US20140026411A1 - Techniques for efficient wire routing in a device - Google Patents

Techniques for efficient wire routing in a device Download PDF

Info

Publication number
US20140026411A1
US20140026411A1 US13/656,309 US201213656309A US2014026411A1 US 20140026411 A1 US20140026411 A1 US 20140026411A1 US 201213656309 A US201213656309 A US 201213656309A US 2014026411 A1 US2014026411 A1 US 2014026411A1
Authority
US
United States
Prior art keywords
bracket
cavity
electrical
battery cells
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/656,309
Inventor
Karla Robertson
Nina Joshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nook Digital LLC
Original Assignee
Nook Digital LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nook Digital LLC filed Critical Nook Digital LLC
Priority to US13/656,309 priority Critical patent/US20140026411A1/en
Assigned to BARNESANDNOBLE.COM LLC reassignment BARNESANDNOBLE.COM LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOSHI, NINA, ROBERTSON, KARLA
Priority to US13/946,545 priority patent/US20140027166A1/en
Publication of US20140026411A1 publication Critical patent/US20140026411A1/en
Assigned to NOOK DIGITAL LLC reassignment NOOK DIGITAL LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BARNESANDNOBLE.COM LLC
Assigned to NOOK DIGITAL, LLC reassignment NOOK DIGITAL, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NOOK DIGITAL LLC
Assigned to NOOK DIGITAL LLC reassignment NOOK DIGITAL LLC CORRECTIVE ASSIGNMENT TO REMOVE APPLICATION NUMBERS 13924129 AND 13924362 PREVIOUSLY RECORDED ON REEL 035187 FRAME 0469. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: BARNESANDNOBLE.COM LLC
Assigned to NOOK DIGITAL, LLC reassignment NOOK DIGITAL, LLC CORRECTIVE ASSIGNMENT TO REMOVE APPLICATION NUMBERS 13924129 AND 13924362 PREVIOUSLY RECORDED ON REEL 035187 FRAME 0476. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: NOOK DIGITAL LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor

Definitions

  • the present disclosure relates to electrical wire routing, and more specifically to routing wires within compact electrical devices.
  • Typical electronic devices include a number of components populated on a printed circuit board (PCB) that has conductive runs electrically coupling various point of the circuitry.
  • PCB printed circuit board
  • additional wires are routed above the PCB to couple other points of the circuitry, such as those points that are not in direct contact with a contact pad of the PCB. Efficiently routing wires and other electrical elements within compact devices involves a number of non-trivial challenges.
  • One embodiment of the present invention provides a method for routing an electrical component.
  • the method includes exposing a cavity between at least two electrical parts within an electrical device, inserting at least one bracket within the cavity, and routing an electrical component through the cavity and at least one bracket.
  • exposing a cavity comprises altering an insulating tape that is covering a substantial portion of the cavity.
  • the method further includes compressing a portion of the insulating tape between a portion of the at least one bracket and one of the at least two electrical parts.
  • the method further includes substantially covering the bracket with a portion of the insulating tape.
  • the two electrical parts are prepackaged within the insulating tape.
  • the at least two electrical parts are two battery cells separated by a printed circuit board (PCB).
  • inserting at least one bracket includes inserting one bracket that extends the entire length of the cavity. In some cases, inserting at least one bracket includes inserting one bracket that extends only a portion of the length of the cavity. In some cases, routing an electrical component through the cavity includes routing at least one wire through the cavity. In some cases, the method further includes covering a substantial portion of the at least one bracket with a housing. In some cases, the method further includes covering a substantial portion of the at least one bracket with an additional electrical part.
  • the method includes exposing a cavity between two battery cells by altering an insulating tape surrounding the two battery cells, inserting at least one bracket within the cavity, and routing a wire through the cavity and the at least one bracket.
  • the two battery cells are prepackaged within the insulating tape.
  • the at least one bracket forms a substantially concave trough within the cavity.
  • the at least one bracket forms a tube-like structure within the cavity.
  • the at least one bracket applies pressure against the two battery cells.
  • the at least one bracket covers a portion of each of the two battery cells.
  • the method further includes covering a substantial portion of the at least one bracket with a portion of the insulating tape.
  • inserting at least one bracket includes compressing a portion of the insulating tape between the at least one bracket and one of the two battery cells.
  • Another embodiment of the present invention provides a method of routing a wire.
  • the method includes exposing a cavity between two battery cells by altering an insulating tape surrounding an electrical device, and determining at least one location for placement of at least one concave bracket based on battery cell size. The method continues with inserting at least one concave or tube-like bracket within the cavity, and routing a wire through the cavity and the at least one bracket.
  • FIG. 1 shows a cross-sectional view of a circuit having two battery cells enclosed in an electrical tape.
  • FIG. 2 shows a cross-sectional view of a circuit with a bracket inserted between battery cells, in accordance with one embodiment of the present invention.
  • FIG. 3 shows a cross sectional view of a wire routed through a trough created by a bracket, in accordance with one embodiment of the present invention.
  • FIG. 4 a shows an overhead view of a bracket inserted between two electrical parts, in accordance with one embodiment of the present invention.
  • FIG. 4 b shows an alternative overhead view of a bracket inserted between two electrical parts, in accordance with one embodiment of the present invention.
  • FIG. 4 c shows an overhead view of two brackets inserted between two electrical parts, in accordance with one embodiment of the present invention.
  • FIG. 4 d shows an overhead view of a bracket inserted between two electrical parts where the bracket overhangs past the edge of the parts, in accordance with one embodiment of the present invention.
  • FIG. 4 e shows an overhead view of two brackets inserted between two electrical parts where the brackets overhang past the edge of the parts, in accordance with one embodiment of the present invention.
  • FIG. 5 shows a cross-sectional view of a bracket inserted between an electrical part and another structure, in accordance with one embodiment of the present invention.
  • FIG. 6 a shows an overhead, offset view of a bracket, in accordance with one embodiment of the present invention.
  • FIG. 6 b shows a cross-sectional view of a bracket having one lip, in accordance with one embodiment of the present invention.
  • FIG. 6 c shows a cross-sectional view of a bracket having no lip, in accordance with one embodiment of the present invention.
  • FIG. 6 d shows a cross-sectional view of a bracket with a curved trough, in accordance with one embodiment of the present invention.
  • FIG. 6 e shows a cross-sectional view of a bracket with a curved trough and two lips, in accordance with one embodiment of the present invention.
  • FIG. 6 f shows a cross-sectional view of a bracket with a tube-like trough and optional lips, in accordance with one embodiment of the present invention.
  • FIG. 7 shows a flow diagram of a method for routing a wire in an electrical device, in accordance with one embodiment of the present invention.
  • Electrical devices may have an insulating tape or coating surrounding all or a portion of the device. This tape may isolate cavities within the device that may be underutilized. For example, a Mylar® tape may cover two or more battery cells where there is an unused cavity between each of the cells. A wire can be routed, for example, in the space between the two battery cells with the use of a bracket inserted between the cells to provide structural support and electrical reliability, in accordance with an embodiment.
  • the electrical tape surrounding the battery (or other component) may be cut in order to expose the cavity between distinct battery cells (or other components).
  • multiple brackets may be inserted between the battery cells at different locations along the cavity, creating a trough through which a wire or other component may be routed.
  • another electrical part or housing may be fixed to cover the battery cells, the brackets, and the routed wire/component.
  • FIG. 1 shows a cross-sectional view of two battery cells 101 with a printed circuit board (PCB) 102 between the battery cells, all surrounded by a Mylar® or other electrically insulating tape 103 .
  • the electrical tape 103 coating battery cells 101 and PCB 102 may leave an unused cavity 104 between the battery cells.
  • the Mylar® tape surrounding battery cells may be removed or otherwise temporarily opened so as to expose the unused cavity between distinct battery cells.
  • One or more brackets may then be inserted into the cavity to create structural stability within the cavity so that a wire may be routed through the cavity.
  • the brackets effectively provide a trough, thereby allowing a wire to be routed through the trough within the bracket.
  • the bracket also effectively contains the wire, which if placed directly in the cavity might, for instance, move under the battery cell and eventually cause a short-circuit or otherwise create a reliability problem. Note that embodiments other than wire routing between cells of a battery can also benefit from the techniques provided herein, as will be appreciated in light of this disclosure.
  • FIG. 2 illustrates a cross-sectional view of an electrical device with a bracket 205 inserted between two cells 201 of a battery, according to one embodiment of the present invention.
  • this particular example embodiment includes a PCB 202 located between the battery cells 201 , and an electrical tape 203 covering a substantial portion of the device.
  • the electrical tape may be made of Mylar®, for example, or some other suitable insulating material.
  • the bracket 205 inserted between the battery cells creates a trough 206 that is structurally supported.
  • the electrical tape 203 may initially coat all of, or a substantial portion of the electrical device, in which case the tape may be removed from the area where the bracket is to be placed, allowing the bracket to be inserted between the battery cells.
  • the ends of electrical tape 203 may be repositioned above the bracket 205 .
  • the ends of tape 203 may be positioned below the lips of bracket 205 , as discussed in further detail in reference to FIG. 3 .
  • the bracket 205 shown may be made, for example, of plastic and may provide structural support for the cavity 104 shown in FIG. 1 .
  • bracket 205 helps maintain circuit reliability by containing the wire (or other component) routed therein. Multiple brackets of various sizes and dimensions may also be inserted into portions of the cavity between the battery cells.
  • one or more brackets may be inserted between other parts of an electrical device (other than battery cells) where such a bracket may be desirable for providing structural support for inserting a wire or other component in unused cavities within a device.
  • Each battery cell or electrical part may include its own insulating layer to protect the device from undesired electrical contacts.
  • FIG. 3 illustrates a cross-sectional view of an electrical device with a wire routed between two cells of a battery, according to one embodiment of the present invention.
  • This particular example embodiment includes a wire 307 routed within the trough 306 that is created by bracket 305 inserted in the cavity between battery cells 301 .
  • One or more brackets 305 may be inserted in the opening of electrical tape 303 and the brackets may be placed at different locations within the cavity between battery cells 301 .
  • the ends of electrical tap 303 are held in place against the battery cells 301 by the lips of bracket 305 .
  • a wire 307 may be placed in or more brackets within the trough 306 .
  • bracket 305 is inserted above PCB 302 between the battery cells, and after routing of the wire 307 along a portion of the trough 306 , another electrical part or housing 308 may be placed on top of the routed wire and bracket.
  • the electrical part 308 may be, for example, a PCB, another battery cell, or any other electrical device. If desired, an electrical part 308 may include an electrical contact with a wire routed through the trough 306 .
  • brackets of various sizes and dimensions may be inserted into portions of the cavity between the battery cells regardless of the dimensions of the cavity.
  • the brackets inserted between the battery cells may have a degree of elasticity, such that they can fit tightly or snap into place between the cells. Such a tight fit may provide increased support for the trough as well as help hold the battery cells firmly in place so they do not compress against or otherwise contact the wire routed through the trough. This tight fit may also help keep the brackets themselves firmly in place between the battery cells.
  • one or more brackets may be inserted between other parts of an electrical device (other than battery cells) where such a bracket may be desirable for providing structural support for inserting a wire or other component in unused cavities within a device.
  • the brackets may be shaped and configured as needed to utilize the available underutilized space regardless of the shape of the space or cavity.
  • FIG. 4 a - 4 e show overhead views of various placements of one or more brackets between parts of an electrical device, in accordance with various embodiments of the present invention.
  • a single bracket 405 is inserted along the entire length of the cavity between the electrical parts 401 .
  • the electrical parts 401 are two cells of a battery with the bracket located between them. A wire or other component may then be routed through the trough created by bracket 405 .
  • one bracket 405 is inserted between the battery cells 401 to provide structural support and the bracket does not extend the entire length of the electrical device. This implementation leaves unbracketed cavities 406 between the battery cells, which may be acceptable in some applications.
  • brackets 405 are inserted on the edges of the electrical device between battery cells 401 leaving a structurally stable cavity 406 between the brackets.
  • a wire may be routed through the cavities 406 and through the trough of one or more brackets 405 .
  • the positioning of brackets 405 between the battery cells 401 may be determined, among other factors, based on the sizes of the cells.
  • each battery cell or electrical part may include its own electrically insulating layer, such that electrical insulation is not a problem in the cavities 406 where a bracket is not present.
  • FIGS. 4 d and 4 e show overhead views of various bracket placements where the brackets overhang beyond the edge of the electrical device.
  • a single bracket is inserted between battery cells 401 and extends the entire length of the electrical device and overhangs beyond the edges.
  • two brackets 405 are inserted on the edges of the electrical device between battery cells 401 , and the brackets overhang beyond the edges of the device leaving an unbracketed cavity 406 between the two brackets.
  • the overhang of the brackets may allow a wire that is routed within the trough created by the brackets to be easily connected to additional electrical devices that may be connected to the device shown in Figures 4 a - 4 e , and without requiring an increase in the device footprint or existing layout.
  • the various embodiments discussed are for illustration purposes only, and they are not intended to be an exhaustive list of bracket configurations.
  • the cavities illustrated in FIGS. 4 a - 4 e are shown as single, continuous lines without junctions or bends, the cavities located between battery cells or other electrical parts may include curves, bends, multiple junctions, intersections of cavities, etc.
  • the techniques disclosed herein are equally applicable to those implementations, and many alternative configurations will be apparent to those skilled in the art in light of this disclosure.
  • FIG. 5 shows a cross-sectional view of an electrical device with a bracket inserted between a battery cell and a housing wall, according to one embodiment of the present invention.
  • the bracket 505 may be inserted between a battery cell 501 and housing or other structure 509 and above a PCB or substrate 502 to utilize space between the battery cell and the housing wall.
  • the tape 503 around the electrical device may be altered or cut in order to expose the cavity above the PCB 502 and beside battery cell 501 .
  • the bracket may then be inserted within the cavity, forming a trough 506 that can be utilized for routing a wire or other component between the battery cell and housing wall. As illustrated in FIG.
  • the bracket in this implementation does not include an overlapping lip on both sides of the trough of the bracket.
  • the brackets used for routing a wire in underutilized cavities within an electrical device may be of different shapes and configurations and may conform to whatever underutilized cavity space is available.
  • FIGS. 6 a - 6 e illustrate different bracket configurations, according to multiple embodiments of the present invention.
  • FIG. 6 a illustrates one embodiment of a bracket that may be inserted in the cavity between two electrical parts.
  • the bracket includes a trough running along the length of the bracket and has two lips that may overhang over the neighboring electrical parts.
  • FIG. 6 b is a cross-sectional view of another bracket configuration having only one lip, as previously disclosed in reference to FIG. 5 .
  • FIG. 6 c is a cross-sectional view of an alternative bracket configuration without any lips that may be inserted between two electrical parts in order to provide structural strength for wire routing.
  • FIG. 6 d is a cross-sectional view of another bracket configuration with a concave trough without lips that might overhang an electrical part.
  • FIG. 6 e is a cross-sectional view of yet another bracket configuration with a concave trough, having two lips that may be inserted between two electrical parts such that the lips cover a portion of the electrical parts.
  • FIG. 6 f is a cross-sectional view of yet another bracket configuration with a tube-like trough, which may also be configured with one or two lips if so desired.
  • the tube may be a mesh like material, so as to allow visibility into the tube.
  • the upper portions of the brackets shown in FIGS. 6 d and 6 e may be compressed together for easier insertion within the underutilized cavity space, and once inserted the bracket may expand creating a tight fit within the cavity space.
  • brackets shown in FIGS. 6 a , 6 b , 6 e , and 6 f may be inserted such that the lips may cover the ends of the electrical tape surrounding the electrical device, or the ends of the tape may lie over top of them. In other embodiments, the tape may lie over top of the bracket and substantially cover the bracket and trough. In a single wire routing technique, multiple sizes and configurations of brackets may be used depending on the desired wire route.
  • the brackets shown in the foregoing figures are not drawn to scale and many sizes and configurations will be apparent in light of this disclosure.
  • FIG. 7 is a flow diagram illustrating a method for routing a wire within a cavity in an electrical device, according to one embodiment of the present invention.
  • the electrical device may be entirely or substantially covered in an electrical tape.
  • this tape is made of Mylar®, or any other suitable insulating material.
  • the tape layer can be altered or cut.
  • the tape is cut above the unused cavity between two battery cells in order to access the cavity.
  • one or more locations within the cavity can be identified for placement of one or more brackets. The location of the bracket placement may be determined, among other factors, based on the size of the cavity, or the size of the electrical parts or battery cells around which a wire will be routed.
  • the placement of the brackets may be determined before altering the electrical tape layer.
  • the brackets may then be inserted into the desired locations within the cavity providing a structurally stable and/or electrically reliable path for wire routing.
  • the brackets may also guide the wire or wires and prevent them from straying from their intended path.
  • the brackets may be inserted such that, if they include a lip (as shown in FIGS. 6 a , 6 b , 6 e , and 6 f ), the lip may overlap the ends of the electrical tape.
  • the tape may be applied over the bracket after insertion. If desired, and adhesive material may be used to reapply the electrical tape around the electrical device, either above or underneath the brackets (or new tape may be provisioned).
  • one or more wires or other components may be routed within the trough of the brackets. If the brackets do not extend the entire length of the cavity, the wire may pass through the troughs of one or more brackets and through the structurally stable cavities surrounding the brackets.

Abstract

Techniques for efficient routing of wires and electrical components within a device are disclosed. A wire can be routed, for example, in the space between two battery cells (or other components/structures) with the use of a bracket inserted between the cells to provide structural support. The electrical tape surrounding a battery may be cut or otherwise breached in order to expose the cavity between distinct battery cells. In some embodiments, multiple brackets may be inserted between the battery cells, creating a trough through which a wire or other component may be routed. After routing a wire through the trough, another electrical part or housing may be fixed above the battery cells.

Description

    RELATED APPLICATIONS
  • This application is related to U.S. application Ser. No. ______ (Attorney Docket BN01.718US) filed Oct. 19, 2012 and titled “Apparatus for Efficient Wire Routing in a Device” which is herein incorporated by reference in its entirety.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to electrical wire routing, and more specifically to routing wires within compact electrical devices.
  • BACKGROUND
  • Typical electronic devices include a number of components populated on a printed circuit board (PCB) that has conductive runs electrically coupling various point of the circuitry. In some cases, additional wires are routed above the PCB to couple other points of the circuitry, such as those points that are not in direct contact with a contact pad of the PCB. Efficiently routing wires and other electrical elements within compact devices involves a number of non-trivial challenges.
  • SUMMARY
  • One embodiment of the present invention provides a method for routing an electrical component. The method includes exposing a cavity between at least two electrical parts within an electrical device, inserting at least one bracket within the cavity, and routing an electrical component through the cavity and at least one bracket. In some cases, exposing a cavity comprises altering an insulating tape that is covering a substantial portion of the cavity. In some such cases, the method further includes compressing a portion of the insulating tape between a portion of the at least one bracket and one of the at least two electrical parts. In other such cases, the method further includes substantially covering the bracket with a portion of the insulating tape. In some such cases, the two electrical parts are prepackaged within the insulating tape. In some cases, the at least two electrical parts are two battery cells separated by a printed circuit board (PCB). In some cases, inserting at least one bracket includes inserting one bracket that extends the entire length of the cavity. In some cases, inserting at least one bracket includes inserting one bracket that extends only a portion of the length of the cavity. In some cases, routing an electrical component through the cavity includes routing at least one wire through the cavity. In some cases, the method further includes covering a substantial portion of the at least one bracket with a housing. In some cases, the method further includes covering a substantial portion of the at least one bracket with an additional electrical part.
  • Another embodiment of the present invention provides a method of routing a wire. In this example embodiment, the method includes exposing a cavity between two battery cells by altering an insulating tape surrounding the two battery cells, inserting at least one bracket within the cavity, and routing a wire through the cavity and the at least one bracket. In some cases, the two battery cells are prepackaged within the insulating tape. In some cases, the at least one bracket forms a substantially concave trough within the cavity. In some cases, the at least one bracket forms a tube-like structure within the cavity. In some cases, the at least one bracket applies pressure against the two battery cells. In some cases, the at least one bracket covers a portion of each of the two battery cells. In some cases, the method further includes covering a substantial portion of the at least one bracket with a portion of the insulating tape. In some cases, inserting at least one bracket includes compressing a portion of the insulating tape between the at least one bracket and one of the two battery cells.
  • Another embodiment of the present invention provides a method of routing a wire. In this example embodiment, the method includes exposing a cavity between two battery cells by altering an insulating tape surrounding an electrical device, and determining at least one location for placement of at least one concave bracket based on battery cell size. The method continues with inserting at least one concave or tube-like bracket within the cavity, and routing a wire through the cavity and the at least one bracket.
  • The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-sectional view of a circuit having two battery cells enclosed in an electrical tape.
  • FIG. 2 shows a cross-sectional view of a circuit with a bracket inserted between battery cells, in accordance with one embodiment of the present invention.
  • FIG. 3 shows a cross sectional view of a wire routed through a trough created by a bracket, in accordance with one embodiment of the present invention.
  • FIG. 4 a shows an overhead view of a bracket inserted between two electrical parts, in accordance with one embodiment of the present invention.
  • FIG. 4 b shows an alternative overhead view of a bracket inserted between two electrical parts, in accordance with one embodiment of the present invention.
  • FIG. 4 c shows an overhead view of two brackets inserted between two electrical parts, in accordance with one embodiment of the present invention.
  • FIG. 4 d shows an overhead view of a bracket inserted between two electrical parts where the bracket overhangs past the edge of the parts, in accordance with one embodiment of the present invention.
  • FIG. 4 e shows an overhead view of two brackets inserted between two electrical parts where the brackets overhang past the edge of the parts, in accordance with one embodiment of the present invention.
  • FIG. 5 shows a cross-sectional view of a bracket inserted between an electrical part and another structure, in accordance with one embodiment of the present invention.
  • FIG. 6 a shows an overhead, offset view of a bracket, in accordance with one embodiment of the present invention.
  • FIG. 6 b shows a cross-sectional view of a bracket having one lip, in accordance with one embodiment of the present invention.
  • FIG. 6 c shows a cross-sectional view of a bracket having no lip, in accordance with one embodiment of the present invention.
  • FIG. 6 d shows a cross-sectional view of a bracket with a curved trough, in accordance with one embodiment of the present invention.
  • FIG. 6 e shows a cross-sectional view of a bracket with a curved trough and two lips, in accordance with one embodiment of the present invention.
  • FIG. 6 f shows a cross-sectional view of a bracket with a tube-like trough and optional lips, in accordance with one embodiment of the present invention.
  • FIG. 7 shows a flow diagram of a method for routing a wire in an electrical device, in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Techniques for efficient routing of wires and electrical components within a device are disclosed. Electrical devices may have an insulating tape or coating surrounding all or a portion of the device. This tape may isolate cavities within the device that may be underutilized. For example, a Mylar® tape may cover two or more battery cells where there is an unused cavity between each of the cells. A wire can be routed, for example, in the space between the two battery cells with the use of a bracket inserted between the cells to provide structural support and electrical reliability, in accordance with an embodiment. The electrical tape surrounding the battery (or other component) may be cut in order to expose the cavity between distinct battery cells (or other components). In some specific embodiments, multiple brackets may be inserted between the battery cells at different locations along the cavity, creating a trough through which a wire or other component may be routed. After routing a wire through the trough, another electrical part or housing may be fixed to cover the battery cells, the brackets, and the routed wire/component.
  • General Overview
  • As previously explained, efficiently routing wires and other electrical elements within compact devices involves a number of non-trivial challenges. For instance, electronic devices are present in various form factors, such as, tablets, cell phones, laptops, e-book readers, etc. One solution for routing wires or electrical components within an electrical device is to increase the gap between two electrical parts within the device so as to route the wire between the two parts. Unfortunately, this results in an increase in at least one dimension of the device footprint. FIG. 1 shows a cross-sectional view of two battery cells 101 with a printed circuit board (PCB) 102 between the battery cells, all surrounded by a Mylar® or other electrically insulating tape 103. The electrical tape 103 coating battery cells 101 and PCB 102 may leave an unused cavity 104 between the battery cells.
  • Thus, and in accordance with an embodiment of the present invention, techniques are disclosed for more effectively routing wires and other electrical components through electronic devices by exploiting underutilized space. According to one embodiment, the Mylar® tape surrounding battery cells may be removed or otherwise temporarily opened so as to expose the unused cavity between distinct battery cells. One or more brackets may then be inserted into the cavity to create structural stability within the cavity so that a wire may be routed through the cavity. The brackets effectively provide a trough, thereby allowing a wire to be routed through the trough within the bracket. The bracket also effectively contains the wire, which if placed directly in the cavity might, for instance, move under the battery cell and eventually cause a short-circuit or otherwise create a reliability problem. Note that embodiments other than wire routing between cells of a battery can also benefit from the techniques provided herein, as will be appreciated in light of this disclosure.
  • Device Design
  • FIG. 2 illustrates a cross-sectional view of an electrical device with a bracket 205 inserted between two cells 201 of a battery, according to one embodiment of the present invention. As can be seen, this particular example embodiment includes a PCB 202 located between the battery cells 201, and an electrical tape 203 covering a substantial portion of the device. The electrical tape may be made of Mylar®, for example, or some other suitable insulating material. The bracket 205 inserted between the battery cells creates a trough 206 that is structurally supported. The electrical tape 203 may initially coat all of, or a substantial portion of the electrical device, in which case the tape may be removed from the area where the bracket is to be placed, allowing the bracket to be inserted between the battery cells. In this particular example embodiment, the ends of electrical tape 203, once cut, may be repositioned above the bracket 205. Alternatively, the ends of tape 203 may be positioned below the lips of bracket 205, as discussed in further detail in reference to FIG. 3. The bracket 205 shown may be made, for example, of plastic and may provide structural support for the cavity 104 shown in FIG. 1. As will be further appreciated in light of this disclosure, bracket 205 helps maintain circuit reliability by containing the wire (or other component) routed therein. Multiple brackets of various sizes and dimensions may also be inserted into portions of the cavity between the battery cells. In other embodiments, one or more brackets may be inserted between other parts of an electrical device (other than battery cells) where such a bracket may be desirable for providing structural support for inserting a wire or other component in unused cavities within a device. Each battery cell or electrical part may include its own insulating layer to protect the device from undesired electrical contacts.
  • FIG. 3 illustrates a cross-sectional view of an electrical device with a wire routed between two cells of a battery, according to one embodiment of the present invention. This particular example embodiment includes a wire 307 routed within the trough 306 that is created by bracket 305 inserted in the cavity between battery cells 301. One or more brackets 305 may be inserted in the opening of electrical tape 303 and the brackets may be placed at different locations within the cavity between battery cells 301. In this particular example, the ends of electrical tap 303 are held in place against the battery cells 301 by the lips of bracket 305. After insertion of the brackets, a wire 307 may be placed in or more brackets within the trough 306. Depending on the size of the trough created by the brackets, multiple wires or other components may be routed using these techniques. In this example implementation, the bracket 305 is inserted above PCB 302 between the battery cells, and after routing of the wire 307 along a portion of the trough 306, another electrical part or housing 308 may be placed on top of the routed wire and bracket. The electrical part 308 may be, for example, a PCB, another battery cell, or any other electrical device. If desired, an electrical part 308 may include an electrical contact with a wire routed through the trough 306.
  • Multiple brackets of various sizes and dimensions may be inserted into portions of the cavity between the battery cells regardless of the dimensions of the cavity. The brackets inserted between the battery cells may have a degree of elasticity, such that they can fit tightly or snap into place between the cells. Such a tight fit may provide increased support for the trough as well as help hold the battery cells firmly in place so they do not compress against or otherwise contact the wire routed through the trough. This tight fit may also help keep the brackets themselves firmly in place between the battery cells. In other embodiments, one or more brackets may be inserted between other parts of an electrical device (other than battery cells) where such a bracket may be desirable for providing structural support for inserting a wire or other component in unused cavities within a device. The brackets may be shaped and configured as needed to utilize the available underutilized space regardless of the shape of the space or cavity.
  • FIG. 4 a-4 e show overhead views of various placements of one or more brackets between parts of an electrical device, in accordance with various embodiments of the present invention. In the particular embodiment shown in FIG. 4 a, a single bracket 405 is inserted along the entire length of the cavity between the electrical parts 401. In one embodiment, the electrical parts 401 are two cells of a battery with the bracket located between them. A wire or other component may then be routed through the trough created by bracket 405. In the particular embodiment shown in FIG. 4 b, one bracket 405 is inserted between the battery cells 401 to provide structural support and the bracket does not extend the entire length of the electrical device. This implementation leaves unbracketed cavities 406 between the battery cells, which may be acceptable in some applications. In the particular embodiment shown in FIG. 4 c, two brackets 405 are inserted on the edges of the electrical device between battery cells 401 leaving a structurally stable cavity 406 between the brackets. A wire may be routed through the cavities 406 and through the trough of one or more brackets 405. The positioning of brackets 405 between the battery cells 401 may be determined, among other factors, based on the sizes of the cells. As mentioned above, each battery cell or electrical part may include its own electrically insulating layer, such that electrical insulation is not a problem in the cavities 406 where a bracket is not present.
  • FIGS. 4 d and 4 e show overhead views of various bracket placements where the brackets overhang beyond the edge of the electrical device. In FIG. 4 d, a single bracket is inserted between battery cells 401 and extends the entire length of the electrical device and overhangs beyond the edges. In FIG. 4 e, two brackets 405 are inserted on the edges of the electrical device between battery cells 401, and the brackets overhang beyond the edges of the device leaving an unbracketed cavity 406 between the two brackets. The overhang of the brackets may allow a wire that is routed within the trough created by the brackets to be easily connected to additional electrical devices that may be connected to the device shown in Figures 4 a-4 e, and without requiring an increase in the device footprint or existing layout. The various embodiments discussed are for illustration purposes only, and they are not intended to be an exhaustive list of bracket configurations. For instance, although the cavities illustrated in FIGS. 4 a-4 e are shown as single, continuous lines without junctions or bends, the cavities located between battery cells or other electrical parts may include curves, bends, multiple junctions, intersections of cavities, etc. The techniques disclosed herein are equally applicable to those implementations, and many alternative configurations will be apparent to those skilled in the art in light of this disclosure.
  • FIG. 5 shows a cross-sectional view of an electrical device with a bracket inserted between a battery cell and a housing wall, according to one embodiment of the present invention. In this particular embodiment, the bracket 505 may be inserted between a battery cell 501 and housing or other structure 509 and above a PCB or substrate 502 to utilize space between the battery cell and the housing wall. In this example, the tape 503 around the electrical device may be altered or cut in order to expose the cavity above the PCB 502 and beside battery cell 501. The bracket may then be inserted within the cavity, forming a trough 506 that can be utilized for routing a wire or other component between the battery cell and housing wall. As illustrated in FIG. 5, the bracket in this implementation does not include an overlapping lip on both sides of the trough of the bracket. The brackets used for routing a wire in underutilized cavities within an electrical device may be of different shapes and configurations and may conform to whatever underutilized cavity space is available.
  • FIGS. 6 a-6 e illustrate different bracket configurations, according to multiple embodiments of the present invention. FIG. 6 a illustrates one embodiment of a bracket that may be inserted in the cavity between two electrical parts. The bracket includes a trough running along the length of the bracket and has two lips that may overhang over the neighboring electrical parts. FIG. 6 b is a cross-sectional view of another bracket configuration having only one lip, as previously disclosed in reference to FIG. 5. FIG. 6 c is a cross-sectional view of an alternative bracket configuration without any lips that may be inserted between two electrical parts in order to provide structural strength for wire routing. FIG. 6 d is a cross-sectional view of another bracket configuration with a concave trough without lips that might overhang an electrical part. FIG. 6 e is a cross-sectional view of yet another bracket configuration with a concave trough, having two lips that may be inserted between two electrical parts such that the lips cover a portion of the electrical parts. FIG. 6 f is a cross-sectional view of yet another bracket configuration with a tube-like trough, which may also be configured with one or two lips if so desired. In some such cases, the tube may be a mesh like material, so as to allow visibility into the tube. The upper portions of the brackets shown in FIGS. 6 d and 6 e may be compressed together for easier insertion within the underutilized cavity space, and once inserted the bracket may expand creating a tight fit within the cavity space. Such a tight fit may provide increased support for the trough as well as help hold the electrical parts firmly in place so they do not compress against or otherwise contact the wire routed through the trough. This tight fit may also help keep the brackets themselves firmly in place between the electrical parts. The brackets shown in FIGS. 6 a, 6 b, 6 e, and 6 f may be inserted such that the lips may cover the ends of the electrical tape surrounding the electrical device, or the ends of the tape may lie over top of them. In other embodiments, the tape may lie over top of the bracket and substantially cover the bracket and trough. In a single wire routing technique, multiple sizes and configurations of brackets may be used depending on the desired wire route. The brackets shown in the foregoing figures are not drawn to scale and many sizes and configurations will be apparent in light of this disclosure.
  • Methodology
  • FIG. 7 is a flow diagram illustrating a method for routing a wire within a cavity in an electrical device, according to one embodiment of the present invention. Initially, the electrical device may be entirely or substantially covered in an electrical tape. In some embodiments this tape is made of Mylar®, or any other suitable insulating material. In order to access the underutilized cavities within the electrical device, the tape layer can be altered or cut. In an example embodiment, the tape is cut above the unused cavity between two battery cells in order to access the cavity. When the tape is altered, one or more locations within the cavity can be identified for placement of one or more brackets. The location of the bracket placement may be determined, among other factors, based on the size of the cavity, or the size of the electrical parts or battery cells around which a wire will be routed. In one example embodiment, the placement of the brackets may be determined before altering the electrical tape layer. The brackets may then be inserted into the desired locations within the cavity providing a structurally stable and/or electrically reliable path for wire routing. The brackets may also guide the wire or wires and prevent them from straying from their intended path. The brackets may be inserted such that, if they include a lip (as shown in FIGS. 6 a, 6 b, 6 e, and 6 f), the lip may overlap the ends of the electrical tape. Alternatively, the tape may be applied over the bracket after insertion. If desired, and adhesive material may be used to reapply the electrical tape around the electrical device, either above or underneath the brackets (or new tape may be provisioned). After bracket insertion, one or more wires or other components may be routed within the trough of the brackets. If the brackets do not extend the entire length of the cavity, the wire may pass through the troughs of one or more brackets and through the structurally stable cavities surrounding the brackets.
  • The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.

Claims (20)

What is claimed is:
1. A method for routing an electrical component comprising:
exposing a cavity between at least two electrical parts within an electrical device;
inserting at least one bracket within the cavity; and
routing an electrical component through the cavity and at least one bracket.
2. The method of claim 1, wherein exposing a cavity comprises altering an insulating tape that is covering a substantial portion of the cavity.
3. The method of claim 2, further comprising compressing a portion of the insulating tape between a portion of the at least one bracket and one of the at least two electrical parts.
4. The method of claim 2, further comprising substantially covering the bracket with a portion of the insulating tape.
5. The method of claim 2, wherein the two electrical parts are prepackaged within the insulating tape.
6. The method of claim 1, wherein the at least two electrical parts are two battery cells separated by a printed circuit board (PCB).
7. The method of claim 1, wherein inserting at least one bracket comprises inserting one bracket that extends the entire length of the cavity.
8. The method of claim 1, wherein inserting at least one bracket comprises inserting one bracket that extends only a portion of the length of the cavity.
9. The method of claim 1, wherein routing an electrical component through the cavity comprises routing at least one wire through the cavity.
10. The method of claim 1, further comprising covering a substantial portion of the at least one bracket with a housing.
11. The method of claim 1, further comprising covering a substantial portion of the at least one bracket with an additional electrical part.
12. A method of routing a wire comprising:
exposing a cavity between two battery cells by altering an insulating tape surrounding the two battery cells;
inserting at least one bracket within the cavity; and
routing a wire through the cavity and the at least one bracket.
13. The method of claim 12, wherein the two battery cells are prepackaged within the insulating tape.
14. The method of claim 12, wherein the at least one bracket forms a substantially concave trough within the cavity.
15. The method of claim 14, wherein the at least one bracket forms a tube-like structure within the cavity.
16. The method of claim 12, wherein the at least one bracket applies pressure against the two battery cells.
17. The method of claim 12, wherein the at least one bracket covers a portion of each of the two battery cells.
18. The method of claim 12, further comprising covering a substantial portion of the at least one bracket with a portion of the insulating tape.
19. The method of claim 12, wherein inserting at least one bracket comprises compressing a portion of the insulating tape between the at least one bracket and one of the two battery cells.
20. A method of routing a wire comprising:
exposing a cavity between two battery cells by altering an insulating tape surrounding an electrical device;
determining at least one location for placement of at least one concave bracket based on battery cell size;
inserting at least one concave or tube-like bracket within the cavity; and
routing a wire through the cavity and the at least one bracket.
US13/656,309 2012-07-24 2012-10-19 Techniques for efficient wire routing in a device Abandoned US20140026411A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/656,309 US20140026411A1 (en) 2012-07-24 2012-10-19 Techniques for efficient wire routing in a device
US13/946,545 US20140027166A1 (en) 2012-07-24 2013-07-19 Techniques for efficient wire routing in electronic devices

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261675136P 2012-07-24 2012-07-24
US201261675140P 2012-07-24 2012-07-24
US201261675131P 2012-07-24 2012-07-24
US201261675122P 2012-07-24 2012-07-24
US13/656,309 US20140026411A1 (en) 2012-07-24 2012-10-19 Techniques for efficient wire routing in a device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/656,364 Continuation-In-Part US9357655B2 (en) 2012-07-24 2012-10-19 Apparatus for efficient wire routing in a device

Publications (1)

Publication Number Publication Date
US20140026411A1 true US20140026411A1 (en) 2014-01-30

Family

ID=49993470

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/656,364 Active 2034-05-21 US9357655B2 (en) 2012-07-24 2012-10-19 Apparatus for efficient wire routing in a device
US13/656,309 Abandoned US20140026411A1 (en) 2012-07-24 2012-10-19 Techniques for efficient wire routing in a device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/656,364 Active 2034-05-21 US9357655B2 (en) 2012-07-24 2012-10-19 Apparatus for efficient wire routing in a device

Country Status (1)

Country Link
US (2) US9357655B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144171B2 (en) 2013-01-24 2015-09-22 Nook Digital, Llc Apparatus for split wire routing in a bracket for a device
US9209441B2 (en) 2013-01-24 2015-12-08 Nook Digital, Llc Method for split wire routing in a cavity for a device
US9357655B2 (en) 2012-07-24 2016-05-31 Nook Digital, Llc Apparatus for efficient wire routing in a device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825635A (en) * 1995-03-16 1998-10-20 Fujitsu Limited Warp prevention and cable holding structure for printed circuit board
US6160702A (en) * 1997-12-29 2000-12-12 Samsung Electronics Co., Ltd. Multiple sub-battery system for a portable computer
US6259019B1 (en) * 1997-03-27 2001-07-10 Alcatel Cable for transmitting data and method of manufacturing it
US6844105B1 (en) * 1999-12-17 2005-01-18 Mitsubishi Denki Kabushiki Kaisha Plate shaped battery pack and portable radio terminal
US20050069763A1 (en) * 2003-09-29 2005-03-31 Ji-Jun Hong Lithium secondary battery with high safety and manufacturing method thereof
US20050079412A1 (en) * 2003-06-19 2005-04-14 Hyun-Joong Kim Battery pack
US20120009443A1 (en) * 2010-07-09 2012-01-12 Samsung Sdi Co., Ltd. Battery Pack for a Lithium Polymer Battery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659319A (en) 1970-11-30 1972-05-02 Lloyd A Erickson Adhesive wire routing clip
US3836415A (en) 1972-11-03 1974-09-17 Ford Motor Co Method of fabricating a precontoured unitized electrical wiring harness
US5601942A (en) 1993-08-31 1997-02-11 Vst Technologies, Inc. Portable battery pack apparatus and method of fabrication thereof
US6232013B1 (en) 1997-11-26 2001-05-15 Lucent Technologies Inc. Droppable battery packs
US20020109971A1 (en) 2000-08-22 2002-08-15 Force Computers, Inc. Add-on cable feed-through device for computer chassis
EP1460698B1 (en) 2001-12-26 2010-12-15 Sony Corporation Battery pack
JP2007174731A (en) 2005-12-19 2007-07-05 Fujitsu Ltd Cable clamp
JP4165586B2 (en) 2006-08-02 2008-10-15 ソニー株式会社 Battery pack
US20080113262A1 (en) * 2006-08-09 2008-05-15 Phillips Steven J Battery Pack and Internal Component Arrangement Within the Battery Pack for Cordless Power Tool System
EP2483949B1 (en) * 2009-10-01 2014-04-30 Bayerische Motoren Werke Aktiengesellschaft Device for electrically interconnecting cells in a battery pack by means of cell connectors and battery pack with such cell connectors
KR101621099B1 (en) 2009-12-18 2016-05-16 삼성에스디아이 주식회사 Battery Pack and method for fabricating the same
WO2011096863A1 (en) * 2010-02-05 2011-08-11 Alelion Batteries Ab Battery assembly
US9065085B2 (en) 2011-04-19 2015-06-23 Samsung Sdi Co., Ltd. Battery pack
US9357655B2 (en) 2012-07-24 2016-05-31 Nook Digital, Llc Apparatus for efficient wire routing in a device
US20140027166A1 (en) 2012-07-24 2014-01-30 Barnesandnoble.Com Llc Techniques for efficient wire routing in electronic devices
US9144171B2 (en) * 2013-01-24 2015-09-22 Nook Digital, Llc Apparatus for split wire routing in a bracket for a device
US20140201996A1 (en) 2013-01-24 2014-07-24 Barnesandnoble.Com Llc Techniques for split wire routing for a bracket in a device
US9209441B2 (en) 2013-01-24 2015-12-08 Nook Digital, Llc Method for split wire routing in a cavity for a device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825635A (en) * 1995-03-16 1998-10-20 Fujitsu Limited Warp prevention and cable holding structure for printed circuit board
US6259019B1 (en) * 1997-03-27 2001-07-10 Alcatel Cable for transmitting data and method of manufacturing it
US6160702A (en) * 1997-12-29 2000-12-12 Samsung Electronics Co., Ltd. Multiple sub-battery system for a portable computer
US6844105B1 (en) * 1999-12-17 2005-01-18 Mitsubishi Denki Kabushiki Kaisha Plate shaped battery pack and portable radio terminal
US20050079412A1 (en) * 2003-06-19 2005-04-14 Hyun-Joong Kim Battery pack
US20050069763A1 (en) * 2003-09-29 2005-03-31 Ji-Jun Hong Lithium secondary battery with high safety and manufacturing method thereof
US20120009443A1 (en) * 2010-07-09 2012-01-12 Samsung Sdi Co., Ltd. Battery Pack for a Lithium Polymer Battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357655B2 (en) 2012-07-24 2016-05-31 Nook Digital, Llc Apparatus for efficient wire routing in a device
US9144171B2 (en) 2013-01-24 2015-09-22 Nook Digital, Llc Apparatus for split wire routing in a bracket for a device
US9209441B2 (en) 2013-01-24 2015-12-08 Nook Digital, Llc Method for split wire routing in a cavity for a device

Also Published As

Publication number Publication date
US9357655B2 (en) 2016-05-31
US20140029218A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
CN101160017B (en) Wired circuit board and electronic device
US9144171B2 (en) Apparatus for split wire routing in a bracket for a device
US9445528B2 (en) Thermal gap pad
KR102500671B1 (en) Photovoltaic module with external electrical connector
US20140201996A1 (en) Techniques for split wire routing for a bracket in a device
CN107665335B (en) Fingerprint identification module and terminal equipment
CN100576516C (en) Semiconductor device
CN107889544B (en) Electromagnetic interference (EMI) shielding cage
US20140027166A1 (en) Techniques for efficient wire routing in electronic devices
US9357655B2 (en) Apparatus for efficient wire routing in a device
CN106465539A (en) Circuit board, power storage device, battery pack, and electronic device
WO2007106625A3 (en) Perforated embedded plane package and method
CN104779497B (en) Flexible flat cable, electric connector and combination thereof
CN104488077A (en) Chip heat dissipation structure and terminal device
WO2017017306A1 (en) Connection system for electrical, signal and/or data installations
CN107948348A (en) Mobile terminal and its circuit board assemblies, shielding case
CN105895611B (en) With wettable side without lead quad flat semiconductor packages
CN102148436B (en) Connecting device and portable electronic device using same
US9209441B2 (en) Method for split wire routing in a cavity for a device
KR101951928B1 (en) EMI Gasket
CN105706440A (en) Through PCB hole cable lead dress conduit
KR101937748B1 (en) Shield can of electronic device
CN110447312A (en) Line width scaled-down version flexible circuit board and its manufacturing method
RU2293414C1 (en) Cable coupler
US20160285494A1 (en) Rf signal transmission in battery pack

Legal Events

Date Code Title Description
AS Assignment

Owner name: BARNESANDNOBLE.COM LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERTSON, KARLA;JOSHI, NINA;REEL/FRAME:029490/0977

Effective date: 20121030

AS Assignment

Owner name: NOOK DIGITAL, LLC, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:NOOK DIGITAL LLC;REEL/FRAME:035187/0476

Effective date: 20150303

Owner name: NOOK DIGITAL LLC, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:BARNESANDNOBLE.COM LLC;REEL/FRAME:035187/0469

Effective date: 20150225

AS Assignment

Owner name: NOOK DIGITAL LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO REMOVE APPLICATION NUMBERS 13924129 AND 13924362 PREVIOUSLY RECORDED ON REEL 035187 FRAME 0469. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:BARNESANDNOBLE.COM LLC;REEL/FRAME:036131/0409

Effective date: 20150225

Owner name: NOOK DIGITAL, LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO REMOVE APPLICATION NUMBERS 13924129 AND 13924362 PREVIOUSLY RECORDED ON REEL 035187 FRAME 0476. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:NOOK DIGITAL LLC;REEL/FRAME:036131/0801

Effective date: 20150303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION