aqueous metal salt solution is not particularly limited, and may be, for example, one or more selected from the group consisting of nitrate and acetate.
  • FIG. 3 is a perspective view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line B-B′ of FIG. 3.
  • Referring to FIGS. 3 and 4, a multilayer ceramic electronic component according to an embodiment of the present invention may include: a ceramic body 110 including dielectric layers 11 each having an average thickness of 0.48 μm or less; and internal electrodes 21 and 22 disposed to face each other with the dielectric layer 11 therebetween within the ceramic body 110. Here, the dielectric layer 11 may include the dielectric composition, the dielectric composition including the dielectric grain 10 having a perovskite structure represented by ABO3, in which when an imaginary line is drawn in a direction from the center C of the dielectric grain 10 to the grain boundary b thereof, the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain 10 from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of the B-site ion.
  • Hereinafter, the multilayer ceramic electronic component according to the embodiment of the present invention, particularly, the multilayer ceramic capacitor, will be described, but the present invention is not limited thereto.
  • In the multilayer ceramic capacitor according to the embodiment of the present invention, “length direction”, “width direction”, and “thickness direction” will be defined as the ‘L’ direction, the ‘W’ direction, and the ‘T’ direction, of FIG. 3. Here, the ‘thickness direction’ may be used to have the same concept as a direction in which dielectric layers are laminated, that is, a ‘lamination direction’.
  • According to the embodiment of the present invention, a raw material for forming the dielectric layer 11 is not particularly limited as long as sufficient capacitance can be obtained thereby. For example, the raw material may be a barium titanate (BaTiO3) powder.
  • The multilayer ceramic capacitor manufactured by using the barium titanate (BaTiO3) powder has a high room-temperature dielectric constant and excellent insulation resistance and withstand voltage characteristics, and thus, reliability thereof can be improved.
  • The multilayer ceramic capacitor according to the embodiment of the present invention may include the dielectric grain in which when an imaginary line is drawn in a direction from the center C of the dielectric grain to the grain boundary b thereof, the content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center C thereof may be 0.5 to 2.5 at %, based on 100 at % of the B-site ion, such that the multilayer ceramic capacitor has a high room-temperature dielectric constant and excellent insulation resistance and withstand voltage characteristics, and thus, reliability thereof can be improved.
  • As a material for forming the dielectric layer 11, various ceramic additives, organic solvents, plasticizers, binders, dispersants, or the like may be added to powder, such as the barium titanate (BaTiO3) powder, depending on the objects of the present invention.
  • The average thickness of the dielectric layer 11 may be, but is not particularly limited to, for example, 0.48 μm or less.
  • The dielectric composition according to the embodiment of the present invention has better effects when the average thickness of the dielectric layer 11 is 0.48 μm or less. That is, the multilayer ceramic capacitor manufactured by using the dielectric composition has excellent reliability when the average thickness of the dielectric layer is 0.48 μm or less.
  • The dielectric constant of the dielectric layer 11 may be, but is not particularly limited to, for example, 4000 or greater.
  • The other features of the present embodiment overlap the features of the dielectric grain according to the aforementioned embodiment of the present invention, and thus, descriptions thereof will be omitted.
  • A material for forming the first and second internal electrodes 21 and 22 is not particularly limited. For example, they may be formed by using a conductive paste made of one or more of silver (Ag), lead (Pb), platinum (Pt), nickel (Ni) and copper (Cu).
  • The multilayer ceramic capacitor according to the embodiment of the present invention may further include a first external electrode 31 electrically connected to the first internal electrode 21 and a second external electrode 32 electrically connected to the second internal electrode 22.
  • The first and second external electrodes 31 and 32 may be electrically connected to the respective first and second internal electrodes 21 and 22 so as to form capacitance, and the second external electrode 32 may be connected to a potential different from that of the first external electrode 31.
  • A material for forming the first and second external electrodes 31 and 32 is not particularly limited as long as the first and second external electrodes 31 and 32 can be electrically connected to the first and second internal electrodes 21 and 22 so as to form capacitance, and may include one or more selected from the group consisting of copper (Cu), nickel (Ni), silver (Ag), and silver-palladium (Ag—Pd).
  • Hereafter, the present invention will be described in detail with reference to examples, but is not limited thereto.
  • Examples of the present invention were manufactured by using a dielectric composition including a dielectric grain having a perovskite structure represented by ABO3, in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center thereof may be 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
  • Comparative Examples were manufactured by preparing a dielectric composition including a dielectric grain having the same composition as that of the examples of the present invention, except that numeral ranges were outside of the foregoing numeral ranges of the present invention.
  • Table 1 below shows results in which capacitance and dielectric loss were compared according to the content of rare earth elements in a different position of the dielectric grain.
  • The capacitance and the dielectric loss were measured at 1 kHz and 0.5V by using an LCR meter, after the dielectric composition was heated and then one hour had elapsed. Reliability evaluation was performed by counting the number of defective samples among 40 samples under the conditions of 130° C., 8V, and 4 hours.
  • Capacitances of the samples were measured, and the samples were determined to be good or bad, based on 2.68 as a minimum capacitance.
  • TABLE 1
    Content of Rare Earth Elements in
    Different Position Of Dielectric
    Grain
    Region
    Corresponding to
    0.75 to 0.95% Reliability
    Center of Grain from Center of Evaluation
    (c) Dielectric Grain (Number
    Rare Rare of Defective
    Earth Content Earth Content Capac- Products/
    Elements (at %) Elements (at %) itance 40 ea)
    1 Dy 0.05 Dy 1.2 3.10 19
     2* Dy 0.02 Dy, Y 0.4 3.33 34
    3 Dy 0.2 Dy 0.5 3.22 18
    4 Dy 0.4 Dy, Ho 2.5 2.76 10
    5 Dy 0.8 Dy, Y 2.3 2.78 7
    6 Dy 1.5 Dy, Y 2.0 2.70 5
    7 Dy 2.0 Dy 1.0 2.71 6
     8* Dy 2.5 Dy, Y 2.7 1.92 2
    9 Y 0.1 Dy, Y 0.5 3.00 18
    10  Y 1.0 Dy, Y 1.2 2.85 8
    11* Y 2.1 Dy, Y 0.4 2.43 26
    12  Y 0.6 Y, Ho 1.1 2.76 13
    13  Y 1.8 Y 1.0 2.68 15
    14  Y 0.05 Y 1.5 2.79 19
    15* Ho 0.0 Ho 2.0 2.98 28
    16  Ho 1.0 Dy 1.0 2.90 13
    17* Ho 2.2 Ho 1.0 2.33 14
    *Comparative Example
  • It can be seen from Table 1 above that each of Samples 1, 3 to 7, 9, 10, 12 to 14, and 16 was a multilayer ceramic capacitor manufactured by using the dielectric grain satisfying the numeral range of the present invention, and capacitance thereof was high and reliability thereof was excellent.
  • Whereas, it can be seen that each of Samples 2, 8, 11, 15, and 17 was outside of the numeral range of the present invention, and had defects in capacitance or reliability, or both capacitance and reliability.
  • Resultantly, the multilayer ceramic capacitor according to the embodiment of the present invention was manufactured by using a dielectric composition including a dielectric grain having a perovskite structure represented by ABO3, in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center thereof has a content of 0.5 to 2.5 at %, based on 100 at % of a B-site ion, and thus had a high room-temperature dielectric constant, high capacitance and excellent reliability.
  • As set forth above, according to the embodiments of the present invention, the multilayer ceramic electronic component manufactured using the dielectric composition can have excellent reliability and secure a high dielectric constant.
  • While the present invention has been shown and described in connection with the embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (15)

What is claimed is:
1. A dielectric composition, comprising a dielectric grain having a perovskite structure represented by ABO3, wherein, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain is 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
2. The dielectric composition of claim 1, wherein the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain is 0.05 to 2.0 times a content of rare earth elements in the center of the dielectric grain.
3. The dielectric composition of claim 1, wherein the A includes one or more selected from a group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca).
4. The dielectric composition of claim 1, wherein the B includes one or more selected from a group consisting of titanium (Ti) and zirconium (Zr).
5. The dielectric composition of claim 1, wherein the rare earth elements include a trivalent ion.
6. The dielectric composition of claim 1, wherein the rare earth elements include one or more selected from a group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru).
7. The dielectric composition of claim 1, wherein the dielectric grain includes one or more selected from a group consisting of BamTiO3(0.995≦m≦1.010), (Ba1-XCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10); and BamTiO3(0.995≦m≦1.010), (Ba1-XCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10), in which one or more rare earth elements are partially dissolved.
8. A multilayer ceramic electronic component, comprising:
a ceramic body including dielectric layers each having an average thickness of 0.48 μm or less; and
internal electrodes disposed to face each other with the dielectric layer therebetween within the ceramic body,
wherein the dielectric layer includes a dielectric composition, the dielectric composition including a dielectric grain having a perovskite structure represented by ABO3, in which, when an imaginary line is drawn in a direction from a center of the dielectric grain to a grain boundary thereof, a content of rare earth elements in a region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain is 0.5 to 2.5 at %, based on 100 at % of a B-site ion.
9. The multilayer ceramic electronic component of claim 8, wherein the content of rare earth elements in the region corresponding to 0.75 to 0.95% of the dielectric grain from the center of the dielectric grain is 0.05 to 2.0 times a content of rare earth elements in the center of the dielectric grain.
10. The multilayer ceramic electronic component of claim 8, the A includes one or more selected from a group consisting of barium (Ba), strontium (Sr), lead (Pb), and calcium (Ca).
11. The multilayer ceramic electronic component of claim 8, wherein the B includes one or more selected from a group consisting of titanium (Ti) and zirconium (Zr).
12. The multilayer ceramic electronic component of claim 8, wherein the rare earth elements include a trivalent ion.
13. The multilayer ceramic electronic component of claim 8, wherein the rare earth elements include one or more selected from a group consisting of scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and ruthenium (Ru).
14. The multilayer ceramic electronic component of claim 8, wherein the dielectric grain includes one or more selected from a group consisting of BamTiO3(0.995≦m≦1.010), (Ba1-XCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10); and BamTiO3(0.995≦m≦1.010), (Ba1-XCax)m(Ti1-yZry)O3(0.995≦m≦1.010, 0≦x≦0.10, 0<y≦0.20), and Bam(Ti1-xZrx)O3(0.995≦m≦1.010, x≦0.10), in which one or more rare earth elements are partially dissolved.
15. The multilayer ceramic electronic component of claim 8, wherein the dielectric layer has a dielectric constant of 4000 or greater.
US13/842,764 2012-09-28 2013-03-15 Dielectric composition and multilayer ceramic electronic component manufactured using the same Active US9382162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/572,368 US20150098166A1 (en) 2012-09-28 2014-12-16 Dielectric composition and multilater ceramic electronic component manufactured using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120108744A KR101376924B1 (en) 2012-09-28 2012-09-28 Dielectric composition and multi-layer ceramic electronic parts fabricated by using the same
KR10-2012-0108744 2012-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/572,368 Continuation US20150098166A1 (en) 2012-09-28 2014-12-16 Dielectric composition and multilater ceramic electronic component manufactured using the same

