US20140009268A1 - Communication device - Google Patents

Communication device

Info

Publication number
US20140009268A1
US20140009268A1 US13820861 US201113820861A US2014009268A1 US 20140009268 A1 US20140009268 A1 US 20140009268A1 US 13820861 US13820861 US 13820861 US 201113820861 A US201113820861 A US 201113820861A US 2014009268 A1 US2014009268 A1 US 2014009268A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
information
unit
server
device
step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13820861
Other versions
US9142122B2 (en )
Inventor
Mitsuaki Oshima
Toshiaki Ohnishi
Masaru Yamaoka
Tomoaki Ohira
Michihiro Matsumoto
Tsutomu Mukai
Yosuke Matsushita
Shohji Ohtsubo
Hironori Nakae
Kazunori Yamada
Mizuho Sakakibara
Kohei Yamaguchi
Shigehiro Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infra-red
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0025Near field system adaptations
    • H04B5/0031Near field system adaptations for data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/02Near-field transmission systems, e.g. inductive loop type using transceiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/30User interface
    • G08C2201/32Remote control based on movements, attitude of remote control device
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/70Device selection
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/91Remote control based on location and proximity
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/93Remote control using other portable devices, e.g. mobile phone, PDA, laptop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0056Near-field transmission systems, e.g. inductive loop type for use in interrogation, identification or read/write systems
    • H04B5/0062Near-field transmission systems, e.g. inductive loop type for use in interrogation, identification or read/write systems in RFID [Radio Frequency Identification] Systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/14Network-specific arrangements or communication protocols supporting networked applications for session management
    • H04L67/148Network-specific arrangements or communication protocols supporting networked applications for session management provided for migration or transfer of sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/34Network-specific arrangements or communication protocols supporting networked applications involving the movement of software or configuration parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Abstract

A mobile device includes a position sensing unit, a remote control information obtainment unit, and a storage unit. Position information obtained by the position sensing unit is stored in the storage unit in association with remote control information. The mobile device further includes a directional space obtainment unit and an apparatus specification unit. The mobile device recognizes a direction pointed by a user using the mobile device, and enables operation of a terminal apparatus existing in the pointing direction.

Description

    TECHNICAL FIELD
  • The present invention relates to communication devices, and more particularly to a communication device that uses proximity wireless communication (near field communication (NFC)) to provide an extended user interface for home appliances.
  • BACKGROUND ART
  • As a conventional communication device that uses proximity wireless communication, there is disclosed a remote controller capable of reading apparatus information from an IC tag and registering operation information corresponding to the apparatus information (for example, see Patent Literature (PTL) 1).
  • The disclosed remote controller includes operation units, and remotely controls a predetermined controlled apparatus. The remote controller includes: an IC tag reading unit that reads the apparatus information corresponding to the controlled apparatus from an IC tag; and a CPU that executes a registration program for registering a control information data file in which the apparatus information and control information are stored in association with each other and the apparatus information read by the IC tag reading unit, and also for obtaining the control information associated with the apparatus information from the control information data file and registering the control information in association with corresponding operation units. When an operation unit is pressed, the remote controller transmits control information corresponding to the pressed operation unit from among the registered control information, to the controlled apparatus.
  • There is also disclosed a remote control user interface that uses proximity wireless communication for ease and convenience of operation (for example, see PTL 2).
  • In the disclosed technique, a wireless tag storing information necessary for operating an external electronic apparatus is held in a region of an operation sheet segmented for different operation items. A remote controller contactlessly reads the information stored in the wireless tag, and transmits a command signal based on the read information to the electronic apparatus.
  • There is also disclosed a technique of selecting necessary information by a simple operation by pointing to a button to be selected on a screen (for example, see PTL 3).
  • The disclosed structure includes: a remote control unit that detects and measures an angle change amount between two directions when an operator holding the remote controller moves the remote controller, by an angle sensor included in the remote controller; a screen coordinate unit that calculates two-dimensional coordinates pointed by the remote control unit on a screen of a display unit, from initial coordinates and the measured angle change amount; a selected button recognition unit that determines a selected button based on the obtained two-dimensional coordinates and button position information stored in a button information storage unit; and a screen display control unit that displays buttons at corresponding positions on the screen of the display unit, and displays the selected button in a hotspot. In the case of accepting the selected button, an Enter button is pressed to transmit an accept signal.
  • CITATION LIST Patent Literature [PTL 1]
    • Japanese Unexamined Patent Application Publication No. 2007-134962
    [PTL 2]
    • Japanese Unexamined Patent Application Publication No. 2004-145720
    [PTL 3]
    • Japanese Unexamined Patent Application Publication No. 2000-270237
    SUMMARY OF INVENTION Technical Problem
  • However, the structure in PTL 1 has the following problem. Upon operating the controlled apparatus, the user needs to select the apparatus to be operated, via a display unit, buttons, and keys. Thus, the user needs to perform a plurality of operations on the remote control terminal when selecting the controlled apparatus.
  • The structure in PTL 2 has the following problem. Since an operation sheet needs to be prepared for each electronic apparatus, more operation sheets are needed as the number of electronic apparatuses which the user wants to control increases.
  • The structure in PTL 3 has the following problem. The remote controller transmits the angle change amount of the movement of the operator to a control device, and the control device determines the location pointed by the operator based on the angle change amount. Thus, a plurality of devices, i.e. a remote control device, a control device, and a display device, need to be provided in order to control the apparatus. Besides, PTL 3 neither discloses nor suggests a method of, in the case of operating a plurality of controlled apparatuses, registering a controlled apparatus selected by the operator and instructions to the selected controlled apparatus.
  • To solve the conventional problems described above, the present invention has an object of enabling a mobile device such as a mobile phone or a smartphone to easily provide an extended user interface such as universal remote control, home appliance content download, and the like, using various sensors such as an RFID, GPS, and motion sensor of the mobile device.
  • Solution to Problem
  • To achieve the stated object, a wireless communication terminal according to an aspect of the present invention includes: a power unit; a display unit; an input and output unit; a wireless communication unit that performs data transmission and reception; a near field communication (NFC) unit that performs data transmission and reception by NFC; and a control unit that controls at least the power unit, the display unit, the input and output unit, the wireless communication unit, and the NFC unit, wherein the NFC unit includes at least an antenna unit and a transmission and reception circuit, and the control unit: performs a first step of, after specific setting is made, transmitting a radio wave or an electromagnetic wave from the antenna unit using the NFC unit, and receiving transmission data using the NFC unit, the transmission data being transmitted from an external communication device that includes an external NFC unit and including specific information in the external communication device; performs, after the first step, a second step according to the specific information in the transmission data as a specific process, the second step being a step of connecting to a specific server using the NFC unit in the case where server identification information for identifying the connection to the specific server is included in the specific information; performs a third step of transmitting server transmission data relating to the specific information to the specific server, using the wireless communication unit; performs, after the third step, a fourth step of receiving response information relating to the server transmission data from the specific server, using the wireless communication unit; and performs, after the fourth step, a fifth step of displaying information relating to the response information on the display unit.
  • Thus, the communication device according to an aspect of the present invention can store position information of the communication device and operation information of an apparatus in association with each other. Moreover, a controlled apparatus can be operated merely by pointing the mobile device to the controlled apparatus, through the use of position information of the controlled apparatus.
  • Advantageous Effects of Invention
  • Thus, according to the present invention, a controlled apparatus can be operated merely by pointing the mobile device to the controlled apparatus, through the use of position information of the controlled apparatus. Furthermore, operation information of a home appliance can be easily obtained by single press of a button, using proximity wireless communication.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates an entire system of an image capturing device according to Embodiment 1 of the present invention.
  • FIG. 2 is an external view of the image capturing device according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram of the image capturing device according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram of a second memory in the image capturing device according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram of the second memory in the image capturing device according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram of image display method instruction information of the image capturing device according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of processing performed by the image capturing device and a TV, according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 10 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 11 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 12 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 13 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 14 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 15 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 16 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 17 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 18 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 19 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 20 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 21 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 22 is a diagram presenting a display method of the image capturing device and the TV, according to Embodiment 1 of the present invention.
  • FIG. 23 is a block diagram of a RF-ID unit in the image capturing device for storing an operation program, a remote controller of the TV, and the TV.
  • FIG. 24 is a flowchart of processing for transferring and executing the operation program stored in the RF-ID unit.
  • FIG. 25 presents an example of description of the operation program for downloading image and executing slide show.
  • FIG. 26 is a block diagram of (a) the TV changing processing of the operation program according to a language code, and (b) a server storing the program.
  • FIG. 27 is a flowchart of processing for changing processing of the operation program according to a language code.
  • FIG. 28 is a block diagram of a home network 6500 connecting the image capturing device 1 to the TV 45 by a wireless LAN.
  • FIG. 29 presents an example of an authentication method without using RF-ID unit.
  • FIG. 30 presents an example of an authentication method using RF-ID unit.
  • FIG. 31 presents an example of an authentication method used when it is difficult to move a terminal into proximity of another terminal.
  • FIG. 32 is a flowchart of an example of processing performed by a camera.
  • FIG. 33 is a flowchart of an example of processing performed by the TV.
  • FIG. 34 is a block diagram of (a) a first processing unit generating the operation program in the image capturing device 1 to be executed by the TV, and (b) a second memory unit.
  • FIG. 35 is a flowchart of processing performed by a program generation unit 7005 in the first processing unit.
  • FIG. 36 is a flowchart of an example of a program generated by the program generation unit 7005.
  • FIG. 37 is a block diagram of (a) the first processing unit generating the operation program in the image capturing device 1 to display a use status of the image capturing device 1, and (b) the second memory unit.
  • FIG. 38 illustrates a use example where the program generated by the image capturing device 1 is executed by an external device (apparatus).
  • FIG. 39 is a flowchart in the case where the program generated by the image capturing device 1 is executed by a remote controller with display function.
  • FIG. 40A is a flowchart of uploading steps in a camera according to Embodiment 2 of the present invention.
  • FIG. 40B is a flowchart of uploading steps in a camera according to Embodiment 2 of the present invention.
  • FIG. 40C is a flowchart of uploading steps in a camera according to Embodiment 2 of the present invention.
  • FIG. 41 is a flowchart of uploading steps in the camera according to Embodiment 2 of the present invention.
  • FIG. 42A is a flowchart of uploading steps in the camera according to Embodiment 1 of the present invention.
  • FIG. 42B is a flowchart of uploading steps in the camera according to Embodiment 1 of the present invention.
  • FIG. 42C is a flowchart of uploading steps in the camera according to Embodiment 1 of the present invention.
  • FIG. 42D is a flowchart of uploading steps in the camera according to Embodiment 1 of the present invention.
  • FIG. 43 is a flowchart of operation steps of a RF-ID unit in the camera according to Embodiment 2 of the present invention.
  • FIG. 44 is a block diagram of a TV according to Embodiment 2 of the present invention.
  • FIG. 45 is a flowchart of RF-ID communication between the camera and the TV, according to Embodiment 2 of the present invention.
  • FIG. 46A is a flowchart presenting details of FIG. 45.
  • FIG. 46B is a flowchart presenting details of FIG. 45.
  • FIG. 47A presents a data format of the RF-ID communication between the camera and the TV.
  • FIG. 47B presents a data format of the RF-ID communication between the camera and the TV.
  • FIG. 48 is a schematic diagram of an electronic catalog display system.
  • FIG. 49 is a block diagram of an electronic catalog server information input device.
  • FIG. 50 is a flowchart of steps of processing performed by the electronic catalog server information input device.
  • FIG. 51 is a block diagram of a RF-ID unit of an electronic catalog notification card.
  • FIG. 52 is a block diagram of a TV displaying an electronic catalog.
  • FIG. 53 is a block diagram of an electronic catalog server.
  • FIG. 54 is a flowchart of steps of processing performed by the electronic catalog server.
  • FIG. 55 is a flowchart of steps of processing performed by a TV displaying the electronic catalog.
  • FIG. 56 is a diagram illustrating screen display of the electronic catalog.
  • FIG. 57 is a table of a data structure of a customer attribute database.
  • FIG. 58 is a table of a data structure of an electronic catalog database.
  • FIG. 59 is a schematic diagram of a RF-ID-attached post card mailing system.
  • FIG. 60 is a block diagram of a TV in the RF-ID-attached post card mailing system.
  • FIG. 61 is a diagram illustrating screen display in image selection operation by the RF-ID-attached post card mailing system.
  • FIG. 62 is a flowchart of steps of processing performed by an image server in the RF-ID-attached post card mailing system.
  • FIG. 63 is a block diagram of a system according to Embodiment 5 of the present invention.
  • FIG. 64 is a diagram illustrating examples of fixed information of a mailing object according to Embodiment 5 of the present invention.
  • FIG. 65 is a flowchart of processing for associating an image capturing device with an image server, according to Embodiment 5 of the present invention.
  • FIG. 66 is a flowchart of processing for registering the image capturing device with a relay server, according to Embodiment 5 of the present invention.
  • FIG. 67 is a diagram illustrating an example of a mailing object attached with a 2-dimensional code.
  • FIG. 68 is a flowchart of processing using a 2-dimensional bar-code of the image capturing device according to Embodiment 5 of the present invention.
  • FIG. 69 is a flowchart of processing performed by a TV according to Embodiment 5 of the present invention.
  • FIG. 70 is a flowchart of processing performed by the relay server according to Embodiment 5 of the present invention.
  • FIG. 71 is a schematic diagram of an image transmitting side according to Embodiment 6 of the present invention.
  • FIG. 72 is a schematic diagram of an image receiving side according to Embodiment 6 of the present invention.
  • FIG. 73 is a flowchart of processing performed by a TV transmitting image according to Embodiment 6 of the present invention.
  • FIG. 74 is a flowchart of processing performed by a TV receiving image according to Embodiment 6 of the present invention.
  • FIG. 75A is a flowchart of another example of processing performed by the TV transmitting image according to Embodiment 6 of the present invention.
  • FIG. 75B is a flowchart of another example of processing performed by the TV transmitting image according to Embodiment 6 of the present invention.
  • FIG. 76 is a table of an example of information recorded in a mailing object memory unit according to Embodiment 6 of the present invention.
  • FIG. 77 is a block diagram of a recorder according to Embodiment 7 of the present invention.
  • FIG. 78 is a block diagram of a RF-ID card according to Embodiment 7 of the present invention.
  • FIG. 79 is a flowchart of steps of registering setting information to a server.
  • FIG. 80 is a table of pieces of setting information registered in the server.
  • FIG. 81 is a table of pieces of apparatus operation information registered in the RF-ID card.
  • FIG. 82 is a flowchart of steps of updating setting information of a recorder by the RF-ID card.
  • FIG. 83 is a flowchart of steps of obtaining the setting information from the server.
  • FIG. 84 is a table of apparatus operation information registered in the RF-ID card used in the recorder.
  • FIG. 85 is a table of apparatus operation information registered in the RF-ID card used in a vehicle navigation device.
  • FIG. 86 is a block diagram of a configuration where a remote controller of a TV or the like has a RF-ID reader, according to Embodiment 7 of the present invention.
  • FIG. 87 is a flowchart of processing performed by the above configuration according to Embodiment 7 of the present invention.
  • FIG. 88 is a diagram of a network environment.
  • FIG. 89 is a functional block diagram of a mobile AV terminal.
  • FIG. 90 is a functional block diagram of a TV.
  • FIG. 91 is a sequence diagram in the case where the mobile AV terminal gets video (first half, control performed by get side).
  • FIG. 92 is a sequence diagram in the case where the mobile AV terminal gives video (second half, control performed by get side).
  • FIG. 93 is a basic flowchart of the mobile AV terminal.
  • FIG. 94 is a flowchart of a give mode of the mobile AV terminal.
  • FIG. 95 is a flowchart of a get mode of the mobile AV terminal.
  • FIG. 96 is a flowchart of a wireless get mode of the mobile AV terminal.
  • FIG. 97 is a flowchart of a URL get mode of the mobile AV terminal.
  • FIG. 98 is a flowchart of server position search by the mobile AV terminal.
  • FIG. 99 is a flowchart of a mode in which the mobile AV terminal gets video from an external server.
  • FIG. 100 is a basic flowchart of the TV.
  • FIG. 101 is a flowchart of a give mode of the TV.
  • FIG. 102 is a flowchart of a get mode of the TV.
  • FIG. 103 is a schematic diagram in the case where video being reproduced in a TV is passed to a mobile AV terminal.
  • FIG. 104 is a diagram for explaining a procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 105 is a diagram for explaining the procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 106 is a diagram for explaining the procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 107 is a diagram for explaining the procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 108 is a diagram for explaining the procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 109 is a diagram for explaining the procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 110 is a diagram for explaining the procedure of passing video reproduction from the TV to the mobile AV terminal by NFC.
  • FIG. 111 is a schematic diagram showing reproduced video passing between the TV and the mobile AV terminal.
  • FIG. 112 is a diagram showing a list of delay times in video passing.
  • FIG. 113 is a diagram for explaining a procedure of passing video being reproduced in the TV to the mobile AV terminal.
  • FIG. 114 is a diagram for explaining the procedure of passing video being reproduced in the TV to the mobile AV terminal.
  • FIG. 115 is a diagram for explaining the procedure of passing video being reproduced in the TV to the mobile AV terminal.
  • FIG. 116 is a diagram for explaining the procedure of passing video being reproduced in the TV to the mobile AV terminal.
  • FIG. 117 is a diagram for explaining the procedure of passing video being reproduced in the TV to the mobile AV terminal.
  • FIG. 118 is a diagram for explaining the procedure of passing video being reproduced in the TV to the mobile AV terminal.
  • FIG. 119 is a diagram for explaining a procedure of passing video being reproduced in the mobile AV terminal to the TV.
  • FIG. 120 is a diagram for explaining the procedure of passing video being reproduced in the mobile AV terminal to the TV.
  • FIG. 121 is a diagram for explaining the procedure of passing video being reproduced in the mobile AV terminal to the TV.
  • FIG. 122 is a schematic diagram showing data exchange between mobile AV terminals using NFC.
  • FIG. 123 is a sequence diagram showing data exchange between mobile AV terminals using NFC or high-speed wireless communication.
  • FIG. 124 is a sequence diagram showing the data exchange between the mobile AV terminals using NFC or high-speed wireless communication.
  • FIG. 125 is a sequence diagram showing the data exchange between the mobile AV terminals using NFC or high-speed wireless communication.
  • FIG. 126 is a sequence diagram showing the data exchange between the mobile AV terminals using NFC or high-speed wireless communication.
  • FIG. 127 is a terminal screen flow diagram when exchanging data using NFC and high-speed wireless communication.
  • FIG. 128 is a terminal screen flow diagram when exchanging data using NFC and high-speed wireless communication.
  • FIG. 129 is a terminal screen flow diagram when exchanging data using NFC.
  • FIG. 130 is a terminal screen flow diagram when exchanging data using NFC.
  • FIG. 131 is a diagram for explaining a procedure of data exchange between mobile AV terminals.
  • FIG. 132 is a diagram for explaining the procedure of data exchange between the mobile AV terminals.
  • FIG. 133 is a diagram for explaining the procedure of data exchange between the mobile AV terminals.
  • FIG. 134 is a diagram for explaining the procedure of data exchange between the mobile AV terminals.
  • FIG. 135 is a diagram for explaining the procedure of data exchange between the mobile AV terminals.
  • FIG. 136 is a diagram for explaining the procedure of data exchange between the mobile AV terminals.
  • FIG. 137 is a diagram showing a communication format in data exchange using NFC shown in FIGS. 138A and 138B.
  • FIG. 138A is a diagram for explaining a procedure of data exchange between mobile AV terminals.
  • FIG. 138B is a diagram for explaining the procedure of data exchange between the mobile AV terminals.
  • FIG. 139 is a diagram showing a screen of a mobile AV terminal 2.
  • FIG. 140 is a sequence diagram in the case where the mobile AV terminal gets video (first half, control performed by give side).
  • FIG. 141 is a sequence diagram in the case where the mobile AV terminal gives video (second half, control performed by give side)
  • FIG. 142 is a sequence diagram in the case where passing is performed by a remote controller.
  • FIG. 143 is a sequence diagram in the case where a video server performs synchronous transmission.
  • FIG. 144 is a schematic diagram illustrating processing of HF-RFID and UHF-RFID upon apparatus factory shipment.
  • FIG. 145 is a schematic diagram illustrating a recording format of a memory accessible from a UHF-RFID tag M005.
  • FIG. 146 is a flowchart of a flow of processing of copying a product serial number and the like from HF-RFID to UHF-RFID upon factory shipment of an apparatus M003.
  • FIG. 147 is a flowchart of a flow of processing in a distribution process of the apparatus M003.
  • FIG. 148 is a block diagram according to Embodiment 13 of the present invention.
  • FIG. 149 is a flowchart according to Embodiment 13 of the present invention.
  • FIG. 150 is a flowchart according to Embodiment 13 of the present invention.
  • FIG. 151 is a diagram of a network environment in home ID registration.
  • FIG. 152 is a hardware diagram of the communication device in the home ID registration.
  • FIG. 153 is a functional block diagram of the communication device in the home ID registration.
  • FIG. 154 is a flowchart of the home ID registration.
  • FIG. 155 is a flowchart of home ID obtainment.
  • FIG. 156 is a sequence diagram of the home ID registration.
  • FIG. 157 is a functional block diagram of communication devices in home ID sharing.
  • FIG. 158 is a flowchart of processing performed by a receiving communication device in the home ID sharing (using proximity wireless communication).
  • FIG. 159 is a flowchart of processing performed by a transmitting communication device in the home ID sharing (using proximity wireless communication).
  • FIG. 160 is a sequence diagram of the home ID sharing (using proximity wireless communication).
  • FIG. 161 is a flowchart of processing performed by the receiving communication device in the home ID sharing (using a home network device).
  • FIG. 162 is a flowchart of processing performed by the transmitting communication device in the home ID sharing (using the home network device).
  • FIG. 163 is a sequence diagram of the home ID sharing (using the home network device).
  • FIG. 164 is a block diagram of a device management system according to Embodiment 16 of the present invention.
  • FIG. 165 is a sequence diagram of the device management system according to Embodiment 16 of the present invention.
  • FIG. 166 is a schematic diagram of a structure of a device management database according to Embodiment 16 of the present invention.
  • FIG. 167 is a schematic diagram of display of the device management system according to Embodiment 16 of the present invention.
  • FIG. 168 is a functional block diagram of a RF-ID unit N10 according to Embodiment 17 of the present invention.
  • FIG. 169 is a functional block diagram of a mobile device N20 according to Embodiment 17 of the present invention.
  • FIG. 170 is a functional block diagram of a registration server N40 according to Embodiment 17 of the present invention.
  • FIG. 171 is a diagram illustrating an example of an arrangement of networked products according to Embodiment 17 of the present invention.
  • FIG. 172 is a diagram illustrating an example of a system according to Embodiment 17 of the present invention.
  • FIG. 173 is a sequence diagram for registering information of a TV N10A into a registration server N40, according to Embodiment 17 of the present invention.
  • FIG. 174 is a table illustrating an example of a structure of product information and server registration information according to Embodiment 17 of the present invention.
  • FIG. 175 is a table illustrating an example of a structure of product information stored in a product information management unit N45 according to Embodiment 17 of the present invention.
  • FIG. 176 is a flowchart illustrating an example of processing performed by a RF-ID unit N10 to perform product registration according to Embodiment 17 of the present invention.
  • FIG. 177 is a flowchart illustrating an example of processing performed by a mobile device N20 to perform product registration according to Embodiment 17 of the present invention.
  • FIG. 178 is a flowchart illustrating an example of processing performed by a registration server N40 to perform product registration according to Embodiment 17 of the present invention.
  • FIG. 179 is a sequence diagram illustrating an example of controlling power for an air conditioner N10J and a TV N10A according to Embodiment 17 of the present invention.
  • FIG. 180A is a table illustrating an example of a structure of positional information and product control information according to Embodiment 17 of the present invention.
  • FIG. 180B is a table illustrating an example of a structure of positional information and product control information according to Embodiment 17 of the present invention.
  • FIG. 180C is a table illustrating an example of a structure of positional information and product control information according to Embodiment 17 of the present invention.
  • FIG. 181 is a diagram illustrating a product map generated by a position information generation unit N48 according to Embodiment 17 of the present invention.
  • FIG. 182 is a table illustrating an example of a structure of product information stored in the product information management unit N45 according to Embodiment 17 of the present invention.
  • FIG. 183 is a diagram illustrating a product map generated by the position information generation unit N48 according to Embodiment 17 of the present invention.
  • FIG. 184 is a table illustrating examples of an accuracy identifier according to Embodiment 17 of the present invention.
  • FIG. 185 is a diagram illustrating an example of a system according to Embodiment 17 of the present invention.
  • FIG. 186 is a diagram illustrating an example of an entire system according to Embodiment 18 of the present invention.
  • FIG. 187 is a diagram illustrating an example of an arrangement of products embedded with RF-ID units O50 according to Embodiment 18 of the present invention.
  • FIG. 188 is a diagram illustrating an example of a three-dimensional (3D) map of a building, which is building coordinate information extracted from a building coordinate database O104 according to Embodiment 18 of the present invention.
  • FIG. 189 is a diagram illustrating an example of image data of a 3D map of products which is generated by a program execution unit O65 according to Embodiment 18 of the present invention.
  • FIG. 190 is a diagram illustrating an example of a 3D product map in which image data of FIG. 151 is combined with the already-displayed image data of FIG. 152 by a display unit O68 according to Embodiment 18 of the present invention.
  • FIG. 191 is a table illustrating examples of an accuracy identifier according to Embodiment 18 of the present invention.
  • FIG. 192 is a flowchart illustrating an example of processing for the 3D map according to Embodiment 18 of the present invention.
  • FIG. 193 is a flowchart illustrating an example of processing for the 3D map according to Embodiment 18 of the present invention.
  • FIG. 194 is a diagram illustrating an example of a specific small power wireless communication system using the 3D map according to Embodiment 18 of the present invention.
  • FIG. 195 is a schematic diagram showing an overall communication system according to Embodiment 19 of the present invention.
  • FIG. 196 is a block diagram showing a structure of a mobile device 102 according to Embodiment 19 of the present invention.
  • FIG. 197 is a block diagram showing a structure of an apparatus specification unit 209 according to Embodiment 19 of the present invention.
  • FIG. 198 is a table showing an example of a data structure of a storage unit 213 according to Embodiment 19 of the present invention.
  • FIG. 199 is a graph showing an example of a method of calculating a directional space by a directional space calculating unit 208 according to Embodiment 19 of the present invention.
  • FIG. 200 is a flowchart of a flow of processing of registering remote control information to the storage unit 213 of the mobile device 102 according to Embodiment 19 of the present invention.
  • FIG. 201A is a flowchart of a flow of processing of setting remote control information in the mobile device 102 and operating the mobile device 102 as a remote controller in the case where an application is activated by a user according to Embodiment 19 of the present invention.
  • FIG. 201B is a flowchart of a flow of processing of setting remote control information in the mobile device 102 and operating the mobile device 102 as a remote controller in the case where an application is activated automatically according to Embodiment 19 of the present invention.
  • FIG. 202 is a flowchart of a flow of processing of specifying a terminal apparatus 101 existing in a direction pointed by the mobile device 102 according to Embodiment 19 of the present invention.
  • FIG. 203 is a flowchart of a flow of processing of operating the terminal apparatus 101 by using, as a remote controller, the mobile device 102 according to Embodiment 19 of the present invention.
  • FIG. 204 is a sequence diagram showing data exchange between the terminal apparatus 101, the mobile device 102, and a server device 104 when registering remote control information to the mobile device 102 according to Embodiment 19 of the present invention.
  • FIG. 205 is a sequence diagram showing data exchange between the terminal apparatus 101, the mobile device 102, and the server device 104 when operating the terminal apparatus 101 using the mobile device 102 as a remote controller according to Embodiment 19 of the present invention.
  • FIG. 206 is a diagram showing an example of reading apparatus information of the terminal apparatus 101 from a bar-code according to Embodiment 19 of the present invention.
  • FIG. 207 is a diagram showing an example of operating a plurality of illumination apparatuses (switching between ON and OFF) according to Embodiment 19 of the present invention.
  • FIG. 208 is a diagram showing a display example in the case of prompting a user to select a television or a recorder according to Embodiment 19 of the present invention.
  • FIG. 209 is a schematic diagram of remote control operation for the second floor, according to Embodiment 19 of the present invention.
  • FIG. 210 is a configuration of network environment for apparatus connection setting according to Embodiment 20 of the present invention.
  • FIG. 211 is a diagram showing a structure of a network module of an apparatus according to Embodiment 20 of the present invention.
  • FIG. 212 is a functional block diagram of a structure of a home appliance control device according to Embodiment 20 of the present invention.
  • FIG. 213 is a diagram for explaining an operation when setting a solar panel according to Embodiment 20 of the present invention.
  • FIG. 214 is a diagram of switching of a mobile terminal screen in setting the solar panel according to Embodiment 20 of the present invention.
  • FIG. 215 is a diagram of switching of a mobile terminal screen in subsequent authentication of the solar panel according to Embodiment 20 of the present invention.
  • FIG. 216 is a diagram of a mobile terminal screen in checking energy production of a target solar panel according to Embodiment 20 of the present invention.
  • FIG. 217 is a diagram of a mobile terminal screen in checking a trouble of a solar panel according to Embodiment 20 of the present invention.
  • FIG. 218 is a flowchart when setting the solar panel according to Embodiment 20 of the present invention.
  • FIG. 219 is a flowchart when setting the solar panel according to Embodiment 20 of the present invention.
  • FIG. 220 is a flowchart when setting the solar panel according to Embodiment 20 of the present invention.
  • FIG. 221 is a flowchart when setting the solar panel according to Embodiment 20 of the present invention.
  • FIG. 222 is a flowchart when setting the solar panel according to Embodiment 20 of the present invention.
  • FIG. 223 is a diagram showing a procedure of equipping the solar panel according to Embodiment 20 of the present invention.
  • FIG. 224 is a flowchart of a procedure of connecting to a SEG according to Embodiment 20 of the present invention.
  • FIG. 225 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 226 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 227 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 228 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 229 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 230 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 231 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 232 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 233 is a flowchart of the procedure of connecting to the SEG according to Embodiment 20 of the present invention.
  • FIG. 234 is a flowchart of a connection procedure using a relay device according to Embodiment 20 of the present invention.
  • FIG. 235 is a flowchart of the connection procedure using the relay device according to Embodiment 20 of the present invention.
  • FIG. 236 is a flowchart of remote control operation according to Embodiment 21 of the present invention.
  • FIG. 237 is a flowchart of remote control operation according to Embodiment 21 of the present invention.
  • FIG. 238 is a flowchart of remote control operation according to Embodiment 21 of the present invention.
  • FIG. 239 is a flowchart of reference point setting in the case where a current reference point is not correct according to Embodiment 21 of the present invention.
  • FIG. 240 is a flowchart of a procedure of connecting an apparatus and a parent device according to Embodiment 21 of the present invention.
  • FIG. 241 is a flowchart of the procedure of connecting the apparatus and the parent device according to Embodiment 21 of the present invention.
  • FIG. 242 is a flowchart of a position information registration method according to Embodiment 21 of the present invention.
  • FIG. 243 is a flowchart of the position information registration method according to Embodiment 21 of the present invention.
  • FIG. 244 is a flowchart of the position information registration method according to Embodiment 21 of the present invention.
  • FIG. 245 is a diagram showing a device (apparatus) configuration according to Embodiment 22 of the present invention.
  • FIG. 246 is a diagram showing display screens of a mobile device and display screens of a cooperation apparatus, according to Embodiment 22 of the present invention.
  • FIG. 247 is a flowchart of processing according to Embodiment 22 of the present invention.
  • FIG. 248 is a flowchart of the processing according to Embodiment 22 of the present invention.
  • FIG. 249 is a flowchart of the processing according to Embodiment 22 of the present invention.
  • FIG. 250 is a flowchart of the processing according to Embodiment 22 of the present invention.
  • FIG. 251 is a flowchart of the processing according to Embodiment 22 of the present invention.
  • FIG. 252 is a flowchart of an example of displays of a mobile device 9000 and a cooperation apparatus, according to Embodiment 22 of the present invention.
  • FIG. 253 is a flowchart of processing according to Embodiment 22 of the present invention.
  • FIG. 254 is a flowchart of the processing according to Embodiment 22 of the present invention.
  • FIG. 255 is a schematic diagram of the mobile device according to Embodiment 22 of the present invention.
  • FIG. 256 is a diagram for explaining a communication method for establishing a plurality of transmission paths by using a plurality of antennas and performing transmission via the transmission paths.
  • FIG. 257 is a flowchart for explaining a method for obtaining position information in the communication method using the transmission paths.
  • FIG. 258 is a diagram showing an example of apparatuses related to moves of a mobile device near and inside a building (user's home), according to Embodiment 23 of the present invention.
  • FIG. 259 is a flowchart of processing of determining a position of a mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 260 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 261 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 262 is a diagram showing an example of information indicating an area of a room on a 3D map according to Embodiment 23 of the present invention.
  • FIG. 263 is a diagram showing a move of the mobile device near a reference point according to Embodiment 23 of the present invention.
  • FIG. 264 is a diagram showing a location to be detected with a high accuracy in a direction of moving the mobile device, according to Embodiment 23 of the present invention.
  • FIG. 265 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 266 is a table of moves of the mobile device near reference points and an attention point, according to Embodiment 23 of the present invention.
  • FIG. 267 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 268 is a list indicating priorities of sensors for detecting each of reference points, according to Embodiment 23 of the present invention.
  • FIG. 269 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 270 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 271 shows graphs each indicating detection data in a Z-axis (vertical) direction of an acceleration sensor, according to Embodiment 23 of the present invention.
  • FIG. 272 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 273 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 274 shows graphs and a diagram for showing a relationship between detection data and walking sound in the acceleration Z-axis (vertical) direction, according to Embodiment 23 of the present invention.
  • FIG. 275 shows a diagram showing an example of moves in the building, according to Embodiment 23 of the present invention.
  • FIG. 276 is a table indicating a path from a reference point to a next reference point, according to Embodiment 23 of the present invention.
  • FIG. 277 shows a table and a diagram for explaining original reference point accuracy information, according to Embodiment 23 of the present invention.
  • FIG. 278 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 279 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 280 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 281 is a flowchart of processing of determining a position of the mobile device in the building, according to Embodiment 23 of the present invention.
  • FIG. 282 is a diagram showing the principle of position determination, according to Embodiment 23 of the present invention.
  • FIG. 283 is a diagram showing the principle of position determination, according to Embodiment 23 of the present invention.
  • FIG. 284 is a diagram showing the principle of position determination, according to Embodiment 23 of the present invention.
  • FIG. 285 is a circuit diagram of a solar cell according to Embodiment 23 of the present invention.
  • FIG. 286 is a flowchart according to Embodiment 24 of the present invention.
  • FIG. 287 is a flowchart according to Embodiment 24 of the present invention.
  • FIG. 288 is a flowchart according to Embodiment 24 of the present invention.
  • FIG. 289 is a flowchart according to Embodiment 24 of the present invention.
  • FIG. 290 is a flowchart according to Embodiment 24 of the present invention.
  • FIG. 291 is a flowchart according to Embodiment 24 of the present invention.
  • FIG. 292 is a table indicating information recorded on a tag, according to Embodiment 24 of the present invention.
  • FIG. 293 is a diagram of a mobile terminal according to Embodiment 25 of the present invention.
  • FIG. 294 is a diagram of a home appliance according to Embodiment 25 of the present invention.
  • FIG. 295 is a diagram of display states of a module position of the mobile terminal according to Embodiment 25 of the present invention.
  • FIG. 296 is a diagram of display states of a module position of the mobile terminal according to Embodiment 25 of the present invention.
  • FIG. 297 is a diagram showing proximity wireless communication states of the mobile terminal and the home appliance, according to Embodiment 25 of the present invention.
  • FIG. 298 is a diagram showing the situation where proximity wireless communication mark is cooperated with an acceleration meter and a gyro, according to Embodiment 25 of the present invention.
  • FIG. 299 is a diagram showing the situation where proximity wireless communication mark is cooperated with a camera, according to Embodiment 25 of the present invention.
  • FIG. 300 is a diagram showing the situation where an application program is downloaded from a server, according to Embodiment 25 of the present invention.
  • FIG. 301 is a functional block diagram according to Embodiment 25 of the present invention.
  • FIG. 302 is a diagram of state changes in the case where a trouble occurs in a home appliance, according to Embodiment 25 of the present invention.
  • FIG. 303 is a diagram of state changes in the case where the home appliance performs communication for a long time, according to Embodiment 25 of the present invention.
  • FIG. 304 is a diagram of a home appliance having a display screen according to Embodiment 25 of the present invention.
  • FIG. 305 is flowchart 1 according to Embodiment 25 of the present invention.
  • FIG. 306 is flowchart 2 according to Embodiment 25 of the present invention.
  • FIG. 307 is flowchart 3 according to Embodiment 25 of the present invention.
  • FIG. 308 is flowchart 4 according to Embodiment 25 of the present invention.
  • FIG. 309 is flowchart 5 according to Embodiment 25 of the present invention.
  • FIG. 310 is a diagram showing a display method of a standby screen of a terminal according to Embodiment 25 of the present invention.
  • FIG. 311 is a diagram showing an assumed home network environment according to Embodiment 26 of the present invention.
  • FIG. 312 is a diagram showing an example of terminal information according to Embodiment 26 of the present invention.
  • FIG. 313 is a diagram for explaining video passing between terminals according to Embodiment 26 of the present invention.
  • FIG. 314 illustrates an entire system of an image capturing device according to Embodiment A1.
  • FIG. 315 is an external view of the image capturing device according to Embodiment A1.
  • FIG. 316 is a block diagram of the image capturing device according to Embodiment A1.
  • FIG. 317 is a block diagram of a second memory in the image capturing device according to Embodiment A1.
  • FIG. 318 is a block diagram of the second memory in the image capturing device according to Embodiment A1.
  • FIG. 319 is a block diagram of image display method instruction information of the image capturing device according to Embodiment A1.
  • FIG. 320 is a flowchart of processing performed by the image capturing device and a TV, according to Embodiment A1.
  • FIG. 321 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 322 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 323 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 324 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 325 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 326 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 327 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 328 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 329 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 330 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 331 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 332 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 333 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 334 is a flowchart of the processing performed by the image capturing device and the TV, according to Embodiment A1.
  • FIG. 335 is a diagram presenting a display method of the image capturing device and the TV, according to Embodiment A1.
  • FIG. 336 is a block diagram of a RF-ID unit in the image capturing device for storing an operation program, a remote controller of the TV, and the TV.
  • FIG. 337 is a flowchart of processing for transferring and executing the operation program stored in the RF-ID unit.
  • FIG. 338 presents an example of description of the operation program for downloading image and executing slide show.
  • FIG. 339 is a block diagram of (a) the TV changing processing of the operation program according to a language code, and (b) a server storing the program.
  • FIG. 340 is a flowchart of processing for changing processing of the operation program according to a language code.
  • FIG. 341 is a block diagram of a home network 6500 connecting the image capturing device to the TV by a wireless LAN.
  • FIG. 342 presents an example of an authentication method without using RF-ID unit.
  • FIG. 343 presents an example of an authentication method using RF-ID unit.
  • FIG. 344 presents an example of an authentication method used when it is difficult to move a terminal into proximity of another terminal.
  • FIG. 345 is a flowchart of an example of processing performed by a camera.
  • FIG. 346 is a flowchart of an example of processing performed by the TV.
  • FIG. 347 is a block diagram of (a) a first processing unit generating the operation program in the image capturing device to be executed by the TV, and (b) a second memory unit.
  • FIG. 348 is a flowchart of processing performed by a program generation unit in the first processing unit.
  • FIG. 349 is a flowchart of an example of a program generated by the program generation unit.
  • FIG. 350 is a block diagram of (a) the first processing unit generating the operation program in the image capturing device to display a use status of the image capturing device, and (b) the second memory unit.
  • FIG. 351 illustrates a use example where the program generated by the image capturing device is executed by an external device (apparatus).
  • FIG. 352 is a sequence where the program generated by the image capturing device is executed by a remote controller with display function.
  • FIG. 353A is a flowchart of uploading steps in a camera according to Embodiment A2.
  • FIG. 353B is a flowchart of uploading steps in the camera according to Embodiment A2.
  • FIG. 353C is a flowchart of uploading steps in the camera according to Embodiment A2.
  • FIG. 354 is a flowchart of uploading steps in the camera according to Embodiment A2.
  • FIG. 355A is a flowchart of uploading steps in the camera according to Embodiment A1.
  • FIG. 355B is a flowchart of uploading steps in the camera according to Embodiment A1.
  • FIG. 355C is a flowchart of uploading steps in the camera according to Embodiment A1.
  • FIG. 355D is a flowchart of uploading steps in the camera according to Embodiment A1.
  • FIG. 356 is a flowchart of operation steps of a RF-ID unit in the camera according to Embodiment A2.
  • FIG. 357 is a block diagram of a TV according to Embodiment A2.
  • FIG. 358 is a flowchart of RF-ID communication between the camera and the TV, according to Embodiment A2.
  • FIG. 359A is a flowchart presenting details of FIG. 358.
  • FIG. 359B is a flowchart presenting details of FIG. 358.
  • FIG. 360 presents a data format of the RF-ID communication between the camera and the TV.
  • FIG. 361 is a schematic diagram of an electronic catalog display system.
  • FIG. 362 is a block diagram of an electronic catalog server information input device.
  • FIG. 363 is a flowchart of steps of processing performed by the electronic catalog server information input device.
  • FIG. 364 is a block diagram of a RF-ID unit of an electronic catalog notification card.
  • FIG. 365 is a block diagram of a TV displaying an electronic catalog.
  • FIG. 366 is a block diagram of an electronic catalog server.
  • FIG. 367 is a flowchart of steps of processing performed by the electronic catalog server.
  • FIG. 368 is a flowchart of steps of processing performed by a TV displaying the electronic catalog.
  • FIG. 369 is a diagram illustrating screen display of the electronic catalog.
  • FIG. 370 is a table of a data structure of a customer attribute database.
  • FIG. 371 is a table of a data structure of an electronic catalog database.
  • FIG. 372 is a schematic diagram of a RF-ID-attached post card mailing system.
  • FIG. 373 is a block diagram of a TV in the RF-ID-attached post card mailing system.
  • FIG. 374 is a diagram illustrating screen display in image selection operation by the RF-ID-attached post card mailing system.
  • FIG. 375 is a flowchart of steps of processing performed by an image server in the RF-ID-attached post card mailing system.
  • FIG. 376 is a block diagram of a system according to Embodiment A5.
  • FIG. 377 is a diagram illustrating an example of fixed information of a mailing object according to Embodiment A5.
  • FIG. 378 is a flowchart of processing for associating an image capturing device with an image server, according to Embodiment A5.
  • FIG. 379 is a flowchart of processing for registering the image capturing device with a relay server, according to Embodiment A5.
  • FIG. 380 is a diagram illustrating an example of a mailing object attached with a 2-dimensional code.
  • FIG. 381 is a flowchart of processing using a 2-dimensional bar-code of the image capturing device according to Embodiment A5.
  • FIG. 382 is a flowchart of processing performed by a TV according to Embodiment A5.
  • FIG. 383 is a flowchart of processing performed by the relay server according to Embodiment A5.
  • FIG. 384 is a schematic diagram of an image transmitting side according to Embodiment A6.
  • FIG. 385 is a schematic diagram of an image receiving side according to Embodiment A6.
  • FIG. 386 is a flowchart of processing performed by a TV transmitting image according to Embodiment A6.
  • FIG. 387 is a flowchart of processing performed by a TV receiving image according to Embodiment A6.
  • FIG. 388 is a flowchart of another example of processing performed by the TV transmitting image according to Embodiment A6.
  • FIG. 389 is a table of an example of information recorded in a mailing object memory unit according to Embodiment A6.
  • FIG. 390 is a block diagram of a recorder.
  • FIG. 391 is a block diagram of a RF-ID card.
  • FIG. 392 is a flowchart of steps of registering setting information to a server.
  • FIG. 393 is a diagram illustrating a structure of pieces of setting information registered in the server.
  • FIG. 394 is a diagram illustrating a structure of pieces of apparatus operation information registered in the RF-ID card.
  • FIG. 395 is a flowchart of steps of updating setting information of a recorder by the RF-ID card.
  • FIG. 396 is a flowchart of steps of obtaining the setting information from the server.
  • FIG. 397 is a diagram illustrating a structure of apparatus operation information registered in the RF-ID card used in the recorder.
  • FIG. 398 is a diagram illustrating a structure of apparatus operation information registered in the RF-ID card used in a vehicle navigation device.
  • FIG. 399 is a block diagram of a configuration where a remote controller of a TV or the like has a RF-ID reader, according to an embodiment of the present invention.
  • FIG. 400 is a flowchart of processing performed by the above configuration according to the above embodiment.
  • FIG. 401 is a diagram of a network environment.
  • FIG. 402 is a functional block diagram of a mobile AV terminal.
  • FIG. 403 is a functional block diagram of a TV.
  • FIG. 404 is a sequence diagram in the case where the mobile AV terminal gets video (first half, control performed by get side).
  • FIG. 405 is a sequence diagram in the case where the mobile AV terminal gives video (second half, control performed by get side).
  • FIG. 406 is a basic flowchart of the mobile AV terminal.
  • FIG. 407 is a flowchart of a give mode of the mobile AV terminal.
  • FIG. 408 is a flowchart of a get mode of the mobile AV terminal.
  • FIG. 409 is a flowchart of a wireless get mode of the mobile AV terminal.
  • FIG. 410 is a flowchart of a URL get mode of the mobile AV terminal.
  • FIG. 411 is a flowchart of server position search by the mobile AV terminal.
  • FIG. 412 is a flowchart of a mode in which the mobile AV terminal gets video from an external server.
  • FIG. 413 is a basic flowchart of the TV.
  • FIG. 414 is a flowchart of a give mode of the TV.
  • FIG. 415 is a flowchart of a get mode of the TV.
  • FIG. 416 is a sequence diagram in the case where the mobile AV terminal gets video (first half, control performed by give side).
  • FIG. 417 is a sequence diagram in the case where the mobile AV terminal gives video (second half, control performed by give side).
  • FIG. 418 is a sequence diagram in the case where passing is performed by a remote controller.
  • FIG. 419 is a sequence diagram in the case where a video server performs synchronous transmission.
  • FIG. 420 is a schematic diagram illustrating processing of HF-RFID and UHF-RFID upon apparatus factory shipment.
  • FIG. 421 is a schematic diagram illustrating a recording format of a memory accessible from a UHF-RFID tag M005.
  • FIG. 422 is a flowchart of a flow of processing of copying a product serial number and the like from HF-RFID to UHF-RFID upon factory shipment of an apparatus M003.
  • FIG. 423 is a flowchart of a flow of processing in a distribution process of the apparatus M003.
  • FIG. 424 is a block diagram illustrating a structure of an entire system.
  • FIG. 425 is a flowchart (first half) of a procedure of moving video to a display of a mirror.
  • FIG. 426 is a flowchart (second half) of the procedure of moving video to the display of the mirror.
  • FIG. 427 is a diagram of a network environment in home ID registration.
  • FIG. 428 is a hardware diagram of the communication device in the home ID registration.
  • FIG. 429 is a functional block diagram of the communication device in the home ID registration.
  • FIG. 430 is a flowchart of the home ID registration.
  • FIG. 431 is a flowchart of home ID obtainment.
  • FIG. 432 is a sequence diagram of the home ID registration.
  • FIG. 433 is a functional block diagram of communication devices in home ID sharing.
  • FIG. 434 is a flowchart of processing performed by a receiving communication device in the home ID sharing (using proximity wireless communication).
  • FIG. 435 is a flowchart of processing performed by a transmitting communication device in the home ID sharing (using proximity wireless communication).
  • FIG. 436 is a sequence diagram of the home ID sharing (using proximity wireless communication).
  • FIG. 437 is a flowchart of processing performed by the receiving communication device in the home ID sharing (using a home network device).
  • FIG. 438 is a flowchart of processing performed by the transmitting communication device in the home ID sharing (using the home network device).
  • FIG. 439 is a sequence diagram of the home ID sharing (using the home network device).
  • FIG. 440 is a block diagram of a device management system according to Embodiment B3.
  • FIG. 441 is a sequence diagram of the device management system according to Embodiment B3.
  • FIG. 442 is a schematic diagram of a structure of a device management database according to Embodiment B3.
  • FIG. 443 is a schematic diagram of display of the device management system according to Embodiment B3.
  • FIG. 444 is a functional block diagram of a RF-ID unit N10 according to Embodiment B4.
  • FIG. 445 is a functional block diagram of a mobile device N20 according to Embodiment B4.
  • FIG. 446 is a functional block diagram of a registration server N40 according to Embodiment B4.
  • FIG. 447 is a diagram illustrating an example of an arrangement of networked products according to Embodiment B4.
  • FIG. 448 is a diagram illustrating an example of a system according to Embodiment B4.
  • FIG. 449 is a sequence diagram for registering information of a TV N10A into a registration server N40, according to Embodiment B4.
  • FIG. 450 is a table illustrating an example of a structure of product information and server registration information according to Embodiment B4.
  • FIG. 451 is a table illustrating an example of a structure of product information stored in a product information management unit N45 according to Embodiment B4.
  • FIG. 452 is a flowchart illustrating an example of processing performed by a RF-ID unit N10 to perform product registration according to Embodiment B4.
  • FIG. 453 is a flowchart illustrating an example of processing performed by a mobile device N20 to perform product registration according to Embodiment B4.
  • FIG. 454 is a flowchart illustrating an example of processing performed by a registration server N40 to perform product registration according to Embodiment B4.
  • FIG. 455 is a sequence diagram illustrating an example of controlling power for an air conditioner N10J and a TV N10A according to Embodiment B4.
  • FIG. 456 is a table illustrating an example of a structure of positional information and product control information according to Embodiment B4.
  • FIG. 457 is a diagram illustrating a product map generated by a position information generation unit N48 according to Embodiment B4.
  • FIG. 458 is a table illustrating an example of a structure of product information stored in the product information management unit N45 according to Embodiment B4.
  • FIG. 459 is a diagram illustrating a product map generated by the position information generation unit N48 according to Embodiment B4.
  • FIG. 460 is a table illustrating examples of an accuracy identifier according to Embodiment B4.
  • FIG. 461 is a diagram illustrating an example of a system according to Embodiment B4.
  • FIG. 462 is a diagram illustrating an example of an entire system according to Embodiment B5.
  • FIG. 463 is a diagram illustrating an example of an arrangement of products embedded with RF-ID units O50 according to Embodiment B5.
  • FIG. 464 is a diagram illustrating an example of a three-dimensional (3D) map of a building, which is building coordinate information extracted from a building coordinate database O104 according to Embodiment B5.
  • FIG. 465 is a diagram illustrating an example of image data of a 3D map of products which is generated by a program execution unit O65 according to Embodiment B5.
  • FIG. 466 is a diagram illustrating an example of a 3D product map in which image data of FIG. 464 is combined with the already-displayed image data of FIG. 465 by a display unit O68 d according to Embodiment B5.
  • FIG. 467 is a table illustrating examples of an accuracy identifier according to Embodiment B5.
  • FIG. 468 is a flowchart illustrating an example of processing for the 3D map according to Embodiment B5.
  • FIG. 469 is a flowchart illustrating an example of processing for the 3D map according to Embodiment B5.
  • FIG. 470 is a diagram illustrating an example of a specific small power wireless communication system using the 3D map according to Embodiment B5.
  • FIG. 471 is a diagram of a network environment for a wireless connection request according to Embodiment B6.
  • FIG. 472 is a hardware diagram of a communication device for the wireless connection request according to Embodiment B6.
  • FIG. 473 is a functional block diagram of the communication device for the wireless connection request according to Embodiment B6.
  • FIG. 474 is a sequence diagram of the wireless connection request according to Embodiment B6.
  • FIG. 475 is a flowchart of the wireless connection request according to Embodiment B6.
  • FIG. 476 is a diagram of a network environment for a channel setting request according to Embodiment B7.
  • FIG. 477 is a functional block diagram of a communication device for the channel setting request according to Embodiment B7.
  • FIG. 478 is a diagram illustrating a home.
  • FIG. 479 is a diagram illustrating a system.
  • FIG. 480 is a diagram illustrating a system.
  • FIG. 481 is a diagram illustrating a mobile communication device.
  • FIG. 482 is a flowchart of the mobile communication device.
  • FIG. 483 is a diagram illustrating a server and the like.
  • FIG. 484 is a diagram illustrating appliance information, type information, function information, and the like.
  • FIG. 485 is a diagram illustrating a wireless LAN access point and the like.
  • FIG. 486 is a flowchart of processing of wireless communication.
  • FIG. 487 is a diagram illustrating position information and the like.
  • FIG. 488 is a diagram illustrating a mobile communication device.
  • FIG. 489 is a diagram illustrating a remote controller and the like.
  • FIG. 490 is a diagram illustrating a mobile communication device.
  • FIG. 491 is a functional block diagram of a position detection device according to Embodiment C of the present invention.
  • FIG. 492 is a diagram showing a table in a geomagnetic noise pattern storage unit according to Embodiment C of the present invention.
  • FIG. 493 is a diagram showing an example of geomagnetic noise occurrence areas in a home according to Embodiment C of the present invention.
  • FIG. 494 is a diagram showing an example of an occurring geomagnetic noise pattern according to Embodiment C of the present invention.
  • FIG. 495 is a flowchart showing flow of a process relating to coordinate estimation by the position detection device according to Embodiment C of the present invention.
  • FIG. 496 is a flowchart showing flow of a process by a terminal posture detection unit according to Embodiment C of the present invention.
  • FIG. 497 is a flowchart showing flow of a process by a geomagnetic noise detection unit according to Embodiment C of the present invention.
  • FIG. 498 is a flowchart showing flow of a process by a geomagnetic noise pattern management unit according to Embodiment C of the present invention.
  • FIG. 499 is a flowchart showing a position detection method according to Embodiment C of the present invention.
  • FIG. 500 is a diagram showing a table in a geomagnetic noise pattern storage unit according to Variation 1 of Embodiment C of the present invention.
  • FIG. 501 is a diagram showing a table in a geomagnetic noise pattern storage unit according to Variation 2 of Embodiment C of the present invention.
  • FIG. 502 is a diagram showing an example of an occurring geomagnetic noise pattern according to Variation 3 of Embodiment C of the present invention.
  • FIG. 503 is a diagram showing a table in a geomagnetic noise pattern storage unit according to Variation 3 of Embodiment C of the present invention.
  • FIG. 504 is a diagram showing a relationship between a posture and a screen display orientation of an information display device according to Embodiment D1 of the present invention.
  • FIG. 505 is a diagram showing an internal structure of a processing unit that determines the screen display orientation of the information display device according to Embodiment D1 of the present invention.
  • FIG. 506 is a diagram showing process flow of the information display device according to Embodiment D1 of the present invention.
  • FIG. 507 is a diagram showing process flow of the information display device according to Embodiment D1 of the present invention.
  • FIG. 508 is a diagram showing an internal structure of a processing unit that sets an orientation of an information display device according to Embodiment D2 of the present invention.
  • FIG. 509 is a diagram showing process flow of the information display device according to Embodiment D2 of the present invention.
  • FIG. 510 is a diagram showing process flow of the information display device according to Embodiment D2 of the present invention.
  • FIG. 511 is a diagram showing process flow of the information display device according to Embodiment D2 of the present invention.
  • FIG. 512 is a diagram showing a structure of an information display device according to Embodiment D3 of the present invention.
  • FIG. 513 is a diagram showing process flow of the information display device according to Embodiment D3 of the present invention.
  • FIG. 514 is a diagram showing process flow of the information display device according to Embodiment D3 of the present invention.
  • FIG. 515 is a diagram showing process flow of the information display device according to Embodiment D3 of the present invention.
  • FIG. 516 is a diagram showing process flow of the information display device according to Embodiment D3 of the present invention.
  • FIG. 517 is a diagram showing an example of pointing target information stored in a position DB.
  • FIG. 518 is a diagram showing another example of the relationship between the posture and the screen display orientation of the information display device according to the present invention.
  • FIG. 519 is a diagram showing another example of the relationship between the posture and the screen display orientation of the information display device according to the present invention.
  • FIG. 520 is a diagram showing another example of the relationship between the posture and the screen display orientation of the information display device according to the present invention.
  • FIG. 521 is a diagram showing a method of displaying an icon indicating an orientation of an information display device itself according to Embodiment D4 of the present invention.
  • FIG. 522 is a diagram showing icon variations indicating a normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 523 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 524 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 525 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 526 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 527 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 528 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 529 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 530 is a diagram showing icon variations indicating the normal position in the information display device (mobile device) according to Embodiment D4 of the present invention.
  • FIG. 531 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 532 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 533 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 534 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 535 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 536 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 537 is a diagram showing an icon for calling the user's attention to the normal position in the information display device according to Embodiment D4 of the present invention.
  • FIG. 538 is a diagram showing a structure of a mobile terminal which is one aspect of an information display device according to Embodiment D5 of the present invention.
  • FIG. 539 is a diagram showing a use case example according to Embodiment D5 of the present invention.
  • FIG. 540 is a diagram showing a use case example according to Embodiment D5 of the present invention.
  • FIG. 541 is a diagram showing definitions of variables relating to horizontal and vertical postures of a mobile terminal, which are used in description of Embodiment D5 of the present invention.
  • FIG. 542 is a diagram showing definitions of variables relating to horizontal and vertical postures of a mobile terminal, which are used in description of Embodiment D5 of the present invention.
  • FIG. 543 is a diagram showing an example of a menu screen in the case of operating a mobile terminal according to Embodiment D5 of the present invention as a TV remote controller.
  • FIG. 544 is a diagram showing a use case example in the case of operating the mobile terminal according to Embodiment D5 of the present invention as a TV remote controller.
  • FIG. 545 is a diagram showing a use case example in the case of operating the mobile terminal according to Embodiment D5 of the present invention as a TV remote controller.
  • FIG. 546 is a diagram showing a use case example in the case of operating the mobile terminal according to Embodiment D5 of the present invention as a TV remote controller.
  • FIG. 547 is a diagram showing a use case example in the case of operating the mobile terminal according to Embodiment D5 of the present invention as a TV remote controller.
  • FIG. 548 is a diagram showing a use case example of another operation of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 549 is a diagram showing control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 550 is a diagram showing control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 551 is a diagram showing control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 552 is a diagram showing control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 553 is a diagram showing control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 554 is a diagram showing control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 555 is a diagram showing another control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 556 is a diagram showing another control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 557 is a diagram showing another control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 558 is a diagram showing another control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 559 is a diagram showing another control flow of the mobile terminal according to Embodiment D5 of the present invention.
  • FIG. 560 is a diagram showing an operation in the case of using the mobile device according to Embodiment D5 of the present invention.
  • FIG. 561 is a flow diagram showing a method of updating a reference direction of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 562 is a flow diagram showing a method of detecting horizontal laying of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 563 is a diagram showing an example of directions of three axes of a magnetic sensor of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 564 is a diagram showing a method of detecting horizontal laying of the mobile device using an acceleration sensor according to Embodiment D5 of the present invention.
  • FIG. 565 is a diagram showing an example of directions of three axes of the magnetic sensor of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 566 is a diagram showing a screen display direction of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 567 is a diagram showing a screen display direction change table of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 568 is a diagram showing screen display direction transitions of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 569 is a diagram showing a screen display direction of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 570 is a diagram showing a direction of the mobile device in the case of rotating the mobile device according to Embodiment D5 of the present invention.
  • FIG. 571 is a diagram showing display of the mobile device in the case where a person views the mobile device according to Embodiment D5 of the present invention.
  • FIG. 572 is a diagram showing flow in the case where a person rotates while holding a tablet which is one aspect of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 573 is a diagram showing flow in the case where a person rotates while holding a tablet which is one aspect of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 574 is a flow diagram showing a method of updating a reference direction of the mobile device according to Embodiment D5 of the present invention.
  • FIG. 575 is a diagram showing display of the mobile device in the case where persons facing each other view the mobile device according to Embodiment D5 of the present invention.
  • FIG. 576 is a block diagram showing a structure of a position estimation device according to Embodiment E1 of the present invention.
  • FIG. 577 is a diagram showing an example of a graph of a relationship between an electric field strength and a distance.
  • FIG. 578 is a diagram showing an example of a method of estimating a current position of a wireless terminal using distance information.
  • FIG. 579 is a diagram showing an example of a model pattern of acceleration information in each placement state of the wireless terminal according to Embodiment E1 of the present invention.
  • FIG. 580 is a diagram showing a specific example of detected terminal information of the wireless terminal according to Embodiment E1 of the present invention.
  • FIG. 581 is a diagram showing an example of base station management information according to Embodiment E1 of the present invention.
  • FIG. 582 is a diagram showing an example of a measured receiving strength and estimated distance information according to Embodiment E1 of the present invention.
  • FIG. 583 is a diagram for describing a relationship between a terminal posture and a receiving strength according to Embodiment E1 of the present invention.
  • FIG. 584 is a diagram showing an example of correspondence between a terminal posture and a correction factor according to Embodiment E1 of the present invention.
  • FIG. 585 is a diagram for describing a relationship between a positional relationship of a base station, a wireless terminal, and a user and a receiving strength according to Embodiment E1 of the present invention.
  • FIG. 586 is a diagram showing an example of correspondence between a positional relationship of a base station, a wireless terminal, and a user and a correction factor according to Embodiment E1 of the present invention.
  • FIG. 587 is a flowchart showing an operation of the position estimation device according to Embodiment E1 of the present invention.
  • FIG. 588 is a flowchart showing an operation of the position estimation device according to Embodiment E1 of the present invention.
  • FIG. 589 is a flowchart showing an operation of the position estimation device according to Embodiment E1 of the present invention.
  • FIG. 590 is a flowchart showing an operation of the position estimation device according to Embodiment E1 of the present invention.
  • FIG. 591 is a diagram showing an example of a calculation result of a direction of a base station from a wireless terminal according to Embodiment E1 of the present invention.
  • FIG. 592 is a diagram showing an example of a determination result of whether or not a user is present between a base station and a wireless terminal according to Embodiment E1 of the present invention.
  • FIG. 593 is a diagram showing a result of estimating a current position using corrected distance information according to Embodiment E1 of the present invention.
  • FIG. 594 is a block diagram showing a structure of a position estimation device according to Embodiment E2 of the present invention.
  • FIG. 595 is a diagram showing an example of an electric field strength map according to Embodiment E2 of the present invention.
  • FIG. 596 is a flowchart showing an operation of the position estimation device according to Embodiment E2 of the present invention.
  • FIG. 597 is a flowchart showing an operation of the position estimation device according to Embodiment E2 of the present invention.
  • FIG. 598 is a block diagram showing a configuration of a position estimation device according to Embodiment F of the present invention.
  • FIG. 599 is a diagram showing an example of base station management information according to Embodiment F of the present invention.
  • FIG. 600 is a diagram showing a relationship between receiving field strength and distance according to Embodiment F of the present invention.
  • FIG. 601 is a diagram showing a specific example of estimated distance information and distance accuracy information according to Embodiment F of the present invention.
  • FIG. 602 is a diagram showing map information and an example of placement of wireless stations according to Embodiment F of the present invention.
  • FIG. 603 is a diagram showing an example of wireless station information according to Embodiment F of the present invention.
  • FIG. 604 is a diagram showing an example of other wireless station information according to Embodiment F of the present invention.
  • FIG. 605 is a diagram for describing a method of calculating a possible area according to Embodiment F of the present invention.
  • FIG. 606 is a diagram showing an example of association between types of obstacle and correction scaling factors according to Embodiment F of the present invention.
  • FIG. 607 is a diagram for describing a method of calculating a possible area according to Embodiment F of the present invention.
  • FIG. 608 is a diagram for describing a method of calculating a possible area according to Embodiment F of the present invention.
  • FIG. 609 is a diagram for describing a method of calculating a possible area according to Embodiment F of the present invention.
  • FIG. 610 is a diagram for describing a method of calculating a possible area according to Embodiment F of the present invention.
  • FIG. 611 is a diagram showing a specific example of a possible area calculated according to Embodiment F of the present invention.
  • FIG. 612 is a diagram showing a specific example of a possible area calculated according to Embodiment F of the present invention.
  • FIG. 613 is a diagram showing a specific example of a possible area calculated according to Embodiment F of the present invention.
  • FIG. 614 is a diagram showing a specific example of a possible area calculated according to Embodiment F of the present invention.
  • FIG. 615 is a flowchart showing operations of a position estimation device according to Embodiment F of the present invention.
  • FIG. 616 is a flowchart showing operations of a position estimation device according to Embodiment F of the present invention.
  • FIG. 617 is a flowchart showing operations of a position estimation device according to Embodiment F of the present invention.
  • FIG. 618 is a flowchart showing operations of a position estimation device according to Embodiment F of the present invention.
  • FIG. 619 is a functional block diagram of a position estimation device according to Embodiment G of the present invention.
  • FIG. 620A is a diagram showing a difference between positional relationships recognized by a user and a mobile terminal for a pointing target according to Embodiment G of the present invention.
  • FIG. 620B is a diagram showing the difference between the positional relationships recognized by the user and the mobile terminal for the pointing target according to Embodiment G of the present invention.
  • FIG. 621 is a diagram for describing an example of a method whereby the mobile terminal determines whether or not estimated position information has an error according to Embodiment G of the present invention.
  • FIG. 622 is a diagram for describing an example of a method whereby, in the case of determining that estimated position information has an error, the mobile terminal corrects the position information according to Embodiment G of the present invention.
  • FIG. 623 is a diagram for describing an example of a method whereby the mobile terminal determines whether or not there is a concentrated area of a pointing direction according to Embodiment G of the present invention.
  • FIG. 624A is a diagram showing a difference between positional relationships recognized by the user and the mobile terminal for the pointing target according to Embodiment G of the present invention.
  • FIG. 624B is a diagram showing the difference between the positional relationships recognized by the user and the mobile terminal for the pointing target according to Embodiment G of the present invention.
  • FIG. 625 is a diagram for describing an example of a method whereby, in the case of determining that estimated position information has an error, the mobile terminal corrects the position information according to Embodiment G of the present invention.
  • FIG. 626A is a diagram for describing an example of a method whereby, in the case of determining that estimated position information has an error, the mobile terminal corrects the position information according to Embodiment G of the present invention.
  • FIG. 626B is a diagram for describing an example of a method whereby, in the case where estimated position information has an error, the mobile terminal corrects the position information according to Embodiment G of the present invention.
  • FIG. 627 is a flowchart for describing process flow of the mobile terminal according to Embodiment G of the present invention.
  • FIG. 628 is a flowchart for describing process flow of the mobile terminal according to Embodiment G of the present invention.
  • FIG. 629 is a flowchart for describing process flow of the mobile terminal according to Embodiment G of the present invention.
  • FIG. 630 is a flowchart for describing process flow of the mobile terminal according to Embodiment G of the present invention.
  • FIG. 631 is a flowchart for describing process flow of the mobile terminal according to Embodiment G of the present invention.
  • FIG. 632 is a flowchart for describing process flow of the mobile terminal according to Embodiment G of the present invention.
  • FIG. 633 is a functional block diagram showing a minimum structure of a position estimation device according to the present invention.
  • FIG. 634 is a screen transition diagram for describing home appliance touch operations using a mobile terminal according to Embodiment H of the present invention.
  • FIG. 635 is a screen transition diagram for describing home appliance touch operations using the mobile terminal according to Embodiment H of the present invention.
  • FIG. 636 is a screen transition diagram for describing home appliance touch operations using the mobile terminal according to Embodiment H of the present invention.
  • FIG. 637 is a screen transition diagram for describing home appliance touch operations using the mobile terminal according to Embodiment H of the present invention.
  • FIG. 638 is a screen transition diagram for describing home appliance touch operations using the mobile terminal according to Embodiment H of the present invention.
  • FIG. 639 is a screen transition diagram for describing home appliance touch operations using the mobile terminal according to Embodiment H of the present invention.
  • FIG. 640 is a diagram showing a structure and a sequence according to Embodiment H of the present invention.
  • FIG. 641 is a diagram showing a structure and a sequence according to Embodiment H of the present invention.
  • FIG. 642 is a diagram showing an example of information held in the mobile terminal according to Embodiment H of the present invention.
  • FIG. 643 is a diagram showing an example of information held in the mobile terminal according to Embodiment H of the present invention.
  • FIG. 644 is a diagram showing the case of using NDEF as an example of a data structure when performing proximity communication according to Embodiment H of the present invention.
  • FIG. 645 is a diagram showing an area list based on room arrangement information according to Embodiment H of the present invention.
  • FIG. 646 is a diagram showing a home appliance list of home appliances and their position information held in the mobile terminal according to Embodiment H of the present invention.
  • FIG. 647 is a flowchart showing a procedure according to Embodiment H of the present invention.
  • FIG. 648 is a flowchart showing a procedure according to Embodiment H of the present invention.
  • FIG. 649 is a flowchart showing a procedure according to Embodiment H of the present invention.
  • FIG. 650 is a flowchart showing a procedure according to Embodiment H of the present invention.
  • FIG. 651 is a flowchart showing a procedure according to Embodiment H of the present invention.
  • FIG. 652 is a diagram showing a structure according to Embodiment I of the present invention.
  • FIG. 653 is a diagram showing display of a screen of a mobile terminal when starting use of a home appliance operation application and relationships between peripheral appliances and the structure according to Embodiment I including a bird's eye view, in the case of implementing the structure according to Embodiment I.
  • FIG. 654 is a diagram showing display of the screen of the mobile terminal during use of the home appliance operation application and relationships between the peripheral appliances and the structure according to Embodiment I including a bird's eye view, in the case of implementing the structure according to Embodiment I.
  • FIG. 655 is a diagram showing display of the screen of the mobile terminal during use of the home appliance operation application and relationships between the peripheral appliances and the structure according to Embodiment I including a bird's eye view, in the case of implementing the structure according to Embodiment I.
  • FIG. 656 is a diagram showing display of the screen of the mobile terminal during use of the home appliance operation application and relationships between the peripheral appliances and the structure according to Embodiment I including a bird's eye view, in the case of implementing the structure according to Embodiment I.
  • FIG. 657 is a diagram for describing room arrangement information, an area list, and a home appliance list in a home according to Embodiment I of the present invention.
  • FIG. 658 is a diagram showing an unlock table 7182 according to Embodiment I of the present invention.
  • FIG. 659 is a flowchart showing a procedure according to Embodiment I of the present invention.
  • FIG. 660 is a flowchart showing a procedure according to Embodiment I of the present invention.
  • FIG. 661 is a flowchart showing a procedure according to Embodiment I of the present invention.
  • FIG. 662 is a flowchart showing a procedure according to Embodiment I of the present invention.
  • FIG. 663 is a flowchart showing a procedure according to Embodiment I of the present invention.
  • FIG. 664 is a diagram showing an example of a communication situation by optical communication according to Embodiment J of the present invention.
  • FIG. 665 is a diagram showing a structure of a mobile terminal according to Embodiment J of the present invention.
  • FIG. 666 is a diagram showing a situation where a peripheral appliance transmits information of the peripheral appliance using an optical communication technique according to Embodiment J of the present invention.
  • FIG. 667 is a diagram showing an example of information transmitted from a peripheral appliance by optical communication according to Embodiment J of the present invention.
  • FIG. 668 is a diagram showing an example of communication between a user position and a peripheral appliance by optical communication in a map assuming inside of a home according to Embodiment J of the present invention.
  • FIG. 669 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 670 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 671 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 672 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 673 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 674 is a diagram for describing a method of simultaneously realizing a blinking pattern easily noticeable by a user and optical communication.
  • FIG. 675 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 676 is a diagram for describing an information exchange method using NFC and optical communication.
  • FIG. 677 is a diagram showing an example of a message when transmitting information from a washlet and screen display information according to Embodiment J of the present invention.
  • FIG. 678 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 679 is a diagram showing a situation where the mobile terminal obtains information from the washlet during communication by NFC between the washlet and the mobile terminal and, for communication from the second time, uses optical communication based on the obtained information according to Embodiment J of the present invention.
  • FIG. 680 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 681 is a diagram showing a method whereby an appliance ID is transmitted in segments to reduce a loss of time for receiving the appliance ID until important information such as an error code is obtained according to Embodiment J of the present invention.
  • FIG. 682 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 683 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 684 is a diagram for describing a method of, in the case where the mobile terminal can obtain position information of a target appliance by optical communication, correcting position information of the mobile terminal estimated in the mobile terminal, based on the obtained position information.
  • FIG. 685 is a flowchart showing process flow according to Embodiment J of the present invention.
  • FIG. 686 is a diagram for describing a method of further correcting position information of the mobile terminal based on person position information obtainable by a home appliance.
  • FIG. 687 is a diagram for describing a method of further correcting position information of the mobile terminal based on person position information obtainable by a home appliance.
  • DESCRIPTION OF EMBODIMENTS
  • The following describes embodiments according to the present invention with reference to the drawings. In the following embodiments, various aspects of the communication device according to the present invention are described.
  • Embodiment 1
  • Embodiment 1 according to the present invention is described below. FIG. 1 is a schematic diagram of Embodiment 1 of the present invention. Here, a communication system including an image capturing device (camera) 1, a TV 45, and a server 42 is illustrated. In FIG. 1, the image capturing device 1 capturing images is illustrated on a left-hand side, while the image capturing device 1 reproducing the captured images is illustrated on a right-hand side.
  • The image capturing device 1 is an example of the communication device according to the aspect of the present invention. Here, the image capturing device 1 is implemented as a digital camera. For units used in capturing images, the image capturing device 1 includes a first power supply unit 101, a video processing unit 31, a first antenna 20, a first processing unit 35, a second memory 52, and a RF-ID antenna (second antenna) 21. The second memory 52 holds medium identification information 111, captured image state information 60, and server specific information 48. The RF-ID antenna 21 is used for a RF-ID unit. For units used in reproducing images, the image capturing device 1 includes the first power supply unit 101, a first memory 174, a power detection unit 172, an activation unit 170, the second memory 52, a second processing unit 95, a modulation unit switch 179, a communication unit 171, a second power supply unit 91, and the RF-ID antenna 21. The second memory 52 holds the medium identification information 111, the captured image state information 60, and the server specific information 48.
  • The TV 45 is an example of an apparatus (device, appliance) connected to a reader via a communication path. In more detail, the TV 45 is a television receiving apparatus used to display image data captured by the image capturing device 1. The TV 45 includes a display unit 110 and a RF-ID reader/writer 46.
  • The server 42 is a computer that holds image data uploaded from the image capturing device 1 and that downloads the image data to the TV 45. The server 42 has a storage device in which data 50 is stored.
  • When images of objects such as scenery are captured, the images are converted to captured data (image data) by the video processing unit 31. Then, in communicable conditions, the image data is transmitted to an access point using the first antenna 20 for a wireless Local Area Network (LAN) or Worldwide Interoperability for Microwave Access (WiMAX), and eventually recorded as the data 50 via the Internet to the predetermined server 42.
  • Here, the first processing unit 35 records the captured image state information 60 regarding the captured image data onto the second memory 52 in a RF-ID unit 47. The captured image state information 60 indicates at least one of (a) date and time of capturing each of the images, (b) the number of the captured images, (c) date and time of finally transmitting (uploading) an image, (d) the number of transmitted (uploaded) images, and (e) date and time of finally capturing an image. In addition, the captured image state information 60 includes (f) serial numbers of images that have already been uploaded or images that have not yet been uploaded; (g) a serial number of a finally captured image; and the like.
  • In addition, the first processing unit 35 generates a Uniform Resource Locator (URL) of the data 50 that is uploaded to the server 42. The first processing unit 35 records the server specific information 48 onto the second memory 52. The server specific information 48 is used to access the image data. The medium identification information 111 is also recorded on the second memory 52. The medium identification information 111 is used to determine whether the device embedded with the RF-ID (RF-ID unit) is a camera, a card, or a post card.
  • When a main power of the camera (the first power supply unit 101 such as a battery) is ON, the second memory 52 receives power from the main power. Even if the main power of the camera is OFF, the external RF-ID reader/writer located outside supplies power to the RF-ID antenna 21. This enables the passive second power supply unit 91 without any power like a battery to adjust a voltage to provide power to respective units in a RF-ID circuit unit including the second memory. Thereby, it is possible to supply power to the second memory 52 so that the data is exchanged between the second memory 52 and the external device to be recorded and reproduced. Here, the second power supply unit 91 is a circuit generating power from radio waves received by the second antenna (RF-ID antenna) 21. The second power supply unit 91 includes a rectifier circuit and the like. Whenever the main power is ON or OFF, the data in the second memory 52 is read and written by the second processing unit 95. When the main power is ON, the data in the second memory 52 can be read and written also by the first processing unit 35. In other words, the second memory 52 is implemented as a nonvolatile memory, and both the first processing unit 35 and the second processing unit 95 can read and write data from and to the second memory 52.
  • When the image capturing device 1 completes capturing images of a trip or the like and then the captured images are to be reproduced, the image capturing device 1 is moved into proximity of the RF-ID reader/writer 46 of the TV 45, as illustrated on the right side of FIG. 1 as being the situation of reproducing images. Then, the RF-ID reader/writer 46 supplies power to the RF-ID unit 47 via the second antenna 21, and thereby the second power supply unit 91 provides power to the units in the RF-ID unit 47, even if the main power (the first power supply unit 101) of the image capturing device 1 is OFF. The captured image state information 60 and the server specific information 48 are read by the second processing unit 95 from the second memory 52, and transmitted to the TV 45 via the second antenna 21. The TV 45 generates a URL based on the server specific information 48, then downloads the image data of the data 50 from the server 42, and eventually displays, on the display unit 110, thumbnails or the like of images in the image data. If it is determined based on the captured image state information 60 that there is any captured image not yet uploaded to the server 42, the determination result is displayed on the display unit 110. If necessary, the image capturing device 1 is activated to upload, to the server 42, image data of the captured image not yet uploaded.
  • (a), (b), and (c) in FIG. 2 are an external front view, an external back view, and an external right side view, respectively, of the image capturing device 1 according to Embodiment 1 of the present invention.
  • As illustrated in (c) in FIG. 2, the first antenna 20 used for a wireless LAN and the second antenna 21 used for the RF-ID unit are embedded in a right side of the image capturing device 1. The antennas are covered with an antenna cover 22 made of a material not shielding radio waves. The RF-ID unit operates at a frequency of 13.5 MHz, while the wireless LAN operates at a frequency of 2.5 GHz. The significant difference in frequency prevents interference between them. Therefore, the two antennas 20 and 21 are seen overlapping with each other from the outside, as illustrated in (c) in FIG. 2. The structure decreases an installation area of the antennas, eventually reducing a size of the image capturing device 1. The structure also enables the single antenna cover 22 to cover both of the two antennas as illustrated in (c) in FIG. 2, so that the part made of the material not shielding radio waves is minimized. The material not shielding radio waves, such as plastic, has a strength lower than that of a metal. Therefore, the minimization of the material can reduce a decrease in a strength of a body of the image capturing device 1. The image capturing device 1 further includes a lens 6 and a power switch 3. The units assigned with numeral references 2 to 16 will be described later.
  • FIG. 3 is a detailed block diagram of the image capturing device 1.
  • Image data captured by an image capturing unit 30 is provided to a recording/reproducing unit 32 via the video processing unit 31 and then recorded onto a third memory 33. The image data is eventually recorded onto an Integrated Circuit (IC) card 34 that is removable from the image capturing device 1.
  • The above processing is instructed by the first processing unit 35 that is, for example, a Central Processing Unit (CPU). The image data, such as captured photographs or video, is provided to an encryption unit 36, a transmission unit 38 in a communication unit 37, and then the first antenna 20, in order to be transmitted to an access point or the like by radio via a wireless LAN, WiMAX, or the like. From the access point or the like, the image data is transmitted to the server 42 via the Internet 40. In the above manner, the image data such as photographs is uploaded.
  • There is a situation where a part of the image data fails to be uploaded because, for example, the communication state is not good or there is no nearby access point or base station. In the situation, some images have already been uploaded to the server 42, and the other images have not yet been uploaded. Therefore, the image data in the server 42 is different from the image data captured by the image capturing device 1. In Embodiment 1 of the present invention, the RF-ID reader/writer 46 of the TV 45 or the like reads the server specific information 48 and the like from the second memory 52 in the RF-ID unit 47 of the image capturing device 1. Then, based on the readout information, a URL or the like of the server 42 is generated. According to the URL, the TV 45 accesses the server 42 to access the data 50 such as a file, folder, or the like uploaded by the image capturing device 1. Then, the TV 45 downloads the uploaded images from among the images captured by the image capturing device 1, and displays the downloaded images. The above method will be described in more detail later.
  • If a part or all of the captured images is not uploaded as image data of the data 50 in the server 42, a problem would occur that a user downloading the images to the TV 45 cannot watch a part of the images on the TV 45.
  • In order to solve the problem, in Embodiment 1 of the present invention, the first processing unit 35 causes a recording/reproducing unit 51 to indicate information regarding a state of captured images, such as information of uploading state, to the captured image state information 55 in the second memory 52.
  • The above is described in more detail with reference to FIG. 4. In the second memory 52, synchronization information 56 is recorded. The synchronization information 56 indicates whether or not image data in the server 42 matches image data captured by the camera, in other words, whether or not the image data in the server 42 is in synchronization with the image data captured by the camera. In Embodiment 1 of the present invention, the TV 45 reads the captured image state information 55 from the second memory 52 via the second antenna 21. The captured image state information 55 makes it possible to instantly determine whether or not the data 50 in the server lacks any image. If the determination is made that there is any image that has not yet been uploaded, then the determination result is displayed on the display unit of the TV 45. Here, the TV 45 also displays a message of “Please upload images” to a viewer. Or, the TV 45 issues an instruction to the camera via the RF-ID antenna 21 to transmit an activation signal to the activation unit 170, thereby supplying power to the first power supply unit 101 of the image capturing device 1. Thereby, the TV 45 causes the image capturing device 1 to upload, to the server 42, the images in the first memory 174 or the like of the image capturing device 1, which have not yet been uploaded, via a wireless LAN, a wired LAN, the second antenna (RF-ID antenna) 21, or the like.
  • Since transmission via the RF-ID antenna 21 has a small transfer amount, transmission of the image data as originally captured takes a considerable time to upload and display the image data. This causes a user to feel unpleasant. In order to avoid this, according to Embodiment 1 of the present invention, when the image data is transmitted via the RF-ID antenna 21, thumbnails of the images not yet uploaded are transmitted instead. The thumbnails can shorten apparent upload time and display time, suppressing unpleasant feeling of the user. Most of current RF-ID of a HF band has a transfer amount of several hundreds kbps. However, development of RF-ID having a quad-speed has been examined. The quad-speed RF-ID has a possibility of achieving a transfer amount of several Mbps. If thumbnails of images not yet uploaded are transmitted, it is possible to transmit several dozens of thumbnails in one second. If thumbnails are displayed in a list, thumbnails of all images including images not yet uploaded can be displayed on the TV within a time period a general user can tolerate. The above is one of practical solutions.
  • If the image capturing device is forced to be activated to upload images not yet uploaded as described above, the most speedy and stable path is selected from a wireless LAN, the RF-ID antenna 21, and a wired LAN, to be used for uploading and displaying on the TV. In the situation where the image capturing device 1 receives power from the outside via the second antenna 21, the communication unit 171 transmitting signals to the second antenna 21 performs communication with the outside by a low-speed modulation method. On the other hand, in the situation where the image capturing device 1 can receive power from the first power supply unit 101 or the like, the communication unit 171 switches the modulation method to a modulation method having a large signal point, such as Quadrature Phase Shift Keying (QPSK), 16-Quadrature Amplitude Modulation (QAM), or 64-QAM, as needed, in order to achieve high-speed transfer to upload the image data not yet uploaded in a short time. Furthermore, when the power detection unit 172 detects, for example, that the first power supply unit 101 or the like does not have enough power or that the image capturing device 1 is not connected to an external power, the first power supply unit 101 stops supplying power and a modulation switch unit 175 switches the modulation method employed by the communication unit 171 to a modulation method having a smaller signal point or less transfer rate. As a result, it is possible to prevent that the capacity of the first power supply unit 101 is reduced to be equal to or less than a set value.
  • There is another solution for power. When power is not enough, the second processing unit 95, the communication unit 171, or the like sends a power increase request signal to the RF-ID reader/writer 46 of the TV 45 via the second antenna 21, to request for power support. In response to the request, the RF-ID reader/writer 46 increases providing power to have a value greater than the set value for the power used in reading data from the RF-ID unit. Since the RF-ID unit receives more power via the second antenna 21, the RF-ID unit can provide power to the communication unit 171 or the first processing unit 35. Thereby, a power amount of a battery 100 for the first power supply unit 101 is not reduced. Or, without the battery 100, the image capturing device 1 can practically and unlimitedly continue transmission.
  • As still another method, uploaded-image-data information 60 in FIG. 3 can be used. In uploaded-image-data information 60, uploaded-image information 61 such as serial numbers of photographs, is recorded. It is also possible to use hashed information 62 generated by hashing the information 61. As a result, a data amount is reduced.
  • The TV 45 can read the above information to be compared to information of images captured by the camera, thereby obtaining information of images not yet uploaded.
  • As still another method, not-yet-uploaded image data existence identification information 63 can be used. The not-yet-uploaded image data existence identification information 63 includes an existence identifier 64 indicating whether or not there is any image not yet uploaded. Since existence of images has not yet been uploaded is notified, data in the second memory 52 can be significantly reduced.
  • It is also possible to use not-yet-uploaded-image number 65 indicating the number of images not yet uploaded. Since the image capturing device 1 allows the TV 45 to read the information, a viewer can be informed of the number of images to be uploaded. In this case, a data capacity in addition to the number is recorded as the captured image state information 55. Thereby, the image capturing device 1 enables the TV 45 to display a more exact prediction time required to upload images not yet uploaded.
  • It is also possible to use not-yet-uploaded image information hashed information 67 that is generated by hashing information regarding images not yet uploaded.
  • In addition, it is also possible to record a final capturing time (final capturing date/time) 68 in the second memory 52. Later, the TV 45 reads the final capturing time 68. The TV 45 is connected to the server 42 to compare the final capturing time 68 to a capturing date of an image that has been finally uploaded to the server 42. Thereby, it is possible to easily determine whether or not there is any image not yet uploaded. If images are captured and assigned with serial numbers sequentially from an older image, it is possible to record only a final image serial number 69. The final image serial number 69 is compared to a serial number of an image that has been finally uploaded to the server 42. Thereby, it is possible to determine whether or not there is any image not yet uploaded. It is also possible to record, onto the second memory 52, captured image information 70 that is, for example, serial numbers of all captured images. Thereby, the TV 45 later accesses the server 42 to match the serial numbers to images uploaded to the server 42. As a result, it is possible to determine whether or not there is any image not yet uploaded. When the captured image information 70 is used, use of hashed information 71 generated by hashing the captured image information 70 can compress the captured image information 70.
  • The second memory 52 further stores Unique IDentification (UID) 75 of the RF-ID unit, camera ID 76, and the medium identification information 111. Even if the main power of the camera (except a sub-power for backup etc. of a clock) is OFF, these pieces of information can be read by the TV 45 via the second antenna 21 to be used for identifying the camera or the user or authenticating a device (apparatus). When the user comes back from an overseas trip or the like, the camera is likely to have a small charge amount of the battery. However, according to Embodiment 1 of the present invention, the camera can be operated to transmit information without battery, which is highly convenient for the user. The medium identification information 111 includes an identifier or the like indicating whether the medium or device embedded with the RF-ID unit is a camera, a camcorder, a post card, a card, or a mobile phone. The identifier enables the TV 45 to identify the medium or device. Thereby, the TV 45 can display a mark or icon of the camera or postcard on a screen as illustrated in FIG. 22, as will be described. The TV 45 can also change processing depending on the identifier.
  • The second memory 52 also stores image display method instruction information 77. For example, in the situation where a list display 78 in FIG. 5 is selected, when the second antenna 21 is moved into proximity of the RF-ID reader/writer 46 of the TV 45, the image capturing device 1 (camera) causes the TV 45 to display a list of thumbnails of images, such as photographs.
  • In the situation where slide show 79 is selected, the image capturing device 1 causes the TV 45 to sequentially display images from a newer one or an older one.
  • In a lower part of the second memory 52 in FIG. 4, there is a region for recording the server specific information 48.
  • The server specific information 48 allows a camera operator to display images on the TV screen by a preferred method.
  • The server specific information 48 includes server URL generation information 80 that is source information from which a server URL is generated. An example of the server URL generation information 80 is login ID 83. The server specific information 48 has a region in which server address information 81 and user identification information 82 are recorded. In practice, login ID 83 and the like are recorded. In addition, there is a region for storing a password 84. An encrypted password 85 may be stored in the region. The above pieces of information are used to generate a URL by a URL generation unit 90 that is provided in the image capturing device 1, the RF-ID unit 47, the camera function used for capturing images in the image capturing device 1, or the TV 45. The URL is used for accessing a group of images corresponding to the image capturing device 1 or the user in the server 42. If the URL generation unit 90 is provided in the RF-ID unit 47, the URL generation unit 90 receives power from the second power supply unit 91.
  • It is also possible to generate URL 92 without using the above pieces of information and store the generated URL 92 directly to the second memory 52.
  • It is characterized in that the above-described pieces of information stored in the second memory 52 can be read by both the second processing unit 95 in the RF-ID unit and the first processing unit 35 in the camera function.
  • The above structure allows the TV 45 reading the RF-ID unit 47 in the camera to instantly obtain the pieces of information regarding uploading state, the sever address information, the login ID, the password, and the like. Thereby, the TV 45 can download image data corresponding to the camera from the server 42, and display the image data at a high speed.
  • In the above situation, even if the main power of the image capturing device 1 is OFF, the RF-ID reader/writer supplies power to the second power supply unit 91 to activate (operate) the image capturing device 1. Therefore, power of the battery 100 in the image capturing device 1 is not reduced.
  • Referring back to FIG. 3, the first power supply unit 101 receives power from the battery 100 to provide power to the units in the camera. In a quiescent state, however, a third power supply unit 102 provides weak power to the clock 103 and the like. In some cases, the third power supply unit 102 supplies backup power to a part of the second memory 52.
  • The RF-ID unit 47 receives power from the second antenna to provide power to the second power supply unit 91, thereby operating the second processing unit 95, or operating a data receiving unit 105, a recording unit 106, a reproducing unit 107, a data transfer unit 108 (the communication unit 171), and the second memory 52.
  • Therefore, in a quiescent state of the camera, no power is consumed. As a result, it is possible to keep the battery 100 of the camera longer.
  • The processing performed by the image capturing device 1 (referred to also as a “medium” such as a camera or card) and the processing performed by the TV and the RF-ID reader/writer are explained with reference to a flowchart of FIG. 7.
  • If the main power is OFF in Step 150 a in FIG. 7, it is determined in Step 150 b whether or not activation setting of the RF-ID reader/writer for the main power OFF is made. If the activation setting is made, then the RF-ID reader/writer 46 is turned ON in Step 150 c and changed to be in a power saving mode in Step 150 e.
  • In Step 150 f, impedance or the like of an antenna unit is measured, or a nearby sensor is measured. When the RF-ID unit is moved into proximity of an antenna of the RF-ID reader/writer 46 in Step 150 j, it is detected in Step 150 g whether or not the RF-ID unit is in proximity of or contacts the antenna. If it is detected that the RF-ID unit is in proximity of or contacts the antenna, then the RF-ID reader/writer 46 starts supplying power to the antenna of the medium in Step 150 h. In Step 150 k, in the medium, the second power supply unit is turned ON and thereby the second processing unit starts operating. As Step 150 m, communication between the medium (camera or card) and the RF-ID reader/writer 46 starts.
  • In Step 150 i, the TV determines whether or not the RF-ID reader/writer 46 receives communication from the medium. If the RF-ID reader/writer 46 receives communication, then mutual authentication starts in Steps 151 a and 151 f in FIG. 8. If it is determined in Steps 151 b and 151 g that the mutual authentication is successful, information is read out from the second memory in Step 151 d. In Step 151 e, the readout information is transmitted to the RF-ID reader/writer 46. In Step 151 i, the RF-ID reader/writer 46 receives the information. In Step 151 j, the TV 45 side makes a determination as to whether or not the identification information or the like of the second memory is correct. If the identification information or the like is correct, then it is determined in Step 151 p whether or not the TV 45 has identification information indicating automatic power ON. If the TV 45 has identification information, then it is determined in Step 151 r whether or not a main power of the TV is OFF. If the main power of the TV is OFF, the main power of the TV is turned ON in Step 152 a of FIG. 9. In Step 152 b, the TV 45 side makes a determination as to whether or not the second memory 52 has forced display instruction. If the second memory 52 has the forced display instruction, then the TV 45 side changes an input signal of the TV to a screen display signal for displaying the RF-ID in Step 152 d. In Step 152 e, the RF-ID reader/writer 46 reads format identification information. In Step 152 f, the RF-ID reader/writer 46 reads information from the second memory by changing a format of the information to a format according to the format identification information. In Step 152 g, the TV 45 side makes a determination as to whether or not the second memory has a “password request flag”. If the second memory has the “password request flag”, then the RF-ID reader/writer 46 reads an “ID of TV not requesting password entry” from the second memory in Step 152 h. In Step 152 i, the TV 45 side makes a determination as to whether or not ID of the TV 45 matches the “ID of TV not requesting password entry”. If the ID of the TV 45 does not match the “ID of TV not requesting password entry”, then the medium reads out a password from the second memory in Step 152 q. In Step 152 v, the medium decrypts the password that has been encrypted. In Step 152 s, the medium transmits the decrypted password to the TV 45 side. Here, in Steps 152 q, 152 r, and 152 s, it is also possible to store the password in a storage device in the server 42 as the data 50 in the server 42.
  • In Step 152 j, the RF-ID reader/writer 46 receives the password. In Step 152 k, the TV 45 displays a password entry screen. In Step 152 m, the TV 45 determines whether or not the input password is correct. The determination may be made by the server 42. If the determination is made that the input password is correct, then the TV 45 performs display based on the information and program read from the second memory in the RF-ID unit in Step 152 p.
  • In Step 153 a of FIG. 10, the TV 45 side determines whether or not the medium identification information 111 in the RF-ID unit in the second memory indicates that the medium is a camera. If the medium identification information 111 indicates a camera, then the TV 45 displays an icon (characters) of a camera (camera icon) on the display unit in Step 153 b. On the other hand, if the medium identification information 111 does not indicate a camera, then it is determined in Step 153 c whether or not the medium identification information 111 indicates a post card. If the medium identification information 111 indicates a post card, then the TV 45 displays an icon of a post card (post-card icon) in Step 153 d. On the other hand, if the medium identification information 111 does not indicate a post card, the TV 45 further determines in Step 153 e whether or not the medium identification information 111 indicates an IC card. If the medium identification information 111 indicates an IC card, then the TV 45 displays an icon of an IC card in Step 153 f. On the other hand, if the medium identification information 111 does not indicate an IC card, the TV 45 still further determines in Step 153 g whether or not the medium identification information 111 indicates a mobile phone. If the medium identification information 111 indicates a mobile phone, then the TV 45 displays an icon of a mobile phone on a corner of the TV screen.
  • In Steps 154 a and 154 i of FIG. 11, the RF-ID reader/writer 46 reads service detail identification information from the server or the second memory. In Step 154 c, the TV 45 side determines whether or not the service detail identification information indicates image display service. In Step 154 b, the TV 45 side determines whether or not the service detail identification information indicates a post card service such as direct mail. In Step 154 d, the TV 45 side determines whether or not the service detail identification information indicates advertising service. In Steps 154 f and 154 j, the RF-ID reader/writer 46 obtains the server specific information 48 from the second memory of the medium. In Step 154 g, the TV 45 side determines whether or not the second memory stores the URL 92. If the second memory does not store the URL 92, then the processing proceeds to Steps 154 h and 154 k at which the TV 45 obtains the server address information 81 and the user identification information 82 from the second memory. In Steps 155 a and 155 p in FIG. 12, the TV obtains an encrypted password from the second memory. In Steps 155 b, the TV decrypts the encrypted password. In Step 155 c, the TV generates URL from the above pieces of information. In Step 155 d, even if the second memory stores the URL 92, the TV accesses the server having the URL via the communication unit and the Internet. In Step 155 k, the TV starts being connected to the server 42. In Step 155 q, the medium reads out operation program existence identifier 119 from the second memory. In Step 155 e, the TV determines whether or not the TV has any operation program existence identifier. If the TV has any operation program existence identifier, it is further determined in Step 155 f whether or not there are a plurality of operation programs. If there are a plurality of operation programs, then the TV reads operation program selection information 118 from the second memory in Step 155 r. In Step 155 g, the TV determines whether or not the operation program selection information 118 is set. If the operation program selection information 118 is set, the TV selects directory information of a specific operation program in Step 155 h. In Step 155 s, the medium reads out directory information 117 of the specific operation program from the server and provides the directory information 117 to the TV. In Step 155 i, the TV accesses the specific operation program in the directory on the server. In Step 155 m, the server provides the specific operation program to the TV or executes the specific operation program on the server in Step 155 n. In Step 155 j, the TV (or the server) starts execution of the specific operation program. In Step 156 a of FIG. 13, the TV determines whether or not the specific operation program is service using images. If the specific operation program is service using images, then the TV starts checking images not yet uploaded in Step 156 b.
  • In Step 156 i, the TV reads the not-yet-uploaded image data existence identification information 64 from the medium. In Step 156 c, the TV determines whether or not the not-yet-uploaded image data existence identification information 64 indicates that there is any image not yet uploaded. If there is any image not yet uploaded, the TV reads the not-yet-uploaded-image number 66 and the data capacity 65 from the medium in Step 156 d. In Step 156 e, the TV displays (a) the not-yet-uploaded-image number 66 and (b) a prediction time required to upload images which is calculated from the data capacity 65 regarding image not yet uploaded. In Step 156 f, the TV determines whether or not the medium (camera) is in a state where the medium can automatically upload images. If the medium can automatically upload images, then in Step 156 g, the TV activates the medium (camera) to upload images not yet uploaded to the server via the first antenna 20 or the second antenna 21 by wireless communication or wired communication having contacts. When Step 156 g is completed, the processing proceeds to Step 157 a of FIG. 14. In Step 157 a, the TV determines whether or not there is a billing program. If there is no billing program, then in Step 157 n, the TV reads identifier 121 regarding the image display method instruction information which is shown in FIG. 6. In Step 157 b, the TV determines whether or not the server has the image display method instruction information. If the server has image display method instruction information, then in Step 157 p, the TV reads, from the medium, directory information 120 regarding a directory in which image display method instruction information is stored on the server. In Step 157 c, the TV reads, from the medium, the directory information 120 in which the image display method instruction information corresponding to UID or the like is stored. In Step 157 d, the TV obtains the image display method instruction information from the server. Then, the processing proceeds to Step 157 f.
  • On the other hand, if the determination is made in Step 157 b that the server does not have the image display method instruction information, then the processing proceeds to Step 157 e. In Step 157 e, the TV obtains the image display method instruction information from the medium (such as a camera). Then, the processing proceeds to Step 157 f.
  • In Step 157 f, the TV starts display of images based on the image display method instruction information. In Step 157 g, the TV reads an all-image display identifier 123 from the medium. In Step 157 g, the TV determines whether or not the all-image display identifier 123 indicates that all images are to be displayed. If all images are to be displayed, the TV displays all images in Step 157 r. On the other hand, if all images are not to be displayed, then in Step 157 h, the TV displays a part of images in a specific directory identified by the directory information 124 that is read in Step 157 s from the medium. In Step 157 i, the TV determines whether or not a list display identifier 125 indicates that images to be displayed in a list. If the images are to be displayed in a list, then the TV reads a display order identifier 122 in Step 157 t. In Step 157 j, the TV displays the images in a list in a date order or an upload order based on the display order identifier. In Step 157 v, the TV reads a slide show identifier 126 from the medium. In Step 157 k, the TV determines whether or not the slide show identifier 126 indicates that images are to be displayed as slide show. If the images are to be displayed as a slide show, then in Step 157 m, the TV displays the images as slide show based on the display order identifier 122. Then, the TV reads image quality prioritization 127 from the second memory of the medium. In Step 158 a of FIG. 15, the TV determines whether or not the image quality prioritization 127 indicates that the images are to be displayed by prioritizing image quality. If the images are not to be displayed by prioritizing image quality, the TV reads speed prioritization 128 from the medium in Step 158 q and further determines in Step 158 b whether or not the speed prioritization 128 indicates that the images are to be displayed by prioritizing a speed. If a speed is to be prioritized, then the TV determines in Step 158 c whether or not the server stores display audio. In Step 158 s, the TV reads and checks display audio server directory 130 from the medium. In Step 158 d, the TV accesses the directory in the server to obtain the display audio and outputs the audio.
  • In Step 158 e, the TV determines whether or not all images are to be displayed as priorities. If all images are not to be displayed as priorities, then in Step 158 f, the TV selects a part of the images. In Steps 158 g, the TV reads specific directory information 124 from the medium in Step 158 v, and receives images in the specific directory from the server in Step 158 w. In Step 158 h, the TV displays the images in the specific directory. On the other hand, if it is determined in Step 158 e that all images are to be displayed as priorities, then the TV may display all images in Step 158 i. In Step 158 j, the TV determines whether or not the image display is completed. If the image display is completed, then the TV displays a message “view other image(s)?” in Step 158 k. If the user agrees, then the TV displays a menu of images in different directories in Step 158 m.
  • In Step 159 a of FIG. 16, the TV determines whether or not images captured by a specific user are requested. If images captured by a specific user are requested, then in Step 159 b, the TV requests the medium to provide (a) specific user all image information 132 in Step 159 m and (b) a specific user password 133 that is a password of the specific user. In Step 159 c, the TV determines whether or not the password is correct. If the password is correct, then in Step 159 p, the TV reads directory information 134 of a directory of a file storing an image list from the medium. In Step 159 d, the TV accesses the server to access a directory having an image list of the specific user. In Step 159 r, the TV downloads image data in the directory from the server. In Step 159 e, the TV displays the images captured by the specific user.
  • In Step 159 f, the TV starts color correction routine. In Step 159 g, the TV reads camera model information from the camera ID 76. In Steps 159 h and 159 t, the TV downloads characteristic information of the camera model from the server. Then, in Steps 159 i and 159 u, the TV downloads characteristic information of the TV from the server. In Step 159 w, the server calculates the characteristic information to generate modified information. In Step 159 j, the TV modifies color and brightness of the display unit based on the pieces of characteristic information of the medium (camera) and the TV. In Step 159 k, the TV displays the images with the modified color and brightness.
  • In Step 160 a of FIG. 17, the TV determines whether or not forced print instruction is selected. Here, if forced print instruction is selected, it is determined in Step 160 b whether or not the terminal (the TV in the above example) to which the medium (camera) is moved closer is a printer or a terminal connected to the printer. If the terminal is a printer or a terminal connected to the printer, then the terminal obtains, in Step 160 c, camera model information of the medium (camera) and a model name of the printer for each image data. In Step 160 d, the terminal modifies each piece of information of the server to generate modified information. In Step 160 p, the terminal receives directory information 137 of a directory in which the image data to be printed is stored. At 160 e, the terminal accesses the server by using an address of the directory having the image data to be printed (or file name). In Step 160 m, the server sends the image data stored in the directory to the terminal. In Step 160 f, the TV receives the image data to be printed. In Step 160 g, the terminal prints the image data. In Step 160 h, the printing is completed. In Step 160 i, for each image data, the terminal records, onto the server, an identifier indicating that one printing process is completed. In Step 160 n, the server assigns a print completion identifier to the image data that is stored in the server and has been printed.
  • Next, the following describes the situation where the medium such as a camera or a post card does not have a memory for storing data.
  • Steps of FIG. 18 follow the numbers 3, 4, and 5 in circles in FIG. 8. In Step 161 a of FIG. 18, a main power of the TV is turned ON. In Step 161 k, the TV reads UID of the RF-ID unit from the second memory. In Step 161 b, the TV obtains the UID. In Step 161 m, the TV reads the server specific information 48 from the second memory. In Step 161 c, the TV accesses a server directory. In Step 161 d, the TV searches the server directories for a final server providing service corresponding to the UID. In Step 161 e, the TV determines whether or not such a final server exists. If there is such a final server, then in Step 161 g, the TV accesses the final server and reads a user ID, a password, and a service name from a UID list. In Step 161 h, the TV determines whether or not a password is requested. If the password is requested, then the TV determines in Step 161 i whether or not the readout password is correct. In Step 162 a of FIG. 19, the TV determines whether or not the service is regarding photographs or video. If the service is regarding photographs or video, then in Step 162 b, the TV (i) reads, from a specific directory in the server associated with the UID, (a) a corresponding program such as a billing program, (b) a list including an address or a file name of image data to be displayed, (c) image display instruction information, (d) forced display instruction, (e) forced print instruction, and (f) camera ID, and (ii) automatically displays the image data or causes the image data to be printed, based on the above pieces of information and procedure.
  • If needed, password entry is requested in Step 162 b. In Step 162 c, the TV determines whether or not the user desires to print a specific image. If the user desires to print a specific image, then in Step 162 d, the TV adds data of the specific image to the server associated with the UID or to a print directory of the TV. In Step 162 e, the TV determines whether or not the TV is connected to a printer and there is an independent printer. If so, then, in Step 162 f, the RF-ID unit of the medium such as a post card is moved into proximity of a RF-ID reader/writer of the printer. In Step 163 a of FIG. 20, the printer (i) reads UID of the RF-ID from the medium, (ii) thereby reads image data to be printed or a location of the image data from the print directory on the server having the modified information, and (iii) prints the image data. In Step 163 b, the printing is completed. Thereby, the above processing is completed.
  • Step 163 i of FIG. 20 is the number 23 in FIG. 19. In Step 163 d, the TV determines whether or not the service is for shopping. If the service is for shopping, then the TV determines in Step 163 e whether or not authentication is successful. If the authentication is successful, then in Step 163 f, the TV reads, from the server, a shopping/billing program associated with the UID, and executes the program. In Step 163 g, the execution of the program is completed. Thereby, the above processing is completed.
  • Next, the following describes a method of reading information from a RF-ID unit embedded in a postcard without a RF-ID reader.
  • In Step 164 a in FIG. 21, a second RF-ID unit, on which URLs of relay servers are recorded, is attached to or embedded in the medium such as a post card. On the outer surface of the second RF-ID unit, (a) UID of the second RF-ID unit and (b) information for identifying a first URL of a certain relay server are printed to be displayed by a two-dimensional bar-code.
  • In Step 164 b, there is a camera capable of being connected to a main server. The camera has a first RF-ID unit on which a first URL of the main server is recorded. An image capturing unit in the camera optically reads the two-dimensional bar-code, and converts the readout information to information for identifying (a) the UID of a second RF-ID unit in the post card and (b) a second URL of a relay server.
  • In Step 164 c, the converted information is recorded onto a memory in the camera.
  • In Step 164 d, the camera selects a specific set of images from images captured by the camera, and stores the set of images into a specific first directory in the main server. At the same time, the camera uploads information of first directory (first directory information) as well as the first URL of the main server, a specific second directory in the relay server having the second URL. The camera uploads information for associating the UID of the second RF-ID unit with the second directory, to the relay server having the second URL. In Step 164 e, the medium such as a post card is mailed to a specific person.
  • In Step 164 f, the person receiving the post card moves the RF-ID unit of the post card into proximity of a RF-ID reader of a TV or the like. Thereby, the TV reads, from the RF-ID unit, the second URL of the relay server and the UID of the post card.
  • In Step 164 g, the TV accesses the relay server having the second URL. Then, the TV reads, from the relay server, (a) a program in the second directory associated with the UID and/or (b) the first URL and the first directory information of the main server on which specific image data is recorded. The TV downloads the image data from the main server. The TV displays the image data on a screen. In the above case, the image capturing unit in the image capturing device according to Embodiment 1 of the present invention reads information from the two-dimensional bar-code that is generally printed in a product or post card to record server information. Then, the image capturing device records the information read from the two-dimensional bar-code, as digital information, onto the second memory of the RF-ID unit. Thereby, the image capturing device allows a RF-ID reader of a TV to read the information. As a result, even a TV without an optical sensor for two-dimensional bar-codes can indirectly read information of two-dimensional bar-codes and automatically access a server or the like.
  • (a) in FIG. 22 illustrates the situation where display is presented when the image capturing device 1 is moved into proximity of a RF-ID antenna 138 of the TV 45.
  • When the image capturing device 1 is moved into proximity of the antenna 138, the TV 45 displays a camera icon 140 for notifying of that the medium is a camera in the manner described previously.
  • Next, since the number (for example, five) of images not yet uploaded is detected, the TV 45 displays five blank images 142 a, 142 b, 142 c, 142 d, and 142 e as if these images were taken out from the camera icon 140.
  • Thereby, the TV 45 displays “tangible” information of images by changing “materials to information”. As a result, the user can perceive the information of images by more natural sense.
  • Regarding images that have been already uploaded to the server, actual images 143 a, 143 b, and 143 c are displayed as tangible data in the same manner as described above.
  • (b) in FIG. 22 illustrates the situation where RF-ID is embedded in a post card 139. The RF-ID reader/writer 46 of the TV 45 reads attribute information of the post card from the RF-ID. Thereby, the TV 45 displays a post-card icon 141 at a bottom left corner of the display unit of the TV 45 as illustrated in (b) in FIG. 22. The TV 45 also displays images stored in the server or a menu screen as tangible data in the same manner as described with reference to (a) in FIG. 22.
  • Next, the following processing is described in detail. By the processing, an operation program 116 illustrated in FIG. 4 is transmitted to the TV 45 illustrated in FIG. 3 that is an apparatus (device) communicating with the RF-ID unit 47 of the image capturing device 1. The communicating device (TV 45) executes the transmitted program.
  • FIG. 23 is a block diagram of a configuration in which the apparatus communicating with the RF-ID unit 47 in the image capturing device 1 executes the transmitted program. FIG. 23 illustrates a communication system including a part of the image capturing device 1 (the RF-ID 47 and the second antenna 21), the TV 45, and a remote controller 827 of the TV 45. Here, the image capturing device 1 is implemented as a camera which has the RF-ID unit 47 to perform proximity wireless communication with the RF-ID reader/writer 46. The RF-ID reader/writer 46 is connected to the TV 45 by an infrared communication path. The camera includes the second antenna 21, the data receiving unit 105, the second memory 52, and the data transfer unit 108. The second antenna 21 is used for the proximity wireless communication. The data receiving unit 105 receives, via the second antenna 21, an input signal provided from the RF-ID reader/writer 46. The second memory 52 is a nonvolatile memory holding at least (a) the UID unit 75 that is identification information for identifying the image capturing device 1, and (b) the operation program 116 that is to be executed by the TV 45 with reference to the UID unit 75. The data transfer unit 108 transmits the UID unit 75 and the operation program 116 stored in the second memory 52 to the RF-ID reader/writer 46 via the second antenna 21, according to the input signal received by the data receiving unit 105. The UID unit 75 and the operation program 116 transmitted from the data transfer unit 108 are transmitted to the TV 45 via the data transfer unit 108, the second antenna 21, the RF-ID reader/writer 46, and then the infrared communication path. The following explains the above units in more detail.
  • The RF-ID unit 47 in the image capturing device 1 has the second memory 52. The second memory 52 holds the operation program 116. The operation program 116 can be executed by the TV 45 communicating with the RF-ID unit. In more detail, the operation program 116 is an example of the program executed by the TV 45 with reference to the identification information of the image capturing device 1. The operation program 116 is, for example, an execution program such as Java™ program, a virtual-machine script program such as Javascript™ program, or the like.
  • The reproducing unit in the RF-ID unit 47 reads necessary information and the operation program 116 from the second memory 52. The necessary information is required to execute the operation program 116. The necessary information includes the UID unique to the image capturing device 1, the server specific information including the URL of the server, and the like. The necessary information and the operation program 116 are transmitted to the RF-ID reader/writer 46 in the remote controller 827 via the data transfer unit 108 and the second antenna 21. The remote controller 827 remotely controls the TV 45.
  • The RF-ID reader/writer 46 of the remote controller 827 receives the necessary information and the operation program from the RF-ID unit 47 of the image capturing device 1 and stores them into a RF-ID storage unit 6001.
  • A remote-controller signal generation unit 6002 in the remote controller 827 converts the necessary information and the operation program, which are transmitted from the RF-ID unit 47 of the image capturing device 1 and stored in the RF-ID storage unit 6001, to remote-controller signals. The remote-controller signals, such as infrared signals, are widely used in communication for present remote controllers.
  • To the TV 45, a remote-controller signal transmission unit 6003 transmits the remote-controller signals including the operation program which are generated by the remote-controller signal generation unit 6002.
  • A remote-controller signal receiving unit 6004 in the TV 45 receives the remote-controller signals from the remote controller 827. A program execution unit 6005, such as a Java™ virtual machine, retrieves the necessary information and the operation program in the RF-ID unit 47 of the image capturing device 1, from the remote-controller signals by using a decryption unit 5504. Thereby, the program execution unit 6005 executes the operation program.
  • FIG. 24 is a flowchart of execution of the operation program for “downloading data of images from an image server with reference to identification information (UID in this example) of the image capturing device 1, and displaying the images as a slide show”.
  • When the remote controller is moved into proximity of the image capturing device 1, the RF-ID reader/writer 46 of the remote controller provides power to the RF-ID unit 47 in the image capturing device 1 via RF-ID communication. Thereby, the UID 75 unique to the image capturing device 1, the URL 48 of the image server (image server URL), and the operation program 116 are read from the second memory 52 (S6001). The readout UID, image server URL, and operation program are transmitted to the remote controller 827 via the data transfer unit 108 and the second antenna 21 (S6002). Here, as presented in FIG. 25, the operation program includes server connection instruction 6006, download instruction 6008, slide show display instruction 6010, download-completion-time processing set instruction 6007, and download-completion-time instruction 6009.
  • The remote controller 827 receives the UID, the image server URL, and the operation program from the image capturing device 1 via the RF-ID reader/writer 46 (S6003). A determination is made as to whether or not receiving is completed (S6004). If receiving is completed, then the UID, the image server URL, and the operation program are stored in the RF-ID storage unit 6001 (S6005). Then, the UID, the image server URL, and the operation program are converted to remote-controller signals transmittable by infrared ray (S6006). A determination is made as to whether or not the user performs a predetermined input operation by the remote controller 827 to instruct to transmit the remote-controller signals to the TV 45 (S6007). If the instruction is received by from user, then the remote-controller signal transmission unit 6003 transmits the remote-controller signals including the image server URL and the operation program to the TV 45 (S6008). In other words, serving as a common remote controller, the remote controller 827 serves also as a relay device that transfers the UID, the image server URL, and the operation program from the image capturing device 1 to the TV 45 by using the embedded RF-ID reader/writer 46.
  • Next, the TV 45 receives the remote-controller signals from the remote controller 827 (S6009). The decryption unit 5504 in the TV 45 retrieves (decrypts) the UID, the image server URL, and the operation program from the remote-controller signals (S6010). Then, the program execution unit 6005 executes the operation program with reference to the image server URL (S6011 to S6015). More specifically, by the operation program, connection between the TV 45 and the image server 42 on a communication network is established with reference to the image server URL (S6012, and 6006 in FIG. 25). Then, with reference to the UID unique to a corresponding image capturing unit, image data captured by a specific image capturing unit is selected from the image data 50 stored in the storage device of the image server 42, and the selected image data is downloaded to the TV 45 (S6013, and 6008 in FIG. 25). In other words, the UID is used to select image data associated with the image capturing device 1 indicated by the UID, from among pieces of image data stored in the image server 42. A determination is made as to whether or not the image download is completed (S6014). If the image download is completed, the downloaded images are sequentially displayed as a slide show (S6015, and 6007, 6009, and 6010 in FIG. 25). The download-completion-time processing set instruction 6007 in FIG. 25 is instruction for setting processing to be performed when image downloading is completed. In the example of FIG. 25, the download-completion-time processing set instruction 6007 instructs the download-completion-time instruction 6009 as the processing to be performed when image downloading is completed. Moreover, the download-completion-time instruction 6009 calls the slide show display instruction 6010 for performing a slide show of the images.
  • It should be noted that, referring to FIGS. 23 and 24, it has been described that the operation program and the necessary information for the operation program are transferred from the image capturing device 1 to the TV 45 via the remote controller 827. However, the RF-ID reader/writer 46 of the remote controller 827 may be provided to the TV 45. In other words, the RF-ID reader/writer 46 may be embedded in the TV 45. Furthermore, the communication path connecting the reader (RF-ID reader/writer 46) to the apparatus may be a wireless communication path such as infrared communication path, or a wired signal cable.
  • It should also be noted that, in the above-described execution example, the UID is used to select image data associated with the image capturing device 1 from among pieces of image data stored in the image server 42. However, it is also possible to use the UID to identify the image server storing the image data. Here, it is assumed that, in a communication system including a plurality of image servers, UID is associated with an image server storing image data captured by an image capturing device identified by the UID. Under the assumption, if the operation program is created so that a URL of the image server can be identified with reference to the UID, the TV 45 executing the operation program can identify, by using the UID, the image server associated with the UID from the plurality of image servers and thereby download the image data from the identified image server.
  • It should also be noted that the identification information for identifying the image capturing device 1 is not limited to UID. The identification information maybe any other information regarding the image capturing device 1, such as a serial number, a product serial number, a Media Access Control (MAC) address, or information equivalent to the MAC address, for example, an Internet Protocol (IP) address. Moreover, if the image capturing device 1 serves as an access point on a wireless LAN, the identification information maybe a Service Set Identifier (SSID) or any information equivalent to SSID. It should also be noted that, in the above-described second memory 52, the identification information (UID unit 75) for identifying the image capturing device 1 has been described to be stored separately from the operation program 116. However, the identification information may be stored (described) in the operation program 116.
  • It should also be noted that the remote-controller signals (in other words, the communication path connecting the reader to the apparatus) are described to employ infrared ray. However, the remote-controller signals are limited to the above, but may employ a wireless communication method such as Bluetooth. The use of wireless communication that is generally speedier than infrared communication can shorten a time required to transfer an operation program and/or the like.
  • It should be noted that the operation program is not limited to the program in the format presented in FIG. 25. The operation program may be described in any other programming language. For example, the operation program described in Java™ can be easily executed by various apparatuses (devices), because the program execution circumstances called JavaVM™ have broad versatility. The operation program may be described in a compact programming language in a script format represented by Javascript™ so as to be stored in a small storage capacity. The operation program in such a compact programming language can be stored in the RF-ID unit 47 in the second memory 52 even if the RF-ID unit 47 has a small storage capacity. Moreover, the operation program may be in an executable format applied with processing such as compiling, rather than a source code presented in FIG. 25. The program can reduce a processing load on apparatuses having program execution environments.
  • The following describes, in detail, the processing of changing execution of a program depending on information unique to a display device (such as the TV 45) having a RF-ID reader, with reference to FIGS. 26 and 27.
  • The TV 45 illustrated in FIG. 26 further includes a language code holding unit 6013. When the operation program received as remote-controller signals is executed to connect the TV 45 to the server 42, the program execution unit 6005 reads a language code from the language code holding unit 6013 to connect the TV 45 to the server 42 compliant to the language code. Then, the operation program is executed to download a server program from the server 42, and executes the downloaded server program. For example, if the language code indicates Japanese language, the TV 45 is connected to the server 42 having a program storage unit 6011 in which a server program compliant to Japanese language is stored, and then the server program is obtained from the program storage unit 6011 to be executed in the TV 45. More specifically, the operation program stored in the RF-ID unit 47 of the image capturing device 1 as illustrated in FIG. 23 executes only connection to the server 42, while other processing such as image display is executed by the server program downloaded from the server 42.
  • The steps in the above processing are described with reference to FIG. 27. The processing by which the TV 45 receives the operation program and the necessary information for the operation program from the RF-ID unit 47 of the image capturing device 1 is the same as the processing described previously with reference to FIG. 24. In FIG. 27, it is assumed that the server specific information which the TV 45 receives as remote-controller signals includes two different server addresses which are (a) a sever address of a server 42 compliant to English and (a) a server address of a different server 42 compliant to Japanese. It is also assumed that the operation program which the TV 45 receives as remote-controller signals includes instruction for connecting the TV 45 to a server indicated by the server connection instruction 6006 in FIG. 25.
  • In the execution environments, the TV 45 obtains a language code of the TV 45 (S6016). The TV 45 determines whether or not the language code indicates Japanese language (S6017). If the language code indicates Japanese language, then the TV 45 selects, from the server specific information, a sever address of a server having a program storage unit 6011 storing an operation program for processing compliant to Japanese (S6018). On the other hand, if the language code does not indicate Japanese language, then the TV 45 selects, from the server specific information, a server address of a server having a program storage unit 6011 storing an operation program for processing compliant to English (S6019). Next, the TV 45 is connected to the server 42 with reference to the selected server address (S6021). The TV 45 downloads a server program from the server 42 (S6022, S6023). The TV 45 executes the downloaded server program in the program execution environments (for example, a virtual machine) of the TV 45 (S6024).
  • It should be noted that the use of the language code has been described in FIGS. 26 and 27, but the language code may be replaced by other information. Examples are a product serial number, a serial number of the display device (TV 45), and the like each of which indicates a country where the display device is on the market or equipped.
  • FIG. 28 illustrates a configuration of a home network 6500 in which the image capturing device 1 and the TV 45 are connected to each other via a wireless LAN or Power Line Communication (PLC). When the image capturing device 1 has a direct communication unit 6501 and the TV 45 has a direct communication unit 6502 so that the image capturing device 1 and the TV 45 can communicate directly with each other via the wireless LAN, the image capturing device 1 can transmit images to the TV 45 without using the server on the Internet. In other words, the image capturing device 1 serves also as a server. In this case, however, some communication mediums such as the wireless LAN used in the home network 6500 is easily intercepted by others. Therefore, safe data communication requires mutual authentication and exchange of encrypted data. For example, for existing wireless-LAN terminals (devices), access points serve as authentication terminals. If such an existing terminal is to authenticate its communication party, the terminal displays all connectable access points on its screen. The user selects one of the displayed access points from the screen. Then, the user presses a Wired Equivalent Privacy (WEP) key to perform encrypted communication. However, the above processing bothers general users. In addition, if a wireless LAN is embedded in home appliances such as a TV, there are so many terminals with which the existing terminal can communicate with authentication. If the user lives in an apartment house, the user can communicate even with terminals in neighbors. As a result, it is difficult for the user to select a terminal to be authenticated. For instance, if a neighbor has a TV 6503 that is the same model of the user's TV 45, the user has difficulty in distinguishing the TV 45 in the user's house from the TV 6503 based on the information displayed on the screen of the existing device.
  • Embodiment 1 of the present invention can solve the above problem. In Embodiment 1 of the present invention, RF-ID is used to perform authentication. In more detail, an authentication program including a MAC address 58 is recorded, as an operation program, in the second memory 52 in the RF-ID unit 47 of the image capturing device 1. When the image capturing device 1 is moved into proximity of the RF-ID reader/writer 46 of the TV 45, the image capturing device 1 provides the authentication program to the TV 45. The authentication program includes not only the MAC address but also a cryptography key for authentication (hereinafter, “authentication cryptography key”) and an authentication command. When the TV 45 recognizes that the information provided from the RF-ID unit 47 includes the authentication command, the TV 45 performs authentication processing. The communication unit 171 in the RF-ID unit 47 cannot communicate with the TV 45, until the image capturing device 1 is physically located in proximity of the RF-ID reader/writer 46. Therefore, it is extremely difficult to intercept the communication between the image capturing device 1 and the TV 45 which is performed in a house. In addition, since the image capturing device 1 is moved into proximity of the TV 45 to exchange data, it is possible to prevent that the image capturing device 1 authenticates a wrong device (apparatus), such as the TV 6503 in a neighbor or a DVD recorder 6504 in the user's house.
  • The following is an example of an authentication method without using RF-ID with reference to FIG. 29. A user inputs, to the TV 45, (a) MAC addresses of terminals to be authenticated, such as the camera (the image capturing device 1) and the DVD recorder 6504, which the user intends to authenticate for communication, and (b) authentication cryptography keys 6511 for the terminals. The TV 45 receiving the inputs transmits an appropriate message called a challenge 6513, to a target terminal having the MAC address. When the image capturing device 1 receives the challenge 6513, the image capturing device 1 encrypts the challenge 6513 using the authentication cryptography key 6511, and returns the encrypted challenge 6513 to the TV 45 that is a terminal from which the challenge 6513 has been provided. In receiving the encrypted challenge 6513, the TV 45 decrypts the encrypted challenge 6513 using the authentication cryptography key 6511. Thereby, the TV 45 can authenticate the authentication cryptography key 6511 to prevent user's error and intervention of other malicious users. Next, the TV 45 encrypts a cryptography key 6512 a for data (hereinafter, a “data cryptography key 6512 a”) using the authentication cryptography key 6511. Then, the TV 45 transmits the encrypted data cryptography key 6512 a to the image capturing device 1. Thereby, it is possible to perform the encrypted data communication between the TV 45 and the image capturing device 1. The TV 45 performs the above-described processing also with the DVD recorder 6504 and other apparatuses (terminals) 6505 and 6506 in order to share the data cryptography key 6512 a among them. Thereby, the TV 45 can perform encrypted communication with all terminals (devices, apparatuses, or the like) connected in the home network.
  • On the other hand, FIG. 30 illustrates an authentication method using RF-ID. In the authentication method using RF-ID, the image capturing device 1 (camera) generates an authentication program 6521 a. The camera provides the generated authentication program 6521 a from the RF-ID unit 47 in the camera to a RF-ID unit 46 in the TV 45. The authentication program 6521 a includes an authentication command, a MAC address of the camera, and an authentication cryptography key 6511 for the camera. When the TV receives the authentication program 6521 a with the authentication command, the TV 45 retrieves the MAC address and the authentication cryptography key 6511 from the RF-ID unit 46. The TV 45 encrypts a data cryptography key 6512 a using the retrieved authentication cryptography key 6511 and transmits the encrypted data cryptography key 6512 a to the retrieved MAC address. The transmission is performed by a wireless-LAN device (terminal). In the authentication method using RF-ID, the authentication is performed automatically without any user's input. Therefore, there is no problem caused by user's input errors. In addition, since the image capturing device 1 (camera) needs to be moved into proximity of the TV 45, it is possible to prevent intervention of other malicious users. This authentication method using RF-ID can eliminate pre-processing such as the above-described challenge. Moreover, the action of physically moving the image capturing device 1 (camera) into proximity of the TV 45 enables the user to easily recognize which terminals the camera has authenticated. Furthermore, if the authentication cryptography key 6511 is not included in the authentication program, the authentication may be performed by a technique of general public key authentication. In addition, the communication device (medium) is not limited to a wireless LAN, but may be any medium, such as PLC or Ethernet™ included in the home network. Moreover, the MAC address may be any identification information for uniquely identifying a communication terminal in the home network.
  • FIG. 31 illustrates an authentication method using RF-ID when it is difficult to move a terminal into proximity of another terminal. For example, when the terminals are a refrigerator and a TV which are difficult to move, it is almost impossible to directly exchange an authentication program between the terminals using RF-ID. In such a situation, Embodiment 1 of the present invention can be implemented by relaying the authentication program between the terminals using a device (such as a remote controller 6531) that is an accessory of the terminal. In more detail, a RF-ID reader/writer embedded in the remote controller 6531 reads the authentication program from a RF-ID unit in the refrigerator. Thereby, the authentication program is stored in a memory in the remote controller 6531. A user moves the remote controller 6531 that is mobile. When the remote controller 6531 is moved into proximity of the TV 45, the remote controller 6531 transfers the authentication program from the memory of the remote controller 6531, to the RF-ID unit of the TV 45. It should be noted that the transfer from the remote controller 6531 to the TV 45 is not limited to use RF-ID technology. Other communication means, such as infrared ray or ZigBee, that is previously set in the remote controller 6531 can be used. Any medium for which security in communication has already been established may be used.
  • FIG. 32 is a flowchart of authentication performed by the camera (image capturing device 1) side. In an authentication mode, the camera generates an authentication cryptography key and sets a timer (S6541). The camera writes a MAC address of the camera, the generated authentication cryptography key, and an authentication command, into a memory in the RF-ID unit (S6542). When the user moves the camera to bring the RF-ID unit of the camera into proximity of the RF-ID unit of the TV, the camera transfers the information stored in the memory of the RF-ID unit of the camera to the RF-ID unit of the TV (S6543). The camera determines whether or not a response of the transfer is received from the TV within a predetermined time period counted by the timer (S6544). If the response is received within the predetermined time period, then the camera decrypts, by using the authentication cryptography key, encrypted data cryptography key included in the response (S6545). The camera starts communicating with the other device (apparatus) using the data cryptography key (S6546). The camera determines whether or not data communication with the TV is successful (S6547). If the data communication is successful, then the authentication is completed. On the other hand, if data cannot be correctly decrypted (in other words, data communication is not successful), then a notification of authentication error is displayed and the authentication is terminated (S6548). Referring back to Step S6544, if there is no response within the predetermined time period, then the camera cancels the authentication mode (S6549) and then displays a notification of time out error (S6550).
  • FIG. 33 is a flowchart of authentication performed by the TV 45 side. The TV 45 determines whether or not received information, which is provided from the RF-ID unit of the camera to the RF-ID unit of the TV 45, includes an authentication command (S6560). If the received information does not include the authentication command, then the TV 45 performs other processing according to the received information (S6561). On the other hand, if the received information includes the authentication command, the TV 45 determines that the information received from the RF-ID unit of the camera is an authentication program, and therefore encrypts a data cryptography key in the TV 45 using an authentication cryptography key in the authentication program (S6562). Then, the TV 45 transmits the encrypted data cryptography key to the terminal (the camera) having the MAC address designated in the authentication program (S6563).
  • Next, the following situation is described in detail with reference to figures. Here, the image capturing device 1 described with reference to FIG. 3 generates or updates a program executable by the TV 45. Then, the image capturing device 1 transmits the program to the TV 45 via the data transmission unit 173. Thereby, the TV 45 executes the program.
  • FIG. 34 is a block diagram of the first processing unit 35 and the second memory 52 of the image capturing device 1 according to Embodiment 1 of the present invention. The first processing unit 35 includes a second memory reading unit 7003, a URL generation unit 7004, a program generation unit 7005, a program part storage unit 7006, and a program writing unit 7007.
  • The second memory reading unit 7003 reads information from the second memory 52 via the recording/reproducing unit 51.
  • The URL generation unit 7004 reads the UID 75, the server specific information 48, the captured image state information 55, and the image display method instruction information 77 from the second memory 52 via the second memory reading unit 7003. From the above pieces of information, the URL generation unit 7004 generates a URL that is an address of the server 42 to which images have been uploaded from the image capturing device 1.
  • The UID 75 is identification information for identifying the image capturing device 1. The UID 75 is unique to each image capturing device 1. The URL generated by the URL generation unit 7004 includes UID. For instance, the image server 42, to which images are uploaded, has an image file in a directory unique to each UID. Thereby, a URL address can be generated for each image capturing device 1.
  • The server specific information 48 is a server name for identifying the server to which the images are uploaded. Via a Domain Name Server (DNS), an IP address of the server 42 is determined to connect the image capturing device 1 to the server 42. Therefore, the server specific information 48 is included in the generated URL.
  • The image display method instruction information 77 is information for enabling the user to optionally select the list display 78, the slide show display 79, or the like. The URL generation unit 7004 generates the URL based on the image display method instruction information 77. In other words, since the generated URL includes information indicating the list display 78 or the slide show display 79, the image server (the server 42) can determine based on the URL whether the images are to be displayed as the list display or the slide show display.
  • As described above, based on the UID 75, the server specific information 48, the captured image state information 55, the image display method instruction information 77, and the like which are stored in the second memory 52, the URL generation unit 7004 generates a URL of the image server in which images to be watched are stored. Then, the URL generation unit 7004 provides the generated URL to the program generation unit 7005.
  • The program generation unit 7005 generates a program executable by the TV 45, based on (a) the URI generated by the URL generation unit 7004, and (b) forced display instruction 7000, forced print instruction 136, and format identification information 7001 stored in the second memory 52. It should be noted that the program generation unit 7005 can generate a new operation program based on the above-described information, which is a method of generating a new operation program. The program generation unit 7005 can also generate such a new operation program by updating an operation program that has been already generated.
  • The program generated by the program generation unit 7005 is executable by the TV 45. The program should be compiled into a machine language used in a system controller (not shown) of the TV 45, so that the system controller can execute the program. In this case, the program generation unit 7005 has a compiler to convert the generated program to a program in an executable format.
  • However, the above-described compiler is not necessary if the program in a text format (script) (for example, a general Java™ script) is executed by a browser in the TV 45.
  • The URL provided to the program generation unit 7005 is used to connect the TV 45 to the image server (server 42) in which images are stored. By using the URL, the program generation unit 7005 generates or updates a connection program (hereinafter, referred to also as a “server connection program” or “connection program”) for connecting the TV 45 to the image server.
  • The forced display instruction 7000 is optional and used in the following situation. For example, there is the situation where, while the user watches on the TV 45 a TV program provided by general broadcast waves, the RF-ID reader/writer 46 of the TV 45 becomes communicable with the image capturing device 1 via the second antenna 21. In the situation, the forced display instruction 7000 is used to automatically set the TV 45 into a browser watching mode so that image data provided from the image server is displayed on the TV 45. If this option is selected, the program generation unit 7005 generates a program for forcing the TV 45 to display image data.
  • The forced print instruction 136 is optional and used in the following situation. For example, there is the situation where, while the user watches on the TV 45 a TV program provided by general broadcast waves, the RF-ID reader/writer 46 of the TV 45 becomes communicable with the image capturing device 1 via the second antenna 21. In the situation, the forced print instruction 136 is used to automatically print image data stored in the image server by a printer (not shown) connected to the TV 45. If this option is selected, the program generation unit 7005 generates a program for forcing the TV 45 to print image data by the printer.
  • The format identification information 7001 is information of a format by which image data is to be displayed. When an option of language code optimization selection in the format identification information 7001 is selected, the program generation unit 7005 generates a program for selecting a URL to be connected, based on the language code set in the TV 45. The following is an example in the situation where the option of language code optimization selection in the format identification information 7001 is selected. If the language code of the TV 45 indicates Japanese language, the program generation unit 7005 selects a Japanese site as the URL to be connected. On the other hand, if the language code of the TV 45 does not indicate Japanese language, the program generation unit 7005 selects an English site as the URL to be connected. Or, the URL generation unit 7004 may generate two URLs for the Japanese site and the English site, and provide the two URLs to the program generation unit 7005.
  • The program part storage unit 7006 holds program command information used by the program generation unit 7005 to generate a program. A program part stored in the program part storage unit 7006 may be a general library or an Application Programming Interface (API). In order to generate a connection command for connecting the TV 45 to the server, the program generation unit 7005 combines a server connection command “Connect” in the program part storage unit 7006 with the URL generated by the URL generation unit 7004. Thereby, the program generation unit 7005 generates or updates a connection program for connecting the TV 45 to the server indicated by the URL.
  • The program writing unit 7007 is an interface used to write the program generated by the program generation unit 7005 to the second memory 52.
  • The program provided from the program writing unit 7007 is stored into a program storage unit 7002 in the second memory 52 via the recording/reproducing unit 51.
  • When the image capturing device 1 is moved to bring the RF-ID unit of the image capturing device 1 into proximity of the RF-ID reader/writer 46 connected to the TV 45, the reproducing unit reads out the program from the program storage unit 7002 in the second memory 52. Then, transmission signals indicating the program are transmitted to the RF-ID reader/writer 46 via the data transfer unit 108 and the second antenna 21. The TV 45 receives the transmission signals via the RF-ID reader/writer 46. The TV 45 executes the receives program.
  • The TV 45 has the product serial number 7008, the language code 7009, and a program execution virtual machine 7010.
  • The product serial number 7008 is a product serial number of the TV 45. From the product serial number 7008, it is possible to learn a manufacture date/time, a manufacture location, a manufacturing line, and a manufacturer of the TV 45.
  • The language code 7009 is predetermined in the TV 45 to be used in displaying a menu, for example. The language code 7009 is not limited to be predetermined, but can be switched to another by the user.
  • The program execution virtual machine 7010 is a virtual machine that executes a received program. The program execution virtual machine 7010 may be implemented as hardware or software. For example, the program execution virtual machine 7010 may be a Java™ virtual machine. The Java™ virtual machine is a stack or interpreter virtual machine that executes defined instruction sets. If the image capturing device 1 has the virtual machine, the program generated by the program generation unit 7005 in the image capturing device 1 is compliant to any execution platforms. As a result, the program generation unit 7005 can generate a program executable in any platforms.
  • FIG. 35 is a flowchart of processing performed by the program generation unit 7005 of the image capturing device 1.
  • First, the program generation unit 7005 initializes information used to generate a program (S7000).
  • Next, based on the server specific information 48 stored in the second memory 52, the program generation unit 7005 generates a connection command for connecting the TV 45 to the server 42, by using the URL generated by the URL generation unit 7004. In order to generate the connection command, the program generation unit 7005 selects an instruction set (for example, “Connect” in FIG. 25) for a server connection command from the program part storage unit 7006, and combines the selected instruction set with the URL. Thereby, a server connection program (for example, “Connect (URL)”) is generated.
  • Then, the program generation unit 7005 examines the forced display instruction 7000 in the second memory 52 so as to determine whether or not the forced display instruction 7000 is selected (S7002). If the forced display instruction 7000 is selected, then the program generation unit 7005 calls an instruction set for a forced display program from the program part storage unit 7006, and thereby generates a forced display command (S7003). The generated forced display command is added to the program (S7004).
  • On the other hand, if the forced display instruction 7000 is not selected, then the program generation unit 7005 does not generate the forced display command, but proceeds to S7005.
  • Next, the program generation unit 7005 makes a determination as to whether the forced print instruction in the second memory 52 is selected (S7005). If the forced print instruction is selected, then the program generation unit 7005 generates a forced print command for forcing the TV 45 to print, by a printer, an image file stored in the server 42 (S7006). The generated print command is added to the program (S7007).
  • Then, the program generation unit 7005 examines the image display method instruction information 77 in the second memory 52 so as to determine whether or not the list display 78 is selected (S7008). If the list display 78 is selected, then the program generation unit 7005 generates a list display command for causing the TV 45 to display a list of the image file stored in the server 42 (S7009). The generated list display command is added to the program (S7010).
  • After that, the program generation unit 7005 examines the image display method instruction information 77 in the second memory 52 so as to determine whether or not the slide show 79 is selected (S7011). If the slide show 79 is selected, then the program generation unit 7005 generates a slide show command for causing the TV 45 to display a slide show of the image file stored in the server 42 (S7012). The generated slide show command is added to the program (S7013).
  • As described above, based on the information set in the second memory 52, the program generation unit 7005 in the image capturing device 1 generates a program used to display images on the TV 45, by using an instruction command set that is stored in the program part storage unit 7006 to generate the program.
  • It should be noted that, in Embodiment 1, there are commands for the forced display instruction, the forced print instruction, the list display, and the slide show display. However, the commands (programs) are not limited to the above. For example, if a command for the forced display instruction is to be generated as a program, the program generation unit 7005 can also generate a determination command for determining whether or not the apparatus (device) executing the program has a display device or display function, and adds the generated determination command to the program. Thereby, the command for the forced display instruction is executed only if the apparatus executing the program has a display device or display function. As a result, the determination command can prevent confusion in the apparatus executing the program. The same goes for a command for the forced print instruction. It is preferable that the program generation unit 7005 also generates a determination command for determining whether or not the apparatus executing the program has or is connected to a printing function, and adds the generated determination command to the program. Thereby, the command for the forced print instruction is executed only if the apparatus executing the program has or is connected to a printing function.
  • The following describes execution of the program generated or updated by the program generation unit 7005 in the image capturing device 1.
  • FIG. 36 is a flowchart of execution of the program generated or updated by the program generation unit 7005. The program is transmitted from the image capturing device 1 to a device (apparatus) different from the image capturing device 1 via the second antenna 21 of the image capturing device 1. Then, the program is executed by the different device. In Embodiment 1, the different device is the TV 45. The TV 45 receives the program via the RF-ID reader/writer 46 and executes the received program by a controller or virtual machine (not shown) in the TV 45.
  • First, the program is executed to read the language code set in the TV 45, as unique information of the TV 45 (S7020). The language code is predetermined by the user to be used in displaying a menu and the like on the TV 45.
  • Next, the program is executed to determine a language indicated in the language code. First, a determination is made as to whether or not the language code indicates Japanese language (S7021). If the determination is made that the language code indicates Japanese language, then a connection command for a Japanese site is selected from the connection commands in the program (S7022). On the other hand, if the determination is made that the language code does not indicate Japanese language, then a connection command for an English site is selected from the connection commands in the program (S7023). It should be noted that it has been described in Embodiment 1 that a determination is made as to whether or not the language code indicates Japanese language, and thereby a connection command is selected from the connection command for connecting to a Japanese site and the connection command for connecting to an English command. However, it is also possible that the program includes a plurality of connection programs compliant to various language codes. Thereby, the program can be compliant to two or more language codes. As a result, usability is improved. Next, according to the selected connection command, the program is executed to connect the TV 45 to the URL indicted in the connection command (S7024).
  • Then, a determination is made as to whether or not the connection to the URL indicted in the connection command is successful (S7025). If the connection is failed, then the display unit of the TV 45 displays warning indicating the connection failure (S7027). On the other hand, if the connection is successful, then a command for displaying a slide show of an image file stored in the server is executed to display the slide show (S7026).
  • It should be noted that the above is the situation where the operation program is for displaying images as a slide show. However, the operation program is not limited to the above. The program may be used for performing list display, forced display, or forced printing. If the operation program is for forced display, a step (command) of automatically changing setting of the TV 45 to setting of displaying an image file stored in the server is added to the program. Thereby, the user does not need to change the setting of the TV 45 by manual in order to display images provided from the image server. In the case of the forced printing, a command for automatically changing setting of the TV 45 to a printable mode is added to the program. Moreover, in the case of each of the forced printing and forced display, a determination command for determining whether or not the TV 45 has a printing function or a displaying function is added to the program. Thereby, the forced print command is not executed in an apparatus (device) without a printing function. Furthermore, the operation program in Embodiment 1 of the present invention may be a connection program for leading other programs. For example, the operation program may be a loader program, such as a boot-loader for loading other programs to be executed.
  • As described above, Embodiment 1 of the present invention is characterized in that the program generation unit 7005 is included in the first processing unit 35 of the image capturing device 1 that is a device having RF-ID communication means (such as the data transfer unit 108 and the second antenna 21). It is also characterized in that the program generated or updated by the program generation unit 7005 is executed by a different device (apparatus) except the image capturing device 1 according to Embodiment 1 of the present invention that is a communication device having RF-ID.
  • Conventionally, a device having RF-ID needs to transfer ID information (tag information), which the device has, from a RF-ID communication unit to another device (for example, the TV 45 according to Embodiment 1 of the present invention). The device (apparatus) receiving the ID information should previously hold operation programs each unique to a corresponding device having RF-ID. Therefore, if new products having RF-ID technology appear, the receiving device needs to install an operation program corresponding to the new products and execute the program. Otherwise, the receiving device is excluded as not being compliant to the new products. The installation of operation programs requires technical knowledge. Not everyone can perform the installation. Therefore, if various new devices having RF-ID are produced, other devices such as the TV 45 of Embodiment 1 of the present invention become obsolete. As a result, property values of user's devices are damaged.
  • According to the disclosure of Embodiment 1 of the present invention, the device having RF-ID technology has the program generation unit 7005 and sends not ID information (tag information) but a program to another device (apparatus) such as the TV 45. The apparatus such as the TV 45 receives and executes the program. Therefore, the receiving apparatus does not need to previously have operation programs for various devices having RF-ID. Even if a new device having RF-ID technology appears, the receiving apparatus does not need to install a new program for the device. Therefore, usability is significantly improved.
  • Therefore, the terminal such as a TV does not need to previously have application programs for respective items, kinds, or application systems of various objects having RF-ID. Thereby, the terminal such as a TV does not need to previously have a storage device, either, for holding various application programs. In addition, maintenance such as version-up of the programs in the terminal is not necessary.
  • The program generated by the program generation unit 7005 is useful if it is executable in any execution platforms such as a Java™ language. Therefore, if the device (apparatus) such as the TV 45 executing programs has a Java™ virtual machine, programs generated by any devices (apparatuses) can be executed.
  • It should be noted that the program generation unit 7005 according to Embodiment 1 of the present invention may have a function of updating the program previously stored in the program storage unit 7003 of the second memory 52. The situation of updating a program produces the same advantages as that in the situation of generating a program. The generating or updating performed by the program generation unit 7005 may be generating or updating data used in executing a program by the TV 45. In general, the program includes additional initialization setting data. The additional data is used to switch an execution mode or to set a flag. Therefore, generating or updating of the additional data is equivalent to generating or updating of the program, without deviating from the inventive concepts of the present invention. This is because, for execution of a program, it depends on design whether a parameter for mode switching or the like is to be hold and read as data, or is to be included in the program to be executed. Therefore, when the program generation unit 7005 according to Embodiment 1 of the present invention generates or updates a program, the program generation unit 7005 can also generate data such a parameter sequence used by the program. The parameter is generated based on the forced display instruction 7000, the forced print instruction 136, the image display method instruction information 77, the format identification information 7001, or the like stored in the second memory 52.
  • The following describes characteristic structures and processing of the second memory 52 and the first processing unit 35 in the image capturing device 1 that is a communication device having RF-ID according to Embodiment 1 of the present invention. In Embodiment 1 of the present invention, the image capturing device 1 that is a communication device having RF-ID has a use status detection unit in the first processing unit 35. The use status detection unit detects a trouble related to operation, a power consumption status, or the like. The image capturing device 1 generates a program for displaying the result of the detection (use status) on the TV 45 that is a device (apparatus) different from the image capturing device 1.
  • FIG. 37 is a block diagram of characteristic structures of the second memory 52 and the first processing unit 35 in the image capturing device 1 according to Embodiment 1 of the present invention.
  • The second memory 52 includes the UID 75, the server specific information 48, the camera ID 135, and the program storage unit 7002.
  • The UID 75 is a serial number unique to the image capturing device 1, and used to identify the single image capturing device 1.
  • The server specific information 48 is information for identifying the server 42 to which image data captured by the image capturing device 1 is transmitted by the communication unit 37. The server specific information 48 includes a sever address, a storing directory, a login account, a login passwords, and the like.
  • The camera ID 135 includes a product serial number, a manufacturing year/month/date, a manufacturer, a manufacturing line, a manufactured location, and the like of the image capturing device 1. The camera ID 135 also includes camera model information for identifying a model of the image capturing device 1.
  • The first processing unit 35 includes the second memory reading unit 7003, a use status detection unit 7020, the program generation unit 7005, the program part storage unit 7006, and the program writing unit 7007.
  • The second memory reading unit 7003 reads information from the second memory 52 via the recording/reproducing unit 51. In Embodiment 1 of the present invention, the second memory reading unit 7002 reads the UID 75, the server specific information 48, and the camera ID 135 from the second memory 52, and provides the pieces of information to the program generation unit 7005. Reading of the pieces of information from the second memory 52 is performed when a readout signal is provided from a use status detection unit 7020 that is described later.
  • The use status detection unit 7020 detects a use status of each unit included in the image capturing device 1. The use status detection unit 7020 includes sensors each detecting a trouble in operation of a corresponding unit included in the image capturing device 1. Results of the detection of the sensors in respective units are provided to the use status detection unit 7020. The sensors for the respective units provide the use status detection unit 7020 with trouble information, battery duration, a power consumption amount, and the like. For example, the image capturing unit 30 provides the use status detection unit 7020 with information indicating whether or not an image capturing operation of the image capturing unit 30 has any trouble (whether or not the image capturing unit 30 functions correctly, and whether or not the image capturing unit 30 responds to a call from the use status detection unit 7020). The video processing unit 31 provides the use status detection unit 7020 with information indicating whether or not data processing for image data captured by the image capturing unit 30 has any trouble (whether or not the video processing unit 31 functions correctly, and whether or not the video processing unit 31 responds to a call from the use status detection unit 7020). The first power supply unit 101 provides the use status detection unit 7020 with a voltage level of the battery and a total power consumption amount. The communication unit 37 provides the use status detection unit 7020 with information indicating whether or not the communication unit 37 is successfully connected to the server or the Internet (whether or not the communication unit 37 functions correctly, and whether or not the communication unit 37 responds to a call from the use status detection unit 7020). The display unit 6 a provides the use status detection unit 7020 with information indicating whether or not display processing has any trouble, whether or not the display unit 6 a correctly responds to a call from the use status detection unit 7020, and the display unit 6 a functions correctly. Based on the above pieces of status information provided regarding the respective units, the internal trouble detection unit 7021 in the use status detection unit 7020 determines whether or not each of the units has any trouble in its functional operation. If there is a trouble, then the use status detection unit 7020 provides the program generation unit 7005 with information for specifying the trouble. The use status detection unit 7020 has a power consumption detection unit 7022. The power consumption detection unit 7022 generates power consumption information based on the total power consumption information provided form the power supply unit, and then provides the power consumption information to the program generation unit 7005.
  • The program generation unit 7005 generates a program for displaying, on the TV 45, the information for specifying a trouble or the power consumption information which is provided from the use state detection unit 7020. For generation of a program, instruction sets to be included in the program are previously stored in the program part storage unit 7006. Therefore, the program generation unit 7005 generates (a) a display command (“display” in FIG. 37) for displaying a trouble or a power consumption amount, and (b) a program for displaying information for specifying a location of the trouble and information for specifying the trouble in detail. It should be noted that the power consumption amount may be converted to a carbon dioxide emission amount, and therefore a program may be generated to display the carbon dioxide emission amount.
  • The program generated by the program generation unit 7005 is stored in the program storage unit 7002 in the second memory 52 via the program writing unit 7007.
  • The program stored in the program storage unit 7002 in the second memory 52 is transmitted to the RF-ID reader/writer 46 of the TV 45 via the data transfer unit 108 and then the second antenna 21.
  • The TV 45 executes the received program by the program execution virtual machine 7010.
  • With the above-described structure, the program generation unit 7005 in the first processing unit 35 generates a program for displaying, on the TV 45, trouble information or use status information detected by the use status detection unit 7020 regarding use of the image capturing device 1. The program is transmitted to the TV 45 that displays the trouble information or the use status information of the image capturing device 1. Thereby, the TV 45 can present the trouble information or the use status information to the user, without installing a plurality of programs compliant to various devices including the image capturing device 1.
  • In conventional systems, each of devices such as an image capturing device, a camcorder, an electric toothbrush, and a weight scale is provided with a simple display function such as a liquid crystal device, so as to display the trouble information or the use status information on the corresponding display function. Therefore, the display function has a low display capability for merely displaying the trouble information as a symbol sequence or an error code. When the trouble information is presented, the user needs to read instruction manual to check what kind of trouble it is. Some users have lost instruction manual and therefore obtain more information from an Internet site.
  • In the system according to Embodiment 1 of the present invention, however, a program for displaying trouble information can be executed by the TV 45 not by the image capturing device 1. The TV 45, which displays the trouble information detected by each device such as the image capturing device 1, has a display capability higher than that of the conventional systems. Therefore, the system according to Embodiment 1 of the present invention can solve the above conventional problem.
  • The following describes, in detail with reference to figures, the situation where a program generated by the image capturing device 1 described with reference to FIG. 3 is executed by a plurality of apparatuses (devices) including the TV 45.
  • FIG. 38 illustrates a system in which a program generated by the image capturing device 1 is executed by a plurality of apparatuses. The system includes the image capturing device 1, the TV 45, a remote controller (with display function) 6520, and a remote controller (without display function) 6530.
  • The TV 45 includes the RF-ID reader/writer 46 and a wireless communication device 6512. The wireless communication device 6512 is, for example, a general infrared communication device currently used as many remote controllers of home appliances, or a short-range wireless communication device used for home appliances using radio waves, such as Bluetooth and ZigBee.
  • The remote controller (with display function) 6520 includes a transmission unit 6521, a display unit 6523, an input unit 6524, a RF-ID reader 6522, a memory 6526, and a program execution virtual machine 6525. The transmission unit 6521 transmits signals to the wireless communication device 6512 of the TV 45. The display unit 6523 displays video. The input unit 6524 receives key inputs from a user. The RF-ID reader 6522 communicates with the RF-ID unit 47. The memory 6526 stores a program received by the RF-ID reader 6522. The program execution virtual machine 6525 is a virtual machine that executes the program received by the RF-ID reader 6522. For instance, recent mobile phones are example of the remote controller (with display function) 6520, having an infrared communication function, Bluetooth, a RF-ID reader, a liquid crystal display, a key input unit, a Java™ virtual machine, and the like. The display unit 6523 and the input unit 6524 may be a liquid crystal display and a plurality of character input buttons, or may be integrated into a liquid-crystal touch panel, for example.
  • The remote controller (without display function) 6530 includes a transmission unit 6531, an input unit 6533, a RF-ID reader 6532, and a memory 6535. The transmission unit 6531 transmits signals to the wireless communication device 6512 of the TV 45. The input unit 6533 such as buttons receives key inputs from a user. The RF-ID reader 6532 communicates with the RF-ID unit 47. The memory 6535 temporarily stores data received by the RF-ID reader 6532.
  • The remote controller (without display function) 6530 is, for example, a general remote controller having a RF-ID reader. Remote controllers are common accessory devices of TVs.
  • In Embodiment 1 of the present invention, there are the following four possible situations from which the user selects a preferred one. In the first situation, the program generated by the image capturing device 1 is transmitted directly to the TV 45 via the RF-ID reader/writer 46 of the TV 45, and executed by the TV 45. In the second situation, the program generated by the image capturing device 1 is transmitted indirectly to the TV 45 via the remote controller (without display function) 6530, and executed by the TV 45. In the third situation, the program generated by the image capturing device 1 is transmitted indirectly to the TV 45 via the remote controller (with display function) 6520, and executed by the TV 45. In the fourth situation, the program generated by the image capturing device 1 is transmitted to the remote controller (with display function) 6520, and executed by the remote controller (with display function) 6520.
  • The first situation has been already described above in Embodiment 1. Therefore, the first situation is not described again below.
  • The following describes the above second to fourth situations.
  • In the second situation, a program generated by the image capturing device 1 is executed by the TV 45, via the remote controller (without display function) 6530, such as general TV remote controllers, that does not have a graphical display device such as a liquid crystal panel.
  • When the user moves the image capturing device 1 to bring the RF-ID unit 47 to the RF-ID reader 6532, the RF-ID reader 6532 reads the program generated by the image capturing device 1 to store the program in the memory 6535.
  • Then, when the user presses the input unit 6533, the program held in the memory 6535 is transmitted from the transmission unit 6531 to the wireless communication device 6512 of the TV 45. The program execution virtual machine 7010 in the TV 45 executes the program. If the wireless communication device 6512 is a directional infrared communication device, the user presses the input unit 6533, facing the remote controller (without display function) 6530 to the TV 45. If the wireless communication device 6512 is a non-directional short-range wireless communication device, such as devices using Bluetooth or ZigBee, the program is transmitted to the TV 45 that is previously paired with the remote controller (without display function) 6530. In the case of the short-range wireless communication device, it is also possible that the program is automatically transmitted to the paired TV 45 when the RF-ID reader 6532 reads the program from the RF-ID unit 47, without user's pressing of the input unit 6533.
  • The remote controller (without display function) 6530 may have a display unit, such as a LED 6534, for notifying the user of that data read by the RF-ID reader 6532 is stored in the memory 6535. The LED 6534 is lit up to encourage the user to press the input unit 6533, when the program is read by the RF-ID reader 6532 and stored in the memory 6535. The LED 6534 is lit out when the transmission of the program to the TV 45 is completed. Thereby, it is possible to clearly notify the user of that the remote controller (without display function) holds the program. The LED 6534 may be an independent LED or integrated into the input unit 6533.
  • In the second situation, even if the user is far from the TV 45, the program can be executed by the TV 45 by using the remote controller (without display function) 6530 in the user's hand.
  • In the third and fourth situations, if the remote controller (with display function) 6520 has a program execution virtual machine as high-function mobile phones called smart phones do, the user can select whether the program generated by the image capturing device 1 is executed on the remote controller (with display function) 6520 or the program is transmitted to the TV 45 to be executed on the TV 45.
  • When the user moves the image capturing device 1 to bring the RF-ID unit 47 to the RF-ID reader 6522, the RF-ID reader 6522 reads the program generated by the image capturing device 1 to store the program in the memory 6535.
  • The following describes the processing performed by the remote controller (with display function) 6520 in more detail with reference to a flowchart of FIG. 39.
  • First, a program read by the RF-ID reader 6522 is transmitted to the program execution virtual machine 6525 and executed by the program execution virtual machine 6525 (S6601).
  • Next, a determination is made as to whether or not the remote controller 6520 has a display function (S6602). If the remote controller 6520 does not have any display function (N at S6602), then the program is transmitted to the TV 45 via the transmission unit 6521 and then the processing is completed. In this situation, the program is executed by the TV 45.
  • If the remote controller 6520 has a display function (Y at S6602), then a further determination is made as to whether or not the remote controller 6520 is paired with the TV 45 that is a transmission destination (S6603). If the remote controller 6520 is not paired with the TV 45 (N at S6603), then a rest processing of the program is executed by the display unit 6523 of the remote controller 6520. On the other hand, if the remote controller 6520 is paired with the TV 45 (Y at S6603), then the display unit 6523 displays a dialog message “Display on TV or on Remote Controller?” to encourage the user to select one of the options (S6604).
  • Then, the remote controller 6520 receives user's entry by the input unit 6524 (S6605). A determination is made as to whether or the user selects to display data on the TV 45 (S6606). If the user selects the TV 45 to display data (Y at S6606), then the program is transmitted to the TV 45 via the transmission unit 6521 and thereby the processing is completed. In this situation, the program is executed by the TV 45. On the other hand, if the user selects the remote controller to display data (N at S6606), then a rest processing of the program is executed by the remote controller 6520 using the display unit 6523 (S6607).
  • It should be noted that the “rest processing of the program” refers to displaying of a status of a battery, a trouble status, or an instruction manual regarding the image capturing device 1, but, of course, not limited to those described in Embodiment 1.
  • With the above structure, a program generated by the image capturing device 1 is transmitted to the remote controller with display function, then a capability of the remote controller with display function is examined, and a determination is made by the remote controller as to which apparatus (device) is to execute rest processing of the program. Thereby, the remote controller does not need to previously install various programs compliant to a plurality of apparatuses. The user can execute the program in his/her preferred manner.
  • It should be noted that it has been described in Embodiment 1 that the determination is made based on whether or not the remote controller has a display function and based on a pairing status of the remote controller. However, it is not limited to the above. A program may execute any determination based on a capability of the apparatus, such as a communication capability, an audio-video reproduction capability, a capability of an input unit, a capability of an output device, and the like.
  • As described above, the storage region of the RF-ID unit holds not only information but also a program describing operations of an apparatus (device). This considerably simplify changing or updating of a program, which has been necessary for conventional techniques to change operations of apparatuses. In addition, it is possible to deal with addition of various new functions and an increase of cooperative apparatuses. Moreover, proximity communication using RF-ID technology is a simple operation achieved by simply bringing a device into proximity of an apparatus, which the user can easily understand. Therefore, conventional bothersome device operations by using buttons and a menu are simplified. As a result, the complicated device operations are changed to be convenient.
  • Embodiment 2
  • The following describes Embodiment 2 of the present invention. In Embodiment 2, actual operations of the communication system are described. In the communication system, images captured by a camera are uploaded to a server, and then downloaded by a simple operation to a TV to be displayed. The whole configuration of the communication system according to Embodiment 2 is the same as that of the communication system according to Embodiment 1.
  • FIGS. 40A, 40B, and 40C are flowcharts of processing performed by a camera (the image capturing device 1) to upload photographs (images). First, the camera captures images (Step S5101). Then, the captured images are stored into the third memory (Step S5102). Then, the camera updates information stored in the second memory (Step S5103). The second memory updating process will be described later. Next, the camera determines whether or not the communication unit is connectable to the Internet (Step S5104). If connectable, then the camera generates a URL (Step S5105). The URL generation process will be described in more detail later. After generating the URL, the camera uploads the captured images (Step S5106). In completing the uploading process, the camera disconnects the communication unit from the Internet (Step S5107). As a result, the processing is completed. The uploading process will be described in more detail later.
  • The second memory updating process of Step S5103 enables the server 42 and the camera to share identification information for distinguishing photographs that have already been uploaded to the server 42 from photographs that have not yet been uploaded to the server 42. Examples of the uploading process in Step S5106 are given as following cases 1 to 4.
  • In case 1, the final capturing time (final capturing date/time) 68 is previously stored in the second memory, and then updated after the captured images are stored into the third memory (Step S5111).
  • Comparison of a time of uploading the captured images to the final capturing time 68 of the camera allows the server 42 and the camera to share identification information of the uploaded photographs.
  • In case 2, the above advantages can be produced also by generating existence identifiers 64 of images not yet been uploaded to the server 42, with reference to images uploaded to the server 42 among the captured images, and storing the generated existence identifiers 64 into the second memory (Step S5121).
  • In case 3, it is also possible that the not-yet-uploaded image information hashed information 67 is stored in the second memory (Step S5131). Thereby, an amount of the information stored in the second memory is reduced, thereby saving a capacity of the second memory.
  • In case 4, it is further possible that image serial numbers are chronologically generated for captured images, and thereby the final image serial number 69 in the second memory is updated (Step S5141). Thereby, even if a time counted by the camera is not correct, it is possible to synchronize information of uploaded photographs between the server 42 and the camera.
  • FIG. 41 depicts details of the URL generation process in Step S5105. The camera reads, from the second memory, the server specific information 48 including the server address information 81, the login ID 83, and the password 84 (Step S5201). Based on the server specific information 48, the camera generates a URL (Step S5202).
  • FIGS. 42A, 42B, 42C, and 42D depict details of the uploading process in Step S5106.
  • The cases 1 to 4 in FIGS. 42A, 42B, 42C, and 42C correspond to the above-described cases 1 to 4 of the second memory updating process in FIGS. 40A, 40B, and 40C, respectively.
  • In case 1, the camera receives, from the server 42, a final upload time (final upload date/time) that is a time of finally uploading to the server 42 (Step S5211). Then, the camera compares the final upload time to the final capturing time (Step S5212). If the final capturing time is later than the final upload time (in other words, if there is any image captured after final uploading), then the camera uploads, to the server 42, any images captured after the final upload time (Step S5213).
  • In case 2, the camera checks not-yet-uploaded image data existence identifiers 64 in the second memory (Step S5231). Thereby, the camera determines whether or not there is any image not yet been uploaded (Step S5232). If there is any image not yet been uploaded, then the camera uploads images not yet been uploaded, to the server 42 (Step S5233). Then, the camera updates the uploaded-image information 61 in the second memory (Step S5234).
  • In case 3, the camera checks the not-yet-uploaded image information hashed information 67 in the second memory (Step S5301). Thereby, the camera determines whether or not the not-yet-uploaded image information hashed information 67 in the second memory is the same as hashed information that is generated by hashing NULL (Step S5302). If the not-yet-uploaded image information hashed information 67 is not the same as the hashed information regarding NULL, then the camera determines that there is an image not yet been uploaded to the server 42 and therefore uploads, to the server 42, any images that are stored in the third memory but have not yet been uploaded to the server 42 (Step S5303).
  • In case 4, the camera receives, from the server 42, an image serial number of a finally uploaded image (Step S5311). Then, the camera determines whether or not the image serial number matches the final image serial number 69 in the second memory (Step S5312). If the image serial number does not match the final image serial number 69, then the camera uploads any images having UIDs that are newer than UID of the final image serial number 69 that is received from the server 42 (Step S5313).
  • FIG. 43 is a flowchart of RF-ID proximity communication between the image capturing device 1 and the TV 45.
  • First, the second antenna 21 embedded in the image capturing device 1 receives weak radio power from polling of the RF-ID reader/writer 46 of the TV 45, and thereby activates the RF-ID unit 47 operated under the second power supply unit 91 (S5401).
  • The RF-ID unit 47 of the image capturing device 1, which is activated by receiving weak power in Step S5401, responds to the polling of the RF-ID reader/writer 46 of the TV 45 (Step S5402).
  • After responding to the polling in Step S5402, mutual authentication is performed to determine whether or not the RF-ID unit 47 of the image capturing device 1 and the RF-ID reader/writer 46 of the TV 45 are legitimate devices, and also to share a cryptography key used for secure information communication between the image capturing device 1 and the TV 45 (Step S5403). The mutual authentication employs a public key cryptography algorism such as elliptic curve cryptography. In general, the employed method for the mutual authentication is the same as that of mutual authentication used in communication via High Definition Multimedia Interface (HDMI) or IEEE1394.
  • As described earlier, in Step S5403, the mutual authentication is performed between the RF-ID unit 47 of the image capturing device 1 and the RF-ID reader/writer 46 of the TV 45 to generate a common cryptography key. After that, the server URL generation information 80 is read from the server specific information 48 stored in the second memory 52 readable from the RF-ID unit 47. The server URL generation information 80 is transmitted to the RF-ID reader/writer 46 of the TV 45 via the second antenna 21 (Step S5404). The server URL generation information 80 includes: the server address information 81 indicating address information of the server 42; the user identification information 82 that is the login ID 83 to the server 42; and the password 84 that is a login password to the server 42. The password 84 is important information for preventing unauthorized acts of a malicious third person. Therefore, the password 84 is sometimes encrypted beforehand as the encrypted password 85 to be stored, and then transmitted to the TV 45.
  • After the server URL generation information 80 is transmitted to the RF-ID reader/writer 46 of the TV 45 in Step S5404, the captured image state information 55 stored in the second memory 52 is also transmitted to the RF-ID reader/writer 46 of the TV 45 via the second antenna 21 (Step S5405). The captured image state information 55 is: the final capturing time 68 (case 1); the existence identifiers 64 which are existence identification information regarding images not yet been uploaded and each of which is assigned to a corresponding one of the captured images so that it is possible to determine whether the image has not yet been uploaded (case 2); the not-yet-uploaded image information hashed information 67 (case 3); or the final image serial number 69 from among image serial numbers chronologically assigned to captured images (case 4). The captured image state information 55 is important for examining synchronization between captured images in the image capturing device 1 and captured images in the server 42.
  • In case 1, the final capturing time 68 is used as the captured image state information 55. Therefore, the TV 45 compares the final capturing time 68 to the final upload time. If the final capturing time 68 is temporally later than the final upload time that is a time of finally uploading to the server 42, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • In case 2, the captured image state information 55 is the existence identifiers 64 each of which is assigned to a corresponding one of the captured images so that it is possible to determine whether the image has not yet been uploaded. Therefore, the TV 45 examines the existence identifiers 64 to determine whether or not there is any image not yet been uploaded. If there is any image not yet been uploaded, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • In case 3, the not-yet-uploaded image information hashed information 67 is employed as the captured image state information 55. Therefore, the TV 45 examines the not-yet-uploaded image information hashed information 67 to determine whether or not there is any image not yet been uploaded. If there is any image not yet been uploaded, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • In case 4, the captured image state information 55 is the final image serial number 69 from among image serial numbers chronologically assigned to the captured images. Therefore, the TV 45 compares (a) the final image serial number 69 from among image serial numbers chronologically assigned to the captured images to (b) an image serial number of an image finally uploaded to the server 42. Here, the final image serial number 69 is provided from the image capturing device 1, while the image serial number is provided from the server 42. Based on the comparison, the TV 45 can determine whether or not there is any image not yet been uploaded. If there is any image not yet been uploaded, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • After transmitting the captured image state information 55 from the second antenna 21 of the image capturing device 1 to the RF-ID reader/writer 46 of the TV 45 in Step S5405, the image display method instruction information 77 is also transmitted from the second memory 52 of the image capturing device 1 to the RF-ID reader/writer 46 of the TV 45 via the second antenna 21 (Step S5406). The image display method instruction information 77 is identification information indicating how the display unit of the TV 45 is to display the images downloaded from the server 42. The image display method instruction information 77 includes the list display (indicator) 78 indicating that the images are to be displayed in a list, and the slide show (indicator) 79 indicating that the images are to be displayed as a slide show.
  • As described above, in Steps S5401 to S5406, the image capturing device 1 transmits the server URL generation information 80, the captured image state information 55, and the image display method instruction information 77, which are stored in the second memory 52 of the image capturing device 1, from the second antenna 21 of the image capturing device 1 to the RF-ID reader/writer 46 of the TV 45. Here, it is desirable to encrypt all of the above pieces of information to be transmitted, by using the cryptography key information shared between the image capturing device 1 and the TV 45 at the mutual authentication. The encryption achieves secure information communication between the image capturing device 1 and the TV 45. As a result, intervention of a malicious third person can be prevented.
  • Since the server URL generation information 80 is transmitted to the TV 45, the server 42 (and directory) to which the first antenna 20 of the image capturing device 1 transmits data is the same as the server (and directory) from which the TV 45 downloads the data. Therefore, the TV 45 can display the images that have been captured by the image capturing device 1 and then uploaded to the server 42.
  • In addition, the transmission of the captured image state information 55 to the TV 45 makes it possible to examine synchronization between the captured images stored in the third memory 33 of the image capturing device 1 and the images uploaded from the first antenna 20 to the server 42. Therefore, the TV 45 can detect a failure of the synchronization. The display of the warning information indicating the synchronization failure on the TV 45 can prevent unnecessary confusion of the user.
  • Moreover, the transmission of the image display method instruction information 77 to the TV 45 enables the user to view images by a set image viewing method without designating the image viewing method on the TV 45. The user merely needs to move the image capturing device 1 into proximity of the TV 45. The complicated operations using a remote controller or the like of the TV 45 are not necessary. The images can be automatically displayed by the set viewing method.
  • FIG. 44 is a block diagram of characteristic functions of a TV system according to Embodiment 2 of the present invention.
  • The TV 45 according to Embodiment 2 includes the RF-ID reader/writer 46, the decryption unit 5504, a URL generation unit 5505, a communication unit 5506, a transmission unit 5507, a communication interface 5508, a receiving unit 5509, a data processing unit 5510, a memory unit 5511, a display unit 5512, and a CPU 5513.
  • The RF-ID reader/writer 46 communicates with the RF-ID unit 47 of the image capturing device 1 via the second antenna 21. The RF-ID reader/writer 46 includes a wireless antenna 5501, a receiving unit 5503, and a communicable device search unit (polling unit) 5502.
  • The wireless antenna 5501 performs proximity wireless communication with the second antenna 21 of the image capturing device 1. The wireless antenna 5501 has the same structure as that of wireless antennas of general-purpose RF-ID reader/writers.
  • The communicable device search unit (polling unit) 5502 performs polling to check a RF-ID unit of each of plural cameras in order to examine whether to have any transmission request (or processing request). If the communicable device search unit 5502 receives a response of the polling from the RF-ID unit 47 of the image capturing device 1 (the corresponding camera), then the mutual authentication is performed to share a common cryptography key between the TV 45 and the image capturing device 1.
  • When the mutual authentication is completed after receiving the polling response, the receiving unit 5503 receives the server URL generation information 80, the captured image state information 55, and the image display method instruction information 77 from the second memory 52 via the second antenna 21 of the image capturing device 1.
  • The decryption unit 5504 decrypts the server URL generation information 80, the captured image state information 55, and the image display method instruction information 77 which are received by the receiving unit 5503. The decryption of the server URL generation information 80, the captured image state information 55, and the image display method instruction information 77 which have been encrypted is performed using the cryptography key shared between the image capturing device 1 and the TV 45 after the mutual authentication by the communicable device search unit (polling unit) 5502.
  • The URL generation unit 5505 generates, based on the server URL generation information 80, a URL to access the server 42, and then transmits the generated URL to the communication unit. The URL includes not only the server specific information, but also the login ID 83 and the password 85 used to login to the server.
  • The communication unit 5506 communicates with the server 42 via a general-purpose network using the communication interface 5508.
  • The transmission unit 5507 transmits the URL generated by the URL generation unit 5505 via the communication interface 5508 in order to connect the TV 45 to the server 42.
  • The communication interface 5508 is a communication interface for connecting the TV 45 to the server 42 via a general-purpose network. The communication interface 5508 is, for example, a wired/wireless LAN interface.
  • The receiving unit 5509 receives (downloads) image data and an image display cascading style sheet (CSS) from the serer 42 connected by the communication interface 5508.
  • The data processing unit 5510 performs data processing for the image data downloaded by the receiving unit 5509. If the image data to be downloaded is compressed data, the data processing unit 5510 de-compresses the image data. If the image data is encrypted, the data processing unit 5510 decrypts the image data. In addition, the data processing unit 5510 can arrange the downloaded image data by an image display style based on the image display CSS. If it is determined, based on the captured image state information 55 obtained, if necessary, by decryption of the decryption unit, that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42, then the data processing unit 5510 causes the display unit 5512 to display warning information regarding the synchronization failure. Thereby, unnecessary confusion of the user can be prevented. Moreover, the data processing unit 5510 sets a mode of displaying the downloaded image data, according to the image display method instruction information 77 provided from the decryption unit 5504. For example, if the list display (flag) 78 in the image display method instruction information 77 is ON, then the data processing unit 5510 generates a list of the downloaded images and provides the list to the memory unit 5511. If the slide show (flag) 79 in the image display method instruction information 77 is ON, then the data processing unit 5510 generates a slide show of the downloaded images and provides the slide show to the memory unit 5511.
  • The memory unit 5511 is a memory that temporarily holds the image data processed by the data processing unit 5510.
  • The display unit 5512 displays the image data stored in the memory unit 5511. The image data has been downloaded from the server 42 and applied with data processing by the data processing unit 5510 as described earlier.
  • As descried above, based on the server URL generation information 80, the captured image state information 55, and the image display method instruction information 77 which are received from the RF-ID unit 47 of the image capturing device 1, the TV 45 according to Embodiment 2 of the present invention can be connected to the server 42, then download the uploaded image data from the server 42, and display the downloaded image data on the display unit 5512. Thereby, the user does not need to do complicated processes of removing the third memory 33 such as a Secure Digital (SD) card or a flash memory from the image capturing device 1 and equipping the third memory 33 to a card reader of the TV 45 in order to view captured images. In Embodiment 2 of the present invention, the user can display and view captured image data, by simple operations of simply presenting the RF-ID unit 47 of the image capturing device 1 to the RF-ID reader/writer 46 of the TV 45 for proximity communication. Embodiment 2 of the present invention can provide a captured image viewing system by which even users who are not familiar with operations of digital devices can easily view image data.
  • FIG. 45 is a flowchart of RF-ID wireless proximity communication between the image capturing device 1 and the TV 45.
  • First, the communicable device search unit 5502 in the RF-ID reader/writer 46 of the TV 45 transmits a polling signal to search for the RF-ID unit 47 of the communicable image capturing device 1 (Step S5601).
  • When the image capturing device 1 receives the polling signal from the communicable device search unit 5502 in the RF-ID reader/writer 46 of the TV 45, the second power supply unit 91 is supplied with power to activate (operate) the RF-ID unit 47 (Step S5602). Here, at least the RF-ID unit 47, which can be operated under the second power supply unit 91, is activated. It is not necessary to activate all functions in the image capturing device 1.
  • When the activation of the RF-ID unit 47 of the image capturing device 1 is completed in Step S5602, the image capturing device 1 transmits a polling response for the polling to the RF-ID reader/writer 46 of the TV 45 via the second antenna 21 (Step S5603).
  • After the image capturing device 1 responds to the polling in Step S5603, the TV 45 receives the polling response by the wireless antenna 5501 of the RF-ID reader/writer 46 (Step S5604).
  • After receiving the polling response in Step S5604, the TV 45 determines whether or not the image capturing device 1 transmitting the polling response is a device mutually communicable with the TV 45 (Step S5605). If the determination is made that the image capturing device 1 cannot mutually communicate with the TV 45, then the processing is completed. On the other hand, if the determination is made that the image capturing device 1 is mutually communicable with the TV 45, then the processing proceeds to Step S5606.
  • If the determination is made that the image capturing device 1 is mutually communicable with the TV 45 in Step S6505, then the TV 45 performs mutual authentication to determine whether or not the image capturing device 1 and the TV 45 are legitimate devices for communication (Step S5606). The mutual authentication is the same as general mutual authentication using HDMI or IEEE1394. In the mutual authentication, issuing of challenge data and checking of response data are performed plural times between the TV 45 and the image capturing device 1 to eventually generate a common cryptography key. If one of the TV 45 and the image capturing device 1 is not legitimate, the common cryptography key is not generated, thereby disabling future mutual communication.
  • The image capturing device 1 also performs the same mutual authentication in the RF-ID unit 47. Generation and transmission of challenge data and receiving and checking of response data are performed plural times between the TV 45 and the image capturing device 1 to eventually generate a cryptography key identical to the cryptography key generated by the TV 45 (Step S5607).
  • When the mutual authentication is completed in Step S5607, the image capturing device 1 reads the server URL generation information 80 as the server specific information 48 from the second memory 52, then encrypts the server URL generation information 80 using the common cryptography key generated at the mutual authentication, and transmits the encrypted server URL generation information 80 to the RF-ID reader/writer 46 of the TV 45 (Step S5608).
  • The TV 45 receives the encrypted server URL generation information 80 transmitted in Step S5608, by the receiving unit 5503 in the RF-ID reader/writer 46. Then, the decryption unit 5504 decrypts the encrypted server URL generation information 80 using the common cryptography key. Based on the server URL generation information 80, the URL generation unit 5505 generates a URL to access the server 42. Then, the TV 45 transmits, to the image capturing device 1, a notification of completion of receiving the server URL generation information 80 (Step S5609).
  • After the notification of the receiving completion is transmitted in Step S5609, the image capturing device 1 receives the notification by the second antenna 21. Then, the image capturing device 1 reads the captured image state information 55 from the second memory 52 to transmit the captured image state information 55 to the TV 45 (Step S5610). The captured image state information 55 is: the final capturing time 68 (case 1); the existence identifiers 64 which are existence identification information regarding images not yet been uploaded and each of which is assigned to a corresponding one of the captured images so that it is possible to determine whether the image has not yet been uploaded (case 2); the not-yet-uploaded image information hashed information 67 (case 3); or the final image serial number 69 from among image serial numbers chronologically assigned to captured images (case 4). The captured image state information 55 is important for examining synchronization between captured images in the image capturing device 1 and captured images in the server 42.
  • After the image capturing device 1 transmits the captured image state information 55 in Step S5610, the TV 45 receives the captured image state information 55 by the RF-ID reader/writer 46 and then transmits, to the image capturing device 1, a notification of completion of receiving the captured image state information 55 (Step S5611). Here, the CPU 5513 in the TV 45 performs the following processing depending on kinds of the received captured image state information 55.
  • In case 1, the final capturing time 68 is used as the captured image state information 55. Therefore, the TV 45 compares the final capturing time 68 to the final upload time that is a time of finally uploading to the server 42. If the final capturing time 68 is temporally later than the final upload time, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • In case 2, the captured image state information 55 is the existence identifiers 64 each of which is assigned to a corresponding one of the captured images so that it is possible to determine whether the image has not yet been uploaded. Therefore, the TV 45 examines the existence identifiers 64 to determine whether or not there is any image not yet been uploaded. If there is any image not yet been uploaded, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • In case 3, the not-yet-uploaded image information hashed information 67 is employed as the captured image state information 55. Therefore, the TV 45 examines the not-yet-uploaded image information hashed information 67 to determine whether or not there is any image not yet been uploaded. If there is any image not yet been uploaded, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • In case 4, the captured image state information 55 is the final image serial number 69 from among image serial numbers chronologically assigned to the captured images. Therefore, the TV 45 compares (a) the final image serial number 69 from among image serial numbers chronologically assigned to the captured images to (b) an image serial number of an image finally uploaded to the server 42. Here, the final image serial number 69 is provided from the image capturing device 1, while the image serial number is provided from the server 42. Based on the comparison, the TV 45 can determine whether or not there is any image not yet been uploaded. If there is any image not yet been uploaded, then it is determined that the image data in the image capturing device 1 is not in synchronization with the image data in the server 42. Therefore, warning information regarding the synchronization failure is displayed on the display unit of the TV 45.
  • After the TV 45 completes receiving of the captured image state information 55 and transmits the notification of the receipt to the image capturing device 1 in Step S5611, the image capturing device 1 reads the image display method instruction information 77 from the second memory 52 and transmits the image display method instruction information 77 to the TV 45 (Step S5612). The image display method instruction information 77 includes the list display (flag) 78 and the slide show (flag) 79.
  • After the image display method instruction information 77 is transmitted in Step S5612, the TV 45 receives the image display method instruction information 77 by the RF-ID reader/writer 46 of the TV 45 and transmits a notification of completion of receiving the image display method instruction information 77 to the image capturing device 1 (Step S5613). The data processing unit 5510 of the TV 45 generates a mode of displaying images downloaded from the server 42, based on the received image display method instruction information 77. For example, if the list display flag in the image display method instruction information 77 is ON, the data processing unit 5510 generates a list of the downloaded images and stores the generated list in the memory unit 5511 and causes the display unit 5512 to display the list. On the other hand, if the slide show flag in the image display method instruction information 77 is ON, the data processing unit 5510 generates a slide show of the downloaded images and stores the generated slide show in the memory unit 5511 and causes the display unit 5512 to display the slide show.
  • After receiving the image display method instruction information 77 in Step S5613, the TV 45 disconnects communication from the RF-ID unit 47 of the image capturing device 1 (Step S5614).
  • Next, the TV 45 activates a TV system (Step S5615). The activation of the TV system refers to turning the main power of the TV 450N to display the downloaded image data on the display unit 5512. Prior to the activation of the TV system in Step S5615, at least the RF-ID reader/writer 46 of the TV 45 is activated and the display unit 5512 may be turned OFF.
  • Then, the communication unit 5506 is activated to connect the TV 45 to the server 42 based on the URL generated by the URL generation unit 5505 (Step S5616).
  • After connecting to the server 42 in Step S5616, the TV 45 downloads uploaded image data from the server 42 (Step S5617).
  • The data processing unit 5510 generates to-be-displayed image data from the images downloaded at the Step S5617, based on the image display method instruction information 77 obtained from the camera (the image capturing device 1), then stores the generated image data into the memory unit 5511, and displays the image data on the display unit 5512 (Step S5618). The data processing unit 5510 of the TV 45 generates a mode of displaying the images (image data) downloaded from the server 42, based on the received image display method instruction information 77. For example, if the list display flag 78 in the image display method instruction information 77 is ON, the data processing unit 5510 generates a list of the downloaded images and stores the generated list in the memory unit 5511 and causes the display unit 5512 to display the list. On the other hand, if the slide show flag 79 in the image display method instruction information 77 is ON, the data processing unit 5510 generates a slide show of the downloaded images and stores the generated slide show in the memory unit 5511 and causes the display unit 5512 to display the slide show.
  • After displaying of the images downloaded from the server 42 is completed in Step S5617, the TV 45 performs synchronization examination to determine whether or not the captured images recorded in the third memory 33 of the image capturing device 1 are in synchronization with the images downloaded from the server 42 (Step S5619). The synchronization examination is performed based on the captured image state information provided in Step S5611 from the image capturing device 1. The captured image state information 55 is: the final capturing time 68 (case 1); the existence identifiers 64 which are existence identification information regarding images not yet been uploaded and each of which is assigned to a corresponding one of the captured images so that it is possible to determine whether the image has not yet been uploaded (case 2); the not-yet-uploaded image information hashed information 67 (case 3); or the final image serial number 69 from among image serial numbers chronologically assigned to captured images (case 4). The captured image state information 55 is important for examining synchronization between captured images in the image capturing device 1 and captured images in the server 42.
  • FIGS. 46A and 46B are flowcharts of details of the server synchronization examination (Step S5619) of FIG. 45 when the captured image state information 55 are cases 1 to 4, respectively.
  • (a) in FIG. 46A is a flowchart of case 1 where the captured image state information 55 is the final capturing time 68.
  • First, the communication unit 5506 of the 45 receives, from the server 42, date/time of finally uploading to the server 42 (hereinafter, referred to also as a “final upload date/time” that may be date/time of capturing a final image among uploaded images to produce the same advantages) (Step S5701).
  • Next, the TV 45 compares the final upload date/time to a final capturing date/time 68 (Step S5702). The final capturing date/time 68, which is date/time of final capturing of the image capturing device 1, is indicated in the captured image state information 55 provided from the image capturing device 1 to the RF-ID reader/writer 46. If the final upload date/time is prior to the final capturing date/time 68, it is determined that there is an image captured after the final upload and not yet been uploaded to the server 42. Therefore, a determination is made that the images in the image capturing device 1 are not in synchronization with the images in the server 42. Then, warning information is displayed in Step S5703. On the other hand, if the final upload date/time is equal to the final capturing date/time 68, it is determined that the images in the image capturing device 1 are in synchronization with the images in the server 42. Then, the synchronization examination is completed without displaying warning information.
  • If it is determined in Step S5702 that the images in the image capturing device 1 are not in synchronization with the images in the server 42, the display unit 5512 displays warning information indicating the synchronization failure. Here, if time information is generated by comparing the final upload date/time to the final capturing date/time 68 in order to indicate from when captured images are not uploaded, and the generated time information is presented as a message together with the warning information, the warning information is convenient for the user.
  • (b) in FIG. 46A is a flowchart of case 2 where the captured image state information 55 is the existence identifiers 64 each of which is assigned to a corresponding one of the captured images so that it is possible to determine whether the image has not yet been uploaded.
  • First, it is determined, based on the existence identifiers of the not-yet-uploaded image existence identification information, whether or not there is any image not yet been uploaded to the server 42 from among the captured images stored in the third memory 33 of the image capturing device 1 (Step S5711). Here, the existence identifiers are indicated in the captured image state information 55 provided from the image capturing device 1 to the RF-ID reader/writer 46. If it is determined that there is an image not yet been uploaded to the server 42 in Step S5711, then the processing proceed to Step S5712 to display warning information. On the other hand, if there is not image not yet been uploaded, it is determined that the images in the image capturing device 1 are in synchronization with the images in the server 42. Then, the synchronization examination is completed without displaying warning information.
  • If it is determined that the images in the image capturing device 1 are not in synchronization with the images in the server 42, the display unit 5512 displays warning information indicating the synchronization failure in Step S5712.
  • (c) in FIG. 46B is a flowchart of case 3 where the captured image state information 55 is the not-yet-uploaded image information hashed information 67.
  • First, it is determined, based on the not-yet-uploaded image information hashed information 67, whether or not there is any image not yet been uploaded to the server 42 from among the captured images stored in the third memory 33 of the image capturing device 1 (Step S5721). Here, the not-yet-uploaded image information hashed information 67 is indicated in the captured image state information 55 provided from the image capturing device 1 to the RF-ID reader/writer 46. The determination of Step S5721 is performed by comparing the not-yet-uploaded image information hashed information 67 to a hashed value generated by hashing NULL generated in the TV 45. If it is determined that there is an image not yet been uploaded in Step S5721, then the processing proceed to Step S5722 to display warning information. On the other hand, if there is no image not yet been uploaded, it is determined that the images in the image capturing device 1 are in synchronization with the images in the server 42. Then, the synchronization examination is completed without displaying warning information.
  • If it is determined that the images in the image capturing device 1 are not in synchronization with the images in the server 42, the display unit 5512 displays warning information indicating the synchronization failure in Step S5722.
  • (d) in FIG. 46B is a flowchart of case 4 where the captured image state information 55 is a final image serial number from among image serial numbers assigned to captured images.
  • First, the communication unit 5506 of the TV 45 receives, from the server 42, an image serial number of an image finally uploaded to the server 42 (Step S5731).
  • Next, the TV 45 compares (a) the image serial number 69 of the image finally uploaded which is provided form the server 42 to (b) a final image serial number 69 of an image finally captured which is indicated in the captured image state information 55 provided from the image capturing device 1 by the RF-ID reader/writer 46 (Step S5732). If the mage serial number 69 of the image finally uploaded is smaller than the mage serial number 69 of the image finally captured, it is determined that there is an image captured after the final upload and not yet been uploaded to the server 42. Therefore, a determination is made that the images in the image capturing device 1 are not in synchronization with the images in the server 42. Then, the processing proceeds to Step S5733 to display warning information. On the other hand, if the mage serial number 69 of the image finally uploaded is identical to the mage serial number 69 of the image finally captured, it is determined that the images in the image capturing device 1 are in synchronization with the images in the server 42. Then, the synchronization examination is completed without displaying warning information.
  • If it is determined in Step S5732 that the images in the image capturing device 1 are not in synchronization with the images in the server 42, the display unit 5512 displays warning information indicating the synchronization failure.
  • When all of images captured by the image capturing device 1 are not uploaded to the serve 42 (in other words, when images captured by the image capturing device 1 are not in synchronization with images uploaded to the server 42), any of above cases 1 to 4 makes it possible to detect the synchronization failure. Thereby, although all of the captured images cannot be displayed on the display unit 5512, a convenient message can be displayed to the user to inform the synchronization failure. As a result, unnecessary confusion of the user can be prevented.
  • FIGS. 47A and 47B are diagrams showing (1) a data format used in uploading captured images from the image capturing device to the server 42 and (2) a data format used in RF-ID communication between the image capturing device 1 and the TV 45.
  • First, (1) a data format 5940 in uploading captured images from the image capturing device 1 to the server 42 is described. The data format 5940 includes camera ID 5901, a sever address 5902, a server login ID 5903, a server login password 5904, an image directory 5905, and an uploading-image number 5906.
  • The camera ID 5901 is camera UID uniquely assigned to each camera (image capturing device 1). The camera ID 5901 is ID information recorded in the camera ID 76 in the second memory 52 of the image capturing device 1. Use of the camera ID 5901 as login ID to the server 42 can provide a server address unique to each image capturing device 1 so that the image capturing device 1 can access the server 42 without user's entry of login ID. In addition, the camera ID 5901 enables the server 42 to manage captured images for each capturing camera.
  • The sever address 5902 is included in the server address information 81 in the server specific information 48 stored in the second memory 52 of the image capturing device 1. The sever address 5902 enables the TV 45 to identify the server to which target image data is uploaded.
  • The server login ID 5903 is included in the login ID 83 in the user identification information 82 in the server specific information 48 stored in the second memory 52 of the image capturing device 1. The server login ID 5903 allows the TV 45 to login, by using the same account, to the server to which the image capturing device 1 uploads image data.
  • The server login password 5904 is included in the password 84 in the server specific information 48 stored in the second memory 52 of the image capturing device 1. The server login password 5904 allows the TV 45 to login, by using the same account, to the server to which the image capturing device 1 uploads image data.
  • The uploading-image number 5906 is the number of images to be uploaded to the server. The uploading-image number 5906 is equal to the number of images which is stored as the not-yet-uploaded-image number 65 in the second memory 52 of the image capturing device 1. After capturing images, the number of images not yet been uploaded is indicated in the uploading-image number 5906.
  • After transmitting the data format 5940, the image capturing device 1 uploads, to the server 42, the images that are stored in the third memory 33 of the image capturing device 1 but not yet been uploaded to the server 42.
  • Next, (2) a data format 5950 used in RF-ID communication between the image capturing device 1 and the TV 45 is described. The data format 5950 includes camera ID 5911, a sever address 5912, a server login ID 5913, a server login password 5914, a final capturing date/time (final capturing time) 5915, and not-yet-uploaded image data existence identifiers 5916, not-yet-uploaded image information hashed information 5917, a final image serial number 5918, and image display method instruction information 5919.
  • The camera ID 5911 is a camera UID uniquely assigned to each camera (image capturing device 1). The camera ID 5911 is ID information recorded in the camera ID 76 in the second memory 52 of the image capturing device 1. Use of the camera ID 5911 as login ID to the server 42 from the TV 45 can provide a server address unique to each image capturing device 1 so that the TV 45 can access the server 42 without user's entry of login ID. The camera ID 5901 may be used in the mutual authentication between the RF-ID unit 47 of the image capturing device 1 and the RF-ID reader/writer 46 of the TV 45.
  • The sever address 5912 is included in the server address information 81 in the server specific information 48 stored in the second memory 52 of the image capturing device 1. The sever address 5912 enables the TV 45 to identify the server to which target image data is uploaded.
  • The server login ID 5913 is included in the login ID 83 in the user identification information 82 in the server specific information 48 stored in the second memory 52 of the image capturing device 1. The server login ID 5913 allows the TV 45 to login, by using the same account, to the server to which the image capturing device 1 uploads image data.
  • The server login password 5914 is included in the password 84 in the server specific information 48 stored in the second memory 52 of the image capturing device 1. The server login password 5914 allows the TV 45 to login, by using the same account, to the server to which the image capturing device 1 uploads image data.
  • The final capturing date/time 5915 corresponds to the final capturing time 68 in the captured image state information 55 stored in the second memory 52 of the image capturing device 1. The TV 45 uses the final capturing date/time 5915 for the synchronization examination between captured images in the image capturing device 1 and captured images in the server 42.
  • The not-yet-uploaded image data existence identifiers 5916 correspond to the not-yet-uploaded image data existence identification information in the captured image state information 55 stored in the second memory 52 of the image capturing device 1. TV 45 uses the not-yet-uploaded image data existence identifiers 5916 for the synchronization examination between captured images in the image capturing device 1 and captured images in the server 42. In order to implement each of the not-yet-uploaded image data existence identifiers 5916, each image ID 5928 for identifying a corresponding one of captured images is assigned with an upload flag 5926 indicating whether or not the corresponding image has been uploaded to the server 42. Thereby, it is possible to determine whether or not each of the captured images has been uploaded to the server 42.
  • The not-yet-uploaded image information hashed information 5917 corresponds to the not-yet-uploaded image information hashed information 67 in the captured image state information 55 stored in the second memory 52 of the image capturing device 1. The TV 45 uses the not-yet-uploaded image information hashed information 5917 for the synchronization examination between captured images in the image capturing device 1 and captured images in the server 42.
  • The final image serial number 5918 corresponds to the final image serial number 69 in the captured image state information 55 stored in the second memory 52 of the image capturing device 1. The TV 45 uses the final image serial number 5918 for the synchronization examination between captured images in the image capturing device 1 and captured images in the server 42.
  • The image display method instruction information 5919 corresponds to the image display method instruction information 77 in the captured image state information 55 stored in the second memory 52 of the image capturing device 1. The image display method instruction information 5919 includes identification information by which the TV 45 designates a method of viewing images downloaded from the server 42.
  • For each image ID 5927, the image display method instruction information 5919 includes a list display flag 5920, a slide show flag 5921, a print flag 5922, a video reproduction flag 5923, a download flag 5924, and a security password 5925.
  • The image ID 5927 is information unique to a captured image. The pieces of image ID 5927 are chronologically assigned to captured images by the image capturing device 1 in capturing the images.
  • The list display flag 5920 corresponds to the list display (flag) 78 stored in the second memory 52 of the image capturing device 1. The TV 45 uses the list display flag 5920 to determine whether or not image data downloaded from the server 42 is to be displayed in a list format. If the list display flag 5920 indicates “yes”, the data processing unit 5510 of the TV 45 generates a list of the downloaded images, stores the list to the memory unit 5511, and then displays the list on the display unit 5512.
  • The slide show flag 5921 corresponds to the slide show (flag) 79 stored in the second memory 52 of the image capturing device 1. The TV 45 uses the slide show flag 5921 to determine whether or not image data downloaded from the server 42 is to be displayed as a slide show. If the slide show flag 5921 indicates “automatic”, the data processing unit 5510 of the TV 45 generates a slide show of the downloaded images, stores the slide show to the memory unit 5511, and then displays the slide show on the display unit 5512. If the slide show flag 5921 indicates “manual”, the TV 45 permits execution of the slide show according to instructions from the user. If the slide show flag 5921 indicates “disable”, the TV 45 inhibits display of the slide show.
  • The print flag 5922 indicates whether or not images to be downloaded to the TV 45 and then displayed on the display unit 5512 are permitted to be printed by a printer (not shown) connected to the TV 45. The print flag 5922 is not shown in the image display method instruction information 77 stored in the second memory 52 of the image capturing device 1. However, if the print flag 5922 is added, it is possible to set whether or not image data is printable. As a result, usability related to use of images can be improved.
  • The video reproduction flag 5923 indicates whether or not video data captured by the image capturing device 1 and then uploaded to the server 42 is permitted to be downloaded by the TV 45 and then viewed. If the image capturing device 1 has a video capturing function, addition of the video reproduction flag 5923 to the image display method instruction information 77 stored in the second memory 52 can add setting of whether or not video reproduction is permitted. As a result, the video reproduction can be managed without complicated operations by the user.
  • The download flag 5924 is an identifier indicating whether or not image or video uploaded to the server 42 is permitted to be downloaded (copied) to a memory in the TV 45. The download flag 5924 can prevent that the image or video is copied by the third person to which image capturing is not permitted. Thereby, copy-right protection is also achieved.
  • The security password 5925 is password information that permits only the authorized user to perform the above-described image viewing, printing, and downloading processes. In Embodiment 2, the same password is set for each of the above-described image viewing, printing, and downloading processes. It is preferable, however, to set a different password to each of image viewing, printing, and downloading processes, so that a level of security can be set independently.
  • As described above, in the system according to Embodiment 2 of the present invention, the image capturing device 1 uploads captured images to the server connected to the image capturing device 1 via the first antenna. When the image capturing device 1 is prevented to the RF-ID reader/writer 46 of the TV 45, the image capturing device 1 transmits the server URL generation information 80, the captured image state information 55, and the image display method instruction information 77 from the RF-ID unit 47 to the TV 45 by the RF-ID communication. Then, the TV 45 connects to the server to which the image capturing device 1 has uploaded the captured images, then downloads the captured images from the server, and displays the captured images. Here, it is determined whether or not the captured images in the server 42 are in synchronization with the captured images in the image capturing device 1. If the synchronization is failure, the TV 45 displays notification of the synchronization failure on the display unit 5512. Thereby, the user can display the captured images only by presenting the image capturing device 1 to the TV 45, although the user conventionally has to remove a recording memory from the camera (the image capturing device 1) to be equipped to the TV 45 in order to view the images. Thereby, even the user who is not familiar with operations of digital devices can easily display the images on the TV 45.
  • Embodiment 3
  • Embodiment 3 according to the present invention is described below.
  • First, Embodiment 3 is explained in summary. FIG. 48 is a schematic block diagram of an electronic catalog display system according to Embodiment 3. The electronic catalog display system according to Embodiment 3 includes an electronic catalog server information input device 500, an electronic catalog notification card 502, the TV 45, and an electronic catalog server 506. The electronic catalog server information input device 500 includes a RF-ID writer 501. The electronic catalog notification card 502 includes a RF-ID unit 47. The TV 45 includes a RF-ID reader 504 and a network communication unit 509. The electronic catalog server 506 includes an electronic catalog database 507 and a customer attribute database 508.
  • The electronic catalog server information input device 500 writes electronic catalog server information from the RF-ID writer 501 to the RF-ID unit 47 attached to the electronic catalog notification card 502. The electronic catalog server information is provided from a user who provides services of an electronic catalog (hereinafter, referred to as a “provider user”). When a user who receives the services of the electronic catalog (hereinafter, referred to as a “customer user”) brings the electronic catalog notification card 502, in which the electronic catalog server information is written, into proximity of the TV 45, the RF-ID reader 504 in the TV 45 reads the electronic catalog server information from the RF-ID unit 47. In addition, the TV 45 transmits, based on the readout electronic catalog server information, a request for obtaining an electronic catalog to the electronic catalog server 506 set on a network via the network communication unit 509. Furthermore, when transmitting the request to the electronic catalog server, the TV 45 transmits also user information, which is previously inputted in the TV 45, to the electronic catalog server 506. The electronic catalog server 506 receives the request for the electronic catalog and the user information from the TV 45. First, the electronic catalog server 506 obtains customer attribute data from the customer attribute database 508 based on the user information. Next, from the electronic catalog database 507, the electronic catalog server 506 obtains electronic catalog data associated with the customer attribute data. Then, the electronic catalog server 506 transmits the obtained electronic catalog data to the TV 45 from which the request for the electronic catalog has been transmitted. The TV 45 displays the electronic catalog data received from the electronic catalog server 506, and thereby receives purchase operations from the customer user to purchase products in the electronic catalog data.
  • The following describes the electronic catalog display system according to Embodiment 3 in more detail.
  • FIG. 49 is a functional block diagram illustrating a structure of the electronic catalog server information input device according to Embodiment 3. First, a key input receiving unit 520 receives an input by input keys operated by the provider user, in order to obtain the electronic catalog server information. The electronic catalog server information obtained by the key input receiving unit 520 includes: a sever address such as a URL; server login ID; a server login password; an electronic catalog display password; electronic catalog display information; and a medium identification information. The electronic catalog display information indicates whether images of products/services in the electronic catalog are to be displayed in a list (as thumbnails) or sequentially (as a slide show). The medium identification information is used for identifying a medium such as a card or a postcard to which RF-ID is attached. The electronic catalog server information obtained by the key input receiving unit 520 is stored into a storage unit 522. Next, when a RF-ID transmission key and the like are received after receiving of the electronic catalog server information, a RF-ID transmission input receiving unit 521 notifies a transmission unit 523 of a transmission request. Then, the transmission unit 523 reads the electronic catalog server information from the storage unit 522. An antenna unit 524 transmits the electronic catalog server information. The processing performed by the electronic catalog server information input device is presented in more detail with reference to a flowchart of FIG. 50.
  • FIG. 51 is a block diagram of a structure of the RF-ID unit 47 included in the electronic catalog notification card 502. A structure and processing of the RF-ID unit 47 are the same as those described in the first and second embodiments. The second power supply unit 91 obtains current from signals received by the second antenna 21, and provides power to each unit in the electronic catalog notification card 502. Received information is recorded into the second memory 52 via the data receiving unit 105, the second processing unit 95, and the recording unit 106.
  • FIG. 52 is a functional block diagram of a structure of the TV 45. The structure of the TV 45 according to Embodiment 3 differs from the structure of the TV 45 according to Embodiment 2 in that a user information input unit 588 is added. The user information input unit 588 receives the user information and stores the user information into a memory unit 583 temporarily. The user information is an attribute of the customer user and previously inputted by the customer user himself/herself. The user information is preferably gender or age information of the customer user. The user information may be other information, such as a residence or a family structure, which is private information for selecting product/service data in the electronic catalog. The user information is transmitted to the electronic catalog server via the communication unit 509, together with the URL of the electronic catalog server generated by the URL generation unit. In the same manner as described in Embodiment 1, in Embodiment 3, when the customer user moves the electronic catalog notification card 502 into proximity of a RF-ID reader 504 of the TV 45, the TV 45 receives the electronic catalog server information and thereby generates a URL of the server to connect to the server. The details of this processing are the same as those described in Embodiment 1 with reference to FIGS. 7 to 20.
  • FIG. 53 is a functional block diagram of a structure of the electronic catalog server 506. The electronic catalog server 506 receives an electronic catalog destination address and the user information from the TV 45 via a communication unit 600. The electronic catalog destination address is a network address of the TV 45 on a network to which the TV 45 and the electronic catalog server 506 belong. Next, based on the user information received by the customer attribute data obtainment unit, the electronic catalog server 506 obtains customer attribute data from the customer attribute database 508. For instance, if the user information includes a gender and an age of the customer user using the TV 45, the electronic catalog server 506 obtains, as the customer attribute data, information of a product/service genre and a product/service price range which are in association with the age and gender of the customer user, based on the customer attribute database 508 having a data structure illustrated in FIG. 57. Then, the electronic catalog data obtainment unit 602 obtains the electronic catalog data from the electronic catalog database 507 based on customer attribute data. For example, if the customer attribute data includes product/service genres and product/service price ranges, the electronic catalog server 506 obtains, as the electronic catalog data, all of product/service data corresponding to the product/service genres and the product/service price ranges, from the electronic catalog database 507 having a data structure illustrated in FIG. 58. The electronic catalog server 506 transmits the electronic catalog data obtained by the electronic catalog data obtainment unit 602 to the TV 45 having the electronic catalog destination address, via a communication unit 600. The processing performed by the electronic catalog server 506 is presented in more detail in a flowchart of FIG. 54.
  • The following describes processing of the TV 45 after downloading the electronic catalog data, with reference to a flowchart of FIG. 55. The processing regarding obtaining of the electronic catalog server information from the RF-ID unit in Steps S630 to S632 is the same whichever the electronic catalog data is downloaded or not. At S633, it is determined whether or not the electronic catalog data associated with the electronic catalog server information received from the RF-ID unit has already been downloaded and displayed. If the electronic catalog data has not yet been downloaded, then the TV 45 downloads the electronic catalog data from the server at S634 and displays the electronic catalog data at S635. The download processing is the same as the download processing described in Embodiment 1.
  • If it is determined at S633 that the electronic catalog data has already been downloaded, then the TV 45 issues a signal of a predetermined key (for example, a signal of a Decide key) to execute operations for the displayed electronic catalog data (S636). Here, as illustrated in an example of a screen display of the electronic catalog data in FIG. 56, a screen presents the customer user with a few of options for a next operation to be executed by the customer user for the displayed electronic catalog data. Then, a focus circulates among the options on the screen (as illustrated as options 652 and 653 in FIG. 56) to indicate one of them as a selection candidate every time a predetermined time period passes. This allows the customer user to execute an operation for selecting or purchasing each product in the electronic catalog data, for example, only by presenting the electronic catalog notification card 502 having the RF-ID unit 47 to the TV 45, when the focus indicates a desired option of the customer user.
  • The second memory 52 according to Embodiment 3, which is embedded in the RF-ID unit 47 on the electronic catalog notification card 502, may be a Read Only Memory (ROM). In this aspect, the electronic catalog server information input device 500 serves as a RF-ID memory data input unit in manufacturing the RF-ID unit, or a RF-ID memory data input means in a RF-ID manufacturing system. In general, a RF-ID unit having a ROM unit is inexpensive more than a RF-ID unit having a rewritable memory. Therefore, the RF-ID unit having a ROM allows the provider user sending a great number of electronic catalog notification cards to reduce a cost.
  • It should be noted that it has been described in Embodiment 3 that a focus circulates among the options on the screen of the TV 45 (as illustrated as options 652 and 653 in FIG. 56) to indicate one of them as a selection candidate every time a predetermined time period passes. However, the method of operating the electronic catalog data displayed on the screen by using the electronic catalog notification card 502 having the RF-ID unit 47 is not limited to the above. For example, it is also possible that the receiving unit 571 of the TV 45 sequentially receive pieces of information from the RF-ID unit and counts the sequential receiving processes, then thereby calculates a time period (RF-ID proximity time period) during which the RF-ID unit is in proximity of the TV 45, and eventually moves a focus indicating a selection candidate displayed on the screen based on the RF-ID proximity time period. With the above structure, the following operation for the electronic catalog is possible. Only when the RF-ID unit is in proximity of the TV, the focus displayed on the screen is circulated to change the selection candidate. If the RF-ID unit is away from the TV, the focus is stopped. After a predetermined time period after stopping of the focus, the selection candidate on which the focus is stopped is decided as selection. In this operation for the electronic catalog, the customer user can actively operate the electronic catalog by using the RF-ID unit, without waiting for the focus, which automatically circulates among options every predetermined time period, to arrive at a user's desired option.
  • It should also be noted that it has been described in Embodiment 3 that the electronic catalog server information input device 500 has the key input receiving unit 520 which receives inputs by the input keys operated by the provider user in order to obtain the electronic catalog server information. However, the following configuration is also possible. That is, the electronic catalog server information input device 500 has a communication interface to communicate with the image server. The image server holds the server information to be transmitted to the electronic catalog server information input device 500. The electronic catalog server information input device 500 receives the server information from the image server, in order to obtain the server information. This configuration in which the server information is stored in the image server allows the electronic catalog server information input device 500 to eliminate inputting to the image server. Especially, when a plurality of the electronic catalog server information input devices 500 are operated for a single image server, this configuration is highly convenient.
  • The conventional techniques have a program that users who are not familiar with operations of digital devices such as personal computers should learn operations of the devices to do online shopping. However, the system according to Embodiment 3 enables users using electronic catalogs to do online shopping and the like, simply by bringing received cards or post cards into proximity of TVs. Therefore, even users who are not familiar with online terminals such as personal computers and mobile phones can easily enjoy shopping on TV screens.
  • Embodiment 4
  • Embodiment 4 according to the present invention is described below.
  • FIG. 59 is a schematic diagram of Embodiment 4. In Embodiment 4, it is described a method of sending, to a remote location, a post card attached with RF-ID used to access an image server. First, a first user, who is a sender of a post card, brings the image capturing device 1 having the RF-ID unit 47 into proximity of the RF-ID reader/writer 46 of the TV 45. Thereby, the TV 45 generates a server URL used to connect the TV 45 to the image server 42, thereby obtains image data from the image server 42, and eventually displays the image data on a screen. This processing is the same as described in Embodiment 1. Next, by using an input means such as a remote controller of the TV 45, the first user selects an image(s) to be printed on a post card and images to be registered in association with the post card (in other words, images to be shown to a second user living in a remote location), from among the image data displayed by the TV 45. In addition, the first user inputs address information such as a destination address of the post card by using the remote controller or the like. The TV 45 transmits, to the image server 42, ID of the image selected by the first user to be printed on the post card (hereinafter, referred to as “print image ID”), ID of the images to be registered for the post card (hereinafter, referred to as “registration image ID”), and the destination information of the post card (hereinafter, referred to as “post card destination information”). The image server 42 retrieves the image data identified by the print image ID and then transmits the image data and the post card destination information to a printer 800. The printer 800 prints the image data and the post card destination information on the post card. In addition, to the image server information input unit 500, the image server 42 transmits the registration image ID received from the TV 45, together with image server information. The image server information includes: a sever address such as a URL; server login ID; a server login password; an image display password, image display information indicating whether the image data (images) is to be displayed in a list (as thumbnails) or sequentially (as a slide show); and medium identification information indicating a medium, such as a card or post card, to which RF-ID is to be attached. The image server information input device 500 writes the image server information and the registration image ID to the RF-ID unit 47 of the post card on which the image and the destination information are printed by the printer 800. The post card 801 applied with printing and RF-ID writing is mailed to the printed destination. Thereby, the second user, who is designated by the first user as being the destination, receives the post card 801. When the second user brings the mailed post card 801 into proximity of a RF-ID reader/writer 46 of a TV 45 of the second user, the TV 45 of the second user obtains the image server information and the registration image ID from the RF-ID unit 47, downloads the images identified by the registration image ID, and displays the downloaded images.
  • The structure and processing of the image capturing device 1 according to Embodiment 4 are the same as described in Embodiment 1.
  • FIG. 60 is a block diagram of a structure of the TV 45 according to Embodiment 4. A receiving unit 811 receives the image server information from the RF-ID unit 47 of the image capturing device 1 or the post card 801 via a wireless antenna 570. If the RF-ID unit 47 of the post card 801 holds the registration image ID, the receiving unit 811 receives also the registration image ID. An image selection unit 584 receives an image selection operation from the user via a key unit 585 and an infrared ray receiving unit 586, and thereby obtains ID of an image which the first user has selected to be printed on the post card (namely, the print image ID) and ID of images which the first user has selected to be registered for the post card (namely, the registration image ID). Then, the image selection unit 584 provides the obtained IDs to the communication unit 509 (the network communication unit 509). FIG. 61 illustrates an example of a screen display on the TV 45 in the image selection operation. In FIG. 61, 821 is a screen display from which the first user selects an image to be printed on the post card. 820 in FIG. 61 is a screen display from which the first user selects images to be registered for the post card. A post card destination information input unit 810 receives a character input operation of the first user via the key unit 585 and the infrared ray receiving unit 586. Thereby, the post card destination information input unit 810 obtains the post card destination information including an address and a name of the destination of the post card. Then, the post card destination information input unit 810 provides the post card destination information to the communication unit 509. 823 in FIG. 61 is an example of a screen display on which the post card destination information is inputted. The communication unit 509 transmits the post card destination information, the print image ID, and the registration ID to the image server via a transmission unit 575 and a communication interface 576.
  • FIG. 62 is a flowchart of processing performed prior to mailing of the post card 801, by the image server 42, the printer 800, and the image server information input device 500. When the post card 801 is applied with printing and RF-ID writing, the post card 801 is mailed to the printed destination. The second user, who is designated by the first user as being the destination, receives the post card 801. When the second user presents the received post card 801 to the TV 45, the receiving unit 811 receives the image server information and the registration image ID from the RF-ID unit 47 via the wireless antenna 570. A decryption unit 572 decrypts encrypted information in the image server information and the registration image ID. Next, the URL generation unit 573 generates a URL from which only images identified by the registration image ID from among images stored in the image server 42 are downloaded to the TV 45. More specifically, the URL generation unit 573 may designate an internal directory of the server in the generated URL or may use a method of embedding the registration image ID to the URL as a URL option. By using the URL generated by the URL generation unit 573 to designate the server, the TV 45 accesses the image server to obtain the images, which is the same as described in more detail in Embodiment 1.
  • It should be noted that it has been described in Embodiment 4 that the user inputs the destination information to the TV 45, but the user may input not only the destination information such as an address and a name but also a message to be printed with an image on a post card. The TV 45 receives the input message together with the destination information and provides them to the image server 42. The printer 800 prints them on the post card. 822 in FIG. 61 illustrates an example of a screen of the TV 45 on which a message to be printed is inputted. If the user can select an image to be printed on the post card and also input an message added to the image, a flexibility in generating a post card with RF-ID is increased.
  • It should also be noted that the TV 45 according to Embodiment 4 may allow the user to perform operations for images displayed on the TV 45 by using the post card with RF-ID, in the same manner as described in Embodiment 3 for the processing in which the user operates an electronic catalog displayed on a screen by using RF-ID.
  • As described above, the system according to Embodiment 4 enables the user to mail a post card with RF-ID to a person living in a distant location, without creating a post card attached with RF-ID by the user himself/herself. In addition, when the user wishes to print the image(s) stored in the image server onto the post card to be mailed, the system allows the user to perform operation on a TV screen to select an image(s) to be printed. As a result, high usability is achieved.
  • Conventionally, if the user intends to show images, on a large screen display device, to a different user living in a remote location, the user in the remote location needs to learn operations of the device (apparatus), an operation acquirer has to go to the remote location to operate the device, or the display device in the remote location should be remotely controlled. The system according to Embodiment 4, however, enables such a user in a remote location to easily view images by a simple operation, for example, by bringing a physical medium such as a post card with RF-ID into proximity of a display device.
  • Embodiment 5
  • Embodiment 5 of the present invention has the following configuration. A mailing object such as a post card is written with fixed information. The image capturing device associates the fixed information with an image or a group of images (image data) stored in the server. A reproduction side reads the fixed information from the RF-ID attached to the post card or the like in order to display the image data associated with the fixed information. The configuration is illustrated in FIG. 63. Referring to FIG. 63, first, the image capturing device reads the fixed information from the mailing object, then associates the fixed information with an image(s), and registers information of the association (hereinafter, referred to as “association information) into the server. When the user receives the mailing object for which the registration is completed, the user brings the mailing object into proximity of a RF-ID reader of a TV to read the fixed information from the mailing object. The TV queries the server using the fixed information, and thereby displays the image(s) associated with the mailing object.
  • Embodiment 5 is characterized in that the RF-ID information in the mailing object is not rewritable (ROM) or in non-rewritable environments so that image data in the server is associated with the mailing object without rewriting the fixed information in the mailing object.
  • <Image Uploading and Mailing Object Associating by Image Capturing Device>
  • The images captured by the image capturing device are uploaded to the server using the method described in the prior embodiments. Here, an identifier is assigned to an uploaded image or image group. The identifier makes it possible to identify the image or an group of images stored in the server.
  • The following describes a method of associating (i) an image or image group which is captured and uploaded to the server by the image capturing device with (ii) fixed information recorded in a RF-ID tag of a mailing object. FIG. 64 illustrates examples of the fixed information recorded in the RF-ID tag of the mailing object.
  • (a) in FIG. 64 illustrates fixed information including: mailing object UID unique to the mailing object; and information such as an address for accessing the image server. (b) in FIG. 64 illustrates fixed information including: the mailing object UID; and information such as an address for accessing a relay server. (c) in FIG. 64 illustrates fixed information including the mailing object UID only. The fixed information may also include a login ID, password information, and the like for accessing the server. It is assumed in Embodiment 5 that such information necessary to access the server is included in a URL including the address information.
  • FIG. 65 is a flowchart of processing performed by the image capturing device to associate the RF-ID with image data stored in the server, when the image capturing device has a RF-ID reader function.
  • First, the image capturing device reads information from the RF-ID of the mailing object by using the RF-ID reader (S2500). In more detail, the second antenna 21 illustrated in FIG. 3 communicates with the RF-ID of the mailing object, and thereby the data receiving unit 105 receives the fixed information from mailing object. Then, the second processing unit 95 performs processing to provide the fixed information of the mailing object to the first processing unit 35 via the recording unit 106, the second memory 52, and the recording/reproducing unit 51. The first processing unit 35 associates the mailing object UID read from the mailing object with an image or image group, according to designation from the user (S2501). Then, the image capturing device accesses the server 42 via the first antenna 20 (S2502). Thereby, the image capturing device registers, to the server 42, the association information regarding the association between the mailing object UID and the image data stored in the server 42 (S2503).
  • If the fixed information read from the mailing object includes an address of the image server or a URL including the address, then the processing is completed. On the other hand, if the fixed information read from the mailing object does not include an address of the image server or a URL including the address, the image capturing device sets a relay server (FIG. 66).
  • In order to set a relay server, the image capturing device accesses the relay server (S2510). In more detail, if the fixed information read from the mailing object includes an address of a relay server or a URL including the address, then the image capturing device accesses the relay server. Otherwise, the image capturing device accesses a relay server that is previously set for the image capturing device.
  • After accessing the relay server, the image capturing device sets, in a database of the relay server, association information regarding association between the mailing object UID and the server that is a redirection destination (transfer destination) (S2511). Thereby, association between the mailing object UID and an address of the transfer destination is registered in the database of the relay server.
  • If the image capturing device does not have a RF-ID reader function and the mailing object is printed with a two-dimensional code or the like indicating information of the RF-ID reader, the image capturing device captures an image of the two-dimensional code using an image capturing unit to read information from the code so that the image capturing device can obtain the same information as the fixed information recorded in the RF-ID unit of the mailing object. The two-dimensional code may be a QR Code™, a PDF417, Veri Code, Maxi Code, or the like. Any other code can be used if the image capturing device can read information from the code by capturing an image of the code. In addition, the same advantages as described in Embodiment 5 can be produced by using a bar-code in a one-dimensional direction only, although a printing area is increased.
  • FIG. 67 is an example of the mailing object attached with a RF-ID unit 2520 and printed with a two-dimensional code 2521 indicating the same information as that recorded on the RF-ID unit 2520. A flow of processing data when the two-dimensional code is read by the image capturing device is described with reference to the block diagram of FIG. 3. The two-dimensional code printed on the mailing object is captured by the image capturing unit 30, then converted into an imaged by the video processing unit 31, and provided to the first processing unit 35 via the recording/reproducing unit 32. The first processing unit 35 analyzes the captured two-dimensional code and retrieves the information from the two-dimensional code. The information indicated by the two-dimensional code is basically the same as the information recorded in the RF-ID unit. The information indicated by the two-dimensional code includes at least the mailing object UID.
  • The following describes a flow of the processing from reading the information of the two-dimensional code to associating the information with an image or image group in the server with reference to FIG. 68.
  • Firstly, the image capturing unit captures an image of the two-dimensional code (S2530). Then, it is determined whether or not the captured image is a two-dimensional code (S2531). If the captured image is not a two-dimensional code, then error processing is performed (S2532). Or, normal image capturing processing may be performed. On the other hand, if the captured image is a two-dimensional code, then the two-dimensional code is analyzed (S2533). Thereby, information is read from the mailing object based on the result of the analysis (S2534). After reading the fixed information from the mailing object, the image capturing device associates the mailing object UID with image data stored in the server (S2535). Then, the image capturing device accesses the server (S2536). Then, the image capturing device sets the association information to the server (S2537). The Steps S2535 to S2537 are the same as the Steps S2501 to S2503 in FIG. 65. Here, if the readout information does not include an address of the image server or a URL including the address, then the image capturing device performs transfer setting to a relay server. The transfer setting to the relay server has been previously described with reference to FIG. 66.
  • As described above, by reading information from the two-dimensional bar-code printed on the mailing object, it is possible to complete to associate the information recorded on the RF-ID unit with image data stored in the server.
  • If the image capturing device does not have a RF-ID reader function and the mailing object is not printed with a code such as a two-dimensional code, the image capturing device can read information from the mailing object if the user manually inputs, to the image capturing device, the mailing object UID and the URL such as a sever address which are printed on the mailing object. The user inputs the information using buttons 7 to 15 illustrated in FIG. 2. In this aspect, the URL and the mailing object UID may be printed directly as a plane text or coded to be a code which the user easily inputs.
  • As described above, even if the image capturing device does not have a RF-ID reader function and the mailing object is not printed with a two-dimensional code, it is possible to associate the mailing object with image data stored in the server.
  • <Image Reproducing and Viewing by Using RF-ID on Mailing Object>
  • Next, the steps for viewing images stored in the server on the TV using the mailing object for which association is completed.
  • FIG. 69 is a flowchart of processing performed by the TV to read RF-ID from the mailing object and eventually access the image server.
  • When the user brings the mailing object into proximity of the RF-ID reader of the TV, the TV reads information of the RF-ID on the mailing object (S2540). Then, a determination is made as to whether or not the readout information includes a sever address or a URL including the server address (S2541). If the readout information includes a sever address or a URL including the sever address, then the TV accesses the designated server (S2542). Then, the TV transmits the mailing object UID (S2543). Then, a determination is made as to whether or not the server receiving the transmission is a relay server (S2544). If the server is a relay server, then the relay server redirects to a server (the image sever) designated in the relay server (S2547). Thereby, the TV accesses an image or image group in the image server (S2548). On the other hand, if it is determined at S2544 that the server receiving the transmission is the image server, then redirecting is not performed and access to the image server is performed (S2548). Moreover, if it is determined at S2541 that the readout information does not include a sever address, then the TV accesses a server set by a predetermined default (S2545). Then, the TV transmits the mailing object UID to the default server (S2546). The default server redirects to a server (the image server) designated in the default server (S2547) to access the image server.
  • Here, if association between the mailing object UID and the designated server as a destination of the relay is not registered in a database of the relay or default server, the relay or default server redirects to an error page. FIG. 70 is a flowchart of processing performed by the relay or default server after receiving the mailing object UID. When the relay or default server receives the mailing object UID (S2550), the server searches its database for information regarding the mailing object UID (S2551). Then, the relay or default server determines whether or not the database holds information regarding the mailing object UID (S2552). If the database holds the information, then the relay or default server redirects to a server associated with the mailing object UID in the database (S2554). On the other hand, if the database does not hold the information (in other words, if there is no association), then the relay or default server redirects to an error page (S2553).
  • As described above, the mailing object having fixed information in the RF-ID is previously associated with image data stored in the image server. Thereby, when the mailing object with the association is presented to the TV, the user can view an image or image group in the server which is associated with the mailing object UID, without rewriting of the RF-ID of the mailing object. Therefore, even if the user is away from home and cannot rewrite the RF-ID of the mailing object, or even if the RF-ID of the mailing object is not rewritable, the user can associate images in the server with the mailing object. As a result, the user allows a person receiving the mailing object to view the images associated with the mailing object.
  • It should be noted that it has been described in Embodiment 5 that the mailing object UID is transmitted after accessing the server. However, it is also possible to generate a URL from the mailing object UID and the sever address recorded on the mailing object in order to access the server. In this aspect, it is possible to perform the access to the server and the transmission of the mailing object UID at the same time.
  • According to Embodiment 5, even in an environment where the RF-ID cannot be rewritten, such as in a sight-seeing location, for example, the user can associate captured images with a post card and send the post card to a friend. Thereby, the friend receiving the post card presents the post card to a TV to view the images the user captured in the sight-seeing location. As explained above, even in an environment where the RF-ID cannot be rewritten, the user can create a mailing object associated with images in the server and then send the mailing object to a person to which the user desires to show the images.
  • If the image capturing device has a RF-ID writer function to rewrite the RF-ID of the mailing object, the processing is the same as processing performed by the TV for associating the mailing object with image data in the server, which will be described below in Embodiment 6. Therefore, the processing is not described in Embodiment 5.
  • Embodiment 6
  • In Embodiment 6, the following configuration is described. The image capturing device captures images and uploads the images to the image server. Then, a user transmitting the images (hereinafter, referred to as a “sending user”) selects an image group from the images in the server. Information for accessing the selected image group is recorded in the RF-ID on the mailing object. The mailing object is mailed to a user receiving the images (hereinafter, referred to as a “receiving user”). The receiving user accesses the image group in the image server by using the RF-ID on the mailing object.
  • FIG. 71 is a schematic diagram of a configuration of an image transmission side according to Embodiment 6 of the present invention. FIG. 72 is a schematic diagram of a configuration of an image receiving side according to Embodiment 6 of the present invention. Here, the same reference numerals of FIGS. 1 and 3 are assigned to the identical elements of FIGS. 71 and 72, so that the identical elements are not explained again below.
  • In FIGS. 71 and 72, a mailing object 3001 is a post card, envelope, or letter paper which is mailed from the image transmission side to the image receiving side. A RF-ID unit 3002 is a rewritable RF-ID. At least part of the RF-ID unit 302 is a rewritable memory unit 3003. The RF-ID unit 3002 is attached to or incorporated into the mailing object 3001 in order to be sent to the image receiving side together with the mailing object.
  • As described in the prior embodiments, the memory unit 3003 in the RF-ID unit 3002 holds the medium identification information for identifying that the medium having the RF-ID unit 3002 is a mailing object.
  • Referring to FIG. 72, a TV 3045 is a TV display device provided in the image receiving side. The TV 3045 has the same function as that of the TV 45 in FIG. 71 described in the prior embodiments. Like the TV 45 in FIG. 71, the TV 3045 includes a RF-ID reader/writer 3046 (corresponding to the RF-ID reader/writer 46 in FIG. 71) and a display unit 3047 (corresponding to the display unit 110 in FIG. 71). The TV 3045 is connected to the Internet 40 via a network connection means not shown.
  • Next, the processing performed by the above configuration is described.
  • <Image Group Selecting and Mailing Object Writing by Image Transmission Side>
  • In the image transmission side in FIG. 71, images captured by the image capturing device 1 are transmitted to a wireless access point via the second antenna 20 in the image capturing device 1 used for wireless communication, such as a wireless LAN or WiMAX. The images are recorded as the image data 50 onto the image server 42 via the internet 40. Then, the image capturing device 1 is moved into proximity of the RF-ID reader/writer 46 of the TV 45 in order to establish connection with the TV 45 by wireless communication via the first antenna 21 of the image capturing device 1 used for RF-ID. The TV 45 obtains, from the image capturing device 1, information for accessing the image data 50 in the image server 42. Then, the TV 45 downloads the images of the image data 50 to be displayed on the display unit 110. The above processing is the same as described in the prior embodiments. The above is just a summary.
  • Next, the sending user checks the images displayed on the display unit 110 of the TV 45 in order to set transmission image selection information indicating whether or not each of the images is to be transmitted to the receiving user (in other words, whether or not each of the images is to be permitted to be viewed by the receiving user). The sending user can set also restriction on display for the receiving user, utility form information such as a slide show and printing, which is described in the prior embodiments. The transmission image selection information and the utility form information are transmitted to and recorded onto the image server. The image server manages, as an image group, a set of images selected as transmission images in the transmission image selection information.
  • The following describes steps performed by the TV 45 for recording, onto the mailing object 3001, information regarding the image group selected by the sending use, with reference to a flowchart of FIG. 73.
  • It is assumed that transmission images have been selected and an image group set with the utility form information has been generated. Under the assumption, the sending user brings the mailing object 3001 having the RF-ID unit 3002 into proximity of the RF-ID reader/writer 46 of the TV 45 in order to establish wireless communication between the RF-ID unit 3002 and the RF-ID reader/writer 46.
  • When the TV 45 becomes able to communicate with the RF-ID unit 3002 on the mailing object 3001 via the RF-ID reader/writer 46, the TV 45 reads information from the memory unit 3003 (S3101). Then, the TV 45 determines whether or not the medium identification information indicates that the current communication partner is a mailing object (S3102). If the current communication partner is a mailing object, then the TV 45 proceeds to steps for writing to the mailing object. Here, if it is determined in Step S3102 that the current communication partner is not a mailing object, then the subsequent steps are not described here but the TV 45 proceeds to steps depending on a medium indicated by the medium identification information.
  • In order to write to the mailing object 3001, first, the TV accesses the image server 42 via the internet 40 (S3103). Thereby, the TV 45 obtains, from the image server 42, image group designation information, such as a server URL and an image group address, for allowing the image receiving side to access the image group in the image server 42 (S3104).
  • The TV 45 transmits the obtained image group designation information to the RF-ID unit 3002 on the mailing object 3001 via the RF-ID reader/writer 46 of the TV 45 in order to write the image group designation information to the memory unit 3003 in the mailing object 3001, and the RF-ID unit 3002 on the mailing object 3001 records the image group designation information to a rewritable region of the memory unit 3003 (S3105).
  • As described above, the mailing object 3001 on which the image group designation information is recorded is mailed by the sending user to a user of the image receiving side.
  • <Image Reproducing and Viewing by Image Receiving Side>
  • Next, the image receiving side is described with reference to FIG. 72 illustrating the schematic block diagram of the image receiving side and FIG. 74 illustrating a flowchart of processing performed by the TV in the image receiving side.
  • Referring to FIG. 72, the receiving user receives the mailing object 3001 from the sending user. Then, the receiving user checks the RF-ID unit 3002 or characters or design indicated on the mailing object 3001 to determine whether the mailing object is incorporated with a means for accessing images. Here, the receiving user needs only to understand that the receiving user can access to the images by using the mailing object 3001. The receiving user does not need to care about the image group designation information and the like in the RF-ID unit 3002.
  • In order to reproduce and view the images, the receiving user brings the mailing object 3001 into proximity of the RF-ID reader/writer 3046 of the TV 3045 in the image receiving side so as to start viewing of the images.
  • If the RF-ID unit 3002 on the mailing object 3001 is in enough proximity of the RF-ID reader/writer 3046 of the TV 3045, the RF-ID reader/writer 3046 supplies power to the RF-ID unit 3002 of the mailing object 3001 via antennas (not shown) of both the RF-ID reader/writer 3046 and the RF-ID unit 3002 in order to activate the RF-ID unit 3002. Thereby, wireless communication between the TV 3045 and the RF-ID unit 3002 of the mailing object 3001 starts. When the wireless communication starts, the TV 3045 reads information from the memory unit 3003 of the RF-ID unit 3002 (S3151).
  • A determination is made as to whether or not the medium identification information in the readout information indicates that the current communication partner is a mailing object (S3152). If the current communication partner is a mailing object, then the TV 3045 proceeds to processing of reading the image group designated by the sending user from the image server 42.
  • The access to the image server 42 makes it possible to generate a URL for accessing the image group in the image server 42 by using the image group designation information in the information read by the RF-ID unit 3002 in Step S3151, such as an image group address, and thereby to access the image server 42 via the internet 40 (S3153).
  • The TV 3045 connected to the image server 42 at the above step obtains the images (the image group) which are permitted to be displayed, from among the image data 50 in the image server 42, based on the transmission image selection information indicating the image group managed by the image server 42 (S3154). Then, the TV 3045 displays the images on the display unit 110 (S3155).
  • Furthermore, according to the transmission image selection information indicating the image group managed by the image server 42 and the utility form information, the receiving user can use functions of, for example, reproducing the images as a slide show, printing the images, and downloading the images to a recording medium (not shown) attached to the TV 3045 or connected to the outside.
  • In addition, for image printing, the user can print the images by the printer on a LAN (not shown), and also ask, via the internet 40, a photograph print service provider to print the images.
  • As described above, with the above configuration according to Embodiment 6 of the present invention, the image group designation information is provided from the RF-ID unit 3002 on the mailing object 3001 to the TV 3045 in the image receiving side. Therefore, the receiving user does not need to input characters of a network access destination to obtain images, for example. In other words, the intuitive and simple operation of simply bringing the mailing object 3001 into proximity of the TV 3045 enables the receiving user to access the image data 50 stored in the image server 42. As a result, the receiving user can obtain images from the image server, without knowledge of complicated operations such as menu selection and character inputs.
  • It should be noted that it has been described in Embodiment 6 that the mailing object 3001 is previously attached or incorporated with the RF-ID unit 3002. However, the mailing object may be a general post card or letter paper attached with an independent RF-ID unit 3002 that is provided separately. In this aspect, the above effect can be produced by later attaching the RF-ID unit to the mailing object. This produces further advantages that the sending user can use Embodiment 6 for any desired mailing object.
  • It should also be noted that, if the access to the image server 42 requires a login operation, a server login ID and a server login password may also be written in Step S3105 into the rewritable region of the memory unit 3003 in the RF-ID unit 3002 on the mailing object 3001. Here, it is desirable that the login ID and the login password are not plane texts but are written in an encrypted format for security.
  • It should also be noted that it has been described in Embodiment 6 that the TV 45 in the image transmission side performs selection of transmission images, setting of the utility form information, and writing of the image group designation information to the RF-ID unit 3002 on the mailing object 3001. However, it is also possible that the image capturing device 1 having a RF-ID reader/writer function performs setting of the transmission image selection information and the utility form information and writing of the image group designation information, in order to produce the same effect as described above for obtaining images by the simple operation of the receiving user.
  • <Variation of Embodiment 6>
  • FIGS. 75A and 75B are flowcharts of processing performed by the TV 45 in the image transmission side according to a variation of Embodiment 6 of the present invention. Here, the same step numerals of FIG. 73 are assigned to the identical steps of FIGS. 75A and 75B, so that the identical steps are not explained again below.
  • According to the variation of Embodiment 6, the mailing object UID is previously recorded on the memory unit 3003 of the RF-ID unit 3002 on the mailing object 3001. Here, it is desirable to record the mailing object UID on a ROM region of the memory unit 3003 in order to reduce risks of data damages or data manipulation caused by accidental operations. FIG. 76 illustrates a diagram of an example of a data structure of the memory unit 3003.
  • The TV 45 in the image transmission side sets the transmission image selection information and the utility form information into the above-described RF-ID unit in order to designate an image group in the image serve 42. In this situation, the TV 45 performs processing according to the flowchart of FIG. 75A.
  • The TV 45 reads information from the RF-ID unit 3002 on the mailing object 3001 (S3101) and determines based on the medium identification information that the communication partner is a mailing object (S3102). After that, the TV 45 obtains the mailing object UID (S3201). The mailing object UID may be the information read in Step S3101 or be newly obtained from the RF-ID unit 3002. Next, the TV 45 accesses the image server 42 via the Internet 40 (S3202). The TV 45 transmits the mailing object UID to the image server 42, and thereby the image server 42 associates with the transmitted mailing object UID with an address of the image group and then stores the manages information of the association (association information) (S3203).
  • The TV 45 obtains, from the image server 42, the server URL enabling the image receiving side to access the image server 42 (S3204). The obtained server URL is written into the rewritable region of the memory unit 3003 in the RF-ID unit 3002 on the mailing object 3001 via the RF-ID reader/writer 46 (S3205).
  • As described above, if the image server associates the image group with the mailing object UID and then stores and manages the association information, the utility form information can be managed separately for each mailing object UID. Therefore, in the situation where there are a plurality of the mailing objects 3001, it is possible to change an operation for receiving images for each mailing object, namely, for each different receiving user.
  • If, in the configuration described in Embodiment 6, the image receiving side designates an image group for each mailing object, generates a different image group address for each designated image group, and writes the image group address into a corresponding RF-ID unit, the image transmission side needs complicated operations for designating image groups separately although the same advantages as those of Embodiment 6 can be obtained.
  • Therefore, when the sending user selects the same transmission image group for a plurality of mailing objects, it is preferable that the sending user records and manages different utility form information for each mailing object by using the mailing object UID as described earlier. Thereby, it is possible to reduce operations of the sending user, and to reduce a memory capacity of the image server because it is not necessary to hold pieces of the transmission image selection information separately, thereby producing further advantages.
  • The processing of FIG. 75B differs from the processing of FIG. 75A in thin Steps S3204 and S3205 are replaced by Steps S3214 and 3215. In Step 3214, the TV 45 obtains an image group address in addition to the server URL. In Step S3215, the TV 45 writes the image group address together with the server URL into the memory unit 3003 of the RF-ID unit 3002.
  • Thereby, when the image receiving side is to receive images, the image receiving side accesses the designated image group in the image server 42. Here, the access is permitted only when the mailing object UID of the image group stored and managed in the image server matches the mailing object UID used by the receiving server requesting the access. Thereby, security is increased.
  • Conventionally, if the user intends to show images, on a large screen display device (apparatus), to a different user living in a remote location, the user in the remote location needs to learn operations of the device, an operation acquirer has to go to the remote location to operate the device, or the display device in the remote location should be remotely controlled. However, like Embodiment 4, the system according to Embodiment 6 enables such a user in a remote location to easily view images by a simple operation, for example, by bringing a physical medium such as a post card with RF-ID into proximity of a display device. In Embodiment 4, generation of the post card with RF-ID and writing of data into the RF-ID is not performed by the user (who captures and sends images or who views the images), but by a service provider. In Embodiment 6, however, the sending user in the image transmission side performs generation of the post card with RF-ID and writing of data into the RF-ID.
  • Embodiment 7
  • In Embodiment 7 of the present invention, a method of changing setting for a device (apparatus) by using a RF-ID card according to Embodiment 7 of the present invention is described.
  • The following describes a method of changing setting for a recorder by using a RF-ID card with reference to FIGS. 77 and 78.
  • FIG. 77 is a block diagram of a structure of a recorder according to Embodiment 7.
  • A recorder 2000 records broadcast contents obtained by a tuner 2001, onto a Hard Disk Drive (HDD) 2008 or an optical disk drive 2009. In addition, the recorder 200 reproduces, on the TV 45, the recorded contents or video/audio contents ready by the optical disk drive 2009.
  • An input signal processing unit 2002 includes an Analog/Digital (A/D) converter, a decoder, and an encoder, in order to convert input video/audio signals into data in a predetermined video/audio format. The A/D converter converts analog signals obtained by the tuner 2001 into digital signals. The decoder decodes scrambled contents. The encoder converts data into data in a video format according to MPEG-2, for example.
  • An output signal processing unit 2003 includes a Digital/Analog (D/A) converter and a decoder in order to provide video and audio to the TV 45. The D/A converter converts digital signals to analog signals. The decoder decodes data in a data format according to MPEG-2, for example.
  • A system control unit 2004 controls operations of the recorder 2000. The system control unit 2004 includes a setting information processing unit 2011 that switches setting for the recorder 2000. The setting information processing unit 2011 will be described in detail later.
  • A memory 2005 holds recorder ID 2012 for identifying the recorder 2000, and setting information 2013 for the recorder 2000.
  • An operation input unit 2006 receives inputs from a user using buttons of a remote controller, a front panel, or the like (not shown).
  • A communication unit 2007 connects the recorder 2000 to the server 42 via the internet or a LAN.
  • The HDD 2008 has an area in which recorded contents and content lists provided from the input signal processing unit 2002 are stored.
  • The optical disk drive 2009 is a disk drive that performs recording or reproducing for an optical disk such as a Digital Versatile Disc (DVD) or a Blue-ray Disc. The optical disk drive 2009 records recorded contents and content lists provided from the input signal processing unit 2002 onto the optical disc, and reproduces video/audio contents in the optical disk.
  • The input signal processing unit 2002, the output signal processing unit 2003, the system control unit 2004, the HDD 2008, and the optical disk drive 2009 of the recorder 2000 are connected one another via a bus 2010.
  • Here, the setting information processing unit 2011 is described in more detail below.
  • According to the setting information 2013 stored in the memory 2005, the setting information processing unit 2011 sets displaying of a menu screen, a recording/reproducing mode, chapters of recorded contents, TV program recommendation based on user's preference, and the like regarding the recorder 2000. In more detail, the setting information processing unit 2011 reads an identifier indicating, for example, “menu screen background color: Black” from the setting information 2013, and thereby issues a request for menu screen display to the output signal processing unit 2003 together with an instruction for displaying a background of a menu screen in black.
  • Here, the setting information 2013 may be stored in an external storage unit such as a SD card not shown. Especially, it is efficient to store, in the HDD 2008, the setting information regarding chapters of recorded contents stored in the HDD 2008, information having a large size, and the like.
  • Conventionally, the setting information 2013 has been set prior to purchase of the recorder 2000, or set by operations of the user using the operation input unit 2006. In Embodiment 7 of the present invention, however, the setting information 2013 can be changed based on information obtained from the RF-ID reader/writer 46.
  • FIG. 78 is a block diagram of a structure of the RF-ID card from which information is read by the RF-ID reader/writer 46 of the recorder 2000 to be used to change the settings of the recorder 2000.
  • The RF-ID card 2100 includes a memory 2101, the antenna (second antenna) 21, the power supply unit (second power supply unit) 91, the data receiving unit 105, the data transfer unit 108, a processing unit 2102, the recording unit 106, and the reproducing unit 107.
  • When the RF-ID card 2100 is moved to bring the antenna 21 into proximity of the RF-ID reader/writer 46 of the recorder 2000, the RF-ID reader/writer 46 supplies power to the power supply unit 91 via the antenna 21 in order to provide power to the respective units in the RF-ID card 2100.
  • Information regarding data recording/reproducing is read from the RF-ID card 2100 to the recorder 2000 via the RF-ID reader/writer 46. In the recorder 2000, the information is received by the data receiving unit 105 and then provided to the processing unit 2102.
  • In the RF-ID card 2100, the processing unit 2102 causes the recording unit 106 to record information onto the memory 2101, and causes the reproducing unit 107 to reproduce the information stored in the memory 2101.
  • The data transfer unit 108 transmits the information provided from the processing unit 2102 to the RF-ID reader/writer 46 of the recorder 2000 via the antenna 21.
  • The memory 2101 in the RF-ID card 2100 stores the UID 75, the medium identification information 111, and apparatus operation information 2103.
  • The UID 75 and the medium identification information 111 are used to identify the RF-ID card 2100.
  • The UID 75 is identification unique to the RF-ID card 2100.
  • The medium identification information 111 holds an identifier indicating that the RF-ID card 2100 is a card.
  • The apparatus operation information 2103 holds pieces of information regarding an apparatus (device) to perform an operation using the RF-ID card 2100 and regarding the operation. The following describes the pieces of information included in the apparatus operation information 2103.
  • Operation apparatus identification information 2104 indicates a type of the apparatus (device) to perform the operation using the RF-ID card 2100. The operation apparatus identification information 2104 indicates the type by an identifier in the similar manner as described for the medium identification information 111. In FIG. 78, the operation apparatus identification information 2104 holds an identifier indicating that a type of the apparatus to perform the operation is a recorder.
  • Target apparatus information 2105 holds information so that only a specific apparatus (device) can perform the operation using the RF-ID card 2100. In the example of FIG. 78, the target apparatus information 2105 holds recorder ID 2012 for identifying the recorder 2000. It should be noted that, if an apparatus that can use the RF-ID card 2100 according to Embodiment 7 of the present invention is limited, for instance, if only recorders can use the RF-ID card 2100, the operation apparatus identification information 2104 and the target apparatus information 2105 may not be included in the apparatus operation information 2103. In addition, if the setting information processing unit 2011 in the recorder 2000 has a structure to change settings of the recorder 2000 by using the information in cards, the medium identification information 111 may not be included in the memory 2101.
  • Operation instruction information 2106 indicates details of the operation to be performed by the apparatus designated in the apparatus operation information 2103. In the example of FIG. 78, the operation instruction information 2106 includes information 2109 indicating that setting is to be changed (setting change), information 2110 indicating a target for which the setting change is to be performed (change target information), and information 2111 indicating that communication is to be executed in obtaining the setting information (communication execution).
  • It should be noted that the operation instruction information 2106 is not limited for a single operation, but may include plural pieces of information for plural operations, or may be a program in which the plural operations are combined.
  • Communication information 2107 is information regarding a server or the like. When the recorder 2000 is instructed based on the operation instruction information 2106 to access the server or the like to obtain data, the recorder 2000 accesses the server or the like using the communication information 2107. In the example of FIG. 78, the communication information 2107 includes a URL 2112, login ID 2113, and a password 2114 of the server or the like. The URL 2112 may be replaced by an IP address. If the recorder 2000 is to access a different apparatus (device) via an office or home network, the URL 2112 may be information for identifying the apparatus, such as a MAC address.
  • The following describes processing by which the recorder 2000 registers the setting information from the recorder 2000 to a server by using the RF-ID card 2100 with reference to FIG. 79.
  • In Step 2201, when the recorder 2000 receives an input from the user using the operation input unit 2006, the setting information processing unit 2011 causes the output signal processing unit 2003 to issue, to the TV 45, a request for message display. In response to the request, the TV 45 displays a message “Please present a RF-ID card” on its screen in Step 2202. The message may be displayed on a console (not shown) of the recorder 2000. It is also possible that the recorder 2000 requests the user for authentication such as a password or biometric authentication when the user performs the input operation, and after the authentication, proceeds to the setting registration processing. It is further possible that the recorder 2000 does not request the TV 45 for the message display, but the user needs to present the RF-ID card 2100 to the RF-ID reader/writer 46 when using the recorder 2000 in order to perform steps of and after 2203. It is still further possible that an enquiry message is displayed to enquire where the setting information 2013 is to be registered, and the setting information 2013 is registered into the location the user designates. For example, the setting information 2013 may be registered into the RF-ID card 2200, or into a sever different from the server 42.
  • In Step 2203, the recorder 2000 detects the RF-ID card. After that, mutual authentication between the recorder 2000 and the RF-ID card 2100 is performed in Step 2204.
  • If the mutual authentication in Step 2204 is successful, then the processing proceeds to Step 2205. Otherwise, the processing returns to Step 2202 to repeat the detection of the RF-ID card.
  • In Step 2205, the recorder 2000 obtains the UID 75 from the memory 2101 in the RF-ID card 2100.
  • In Step 2206, the recorder 2000 obtains the communication information 2107 from the memory 2101 in the RF-ID card 2100. If the memory 2101 in the RF-ID card 2100 does not hold the communication information, the recorder 2000 may issue, to the user, a request for providing the communication information. Moreover, if the user instructs in Step 2201 the recorder 2000 to register the setting information 2013 into a location that is not designated in the RF-ID card 2100, Step 2206 is not performed. If plural pieces of the communication information 2107 are stored in the RF-ID card 2100, it is possible to display a list of the plural pieces of the communication information 2107 from which the user can select a desired one.
  • In Step 2207, the recorder 2000 gets the recorder ID 2012 and the setting information 2013 from the memory 2005. The setting information 2013 is not limited to information currently stored, but may be information inputted by the user in the setting registration processing.
  • In Step 2208, in the recorder 2000, the setting information processing unit 2011 issues, to the communication unit 2007, a request for access to a server or the like having the URL 2112 included in the obtained communication information 2107. The communication unit 2007 accesses the server using the login ID 2113 and the password 2114.
  • In Step 2209, it is determined whether or not the access to the server 42 is successful. If the access is successful, then the processing proceeds to Step 2210. Otherwise, the setting registration processing is terminated.
  • In Step 2210, the recorder 2000 transmits, to the server 42, the UID 75, and the recorder ID 2012 and the setting information 2013 which are obtained from the memory 2005, thereby registering the setting information 2013 into the server 42.
  • In Step 2211, the recorder 2000 generates the operation instruction information 2106, using (a) the operation designated in Step 2201 or a storage location of the setting information 2013 selected in Step 2201, (b) the setting information 2013 obtained in Step 2207, and (c) the communication information 2107 obtained in Step 2206.
  • In Step 2212, the recorder 2000 performs the same step as Step 2202 to cause the TV 45 to displays a message “Please present a RF-ID card” on its screen.
  • In Step 2213, the recorder 2000 detects the RF-ID card. After that, mutual authentication between the recorder 2000 and the RF-ID card 2100 is performed in Step 2214.
  • If the mutual authentication in Step 2214 is successful, then the processing proceeds to Step 2215. Otherwise, the processing returns to Step 2212 to repeat the detection of the RF-ID card 2100.
  • In Step 2215, the recorder 2000 obtains the UID from the memory 2101 in the RF-ID card 2100.
  • In Step 2216, it is determined whether or not the UID 75 obtained in Step 2205 matches the UID obtained in Step 2215. If the UIDs match, then the processing proceeds to Step 2217. Otherwise, the processing returns to Step 2211 to repeat the detection of the RF-ID card 2100.
  • In Step 2217, the recorder 2000 transmits, to the RF-ID card 2100, the operation apparatus identification information 2104 (not shown in FIG. 77) stored in the memory 2005, the recorder ID 2012, the operation instruction information 2106 generated in Step 2211, and the communication information 2107, in order to record (register) these pieces of information onto the memory 2101 of the RF-ID card 2100. As a result, the setting registration processing is completed.
  • Referring to FIG. 80, the setting information registered into the server 42 by the above-described processing of FIG. 79 is described.
  • Each of the setting information registered in the server 42 is hereinafter referred to as setting information 2250. Each setting information 2250 is registered in association with a corresponding one of the UID 75 and a corresponding one of the target apparatus information 2105. In more detail, the setting information 2250 holds an identifier indicating, for example, “menu screen background color: Black”. In the example of FIG. 80, a letter “A” or “B” at the end of pieces of the setting information 2250 indicates that the setting is different from another.
  • It is also possible that plural pieces of setting information are registered for a single UID such as UID0001 in FIG. 80. It is further possible that a single piece of the target apparatus information 2105, such as REC-0001, is registered for plural pieces of setting information associated with different UID. Here, the setting information may include the change target information 2110.
  • Next, referring to FIG. 81, the apparatus operation information 2103 registered in the memory 2101 of the RF-ID card 2100 by the above-described processing of FIG. 79 is described.
  • It is assumed in the example of FIG. 81 that the UID 75 designates “UID0001” and the medium identification information 111 designates a “card”.
  • The apparatus operation information 2103 includes sets each including the operation apparatus identification information 2104, the target apparatus information 2105, the operation instruction information 2106, and the communication information 2107. Here, it is possible that the communication information 2107 is not registered as being information not related to the other pieces of information. For instance, it is possible that only a piece of the communication information 2107 is registered to always access the same server in using the RF-ID card 2100.
  • The operation instruction information 2106 includes instruction detail information 2260, instruction target information 2261, and communication execution information 2262. The instruction detail information 2260 holds an identifier indicating an operation to be performed by the device designated by the target apparatus information 2105. The instruction target information 2261 holds an identifier indicating a setting, such as a menu screen mode or recording mode, of the apparatus to perform the operation, such as REC-0001. The communication execution information 2262 holds an identifier indicating whether or not communication is to be executed in performing the operation indicated in the instruction detail information 2260. It should be noted that the apparatus operation information 2103 may include only the communication information 2107 if the operating to be performed using the RF-ID card 2100 is limited to changing of setting.
  • The communication information 2107 holds a URL, login ID, a password, and the like for accessing a server that is a partner of communication, if the communication execution information 2262 indicates that the communication is to be executed.
  • Next, the description is given for processing of changing the setting of the recorder 2000 by using the RF-ID card 2100 with reference to FIG. 82. FIG. 82 is a flowchart of processing by which the setting information processing unit 2011 in the recorder 2000 updates the setting information 2013 by using the RF-ID card 2100.
  • First, in Step 2301, the recorder 2000 detects the RF-ID card 2100. After that, in Step 2302, the recorder 2000 performs mutual authentication with the RF-ID card 2100.
  • In Step 2303, the recorder 2000 determines whether or not the mutual authentication is successful. If the mutual authentication is successful, then the processing proceeds to Step 2304. Otherwise, the setting update processing is terminated.
  • In Step 2304, the recorder 2000 obtains the UID 75 and the apparatus operation information 2103 from the memory 2101 of the RF-ID card 2100.
  • In Step 2305, the recorder 2000 searches the apparatus operation information 2103 for the operation apparatus identification information 2104. In Step 2306, the recorder 2000 compares the searched-out operation apparatus identification information 2104 to apparatus identification information (not shown) in the memory 2005 of the recorder 2000.
  • If it is determined in Step 2306 that the operation device identification information 2104 matches the device identification information, then the processing proceeds to Step 2307. Otherwise, the processing proceeds to Step 2314.
  • In Step 2314, the recorder 2000 determines whether or not all pieces of the operation apparatus identification information 2104 in the apparatus operation information 2103 have been examined. If all pieces of the operation apparatus identification information 2104 have been examined, then the setting update processing is terminated.
  • In Step 2307, the recorder 2000 searches the device operation information 2103 for the target apparatus information 2105. In Step 2308, the recorder 2000 compares the searched-out target apparatus information 2105 to the recorder ID 2012 in the memory 2005 of the recorder 2000.
  • If it is determined in Step 2308 that the target device information 2105 matches the recorder ID 2012, then the processing proceeds to Step 2309. Otherwise, the setting update processing is terminated.
  • In Step 2309, the recorder 2000 obtains the operation instruction information 2106 associated with the target device information 2105 from the apparatus operation information 2103.
  • In Step 2310, the recorder 2000 obtains the operation instruction information 2107 associated with the target apparatus information 2105 from the apparatus operation information 2103.
  • In Step 2311, the recorder 2000 determines, based on the instruction detail information 2260 in the operation instruction information 2106 in the device operation information 2103, that an operation to be performed is updating of setting, and thereby accesses the server 42 to obtain the setting information 2250 from the server 42. The step will be described in more detail with reference to FIG. 83.
  • In Step 2312, the recorder 2000 determines whether or not the obtainment of the setting information 2250 is successful. If the obtainment of the setting information 2250 is successful, then the processing proceeds to Step 2313. In Step 2313, the setting information processing unit 2011 in the recorder 2000 updates the setting information 2013 in the memory 2005 of the recorder 2000 by the setting information 2250. On the other hand, if the obtainment of the setting information 2250 fails, then the setting update processing is terminated.
  • The following describes Step 2311 in FIG. 82 in more detail with reference to FIG. 83. FIG. 82 is a flowchart of processing by which the setting information processing unit 2011 in the recorder 2000 accesses the server 42 to obtain the setting information 2250 from the server 42.
  • In Step 2351, the communication unit 2007 in the recorder 2000 accesses the server 42 having the URL 2112 included in the communication information 2107.
  • In Step 2352, the setting information processing unit 2011 provides the communication unit 2007 with the login ID 2113 and the password 2114 which are included in the communication information 2107, and thereby the communication unit 2007 logins to the server 42.
  • In Step 2353, it is determined whether or not authentication (namely, the login) is successful. If the authentication is successful, then the processing proceeds to Step 2354. Otherwise, the processing is terminated as being failure of obtaining the setting information 2250.
  • In Step 2354, the recorder 2000 searches the server 42 for UID. In Step 2355, the recorder 2000 determines whether or not the searched-out UID matches the UID 75 obtained in Step 2304 in FIG. 82. If the searched-out UID matches the UID 75, then the processing proceeds to Step 2356. Otherwise, the processing returns to Step 2354 to repeat the search for UID until it is determined in Step 2359 that all pieces of UID in the server 42 have been examined. If it is determined in Step 2359 that all pieces of UID in the server 42 have been examined, then the processing is terminated as being failure of obtaining the setting information 2250.
  • In Step 2356, the recorder 2000 searches the server 42 for the target apparatus information associated with the UID 75. In Step 2357, the recorder 2000 determines whether or not the searched-out target apparatus information matches the target apparatus information 2105 obtained in Step 2305 in FIG. 82. If the searched-out target apparatus information matches the target apparatus information 2105, then the processing proceeds to Step 2358. On the other hand, if the searched-out target apparatus information does not match the target apparatus information 2105, then the processing proceeds to Step 2358, then the processing returns to Step 2354 to repeat the search for the target apparatus information until it is determined in Step 2360 that all pieces of the target apparatus information in the server 42 have been examined. If it is determined in Step 2360 that all pieces of the target apparatus information have been examined, then the processing is terminated as being failure of obtaining the setting information 2250.
  • In Step 2258, the recorder 2000 obtains, from the server 42, the setting information 2250 associated with the UID 75 and the target apparatus information 2105.
  • As described above, the use of the RF-ID card 2100 enables the user to perform setting of the recorder 2000 without complicated operations. Even if the user is not familiar with operations of apparatuses (devices) the user can easily change the setting of the recorder 2000 by using the RF-ID card 2100. Moreover, the operation executable for the recorder 2000 by using the RF-ID card 2100 is not limited to the setting change. For example, the instruction detail information can designate an operation of obtaining a list of recorded contents in the recorder. In this case, the list is registered in the RF-ID card or the server. Thereby, the user can check the list on a different apparatus (device) other than the recorder by using the RF-ID card.
  • In addition, the RF-ID card holding information illustrated in the FIG. 84 allows the user to perform timer recording in the recorder simply by presenting the RF-ID card to the recorder. In more detail, if the change target information associated with Index 1 in FIG. 84 is applied, the recorder can perform timer recording according to setting of “TV program ID” and “recording mode” designated in the instruction target information, simply by presenting the RF-ID card to the recorder. Thereby, the timer recording can be performed without accessing the server. In addition, if the change target information associated with Index 2 in FIG. 84 is applied, the recorder can perform timer recording according to “TV program code” designated in the instruction target information, simply by presenting the RF-ID card to the recorder. Here, the recorder can obtain, from the server, (a) program ID or a start time and end time, and (b) channel information. As a result, the time recording can be performed according to the setting of the “recording mode”.
  • Furthermore, it is also possible that “recommended TV program” is designated in the instruction target information in the RF-ID card. After presenting the RF-ID card to the recorder, the recorder obtains ID of the recommended TV program from the server. Thereby, the recorder can obtain a content of the recommended TV program from the server and performs timer recording of the content. The above functions may be used as service for providing the RF-ID card as being a supplement of a TV program guide magazine, for example. This RF-ID card can reduce user's bothersome procedures for timer recording. For another service, it is also possible in the RF-ID card that the instruction detail information designates a download operation, the instruction target information designates video or software in a version where a function is restricted, and the communication information designates a URL of a download website. Such RF-ID cards are provided for free to users. The users can use the video or software as trial, and purchase it if the user likes it.
  • It should be noted that the description in Embodiment 7 has been given for the recorder, but the present invention is not limited to the recorder.
  • For example, Embodiment 7 of the present invention may be implemented as a TV having a reader/writer for the RF-ID card and the setting information processing unit. The TV can register, as the change target information, (a) setting of an initial display channel or initial sound volume immediately after power-on, (b) setting of child lock for excluding adult broadcasts and violence scenes, (c) setting of zapping for favorite channels, (d) setting of contrast and brightness of a screen, (e) setting of a language, (f) setting of a continuous use time, and the like, simply by presenting the RF-ID card to the TV. Thereby, the TV can perform settings according to usability. Furthermore, Embodiment 7 may be implemented also as a vehicle navigation system having a reader/writer for the RF-ID card and the setting information processing unit. In this aspect, the instruction detail information designates “highlighted display” and the instruction target information designates “landmark information”. Thereby, by using the RF-ID card, the vehicle navigation system can display the designated landmark as being highlighted, by changing a character font, character size, or color. The landmark information may be obtained from a server. In this case, the RF-ID cards, on which the apparatus operation information illustrated in FIG. 85 is recorded, are offered to users at rest areas or interchanges on expressways, sightseeing spots, and the like. Thereby, the RF-ID cards allow vehicle navigation systems of the users to display a recommended landmark, where an event is currently held for example, as highlighted display. In addition, Embodiment 7 may be implemented as a laptop having a reader/writer for the RF-ID card and the setting information processing unit. The laptop can designate (a) setting of a resolution of a screen, (b) setting of a position of an icon or the like on a display, (c) setting of a wallpaper, (d) setting of a screen saver, (e) setting of start-up of resident software, (f) setting of employed peripheral devices, (g) setting of a dominant hand for a mouse or the like, and the like, by simply by presenting the RF-ID card to the laptop. Therefore, if the user brings the RF-ID card in a business trip, the user can operate a different personal computer at the business trip location, with the same settings as those the user usually uses. Embodiment 7 may be implemented further as a game machine having a reader/writer for the RF-ID card and the setting information processing unit. The user visiting a friend's house uses a RF-ID card in which the instruction detail information designates setting change. By presenting the RF-ID card to the game machine at the friend's house, the user can change (a) setting of positions of keys on a remote controller and (b) setting of a structure of a menu screen. In addition, the user can save data in the game machine by using the RF-ID card. Moreover, the following service using the RF-ID card is also possible. The RF-ID card holds the instruction detail information designating a download operation. Such RF-ID cards are offered to users as supplements of magazines or the like. The users can use the RF-ID cards to download an additional scenario, a rare item, or the like.
  • The RF-ID card according to Embodiment 7 of the present invention can be also applied to home appliances connected to one another via a network. In this aspect, the RF-ID card previously holds (a) setting of a temperature of an air conditioner, (b) setting for a temperature of hot water in a bus tab, and the like, depending of the user's preference. Thereby, the user presents the RF-ID card to RF-ID reader/writers in the user's house so as to manage settings of the home appliances at once. In addition, the RF-ID card may designate an operation for checking foods stored in a refrigerator. Here, information of the foods which is registered in the refrigerator is obtained by using RF-ID tags previously attached to the foods. Or, video of the inside of the refrigerator is captured by using camcorder. Thereby, the user can check a list of the foods on a TV by using a RF-ID reader/writer to obtain information from the RF-ID card. As described above, the RF-ID card according to Embodiment 7 of the present invention can be applied for various usages. It is also possible to combine (a) RF-ID cards for designating apparatuses (such as four different cards indicating “heating appliance”, “cooling appliance”, “stove”, and “fan”, respectively) and (b) RF-ID cards for designating setting of the apparatuses (such as three different cards indicating “weak”, “medium”, and “strong”, respectively). It is further possible that such RF-ID cards having the apparatus-designating and setting-designating functions are integrated into a single RF-ID card. And, the settings of the apparatuses can be customized.
  • Although only some exemplary embodiments of the present invention have been described in detail above, those skilled in the art will be readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the present invention. Accordingly, all such modifications are intended to be included within the scope of the present invention.
  • For example, if two users (hereinafter, referred to as a user A and a user B) exchanges photographs between them, the user B can view photographs taken by the user A by the following method. The user B has a TV having an apparatus ID and a relay server having a URL. The apparatus ID and the URL are previously stored in a RF-ID (hereinafter, referred to as a RF tag B). The user B generates information (hereinafter, referred to as device generation information B) from the information in the RF tag B and stores the generated device generation information B into the RF tag B. The user B transmits the device generation information B to the user A via e-mail or the like. The user A stores a URL of a server holding the photographs into the relay server, in association with the received device generation information B. Thereby, the user B simply presents the RF tab B to a RF-ID reader/writer of the TV in order to view the photographs taken by the user A. Here, it is assumed that the RF tag B previously holds an e-mail address of the user A. When the user B simply presents the RF tag B to the RF-ID reader/writer of the TV, the device generation information B may be automatically written into the TV and a notification of the device generation information B may be automatically transmitted to the e-mail address of the user A. Thereby, even if the user B is not familiar with operations of the devices, the user B can exchange photographs with the user A. Furthermore, it is also possible that the user A encrypts at least one of a URL, login ID, and a password by using the device generation information B and sends, to the user B, a post card with RF-ID on which the encrypted information is recorded. This makes it possible to restrict an apparatus permitted to display the photographs, only to the TV of the user B. It is further possible that the user A sends, to the user B, a post card with two RF-IDs that are a RF-ID for sending and a RF-ID for returning. In this aspect, the user A records, onto the RF-ID for returning, device generation information A that is previously generated by a TV or the like of the user A. This can restrict an apparatus permitted to display photographs stored by the user B. More specifically, when the user B receives the post card with the two RF-IDs and returns the post card to the user A, the user B encrypts, by using the device generation information A, a URL, a login ID, or a password of a server storing the photographs of the user B, and then records the encrypted data onto the RF-ID for returning. Or, when the user B stores the photographs, the user B associates the photographs with the device generation information A. Therefore, an apparatus permitted to display photographs stored by the user B can be restricted.
  • Moreover, the mailing object UID of the RF-ID on the mailing object may be a combination of (a) a group ID that is common among a plurality of mailing objects and (b) a UID unique that is unique to each mailing object. Thereby, image data in the server is associated not with every mailing object UID but with the group ID. Therefore, when post cards with RF-ID on which the image data is associated with a plurality of targets are mailed, it is possible to eliminate user's bothersome procedures for performing registration for each of the UIDs. It is also possible that the image data stored in the server in association with the group ID is switched to be permitted or inhibited to be viewed for each of the UID. Thereby, if, for example, a printer prints destination addresses on the mailing objects, the printer having a RF-ID reader/writer reads the UIDs on the mailing objects and thereby associates the UIDs with addresses in an address list, respectively. Thereby, the address list can be used to manage the permission/inhibition of viewing the images stored in the server.
  • It is also possible that a post card or card is provided with a plurality of RF-ID tags having various different functions. In this aspect, the single post card or card can switch the functions by disconnecting communication of a part of the RF-ID tags which are not currently used. For example, a post card has (a) an upper portion on which a RF-ID tag having a function of displaying a slide show of photographs is attached and (b) a lower portion on which a RF-ID tag having a function of reproducing video. A user can switch the display function or the reproduction function, by selecting the upper portion or the lower portion to be brought into proximity of a RF-ID reader/writer. The RF-ID tags having different functions can be provided to a front side and a back side of the post card. It is also possible that covers made of a material blocking communications are applied on the RF-ID tags so that the user can select a RF-ID tag to be used by opening the cover on it.
  • It is further possible that photographs are stored in a plurality of servers, and a RF-ID tag holds URLs of the servers. Thereby, a user can access the servers to obtain the photographs to display them in a list.
  • Moreover, the RF-ID reader/writer may be provided not only to an apparatus (device) such as the TV or the recorder but also to the input means such as a remote controller for operating the apparatus. For instance, if a plurality of apparatuses are connected to one another via a network, an input means for collectively operating the apparatuses may be provided with a RF-ID reader/writer to operate the respective apparatuses. Furthermore, an input means such as a remote controller may be provided with an individual authentication means for biometric authentication such as fingerprint authentication or face authentication, password, or the like. In this aspect, the input means having a RF-ID reader/writer exchanges data with a RF-ID tag, only when the individual authentication is successful. It is also possible that the individual authentication information is previously stored in the RF-ID tag, and individual authentication is performed by the apparatus or the remote controller using the RF-ID tag.
  • It should be noted that the definition of the term “RF-ID” frequently used in the description of the present invention is not limited to narrow meaning. In general, the term “RF-ID” narrowly refers to a “tag having a nonvolatile memory on which identification information is recorded”. RF-ID having a dual interface function or a security function seems commonly called as a “IC card” or the like. However, in the embodiments of the present invention, the “RF-ID” widely refers to an “electronic circuit which has a nonvolatile memory on which individual identification information is recorded and which can transmit the individual identification information to the outside via an antenna”.
  • Conventionally, if a user who is not familiar with operations of an apparatus (device) wishes to perform complicated settings for the apparatus, it is necessary that a seller, repairer, or serviceperson of the apparatus visits a location of the apparatus to perform the settings or controls the apparatus remotely. Even in remotely controlling the apparatus, the seller, repairer, or serviceperson has to visit the location for setting of the remote control. In Embodiment 7 of the present invention, however, the RF-ID card 2100 enables the user to perform the settings of the apparatus (the recorder 2000) without complicated operations. Therefore, even the user not familiar with operations of the recorder can easily change the settings of the recorder.
  • The present invention can be implemented also as an image presentation method of presenting image related to a communication device on an apparatus (device) having a display screen, in a communication system having (a) the apparatus having the display screen, (b) a reader device connected to the apparatus via a communication path, and (c) the communication device performing proximity wireless communication with the reader device. The present invention can be implemented further as a program stored in the communication device with identification information of the communication device, the program being described by codes executed by a virtual machine included in a device performing proximity wireless communication with the communication device, and being for executing: accessing a server connected via a communication network; downloading, form the server, image associated with the identification information from among image stored in the accessed server; and displaying the downloaded image. In addition, the present invention can be implemented as a computer-readable recording medium such as a CD-ROM on which the above program is recorded.
  • The communication device according to the present invention may be used, of course, as various devices having a RF-ID unit in which identification information and a virtual machine program are stored. For example, the communication device may be electronic devices such as a camera, home appliances such as a rice cooker and a refrigerator, and daily commodities such as a toothbrush.
  • Here, an embodiment in which a RF-ID reader is provided to a remote controller of a TV or the like is described with reference to diagrams (a) and (b) in FIG. 86, a flowchart (c) in FIG. 86, and a flowchart of FIG. 87.
  • First, as described earlier, a child device (or child communicator) 5050 such as a camera has the memory (second memory) 52 and the antenna (second antenna) 21. When an antenna 5063 of a remote controller 5051 is moved into proximity of the antenna 21, the antenna 5063 supplies power to the antenna 21. Thereby, data in the memory 52 is transmitted from the antenna 21 to the antenna 5063. The remote controller 5051 converts the received data into digital data by a communication circuit 5064, and then stores the digital data into a memory 5061 (Step 5001 a in FIG. 87). Then, a transmission unit of the remote controller 5051 is faced to the TV 45 and a transmission switch 6065 on the remote controller 5051 is pressed (Step 5001 b). Thereby, the data in the memory 5061 is transmitted as light to a light receiving unit 5058 of the parent device (apparatus) 45 (the TV 45) via a light emitting unit 5062 (Step 5001 c). The communication may be not light but wireless.
  • Referring back to a flowchart (c) in FIG. 86, the embodiment of the present invention used in social systems should be applicable even in twenty or thirty years. An example of the program described in a virtual machine language or the like is known Java™. However, such programs are expected to be extended or replaced by totally different programs described in more efficient languages. In order to address the above situation, in the embodiment of the present invention, the parent device 45 such as the TV holds parent device version information 5059 (or parent device version information n1) that indicates a language type or version of a virtual machine language or the like (Step 5060 i in (c) of FIG. 86). In the beginning of the memory 52 of the child device 5050, child device version information 5052 (or child device version information n2) indicating a version of a program language or the like for the child device is recorded ((a) in FIG. 86). Following to the child device version information 5052, a program region 5053 is recorded in the memory 52. The program region 5053 stores a program 5056 a in a version 5055 a, a program 5056 b in a version 5055 b, and a program 5056 c in a version 5055 c. Following to the program region 5053, a data region 5054 is recorded in the memory 52.
  • In Step 5060 i in the flowchart of FIG. 86, the parent device 45 stores the parent device version information n1 of the parent device 45 is stored. Then, the parent device 45 obtains the child device version information n2 from the memory of the child device (Step 5060 a). Then, the parent device 45 selects an execution program n having a maximum value of n1≧n2 (Step 5060 b). The parent device 45 executes the selected execution program (Step 5060 c). Then, it is determined whether or not the parent device 45 is connected to the Internet (Step 5060 d). If the parent device 45 is connected to the Internet, then the parent device 45 is connected to the server via the Internet (Step 5060 e). The parent device 45 thereby transmits language information 5065, which is set in the parent device 45, to the server (Step 5060 f). The server provides the parent device 45 with a program in the language indicated in the transmitted language information 5065, for example in French, and causes the parent device 45 to execute the program. Alternatively, the server may execute the program on the server itself.
  • On the other hand, if it is determined in Step 5060 d that the parent device 45 is not connected to the Internet, then the processing proceeds to Step 5060 h. In Step 5060 h, the parent device 45 executes a local program in order to display, on a screen of the parent device 45, attribute information of the child device 5050. The attribute information is, for example, information for notifying a trouble or information regarding the number of stored photographs. As described above, the memory 52 in the child device 5050 holds the child device version information 5052. The memory 52 stores a program, procedure, URL, or the like of each generation. The program, procedure, URL, or the like will be developed every 10 years. Such data format on which information is recorded for each generation can be kept being used even in twenty or thirty years in order to operate the parent device 45. (a) of FIG. 86 illustrates an example of information on which versions or generations of a program are recorded. However, the same advantages are also offered in another example illustrated in (b) of FIG. 86. In (b) of FIG. 86, addresses of data stored in the server are recorded in associated with respective different versions. In this example, a URL 5057 a in a version 5055 d, a URL 5057 b in a version 5055 e, and a URL 5057 c in a version 5055 f are recorded. The above can achieve backward compatibility for many years. For example, it is assumed that a user purchases a product (the parent device 45) in version 1 this year and the product has RF-ID. Under the assumption, it is expected that, in twenty or thirty years, programs described in virtual machine languages or the like such as Java™, which are compliant to versions 1, 2, and 3, will be installed into the parent device 45. In the situation, the child device 5050 can provide the parent device 45 with the child device version information 5052. Based on the child device version information 5052, the parent device 45 can select a program to be compliant to an appropriate version. It is also expected that, in thirty years, the child device will hold information of programs in all versions 1, 2, and 3. Therefore, a different parent device 45 in version 3 employs the best function of a version among them. On the other hand, the former parent device 45 in version 1 employs a rather limited function of a version older than the version employed by the parent device 45 in version 3. As a result, perfect compatibility can be achieved.
  • The flowchart of FIG. 87 is explained below. In Step 5001 a, pressing a read switch 6066 on the remote controller 5051, a user brings the remote controller 5051 into proximity of the antenna 21 of the child device 5050. Thereby, data in the memory 52 of the child device 5050 is transmitted to the memory 5061 of the remote controller 5051. Next, in Step 5001 b, facing the remote controller 5051 to the parent device 45 such as a TV, the user presses a transmission switch 6065 (Step 5001 b). Thereby, the data in the memory 5061 is transmitted as light to the parent device 45 (Step 5001 c). In the embodiment of the present invention, the data is referred to as “tag data” for convenience. The parent device 45 extracts or selects an execution program from the tag data (Step 5001 d). The parent device 45 executes the extracted or selected execution program by a virtual machine language set in the parent device 45 (Step 5001 e). The parent device 45 reads Internet connection identification information for the parent device 45 (Step 5001 f). In Step 5001 g, it is determined whether or not the identification information does not indicate “Connectable to the Internet” (in other words, it is determined based on the identification information whether or not the parent device 45 is connectable to the Internet. If the identification information does not indicate “Connectable to the Internet” until Step 5001 g, then the parent device 45 executes a non-connectable-state program in the execution program (Step 5001 t). The non-connectable-state program is to be executed when the parent device 45 is not connectable to the Internet. Then, the parent device 45 displays a result of the execution on its screen (Step 5001 u). In the embodiment of the present invention, the memory 52 stores not only the information regarding connection to the Internet, but also the non-connectable-state program to be executed when the parent device 45 is not connectable to the Internet. Therefore, the parent device 45 can display a result of a minimum required operation when the parent device 45 is not connectable to the Internet.
  • On the other hand, if it is determined in Step 5001 g that the identification information indicates “Connectable to the Internet”, then the parent device 45 executes a connection program (Step 5001 h). The connection program includes a part of the above execution program.
  • The connection program may be generated by adding, into the execution program in the tag data, data such as a URL of the server, user ID, and a password. More specifically, the added such as a URL of the server, user ID, and a password are added in the data region 5054 illustrated in (a) of FIG. 86. Such connection program can extend the execution program in the tag data, and also reduce a capacity of the nonvolatile memory in the memory 52. In this case, it is also possible that the connection program in the memory 52 is recorded onto a memory such as a non-rewritable ROM in the program region 5053, while the URL of the server and the like are recorded onto the data region 5054 that is rewritable. As a result, a tip area and a cost can be reduced.
  • In Step 5001 i, the parent device 45 connects to a server having a specific URL. In Step 5001 j, it is determined whether or not the server requests the parent device 45 to upload data to the server. If the server requests for uploading of data, then in Step 5001 p, the parent device 45 uploads data and/or a program to the server. The server executes a program using the data (Step 5001 q). The server provides a result of the execution to the parent device 45 (Step 5001 r). The parent device 45 displays the result and the like of the execution on its screen (Step 5001 s).
  • On the other hand, if it is determined in Step 5001 j that the server does not request for uploading of data, then, the parent device 45 downloads information including a specific program from the server having the URL (Step 5001 k). The parent device 45 executes the downloaded program (Step 5001 m). Then, the parent device 45 displays the result of the execution on its screen (S5001 n).
  • The memory in the RF-ID unit or the child device has a limited capacity due to restriction on power consumption, a volume, or a cost. Therefore, a common program cannot be stored in the memory. However, the use of the connection program and the server as described in the embodiment of the present invention allows an infinitely large program to be executed.
  • A huge program may be executed on the server. Or, such a program may be downloaded from the server to be executed. These aspects are in the scope of the present invention.
  • The embodiment described with reference to FIG. 86 has been described to use a remote controller of a TV. In this example, the remote controller has a battery, buttons for switching TV channels, an antenna for reading RF-ID, a communication circuit, and an infrared light emitting unit. The remote controller can be replaced by a mobile phone to produce the same effects as described above. Since mobile phones generally have an infrared light emitting unit, they are easily used instead of remote controllers. In addition, mobile phones have a communication line. Therefore, mobile phones can offer the same capability of that of remote controller, being directly connected to the server. However, a communication cost of a mobile phone is burden of a user. A display screen of a mobile phone is significantly smaller than that of a TV. Therefore, a mobile phone may have the transmission switch 6065 as illustrated in FIG. 86. Thereby, if there is a TV near the mobile phone, the user faces the light emitting unit of the mobile phone to the TV to transmit tag data in the memory 52 of the mobile phone directly to the TV. As a result, the user can view data on a large screen of the TV having a high resolution. The above method does not incur a cost, which is greatly advantageous for the user. The communication using the readout tag data via the mobile phone line is stopped in cooperation with the transmission switch.
  • In this case, in the same manner as described for as the remote controller with reference to FIG. 86, the mobile phone has at least a reader for RF-ID or a Near Field Communication (NFC) unit. In the future, mobile phones are expected to have a reader function for reading RF-ID or the like. If RF-ID readers are provided to mobile phones, the present invention can be implemented with a much lower additional cost, which is greatly advantageous for the user. Moreover, the present invention can be easily implemented not only as a remote controller or a mobile phone, but also as a Personal Digital Assistance (PDA) terminal, a laptop, or a mobile media player.
  • Embodiment 8
  • FIG. 88 illustrates a home network environment assumed in Embodiment 8. It is assumed that two TVs 45 and 8001 are present in one house, where the TVs 45 and 8001 respectively have RFID tag reader/writers and screen display units 110 and 8003. The TVs 45 and 8001 are respectively connected with video servers 8004 and 8005, enabling video data to be transmitted from the video server to the TV wiredly or wirelessly and displayed by the TV. The video server mentioned here is a storage device such as a NAS unit, or a recording device such as a BD recorder. The TVs 45 and 8001 can also access a video server outside the house via the Internet. It is further assumed that the user of the home network has a mobile AV terminal 8006 that is portable and capable of displaying video. Like the TVs, the mobile AV terminal 8006 has a RFID tag 8007 and a video display unit 8008, and can access a video server wirelessly.
  • In Embodiment 8, consider a situation where, under the above-mentioned environment, the user who is watching video on the TV 1 (45) wants to watch it on the TV 2 (8001) upstairs. In the case of moving to another place to watch the video, it is desirable that the user can watch the video seamlessly from the point up to which the user has already watched. However, in order to seamlessly move the video while maintaining security, user authentication and timing synchronization are necessary, and the user is required to perform complex operations. This is because a highly versatile apparatus (device) such as a TV or a mobile terminal can be used in various applications, so that the user wishes to operate the apparatus depending on circumstances.
  • In this embodiment of the present invention, the mobile AV terminal transmits a program according to a status of the mobile AV terminal, and generates a video display destination change command using a status of the TV received as a response. In this way, by an extremely simple operation of causing the mobile AV terminal and the TV touch each other, video passing according to the statuses of both terminals can be achieved, with it being possible to significantly improve user-friendliness. Though the following describes video passing, the same advantageous effects can be attained even in the case of continuously displaying still images by a slide show or the like.
  • In this embodiment of the present invention, according to the above structure, video passing can be performed by an extremely simple operation of causing the mobile AV terminal and the TV touch each other, thereby significantly improving user-friendliness.
  • FIG. 89 is a functional block diagram of each function executed by the mobile AV terminal 8006. To perform video passing, the user presses a video passing button 8050. When the video passing button 8050 is pressed, a video passing request generation unit 8051 obtains video information currently displayed by the display unit 8008 from a display information management unit 8052, generates a video passing request, and writes the video passing request to a memory 8054 of the RFID unit. In the case where no video is being displayed, the mobile AV terminal 8006 enters a video get mode, and the video passing request generation unit 8051 generates the video passing request including a video get command. In the case where video is being displayed, the mobile AV terminal 8006 enters a video give mode, and the video passing request generation unit 8051 generates the video passing request including a video give command and video information. The video information mentioned here includes video display time information managed in the display information management unit 8052 and connection destination information managed in a communication and broadcast management unit 8055. When receiving video via a broadcast interface 8056, the communication and broadcast management unit 8055 manages channel information. When receiving video via a communication interface 8057, the communication and broadcast management unit 8055 manages an identifier of a video server and an identifier of video. The identifier of the video server and the identifier of the video may be any identifiers uniquely identifying the video server and the video, such as an IP address and a URL. Note that the video passing button may be provided separately as a video get button and a video give button. Moreover, selection of whether to get or give video may be displayed on the screen when the video passing button is pressed. When another RFID tag is brought into proximity, information stored in the memory 8054 in the RFID unit is transmitted from a transmission unit 8058 via a wireless antenna 8059. In the case where no transmission is made within a predetermined time after the generation of the video passing command, the video passing mode is cancelled, and the information in the memory is discarded. A receiving unit 8060 in the RFID unit receives a video passing response. The video passing response is a response indicating whether or not the video get command or the video give command is accepted. In the case where the video passing response indicates that the video get command is accepted, the video passing response includes video information. The video passing response is outputted to the communication and broadcast management unit 8055, and the communication and broadcast management unit 8055 performs processing according to the video passing response. In the case where the video passing response indicates that the video get command is accepted, the communication and broadcast management unit 8055 performs video get processing. In the case where the video information included in the video passing response is channel information, the communication and broadcast management unit 8055 notifies the broadcast interface 8056 of the channel information, to receive data of a channel designated by the channel information. The communication and broadcast management unit 8055 also instructs a display management unit 8061 to display the data of the channel. In the case where the channel information designates a channel (a channel of BS, CS, or cable TV) that is not receivable by the broadcast interface 8056 of the mobile AV terminal 8006, the communication and broadcast management unit 8055 requests a communication unit 8062 to search for a terminal that is capable of receiving data of the channel and transferring it to the communication interface 8057. Note that the search for the terminal that serves to transfer the data of the channel may be performed beforehand. Even when the data of the channel is received by the communication interface 8057, the data of the channel is displayed by the display unit 8008 in the same way as in the normal case. In the case where the video information included in the video passing response is connection destination information, the communication and broadcast management unit 8055 notifies the communication unit 8062 of the connection destination information, to transmit a video transmission request to a connection destination. The video transmission request includes a video display time, and data transmission is requested according to this time. Note that, unlike video reception by the broadcast interface 8056, video reception by the communication interface 8057 may take some time. This depends on preprocessing for receiving video data by the communication interface 8057 and a time period during which video data is temporarily stored in a communication buffer 8063. In the method of this embodiment, unnecessary data transmission and a waiting time associated with it may be reduced by predicting such a time beforehand and issuing the video transmission request from the communication unit 8062 on the basis of the predicted time. In this case, a display time correction unit 8064 performs correction so that video can be displayed seamlessly. This is possible because data of digital video is typically stored in a display buffer 8065 and displayed by the display unit 8008 while being processed by a display processing unit 8053. On the other hand, in the case where the video passing response indicates that the video give command is accepted, screen display is cleared. Note that the screen display may be automatically cleared, or whether or not to clear the screen display may be selected by the user. Alternatively, the screen display may be cleared upon receiving a screen display clearing instruction from the terminal to which video is passed. Moreover, a timer may be provided so that the screen display is cleared after a predetermined time has elapsed.
  • FIG. 90 is a functional block diagram of each function executed by the TV. A receiving unit 8101, upon receiving a video passing request from an antenna 8100 of a RFID tag, outputs the video passing request to a communication and broadcast management unit 8102. In the case where the received video passing request is a video get command, the communication and broadcast management unit 8102 outputs managed connection destination information of displayed video, to a video passing response generation unit 8103. Upon receiving the connection destination information, the video passing response generation unit 8103 obtains display time information from a display information management unit 8104, generates a video passing response, and writes the video passing response to a memory 8105 in the RFID unit. Here, when the video passing response generation unit 8103 cannot obtain desired information, the video passing response generation unit 8103 generates the video passing response indicating that the video passing request is rejected. A transmission unit 8106 transmits the written video passing response to the RFID unit of the mobile AV terminal 8006. Video display termination processing after transmission is the same as in the mobile AV terminal 8006. In the case where the received video passing request is a video give command, on the other hand, the communication and broadcast management unit 8102 performs processing according to information included in the video passing request. In the case where channel information is included in the video passing request, the communication and broadcast management unit 8102 notifies a broadcast interface 8107 of the channel information, to receive data of a desired channel designated by the channel information. The communication and broadcast management unit 8102 then notifies a display management unit 8108 of the data of the channel, thereby changing the display. In the case where the video giving command is received while video is being displayed, determination of which video is to be prioritized may be made by a video priority determination unit 8109, or a selection command may be displayed. In the case where connection destination information is included in the video passing request, the communication and broadcast management unit 8102 notifies a communication unit 8110 of the connection destination information, to transmit a video transmission request. Subsequent processing is the same as in the mobile AV terminal. Moreover, the functions of the other units are the same as those in the mobile AV terminal.
  • FIG. 91 is a sequence diagram in the case where, when the TV 1 (45) is receiving video from the video server 1 (8004), the video is passed to the mobile AV terminal 8006. To perform video passing, the user powers on the mobile AV terminal 8006. The mobile AV terminal 8006 searches for an access point 8009 of the wireless LAN, and establishes wireless connection. The mobile AV terminal 8006 also obtains an IP address by DHCP or the like, and establishes IP connection. In the case where the mobile AV terminal 8006 is a DLNA terminal, DLNA terminal search processing such as M-SEARCH may be performed. The user presses the video passing button, to generate a video passing request in the memory in the RFID unit. The user further brings the RFID tag 8007 of the mobile AV terminal 8006 into proximity of the RFID tag reader/writer 46 of the TV 1, to transmit the video passing request to the TV 1. Upon receiving the video passing request, the TV 1 generates a video passing response (including an IP address of the video server 1, a video identifier, and a video display time), and returns the video passing response to the mobile AV terminal 8006. It is assumed here that the TV 1 obtains the IP address of the video server 1 beforehand, even when the video receiving means of the TV 1 has no IP connection such as a HDMI cable. In the case where the video is in encrypted form, necessary security-related information (such as a key) is exchanged at the same time. Upon receiving the video passing response, the mobile AV terminal 8006 transmits a video transmission request (including the video identifier and the video display time) to the IP address of the video server 1 included in the video passing response. Upon receiving the video transmission request, the video server 1 (8004) switches a video transmission destination to the mobile AV terminal 8006. Having no longer received the video data, the TV 1 (45) turns video display OFF.
  • FIG. 92 is a sequence diagram in the case where, when the mobile AV terminal 8006 is receiving the video from the video server 1 (8004), the video is passed to the TV 2 (8003). The user presses the video passing button of the mobile AV terminal 8006, to generate a video passing request (including the IP address of the video server 1, the video identifier, and the video display time). The user further brings the RFID tag 8007 of the mobile AV terminal 8006 into proximity of a RFID tag reader/writer 8002 of the TV 2, to transmit the video passing request to the TV 2. The TV 2 (8003) generates a video passing response indicating that the video passing request is accepted, and returns the video passing response to the mobile AV terminal 8006. The TV 2 (8003) transmits a video transmission request to the video server 1 (8004). Subsequent processing is the same as in FIG. 91.
  • FIG. 93 is a flowchart of processing of the mobile AV terminal 8006. When the user presses the video passing button (S8300), the mobile AV terminal 8006 enters a video get mode (S8302) in the case where the screen is blank (or has no video display) (S8301). In the case where the screen is not blank, a selection screen is displayed (S8303). When the user selects “get” (S8304), the mobile AV terminal 8006 equally enters the video get mode. When the user selects “give”, the mobile AV terminal 8006 enters a video give mode (S8305). In the video get mode, the mobile AV terminal 8006 stores a video passing request including a video get command in the memory 8105 in the RFID unit. The user brings the RFID unit of the mobile AV terminal 8006 into proximity of the RFID unit of the other terminal (S8306), to transmit the video passing request to the other terminal (S8307). Upon receiving a video passing response from the other terminal (S8308), the mobile AV terminal 8006 performs processing according to information included in the video passing response. In the case where no response is obtained, the mobile AV terminal 8006 displays an error screen indicating no response, and ends processing (S8309). In the case where terrestrial channel information is included in the video passing response, the mobile AV terminal 8006 determines whether or not the mobile AV terminal 8006 is capable of receiving the corresponding channel (that is, whether nor not the mobile AV terminal 8006 has a tuner and an antenna and is in a terrestrial wave receivable range). In the case where the mobile AV terminal 8006 is capable of receiving the channel (S8311), the mobile AV terminal 8006 displays data of the designated channel. In the case where the mobile AV terminal 8006 is not capable of receiving the channel, the mobile AV terminal 8006 enters a wireless LAN transfer mode (S8313). Likewise, in the case where channel information of BS or the like, which is basically not receivable by the mobile AV terminal 8006, is included in the video passing response (S8314), the mobile AV terminal 8006 enters the wireless LAN transfer mode. On the other hand, in the case where no channel information is included in the video passing response, the mobile AV terminal 8006 enters a wireless LAN receiving mode (S8315).
  • FIG. 94 is a flowchart of processing of the mobile AV terminal 8006 in the video give mode. In the video give mode, the mobile AV terminal 8006 stores a video passing request including a video give command and information of video to be given, in the memory 8054 in the RFID unit. The user brings the RFID unit of the mobile AV terminal 8006 into proximity of the RFID unit of the other terminal (S8320), to transmit the video passing request to the other terminal (S8321). Upon receiving a video passing response from the other terminal (S8322), the mobile AV terminal 8006 performs processing according to information included in the video passing response. In the case where no response is obtained, the mobile AV terminal 8006 displays an error screen indicating no response, and ends processing (S8323). In the case where the video passing response indicates that video passing is disabled (S8324), the mobile AV terminal 8006 displays an error screen indicating that video passing is disabled, and ends processing (S8325). In the case where video passing is enabled and video to be passed is being received via terrestrial wave (S8326), the mobile AV terminal 8006 stops screen display of terrestrial broadcasting. Otherwise, the mobile AV terminal 8006 performs termination processing of video that is being received via wireless LAN, according to a type of corresponding receiving system (S8327). The mobile AV terminal 8006 thereby stops screen display. Note that the screen display may be stopped according to an instruction from the terminal to which the video is given, or the screen display may be switched to another screen such as an initial screen (S8328).
  • FIG. 95 is a flowchart of processing of the mobile AV terminal 8006 in the wireless LAN transfer mode. The mobile AV terminal 8006 is assumed to be a terminal that is capable of receiving terrestrial wave but is not capable of receiving satellite broadcasting and cable TV broadcasting. To receive such broadcast wave, the broadcast wave needs to be received by another terminal capable of receiving the broadcast wave, and transferred to the mobile AV terminal 8006 via wireless LAN. In the wireless LAN transfer mode, the mobile AV terminal 8006 calls information of a wireless LAN transfer capable apparatus. In the case where the information of the wireless LAN transfer capable apparatus is not held in the mobile AV terminal 8006 (S8340), the mobile AV terminal 8006 searches for the wireless LAN transfer capable apparatus (S8341). In the case where the wireless LAN transfer capable apparatus cannot be found in the house, the mobile AV terminal 8006 displays an error screen indicating that channel passing is disabled (S8343). In the case where the wireless LAN transfer capable apparatus is found or the information of the capable apparatus is held in the mobile AV terminal 8006, the mobile AV terminal 8006 transmits a video transfer request for the channel, to the wireless LAN transfer capable apparatus (S8344). In the case where a video transfer enable response is returned from the wireless LAN transfer capable apparatus, the mobile AV terminal 8006 receives video packets of the designated channel via wireless LAN (S8345), and displays the video of the designated channel (S8346).
  • FIG. 96 is a flowchart of processing of the mobile AV terminal 8006 in the wireless LAN receiving mode. In the wireless LAN receiving mode, in the case where the video passing response includes an IP address of a video server and an ID and display time information of video (S8360), the mobile AV terminal 8006 accesses the video server. First, the mobile AV terminal 8006 determines whether or not the IP address of the video server is in the same subnet as the IP address of the mobile AV terminal 8006 (S8361). In the case where the IP address of the video server is in the same subnet as the IP address of the mobile AV terminal 8006, the mobile AV terminal 8006 transmits a video transmission request including the video ID and display time, to the video server (S8364). Note that, in the case where a delay time correction function is available (S8362), the mobile AV terminal 8006 corrects the display time information in the video transmission request (S8363). Here, the display time correction function denotes a correction function that is executed to perform efficient video transfer in consideration of various delay in processing. In the case where video cannot be received from the video server (S8365), the mobile AV terminal 8006 may retransmit the video transmission request. In the case where there is no response even after a predetermined retransmission timeout occurs (S8366), the mobile AV terminal 8006 displays an error screen indicating no server response (S8367). In the case where the time of the received video data does not coincide with the time of display (S8368), the mobile AV terminal 8006 adjusts the time to the time of display using a control packet for fast-forward or rewind (S8369). The mobile AV terminal 8006 then displays video.
  • FIG. 97 is a flowchart of processing in the case where a URL is included in the video passing response. In the case where the URL is included (S8380), the mobile AV terminal 8006 performs name resolution by DNS, to obtain the IP address of the video server (S8381). Note that the URL for video may be any name assigned for video service. The name resolution also includes conversion to a terminal identifier from a service identifier other than DNS. In the case where the obtained IP address of the video server is in the same subnet as the IP address of the mobile AV terminal 8006 (S8382), the mobile AV terminal 8006 returns to the processing described in FIG. 96. In the case where the IP address of the video server is not in the same subnet as the IP address of the mobile AV terminal 8006, the mobile AV terminal 8006 proceeds to connection processing to a server outside the subnet. In the case where the desired information is not included in the video passing response, the mobile AV terminal 8006 displays an error screen indicating that the video passing response is invalid (S8383).
  • FIG. 98 is a flowchart of processing in the case where the IP address of the video server is not in the same subnet as the IP address of the mobile AV terminal 8006. In the case where the IP address of the video server is in a different subnet, the mobile AV terminal 8006 searches for another wireless access point. In the case where there is no other access point in the house, the mobile AV terminal 8006 determines that the video server is an external server, and proceeds to external server connection processing. In the case where there is another access point (S8390), the mobile AV terminal 8006 performs reconnection to the access point, and obtains another IP address of a subnet (S8391). In the case where the subnet of the video server is the same as the subnet of the obtained IP address (S8392), the mobile AV terminal 8006 proceeds to home server processing. In the case where the subnet of the video server is not the same as the subnet of the IP address obtained by connecting to the accessible access point in the house (S8393), the mobile AV terminal 8006 proceeds to external server access processing. Note that the mobile AV terminal 8006 may perform IP address obtainment processing for all access points beforehand and manage the processing result therein.
  • FIG. 99 is a flowchart of processing in the case of accessing an external server. In the case where the address of the video server is not a global address (S8400), the mobile AV terminal 8006 displays an error screen indicating an address error (S8401). In the case where an access method to the designated video server is unknown (S8402), the mobile AV terminal 8006 displays an error screen indicating that the access method is unknown (S8403). Note that a home video server and a home video appliance are assumed to be compliant with DLNA. In the case where the access method is known and also the video server has the same function as a home server, the mobile AV terminal 8006 performs the same processing as in the case of a home server (S8404). Otherwise, the mobile AV terminal 8006 performs processing according to the access method to obtain video (S8405), and displays the received video (S8406).
  • FIG. 100 is a flowchart of processing of the TV. When the RFID unit of the other terminal is brought into proximity of the RFID unit of the TV (S8410), the TV receives a video passing request (S8411). In the case where the TV is receiving video (S8412) and also a video get command is included in the video passing request (S8413), the TV enters a video give mode (S8414). In the case where the TV is not receiving video but the video get command is included in the video passing request (S8415), the TV returns a video passing response indicating that video passing is disabled (S8416), and displays an error screen indicating that video passing is disabled (S8417). In the case where the video is being received via terrestrial wave (S8418), the TV returns the video passing response including channel information (S8419). The TV then clears screen display (S8420).
  • FIG. 101 is a flowchart of processing in the case where the video is being received not via terrestrial wave. In the case where the video being received is broadcast video other than terrestrial wave (S8430), the TV returns the video passing response including channel information. In the case of a wireless LAN transfer mode, the TV may include the IP address of the TV in the video passing response (S8431). After returning the response, the TV clears screen display (S8432). In the case of other video, the TV returns the video passing response including an IP address of a video server, a video ID, and a video display time, or including a video URL and a video display time (S8433). After this, the TV performs termination processing of video communication via wireless LAN (S8434), and clears screen display.
  • FIG. 102 is a flowchart of processing in the case where a video give command is included in the video passing request. When the TV receives the video give command while displaying video, the TV enters a video get mode (S8441) in the case where a double screen display function is available (S8440). In the case where the double screen display function is not available, the TV displays a selection screen of whether or not to get video (S8442). When the user selects to get video (S8443), the TV enters the video get mode. When the user selects not to get video, the TV returns a video passing response indicating that video passing is disabled (S8444). In the case where channel information is included in the video passing request (S8445), the TV displays data of a designated channel (S8446). In the case where an IP address of a video server or a URL is included in the video passing request (S8447, S8448), the TV performs the same processing as in the video get mode of the mobile AV terminal. In the case where such information is not included in the video passing request, the TV displays an information error screen (S8449).
  • The following variation of this embodiment is possible.
  • Though this embodiment describes the case where video information is included in the video passing response received by the receiving unit 8060 from the TV 1 (45), the present invention is not limited to such. A video reproduction delay time between the video server and the TV may be included in the video passing response.
  • The use of the video reproduction delay time reduces a difference in reproduction position from the TV 1 (45) when video reproduction is passed to the mobile AV terminal 8006, which contributes to more seamless video reproduction passing.
  • The following describes a structure in which the video reproduction delay time is included in the video passing response in this embodiment.
  • FIG. 103 is a schematic diagram showing a situation where video being reproduced in the TV is passed to the mobile AV terminal.
  • A procedure of passing video reproduction from the TV to the mobile AV terminal by NFC is described below, with reference to FIGS. 104 to 110.
  • In Step 7508 a, the user operates a remote controller or the like or the mobile AV terminal held by the user detects the position of the mobile AV terminal to automatically power ON the TV.
  • In Step 7508 b, the TV determines whether or not to reproduce video stored in a recorder. In the case where the determination in Step 7508 b results in Yes, the TV proceeds to Circle 1.
  • In the case where the determination in Step 7508 b results in No, the TV proceeds to Step 7508 c to determine whether or not to reproduce video on the Web. In the case where the determination in Step 7508 c results in Yes, the TV proceeds to Circle 2.
  • In the case where the determination in Step 7508 c results in No, the TV proceeds to Step 7508 d to determine whether or not to reproduce a program being broadcast. In the case where the determination in Step 7508 d results in Yes, the TV proceeds to Circle 4. In the case where the determination in Step 7508 d results in No, the TV returns to Step 7508 b.
  • In Step 7508 e from Circle 1, the TV requests the recorder to provide a video list table of stored video. In Step 7508 f, the TV determines whether or not the video list table is received.
  • In the case where the determination in Step 7508 f results in Yes, the TV proceeds to Step 7508 g to transmit, to the recorder, a transmission request for video to be reproduced. The video to be reproduced is specified by the user selecting, on the screen, video which he or she wants to reproduce.
  • In the case where the determination in Step 7508 f results in No, the TV waits until the video list table is transmitted from the recorder.
  • In Step 7508 h, the TV determines whether or not the recorder starts streaming the video requested in Step 7508 g and the TV starts receiving the video. In the case where the determination in Step 7508 h results in Yes, the TV proceeds to Circle 4.
  • In the case where the determination in Step 7508 h results in No, the TV waits until the reception of the streamed video starts.
  • In Step 7510 a, the recorder determines whether or not the video list table is requested by the TV. In the case where the determination in Step 7510 a results in Yes, the recorder proceeds to Step 7510 b to transmit the video list table of video stored in the recorder to the TV.
  • In Step 7510 c, the recorder determines whether or not the streaming of the video stored in the recorder is requested by the TV. In the case where the determination in Step 7510 c results in Yes, the recorder proceeds to Step 7510 d to start streaming the video to the TV. The recorder then proceeds to Circle 7.
  • In the case where the determination in Step 7510 a results in No, the recorder waits until the video list table is requested by the TV. In the case where the determination in Step 7510 c results in No, the recorder waits until the streaming of the video is requested by the TV.
  • In Step 7509 a from Circle 2, the TV determines whether or not authentication is necessary to access a video server on the Web. In the case where the determination in Step 7509 a results in Yes, the TV proceeds to Step 7509 b to transmit an ID and a password to the video server on the Web. In the case where the determination in Step 7509 a results in No, the TV proceeds to Step 7509 d as the authentication by the video server is unnecessary.
  • In Step 7509 c, the TV determines whether or not an authentication completion notification is received from the video server. In the case where the determination in Step 7509 c results in Yes, the TV proceeds to Step 7509 d to request the video server to provide a video list table. In the case where the determination in Step 7509 c results in No, the TV returns to Step 7509 b to perform the process of authentication by the video server again, as an authentication failure notification is received from the video server.
  • In Step 7509 e, the TV determines whether or not the video list table is received. In the case where the determination in Step 7509 e results in Yes, the TV proceeds to Step 7509 f to transmit, to the video server, a streaming identifier and a reproduction time of video to be reproduced. The video to be reproduced is selected by the user from the video list table displayed on the screen.
  • In Step 7509 g, the TV determines whether or not the TV starts receiving the streamed video from the video server. In the case where the determination in Step 7509 g results in Yes, the TV proceeds to Circle 4. In the case where the determination in Step 7509 g results in No, the TV waits until the streaming of the video from the video server starts.
  • In Step 7513 a, the video server on the Web determines whether or not the ID and the password are received from the TV. In the case where the determination in Step 7513 a results in Yes, the video server proceeds to Step 7513 b to determine whether or not the ID and the password received from the TV are verified for authentication. In the case where the determination in Step 7513 b results in Yes, the video server proceeds to Step 7513 d to transmit the authentication completion notification to the TV. In the case where the determination in Step 7513 a results in No, the video server waits until the ID and the password are received from the TV in Step 7513 a. In the case where the determination in Step 7513 b results in No, the video server proceeds to Step 7513 c to transmit the authentication failure notification to the TV. The video server then returns to Step 7513 a.
  • In Step 7513 e, the video server determines whether or not the video list table is requested by the TV. In the case where the determination in Step 7513 e results in Yes, the video server transmits the video list table of video held in the video server on the Web, to the TV. The video list table includes a streaming identifier of each set of video. In the case where the determination in Step 7513 e results in No, the video server waits until the video list table is requested by the TV.
  • In Step 7513 g, the video server determines whether or not the streaming of the video held in the video server is requested by the TV. In the case where the determination in Step 7513 g results in Yes, the video server proceeds to Step 7513 h to start streaming the video to the TV. The video server then proceeds to Circle 3. In the case where the determination in Step 7513 g results in No, the video server waits until the streaming of the video held in the video server is requested by the TV.
  • In Step 7508 i from Circle 4, the TV starts reproducing the received video. In Step 7508 j, the TV determines whether or not the mobile AV terminal accesses NFC data in the TV. In the case where the determination in Step 7508 j results in Yes, the TV proceeds to Step 7508 k to transmit storage content of an NFC memory in the TV to the mobile AV terminal. The TV then proceeds to Circle 6. In the case where the determination in Step 7508 j results in No, the TV waits until the mobile AV terminal accesses NFC data in the TV. An apparatus (appliance, device) ID and position information of the TV are stored in the NFC memory in the TV.
  • In Step 7511 a, the mobile AV terminal starts polling for reading NFC data in the TV. In Step 7511 b, the mobile AV terminal determines whether or not NFC reading is detected, as a result of the user of the mobile AV terminal touching the mobile AV terminal to the TV. In the case where the determination in Step 7511 b results in Yes, the mobile AV terminal proceeds to Step 7511 c. In the case where the determination in Step 7511 b results in No, the mobile AV terminal waits until NFC reading is detected as a result of the user of the mobile AV terminal touching the mobile AV terminal to the TV.
  • In Step 7511 c, the mobile AV terminal determines whether or not to obtain, from the TV, the position information of the TV held in the TV. In the case where the determination in Step 7511 c results in Yes, the mobile AV terminal determines whether or not the position information is included in the storage content of the NFC memory received from the TV in Step 7511 d. In the case where the determination in Step 7511 d results in Yes, the mobile AV terminal proceeds to Step 7511 g to store the position information in a memory of the mobile AV terminal. The mobile AV terminal then proceeds to Circle 5. In the case where the determination in Step 7511 c results in No, the TV does not hold the position information, and so the mobile AV terminal proceeds to Step 7511 e to determine whether or not the mobile AV terminal holds the position information. In the case where the determination in Step 7511 e results in Yes, the mobile AV terminal proceeds to Step 7511 g. In the case where the determination in Step 7511 e results in No, the mobile AV terminal proceeds to Step 7511 f to determine whether or not the position information can be obtained from a cloud service. In the case where the determination in Step 7511 f results in Yes, the mobile AV terminal obtains the position information of the TV from a known cloud service based on the apparatus (appliance, device) ID of the TV. The mobile AV terminal then proceeds to Step 7511 g. In the case where the determination in Step 7511 f results in No, the mobile AV terminal proceeds to Circle 5.
  • In the case where the obtainment of the position information in Step 7511 e or 7511 f takes time and so Step 7511 g cannot be performed, the procedure may proceed in such a manner that the steps from Circle 5 are performed before these steps and then the obtainment of the position information and Step 7511 g are performed.
  • In Step 7508 m from Circle 6, the TV determines whether or not a video passing request is received from the mobile AV terminal. In the case where the determination in Step 7508 m results in Yes, the TV proceeds to Step 7508 n to generate a video passing response and transmit the video passing response to the mobile AV terminal. The video passing response transmitted to the mobile AV terminal includes: an IP address of the recorder as the video server; a URL for video obtainment in the case of Web video; a streaming identifier of video being reproduced in the TV; a reproduction time PST1 of the video; a video reproduction delay time D1 between the TV and the video server; and an authentication ID and password necessary for accessing the video server. In the case where the determination in Step 7508 m results in No, the TV waits until the video passing request is received from the mobile AV terminal.
  • In Step 7511 h from Circle 5, the mobile AV terminal determines whether or not to receive the video being reproduced in the TV. In the case where the determination in Step 7511 h results in Yes, the mobile AV terminal proceeds to Step 7511 i to generate the video passing request and transmit the video passing request to the TV. Following this, in Step 7511 j, the mobile AV terminal determines whether or not the video passing response is received from the TV. In the case where the determination in Step 7511 j results in Yes, the mobile AV terminal proceeds to Step 7511 k.
  • The mobile AV terminal obtains a video reproduction delay time D2 between the mobile AV terminal and the video server, from a table in FIG. 4016. In Step 7511 m, the mobile AV terminal determines whether or not the video to be passed is distributed by the recorder. In the case where the determination in Step 7511 m results in Yes, the mobile AV terminal proceeds to Circle 8. In the case where the determination in Step 7511 h results in No, the mobile AV terminal ends the procedure without video passing. Note that a network delay, a delay due to execution states of transmission and reception apparatuses, a delay due to performance of transmission and reception apparatuses, a delay due to processing depending on received video format, and the like may also be taken into consideration in the delay time calculation method.
  • In the case where the determination in Step 7511 j results in No, the mobile AV terminal returns to Step 7511 i to generate the video passing request and transmit the video passing request to the TV again. In the case where the determination in Step 7511 m results in No, the mobile AV terminal proceeds to Circle 9.
  • In Step 7511 r from Circle 9, the mobile AV terminal determines whether or not authentication by the video server is necessary. In the case where the determination in Step 7511 r results in Yes, the mobile AV terminal proceeds to Step 7511 s to transmit the authentication ID and password for the video server received from the TV. In the case where the determination in Step 7511 r results in No, the mobile AV terminal proceeds to Circle 8 without the process of authentication by the video server.
  • In Step 7511 t, the mobile AV terminal determines whether or not an authentication completion notification is received from the video server. In the case where the determination in Step 7511 t results in Yes, the mobile AV terminal proceeds to Circle 8. In the case where the determination in Step 7511 t results in No, the mobile AV terminal returns to Step 7511 s to perform the process of authentication by the video server again.
  • In Step 7513 j from Circle 3, the video server on the Web determines whether or not the authentication ID and the password are received from the mobile AV terminal. In the case where the determination in Step 7513 j results in Yes, the video server proceeds to Step 7513 k to determine whether or not the ID and the password received from the mobile AV terminal are authenticated. In the case where the determination in Step 7513 k results in Yes, i.e. in the case of authenticating the ID and the password, the video server proceeds to Circle 7. In the case where the determination in Step 7513 j results in No, the video server waits until the authentication ID and the password are received from the mobile AV terminal in Step 7513 j. In the case where the determination in Step 7513 k results in No, the video server proceeds to Step 7513 m to transmit an authentication failure notification to the mobile AV terminal. The video server then returns to Step 7513 j to wait until the authentication ID and the password are received from the mobile AV terminal.
  • In Step 7510 e from Circle 7, the recorder or the video server on the Web determines whether or not a video passing request is received from the mobile AV terminal. In the case where the determination in Step 7510 e results in Yes, the recorder or the video server proceeds to Step 7510 f to start streaming the video to the mobile AV terminal. In the case where the determination in Step 7510 e results in No, the recorder or the video server waits until the video passing request is received from the mobile AV terminal in Step 7510 e.
  • In Step 7510 g, the recorder or the video server determines whether or not the video being reproduced ends or whether or not a reproduction end notification is received from the mobile AV terminal. In the case where the determination in Step 7510 g results in Yes, the recorder or the video server stops the process of video streaming to the mobile AV terminal, thus ending the procedure. In the case where the determination in Step 7510 g results in No, the recorder or the video server continues the video reproduction until the video being reproduced ends or the reproduction end notification is received from the mobile AV terminal.
  • In Step 7511 m from Circle 8, the mobile AV terminal calculates a reproduction start time PST2 in the mobile AV terminal (PST2={(D2−D1)+D1}+PST1) of the video passed from the TV. In Step 7511 n, the mobile AV terminal transmits a video transmission request to the video server (the recorder or the video server on the Web). The request includes the video streaming identifier and the reproduction start time PST2.
  • In Step 7511 p, the mobile AV terminal determines whether or not the streamed video is received from the video server. In the case where the determination in Step 7511 p results in Yes, the mobile AV terminal proceeds to Step 7511 q to start reproducing the video. In the case where the determination in Step 7511 p results in No, the mobile AV terminal waits until the streamed video is received from the video server.
  • In Step 7511 r, the mobile AV terminal determines whether or not the video being reproduced ends or whether or not the mobile AV terminal transmits the reproduction end notification to the recorder or the video server on the Web. In the case where the determination in Step 7511 r results in Yes, the mobile AV terminal ends the video reproduction. In the case where the determination in Step 7511 r results in No, the mobile AV terminal continues the video reproduction until the video being reproduced ends or the mobile AV terminal detects the reproduction end.
  • Moreover, the following variation of this embodiment is possible.
  • Though this embodiment describes the case where the receiving unit 8060 receives the video passing response from the TV 1 (45) when the RFID tag reader/writers of the mobile AV terminal 8006 and the TV 1 (45) perform proximity wireless communication with each other, the present invention is not limited to this order.
  • Assuming that the mobile AV terminal 8006 recognizes the position of the mobile AV terminal 8006 and the position of the TV 1 (45), the mobile AV terminal 8006 may receive the video passing response in the case where the position of the mobile AV terminal 8006 is away from the position of the TV 1 (45) by a predetermined distance or more.
  • By enabling switching between video reproduction apparatuses in this way, the user can continue to view reproduced video on a terminal or an apparatus corresponding to the user's location. The obtainment of the position of each apparatus is only briefly described here, as its detailed description will be given in Embodiment 19. A video reproduction delay time between the video server and the TV 1 (45) or the mobile AV terminal 8006 may also be included in the video passing response transferred between the TV 1 (45) and the mobile AV terminal 8006. The use of the video reproduction delay time reduces a difference in reproduction start position when video reproduction is passed between the TV 1 (45) and the mobile AV terminal 8006, which contributes to more seamless video reproduction passing.
  • The following describes a structure involving such a video passing response in this embodiment.
  • FIG. 111 is a schematic diagram showing passing of reproduced video between the TV and the mobile AV terminal. How the apparatus used for reproduction changes according to the position of the mobile AV terminal and which content (audio, video) is passed to each apparatus are shown in FIG. 111.
  • A procedure of passing video being reproduced in the TV to the mobile AV terminal is described below, with reference to FIGS. 113 to 118.
  • In Step 7505 a, a living room TV starts reproducing video. In Step 7505 b, the living room TV broadcasts a video reproduction start notification.
  • In Step 7505 c, the living room TV returns a response to a broadcast from the mobile AV terminal. The living room TV then proceeds to Circle 1.
  • In Step 7505 d, the mobile AV terminal waits for detecting movement of the mobile AV terminal or waits for receiving the video reproduction start notification from the TV. In Step 7505 e, the mobile AV terminal determines whether or not the movement is detected. In the case where the determination in Step 7505 e results in Yes, the mobile AV terminal proceeds to Step 7505 g to obtain the position of the mobile AV terminal after the movement.
  • In the case where the determination in Step 7505 e results in No, the mobile AV terminal proceeds to Step 7505 f to determine whether or not the reproduction start notification is received. In the case where the determination in Step 7505 f results in Yes, the mobile AV terminal proceeds to Step 7505 g to obtain the position of the mobile AV terminal after the movement. In the case where the determination in Step 7505 f results in No, the mobile AV terminal returns to Step 7505 d.
  • In Step 7505 h, the mobile AV terminal searches nearby apparatuses for an apparatus that is reproducing video.
  • In Step 7505 i, the mobile AV terminal determines whether or not the apparatus reproducing the video is found. In the case where the determination in Step 7505 i results in Yes, the mobile AV terminal proceeds to Circle 2. In the case where the determination in Step 7505 i results in No, the mobile AV terminal proceeds to Circle 3.
  • In Step 7506 a from Circle 2, the mobile AV terminal obtains position information of the found apparatus. As the apparatus finding method, not only broadcasting but also touching by proximity contact communication is available. Moreover, the position information of the found apparatus can be obtained by inquiring of the TV or a cloud service based on an apparatus ID included in the broadcast response transmitted from the TV in Step 7505 c.
  • In Step 7506 b, the mobile AV terminal determines whether or not the position of the mobile AV terminal is within a video passing destination range of the found apparatus. In the case where the determination in Step 7506 b results in Yes, the mobile AV terminal proceeds to Step 7506 d to record the found apparatus as a video passing source apparatus. The mobile AV terminal then proceeds to Circle 6. In the case where the determination in Step 7506 b results in No, the mobile AV terminal proceeds to Step 7506 c to determine whether or not another apparatus is found. In the case where the determination in Step 7506 c results in Yes, the mobile AV terminal returns to Step 7506 a. In the case where the determination in Step 7506 c results in No, the mobile AV terminal proceeds to Circle 5.
  • In Step 7507 a from Circle 3, the mobile AV terminal determines whether or not there are a plurality of access points in the house. In the case where the determination in Step 7507 a results in Yes, the mobile AV terminal proceeds to Step 7507 b.
  • In Step 7507 b, the mobile AV terminal determines whether or not there is any access point not searched for. In the case where the determination in Step 7507 b results in Yes, the mobile AV terminal proceeds to Step 7507 d to record the current access point as already searched for. In Step 7507 e, the mobile AV terminal switches to another access point. The mobile AV terminal then proceeds to Circle 4.
  • In the case where the determination in Step 7507 a or 7507 b results in No, the mobile AV terminal proceeds to Step 7507 c to clear the access point recorded as already searched for. The mobile AV terminal then proceeds to Circle 5.
  • In Step 7508 a from Circle 1, the living room TV receives an audio passing request. In Step 7508 b, the living room TV transmits a passing response. The living room TV then proceeds to Circle 7.
  • In Step 7508 c from Circle 6, the mobile AV terminal waits for detecting movement of the mobile AV terminal. In the case of detecting the movement of the mobile AV terminal in Step 7508 d, the mobile AV terminal polls the position of the mobile AV terminal in Step 7508 e. In Step 7508 f, the mobile AV terminal determines whether or not the position of the mobile AV terminal is within an audio passing range defined by the passing source TV. In the case where the determination in Step 7508 f results in Yes, the mobile AV terminal proceeds to Step 7508 g to request the passing source TV to pass audio of the video being reproduced. In Step 7508 h, the mobile AV terminal receives the passing response. The mobile AV terminal then proceeds to Circle 9.
  • In the case where the determination in Step 7508 f results in No, the mobile AV terminal proceeds to Step 7508 i to determine whether or not the position of the mobile AV terminal is within a video and audio passing range defined by the passing source TV.
  • In the case where the determination in Step 7508 i results in Yes, the mobile AV terminal proceeds to Circle 8. In the case where the determination in Step 7508 i results in No, the mobile AV terminal returns to Step 7508 e.
  • In Step 7509 a from Circle 7, the living room TV receives a video (video and audio) passing request. In Step 7509 b, the living room TV transmits a passing response. The living room TV then proceeds to Circle 10.
  • In Step 7509 c from Circle 8, the mobile AV terminal requests the passing source TV to pass the video being reproduced. In Step 7509 d, the mobile AV terminal receives the passing response. In Step 7509 e, the mobile AV terminal transmits a video transmission request (including a reproduction position) to a reproduced video URL in the received information. In Step 7509 f, the mobile AV terminal starts receiving streamed video from a video server (the mobile AV terminal does not perform reproduction at this point). The mobile AV terminal then proceeds to Circle 11.
  • In Step 7510 a from Circle 10, the TV ends video reproduction and is powered OFF if there is no other mobile AV terminal near the TV. In Step 7510 b, the TV ends the procedure.
  • In Step 7510 c from Circle 11, the mobile AV terminal compares audio of the received streamed video and audio of the passing source TV inputted via a microphone of the mobile AV terminal, to calculate their time difference. In Step 7510 d, the mobile AV terminal determines whether or not the audio of the TV precedes the audio of the received streamed video.
  • In the case where the determination in Step 7510 d results in Yes, the mobile AV terminal proceeds to Step 7510 e to move the reproduction position of the mobile AV terminal forward by the time difference so as to catch up with the reproduction position of the TV. The mobile AV terminal then proceeds to Step 7510 g. In the case where the determination in Step 7510 d results in No, the mobile AV terminal proceeds to Step 7510 f in which the mobile AV terminal moves the reproduction position of the mobile AV terminal backward by the time difference so as to return to the reproduction position of the TV. The mobile AV terminal then proceeds to Step 7510 g.
  • In Step 7510 g, the mobile AV terminal determines whether or not there is no difference from the audio of the TV. In the case where the determination in Step 7510 g results in Yes, the mobile AV terminal proceeds to Step 7510 j to reproduce the received streamed video. In Step 7510 k, the mobile AV terminal transmits a video reproduction end request to the passing source TV. In Step 7510 m, the mobile AV terminal ends the procedure.
  • In the case where the determination in Step 7510 g results in No, the mobile AV terminal proceeds to Step 7510 h to determine whether or not a predetermined time or more has elapsed from when the reception of the streamed video starts. In the case where the determination in Step 7510 h results in Yes, the mobile AV terminal proceeds to Step 7510 i to output sound effect or sound at audio reduction timing. The mobile AV terminal then proceeds to Step 7510 j. In the case where the determination in Step 7510 h results in No, the mobile AV terminal returns to Step 7510 c.
  • A procedure of passing video being reproduced in the mobile AV terminal to the TV is described below, with reference to FIGS. 119 to 121
  • In Step 7506 a, the mobile AV terminal starts reproducing video. In Step 7506 b, the mobile AV terminal searches nearby apparatuses for an apparatus to which the video reproduction can be passed.
  • In Step 7506 c, the mobile AV terminal determines whether or not the apparatus to which the video can be passed is found nearby. In the case where the determination in Step 7506 c results in Yes, the mobile AV terminal proceeds to Circle 1. In the case where the determination in Step 7506 c results in No, the mobile AV terminal ends the procedure in Step 7506 d. A method of touching a bedroom TV to find the apparatus by proximity wireless communication may also be used as the method for finding the apparatus to which the video can be passed.
  • In Step 7506 e, the bedroom TV responds to a broadcast transmitted from the mobile AV terminal. In Step 7506 f, the bedroom TV receives a video passing request. The bedroom TV then proceeds to Circle 2.
  • In Step 7506 g from Circle 1, the mobile AV terminal obtains an apparatus ID and a model of the passing destination apparatus. In Step 7506 h, the mobile AV terminal determines whether or not the apparatus ID of the passing destination apparatus is included in the table shown in FIG. 112. In the case where the determination in Step 7506 h results in Yes, the mobile AV terminal proceeds to Step 7506 i to determine whether or not a video server corresponding to the URL of the video being reproduced is included in the table shown in FIG. 112.
  • In Step 7506 k, the mobile AV terminal determines whether or not a current reproduction passing information transmission method is included in the table shown in FIG. 112. In the case where the determination in Step 7506 k results in Yes, the mobile AV terminal proceeds to Step 7506 m to obtain a corresponding delay time from the table shown in FIG. 112.
  • In Step 7506 p, the mobile AV terminal adds the delay time to the current reproduction position. In Step 7506 q, the mobile AV terminal transmits a video passing request. The mobile AV terminal then proceeds to Circle 3.
  • In the case where the determination in Step 7506 h results in No, the mobile AV terminal proceeds to Step 7506 j to determine whether or not the model of the passing destination apparatus is included in the table shown in FIG. 112. In the case where the determination in Step 7506 j results in Yes, the mobile AV terminal proceeds to Step 7506 i.
  • In the case where the determination in Step 7506 i or 7506 j results in No, the mobile AV terminal proceeds to Step 7506 n.
  • In Step 7506 r from Circle 2, the bedroom TV receives the passing request. In step 7506 s, the bedroom TV transmits a video transmission request including a reproduction start position, to the video URL in the received information. In Step 7506 t, the bedroom TV receives streamed video from the video server and displays the received video on the screen. The bedroom TV then ends the procedure in Step 7506 u.
  • In Step 7506 v from Circle 3, the mobile AV terminal obtains, via the microphone of the mobile AV terminal, audio of the passed video reproduced in the TV. In Step 7506 w, the mobile AV terminal calculates a delay time from when the video passing request is issued to when the video reproduction in the TV starts, using the obtained audio.
  • In Step 7506 x, the mobile AV terminal updates the corresponding delay time in the table shown in FIG. 112. The mobile AV terminal then ends the procedure in Step 7506 y. In the case where, when updating the delay time in Step 7506 x, there is no corresponding entry to be updated in the existing table data, the mobile AV terminal newly creates a table entry and adds the entry to the table.
  • Furthermore, the following variation of this embodiment is possible.
  • Though this embodiment describes the structure of data passing between the TV 1 (45) and the mobile AV terminal 8006, the present invention is not limited to such a structure. Data passing may also be performed between two different mobile AV terminals each provided with an RFID tag reader/writer.
  • In this way, not only video reproduction data but various data can be exchanged between RFID tag reader/writer-equipped apparatuses. As an example of data exchanged between apparatuses, the mobile AV terminal may obtain position information from a stationary apparatus such as a TV, as a result of which the mobile AV terminal can specify or correct the position of the mobile AV terminal. Position information exchange between apparatuses will be described in detail in Embodiment 19.
  • The following describes data exchange between mobile AV terminals in this embodiment.
  • FIG. 122 is a schematic diagram showing data exchange between mobile AV terminals using NFC. Data exchange using NFC and high-speed wireless communication is shown in FIG. 122.
  • FIGS. 123 to 126 are sequence diagrams showing data exchange between mobile AV terminals using NFC or high-speed wireless communication.
  • In FIG. 123, after a mobile AV terminal 1 activates a data exchange application, data for establishing connection for high-speed wireless communication is exchanged between mobile AV terminals using NFC. Depending on whether or not the application designated by the mobile AV terminal 1 is present, a mobile AV terminal 2 activates the application, or obtains the application from a predetermined location and then activates the obtained application. After this, the mobile AV terminals exchange stored data using high-speed wireless communication.
  • In FIG. 123, data transmitted from the mobile AV terminal 1 to the mobile AV terminal 2 may include information for designating the application to be activated in the mobile AV terminal 2, or application category information necessary for displaying a list of applications which are held in the mobile AV terminal 2 and are capable of processing the exchanged data transmitted from the mobile AV terminal 1.
  • In this case, a screen as shown in FIG. 139 is displayed on the mobile AV terminal 2, allowing the operator of the mobile AV terminal 2 to select an application to be activated.
  • By transmitting the category information, the exchanged data can be processed using the application desired by the operator of the mobile AV terminal 2.
  • In detail, for example when a category “URL” is included in the exchanged data, a list of applications capable of processing URL, such as a browser and a text editor, are displayed on the mobile terminal 2.
  • Here, the category information such as “URL” or “image” may be explicitly transmitted from the mobile AV terminal 1, like the data type shown in FIGS. 138A and 138B. Alternatively, a message to activate a candidate application may be transmitted from the mobile AV terminal 1 so that, for example in the case of determining the category as URL from the received information, the mobile AV terminal 2 displays a list of applications capable of processing URL as shown in FIG. 139.
  • In FIGS. 124 to 126, the application activation is performed using NFC in the same way as in FIG. 123. However, the method of data exchange after the application activation is different from FIG. 123, and so its description is given below.
  • In FIG. 124, data held by each mobile AV terminal is exchanged using only NFC. In FIG. 125, the mobile AV terminal 1 obtains data stored in a server or the like, and transmits the obtained data to the mobile AV terminal 2. In FIG. 126, a URL of a server or the like in which data to be passed from the mobile AV terminal 1 to the mobile AV terminal 2 is held is transmitted using NFC, and the mobile AV terminal 2 downloads, from the server, the data to be passed.
  • FIGS. 127 and 128 are terminal screen flow diagrams when exchanging data using NFC and high-speed wireless communication. FIGS. 129 and 130 are terminal screen flow diagrams when exchanging data using NFC.
  • A procedure of data exchange between mobile AV terminals is described below, with reference to FIGS. 131 to 136, 138A, and 138B. FIG. 137 is a diagram showing a communication format in data exchange using NFC shown in FIGS. 138A and 138B.
  • In Step 7501 a, the mobile AV terminal 1 activates a data exchange application. In Step 7501 b, the mobile AV terminal starts polling.
  • In Step 7501 c, the mobile AV terminal 1 touches the mobile AV terminal 2. In Step 7501 d, the mobile AV terminal 1 receives a polling response. In Step 7501 e, the mobile AV terminal 1 transmits a data exchange request. In Step 7501 f, the mobile AV terminal 1 receives a response to the request. The mobile AV terminal 1 then proceeds to Circle 1.
  • In Step 7501 g, the mobile AV terminal 2 touches the mobile AV terminal 1. In Step 7501 h, the mobile AV terminal 2 transmits the polling response. In Step 7501 i, the mobile AV terminal 2 receives the data exchange request. In Step 7501 j, the mobile AV terminal 2 displays the request on a screen. In Step 7501 k, the user of the mobile AV terminal 2 enters the response to the request. In Step 7501 m, the mobile AV terminal 2 determines whether or not the request is accepted. In the case where the determination in Step 7501 m results in Yes, the mobile AV terminal 2 proceeds to Step 7501 n to transmit a data exchange request acceptance response. The mobile AV terminal 2 then proceeds to Circle 2.
  • In the case where the determination in Step 7501 m results in No, the mobile AV terminal 2 proceeds to Step 7501 p to transmit a data exchange request rejection response. The mobile AV terminal 2 then ends the procedure in Step 7501 q.
  • In Step 7502 a from Circle 1, the mobile AV terminal 1 determines whether or not the acceptance response is received. In the case where the determination in Step 7502 a results in Yes, the mobile AV terminal 1 proceeds to Step 7502 c to wait for connection for high-speed wireless communication. In Step 7502 e, the mobile AV terminal 1 receives a connection request.
  • In Step 7502 f, the mobile AV terminal 1 performs verification of whether or not the terminal sending the connection request is the destination of the data exchange request. In Step 7502 g, the mobile AV terminal 1 determines whether or not the terminal is the mobile AV terminal 2. In the case where the determination in Step 7502 g results in Yes, the mobile AV terminal 1 proceeds to Step 7502 i to transmit a connection permission notification. The mobile AV terminal 1 then proceeds to Circle 3.
  • In the case where the determination in Step 7502 a results in No, the mobile AV terminal 1 proceeds to Step 7502 b to display the response rejection on a screen. The mobile AV terminal 1 then ends the procedure in Step 7502 d. In the case where the determination in Step 7502 g results in No, the mobile AV terminal 1 proceeds to Step 7502 h to transmit a connection rejection notification. The mobile AV terminal 1 then returns to Step 7502 c or proceeds to Step 7502 p.
  • In Step 7502 j from Circle 2, the mobile AV terminal 2 stores the contents of each record in the received message, in a memory. In Step 7502 k, the mobile AV terminal 2 determines whether or not the mobile AV terminal 1 is present on the same network. In the case where the determination in Step 7502 k results in Yes, the mobile AV terminal 2 proceeds to Circle 4.
  • In the case where the determination in Step 7502 k results in No, the mobile AV terminal 2 proceeds to Step 7502 m to transmit the connection request for corresponding high-speed wireless communication according to apparatus information shown in FIG. 136. In Step 7502 n, the mobile AV terminal 2 waits for a connection response. In Step 7502 p, the mobile AV terminal 2 receives the connection response. The mobile AV terminal 2 then proceeds to Circle 4.
  • In Step 7503 a from Circle 3, the mobile AV terminal 1 completes the connection for high-speed wireless communication. The mobile AV terminal 1 then proceeds to Circle 7.
  • In Step 7503 b from Circle 4, the mobile AV terminal 2 completes the connection for high-speed wireless communication. In Step 7503 c, the mobile AV terminal 2 extracts data shown in FIGS. 138A and 138B received via NFC. In Step 7503 d, the mobile AV terminal 2 determines whether or not a designated application package is already installed. In the case where the determination in Step 7503 d results in Yes, the mobile AV terminal 2 proceeds to Circle 6.
  • In the case where the determination in Step 7503 d results in No, the mobile AV terminal 2 proceeds to Step 7503 e to determine whether or not any application corresponds to the designated application group. In the case where the determination in Step 7503 e results in Yes, the mobile AV terminal 2 proceeds to Step 7503 i to determine whether or not there are a plurality of corresponding applications. In the case where the determination in Step 7503 i results in Yes, the mobile AV terminal 2 proceeds to Step 7503 j to display the applications and inquire of the user which application is to be activated.
  • In Step 7503 k, the mobile AV terminal 2 receives the user's designation of the application. The mobile AV terminal 2 then proceeds to Circle 6.
  • In the case where the determination in Step 7503 e results in No, the mobile AV terminal 2 proceeds to Step 7503 f to determine whether or not there is any data about an application obtainment method such as a URL. In the case where the determination in Step 7503 f results in Yes, the mobile AV terminal 2 proceeds to Circle 8. In the case where the determination in Step 7503 f results in No, the mobile AV terminal 2 proceeds to Step 7503 g to notify the user that the application cannot be activated. The mobile AV terminal 2 then ends the procedure in Step 7503 h. In the case where the determination in Step 7503 i results in No, the mobile AV terminal 2 proceeds to Circle 5.
  • In Step 7504 a from Circle 7, the mobile AV terminal 1 selects data to be exchanged. In Step 7504 b, the mobile AV terminal 1 determines whether or not a transmission command is executed. In the case where the determination in Step 7504 b results in Yes, the mobile AV terminal 1 proceeds to Step 7504 c to transmit the data.
  • In Step 7504 d, the mobile AV terminal 1 displays a transmission-in-progress message on the screen. In Step 7504 e, the mobile AV terminal 1 determines whether or not the transmission is completed. In the case where the determination in Step 7504 e results in Yes, the mobile AV terminal 1 proceeds to Step 7504 f to determine whether or not to end the application. In the case where the determination in Step 7504 f results in Yes, the mobile AV terminal 1 ends the procedure in Step 7504 g.
  • In the case where the determination in Step 7504 b results in No, the mobile AV terminal 1 returns to Step 7504 a.
  • In the case where the determination in Step 7504 e results in No, the mobile AV terminal 1 returns to Step 7504 d.
  • In the case where the determination in Step 7504 f results in No, the mobile AV terminal 1 returns to Step 7504 a.
  • In Step 7504 h from Circle 5, the mobile AV terminal 2 activates a browser and opens a designated URL. In Step 7504 i, the mobile AV terminal 2 downloads and installs the application. In Step 7504 j, the mobile AV terminal 2 activates the application. In Step 7504 k, the mobile AV terminal 2 waits for data reception.
  • In Step 7504 m, the mobile AV terminal 2 determines whether or not data is received. In the case where the determination in Step 7504 m results in Yes, the mobile AV terminal 2 proceeds to Step 7504 n to display a reception-in-progress message on the screen. In Step 7504 p, the mobile AV terminal 2 determines whether or not the reception is completed. In the case where the determination in Step 7504 p results in Yes, the mobile AV terminal 2 proceeds to Step 7504 q.
  • In Step 7504 q, the mobile AV terminal 2 determines whether or not to end the application. In the case where the determination in Step 7504 q results in Yes, the mobile AV terminal 2 ends the procedure in Step 7504 r.
  • In the case where the determination in Step 7504 m results in No, the mobile AV terminal 2 returns to Step 7504 k.
  • In the case where the determination in Step 7504 p results in No, the mobile AV terminal 2 returns to Step 7504 n.
  • In the case where the determination in Step 7504 q results in No, the mobile AV terminal 2 returns to Step 7504 k.
  • In Step 7504 j from Circle 6, the mobile AV terminal 2 activates the application.
  • Embodiment 9
  • FIG. 140 is a sequence diagram in the case where, when the TV 1 (45) is receiving video from the video server 1 (8004), the TV 1 (45) transmits a video transmission request so that the mobile AV terminal 8006 gets the video. As in FIG. 91, the user powers on the mobile AV terminal 8006 to pass the video. The mobile AV terminal 8006 searches for the access point 8009 of wireless LAN, and establishes wireless connection. The mobile AV terminal 8006 also obtains an IP address by DHCP or the like, and establishes IP connection. The user presses the video passing button, to generate a video passing request in the memory in the RFID unit. Here, the video passing request includes the IP address of the mobile AV terminal 8006. The user further brings the RFID tag 8007 of the mobile AV terminal 8006 into proximity of the RFID tag reader/writer 46 of the TV 1, to transmit the video passing request to the TV 1 (45). The TV 1 returns a video passing response including the IP address of the video server, to the mobile AV terminal 8006. This step is intended to enhance security (to prevent arbitrary access from an irrelevant terminal), and may be omitted. As in FIG. 91, in the case where video is in encrypted form, necessary security-related information (such as a key) is exchanged at the same time. Upon receiving the video passing request, the TV 1 (45) transmits a video transmission request including the IP address of the mobile AV terminal 8006, to the video server 1 (8004). Upon receiving the video transmission request, the video server 1 (8004) switches a video transmission destination to the mobile AV terminal 8006. Subsequent processing is the same as in FIG. 91.
  • FIG. 141 is a sequence diagram in the case where, in the same situation as in FIG. 92, the IP address of the video server 1 (8004) is included in a video passing request. This may be omitted as in FIG. 102. Upon receiving the video passing request, the TV 2 (8003) returns a video passing response including the IP address of the TV 2. Upon receiving the video passing response, the mobile AV terminal 8006 transmits a video transmission request including the IP address of the TV 2, to the video server 1 (8004). Upon receiving the video transmission request, the video server 1 (8004) changes the video transmission destination to the TV 2 (8003). Subsequent processing is the same as in FIG. 92.
  • Embodiment 10
  • FIG. 142 is a sequence diagram in the case where a remote controller 8200 having a RFID unit is used instead of the mobile AV terminal 8006. Here, the remote controller is assumed to be a terminal that does not have a display unit but has a transmission and reception unit and a memory of a RFID unit. The user presses a video passing button, to generate a video passing request in the memory in the RFID unit. The user further brings the RFID unit of the remote controller 8200 into proximity of the RFID unit 46 of the TV 1, to transmit the video passing request to the TV 1. Upon receiving the video passing request, the TV 1 generates a video passing response (including the IP address of the video server 1, a video identifier, and a video display time), and returns the video passing response to the remote controller 8200. Moreover, upon receiving the video passing request from the remote controller 8200, the TV 1 (45) transmits a video stop request to the video server 1 (8004). After going upstairs, the user brings the RFID unit of the remote controller 8200 into proximity of the RFID unit of the TV 2, to transmit a video passing request (including the IP address of the video server 1, the video identifier, and the video display time). Upon receiving the video passing request, the TV 2 (8003) returns a video passing response, and transmits a video transmission request (including the video identifier and the video display time) to the video server 1. The video server 1 (8004) starts transmitting the designated video from the designated time.
  • Embodiment 11
  • FIG. 143 is a sequence diagram in the case where the video server 1 is capable of synchronous transmission. After conducting predetermined communication with the TV 1, the mobile AV terminal transmits a video transmission request to the video server 1. Upon receiving the video transmission request, the video server 1 (8004) temporarily transmits video data to both the TV 1 (45) and the mobile AV terminal (8006). This processing is intended to achieve complete seamlessness. The mobile AV terminal and the TV 1 may both display the video temporarily, or some kind of synchronization processing may be performed to achieve complete seamlessness. The video server 1 (8004) stops video data transfer to the TV 1, on the basis of a video stop request from the mobile AV terminal (8006). Note that the TV 1 (45) may transmit the stop request, or the video server 1 (8004) may automatically stop video data transfer.
  • Embodiment 12
  • This embodiment relates to a best mode of a method for ensuring traceability in a distribution form from factory shipment to use environment of an apparatus (device) provided with a RFID tag as described in Embodiments 1 to 10.
  • Recently, given a need to improve distribution efficiency and also an increase in number of accidents caused by aging of home electrical products, there has been debate for ensuring traceability, namely, an ability to trace from manufacture and distribution through to a use environment by a consumer.
  • As an example, an attempt has been made to enable management from manufacture to distribution to a retailer, by adding a passive RFID tag that uses a communication frequency in a band of 860 to 900 MHz, to a package, a returnable container, or the like. The band of 860 to 900 MHz is also called a UHF (UltraHigh Frequency) band. The RFID tag in the UHF band can exhibit a largest communication distance in the passive type (i.e., the type of tag to which power is supplied from outside), and is capable of communication of 2 to 3 m though depending on output magnitude. Accordingly, by simultaneously passing a plurality of products through a RFID reader gate during transportation, RFID information of the plurality of products can be instantly read with efficiency. Hence, the RFID tag is particularly expected to be used in the field of distribution.
  • However, such a RFID tag of the UHF band has the following problem. Though the RFID tag certainly has an advantage of long-distance communication, the apparatus cannot be traced once it has been delivered to the consumer because the RFID tag is added to the package or the returnable container. Besides, the long-distance feature is not particularly effective in an entity interface, an object interface, or an intuitive interface described in Embodiments 1 to 10 where apparatuses are brought into proximity of each other to trigger an action.
  • Meanwhile, the RFID tag (47) described in Embodiments 1 to 10 is assumed to be a HF-RFID tag in a band of 13.56 MHz (though this is not a limit for the present invention). HF-RFID has a feature of short-distance communication (within about several ten cm though depending on output). For instance, the HF-RFID tag is widely used in applications that intuitively trigger an action by bringing two terminals close to each other, such as electronic money and ticket gate systems. This being so, for example when the user wants to display photographs captured by a digital camera on a TV, the user brings the digital camera 1 close to the RFID reader/writer 46 of the TV, thereby realizing an entity interface where an entity (camera) and an entity (TV) operate in conjunction with each other or an intuitive interface where digital camera photographs are displayed on the TV.
  • In this embodiment, the HF-RFID tag is added to the apparatus (device) as in Embodiments 1 to 10, and also the UHF-RFID tag is added to the package or the returnable container of the apparatus, to ensure product traceability even after the product is reached the use environment of the consumer.
  • FIG. 144 is a schematic diagram illustrating processing of HF-RFID and UHF-RFID upon apparatus factory shipment.
  • Though this embodiment describes the case where the apparatus is a recorder, the apparatus is not limited to such and may be any of a digital home appliance, a food, and the like.
  • An apparatus M003 assembled in a manufacturing line is provided with a HF-RFID tag M001. The HF-RFID tag M001 has a memory, which has a structure of a dual interface that is accessible from both the apparatus M003 and a communication unit of the RFID tag M001. A product serial number of the apparatus and a program (command) for copying the product serial number of the apparatus to the UHF-RFID tag are stored in the memory of the HF-RFID tag M001, in an assembly stage.
  • After the assembly of the apparatus M003 is completed, prior to packaging, a handy reader/writer M002 reads the product serial number from the memory of HF-RFID, and also records a device ID of UHF-RFID (UHF-RFID unique information) indicating that the UHF-RFID tag is added to the package or the like.
  • Next, having packaged the apparatus M003, a UHF-RFID tag M005 is added to a package M004. The UHF-RFID tag M005 may be directly added to the package, or may be added to a management table or the like. After adding the UHF-RFID tag M005, the handy reader/writer M002 records the product serial number and the like read from the HF-RFID tag M001 of the apparatus M003, to the UHF-RFID tag M005. In this embodiment, the handy reader/writer M002 is capable of accessing both HF-RFID and UHF-RFID.
  • Thus, the product serial number of the apparatus M003 is recorded on the HF-RFID tag M001, and the same information is also recorded on the UHF-RFID tag M005 of the package M004. Therefore, in distribution after packaging, there is no need to read the product serial number and the like from the HF-RFID tag that is capable of only short-distance access. By simultaneously passing a plurality of products through the gate, the information can be directly read from the UHF-RFID tag. This contributes to more efficient distribution.
  • Moreover, after the apparatus M003 reaches the use environment of the consumer, the HF-RFID tag can be read by a remote controller of a TV and the like. Hence, not only the distribution but also the apparatus reaching the consumer can be traced. As a result, overall traceability that contributes to improved distribution efficiency and prevents accidents caused by aged deterioration during apparatus use can be achieved.
  • FIG. 145 is a schematic diagram illustrating a recording format of a memory accessible from the UHF-RFID tag M005.
  • The memory of the UHF-RFID tag M005 stores a UHF device ID M010, HF existence identification information M011, an apparatus product serial number and actual article number M012, a date M013, a manufacturer M014, a model number, lot number, and product name M015, and a status M016.
  • The UHF device ID M010 is stored in a non-rewritable area of the memory, and is identification information for uniquely identifying the UHF-RFID tag. The UHF device ID M010 is read by the handy reader/writer before the apparatus M003 is packaged, and recorded in the HF-RFID tag M001. Hence, even when the correspondence relation between the package and the apparatus is wrong, the correspondence relation can be checked beforehand and appropriate processing can be performed.
  • The HF existence identification information M011 is identification information for determining whether or not the HF-RFID tag M001 is added to the apparatus M003. In the case where the HF-RFID tag M001 is added to the apparatus M003, when recording the product serial number and the like read from the HF-RFID tag M001 to the UHF-RFID tag M005 upon apparatus packaging, the HF-RFID existence identification information is changed to information indicating “exist”. This makes it possible to determine whether or not to check the correspondence relation between UHF-RFID and HF-RFID, by referencing only the HF existence identification information M011.
  • The apparatus product serial number and actual article number M012 is at least one of the product serial number read from the HF-RFID tag M001 and an actual article number associated with the product serial number. The actual article number is a number of the apparatus used in the distribution process. It is possible to uniquely associate the actual article number with the product serial number, by equally managing the product serial number and the actual article number. Accordingly, in this embodiment, the product serial number and the actual article number are not clearly distinguished from each other but are described as the same information.
  • The date M013 corresponds to a manufacturing year/month/date, and information of a date and time of manufacture of the apparatus M003 is recorded as the date M013. This information may be recorded by the handy reader/writer M002 at the time of recording the product serial number to the UHF-RFID tag M005, or manufacturing year/month/date information stored in the HF-RFID tag M001 may be read and recorded to the UHF-RFID tag M005.
  • The manufacturer M014 is identification information of a manufacturer of the apparatus M003. This information may be recorded by the handy reader/writer M002 at the time of recording the product serial number to the UHF-RFID tag M005, or manufacturer information stored in the HF-RFID tag M001 may be read and recorded to the UHF-RFID tag M005.
  • The model number, lot number, and product name M015 may be recorded by the handy reader/writer M002, or the corresponding information may be read from the HF-RFID tag M001 and recorded, in the same way as the date M013 and the manufacturer M014. Regarding the lot number, in the case where lot management from manufacture to distribution can be conducted in a unified fashion, the information may be written by any of the two methods. However, in the case where unified management is not conducted and manufacturing line information is unclear upon packaging, reading the lot number from the HF-RFID tag M001 and recording it to the UHF-RFID tag M005 is more advantageous because stricter management can be achieved.
  • The status M016 is status information in the distribution form. That is, status information necessary for tracing the apparatus, such as factory storage, factory shipment, distribution center reception, distribution center shipment, and retailer reception, is recorded as the status M016. The status M016 is rewritable in each distribution process.
  • Moreover, the UHF-RFID tag M005 stores management server specific information M017. The management server specific information M017 is the same information as the server specific information 48 in the second memory 52 of the HF-RFID tag M001. When packaging the apparatus M003, the server specific information is read from the HF-RFID tag M001 and copied to the UHF-RFID tag M005. This enables unified management to be performed by the same management server for both of the management in the distribution stage using UHF-RFID and the management after the apparatus is delivered to the consumer.
  • Therefore, after the apparatus M003 is delivered to the consumer, by reading the management server address information from the HF-RFID tag M001, accessing the management server, and making an inquiry by the apparatus product serial number M012, trace information from manufacture to distribution managed by the management server can be visualized to the consumer. This enhances consumer assurance and safety.
  • FIG. 146 is a flowchart illustrating a flow of processing of copying the product serial number and the like to the UHF-RFID tag M005 from the HF-RFID tag M001 upon factory shipment of the apparatus M003.
  • First, the HF-RFID tag M001 is added to the assembled product (the apparatus M003) (M020). This flowchart shows an example where the HF-RFID tag is added after the assembly of the apparatus M003. However, in the case of a structure of a dual interface where the apparatus and the HF-RFID tag can both access a shared memory, the HF-RFID tag M001 is added to the apparatus M003 during assembly of the apparatus M003.
  • Next, the product serial number of the apparatus M003 is recorded on the HF-RFID tag M001 (M021). This is a step of recording the product serial number on the HF-RFID tag M001 in the assembly process through the handy reader/writer M002. The product serial number is obtained from a management server of the manufacturing line using the handy reader/writer or the like, and recorded on the HF-RFID tag M001 by proximity wireless communication.
  • After the product serial number is recorded on the HF-RFID tag M001, the apparatus M003 is packaged (M022). The packaging mentioned here denotes packaging for distribution with a cushioning material and the like, or containment into a returnable container and the like.
  • After completing the packaging, the UHF-RFID tag M005 is added to the package (including a returnable container surface, a management label, and so on) (M023).
  • Following this, the handy reader/writer M002 communicates with a management server M025, thereby reading the actual article number associated with the product serial number read from the HF-RFID tag M001 (M024). The actual article number is a management number used in product distribution, and is issued by the management server. The actual article number is in a one-to-one correspondence with the product serial number.
  • After the actual article number is read from the management server M025, the product serial number or the actual article number, and the existence identification information indicating that the HF-RFID tag M001 is added to the apparatus M003, are recorded on the UHF-RFID tag M005 (M026).
  • As a result of the above processing, the product serial number recorded on the HF-RFID tag M001 which is added to the apparatus M003 is copied to the UHF-RFID tag M005 after apparatus packaging. Typically, the communicable distance of the HF-RFID tag is short, and so it is difficult to access the HF-RFID tag after packaging. In this embodiment, however, the product serial number or the actual article number is recorded on the UHF-RFID tag that has a longer communicable distance than the HF-RFID tag and is added to the package. This allows for apparatus distribution management after packaging.
  • Moreover, even if the package or the like is discarded after the apparatus is delivered to the consumer, the product serial number and the like can be read by accessing the HF-RFID tag added to the apparatus. Thus, unified management from distribution to consumer use can be achieved, which contributes to traceability over a wide range.
  • FIG. 147 is a flowchart illustrating a flow of processing in the distribution process of the apparatus M003.
  • First, upon factory shipment of the apparatus M003, the product serial number or the actual article number is read from the UHF-RFID tag M005 by using a handy reader/writer or passing the product through a UHF-RFID reader gate. Shipment completion is registered in the management server M025 that can communicate with the handy reader/writer or the UHF-RFID reader gate, and also the UHF-RFID tag M005 is accessed from the handy reader/writer or the UHF-RFID reader gate to rewrite the status (M016) in the memory of the UHF-RFID tag M005 to indicate shipment completion (M030).
  • After factory shipment, the product is retained in the distribution center or the like. Upon subsequent shipment from the distribution center, the product serial number or the actual article number is read from the UHF-RFID tag M005 by a handy reader/writer or a UHF-RFID reader gate, and distribution center shipment completion is registered in the management server M025 and also the status (M016) in the UHF-RFID tag M005 is rewritten to indicate distribution center shipment completion (M032).
  • Likewise, upon retailer shipment, retailer shipment completion is registered in the management server M025, and the status M016 in the UHF-RFID tag M005 is rewritten to indicate retailer shipment completion (M034).
  • Lastly, when the apparatus M003 reaches the consumer, the product serial number is read from the HF-RFID tag M001 by the reading unit of the RF-ID reader/writer 46 of the TV remote controller or the like, and registered in the management server M025 in association with TV identification information (M036). Accordingly, in this embodiment too, the server specific information 48 is recorded in the second memory 52 of HF-RFID beforehand. The server specific information 48 in this embodiment indicates the management server M025, and includes a URL for connecting to the management server M025. Hence, by reading the HF-RFID tag M001 of the apparatus M003 using the TV remote controller or the like having the RF reader/writer, management information from manufacture to distribution can be obtained from the management server M025. In addition, by managing the product serial number in association with the TV identification information in the management server M025, it is possible to store a list of apparatuses possessed by the user in the management server in association with the user's TV, without managing personal information of the user.
  • When the user's apparatus has a problem, a message warning the user is adequately displayed on the TV, with it being possible to prevent a serious accident.
  • As described above, according to this embodiment, in the manufacturing stage the apparatus and the package are respectively provided with the HF-RFID tag and the UHF-RFID tag, which each carry existence identification information of the other tag. Moreover, the product serial number and the management server specific information stored in the HF-RFID tag are copied to the UHF-RFID tag. As a result, it is possible to provide a system in which management can be performed even after the apparatus reaches the consumer while maintaining distribution management convenience, unlike a conventional system where traceability is attained only during distribution.
  • Though this embodiment describes management from manufacture to delivery to the user, the present invention has the same advantageous effects even when the user discards or recycles the apparatus. A procedure in this case can be realized in the same way as in this embodiment.
  • For example, in FIG. 144, upon factory shipment, the product serial number and the like recorded on the HF-RFID tag M001 added to the apparatus M003 are copied to the UHF-RFID tag M005 added to the package M004 after packaging. The same applies to shipment to a disposal facility or shipment to a recycling center, other than factory shipment. In the case of shipment to a disposal facility, after disposal completion, disposal completion is registered in the management server. This enables unified management to be performed while the product is manufactured, used by the consumer, and put into disposal. Recently, there is a problem of illegal disposal due to disposal cost. However, referencing HF-RFID or UHF-RFID of an illegally disposed apparatus makes it instantly clear in which part of the distribution stage the illegal disposal has been conducted. Thus, the problem of illegal disposal can be alleviated according to this embodiment.
  • In the case of shipment to a recycling center, since use status information, a problem detection status, a total use time, and the like detected by the use status detection unit 7020 are recorded in an area accessible from the HF-RFID tag, such information can be used for determination of whether or not the apparatus is recyclable, price determination, and so on. When the apparatus is determined as recyclable, information such as TV identification information or personal information managed in the management server M025 in association with the product serial number may be updated and put to use.
  • Embodiment 13
  • FIG. 148 is a diagram of an overall system structure. A semi-transmissive mirror transmission plate is attached to a mirror unit in a bathroom. A display, a power antenna, and a RF antenna unit are arranged on a back surface of the mirror transmission plate. The user has a mobile terminal with a RF antenna, and displays some kind of video information on the mobile terminal. A procedure of moving this video to the display of the mirror is described below. FIG. 149 is a flowchart of the procedure. First, an image output button of the mobile terminal is pressed (9001 a). Whether or not information or data obtained via a network or a TV channel is being displayed on the terminal is determined (9001 b). When such information or data is being displayed, a URL or an IP address of a server transmitting the video or data, a stream ID of the video being displayed, stream reproduction time information, and TV channel information are obtained (9001 c). After this, power transmission/reception is started from the antenna of the mobile terminal (9001 d). When the antenna of the mobile terminal is brought into proximity of the antenna on the apparatus (device) side (9001 e), power or a signal is transmitted from the terminal antenna to the apparatus antenna (9001 f). The mobile terminal then reads attribute information on the apparatus side (video display capability, audio capability, maximum (average) communication speed of Internet inside and outside the house, whether TV channel connection is available, Internet and communication line type), via the apparatus antenna (9001 h).
  • In the case where a video source is a TV and the apparatus is connected to a TV antenna (9001 i), TV channel information and a TV image reproduction display time are transmitted to the apparatus via the antenna (9002 a). The apparatus displays video of the TV channel on the screen (9002 b). The image is not horizontally flipped in the case of TV (9002 c).
  • Upon receiving a power supply enable flag from the terminal (9002 d), the apparatus supplies power to the terminal (9002 e).
  • Referring back to the previous step, in the case where the apparatus is connected to the Internet (9001 j), a video rate and resolution are set according to the attribute information of the apparatus, and a server address optimal for the settings, a server ID on a DLNA network, a stream ID in a server, and stream reproduction display time information are transmitted to the apparatus via the RF antenna (9001 k).
  • Referring to a flowchart of FIG. 150, the apparatus displays the stream so as to be synchronous with the display time of the video stream being displayed on the terminal, on the basis of the server IP address, the stream ID, and the stream reproduction display time. Once the synchronization has been established, the apparatus switches from the previous display to the next display, that is, the video on the terminal is seamlessly passed to the apparatus (9002 h).
  • In the case where simultaneous display of the video on the terminal and the apparatus is prohibited for copyright protection (9002 i), when the video display on the apparatus starts seamlessly, the video display on the terminal is stopped by means such as transmitting a video stop instruction from the apparatus to the terminal (9002 j).
  • Moreover, when the apparatus receives, from the terminal, a “mirror flip identifier” for horizontally flipping the video on the mirror display (9002 k), the apparatus horizontally flips the video in the next step. Meanwhile, horizontal flip of characters is not performed (9002 m).
  • According to the above method, first, the terminal supplies power to the apparatus, and activates the apparatus when the apparatus is not in operation. This benefits power saving. After this, once the apparatus has started operation, then the apparatus supplies power to the terminal. In the case where the terminal receives video data from a server or the like and distributes the video to the apparatus via a network, the terminal needs to transmit the video for a long time via an access point by wireless LAN. When transmitting a large amount of data by wireless LAN, power consumption is high, and there is a possibility that the battery level of the terminal becomes 0. However, this embodiment provides an advantageous effect of preventing battery drain by supplying power from the apparatus to the terminal. Moreover, the mirror shows a reversed image of a human figure. For example, as in the case of a video instruction for toothbrushing, leaning effectiveness decreases because right and left are reversed. However, this embodiment facilitates leaning by horizontal flipping the image.
  • Embodiment 14
  • The following describes Embodiment 14 of the present invention. FIG. 151 illustrates environments of home networks assumed in this embodiment. A home network is established in each of houses M1001, M1002, and M1003. Each of the home networks is connected to a registration server M1005 via the Internet M1004. If services provided via a home network are limited within a corresponding house, the registration server M1005 may exist in the house. It is also possible that a home network is divided into various places such as a vacation house and an office, and that a plurality of home networks are used in a single house such as a dormitory or a room-sharing house. It is assumed that, in a house, there are home appliances which are always connected to the Internet (hereinafter, referred to as “always-connected home appliances”) and home appliances which are not always connected to the Internet (hereinafter, referred to as “non-always-connected home appliances”). The always-connected home appliances, such as TVs M1008 and M1009, a DVD recorder M1010, and the like, are connected to the Internet via a router M1006 or a wireless Access Point (wireless AP) M1007. The non-always-connected home appliances, such as a digital camera M1011, a microwave M1012, and a refrigerator M1013, are indirectly connected to the Internet as needed. In this embodiment, a mobile terminal (mobile device) such as a mobile phone M1014 is also a terminal included in the home network. The devices in this embodiment can perform simple data communication with other device each other by using a proximity wireless communication device. Each of the devices obtains information of other device using the proximity wireless communication device, and registers the obtained information into the registration server M1005 using a home network device.
  • FIG. 152 is a hardware diagram of a communication device M1101 according to this embodiment. The communication device M1101 is assumed to have two devices for communication. One of them is a proximity wireless communication device M1102. In general, examples of the proximity wireless communication device M1102 are a Near Field Communication (NFC) function or a Radio Frequency (RF) tag. The other device is a home network communication device M1103. Examples of the home network communication device M1103 are: a wireless communication device using a wireless Local Area Network (wireless LAN) or ZigBee, which is used in connecting home appliances to each other; a wired communication device using Ethernet™ or Power Line Communication (PLC); and a communication device using WiMAX or Third Generation Partnership Project (3GPP), which is used in mobile phones. The communication device also includes a user interface (IF) device M1104. The user IF device is, for example, an input device such as buttons, a display, and an output device using a Light Emitting Diode (LED) or the like. For devices such as TVs and air conditioners, data input/output is generally performed by using a remote controller that is physically separated from the device. For convenience of the description, such a remote controller is also considered as the user IF device in this embodiment.
  • FIG. 153 is a functional block diagram for explaining a function of a CPU M1105 in the communication device M1101. A device UID obtainment unit M1202 in the communication device M1101 obtains information including device UID for identifying a registration device M1201 (that is a device to be registered). Here, the registration device M1201 transmits a registration command and registration information including device UID of the registration device M1201 to the communication device M1101, by using the proximity wireless communication device M1102. A registration information generation unit M1204 obtains the registration information including the device UID from the device UID obtainment unit M1202, and obtains home ID from a home ID management unit M1205. Then, the registration information generation unit M1204 adds the home ID to the registration information obtained from the registration device M1201 via the device UID obtainment unit M1202, to generate information-added registration information. If position information of the registration device M1201 or the like is to be added to the registration information, the registration information generation unit M1204 obtains the position information from a position information obtainment unit M1206. Examples of the position information are address information based on a post code inputted to a TV, geographical position information generated by a Global Positioning System (GPS) of a mobile phone, and the like. If position information of the registration device M1201 is registered, the registered position information can be used to easily provide services to improve home appliance traceability or the like. The registration information generation unit M1204 transmits the registration information added with the home ID to the registration information transmitting/receiving unit M1207. The home ID management unit manages home ID that is different from communication device ID used by the communication device included in the above-described home network. In conventional home networks, a master device of each communication device manages information for the communication device. The management method is different depending on a type of the corresponding communication device. Therefore, it is not possible to manage information on home-by-home basis. Although there is a situation where ID is inputted by a user for each service, this results in quite low usability. In this embodiment, introduction of new different ID that is home ID makes it possible to manage pieces of information of devices included in a home network without using a communication device or services. When the home ID management unit registers information of a device to the server at the first time, the home ID management unit generates home ID. The home ID may be generated based on position information or UID of the communication device. It is also possible to generate home ID based on a random number to check whether or not the generated home ID does not overlap with any other ID in the registration server. It is further possible that a user sets the home ID. When a registration information transmitting/receiving unit M1207 in the communication device M1101 receives registration information from the registration information generation unit M1204, the registration information transmitting/receiving unit M1207 transmits the received registration information to the registration server M1005 using the home network communication device M1103. The registration server M1005 compares the received registration information to pieces of information stored in the registration database M1208 to determine whether or not the received registration information can be registered. Then, the registration server M1005 sends a registration response back to the communication device M1101. In receiving the registration response, the registration information transmitting/receiving unit M1207 notifies the user of a result of the determination by using the user IF device M1104. If the registration server M1005 determines that the received registration information cannot be registered, the registration information transmitting/receiving unit 1207 notifies the determination to the registration information generation unit M1204 in order to request change of the registration information. Thereby, it is possible to collectively manage devices in a home network including white goods that do not have user IF devices for communication.
  • FIG. 154 is a flowchart of registering information of the communication device. The communication device M1101 receives the registration command and the device UID from the registration device M1201 by using the device UID obtainment unit M1202 (M1301). After receiving the registration command and the device UID, the communication device M1101 determines whether or not the communication device M1101 has home ID (M1302). If the communication device M1101 does not have the home ID (NO at M1302), then the communication device M1101 obtains home ID (the processing is referred to as “home ID obtainment”) (M1303). On the other hand, if the communication device M1101 has the home ID (YES at M1302), the communication device M1101 generates information of the communication device to be registered into the communication device M1101 itself (hereinafter, referred to as “registration information” or “home ID”) (M1304). Next, the communication device M1101 transmits the registration information to the registration server M1005 by using the registration information transmitting/receiving unit M1207 (M1305). The communication device M1101 determines whether or not the communication device M1101 receives a response (registration response) to the transmitted registration information from the registration server M1005 (M1306). If the response is not received, then the communication device M1101 presents a user with a registration failure notification for notifying a failure of the registration processing (M1307) and terminates the registration processing. On the other hand, if the communication device M1101 receives the response, then the communication device M1101 presents the user with an inquiry asking whether or not to register the generated information into the communication device M1101 (M1308). If the user replies OK, then the communication device M1101 completes the registration processing. If the user replies NO, the communication device M1101 returns to the home ID obtainment. When it is difficult to obtain home ID, the registration processing is terminated as a failure.
  • FIG. 155 is a flowchart of the home ID obtainment. The communication device M1101 determines whether or not the communication device M1101 has a function of automatically generating home ID (hereinafter, referred to also as an “automatic generation function”) (M1401). If the communication device M1101 has the function, then the communication device M1101 automatically generates the home ID. On the other hand, if the communication device M1101 does not have the function, the communication device M1101 asks the user to manually input the home ID. If there is no method for manually inputting home ID or the user refuses to the manual input, then the communication device M1101 notifies the user of a failure of the registration processing (M1403) to persuade the user to obtain the home ID by any different method. When the communication device M1101 automatically generates home ID, the communication device M1101 selects an appropriate automatic generation function (M1404). If the communication device M1101 can obtain geographical position information by a GPS or the communication device M1101 is a terminal such as a TV for which an address as position information has been generally registered, the communication device M1101 generates the home ID using the position information (M1405). If the communication device M1101 is a terminal generally set in a house, the communication device M1101 generates the home ID using a unique identifier of the communication device M1101 (M1406). Especially if it is difficult to generate effective home ID, the communication device M1101 generates the home ID using a random number (M1407). After generating the home ID, the communication device M1101 transmits the home ID to the server (M1408). Then, the communication device M1101 receives information regarding the generated home ID from the server, and thereby determines whether or not the home ID can be used (M1409). If it is determined that the home ID cannot be used, then the communication device M1101 returns to the processing of generating the home ID. On the other hand, if the home ID can be used, then the communication device M1101 asks the user whether to not to register the generated home ID into the communication device M1101 itself (M1410). If the user replies OK, then the communication device M1101 registers the home ID into the communication device M1101 itself (M1411). Otherwise, the communication device M1101 returns to the processing of generating the home ID.
  • FIG. 156 is a flowchart of registering information of the registration device. The registration device M1201 transfers a registration command and information including device UID for identifying the registration device M1201, to the communication device M1101 via the proximity wireless communication device. If the communication device M1101 does not have home ID, the communication device M1101 generates provisional home ID and transmits the generated provisional home ID to the registration server M1005 via the home network communication device. The registration server M1005 sends a response with information regarding the provisional home ID to the communication device M1101. On the other hand, if the communication device M1101 has home ID or if the communication device M1101 receives, from the registration server M1005, home ID that is allowed by the registration server M1005 to be used, the communication device M1101 transmits the home ID and the registration information including the device UID to the registration server M1005, thereby completing the registration of information of the registration device M1201.
  • Embodiment 15
  • In Embodiment 15 of the present invention, a configuration in which the home ID is shared among communication terminals (communication devices) is described. FIG. 157 is a functional block diagram illustrating a function of sharing home ID between communication devices. Communication devices M1101S and M1101R included in a home network share the same home ID using a home network M1601 and the home network communication devices M1103. The communication devices M1101S and M1101R may share the home ID using the proximity wireless communication devices M1102. The communication device according to this embodiment (hereinafter, referred to as a “transmitting communication device M1101S”) can share the home ID with another communication device (hereinafter, referred to as a “receiving communication device M1101R”) in the same house, by transferring a sharing command and home ID to the receiving communication device via the proximity wireless communication devices M1102. In the transmitting communication device M1101S, a home ID sharing unit M1602S in a home ID management unit M1205S provides the sharing command and the home ID that is held in a home ID storage unit M1209S, to a proximity wireless communication device M1102S. For example, when the proximity wireless communication device M1102S of the transmitting communication device M1101S is moved into proximity of a proximity wireless communication device M1102R of the receiving communication device M1101R, information is transferred between them. Thereby, the home ID in the transmitting communication device M1101S is stored into the proximity wireless communication device M1102R of the receiving communication device M1101R. If a home ID storage unit M1209R in the receiving communication device M1101 does not hold any home ID, a home ID sharing unit M1602R in the receiving communication device M1101R stores the received home ID into the receiving communication device M1101R itself. Thereby, it is possible to quite easily share the home ID between the communication devices. On the other hand, if the home ID storage unit M1209R already holds home ID, the receiving communication device M1101R transmits both the held home ID and the received home ID to the registration server M1005. n receiving both home IDs, the registration server M1005 manages both home IDs virtually as a single home ID. The registration server M1005 may notify both communication devices of one of the home IDs to unify them. Even in this case, the registration server M1005 manages both home IDs virtually as a single home ID since there are non-always-connected devices in the home network. It is possible that ID of a non-always-connected device is updated every time of being connected to the home network and the virtual management by the registration server M1005 ends when updating of all of the registration devices (namely, devices to be registered which are included in the home network) are completed. Thereby, it is possible to unify originally plural home networks into a single network.
  • The home ID sharing can be performed by using the home network. When a communication device is to be connected to the home network M1601 and a home network connection detection unit M1603S of the communication device detects that the communication device does not hold home ID, the communication device broadcasts a request for home ID sharing to terminals connected to the home network M1601. Terminals holding home ID among the terminals connected to the home network M1601 transmit the home ID to the communication device. Thereby, the home ID sharing is completed prior to start of communication. Here, if a master terminal to respond to requests for home ID sharing is previously selected from among terminals holding the home ID, it is possible to prevent that a device requesting home ID sharing receives responses from a plurality of terminals thereby overburdening the home network. If there is no response, the communication device terminal requesting home ID sharing may obtain home ID by itself.
  • FIG. 158 is a flowchart of processing performed by the receiving communication device M1101R when home ID is shared using the proximity wireless communication device M1102. When the receiving communication device M1101R receives a sharing command and home ID (M1701), the receiving communication device M1101R determines whether or not the receiving communication device M1101R holds home ID (M1702). If the receiving communication device M1101R does not hold home ID, then the receiving communication device M1101R registers the received home ID, as home ID, into the receiving communication device M1101R itself (M1703). On the other hand, if the receiving communication device M1101R holds home ID, the receiving communication device M1101R compares the held home ID to the received home ID. If the held home ID is identical to the received home ID, the receiving communication device M1101R terminates the processing without any further processes. On the other hand, if the held home ID is not identical to the received home ID, the receiving communication device M1101R selects home ID (M1705). The selection of home ID may be performed by the receiving communication device M1101R or the registration server. In the situation where the receiving communication device M1101R asks the registration server to perform the selection, the receiving communication device M1101R transmits the held home ID and the received home ID to the registration server as sharing information (M1706). Thereby, the receiving communication device M1101R receives, from the registration server, a sharing response including home ID selected by the registration server (M1707). Then, the communication device M1101R inquiries the user whether or not to share (register) the selected ID into the communication device M1101R (M1708). If the user replies OK, the registration processing is completed. t the user replies NO, the received ID receiving communication device M1101R returns to the processing for selecting home ID. In the case where the receiving communication device M1101R itself selects the held home ID, the receiving communication device M1101R transmits the held home ID as home ID and the received home ID as sharing home ID to the registration server (M1709). The registration server notifies updating of the home ID to other communication devices already sharing home ID. In the situation where the receiving communication device M1101R selects the received home ID, then the receiving communication device M1101R updates the held home ID by the received home ID (M1710). In addition, the receiving communication device M1101R transmits the previously held home ID as sharing home ID and the received home ID as home ID to the registration server (M1711). The registration server notifies updating of the home ID to other communication devices already sharing home ID.
  • FIG. 159 is a flowchart of processing performed by the transmitting communication device M1101S when home ID is shared using the proximity wireless communication device M1102. After transmitting a sharing command and home ID to the registration server, the transmitting communication device M1101S determines whether or not a response to the home ID sharing is received from the registration server (M1752). If there is no response, the transmitting communication device M1101S terminates the processing. On the other hand, if the response including a notification of updating home ID is received, the transmitting communication device M1101S updates the home ID by the notified home ID (M1753) and completes the processing.
  • FIG. 160 is a sequence diagram of the situation where the registration server selects home ID. The transmitting communication device M1101S transmits home ID_A to the receiving communication device M1101R by using the proximity wireless communication device. The receiving communication device M1101R transmits home ID_B that is held in the receiving communication device M1101R itself and the received home ID_A to the registration server M1005. The registration server selects the home ID_B from the received home IDs, and notifies the home ID_B to a communication device holding the home ID_A and the receiving communication device M1101R to cause the devices to register the home ID_B.
  • FIG. 161 is a flowchart of processing performed by the transmitting communication device M1101S when home ID is shared using the home network communication device M1103. The transmitting communication device M1101S detects connection to the home network (M1801), and broadcasts a request for home ID sharing to terminals in the home network (M1802). If a response to the request for home ID sharing is received, the transmitting communication device M1101S registers home ID received with the response into the transmitting communication device M1101S itself (M1804). On the other hand, if the response is not received, the transmitting communication device M1101S performs the home ID obtainment (M1303).
  • FIG. 162 is a flowchart of processing performed by the receiving communication device M1101R when home ID is shared using the home network communication device M1103. After receiving the request for home ID sharing (M1851), the receiving communication device M1101R determines whether or not the receiving communication device M1101R itself is a master terminal selected in the home network (M1852). If the receiving communication device M1101R is the master terminal, then the receiving communication device M1101R transmits home ID held in the receiving communication device M1101R itself in response to the request (M1853). On the other hand, if the receiving communication device M1101R is not the master terminal, then the receiving communication device M1101R does not perform any processes. Here, if a master terminal is not selected from terminals holding home ID, the receiving communication device M1101R responds to all requests for home ID sharing from any terminals without the determination regarding the master terminal.
  • FIG. 163 is a sequence diagram of the situation where the home ID is shared using the home network communication device M1103. When a communication device detects connection to a home network, the communication device broadcasts a request for home ID sharing to terminals in the home network. Only a communication device M1854 selected as the master terminal from among communication devices receiving the request responds to the request. The communication device receiving the response registers home ID received with the response, into the communication device itself.
  • Embodiment 16
  • A communication device according to Embodiment 16 of the present invention is described in detail with reference to the drawings. The communication device according to this embodiment of the present invention reads terminal apparatus information regarding a terminal apparatus from the terminal apparatus by using a Near Field Communication (NFC) function, and transfers the terminal apparatus information to a server via a general-purpose network.
  • FIG. 164 illustrates a system according to this embodiment. The system according to this embodiment includes a terminal apparatus Y01, a communication device Y02, and a server Y04. The subject of this embodiment is the communication device Y02.
  • The terminal apparatus Y01 is a device having a NFC function (RF-ID unit, IC tag, or NFC tag emulation). The terminal apparatus Y01 is, for example, an electronic terminal apparatus such as a refrigerator, a microwave, a washing machine, a TV, or a recording device. The terminal apparatus Y01 has an internal memory for holding, as terminal apparatus information, a product serial number that is ID for identifying the terminal apparatus Y01, use history information of the terminal apparatus Y01, error information, and the like.
  • The communication device Y02 has a NFC function for communicating with the NFC function of the terminal apparatus Y01 by proximity wireless communication. The communication device Y02 includes a reader/writer function of reading the terminal apparatus information from the terminal apparatus Y01. The communication device Y02 is, for example, a portable device such as a mobile phone or a remote controller terminal of a TV.
  • The server Y04 is a server connected to the communication device Y02 in order to communicate with the communication device Y02, via a general-purpose network such as the Internet. The server Y04 includes a database (DB) for accumulating the terminal apparatus information that is read from the terminal apparatus Y01 to the communication device Y02.
  • The terminal apparatus Y01 includes a Central Processing Unit (CPU) Y011, a failure sensor unit Y012, a use history logging unit Y013, a memory Y014, a modulation unit Y017, and an antenna Y018.
  • The CPU Y011 is a unit that controls a system of the terminal apparatus Y01. The CPU Y011 controls the failure sensor unit Y012, the use history logging unit Y013, the memory Y014, and the modulation unit Y017 which are units included in the terminal apparatus.
  • The failure sensor unit Y012 is a unit that detects a location and detail of a failure occurred in each unit included in the terminal apparatus Y01. A piece of failure information detected by the failure sensor unit Y012 is accumulated in a Random Access Memory (RAM) in the memory Y014. The detected failure information is represented by an error code that is uniquely defined depending on a location and condition of the failure.
  • The use history logging unit Y013 is a unit that performs logging for each piece of use history information every time the terminal apparatus Y01 is operated by the user. The use history information applied with logging is accumulated into the RAM Y016 in the memory Y014. In general, when use history information is used to examine how a failure has occurred, several pieces of use history information up to occurrence of the failure have high priorities of being examined. Therefore, it is desirable that the use history logging unit Y013 according to this embodiment uses the RAM Y016 as First In First Out (FIFO) to chronologically accumulate new pieces of use history information into the RAM Y016. Moreover, when use history information is used to examine how a failure has occurred, it is desirable that several pieces of use history information up to a timing detected by the failure sensor unit Y012 are stored as priorities into the RAM. Therefore, if when five minor failures are detected in using the terminal apparatus Y01, several pieces of operation (use) history information up to the five failures are stored as priorities.
  • The memory Y014 includes a Read Only Memory (ROM) Y015 and the Random Access Memory (RAM) Y016.
  • The ROM Y015 previously stores at least a product serial number for uniquely identifying the terminal apparatus Y01 when the terminal apparatus Y01 has been shipped. The user of the terminal apparatus Y01 cannot update the information previously held in the ROM Y05. The product serial number is desirably information by which a manufacturer, a manufacturing lot number, and a manufacturing date of the terminal apparatus Y01 can be determined. It is also desirable that the ROM Y015 is embedded in a semiconductor chip of the CPU Y011. This structure prevents information during memory access to be easily inspected. Therefore, secret key information for authentication and encrypted communication in proximity wireless communication with the communication device can be recorded on the ROM Y015 when shipping.
  • The RAM Y016 is a rewritable memory in which the failure information detected by the failure sensor unit Y012 and the use history information applied with logging of the use history logging unit Y013 are accumulated.
  • The modulation unit Y017 is a unit that modulates communication data for proximity wireless communication with the communication device Y02. The modulation method varies depending on employed NFC standard. For example, Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and the like are used.
  • An example of the antenna Y018 is a loop antenna. The antenna Y018 generates electromagnetic induction from radio waves emitted from an antenna of the communication device Y02. The antenna Y018 performs at least processing of providing power to the modulation unit Y017 and the memory Y014 to be operated. In addition, the antenna Y018 overlaps reflected waves of the radio waves emitted from the communication device Y02 with signals modulated by the modulation unit Y017 to transmit the terminal apparatus information that is stored in the memory Y014 to the communication device Y02.
  • As described above, the terminal apparatus according to this embodiment detects failures occurred in each unit included in the terminal apparatus. Then, the terminal apparatus performs logging for use histories to accumulate the use histories into the memory. Then, if the terminal apparatus is moved into proximity of the communication device Y02 to be capable of performing proximity wireless communication with the communication device Y02, the terminal apparatus can transmit the terminal apparatus information stored in the memory into the communication device Y02.
  • Next, the communication device Y02 according to this embodiment is described. It should be noted that the subject of this embodiment is the communication device Y02.
  • The communication device Y02 includes an antenna Y021, a CPU Y022, a demodulation unit Y023, a memory Y024, a position information determination unit Y027, a GPS antenna Y031, a communication memory Y032, an information adding unit Y035, and a communication unit Y036.
  • The antenna Y021 performs polling for calling any terminal apparatuses in order to search for a terminal apparatus communicable with the communication device Y02 by proximity wireless communication. In receiving a response to the polling, the antenna Y021 establishes proximity wireless communication with the responding terminal apparatus Y01 to receive modulated terminal apparatus information from the terminal apparatus Y01, and provides the modulated terminal apparatus information to the demodulation unit Y023. In general, the polling processing is always necessary even if there is no terminal apparatus communicable with the communication device Y02 by proximity wireless communication. This consumes power. Therefore, the communication device Y02 is provided with a switch (not shown) for controlling a timing of start of polling, so that polling processing is performed when the switch is turned ON. This structure can significantly shorten a time period of the polling. As a result, the power consumption amount of the communication device Y02 can be considerably reduced. This is especially efficient when the communication device Y02 operates by a limited power source such as a battery.
  • The CPU Y022 is a unit that controls a system of the communication device Y02. The CPU Y022 controls operations of each unit included in the communication device Y02.
  • The demodulation unit Y023 is a unit that demodulates data modulated by the modulation unit Y017 of the terminal apparatus Y01. The demodulated terminal apparatus information is temporarily stored into the memory Y024.
  • The memory Y024 includes a ROM Y025 and a RAM Y026.
  • The ROM Y025 is a memory that cannot be rewritten by the outside. The ROM Y025 previously holds a product serial number for uniquely identifying the communication device Y02 when the communication device Y02 has been shipped. The product serial number is desirably information by which a manufacturer, a manufacturing lot number, and a manufacturing date of the communication device Y02 can be determined. It is also desirable that the ROM Y025 is embedded in a semiconductor chip of the CPU Y022. This structure prevents information during memory access from being easily inspected. Therefore, secret key information for authentication and encrypted communication in proximity wireless communication with the terminal apparatus Y01 can be recorded on the ROM Y025 when shipping.
  • The RAM Y026 holds the terminal apparatus information of the terminal apparatus Y01 which is received by the antenna Y021 and demodulated by the demodulation unit Y023. As described earlier, the terminal apparatus information includes the product serial number for uniquely identifying the terminal apparatus Y01, the use history information of the terminal apparatus Y01, and failure codes.
  • The position information determination unit Y027 is a group of sensors for determining a location of the communication device Y02. The position information determination unit Y027 includes a latitude/longitude positioning unit (GPS) Y028, an altitude positioning unit Y029, and a position correction unit Y030. The position information determination unit Y027 does not need to always determine a location of the communication device Y02 (location information) if the location information is generated at a timing where the communication device Y02 becomes communicable with the terminal apparatus Y01 using the antenna Y021. As a result, power consumption of the communication device Y02 can be reduced.
  • The latitude/longitude positioning unit Y028 is a general Global Positioning System (GPS) that receives radio waves from satellites to perform 3-dimensional (3D) positioning of the earth.
  • The altitude positioning unit Y029 is a general altimeter. The altitude positioning unit Y029 may be any various altimeters, such as an altimeter receiving radio waves to extract an altitude, an altimeter detecting an air pressure to measure an altitude, and the like. The altitude positioning unit Y029 is provide to the communication device Y02 so that an altitude can be detected even in a building where GPS cannot receive radio waves.
  • The position correction unit Y030 is a unit that corrects a value measured by the GPS to generate more accurate position information. In general, when radio waves from satellites cannot be received in a room or the like, the GPS cannot generate correct position information. Therefore, the position correction unit Y030 includes an electronic compass and a 6-axis acceleration sensor. The electronic compass is used to detect a direction in which the communication device Y02 moves and the acceleration sensor is used to detect a speed of the movement. Thereby, it is possible to correct position information generated by the GPS in a location where the GPS is difficult.
  • Regarding the information adding unit Y035, when the terminal apparatus information that has been provided from the terminal apparatus Y01 and stored into the memory Y024 is to be transmitted to the server Y04, the information adding unit Y035 adds (a) the product serial number of the communication device Y02 that is stored in the ROM Y025 in the memory Y024 and (b) the position information measured by the position information determination unit Y027, to the terminal apparatus information. This enables the server Y04 to determine which communication device transmits the terminal apparatus information, where the transmitting terminal apparatus is located, for example, and then manage the results of the determination. For example, if a manufacturer of the terminal apparatus finds that the terminal apparatus has a possibility of causing serious accidents, the information in the database of the server Y04 allows the manufacturer to determine where the terminal apparatus is. Thereby, the possibility of causing serious accidents can be reduced. As a result, it is possible to increase sense of safety and security of the user using the terminal apparatus. Furthermore, when the communication device Y02 has a display function as mobile phone terminals have, the above-described terminal apparatus information generated by the information adding unit Y035 makes it possible to determine with which communication device the terminal apparatus having a possibility of accidents can perform proximity wireless communication, and thereby display a notification of the possibility of accidents in the terminal apparatus on the communication device Y02. Thereby, even if such a terminal apparatus generally does not have any display function and is not connected to a general-purpose network, it is possible to transmit a notification of the accident possibility of the terminal apparatus to the communication device Y02 in order to warn the user using the terminal apparatus. As a result, it is also possible to provide a terminal apparatus that can increase sense of safety and security of the user using the terminal apparatus.
  • The communication unit Y036 is a unit that communicates with the server Y04 via the Internet by using general LAN, wireless LAN, or mobile phone network. Thereby, the communication unit Y036 transmits, to the server Y04, the terminal apparatus information added with the product serial number and the position information of the communication device Y02 as the communication device information. Here, the added terminal apparatus information is further added with a Media Access Control (MAC) address and an Internet Protocol (IP) address to be transmitted to the server Y04.
  • The server Y04 is connected to the communication device Y02 via a general-purpose network such as the Internet. The server Y04 includes a device management database (DB) for managing the terminal apparatus information.
  • The device management DB Y041 stores the terminal apparatus information in association with the communication device information. In the device management DB Y041 according to this embodiment, the communication device information is managed as parent device information, and the terminal apparatus information is managed as child device information in association with the parent device information. The child device information is added with the position information generated by the communication device in order to manage further information indicating where the terminal apparatus is.
  • As described above, in the system according to this embodiment, the terminal apparatus information is read from the terminal apparatus by the communication device using proximity wireless communication. The communication device is touched to the terminal apparatus to communicate with the terminal apparatus to obtain the terminal apparatus information. The communication device adds a product serial number and position information of the communication device to the obtained terminal apparatus information, and transmits the generated information to the server. Thereby, the server can manage the communication device information as parent device information in association with the terminal apparatus information as child device information. Therefore, if a manufacturer of the terminal apparatus finds that the terminal apparatus would cause serious accidents, the manufacture can easily recall the terminal apparatus or display a notification of a possibility of the serious accident on a display unit of the communication device. As a result, it is possible to achieve traceability of the products and to provide the users of the products with safety and security.
  • FIG. 165 is a sequence diagram of processing performed by the units included in the system described with reference to FIG. 164.
  • First, the communication device Y02 performs polling to the terminal apparatus Y01 to establish proximity wireless communication. In terms of power consumption amount of the communication device, it is desirable as described earlier that a switch operated by a user is provided so that the polling is performed while the switch is being pressed or the polling starts when the switch is pressed (SY01).
  • Next, the terminal apparatus Y01 sends a response to the polling to the communication device Y02 in order to establish proximity wireless communication with the communication device Y02 (SY02). At this timing, the position information determination unit Y027 of the communication device Y02 generates position information of a current position to be used as position information of the terminal apparatus Y01. The generation of the position information is not limited to be performed only in completion of the polling. The position information may be generated any time while the proximity wireless communication is established after the response to the polling. It is important to determine the position of the terminal apparatus at a high accuracy, by generating position information of the position where proximity wireless communication, which can be performed when a distance between communicating devices is only several centimeters, is established.
  • After the establishment of the proximity wireless communication at SY02, mutual authentication between the terminal apparatus Y01 and the communication device Y02 is performed using general public key cryptography, and also key sharing is temporarily performed to share cryptography keys generated by the terminal apparatus Y01 and the communication device Y02 between the devices (SY03). After that, while the proximity wireless communication is established, data on the communication path is encrypted using the cryptography keys to communicate between the devices. As a result, tapping of the data can be prevented.
  • After completing the key sharing, the terminal apparatus Y01 transmits the terminal apparatus information recorded on the memory Y014 of the terminal apparatus Y01, to the communication device Y02 (SY04).
  • When the communication device Y02 receives the terminal apparatus information from the terminal apparatus Y01, the communication device Y02 stores the received terminal apparatus information into the memory Y024 of the communication device Y02 (SY05).
  • When the communication device Y02 completes receiving of the terminal apparatus information from the terminal apparatus Y01, the communication device Y02 issues a connection request to the server Y04 (SY06).
  • The server Y04 responds to the connection request of SY06 to establish communication with the communication device Y02 (SY07).
  • After establishing communication between the communication device Y02 and the server Y04, the communication device Y02 adds the communication device information of the communication device Y02 to the terminal apparatus information of the terminal apparatus Y01 to be transmitted to the server Y04 (SY08). Here, the communication device information includes, for example, a product serial number of the communication device Y02, position information of the communication device Y02 when proximity wireless communication with the terminal apparatus Y01 is established, an e-mail address of the user registered in the communication device Y02 (if any), a connection account to the server Y04 registered in the communication device Y02 (if any), and the like.
  • After adding the communication device information to the terminal apparatus information at SY08, then the communication device Y02 transmits the terminal apparatus information added with the communication device information to the server Y04 (SY09).
  • The server Y04 registers the terminal apparatus information added with the communication device information received from the communication device Y02, into the device management DB Y041. Thereby, the processing is completed.
  • Thereby, the server Y04 can manage pieces of information regarding devices for each house, by managing information of each terminal apparatus Y01, which establishes proximity wireless communication with the communication device Y02 touching the terminal apparatus Y01, in association with identification information (product serial number or the like) of the communication device Y02. In addition, for the position information registered as information of a position at which the terminal apparatus is equipped, position information indicating a position where proximity wireless communication is established between the communication device Y02 and the terminal apparatus Y01 is used. Since the proximity wireless communication according to this embodiment is performed at common High Frequency (HF) band of 13.56 MHz, the communication is possible when a distance between communicating devices is within several centimeters. Therefore, if the position information detected in establishing proximity wireless communication is set to be position information of the terminal apparatus, a maximum error is several centimeters which results in assuring an enough accuracy to achieve traceability of the products.
  • FIG. 166 is a schematic diagram illustrating a group of pieces of information of terminal apparatuses managed in association with information of the communication device Y02 in the device management DB Y041 of the server Y04.
  • When the user intends to perform user registration or the like for a terminal apparatus using the communication device Y02 in purchasing the terminal apparatus, the following processing is performed. The user equips the terminal apparatus and touches the terminal apparatus by the communication device Y02. Thereby, terminal apparatus information of the terminal information is provided to the communication device Y02 using proximity wireless communication. The communication device Y02 adds the communication device information of the communication device Y02 to the terminal apparatus information in order to be transmitted to the server Y04. In receiving the terminal apparatus information added with the communication device information, the server Y04 manages the terminal apparatus information as child device information and the communication device information as parent device information in association with each other in the device management DB. For example, in the device management DB, terminal apparatus information of a terminal apparatus 1 (for example, a microwave Y052), terminal apparatus information of a terminal apparatus 2 (for example, a washing machine Y053), and terminal apparatus information of a terminal apparatus 3 (for example, a TV Y054), all of which are touched by a communication device Y051, are managed in association with a product serial number of the communication device Y051. Each of the terminal apparatus information includes whereabout information (longitude, latitude, altitude, and the like) and use status information (use histories, error codes, use time periods, and the like). Thereby, the server Y04 can manage pieces of information of devices for each house, because the communication device Y051 touches these terminal apparatuses. As a result, traceability of the terminal apparatuses can be achieved.
  • Furthermore, the communication device generates position information when proximity wireless communication with the terminal apparatus is established and uses the generated position information as position information of the terminal apparatus. Therefore, it is possible to register a position of the terminal apparatus with an error of several centimeters which is a distance capable for proximity wireless communication between devices. Since the GPS in the communication device is used to generate the position information of the terminal apparatus, each terminal apparatus does not have a GPS, thereby reducing a cost.
  • FIG. 167 is a schematic diagram illustrating display screens of the display unit of the communication device Y02 when the communication device Y02 touches the terminal apparatus Y01.
  • First, the description is given for the situation where the communication device Y02 touches the terminal apparatus Y01 to register information of the terminal apparatus Y01 into the server Y04.
  • When the user operates the communication device Y02 to start up a reader/writer application program of the communication device Y02, the communication device Y02 displays, on a display screen, a message persuading the user to make the communication device Y02 touch the terminal apparatus Y01 for proximity wireless communication (Y060).
  • When the communication device Y02 touches the terminal apparatus Y01, proximity wireless communication is established between the devices. The communication device Y02 reads terminal apparatus information of the terminal apparatus Y01 from the terminal apparatus Y01, generates position information of a current position, and provides the pieces of information to the memory in which the pieces of information are temporarily stored. Then, the communication device Y02 establishes communication with the server Y04 and transmits the terminal apparatus information added with communication device information of the communication device Y02 to the server Y04. The server Y04 determines whether or not the terminal apparatus information has already been registered in the device management DB. If it is determined that the terminal apparatus information has not yet been registered in the device management DB, then the server Y04 causes the communication device Y02 to display, on the display unit of the communication device Y02, a message asking the user whether or not to register information of the terminal apparatus Y01