Publications (2)

Publication Number Publication Date
US20140092525A1 true US20140092525A1 (en) 2014-04-03
US9382162B2 US9382162B2 (en) 2016-07-05

Family

ID=50384962

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/842,764 Active US9382162B2 (en) 2012-09-28 2013-03-15 Dielectric composition and multilayer ceramic electronic component manufactured using the same
US14/572,368 Abandoned US20150098166A1 (en) 2012-09-28 2014-12-16 Dielectric composition and multilater ceramic electronic component manufactured using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/572,368 Abandoned US20150098166A1 (en) 2012-09-28 2014-12-16 Dielectric composition and multilater ceramic electronic component manufactured using the same

Country Status (4)

Country Link
US (2) US9382162B2 (en)
JP (2) JP2014070015A (en)
KR (1) KR101376924B1 (en)
CN (1) CN103708821B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098455A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same
US20140098457A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same
US11031181B2 (en) * 2019-02-15 2021-06-08 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer capacitor comprising the same
USRE49923E1 (en) 2016-11-09 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395828B2 (en) * 2015-10-28 2019-08-27 Kyocera Corporation Capacitor
KR101922876B1 (en) * 2016-11-09 2018-11-28 삼성전기 주식회사 Dielectric composition and multi-layered ceramic capacitor
KR102449359B1 (en) * 2017-08-28 2022-09-30 삼성전기주식회사 Dielectric powder and multilayered ceramic electronic components using the same
KR102483896B1 (en) 2017-12-19 2022-12-30 삼성전자주식회사 Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device
KR102585981B1 (en) 2018-03-28 2023-10-05 삼성전자주식회사 Dielectric material, multi-layered capacitors and electronic devices comprising the same
KR20190116110A (en) * 2019-06-14 2019-10-14 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JP7167955B2 (en) * 2020-03-24 2022-11-09 株式会社村田製作所 multilayer ceramic electronic components
KR20220088099A (en) * 2020-12-18 2022-06-27 삼성전기주식회사 Ceramic electronic component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039090A1 (en) * 2001-03-19 2003-02-27 Hiroyasu Konaka Dielectric ceramic, methods for making and evaluating the same, and monolithic ceramic electronic component
US20080226944A1 (en) * 2007-03-14 2008-09-18 Tdk Corporation Dielectric ceramic composition and electronic device
US20100014214A1 (en) * 2007-03-27 2010-01-21 Kyocera Corporation Dielectric ceramics and multilayer ceramic capacitor
US20100067171A1 (en) * 2006-11-29 2010-03-18 Kyocera Corporation Multilayered ceramic capacitor
US20100188797A1 (en) * 2007-07-27 2010-07-29 Kyocera Corporation Laminated ceramic capacitor
US20120050941A1 (en) * 2010-08-31 2012-03-01 Tdk Corporation Dielectric ceramic composition and ceramic electronic device
US20140098455A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same
US20140098457A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829136B2 (en) 2002-11-29 2004-12-07 Murata Manufacturing Co., Ltd. Dielectric ceramic, method for making the same, and monolithic ceramic capacitor
JP4552419B2 (en) * 2002-11-29 2010-09-29 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
JP5151039B2 (en) * 2006-02-27 2013-02-27 株式会社村田製作所 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP4937068B2 (en) 2006-09-27 2012-05-23 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
CN101517672B (en) 2006-09-27 2012-05-16 京瓷株式会社 Multilayer ceramic capacitor and method for production thereof
JP5023748B2 (en) 2007-03-14 2012-09-12 Tdk株式会社 Dielectric porcelain composition and electronic component
JP4858248B2 (en) 2007-03-14 2012-01-18 Tdk株式会社 Dielectric porcelain composition and electronic component

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039090A1 (en) * 2001-03-19 2003-02-27 Hiroyasu Konaka Dielectric ceramic, methods for making and evaluating the same, and monolithic ceramic electronic component
US6939822B2 (en) * 2001-03-19 2005-09-06 Murata Manufacturing Co., Ltd. Dielectric ceramic, methods for making and evaluating the same, and monolithic ceramic electronic component
US20100067171A1 (en) * 2006-11-29 2010-03-18 Kyocera Corporation Multilayered ceramic capacitor
US8059388B2 (en) * 2006-11-29 2011-11-15 Kyocera Corporation Multilayered ceramic capacitor
US20080226944A1 (en) * 2007-03-14 2008-09-18 Tdk Corporation Dielectric ceramic composition and electronic device
US20100014214A1 (en) * 2007-03-27 2010-01-21 Kyocera Corporation Dielectric ceramics and multilayer ceramic capacitor
US8238077B2 (en) * 2007-03-27 2012-08-07 Kyocera Corporation Dielectric ceramics and multilayer ceramic capacitor
US20100188797A1 (en) * 2007-07-27 2010-07-29 Kyocera Corporation Laminated ceramic capacitor
US8208240B2 (en) * 2007-07-27 2012-06-26 Kyocera Corporation Laminated ceramic capacitor
US20120050941A1 (en) * 2010-08-31 2012-03-01 Tdk Corporation Dielectric ceramic composition and ceramic electronic device
US20140098455A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same
US20140098457A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098455A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same
US20140098457A1 (en) * 2012-10-05 2014-04-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic electronic component manufactured using the same
USRE49923E1 (en) 2016-11-09 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
US11031181B2 (en) * 2019-02-15 2021-06-08 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer capacitor comprising the same

Also Published As

Publication number Publication date
KR101376924B1 (en) 2014-03-20
JP2015044735A (en) 2015-03-12
US9382162B2 (en) 2016-07-05
JP2014070015A (en) 2014-04-21
US20150098166A1 (en) 2015-04-09
CN103708821B (en) 2017-08-01
CN103708821A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US9382162B2 (en) Dielectric composition and multilayer ceramic electronic component manufactured using the same
US20140098457A1 (en) Dielectric composition and multilayer ceramic electronic component manufactured using the same
US20140218840A1 (en) Dielectric composition and multilayer ceramic electronic component using the same
US20140098455A1 (en) Dielectric composition and multilayer ceramic electronic component manufactured using the same
KR101976963B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2016204250A (en) Dielectric ceramic composition and multilayer ceramic capacitor containing the same
JP7338963B2 (en) Multilayer ceramic capacitors and ceramic raw material powders
KR20190121143A (en) Multi-layered ceramic capacitor
JP6467648B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR102222606B1 (en) Dielectric composition and multilayer ceramic capacitor comprising the same
JP2023150118A (en) Ceramic electronic component and manufacturing method of the same
KR102052846B1 (en) Dielectric composition and multi-layer ceramic electronic parts fabricated by using the same
JP4506233B2 (en) Dielectric ceramic and multilayer ceramic capacitors
KR101963257B1 (en) Perovskite powder, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
CN110797189B (en) Multilayer ceramic capacitor
US11651900B2 (en) Multilayer electronic component having moisture-proof layer on body thereof
WO2023054378A1 (en) Multilayer ceramic capacitor
KR20240046267A (en) Multilayer Ceramic Condenser
KR20230068725A (en) Capacitor component

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANG, SUNG HYUNG;KIM, DOO YOUNG;CHOI, CHANG HAK;REEL/FRAME:030022/0785

Effective date: 20130220

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY