US20130271375A1 - Method and device having touchscreen keyboard with visual cues - Google Patents

Method and device having touchscreen keyboard with visual cues Download PDF

Info

Publication number
US20130271375A1
US20130271375A1 US13/560,796 US201213560796A US2013271375A1 US 20130271375 A1 US20130271375 A1 US 20130271375A1 US 201213560796 A US201213560796 A US 201213560796A US 2013271375 A1 US2013271375 A1 US 2013271375A1
Authority
US
United States
Prior art keywords
characters
input
key
touch input
touch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/560,796
Inventor
Jason Tyler Griffin
Jerome Pasquero
Alistair Robert HAMILTON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Malikie Innovations Ltd
Original Assignee
Research in Motion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research in Motion Ltd filed Critical Research in Motion Ltd
Priority to US13/560,796 priority Critical patent/US20130271375A1/en
Assigned to RESEARCH IN MOTION LIMITED reassignment RESEARCH IN MOTION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH IN MOTION CORPORATION
Assigned to RESEARCH IN MOTION CORPORATION reassignment RESEARCH IN MOTION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMILTON, ALISTAIR ROBERT
Assigned to RESEARCH IN MOTION LIMITED reassignment RESEARCH IN MOTION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRIFFIN, JASON TYLER, PASQUERO, JEROME
Publication of US20130271375A1 publication Critical patent/US20130271375A1/en
Assigned to BLACKBERRY LIMITED reassignment BLACKBERRY LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH IN MOTION LIMITED
Assigned to MALIKIE INNOVATIONS LIMITED reassignment MALIKIE INNOVATIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLACKBERRY LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/023Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
    • G06F3/0233Character input methods
    • G06F3/0237Character input methods using prediction or retrieval techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus

Definitions

  • the present disclosure relates generally to input methodologies for electronic devices, such as handheld electronic devices, and more particularly, to a method and device for touchscreen keyboard with visual cues.
  • touchscreens that allow a user to input characters into an application, such as a word processor or email application.
  • Character input on touchscreens can be a cumbersome task due to, for example, the small touchscreen area, particularly where a user needs to input a long message.
  • FIG. 1 is an example block diagram of an electronic device, consistent with embodiments disclosed herein.
  • FIG. 2 is a flowchart illustrating an example method for predicting a selected set of characters, consistent with embodiments disclosed herein.
  • FIGS. 3A , 3 B, 3 C, and 3 D show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 4A and 4B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 5 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 6A , 6 B, and 6 C show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 7 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 8A and 8B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 9 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 10A and 10B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 11A and 11B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 13A and 13B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 14A , 14 B, and 14 C show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 15 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 16 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 17 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 18 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 19 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 21 shows an example front view of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 25 illustrates a Cartesian dimensional coordinate system suitable for mapping locations of the touchscreen and determining a shape of the contact area of the user's finger in accordance with one embodiment of the present disclosure.
  • FIGS. 26 to 28 show example front views of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 30 shows an example front view of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 31 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • the present disclosure relates to an electronic device, including wired communication devices (for example, a laptop computer having a touchscreen) and mobile or handheld wireless communication devices such as cellular phones, smartphones, wireless organizers, personal digital assistants, wirelessly enabled notebook computers, tablets, and similar devices.
  • the electronic device can also be an electronic device without wireless communication capabilities, such as a handheld electronic game device, digital photograph album, digital camera, or other device.
  • Basic predictive text input solutions have been introduced for assisting with input on an electronic device. These solutions include predicting which word a user is entering and offering a suggestion for completing the word. But these solutions can have limitations, often requiring the user to input most or all of the characters in a word before the solution suggests the word the user is trying to input. Even then, a user often has to divert focus from the keyboard to view and consider the suggested word displayed elsewhere on the display of the electronic device, and thereafter, look back at the keyboard to continue typing. Refocusing of one's eyes relative to the keyboard while inputting information in an electronic device, particularly when composing large texts, can strain the eyes and be cumbersome, distracting, and otherwise inefficient. Moreover, processing cycles are lost and display power wasted as the processor is idling while the user is focusing attention to the input area, and then back at the virtual keyboard.
  • Virtual keyboard usage patterns can be broadly categorized as being of two types: “rapid” and “precise”. Rapid typists are typically fast two-thumb typists which rely on auto-correction. This usage pattern corresponds most closely with experienced, frequent touchscreen users. Precise typists are typically careful typists who are inclined to use a single finger point to tap keys in the virtual keyboard, and often choose predictions as an input accelerator rather than auto-correction. This usage pattern corresponds most closely with novice/new touchscreen users as well as potentially one-handed (thumb) use situations.
  • example embodiments described herein permit the user of an electronic device to input characters without diverting attention from the keyboard and subsequently refocusing.
  • Example embodiments described herein also seek to accommodate different user types, such as rapid typists and precise typists, and the different efficiency challenges presented by the different user types.
  • the term “a” or “an” in the specification and the claims is meant to include one or more than one of the feature that it introduces, unless otherwise indicated.
  • the term “a set of characters” as used in “generating a set of characters” can include the generation of one or more than one set of characters.
  • use of the definite article “the”, or “said,” particularly after a feature has been introduced with the indefinite article, is meant to include one or more than one of the feature to which it refers (unless otherwise indicated). Therefore, the term “the generated set of characters” as used in “displaying the generated set of characters” includes displaying one or more generated set of characters. References to orientation contained herein, such as horizontal and vertical, are relative to the screen orientation of a graphical user interface rather than any physical orientation.
  • a method comprising receiving an input of a character from a virtual keyboard rendered on a display; generating one or more sets of predicted input characters based on the input character; and displaying one or more of the generated sets of predicted input characters.
  • a method for providing a virtual keyboard rendered on a display with visual cues comprising: detecting a touch input associated with a user interface element rendered on the display; determining an input direction of the touch input; and displaying on the display a visual cue associated with the user interface element, wherein the visual cue is located at a position based on the input direction of the touch input.
  • a method for providing visual cues rendered on a display comprising: detecting a touch input associated with a user interface element rendered on the display; determining whether the touch input is associated with a left hand or a right hand of a user; and displaying on the display a visual cue associated with the user interface element, wherein the visual cue is located at a position based on whether the touch input is associated with the left hand or the right hand.
  • an electronic device comprising a display having a virtual keyboard rendered thereupon, and a processor.
  • the processor can be configured to perform methods described herein.
  • a non-transitory computer-readable storage medium includes computer executable instructions for performing methods described herein.
  • FIG. 1 is a block diagram of an electronic device 100 , consistent with example embodiments disclosed herein.
  • Electronic device 100 includes multiple components, such as a main processor 102 that controls the overall operation of electronic device 100 . Communication functions, including data and voice communications, are performed through a communication subsystem 104 . Data received by electronic device 100 is decompressed and decrypted by a decoder 106 . The communication subsystem 104 receives messages from and sends messages to a network 150 .
  • Network 150 can be any type of network, including, but not limited to, a wired network, a data wireless network, voice wireless network, and dual-mode wireless networks that support both voice and data communications over the same physical base stations.
  • Electronic device 100 can be a battery-powered device and include a battery interface 142 for receiving one or more batteries 144 .
  • Touchscreen 118 includes a display 112 with a touch-active overlay 114 connected to a controller 116 .
  • GUI graphical user interface
  • Main processor 102 interacts with touch-active overlay 114 via controller 116 .
  • Characters such as text, symbols, images, and other items are displayed on display 112 of touchscreen 118 via main processor 102 . Characters are inputted when the user touches the touchscreen at a location associated with said character.
  • Main processor 102 can also interact with a positioning system 136 for determining the location of electronic device 100 .
  • the location can be determined in any number of ways, such as by a computer, by a Global Positioning System (GPS), either included or not included in electric device 100 , through a Wi-Fi network, or by having a location entered manually.
  • GPS Global Positioning System
  • the location can also be determined based on calendar entries.
  • Main processor 102 can also interact with an orientation sensor 197 for sensing the orientation of the device.
  • the orientation sensor 197 may be one or more accelerometers.
  • the orientation sensor may detect acceleration along multiple orthogonal axes.
  • Main processor 102 can also interact with one or more proximity sensors 198 for detecting the proximity of nearby objects.
  • the proximity sensor may be one or more infrared emitter/sensor pairs.
  • the main processor 102 can also interact with an ambient light sensor 199 for detecting the intensity and/or color temperature of ambient light.
  • electronic device 100 uses a Subscriber Identity Module or a Removable User Identity Module (SIM/RUIM) card 138 inserted into a SIM/RUIM interface 140 for communication with a network, such as network 150 .
  • SIM/RUIM Removable User Identity Module
  • user identification information can be programmed into memory 110 .
  • Electronic device 100 also includes an operating system 146 and programs 148 that are executed by main processor 102 and are typically stored in memory 110 . Additional applications may be loaded onto electronic device 100 through network 150 , auxiliary I/O subsystem 124 , data port 126 , short-range communications subsystem 132 , or any other suitable subsystem.
  • a received signal such as a text message, an e-mail message, or web page download is processed by communication subsystem 104 and this processed information is then provided to main processor 102 .
  • Main processor 102 processes the received signal for output to display 112 , to auxiliary I/O subsystem 124 , or a combination of both.
  • a user can compose data items, for example e-mail messages, which can be transmitted over network 150 through communication subsystem 104 .
  • Speaker 128 outputs audible information converted from electrical signals
  • microphone 130 converts audible information into electrical signals for processing.
  • FIG. 2 is a flowchart illustrating an example method 200 for predicting a set of characters, consistent with example embodiments disclosed herein.
  • a predictor such as a predictive algorithm, program or firmware
  • a processor for example, main processor 102
  • a predictor can also receive otherwise unambiguous text input and predict a set of characters potentially contemplated by the user based on several factors, such as context, frequency of use, and others as appreciated by those skilled in the field.
  • method 200 includes a predictor for generating a set of characters corresponding to a subsequent candidate input character based on inputted characters. It can be appreciated that while the example embodiments described herein are directed to a predictor program executed by a processor, the predictor can be executed by a virtual keyboard controller.
  • Method 200 begins at block 210 , where the processor receives an input of one or more characters from a virtual keyboard displayed on a touchscreen.
  • a character can be any alphanumeric character, such as a letter, a number, a symbol, a punctuation mark, and the like.
  • the inputted character can be displayed in an input field (for example, input field 330 further described below in FIGS. 3-9 ) that displays the character the user inputs using the virtual keyboard.
  • the processor generates one or more sets of characters such as words or phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof based on the input received in block 210 .
  • the set of characters includes, for example, a set of characters that are stored in a dictionary (for example, a word or an acronym) of a memory of the electronic device, a set of characters that were previously inputted by user (for example, a name or acronym), a set of characters based on a hierarchy or tree structure, a combination thereof, or any set of characters that are selected by a processor based on defined arrangement.
  • the processor can use contextual data for generating a set of characters.
  • Contextual data considers the context of characters in the input field.
  • Contextual data can include information about, for example, set of characters previously inputted by the user, grammatical attributes of the characters inputted in the input field (for example, whether a noun or a verb is needed as the next set of characters in a sentence), or any combination thereof. For example, if the set of characters “the” has already been inputted into display, the processor can use the contextual data to determine that a noun—instead of a verb—will be the next set of characters after “the”.
  • the processor can determine the subsequent set of characters is likely “League”. Using the contextual data, the processor can also determine whether an inputted character was incorrect. For example, the processor can determine that the inputted character was supposed to be a “w” instead of an “a”, given the proximity of these characters on a QWERTY virtual keyboard.
  • Processor 102 can also include an affix as part of the set of characters, such as an adverb ending, an adjective ending, different verb tenses, and the like, or any other change to make a complete set of characters.
  • Processor 102 can also use the received input to generate affixes, such as plural endings or plural forms. Any known predictive technique or software can be used to process the received input and the contextual data in generating set of characters at block 220 .
  • the set of characters generated at block 220 can begin with the same character received as input at block 210 . For example, if the characters “pl” have been received as input using a virtual keyboard, these characters will be received by the processor as the input. In these embodiments, the set of characters generated at block 220 would all begin with “pl”, such as “please” or “plot.” There is no limit on the length of a generated set of characters. Regarding affixes, if the user has input the characters “child”, for example, the affixes generated at block 220 could include “-ren”, to make the set of characters “children”, or “-ish”, to make the set of characters “childish”.
  • the set of characters generated at block 220 can simply include the same characters received as input at block 210 .
  • the processor may generate “example” or “xylophone” as the set of characters.
  • Such sets of characters can be generated using the contextual data.
  • the generated set of characters can be placed on subsequent candidate input characters that correspond to the first letter of the generated set of characters.
  • the generated set of characters from block 220 can be ranked.
  • the rankings reflect the likelihood that a candidate set of characters might have been intended by the user, or might be chosen by a user compared to another candidate set of characters.
  • contextual data can be included in the ranking at block 230 .
  • the electronic device can be configured to rank nouns or adjectives higher based on the previous inputted set of characters. If the inputted set of characters is suggestive of a noun or adjective, the processor, using the contextual data, can rank the nouns or adjectives corresponding to what the user is typing higher at block 230 .
  • set of characters including adjective affixes (such as “-ish” or “-ful”), phrases, plurals, or combinations thereof can also be ranked.
  • Contextual data can increase the likelihood that the higher ranked generated set of characters are intended by a user.
  • contextual data can include information about which programs or applications are currently running or being used by a user.
  • set of characters associated with that user's email system can be used to determine the ranking.
  • N-grams including unigrams, bigrams, trigrams, and the like, can be also used in the ranking of the sets of characters.
  • the geolocation of the electronic device or user can be used in the ranking process. If, for example, the electronic device recognizes that a user is located at his/her office, then sets of characters generally associated with work can be ranked higher in the list. If, on the other hand, the device determines a user is at the beach, then sets of characters generally associated with the beach can be ranked higher in the list.
  • the processor determines which of the set of characters to display based on the ranking. For example, higher ranked sets of characters are more likely to be determined that they should be displayed.
  • a ranker (such as a ranking algorithm, program or firmware) includes a set of instructions that when executed by a processor (for example, main processor 102 ), can be executed to determine ranking in this regard.
  • the ranker is a program 146 residing in memory 110 of electronic device 100 .
  • the determined set of characters is displayed at a location on the keyboard corresponding to a subsequent candidate input character, predicted as the next character in a word that the user might input. For instance, if a user inputs “pl”, the word “please” would be displayed on the key for the letter “e”—the subsequent candidate input character for that word. Similarly, the word “plus” would also be displayed on the key for the letter “u”—another subsequent candidate input character.
  • the subsequent candidate input character can be any alphanumeric character, such as a letter, number, symbol, punctuation mark, and the like.
  • the generated set of characters is displayed at or near keys on the virtual keyboard associated with the subsequent candidate input characters. Its placement at or near a key can depend, for instance, on the size of the word or the number of nearby subsequent candidate input characters and the size of their associated set of characters.
  • the set of characters can be displayed in a manner that will attract the user's attention.
  • a displayed set of character's appearance can be enhanced or changed in a way that makes the set more readily visible to the user.
  • displayed sets of characters can be displayed with backlighting, highlighting, underlining, bolding, italicizing, using combinations thereof, or in any other way for making the displayed set of characters more visible.
  • the processor can limit the displayed set of characters to the top few or choose among the higher ranked sets of characters. For example, if two sets of characters are both ranked high, and these sets of characters would otherwise be displayed at the same key, the electronic device could be configured to display only the highest ranked generated set of characters. In other embodiments, both sets of characters could be displayed at or around the same key, or one set of characters is displayed at one key while the second set of characters is displayed at another key. In some example embodiments, the processor can take into account the display size to limit the number of generated sets of characters.
  • the ranking could be used to choose between two or more sets of characters that, when displayed on adjacent subsequent candidate input characters, would overlap with each other (e.g., because of their respective lengths).
  • the electronic device could be configured to display the higher ranked set of characters on the keyboard. For example, if the set of characters “establishment” is ranked first in a list generated at block 240 after the letter “E” is inputted, “establishment” could be displayed at the “S” key. When displayed on a virtual keyboard, however, its length might occupy some space on the “A” key and the “D” key, potentially blocking a set of characters that would be displayed on or around those keys.
  • FIGS. 3-9 illustrate a series of example front views of the touchscreen 118 having a virtual keyboard 320 , consistent with example embodiments disclosed herein.
  • touchscreen 118 includes a virtual keyboard 320 that is touch-active.
  • the position of the virtual keyboard 320 is variable such that virtual keyboard 320 can be placed at any location on touchscreen 118 .
  • Touchscreen 118 could be configured to detect the location and possibly pressure of one or more objects at the same time.
  • Touchscreen 118 includes two areas: (1) an input field 330 that displays characters after a user has inputted those characters and (2) the virtual keyboard 320 that receives the input from the user.
  • a virtual keyboard displays a set of characters at a location on the keyboard corresponding to a subsequent candidate input character that might be received as input from the user.
  • FIGS. 3-9 can be implemented with any set of characters, such as words, phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof.
  • touchscreen 118 displays a standard QWERTY virtual keyboard 320 ; however, any conventional key configuration can be displayed for use in the device, such as AZERTY, QWERTZ, or a layout based on the International Telecommunication Union (ITU) standard (ITU E.161) having “ABC” on key 2 , “DEF” on key 3 , and so on.
  • Virtual keyboard 320 includes space key 350 as well as other keys that can provide different inputs, such as punctuation, letters, numbers, enter or return keys, and function keys. While virtual keyboard 320 is shown as having a square shape, it can have any other shape (such as an arch).
  • touchscreen 118 displays input field 330 , which displays the characters the user inputs using virtual keyboard 320 .
  • Input field 330 includes a cursor 340 , which can be an underscore (as shown) or any other shape, such as a vertical line. Cursor 340 represents the character space where a next inputted character, selected character, or selected set of characters will be inserted.
  • a predictor such as, a predictive algorithm or a circuit
  • set of characters 360 for this embodiment
  • the generated set of characters are displayed at a location on the keyboard corresponding to a subsequent candidate input character that might be received as input from the user.
  • generated set of characters 360 can be displayed at or near the key corresponding to the subsequent candidate input characters (for example, under the respective A, E, H, and O keys of the virtual keyboard 320 ). Indeed, slightly shifting the display location of the generated set of characters can address overcrowding of subsequent candidate input characters, effectively permitting more set of characters to be displayed.
  • “P” is received as input and a predictor generates several set of characters 360 , which are displayed at keys corresponding to each generated set of characters' subsequent candidate input character.
  • “People” is placed at the “E” key because the next letter after “P” of “People” is “E”; “Paul” will be place at the “A” key because the next letter after “P” of “Paul” is “A”; “Phone” will be placed at the “H” key because the next letter after “P” of “Phone” is “H”; and so on.
  • any of the letters in the set of characters can be upper case or lower case.
  • “L” is next input received by touchscreen, and a predictor determines several generated set of characters 360 , which are displayed at a key corresponding to subsequent candidate input characters (for example, under the respective A, E, and U keys of the virtual keyboard 320 ), for the current position of cursor 340 , which is in the third character position, as shown in input field 330 .
  • a generated set of characters 360 can be presented such as to include the subsequent candidate input character. For example, the set of characters “Please” can be displayed so that the characters “Pl” are displayed before the “E” character on the “E” key, and the characters “ase” can be placed after the “E” character on the “E” key.
  • the displayed “E” can be presented in a manner that differs from the “Pl” and “ase”, thereby enabling the user to still recognize it as the “E” key while also making it readily visible so that the user can either input the generated set of characters “Please” or input the character “E”.
  • the “E” can be capitalized or in lowercase.
  • an affix can be displayed at the key. Using the example of the set of characters “Please” above, the “ase” could be displayed at the “E” key so the set of characters fragment “-ease” or “-Ease” would appear.
  • a generated set of characters is placed in input field 330 .
  • a space is inserted after the set of characters if the user wants to input a new set of characters.
  • a user could input a generated set of characters in various ways, including in a way that differs from a manner of inputting a character key. For example, to input a generated set of characters, a user could use a finger or stylus to swipe the generated set of characters.
  • swiping includes swiping the set of characters itself or swiping or touching near the set of characters.
  • the device can detect a swipe or touch near a set of characters, be it a generated set of characters or a predicted set of characters (to be described below), and through the use of a predictor, determine the set of characters the user intended to input.
  • the user could press a key for a predetermined period of time, such as a long press. That key can be, for example, the key corresponding to the subsequent candidate input character of the set of characters. So, if the set of characters “Please” is intended to be inputted instead of “E”, the electronic device 100 can be configured to require that the “E” key be pressed for a predetermined period of time to trigger the input of “Please”.
  • a predicted set of characters 380 can be displayed, shown here at space key 350 .
  • Predicted set of characters 380 can differ from generated set of characters 360 (as shown in FIGS. 3A-3C ) and is the system's attempt to predict the next set of characters a user might be contemplating.
  • a predictor is used to determine predicted set of characters 380 .
  • predicted set of characters 380 can be received as input in any number of ways, including receiving a swiping of the predicted set of characters with a finger or stylus or receiving a pressing of a key (such as the space key or another designated key) for a predetermined period of time (long press).
  • electronic device 100 receives “C” as input from virtual keyboard 320 . Again, a predictor determines generated set of characters 460 based in part on the received input.
  • electronic device 100 receives “O” as input from the virtual keyboard and outputs the “O” in input field 330 . As shown in FIG. 4A , the set of characters “count” was displayed at the “O” key after the input of the “C” character was received. Since the “O” key was pressed in a manner to only input the “O” character, as shown in FIG. 4B , an “O” is displayed as second character of the currently inputted set of characters, and the set of characters “count” is not inputted by the user.
  • the user can input the “O” key in FIG. 4A in a manner different from a manner of inputting the “O” key, such as by swiping the set of characters “count” or by a long press on the “O” key, as opposed to tapping.
  • generated set of characters 460 are displayed at the keys corresponding to subsequent candidate input characters, as shown in FIG. 4B .
  • FIG. 5 shows input field 330 displaying the set of characters “contact” followed by a space.
  • the user inputted the generated set of characters “contact” 460 as was shown in FIG. 4B at the “N” key.
  • a ⁇ SPACE> character is now automatically inserted after the generated word in the input field.
  • Predicted word “me” 580 is now displayed on space key 350 .
  • the word “me” 580 is then displayed in input field 330 followed by a space as shown in FIG. 6A , which then shows predicted word 680 “immediately” displayed on space key 350 .
  • the predicted word is presented after a completed word and space have been displayed in input field 330 .
  • FIG. 6B shows an example where touchscreen 118 has received the “T” character as input after the user has pressed the “T” key.
  • touchscreen 118 displays a “t” in input field 330 .
  • Generated set of characters 660 (for example, “Tuesday,” “today,” and “Thursday”) are displayed at the keys of the subsequent candidate input characters.
  • FIG. 6C shows an example where electronic device 100 has received the “o” character as input after the user presses the “O” key instead of inputting generated set of characters 660 “today” as was shown in FIG. 6B .
  • “o” is now displayed in input field 330 .
  • FIG. 7 shows an example where touchscreen 118 has received the ⁇ SPACE> character as input after the user selects the space key.
  • touchscreen 118 inserts a ⁇ SPACE> character, and then displays predicted set of characters “talk” 780 at space key 350 .
  • FIG. 8A shows an example where touchscreen 118 has received the “d” character as input after the user presses the “D” key.
  • touchscreen 118 displays a “d” in the input field 330 and displays generated set of characters “discuss,” “divide,” and “dinner” 860 on keys corresponding to subsequent candidate input characters.
  • electronic device 100 determined that generated set of characters “discuss,” “divide,” and “dinner” 860 were the set of characters to be displayed on touchscreen.
  • touchscreen 118 displayed generated set of characters using a further subsequent letter in the set of characters (for example, “discuss” under the “S” key, “divide” under the “V” key, and “dinner” under the “N” key).
  • generated set of characters “discuss,” “divide,” and “dinner” 860 can be displayed at or near the “I” key.
  • FIG. 8B shows an example where touchscreen 118 has received the set of characters “discuss” as input after the user chooses generated set of characters “discuss” 860 .
  • touchscreen 118 displays predicted set of characters “this” 880 at space key 350 .
  • FIG. 9 shows an example where touchscreen 118 receives the “this” set of characters as input after user selects “this” as a desired predicted set of characters 880 .
  • touchscreen 118 displays predicted set of characters “now” 980 at space key 350 .
  • Touchscreen 118 can also receive punctuation as input at any time during the typing of a message. If a user decides to use punctuation after inputting either a generated set of characters or a predicted set of characters, the ⁇ SPACE> character (for example, the ⁇ SPACE> character prior to cursor 940 of FIG. 9 ) is deleted and the inputted punctuation is inserted.
  • the ⁇ SPACE> character for example, the ⁇ SPACE> character prior to cursor 940 of FIG. 9
  • FIGS. 10A and 10B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 10A shows an example where touchscreen 118 displays “The co” in a text bar 1030 and several generated set of characters 1060 are displayed at subsequent candidate input characters.
  • touchscreen 118 displays generated set of characters “cottage” 1060 under the “T” key, generated set of characters “cook” 1060 under the “O” key, generated set of characters “coat” 1060 under the “A” key, and generated set of characters “coffee” 1060 under the “F” key.
  • FIG. 10B shows an example where touchscreen 118 receives the set of characters “cook” as input after the user has selected the generated set of characters 1060 “cook.”
  • the set of characters “cook” is inserted into input field 1030 along with a ⁇ SPACE> character.
  • set of characters include new predicted set of characters (such as words 1090 , affixes 1092 (for example, “-ed” under the “E” key and “-ing” under the “I” key), and plurals 1094 (for example, “-s” under the “S” key)), all of which are displayed at subsequent candidate input characters.
  • Each predicted word 1090 , affix 1092 , or plural 1094 is located on respective subsequent candidate input characters that match the first letter of the predicted word 1090 , affix 1092 , or plural 1094 .
  • the user has the added option of inputting a predicted set of characters 1090 , 1092 , and 1094 .
  • Input is made in the same manner as described above.
  • touchscreen 118 receives either affix 1092 or plural 1094 as an input, the ⁇ SPACE> character between cursor 1040 and “cook” is deleted and the corresponding inputted affix or plural is added to the end of “cook.”
  • FIG. 11A shows an example where touchscreen 118 displays “Did she co” in a text bar 1130 and several generated set of characters 1160 are displayed at subsequent candidate input characters.
  • touchscreen 118 displays generated set of characters “correct” 1160 under the “R” key, generated set of characters “copy” 1160 under the “P” key, and generated set of characters “contact” 1160 under the “N” key.
  • “co” is provided in the text bars of both FIG. 10A and FIG. 11A
  • touchscreen displays different generated set of characters based on the context of the characters in their respective text bars 1030 and 1130 . For example, in FIG. 10A , the characters “co” follows “The,” which implies that a noun beginning with “co” should follow.
  • FIG. 10A the characters “co” follows “The,” which implies that a noun beginning with “co” should follow.
  • contextual data can be used to determine when certain set of characters are more appropriate based on, for example, the set of characters in a text bar or previous actions by a user.
  • FIG. 11B shows an example where touchscreen 118 receives the set of characters “correct” as input after the user has selected the generated set of characters “correct” 1160 .
  • the set of characters “correct” is inserted in input field 1130 and a ⁇ SPACE> character is also inserted.
  • Predicted set of characters (such as words 1190 and affixes 1192 ) are now displayed at subsequent candidate input characters.
  • touchscreen 118 displays “-ing” with the “I” key and “-ily” with the “L” key.
  • the predicted affix may be assigned to a certain key based on a ranking, on contextual data, or a combination of both.
  • the “-ing” affix may have had a higher ranking than the “-ily” affix and was thus assigned to the “I” key. Accordingly, the “-ily” affix was assigned to the “L” key based on the corresponding “L” character being in the “-ily” affix.
  • FIG. 12A shows an example where touchscreen 118 displays “The ch” in a text bar 1230 and several generated set of characters 1260 are displayed at subsequent candidate input characters.
  • generated set of characters 1260 include both “child” and “chimp.”
  • touchscreen displays “child” under the “I” key and displays “chimp” under the “C” key.
  • the determination on which generated set of characters goes under which candidate input key can be based on a ranking (as specified above).
  • touchscreen 118 can display a generated set of characters (in this case, “chimp”) on a key even though that key may not be associated with any subsequent characters of the characters in text bar 1230 .
  • FIG. 12B shows an example where touchscreen 118 receives the set of characters “child” as input after the user has selected the generated set of characters “child” 1260 .
  • the set of characters “child” is inserted in input field 1230 and, in this example, a ⁇ SPACE> character is not inserted.
  • Predicted set of characters (such as words 1290 and affixes 1292 ) are now displayed at subsequent candidate input characters.
  • touchscreen 118 displays “-ish” with the “I” key and “-ily” with the “L” key.
  • the predicted affix may be assigned to a certain key based on a ranking, on conventional data, or a combination of both.
  • the “-ish” affix may have had a higher ranking than the “-ily” affix and was thus assigned to the “I” key. Accordingly, the “-ily” affix was assigned to the “L” key based on the corresponding “L” character being in the “-ily” affix.
  • FIG. 13A shows an example where touchscreen 118 displays “The texture and” in a text bar 1330 and several predicted set of characters (for example, words 1390 ) are displayed at subsequent candidate input characters.
  • FIG. 13B shows an example where touchscreen 118 received the set of characters “taste” as input after the user had selected the predicted set of characters “taste.” In this example, a ⁇ SPACE> character was inserted after “taste.” Consequently, predicted set of characters (such as, words 1390 and affixes 1392 ) are displayed at subsequent candidate input characters.
  • FIG. 14A shows an example where touchscreen 118 displays “The hospital staff c” in a text bar 1430 and several generated set of characters 1460 are displayed at subsequent candidate input characters.
  • FIG. 14B shows an example where touchscreen 118 received the set of characters “care” as input after the user had chosen the generated set of characters “care.” Generated set of characters “care” is now placed in input field 1430 along with a ⁇ SPACE> and predicted set of characters (such as, words 1490 and affixes 1492 ) are displayed at subsequent candidate input characters.
  • FIG. 14A shows an example where touchscreen 118 displays “The hospital staff c” in a text bar 1430 and several generated set of characters 1460 are displayed at subsequent candidate input characters.
  • FIG. 14B shows an example where touchscreen 118 received the set of characters “care” as input after the user had chosen the generated set of characters “care.” Generated set of characters “care” is now placed in input field 1430 along with a ⁇ SPACE> and predicted set of characters (such as, words 1490 and affix
  • 14C shows an example where touchscreen 118 received the affix “-ful” as input (thereby modifying the set of characters “care” to “careful”) after the user had chosen the predicted affix “-ful.”
  • the set of characters “careful” is now inserted into input field 1430 .
  • inputting a word or affix can modify the input word or word fragment. For example, if “spicy” was input by a user, and “ness” is a predicted affix and is inputted, “spicy” would change to “spiciness,” dropping the “y” and adding “iness”. In other embodiments, “happy” could change to “happiness” or “conceive” could change to “conceivable”.
  • FIG. 15 shows an example of an ambiguous keyboard 1520 , which can have multiple characters assigned to a key (for example, such as a telephone keypad where “A”, “B” and “C” are assigned to key 2 ; “D”, “E” and “F” are assigned to key 3 , and so on).
  • a key for example, such as a telephone keypad where “A”, “B” and “C” are assigned to key 2 ; “D”, “E” and “F” are assigned to key 3 , and so on.
  • the characters “Q” and “W” can be assigned one key, and the characters “E” and “R” assigned to another key.
  • the user has input the characters “Ol” by pressing the “op” key followed by the “L” key.
  • generated set of characters 1560 are displayed at subsequent candidate input characters. Since the first pressed key can input either an “O” or a “P” and the second pressed key inputs an “L”, generated set of characters 1560 will begin with “OL” or “PL”, such
  • FIG. 16 shows another example of an ambiguous keyboard 1620 .
  • generated sets of characters “plum” and “olive” 1660 are displayed near the “ui” key.
  • the sets of characters could also have been displayed at or on the “ui” key.
  • both sets of characters correspond to a particular input corresponding to a key, namely the third letter of plum is a “u” and the third letter of olive is an “i.”
  • Touchscreen 118 (via main processor 102 ) can differentiate between the input of either set of characters based on the user's action. For example, the user can swipe at or near the right of the “ui” key to input “olive”, or swipe at or near the left of the “ui” key to input “plum”.
  • FIGS. 17 , 18 , and 19 can be implemented with any set of characters such as words, phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof.
  • FIG. 17 shows in flowchart form a method 1700 in accordance with some embodiments.
  • Method 1700 can be implemented with a processor, such as main processor 102 , and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like.
  • the processor receives an input of a character.
  • the processor displays a generated set of characters at or near keys of subsequent candidate input characters on the touchscreen, such as described above.
  • the processor receives an input of the generated set of characters chosen by a user. If the user does not choose a generated set of characters displayed at or near keys of subsequent candidate input characters, the method restarts at block 1710 , where the touchscreen can receive an input of another character. If a generated set of characters is received as input, at block 1740 the generated set of characters and a ⁇ SPACE> character is inserted in an input field (for example, input field 330 of FIGS. 3-9 ). As mentioned previously, the user can choose the generated set of characters, for example, by swiping at or near it or by long pressing a key corresponding to the subsequent candidate input character.
  • the method restarts at block 1710 . If punctuation is to be inserted, the method continues to block 1760 where the ⁇ SPACE> character is deleted and the appropriate punctuation is added to the input field. After block 1760 , the method starts over at block 1710 .
  • FIG. 18 is a flowchart illustrating example method 1800 in accordance with some embodiments.
  • Method 1800 can be implemented with a processor, such as main processor 102 , and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like.
  • the processor receives an input of a character.
  • the processor displays a generated set of characters at or near a location on the keyboard corresponding to a subsequent candidate input character on a touchscreen.
  • the processor receives an input of a generated set of characters chosen by a user. If the user does not choose a generated set of characters displayed at or near keys of subsequent candidate input characters, the method restarts at block 1810 , where the processor can receive an input of another character. If a generated set of characters is received as input, at block 1840 the generated set of characters and a ⁇ SPACE> character is inserted in an input field (for example, input field 330 of FIGS. 3-9 ). As mentioned previously, the user can choose the generated set of characters, for example, by swiping at or near it or by pressing a key corresponding to the subsequent candidate input character for a predetermined period of time.
  • a predicted set of characters, different from the generated set(s) of characters, is displayed on a space key of the keyboard after the input of the generated set of characters in block 1830 .
  • the predicted set of characters displayed in block 1850 is determined by using a predictor.
  • the one or more predicted sets of characters can be placed on one or more keys other than the space key.
  • the processor can determine whether it has received an input of the predicted set of characters based on a user input. If the touchscreen has not received an input of the predicted set of characters because the user has not chosen the predicted set of characters, the method restarts at block 1810 . If the processor has received the input of the predicted set of characters, the method continues to block 1870 , where the chosen predicted set of characters and a ⁇ SPACE> character is inserted in the input field. From here, method 1800 can return to either block 1810 or block 1850 .
  • method 1800 does not display the punctuation illustration as shown in method 1700
  • the punctuation illustration as shown in blocks 1750 and 1760
  • FIG. 19 is a flowchart illustrating an example method 1900 in accordance with some embodiments.
  • predicted set of characters is displayed at corresponding subsequent candidate input characters.
  • an input has not been received or a delimiter has been activated, such as inputting a ⁇ SPACE>.
  • one or more predicted set of characters (such as, words, affixes, or a combination thereof) are placed on subsequent candidate input characters that correspond to the first letter of the generated set of characters.
  • the method moves to block 1930 where the predicted set of characters and a ⁇ SPACE> character are inserted into an input field. Then the method starts over at block 1910 . If the touchscreen does not receive an input of the set of characters, the touchscreen is available to receive an input of a character (as described by block 1710 of FIG. 17 or block 1810 of FIG. 18 ) and proceed through methods (such as methods 1700 of FIG. 17 or 1800 of FIG. 18 or even method 1900 of FIG. 19 ).
  • FIG. 20 shows another example of a virtual keyboard 2020 having an input field 2030 .
  • the set of characters “Please con” are received as input by the touchscreen and displayed in the input field 2030 followed by a cursor 2040 , which can be a vertical line (as shown) or any other shape, such as an underscore as mentioned previously.
  • a predictor determines one or more generated set of characters 2060 based in part on the received input for the current position of cursor 2040 within the current word, which is in the fourth character position of the current word, as shown in input field 2030 .
  • the current word is the word in which the cursor is currently located.
  • generated set of characters 2060 “cones”, “contact”, “construction” and “connect” are displayed.
  • Each generated set of characters 2060 is displayed at a key corresponding to a subsequent candidate input character (for example, under the E, T, S and N keys of the virtual keyboard 2020 , respectively), for the current position of cursor 2040 , which is in the third character position, as shown in input field 2030 .
  • each generated set of characters 2060 is displayed at or near keys on the virtual keyboard 2020 associated with the subsequent candidate input characters.
  • the display of a generated set of characters 2060 at or near a key corresponding to a subsequent candidate input character depends, for instance, on the size of the generated set of characters 2060 and the size of generated set of characters associated with nearby keys of other subsequent candidate input characters.
  • the processor 102 limits the generated set of characters which are displayed.
  • the processor 102 may limit the generated set of characters which are displayed using one or any combination of the rank of each generated set of characters, the size of each generated set of characters, and a distance between each generated set of characters which are displayed so that a predetermined distance between the generated set of characters is maintained. This may result in the display of one or more generated sets of characters which are larger than the associated key in the virtual keyboard 2020 .
  • the electronic device could be configured to display only the highest ranked generated set of characters. This results in the display of the most likely generated set of characters.
  • only the longest of the generated set of characters is displayed. This may be beneficial in that allowing faster entry of longer words saves time and processing cycles, thereby leveraging the predictive text input solution.
  • only the shortest generated set of characters is displayed. This may be beneficial in that shorter words can be more common, at least for some users, thereby allowing faster entry of words which saves time and processing cycles, thereby leveraging the predictive text input solution.
  • the processor 102 may only limit the generated set of characters which are displayed in neighboring/adjacent keys in the same row of keys in the virtual keyboard 2020 . In some examples, the processor 102 may limit the generated set of characters which are displayed in neighboring/adjacent keys in the same row of keys in the virtual keyboard 2020 so that a generated set of characters is never displayed in neighboring/adjacent keys irrespective of the size of the generated set of characters or distance between each generated set of characters. In such examples, the processor 102 uses the rank to determine which generated set of characters are displayed.
  • the processor 102 can limit the generated set of characters which are displayed when the generated set of characters associated with nearby keys in different rows of keys in the virtual keyboard 2020 are too large to be displayed at the same time without overlapping with each other or without a predetermined distance between the generated sets of characters. In other examples, the processor 102 can limit the generated set of characters which are displayed when the generated set of characters associated with nearby keys in the same or different columns of keys in the virtual keyboard 2020 are too large to be displayed at the same time without overlapping with each other or without a predetermined distance between the generated sets of characters
  • a user can use a finger or stylus to swipe a generated set of characters to input that generated set of characters.
  • An individual letter in contrast, can be input by tapping a respective key in the virtual keyboard 2020 using a finger or stylus.
  • the touchscreen differentiates between tap and swipe events using movement and duration of touch events, the details of which are known in the art and need not be described herein.
  • Each key in the virtual keyboard 2020 and each generated set of characters 2060 which is displayed has an associated target area on the touchscreen.
  • the target area associated with each generated set of characters can be larger than and/or overlap with the target area of the key corresponding to the subsequent candidate input character with which it is associated and possibly nearby keys, such as neighboring keys in the same row.
  • a generated set of characters can be input by detecting a swipe in any direction at or near the displayed generated set of characters.
  • a generated set of characters can only be input by detecting a swipe in a particular direction at or near the displayed generated set of characters.
  • the particular direction may be associated with a direction in which the particular direction displayed generated set of characters (e.g., left or right in the shown example).
  • the swipe is at or near the displayed generated set of characters when the swipe has an initial contact point within the target area associated with the displayed generated set of characters (which may be the same or larger than the displayed generated set of characters).
  • FIG. 21 an example virtual keyboard 2120 having a number of keys 2130 is shown along with a user's thumbs 2150 A and 2150 B, respectively.
  • a user's thumbs 2150 A and 2150 B may obscure large portions of the virtual keyboard 2120 from the user's eyes. In some instances, this may make it difficult for the user to discern whether he/she has activated the desired key.
  • the activated key will flash or a visual cue such as a tooltip may be displayed above the activated key to inform the user of which key has been activated.
  • a tooltip is a user interface element provided by the GUI which provides a hint associated with another user interface element. The hint provides a visual cue directing the user's attention to the other user interface element. Tooltips used in conventional virtual keyboards are displayed above the activated key in the virtual keyboard.
  • the tooltip typically hovers above the activated key for a short duration, typically while the contact with the activated key on the touchscreen 118 is maintained (e.g., the tooltip disappears/is removed when the user lifts his/her finger.
  • the user's thumb may obscure the flash of the “N” key or the display of a tooltip above the “N” key. Accordingly, conventional tooltips are limited in the extent to which the notification function of the tooltips is effective.
  • FIG. 22 shows in flowchart form a method 2200 in accordance with some example embodiments.
  • the example method 2200 and any methods described herein can be implemented with a processor, such as main processor 102 , and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like.
  • the device detects a touch input at a key 2130 of the virtual keyboard 2120 .
  • the touch input may be a tap or a prolonged touch on or around a key 2130 of the virtual keyboard 2120 .
  • the touch input may be one of the contact points of a multi-touch input.
  • the device determines an input direction of the touch input.
  • the input direction of the touch input is a direction from which the device determines a user has provided the touch input. For example, when a user is holding a device in the manner illustrated in FIG. 21 , the user's left thumb 2150 A will likely approach and provide a touch input from the left side of the virtual keyboard 2120 . Accordingly, the determined input direction in such cases is left. Conversely, the user's right thumb 2150 B will likely approach and provide a touch input from the right side of the virtual keyboard. Accordingly, the determined input direction in such cases is right.
  • the input direction may be left or right of the virtual keyboard. In some examples, the input direction may be top or bottom of the virtual keyboard. Other input directions are also possible, such as a diagonal direction, which may be at any angle.
  • the input direction may be determined in accordance with the direction of a touch input, such as the direction in which a contact point moves after initially contacting the touchscreen 118 , the shape of the contact area of the touch input, the proximity of the touch input to a respective edge of the touchscreen 118 , or other suitable means, examples of which are provided below.
  • the proximity of the touch input may be determined relative to a screen orientation of the GUI (e.g., input is closest to left, right, top or bottom of the virtual keyboard 2120 ).
  • the proximity of the touch input may be determined relative to the touchscreen 118 (e.g., input is closest to left, right, top or bottom of the touchscreen 118 ).
  • a visual cue of the key at which the touch input was detected is displayed on the display. This visual cue is displayed at a position on the display based on the input direction of the touch input. In some examples, the visual cue is displayed proximate to the touched key and offset in a direction away from the input direction of the touch input.
  • the input direction provides a proxy for determining which of the user's hands is being used, i.e. to which hand the finger causing the touch input belongs, so that the visual cue may be located accordingly.
  • the visual cue is located to the right of the activated key (typically above and to the right of the activated key).
  • the visual cue is located to the left of the activated key (typically above and to the left of the activated key).
  • tapping the visual cue may cause an action associated with the visual cue, such as a character input, to be performed.
  • an action associated with the visual cue such as a character input
  • the visual cue e.g., tooltip
  • the directional bias would make it easier for the right hand thumb to tap the character icon 2350 to input the character “x” or perform a command associated with the “X” key.
  • FIG. 24 shows another example of a virtual keyboard 2120 on which a user is providing a touch input on the “U” key with the user's right thumb 2150 B.
  • the device detects the touch input and determines that the input direction of the touch input is from the right. Based on this input direction, the device displays a visual cue in the form of a “U” character icon 2350 which is offset above and to the left of the touched “U” key.
  • the visual cue is displayed for a short duration before disappearing again. In some examples, the visual cue is displayed for as long as the touch input is maintained at the key. For example, if a user presses and holds a key, the visual cue may remain displayed on the display until the user releases the key.
  • the input direction may be determined in accordance with the shape of the contact area of the touch input.
  • the device determines a shape of the contact area of the touch input.
  • Each touch input is caused by a touch event detected by the touchscreen 118 .
  • the touch event is defined by a contact area caused by interaction of a user's finger or stylus with the touchscreen 118 .
  • the touchscreen 118 or the main processor 102 , may determine a shape or profile of the contact area of the user's finger.
  • the touchscreen 118 defines a Cartesian coordinate system defined by x and y-axes in an input plane of the touchscreen 118 .
  • the x and y-axes of the Cartesian coordinate system are used to map locations of the touchscreen 118 and are aligned with the x and y-axes of the positional sensor; however in other embodiments these may be different.
  • Each touch event on the touchscreen 118 returns a touch point defined in terms of an (x, y) value. The returned touch point is typically the centroid of the contact area.
  • the coordinate system has an origin (0, 0) which is located at a bottom-left corner of the touchscreen 118 ; however, it will be appreciated that the origin (0, 0) could be located elsewhere such as a top-left corner of the touchscreen 118 .
  • the contact area caused by a user's finger roughly represents an ellipse.
  • the angle ( ⁇ ) of the major axis (A) relative to an edge of the display 112 or a screen orientation may be used to determine the direction of the touch input.
  • the screen orientation of the content displayed on the display 112 which is a parameter of the GUI and known to the device, or a device orientation of the display 112 which is detected by the orientation sensor 197 , may be used to determine the direction along the major axis (A). More details of an example method of calculating a shape of the contact area of the user's finger is found in U.S. Patent Publication No. 2007/0097096, which is incorporated herein by reference.
  • the centroid of the contact area is calculated based on raw location and magnitude data (e.g., capacitance data) obtained from the contact area.
  • the centroid is typically defined in Cartesian coordinates by a value (X c , Y c ).
  • the centroid of the contact area is the weighted averaged of the pixels in the contact area and represents the central coordinate of the contact area.
  • the centroid may be found using the following equations:
  • X c represents the x-coordinate of the centroid of the contact area
  • Y c represents the y-coordinate of the centroid of the contact area
  • x represents the x-coordinate of each pixel in the contact area
  • y represents the y-coordinate of each pixel in the contact area
  • Z represents the magnitude (e.g., capacitance value) at each pixel in the contact area
  • the index i represents the pixel (or electrode) in the contact area
  • n represents the number of pixels (or electrodes) in the contact area.
  • the touchscreen 118 may determine an input direction based on the shape of the contact area of the user's finger by performing a comparative analysis on the contact area. As part of the comparative analysis, the detected contact area is compared to one or more touch profiles stored, for example, in the memory 110 on the device.
  • the touch profiles may include common shapes of touch inputs by a left thumb press or right thumb press.
  • profiles may also include common shapes for left or right finger touches. In some examples, these profiles may include common shapes of stylus touches when held by a left hand or when held by a right hand.
  • the device determines the input direction of a touch input by determining whether the shape of the touch input corresponds to one of the touch profiles stored in memory. For example, if the device determines that a touch input shape corresponds to a touch profile for a left thumb press, the device may determine that the input direction of the touch input is from the left.
  • the shape of the touch input does not necessarily have to identically match a touch profile.
  • the device may determine the corresponding touch profile by selecting the touch profile which most closely resembles the shape of the touch input.
  • FIG. 26 illustrates non-limiting example touch shapes of a left thumb touch 2450 A and a right thumb touch 2450 B.
  • the touch shapes have been shown as ellipses for illustrative purposes; however, the shape of actual contact areas may vary.
  • the device may determine the input direction of the touch input based on which portion of the device the touch input was received. In some examples, if the touch input is detected on a left portion of the virtual keyboard, the device determines that the input direction of the touch input is from the left. Similarly, in some examples, if the touch input is detected on a right portion of the virtual keyboard, the device determines that the input direction of the touch input is from the right.
  • FIG. 27 shows an example virtual keyboard 2120 having a number of keys in a left portion 2710 and a number of keys in a right portion 2720 .
  • a different number of divisions of the keyboard may be used in other examples.
  • the keys may be assigned into upper and lower portions instead of, or in addition to, the left portion 2710 and the right portion 2720 .
  • FIG. 28 shows an example virtual keyboard 2120 having keys in a left portion 2810 , a right portion 2820 , a mid-left portion 2830 , and a mid-right portion 2840 .
  • a touch input at a key in the left portion 2810 may cause the electronic device 100 to display a visual cue above and to the right of the touched key at an offset n degrees (e.g., 45 degrees) from the vertical
  • a touch input at a key in the mid-left portion 2830 may cause the electronic device 100 to display a visual cue above and to the right of the touched key at an offset m degrees (e.g., 30 degrees) from the vertical, where n and m are different.
  • a touch input at a key in the right portion 2820 may cause the electronic device 100 to display a visual cue above and to the left of the touched key at an offset n degrees (e.g., 45 degrees) from the vertical
  • a touch input at a key in the mid-right portion 2840 may cause the electronic device 100 to display a visual cue above and to the left of the touched key at an offset m degrees (e.g., 30 degrees) from the vertical, where n and m are different.
  • the offset distance and/or position between the touched key and the visual cue may vary based on which portion the activated key is located in. This solution allows the offset distance and/or position to more precisely adjust to the position of the user's finger.
  • the electronic device 100 may display a visual cue offset such that it is directly above the touched key.
  • the electronic device 100 may display a visual cue offset in a direction away from the next most probable letter based on letter or word predictions, as mentioned previously.
  • the electronic device 100 may determine the input direction of the touch input, at least in part, by detecting proximity information on the one or more proximity sensor 198 or detecting ambient light information on the one or more ambient light sensors 199 .
  • the electronic device 100 detects proximity of an object at or near the display 112 at a time when the touch input was detected (using proximity information and/or ambient light information), and determines the input direction as left or right in accordance with a side of the display at which proximity of an object was detected.
  • a first proximity sensor 198 on a left side of the electronic device 100 and a second proximity sensor 198 on the right side of the electronic device 100 may detect the proximity of a user's hand approaching from the left or right side of the electronic device 100 .
  • a single proximity sensor 198 at a central position on the electronic device 100 may be configured to detect objects in close proximity to either the left or the right sides of the electronic device 100 .
  • the one or more proximity sensors 198 may also detect the proximity of an object close to the top or bottom of the electronic device 100 .
  • the proximity of an object to a particular side of the electronic device 100 may correspond to a determination that a touch input is coming from that particular side of the electronic device 100 .
  • the ambient light sensor 199 may detect proximity of an object at or near the display 112 in accordance with a lower intensity ambient light at a particular side of the electronic device 100 .
  • the lower intensity ambient light may correspond to a shadow cast by an object approaching from that particular direction, and may therefore correspond to a determination that a touch input is coming from that direction.
  • the electronic device 100 may determine the input direction of the touch input, at least in part, by detecting the orientation of the electronic device 100 using an orientation sensor 197 such as an accelerometer. In some examples, the electronic device 100 may determine that the electronic device 100 is lying on a flat surface such as a desk when the orientation sensor 197 detects that the electronic device 100 is horizontal with the face of the touchscreen 118 facing upwards. With this information, the electronic device 100 may determine that touch input corresponds to a finger other than the user's thumbs because it would be difficult for a user to use his/her thumbs when the device is lying on a flat surface.
  • an orientation sensor 197 such as an accelerometer
  • any analysis of the shape of the contact area of the touch input may be restricted to fingers other than the thumbs, and may be restricted to index fingers, which are typically used for typing when using the electronic device 100 .
  • This allows, for example, shape analysis to be limited to a subset of data, such as fingers other than thumbs or merely index fingers.
  • the orientation sensor 197 may detect that the electronic device 100 is partially upright with the top of the electronic device 100 facing upwards and slightly to the right. In this orientation, a user may be holding the device only in his/her right hand, and therefore, a user may likely be using his/her right hand to provide touch inputs. Accordingly, the device may use the detected orientation information to determine that a touch input is from the right side of the electronic device 100 . Similarly, in some examples, the orientation sensor 197 may detect that electronic device 100 is in a position which may correspond to a user holding the electronic device 100 only in his/her left hand, and therefore, the electronic device 100 may use the detected orientation information to determine that a touch input is from the left side of the electronic device 100 .
  • the electronic device 100 may allow users to specify which finger he or she uses for which key. This may be useful to adjust a mapping model which, for example, may have been learned by the electronic device 100 through other means. For example, the electronic device 100 may determine that a left-hand finger is being used when the character ‘g’ is typed and a right-biased visual cue (e.g. tooltip) appears whereas the user may want the tooltip direction to be biased to the left because the user uses the right-hand finger when the character ‘g’ is typed or for other reasons.
  • a left-hand finger is being used when the character ‘g’ is typed and a right-biased visual cue (e.g. tooltip) appears whereas the user may want the tooltip direction to be biased to the left because the user uses the right-hand finger when the character ‘g’ is typed or for other reasons.
  • Finger mapping may also be used. Finger mapping, i.e., which finger tapped which character key in a particular context, may be learned from an external camera-based system which analyses the virtual keyboard or other means.
  • the device may be able to detect one-finger typing, for example, by the shape of the touch inputs as described previously.
  • the direction/angle of the major axis of the contact area of touch inputs can be used to identify the handedness of the user, or at least the hand with which the user is typing.
  • the angle ( ⁇ ) of the major axis (A) forms an acute angle relative to a vertical component (y-axis) of the GUI in a given screen orientation as shown in FIG. 25 .
  • the angle ( ⁇ ) is positive relative to the vertical component when the user is typing with the left hand, whereas the angle ( ⁇ ) is negative relative to the vertical component when the user is typing with the right hand.
  • the particular hand with which the touch events are associated is determined to be the typing hand.
  • One-finger typing may be presumed when a portrait screen orientation is used. In such cases, only handedness needs to be determined.
  • handedness may be a known parameter, for example, a parameter stored in the memory 110 .
  • the visual cue When left-handed typing is determined or detected, the visual cue is located to the right of the activated key (typically above and to the right of the activated key). When right-handed typing is determined or detected, the visual cue is located to the left of the activated key (typically above and to the left of the activated key).
  • FIG. 29 shows in flowchart form a method 2900 in accordance with some example embodiments.
  • the example method 2900 described herein can be implemented with a processor, such as main processor 102 , and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like.
  • the device detects a touch input at a key 2130 of the virtual keyboard 2120 in the form of a touch gesture.
  • the device determines the input direction of the touch input.
  • the input direction of the touch input corresponds to the direction of the touch gesture in relation to an initial contact point of the touch input.
  • a visual cue of a command associated with the key at which the touch input was detected i.e., the activated key
  • the visual cue is displayed proximate to the activated key.
  • the visual cue is displayed proximate to the activated key and offset in a direction away from the input direction of the touch input as described similar to visual cues described previously.
  • the peek gesture is a small touch gesture having a travel distance which is greater than a first threshold distance but less than a second threshold distance.
  • the use of a small touch gesture in a given direction may be used to differentiate from the touch input from a longer touch gesture in the same direction which is associated with another action.
  • the touch gesture in some examples, may be a downward gesture (such as a downward swipe).
  • the peek gesture may be a small upward gesture (e.g., upward swipe).
  • the peek gesture may be any direction, pattern or combination of touch gestures such as a circular gesture around the key, or an L-shaped gesture comprising a downward gesture (e.g., swipe) followed by a left-to-right downward gesture (e.g., swipe).
  • a visual cue of an alternate character associated with the key at which the touch input was detected is displayed rather than a visual cue of a command associated with the key.
  • the command associated with the activated key is executed by the device in response to a trigger.
  • the alternate character associated with the key may be input in response to the trigger.
  • the trigger may be that contact with virtual keyboard 2120 is released at or near an end of the peek gesture.
  • the command associated with the activated key is not executed if the contact point is moved back towards its initial position before being released, or is otherwise within a threshold distance of the initial position when contact with virtual keyboard 2120 is released.
  • the trigger is continuing the peek gesture until a second threshold distance has been travelled by the touch input.
  • the trigger is determining a duration of the touch input exceeds a threshold duration (also known as a touch-and-hold or press-and-hold). Typically, the touch-and-hold or press-and-hold is performed at or near an end of the peek gesture.
  • FIG. 30 shows an example of a virtual keyboard 2120 on which a user provides a touch gesture on the “R” key.
  • the user touches the virtual keyboard 2120 at the initial contact point indicated by the reference 3010 .
  • the user moves the contact point downwards to the contact point indication by the reference 3020 .
  • the downward touch gesture corresponds to a peek gesture
  • the device displays a visual cue in the form of a “reply” command icon 3030 which is associated with the “R” key.
  • the command icon 3030 is displayed proximate to the associated key.
  • the command icon 3030 may be shown in the prediction bar.
  • the command e.g., reply command for replying a received communication such as an email
  • the command is executed by the device in response to a trigger.
  • the “R” key is associated with the “Reply” command.
  • this command may reply to a sender of a currently selected or displayed email message.
  • different keys may be associated with different commands and in different contexts.
  • the “R” key may be associated with the “Reply” command as noted above, the “L” key may be associated with the “Reply All” command to reply to all recipients of the currently selected or displayed email message, the “F” key may be associated the “Forward” command to forward the currently selected or displayed email message, the “S” key may be associated the “Send” command to send an open message under composition, the “N” key may be associated with a “Next Message” command to display a next message in a list (e.g., inbox or folder), a “P” key may be associated with a “Previous Message” command to display a previous message in a list (e.g., inbox or folder), or any combination thereof.
  • the “Send” command for sending an electronic message may be associated with an “Enter” key in the virtual keyboard.
  • the “Backspace” key may be associated with a “Delete” command for deleting an input character at the position of a cursor in an input field rather than the “Backspace” command for deleting an input character at a position before the position cursor in the input field.
  • a “Reply” command icon associated with the “Reply” command is displayed when the touch gesture is performed on the “R” key
  • a “Reply All” command icon associated with a “Reply All” command is displayed when the touch gesture is performed on the “L” key
  • a “Forward” command icon associated with a “Forward” command is displayed when the touch gesture is performed on the “F” key
  • a “Send” command icon associated with the “Send” is displayed when the touch gesture is performed on the “S” key (or possibly “Enter” key)
  • a “Next Message” command icon associated with the “Next Message” is displayed when the touch gesture is performed on the “N” key
  • a “Previous Message” command icon associated with a “Previous Message” command is displayed when the touch gesture is performed on the “P” key
  • “Delete” command icon associated with the “Delete” command is displayed when the touch gesture is performed on the “Backspace” key.
  • the “N” key may be associated with a “Next Page” command for displaying a next page of content
  • “P” key may be associated with a “Previous Page” command for displaying a previous page of content
  • the “T” key may be associated with a “Top” command which displays a top portion of a currently displayed item (e.g., web page, document, list, electronic message etc.)
  • the “B” key may be associated with a “Bottom” command which displays a bottom portion of the currently displayed item, or any combination thereof.
  • a “Next Page” command icon associated with the “Next page command is displayed when the touch gesture is performed on the “N” key
  • a “Previous Page” command icon associated with the “Previous Page” command is displayed when the touch gesture is performed on the “P” key
  • a “Top” command icon associated with the “Top” command is displayed when the touch gesture is performed on the “T” key
  • a “Bottom” command icon associated with the “Bottom” command is displayed when the touch gesture is performed on the “B” key.
  • keys may be associated with a command (a so-called key-command assignment), and may have a peek gesture associated with it in a similar manner to the example commands described above.
  • the commands associated with the keys may be context dependent, for example, depending on an active mode or open application.
  • the virtual keyboard 2120 is typically displayed or invoked automatically in response to the display or selection of a text entry field.
  • the virtual keyboard 2120 may be toggled between a hidden state and a shown state in response to respective input such as, but not limited to, an onscreen virtual keyboard toggle button.
  • the virtual keyboard 2120 may be displayed or invoked out-of-context when no text entry field is present to permit the peek gestures and associated shortcuts for executing commands to be used.
  • the associated shortcuts may be faster and more intuitive for some users compared with navigating a menu or other graphical user interface element to select the appropriate command.
  • users familiar with shortcuts on a device with a physical keyboard may be familiar with certain key-command associations and may be able to execute commands more quickly using the key-command associations via the virtual keyboard 2120 , even if the virtual keyboard 2120 has to be invoked to access the keys and activate the shortcut commands.
  • this solution can be used to leverage shortcuts conventionally used in devices having physical keyboards in a virtual way.
  • the visual cues described above are believed to have potential advantages in several respects which provide a more natural interaction with the device. Offsetting visual cues based on the input direction of the touch input, reduces or eliminates obscuring of the visual cue by an input implement (e.g., finger or stylus) and facilities interaction with the visual cue (e.g., tooltip). Moreover, in some instances, the visibility of the touch input feedback to the user may be improved.
  • Providing more natural interaction with the device involves identifying efficient interactions (such as gestures) which are relatively easy to perform, relatively easy to remember, have discoverability which allows users to “discover” functions during normal use without formal training, and which can be differentiated from other interactions (such as gestures) by users (and by the device) relatively easily.
  • Arbitrary or poorly considered interaction-action assignments (e.g., gesture-action assignments) tend to create awkward and unnatural user experiences which make the required interaction harder to perform, harder to remember, undiscoverable (or at least less discoverable), and harder to differentiate from other interactions by users.
  • a virtual keyboard presents an opportunity for shortcuts, hot keys or other commands to be discovered by the user. This allows users to “discover” functions during normal use without formal training.
  • the specific interaction-action assignments described herein are also believed to be relatively easy to perform, relatively easy to remember, have good discoverability, and which can be differentiated from other interactions by users (and by the device) relatively easily.
  • FIG. 31 is a flowchart of a method 3100 for input using a virtual keyboard rendered on a display of an electronic device 100 in accordance with one example embodiment of the present disclosure.
  • the virtual keyboard has at least two input states but could have more than two input inputs.
  • the method 3100 may be carried out, at least in part, by firmware or software executed by the processor 102 . Coding of software for carrying out such a method 3100 is within the scope of a person of ordinary skill in the art provided the present disclosure.
  • the method 3100 may contain additional or fewer processes than shown and/or described, and may be performed in a different order.
  • Computer-readable code executable by the processor 102 to perform the method 3100 may be stored in a computer-readable medium such as the memory 110 .
  • a virtual keyboard is rendered and displayed on the touch-sensitive display 118 .
  • the virtual keyboard may be displayed automatically when an input field is displayed or may be called or invoked, for example, in response to corresponding input (such as activation of a keyboard button or icon).
  • the virtual keyboard includes a plurality of keys including a plurality of character keys as previously described. Each key in the plurality of character keys corresponds to a character in an input character set.
  • the input character set in at least some examples, is an English alphanumeric character set.
  • the plurality of character keys are arranged in a familiar QWERTY layout in the shown example but may be arranged in another suitable format in other examples.
  • the virtual keyboard may be arranged in the same or similar configuration to those described above.
  • a touch input is detected on the touchscreen 118 at a location associated with a key.
  • the electronic device 100 determines a type of touch gesture of the detected touch input. In some examples, the electronic device 100 determines whether the touch input is a first type of gesture input or a second type of gesture. In some examples, the first type of gesture is a tap on or near the key and the second type of gesture is a swipe in a particular direction (e.g., down swipe) which has an initial contact point on or near the key.
  • a first input associated with the key is input.
  • the first input is character input which corresponds to a character displayed in the key in the virtual keyboard. For example, tapping a character key inputs a character from an input character set associated with the key.
  • the first input may be a command when the key is a non-character key (e.g., function key).
  • the electronic device 100 may perform an action if the touch input does not correspond to either the first touch gesture or second touch gesture but does correspond to other designated input (such as a third touch gesture).
  • the action could be input of an alternative character or execution of an alternative command different than that associated with the first touch gesture and second touch gesture for the particular key.
  • the “R” key may be associated with the “Reply” command
  • the “L” key may be associated with the “Reply All” command
  • the “F” key may be associated the “Forward” command
  • the “S” key may be associated the “Send” command to send an open message under composition
  • the “N” key may be associated with the “Next Message” commands the “N”
  • the “P” key may be associated with the “Previous Message” command, or any combination thereof.
  • the “Send” command may be associated with the “Enter” key.
  • the “Backspace” key may be associated with the “Delete” command.
  • the “N” key may be associated with the “Next Page”
  • the “P” key may be associated with the “Previous Page” commands
  • the “T” key may be associated with the “Top” command
  • the “B” key may be associated with the “Bottom” command, or any combination thereof.
  • keys may be associated with a command (a so-called key-command assignment) in a similar manner to the example commands described above.
  • the commands associated with the keys may be context dependent, for example, depending on an active mode or open application.

Abstract

A method for providing visual cues rendered on a display is provided. The method comprises: detecting a touch input associated with a user interface element rendered on the display; determining an input direction of the touch input; and displaying on the display a visual cue associated with the user interface element, wherein the visual cue is located at a position based on the input direction of the touch input.

Description

    RELATED APPLICATION DATA
  • This application claims priority as a continuation of U.S. patent application Ser. No. 13/447,704, filed Apr. 16, 2012, and relates to commonly owned U.S. patent application Ser. No. 13/373,356, filed Nov. 10, 2011, which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The present disclosure relates generally to input methodologies for electronic devices, such as handheld electronic devices, and more particularly, to a method and device for touchscreen keyboard with visual cues.
  • BACKGROUND
  • Increasingly, electronic devices, such as computers, netbooks, cellular phones, smart phones, personal digital assistants, tablets, etc., have touchscreens that allow a user to input characters into an application, such as a word processor or email application. Character input on touchscreens can be a cumbersome task due to, for example, the small touchscreen area, particularly where a user needs to input a long message.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an example block diagram of an electronic device, consistent with embodiments disclosed herein.
  • FIG. 2 is a flowchart illustrating an example method for predicting a selected set of characters, consistent with embodiments disclosed herein.
  • FIGS. 3A, 3B, 3C, and 3D show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 4A and 4B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 5 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 6A, 6B, and 6C show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 7 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 8A and 8B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 9 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 10A and 10B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 11A and 11B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 12A and 12B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 13A and 13B show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIGS. 14A, 14B, and 14C show example front views of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 15 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 16 shows an example front view of a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 17 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 18 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 19 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 20 shows an example front view of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 21 shows an example front view of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 22 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIGS. 23 to 24 show example front views of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 25 illustrates a Cartesian dimensional coordinate system suitable for mapping locations of the touchscreen and determining a shape of the contact area of the user's finger in accordance with one embodiment of the present disclosure.
  • FIGS. 26 to 28 show example front views of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 29 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • FIG. 30 shows an example front view of a virtual keyboard for display on a touchscreen, consistent with embodiments disclosed herein.
  • FIG. 31 is a flowchart illustrating an example method, consistent with embodiments disclosed herein.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS
  • Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • The present disclosure relates to an electronic device, including wired communication devices (for example, a laptop computer having a touchscreen) and mobile or handheld wireless communication devices such as cellular phones, smartphones, wireless organizers, personal digital assistants, wirelessly enabled notebook computers, tablets, and similar devices. The electronic device can also be an electronic device without wireless communication capabilities, such as a handheld electronic game device, digital photograph album, digital camera, or other device.
  • Basic predictive text input solutions have been introduced for assisting with input on an electronic device. These solutions include predicting which word a user is entering and offering a suggestion for completing the word. But these solutions can have limitations, often requiring the user to input most or all of the characters in a word before the solution suggests the word the user is trying to input. Even then, a user often has to divert focus from the keyboard to view and consider the suggested word displayed elsewhere on the display of the electronic device, and thereafter, look back at the keyboard to continue typing. Refocusing of one's eyes relative to the keyboard while inputting information in an electronic device, particularly when composing large texts, can strain the eyes and be cumbersome, distracting, and otherwise inefficient. Moreover, processing cycles are lost and display power wasted as the processor is idling while the user is focusing attention to the input area, and then back at the virtual keyboard.
  • The efficiency of predictive text input solutions, from the perspective of both device resources and user experience, sometimes depends on the particular user and the nature of the interaction of the particular user with the touchscreen. Virtual keyboard usage patterns can be broadly categorized as being of two types: “rapid” and “precise”. Rapid typists are typically fast two-thumb typists which rely on auto-correction. This usage pattern corresponds most closely with experienced, frequent touchscreen users. Precise typists are typically careful typists who are inclined to use a single finger point to tap keys in the virtual keyboard, and often choose predictions as an input accelerator rather than auto-correction. This usage pattern corresponds most closely with novice/new touchscreen users as well as potentially one-handed (thumb) use situations.
  • Accordingly, example embodiments described herein permit the user of an electronic device to input characters without diverting attention from the keyboard and subsequently refocusing. Example embodiments described herein also seek to accommodate different user types, such as rapid typists and precise typists, and the different efficiency challenges presented by the different user types.
  • Use of the indefinite article “a” or “an” in the specification and the claims is meant to include one or more than one of the feature that it introduces, unless otherwise indicated. Thus, the term “a set of characters” as used in “generating a set of characters” can include the generation of one or more than one set of characters. Similarly, use of the definite article “the”, or “said,” particularly after a feature has been introduced with the indefinite article, is meant to include one or more than one of the feature to which it refers (unless otherwise indicated). Therefore, the term “the generated set of characters” as used in “displaying the generated set of characters” includes displaying one or more generated set of characters. References to orientation contained herein, such as horizontal and vertical, are relative to the screen orientation of a graphical user interface rather than any physical orientation.
  • In accordance with one embodiment, there is provided a method comprising receiving an input of a character from a virtual keyboard rendered on a display; generating one or more sets of predicted input characters based on the input character; and displaying one or more of the generated sets of predicted input characters.
  • In accordance with one embodiment, there is provided a method for providing a virtual keyboard rendered on a display with visual cues, comprising: detecting a touch input associated with a user interface element rendered on the display; determining an input direction of the touch input; and displaying on the display a visual cue associated with the user interface element, wherein the visual cue is located at a position based on the input direction of the touch input.
  • In accordance with a further embodiment, there is provided a method for providing visual cues rendered on a display, comprising: detecting a touch input associated with a user interface element rendered on the display; determining whether the touch input is associated with a left hand or a right hand of a user; and displaying on the display a visual cue associated with the user interface element, wherein the visual cue is located at a position based on whether the touch input is associated with the left hand or the right hand.
  • In a further embodiment, an electronic device is provided that comprises a display having a virtual keyboard rendered thereupon, and a processor. The processor can be configured to perform methods described herein.
  • In a further embodiment, a keyboard rendered on a display of an electronic device is provided. The keyboard can include a plurality of keys, each key corresponding to one or more different characters of a plurality of characters. The keyboard is configured to perform methods described herein in response to receiving an input.
  • In a further embodiment, a non-transitory computer-readable storage medium is provided that includes computer executable instructions for performing methods described herein.
  • These example embodiments, as well as those described below, permit the user of an electronic device to input a set of characters without diverting attention from the virtual keyboard and subsequently refocusing. Predicting and providing various options that the user is likely contemplating, and doing so at appropriate locations on the keyboard, allows the focus to remain on the keyboard, which enhances efficiency, accuracy, and speed of character input.
  • FIG. 1 is a block diagram of an electronic device 100, consistent with example embodiments disclosed herein. Electronic device 100 includes multiple components, such as a main processor 102 that controls the overall operation of electronic device 100. Communication functions, including data and voice communications, are performed through a communication subsystem 104. Data received by electronic device 100 is decompressed and decrypted by a decoder 106. The communication subsystem 104 receives messages from and sends messages to a network 150. Network 150 can be any type of network, including, but not limited to, a wired network, a data wireless network, voice wireless network, and dual-mode wireless networks that support both voice and data communications over the same physical base stations. Electronic device 100 can be a battery-powered device and include a battery interface 142 for receiving one or more batteries 144.
  • Main processor 102 is coupled to and can interact with additional subsystems such as a Random Access Memory (RAM) 108; a memory 110, such as a hard drive, CD, DVD, flash memory, or a similar storage device; one or more actuators 120; one or more force sensors 122; an auxiliary input/output (I/O) subsystem 124; a data port 126; a speaker 128; a microphone 130; short-range communications 132; other device subsystems 134; and a touchscreen 118.
  • Touchscreen 118 includes a display 112 with a touch-active overlay 114 connected to a controller 116. User-interaction with a graphical user interface (GUI), such as a virtual keyboard rendered on the display 112 as a GUI for input of characters, or a web-browser, is performed through touch-active overlay 114. Main processor 102 interacts with touch-active overlay 114 via controller 116. Characters, such as text, symbols, images, and other items are displayed on display 112 of touchscreen 118 via main processor 102. Characters are inputted when the user touches the touchscreen at a location associated with said character.
  • Touchscreen 118 is connected to and controlled by main processor 102. Accordingly, detection of a touch event and/or determining the location of the touch event can be performed by main processor 102 of electronic device 100. A touch event includes in some embodiments, a tap by a finger, a swipe by a finger, a swipe by a stylus, a long press by finger or stylus, or a press by a finger for a predetermined period of time, and the like.
  • While specific embodiments of a touchscreen have been described, any suitable type of touchscreen for an electronic device can be used, including, but not limited to, a capacitive touchscreen, a resistive touchscreen, a surface acoustic wave (SAW) touchscreen, an embedded photo cell touchscreen, an infrared (IR) touchscreen, a strain gauge-based touchscreen, an optical imaging touchscreen, a dispersive signal technology touchscreen, an acoustic pulse recognition touchscreen or a frustrated total internal reflection touchscreen. The type of touchscreen technology used in any given embodiment will depend on the electronic device and its particular application and demands.
  • Main processor 102 can also interact with a positioning system 136 for determining the location of electronic device 100. The location can be determined in any number of ways, such as by a computer, by a Global Positioning System (GPS), either included or not included in electric device 100, through a Wi-Fi network, or by having a location entered manually. The location can also be determined based on calendar entries.
  • Main processor 102 can also interact with an orientation sensor 197 for sensing the orientation of the device. In some examples, the orientation sensor 197 may be one or more accelerometers. In some examples, the orientation sensor may detect acceleration along multiple orthogonal axes. Main processor 102 can also interact with one or more proximity sensors 198 for detecting the proximity of nearby objects. In some examples, the proximity sensor may be one or more infrared emitter/sensor pairs. The main processor 102 can also interact with an ambient light sensor 199 for detecting the intensity and/or color temperature of ambient light.
  • In some embodiments, to identify a subscriber for network access, electronic device 100 uses a Subscriber Identity Module or a Removable User Identity Module (SIM/RUIM) card 138 inserted into a SIM/RUIM interface 140 for communication with a network, such as network 150. Alternatively, user identification information can be programmed into memory 110.
  • Electronic device 100 also includes an operating system 146 and programs 148 that are executed by main processor 102 and are typically stored in memory 110. Additional applications may be loaded onto electronic device 100 through network 150, auxiliary I/O subsystem 124, data port 126, short-range communications subsystem 132, or any other suitable subsystem.
  • A received signal such as a text message, an e-mail message, or web page download is processed by communication subsystem 104 and this processed information is then provided to main processor 102. Main processor 102 processes the received signal for output to display 112, to auxiliary I/O subsystem 124, or a combination of both. A user can compose data items, for example e-mail messages, which can be transmitted over network 150 through communication subsystem 104. For voice communications, the overall operation of electronic device 100 is similar. Speaker 128 outputs audible information converted from electrical signals, and microphone 130 converts audible information into electrical signals for processing.
  • FIG. 2 is a flowchart illustrating an example method 200 for predicting a set of characters, consistent with example embodiments disclosed herein. As used herein, a predictor (such as a predictive algorithm, program or firmware) includes a set of instructions that when executed by a processor (for example, main processor 102), can be used to disambiguate for example, received ambiguous text input and provide various options, such as a set of characters (for example, words or phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof) that a user might be contemplating. A predictor can also receive otherwise unambiguous text input and predict a set of characters potentially contemplated by the user based on several factors, such as context, frequency of use, and others as appreciated by those skilled in the field.
  • For example, in the predictor is a program 148 residing in memory 110 of electronic device 100. Accordingly, method 200 includes a predictor for generating a set of characters corresponding to a subsequent candidate input character based on inputted characters. It can be appreciated that while the example embodiments described herein are directed to a predictor program executed by a processor, the predictor can be executed by a virtual keyboard controller.
  • Method 200 begins at block 210, where the processor receives an input of one or more characters from a virtual keyboard displayed on a touchscreen. As used herein, however, a character can be any alphanumeric character, such as a letter, a number, a symbol, a punctuation mark, and the like. The inputted character can be displayed in an input field (for example, input field 330 further described below in FIGS. 3-9) that displays the character the user inputs using the virtual keyboard.
  • At block 220, the processor generates one or more sets of characters such as words or phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof based on the input received in block 210. The set of characters includes, for example, a set of characters that are stored in a dictionary (for example, a word or an acronym) of a memory of the electronic device, a set of characters that were previously inputted by user (for example, a name or acronym), a set of characters based on a hierarchy or tree structure, a combination thereof, or any set of characters that are selected by a processor based on defined arrangement.
  • In some embodiments, the processor can use contextual data for generating a set of characters. Contextual data considers the context of characters in the input field. Contextual data can include information about, for example, set of characters previously inputted by the user, grammatical attributes of the characters inputted in the input field (for example, whether a noun or a verb is needed as the next set of characters in a sentence), or any combination thereof. For example, if the set of characters “the” has already been inputted into display, the processor can use the contextual data to determine that a noun—instead of a verb—will be the next set of characters after “the”. Likewise, if the set of characters “Guy Lafleur played in the National Hockey” was inputted, based on the context, the processor can determine the subsequent set of characters is likely “League”. Using the contextual data, the processor can also determine whether an inputted character was incorrect. For example, the processor can determine that the inputted character was supposed to be a “w” instead of an “a”, given the proximity of these characters on a QWERTY virtual keyboard.
  • Processor 102 can also include an affix as part of the set of characters, such as an adverb ending, an adjective ending, different verb tenses, and the like, or any other change to make a complete set of characters. Processor 102 can also use the received input to generate affixes, such as plural endings or plural forms. Any known predictive technique or software can be used to process the received input and the contextual data in generating set of characters at block 220.
  • In some example embodiments, the set of characters generated at block 220 can begin with the same character received as input at block 210. For example, if the characters “pl” have been received as input using a virtual keyboard, these characters will be received by the processor as the input. In these embodiments, the set of characters generated at block 220 would all begin with “pl”, such as “please” or “plot.” There is no limit on the length of a generated set of characters. Regarding affixes, if the user has input the characters “child”, for example, the affixes generated at block 220 could include “-ren”, to make the set of characters “children”, or “-ish”, to make the set of characters “childish”.
  • In some example embodiments, the set of characters generated at block 220 can simply include the same characters received as input at block 210. For example, if the received input is an “x,” the processor may generate “example” or “xylophone” as the set of characters. Such sets of characters can be generated using the contextual data.
  • In another example embodiment, if input has not been received or a delimiter (such as a <SPACE>) has been used, the generated set of characters can be placed on subsequent candidate input characters that correspond to the first letter of the generated set of characters.
  • Next, at block 230, the generated set of characters from block 220 can be ranked. The rankings reflect the likelihood that a candidate set of characters might have been intended by the user, or might be chosen by a user compared to another candidate set of characters.
  • In some embodiments, contextual data can be included in the ranking at block 230. In some embodiments, the electronic device can be configured to rank nouns or adjectives higher based on the previous inputted set of characters. If the inputted set of characters is suggestive of a noun or adjective, the processor, using the contextual data, can rank the nouns or adjectives corresponding to what the user is typing higher at block 230. In an additional embodiment, set of characters including adjective affixes (such as “-ish” or “-ful”), phrases, plurals, or combinations thereof can also be ranked. Contextual data can increase the likelihood that the higher ranked generated set of characters are intended by a user. In some embodiments, contextual data can include information about which programs or applications are currently running or being used by a user. For example, if the user is running an email application, then set of characters associated with that user's email system, such as set of characters from the user's contact list, can be used to determine the ranking. N-grams, including unigrams, bigrams, trigrams, and the like, can be also used in the ranking of the sets of characters. Alternatively, the geolocation of the electronic device or user can be used in the ranking process. If, for example, the electronic device recognizes that a user is located at his/her office, then sets of characters generally associated with work can be ranked higher in the list. If, on the other hand, the device determines a user is at the beach, then sets of characters generally associated with the beach can be ranked higher in the list.
  • At block 240, the processor determines which of the set of characters to display based on the ranking. For example, higher ranked sets of characters are more likely to be determined that they should be displayed. A ranker (such as a ranking algorithm, program or firmware) includes a set of instructions that when executed by a processor (for example, main processor 102), can be executed to determine ranking in this regard. In some embodiments, the ranker is a program 146 residing in memory 110 of electronic device 100.
  • At block 250, the determined set of characters is displayed at a location on the keyboard corresponding to a subsequent candidate input character, predicted as the next character in a word that the user might input. For instance, if a user inputs “pl”, the word “please” would be displayed on the key for the letter “e”—the subsequent candidate input character for that word. Similarly, the word “plus” would also be displayed on the key for the letter “u”—another subsequent candidate input character. The subsequent candidate input character can be any alphanumeric character, such as a letter, number, symbol, punctuation mark, and the like.
  • In some embodiments, the generated set of characters is displayed at or near keys on the virtual keyboard associated with the subsequent candidate input characters. Its placement at or near a key can depend, for instance, on the size of the word or the number of nearby subsequent candidate input characters and the size of their associated set of characters.
  • The set of characters can be displayed in a manner that will attract the user's attention. In some embodiments, a displayed set of character's appearance can be enhanced or changed in a way that makes the set more readily visible to the user. For example, displayed sets of characters can be displayed with backlighting, highlighting, underlining, bolding, italicizing, using combinations thereof, or in any other way for making the displayed set of characters more visible.
  • When identifying the set of characters for display at block 240, the processor can limit the displayed set of characters to the top few or choose among the higher ranked sets of characters. For example, if two sets of characters are both ranked high, and these sets of characters would otherwise be displayed at the same key, the electronic device could be configured to display only the highest ranked generated set of characters. In other embodiments, both sets of characters could be displayed at or around the same key, or one set of characters is displayed at one key while the second set of characters is displayed at another key. In some example embodiments, the processor can take into account the display size to limit the number of generated sets of characters.
  • In some embodiments, the ranking could be used to choose between two or more sets of characters that, when displayed on adjacent subsequent candidate input characters, would overlap with each other (e.g., because of their respective lengths). In such a scenario, the electronic device could be configured to display the higher ranked set of characters on the keyboard. For example, if the set of characters “establishment” is ranked first in a list generated at block 240 after the letter “E” is inputted, “establishment” could be displayed at the “S” key. When displayed on a virtual keyboard, however, its length might occupy some space on the “A” key and the “D” key, potentially blocking a set of characters that would be displayed on or around those keys. At block 240, it could be determined that “establishment” would be displayed fully, and no other set of characters would be placed at the “A” or “D” keys ahead of the first ranked set of characters “establishment.” An alternative to displaying only the top ranked set of characters would be to use abbreviations or recognized shortened forms of the set of characters, effectively permitting a long set of characters to be displayed within or mostly within the boundaries of a single key simultaneously with other sets of characters on adjacent keys of a virtual keyboard.
  • FIGS. 3-9 illustrate a series of example front views of the touchscreen 118 having a virtual keyboard 320, consistent with example embodiments disclosed herein. Starting with FIG. 3A, touchscreen 118 includes a virtual keyboard 320 that is touch-active. The position of the virtual keyboard 320 is variable such that virtual keyboard 320 can be placed at any location on touchscreen 118. Touchscreen 118 could be configured to detect the location and possibly pressure of one or more objects at the same time. Touchscreen 118 includes two areas: (1) an input field 330 that displays characters after a user has inputted those characters and (2) the virtual keyboard 320 that receives the input from the user. As described throughout this disclosure, a virtual keyboard displays a set of characters at a location on the keyboard corresponding to a subsequent candidate input character that might be received as input from the user.
  • The examples and embodiments illustrated in FIGS. 3-9 can be implemented with any set of characters, such as words, phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof.
  • As shown in FIG. 3A, touchscreen 118 displays a standard QWERTY virtual keyboard 320; however, any conventional key configuration can be displayed for use in the device, such as AZERTY, QWERTZ, or a layout based on the International Telecommunication Union (ITU) standard (ITU E.161) having “ABC” on key 2, “DEF” on key 3, and so on. Virtual keyboard 320 includes space key 350 as well as other keys that can provide different inputs, such as punctuation, letters, numbers, enter or return keys, and function keys. While virtual keyboard 320 is shown as having a square shape, it can have any other shape (such as an arch).
  • As shown in FIG. 3A, touchscreen 118 displays input field 330, which displays the characters the user inputs using virtual keyboard 320. Input field 330 includes a cursor 340, which can be an underscore (as shown) or any other shape, such as a vertical line. Cursor 340 represents the character space where a next inputted character, selected character, or selected set of characters will be inserted.
  • As shown in FIG. 3B, when a user inputs a character (in this example, “P”), this character is displayed in input field 330 and cursor 340 moves to the character space where the next inputted character or word will be inserted. After the character is inputted, a predictor (such as, a predictive algorithm or a circuit) can generate set of characters 360 (for this embodiment) that all begin with the character “P”, or characters if more than one character is input. The generated set of characters are displayed at a location on the keyboard corresponding to a subsequent candidate input character that might be received as input from the user. As mentioned, generated set of characters 360 can be displayed at or near the key corresponding to the subsequent candidate input characters (for example, under the respective A, E, H, and O keys of the virtual keyboard 320). Indeed, slightly shifting the display location of the generated set of characters can address overcrowding of subsequent candidate input characters, effectively permitting more set of characters to be displayed.
  • In the example shown in FIG. 3B, “P” is received as input and a predictor generates several set of characters 360, which are displayed at keys corresponding to each generated set of characters' subsequent candidate input character. As shown in FIG. 3B, “People” is placed at the “E” key because the next letter after “P” of “People” is “E”; “Paul” will be place at the “A” key because the next letter after “P” of “Paul” is “A”; “Phone” will be placed at the “H” key because the next letter after “P” of “Phone” is “H”; and so on. It should be noted that any of the letters in the set of characters can be upper case or lower case.
  • In the embodiment shown in FIG. 3C, “L” is next input received by touchscreen, and a predictor determines several generated set of characters 360, which are displayed at a key corresponding to subsequent candidate input characters (for example, under the respective A, E, and U keys of the virtual keyboard 320), for the current position of cursor 340, which is in the third character position, as shown in input field 330. In another embodiment, a generated set of characters 360 can be presented such as to include the subsequent candidate input character. For example, the set of characters “Please” can be displayed so that the characters “Pl” are displayed before the “E” character on the “E” key, and the characters “ase” can be placed after the “E” character on the “E” key. Further, in this or other embodiments, the displayed “E” can be presented in a manner that differs from the “Pl” and “ase”, thereby enabling the user to still recognize it as the “E” key while also making it readily visible so that the user can either input the generated set of characters “Please” or input the character “E”. The “E” can be capitalized or in lowercase. In other embodiments, an affix can be displayed at the key. Using the example of the set of characters “Please” above, the “ase” could be displayed at the “E” key so the set of characters fragment “-ease” or “-Ease” would appear.
  • If the user inputs a generated set of characters, that set of characters is placed in input field 330. This can be seen in FIG. 3D, where the user has inputted generated set of characters “Please,” resulting in its placement in the input field. A space is inserted after the set of characters if the user wants to input a new set of characters. A user could input a generated set of characters in various ways, including in a way that differs from a manner of inputting a character key. For example, to input a generated set of characters, a user could use a finger or stylus to swipe the generated set of characters. As used herein, swiping includes swiping the set of characters itself or swiping or touching near the set of characters. For the latter embodiment, the device can detect a swipe or touch near a set of characters, be it a generated set of characters or a predicted set of characters (to be described below), and through the use of a predictor, determine the set of characters the user intended to input. In another embodiment, the user could press a key for a predetermined period of time, such as a long press. That key can be, for example, the key corresponding to the subsequent candidate input character of the set of characters. So, if the set of characters “Please” is intended to be inputted instead of “E”, the electronic device 100 can be configured to require that the “E” key be pressed for a predetermined period of time to trigger the input of “Please”.
  • After a generated set of characters 360 has been determined, as shown in FIG. 3D, a predicted set of characters 380 can be displayed, shown here at space key 350. Predicted set of characters 380 can differ from generated set of characters 360 (as shown in FIGS. 3A-3C) and is the system's attempt to predict the next set of characters a user might be contemplating. A predictor is used to determine predicted set of characters 380. As with displayed generated set of characters 360, predicted set of characters 380 can be received as input in any number of ways, including receiving a swiping of the predicted set of characters with a finger or stylus or receiving a pressing of a key (such as the space key or another designated key) for a predetermined period of time (long press).
  • In FIG. 4A, electronic device 100 receives “C” as input from virtual keyboard 320. Again, a predictor determines generated set of characters 460 based in part on the received input. In FIG. 4B, electronic device 100 receives “O” as input from the virtual keyboard and outputs the “O” in input field 330. As shown in FIG. 4A, the set of characters “count” was displayed at the “O” key after the input of the “C” character was received. Since the “O” key was pressed in a manner to only input the “O” character, as shown in FIG. 4B, an “O” is displayed as second character of the currently inputted set of characters, and the set of characters “count” is not inputted by the user. Alternatively, if a user wanted to input the generated set of characters “count,” the user can input the “O” key in FIG. 4A in a manner different from a manner of inputting the “O” key, such as by swiping the set of characters “count” or by a long press on the “O” key, as opposed to tapping. Returning to FIG. 4B, after the “O” is inputted, generated set of characters 460 are displayed at the keys corresponding to subsequent candidate input characters, as shown in FIG. 4B.
  • FIG. 5 shows input field 330 displaying the set of characters “contact” followed by a space. In that instance, the user inputted the generated set of characters “contact” 460 as was shown in FIG. 4B at the “N” key. Referring back to FIG. 5, a <SPACE> character is now automatically inserted after the generated word in the input field. Predicted word “me” 580 is now displayed on space key 350.
  • If the predicted word “me” 580 is received as input, the word “me” 580 is then displayed in input field 330 followed by a space as shown in FIG. 6A, which then shows predicted word 680 “immediately” displayed on space key 350. The predicted word is presented after a completed word and space have been displayed in input field 330.
  • FIG. 6B shows an example where touchscreen 118 has received the “T” character as input after the user has pressed the “T” key. In this scenario, touchscreen 118 displays a “t” in input field 330. Generated set of characters 660 (for example, “Tuesday,” “today,” and “Thursday”) are displayed at the keys of the subsequent candidate input characters. FIG. 6C shows an example where electronic device 100 has received the “o” character as input after the user presses the “O” key instead of inputting generated set of characters 660 “today” as was shown in FIG. 6B. Thus, “o” is now displayed in input field 330.
  • FIG. 7 shows an example where touchscreen 118 has received the <SPACE> character as input after the user selects the space key. In this scenario, touchscreen 118 inserts a <SPACE> character, and then displays predicted set of characters “talk” 780 at space key 350.
  • FIG. 8A shows an example where touchscreen 118 has received the “d” character as input after the user presses the “D” key. In this scenario, touchscreen 118 displays a “d” in the input field 330 and displays generated set of characters “discuss,” “divide,” and “dinner” 860 on keys corresponding to subsequent candidate input characters. In this example embodiment, while the character “I” was never received as input, electronic device 100 determined that generated set of characters “discuss,” “divide,” and “dinner” 860 were the set of characters to be displayed on touchscreen. In this embodiment, because each of these set of characters has “i” as its second letter, touchscreen 118 displayed generated set of characters using a further subsequent letter in the set of characters (for example, “discuss” under the “S” key, “divide” under the “V” key, and “dinner” under the “N” key). In other embodiments, generated set of characters “discuss,” “divide,” and “dinner” 860 can be displayed at or near the “I” key.
  • FIG. 8B shows an example where touchscreen 118 has received the set of characters “discuss” as input after the user chooses generated set of characters “discuss” 860. In this example, touchscreen 118 displays predicted set of characters “this” 880 at space key 350.
  • FIG. 9 shows an example where touchscreen 118 receives the “this” set of characters as input after user selects “this” as a desired predicted set of characters 880. In this example, touchscreen 118 displays predicted set of characters “now” 980 at space key 350.
  • Touchscreen 118 can also receive punctuation as input at any time during the typing of a message. If a user decides to use punctuation after inputting either a generated set of characters or a predicted set of characters, the <SPACE> character (for example, the <SPACE> character prior to cursor 940 of FIG. 9) is deleted and the inputted punctuation is inserted.
  • FIGS. 10A and 10B show example front views of a touchscreen, consistent with embodiments disclosed herein. FIG. 10A shows an example where touchscreen 118 displays “The co” in a text bar 1030 and several generated set of characters 1060 are displayed at subsequent candidate input characters. In this example, touchscreen 118 displays generated set of characters “cottage” 1060 under the “T” key, generated set of characters “cook” 1060 under the “O” key, generated set of characters “coat” 1060 under the “A” key, and generated set of characters “coffee” 1060 under the “F” key.
  • FIG. 10B shows an example where touchscreen 118 receives the set of characters “cook” as input after the user has selected the generated set of characters 1060 “cook.” The set of characters “cook” is inserted into input field 1030 along with a <SPACE> character. In this example, set of characters include new predicted set of characters (such as words 1090, affixes 1092 (for example, “-ed” under the “E” key and “-ing” under the “I” key), and plurals 1094 (for example, “-s” under the “S” key)), all of which are displayed at subsequent candidate input characters. Each predicted word 1090, affix 1092, or plural 1094 is located on respective subsequent candidate input characters that match the first letter of the predicted word 1090, affix 1092, or plural 1094. Now the user has the added option of inputting a predicted set of characters 1090, 1092, and 1094. Input is made in the same manner as described above. In some embodiments, when touchscreen 118 receives either affix 1092 or plural 1094 as an input, the <SPACE> character between cursor 1040 and “cook” is deleted and the corresponding inputted affix or plural is added to the end of “cook.”
  • FIG. 11A shows an example where touchscreen 118 displays “Did she co” in a text bar 1130 and several generated set of characters 1160 are displayed at subsequent candidate input characters. In this example, touchscreen 118 displays generated set of characters “correct” 1160 under the “R” key, generated set of characters “copy” 1160 under the “P” key, and generated set of characters “contact” 1160 under the “N” key. While “co” is provided in the text bars of both FIG. 10A and FIG. 11A, touchscreen displays different generated set of characters based on the context of the characters in their respective text bars 1030 and 1130. For example, in FIG. 10A, the characters “co” follows “The,” which implies that a noun beginning with “co” should follow. In FIG. 11A, the characters “co” follow a pronoun, which implies that a verb beginning with “co” should follow. As stated above, contextual data can be used to determine when certain set of characters are more appropriate based on, for example, the set of characters in a text bar or previous actions by a user.
  • FIG. 11B shows an example where touchscreen 118 receives the set of characters “correct” as input after the user has selected the generated set of characters “correct” 1160. In this example, the set of characters “correct” is inserted in input field 1130 and a <SPACE> character is also inserted. Predicted set of characters (such as words 1190 and affixes 1192) are now displayed at subsequent candidate input characters. In this example, while affixes “-ing” and “-ily” both correspond to the “I” key, touchscreen 118 displays “-ing” with the “I” key and “-ily” with the “L” key. As stated above, the predicted affix may be assigned to a certain key based on a ranking, on contextual data, or a combination of both. In this embodiment, the “-ing” affix may have had a higher ranking than the “-ily” affix and was thus assigned to the “I” key. Accordingly, the “-ily” affix was assigned to the “L” key based on the corresponding “L” character being in the “-ily” affix.
  • FIG. 12A shows an example where touchscreen 118 displays “The ch” in a text bar 1230 and several generated set of characters 1260 are displayed at subsequent candidate input characters. In this example, generated set of characters 1260 include both “child” and “chimp.” In this embodiment, while the third letter in both “child” and “chimp” are the same, touchscreen displays “child” under the “I” key and displays “chimp” under the “C” key. The determination on which generated set of characters goes under which candidate input key can be based on a ranking (as specified above). As illustrated in this embodiment, touchscreen 118 can display a generated set of characters (in this case, “chimp”) on a key even though that key may not be associated with any subsequent characters of the characters in text bar 1230.
  • FIG. 12B shows an example where touchscreen 118 receives the set of characters “child” as input after the user has selected the generated set of characters “child” 1260. The set of characters “child” is inserted in input field 1230 and, in this example, a <SPACE> character is not inserted. Predicted set of characters (such as words 1290 and affixes 1292) are now displayed at subsequent candidate input characters. In this example, while affixes “-ish” and “-ily” both correspond to the “I” key, touchscreen 118 displays “-ish” with the “I” key and “-ily” with the “L” key. As stated above, the predicted affix may be assigned to a certain key based on a ranking, on conventional data, or a combination of both. In this embodiment, the “-ish” affix may have had a higher ranking than the “-ily” affix and was thus assigned to the “I” key. Accordingly, the “-ily” affix was assigned to the “L” key based on the corresponding “L” character being in the “-ily” affix.
  • FIG. 13A shows an example where touchscreen 118 displays “The texture and” in a text bar 1330 and several predicted set of characters (for example, words 1390) are displayed at subsequent candidate input characters. FIG. 13B shows an example where touchscreen 118 received the set of characters “taste” as input after the user had selected the predicted set of characters “taste.” In this example, a <SPACE> character was inserted after “taste.” Consequently, predicted set of characters (such as, words 1390 and affixes 1392) are displayed at subsequent candidate input characters.
  • FIG. 14A shows an example where touchscreen 118 displays “The hospital staff c” in a text bar 1430 and several generated set of characters 1460 are displayed at subsequent candidate input characters. FIG. 14B shows an example where touchscreen 118 received the set of characters “care” as input after the user had chosen the generated set of characters “care.” Generated set of characters “care” is now placed in input field 1430 along with a <SPACE> and predicted set of characters (such as, words 1490 and affixes 1492) are displayed at subsequent candidate input characters. FIG. 14C shows an example where touchscreen 118 received the affix “-ful” as input (thereby modifying the set of characters “care” to “careful”) after the user had chosen the predicted affix “-ful.” Thus, the set of characters “careful” is now inserted into input field 1430. Note, in some embodiments, inputting a word or affix can modify the input word or word fragment. For example, if “spicy” was input by a user, and “ness” is a predicted affix and is inputted, “spicy” would change to “spiciness,” dropping the “y” and adding “iness”. In other embodiments, “happy” could change to “happiness” or “conceive” could change to “conceivable”.
  • FIG. 15 shows an example of an ambiguous keyboard 1520, which can have multiple characters assigned to a key (for example, such as a telephone keypad where “A”, “B” and “C” are assigned to key 2; “D”, “E” and “F” are assigned to key 3, and so on). For example, the characters “Q” and “W” can be assigned one key, and the characters “E” and “R” assigned to another key. In this example, the user has input the characters “Ol” by pressing the “op” key followed by the “L” key. Using a predictor, generated set of characters 1560 are displayed at subsequent candidate input characters. Since the first pressed key can input either an “O” or a “P” and the second pressed key inputs an “L”, generated set of characters 1560 will begin with “OL” or “PL”, such as shown by generated set of characters 1560 in FIG. 15.
  • FIG. 16 shows another example of an ambiguous keyboard 1620. In this example, generated sets of characters “plum” and “olive” 1660 are displayed near the “ui” key. The sets of characters could also have been displayed at or on the “ui” key. Here, both sets of characters correspond to a particular input corresponding to a key, namely the third letter of plum is a “u” and the third letter of olive is an “i.” Touchscreen 118 (via main processor 102) can differentiate between the input of either set of characters based on the user's action. For example, the user can swipe at or near the right of the “ui” key to input “olive”, or swipe at or near the left of the “ui” key to input “plum”.
  • The examples and embodiments illustrated in FIGS. 17, 18, and 19 can be implemented with any set of characters such as words, phrases, acronyms, names, slang, colloquialisms, abbreviations, or any combination thereof.
  • FIG. 17 shows in flowchart form a method 1700 in accordance with some embodiments. Method 1700 can be implemented with a processor, such as main processor 102, and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like. At block 1710, the processor receives an input of a character. At block 1720, the processor displays a generated set of characters at or near keys of subsequent candidate input characters on the touchscreen, such as described above.
  • At block 1730, the processor receives an input of the generated set of characters chosen by a user. If the user does not choose a generated set of characters displayed at or near keys of subsequent candidate input characters, the method restarts at block 1710, where the touchscreen can receive an input of another character. If a generated set of characters is received as input, at block 1740 the generated set of characters and a <SPACE> character is inserted in an input field (for example, input field 330 of FIGS. 3-9). As mentioned previously, the user can choose the generated set of characters, for example, by swiping at or near it or by long pressing a key corresponding to the subsequent candidate input character.
  • Continuing at block 1750, if the processor detects that punctuation is not to be inserted, the method restarts at block 1710. If punctuation is to be inserted, the method continues to block 1760 where the <SPACE> character is deleted and the appropriate punctuation is added to the input field. After block 1760, the method starts over at block 1710.
  • FIG. 18 is a flowchart illustrating example method 1800 in accordance with some embodiments. Method 1800 can be implemented with a processor, such as main processor 102, and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like. At block 1810, the processor receives an input of a character.
  • At block 1820, the processor displays a generated set of characters at or near a location on the keyboard corresponding to a subsequent candidate input character on a touchscreen. At block 1830, the processor receives an input of a generated set of characters chosen by a user. If the user does not choose a generated set of characters displayed at or near keys of subsequent candidate input characters, the method restarts at block 1810, where the processor can receive an input of another character. If a generated set of characters is received as input, at block 1840 the generated set of characters and a <SPACE> character is inserted in an input field (for example, input field 330 of FIGS. 3-9). As mentioned previously, the user can choose the generated set of characters, for example, by swiping at or near it or by pressing a key corresponding to the subsequent candidate input character for a predetermined period of time.
  • At block 1850, a predicted set of characters, different from the generated set(s) of characters, is displayed on a space key of the keyboard after the input of the generated set of characters in block 1830. The predicted set of characters displayed in block 1850 is determined by using a predictor. In some embodiments, the one or more predicted sets of characters can be placed on one or more keys other than the space key.
  • At block 1860, the processor can determine whether it has received an input of the predicted set of characters based on a user input. If the touchscreen has not received an input of the predicted set of characters because the user has not chosen the predicted set of characters, the method restarts at block 1810. If the processor has received the input of the predicted set of characters, the method continues to block 1870, where the chosen predicted set of characters and a <SPACE> character is inserted in the input field. From here, method 1800 can return to either block 1810 or block 1850.
  • Even though method 1800 does not display the punctuation illustration as shown in method 1700, the punctuation illustration, as shown in blocks 1750 and 1760, can likewise be applied to method 1800.
  • FIG. 19 is a flowchart illustrating an example method 1900 in accordance with some embodiments. At box 1910, predicted set of characters is displayed at corresponding subsequent candidate input characters. In these embodiments, an input has not been received or a delimiter has been activated, such as inputting a <SPACE>. Here, one or more predicted set of characters (such as, words, affixes, or a combination thereof) are placed on subsequent candidate input characters that correspond to the first letter of the generated set of characters. Moving to box 1920, it is determined whether the touchscreen receives an input of the set of characters (such as, word or affix) based on a user's selection. If an input is received, the method moves to block 1930 where the predicted set of characters and a <SPACE> character are inserted into an input field. Then the method starts over at block 1910. If the touchscreen does not receive an input of the set of characters, the touchscreen is available to receive an input of a character (as described by block 1710 of FIG. 17 or block 1810 of FIG. 18) and proceed through methods (such as methods 1700 of FIG. 17 or 1800 of FIG. 18 or even method 1900 of FIG. 19).
  • FIG. 20 shows another example of a virtual keyboard 2020 having an input field 2030. The set of characters “Please con” are received as input by the touchscreen and displayed in the input field 2030 followed by a cursor 2040, which can be a vertical line (as shown) or any other shape, such as an underscore as mentioned previously. A predictor determines one or more generated set of characters 2060 based in part on the received input for the current position of cursor 2040 within the current word, which is in the fourth character position of the current word, as shown in input field 2030. The current word is the word in which the cursor is currently located. In the shown example, generated set of characters 2060 “cones”, “contact”, “construction” and “connect” are displayed. Each generated set of characters 2060 is displayed at a key corresponding to a subsequent candidate input character (for example, under the E, T, S and N keys of the virtual keyboard 2020, respectively), for the current position of cursor 2040, which is in the third character position, as shown in input field 2030.
  • In the shown example, each generated set of characters 2060 is displayed at or near keys on the virtual keyboard 2020 associated with the subsequent candidate input characters. The display of a generated set of characters 2060 at or near a key corresponding to a subsequent candidate input character depends, for instance, on the size of the generated set of characters 2060 and the size of generated set of characters associated with nearby keys of other subsequent candidate input characters. When the generated set of characters associated with nearby keys in the same row of keys in the virtual keyboard 2020 are too large to be displayed at the same time without overlapping with each other or without a predetermined distance between the generated sets of characters, the processor 102 limits the generated set of characters which are displayed. The processor 102 may limit the generated set of characters which are displayed using one or any combination of the rank of each generated set of characters, the size of each generated set of characters, and a distance between each generated set of characters which are displayed so that a predetermined distance between the generated set of characters is maintained. This may result in the display of one or more generated sets of characters which are larger than the associated key in the virtual keyboard 2020.
  • In some examples, if two generated sets of characters are both ranked high, and these sets of characters would otherwise be displayed at nearby keys but cannot be displayed and still maintain a predetermined distance between the generated sets of characters at the display text size, the electronic device could be configured to display only the highest ranked generated set of characters. This results in the display of the most likely generated set of characters. In other examples, only the longest of the generated set of characters is displayed. This may be beneficial in that allowing faster entry of longer words saves time and processing cycles, thereby leveraging the predictive text input solution. In yet other examples, only the shortest generated set of characters is displayed. This may be beneficial in that shorter words can be more common, at least for some users, thereby allowing faster entry of words which saves time and processing cycles, thereby leveraging the predictive text input solution.
  • In some examples, the processor 102 may only limit the generated set of characters which are displayed in neighboring/adjacent keys in the same row of keys in the virtual keyboard 2020. In some examples, the processor 102 may limit the generated set of characters which are displayed in neighboring/adjacent keys in the same row of keys in the virtual keyboard 2020 so that a generated set of characters is never displayed in neighboring/adjacent keys irrespective of the size of the generated set of characters or distance between each generated set of characters. In such examples, the processor 102 uses the rank to determine which generated set of characters are displayed.
  • In other examples, the processor 102 can limit the generated set of characters which are displayed when the generated set of characters associated with nearby keys in different rows of keys in the virtual keyboard 2020 are too large to be displayed at the same time without overlapping with each other or without a predetermined distance between the generated sets of characters. In other examples, the processor 102 can limit the generated set of characters which are displayed when the generated set of characters associated with nearby keys in the same or different columns of keys in the virtual keyboard 2020 are too large to be displayed at the same time without overlapping with each other or without a predetermined distance between the generated sets of characters
  • As mentioned previously, a user can use a finger or stylus to swipe a generated set of characters to input that generated set of characters. An individual letter, in contrast, can be input by tapping a respective key in the virtual keyboard 2020 using a finger or stylus. The touchscreen differentiates between tap and swipe events using movement and duration of touch events, the details of which are known in the art and need not be described herein. Each key in the virtual keyboard 2020 and each generated set of characters 2060 which is displayed has an associated target area on the touchscreen. The target area associated with each generated set of characters can be larger than and/or overlap with the target area of the key corresponding to the subsequent candidate input character with which it is associated and possibly nearby keys, such as neighboring keys in the same row. A user need only swipe on or nearby a displayed generated set of characters to input the generated set of characters. This permits faster input of a generated set of characters by creating larger and more accessible target areas, thereby saving time and processing cycles. In some examples, a generated set of characters can be input by detecting a swipe in any direction at or near the displayed generated set of characters. In other examples, a generated set of characters can only be input by detecting a swipe in a particular direction at or near the displayed generated set of characters. The particular direction may be associated with a direction in which the particular direction displayed generated set of characters (e.g., left or right in the shown example). In some examples, the swipe is at or near the displayed generated set of characters when the swipe has an initial contact point within the target area associated with the displayed generated set of characters (which may be the same or larger than the displayed generated set of characters).
  • When inputting characters, users may hold the device in both hands using only their thumbs to activate the keys on the virtual keyboard. Two-thumb typing is common in landscape screen orientations but may also be used in portrait screen orientations (typically only when the size of the touchscreen 118 is sufficiently large). Referring to FIG. 21, an example virtual keyboard 2120 having a number of keys 2130 is shown along with a user's thumbs 2150A and 2150B, respectively.
  • As illustrated in FIG. 21, a user's thumbs 2150A and 2150B may obscure large portions of the virtual keyboard 2120 from the user's eyes. In some instances, this may make it difficult for the user to discern whether he/she has activated the desired key. In some electronic devices, the activated key will flash or a visual cue such as a tooltip may be displayed above the activated key to inform the user of which key has been activated. As appreciated by persons skilled in the art, a tooltip is a user interface element provided by the GUI which provides a hint associated with another user interface element. The hint provides a visual cue directing the user's attention to the other user interface element. Tooltips used in conventional virtual keyboards are displayed above the activated key in the virtual keyboard. The tooltip typically hovers above the activated key for a short duration, typically while the contact with the activated key on the touchscreen 118 is maintained (e.g., the tooltip disappears/is removed when the user lifts his/her finger. In one example as seen in FIG. 21, if the user is activating the “N” key with the right thumb 2150B, the user's thumb may obscure the flash of the “N” key or the display of a tooltip above the “N” key. Accordingly, conventional tooltips are limited in the extent to which the notification function of the tooltips is effective.
  • FIG. 22 shows in flowchart form a method 2200 in accordance with some example embodiments. The example method 2200 and any methods described herein can be implemented with a processor, such as main processor 102, and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like.
  • At block 2210, the device detects a touch input at a key 2130 of the virtual keyboard 2120. In some examples, the touch input may be a tap or a prolonged touch on or around a key 2130 of the virtual keyboard 2120. In some examples, the touch input may be one of the contact points of a multi-touch input.
  • At block 2220, the device determines an input direction of the touch input. The input direction of the touch input is a direction from which the device determines a user has provided the touch input. For example, when a user is holding a device in the manner illustrated in FIG. 21, the user's left thumb 2150A will likely approach and provide a touch input from the left side of the virtual keyboard 2120. Accordingly, the determined input direction in such cases is left. Conversely, the user's right thumb 2150B will likely approach and provide a touch input from the right side of the virtual keyboard. Accordingly, the determined input direction in such cases is right.
  • As described above, in at least some examples, the input direction may be left or right of the virtual keyboard. In some examples, the input direction may be top or bottom of the virtual keyboard. Other input directions are also possible, such as a diagonal direction, which may be at any angle.
  • The input direction may be determined in accordance with the direction of a touch input, such as the direction in which a contact point moves after initially contacting the touchscreen 118, the shape of the contact area of the touch input, the proximity of the touch input to a respective edge of the touchscreen 118, or other suitable means, examples of which are provided below. The proximity of the touch input may be determined relative to a screen orientation of the GUI (e.g., input is closest to left, right, top or bottom of the virtual keyboard 2120). Alternatively, the proximity of the touch input may be determined relative to the touchscreen 118 (e.g., input is closest to left, right, top or bottom of the touchscreen 118).
  • At block 2230, a visual cue of the key at which the touch input was detected is displayed on the display. This visual cue is displayed at a position on the display based on the input direction of the touch input. In some examples, the visual cue is displayed proximate to the touched key and offset in a direction away from the input direction of the touch input.
  • In some examples, the input direction provides a proxy for determining which of the user's hands is being used, i.e. to which hand the finger causing the touch input belongs, so that the visual cue may be located accordingly. When the touch input is associated with the user's left hand, the visual cue is located to the right of the activated key (typically above and to the right of the activated key). When the touch input is associated with the user's right hand, the visual cue is located to the left of the activated key (typically above and to the left of the activated key).
  • FIG. 23 shows an example of a virtual keyboard 2120 on which a user provides a touch input on the “X” key with the user's left thumb 2150A. The device determines that the input direction of the touch input is from the left side of the device. The device displays a visual cue in the form of a character icon 2350 showing that the “X” key has been touched. Based on the left input direction of the touch input, the device displays the “X” character icon 2350 proximate but offset to the right of the “X” key. In other words, in this example, the visual cue is offset in a direction away from the input direction. In some instances, by displaying the visual cue in this manner based on the input direction of the touch input, the chance of the visual cue being obscured by an input implement may be reduced, and in some instances, the visibility of the touch input feedback to the user may be improved.
  • Generally, a user's eyes are above the user's hands relative to the device. Therefore, in some examples including the example in FIG. 23, the visual cue is offset above and in a direction away from the input direction. In FIG. 23, the visual cue in the form of character icon 2350 is offset above and to the right of the touched “X” key. In some examples, additionally offsetting the visual cue in a direction above the touch input will reduce the chance of the visual cue being obscured, and in some examples may increase the visibility of the visual cue to the user. In some examples, discussed in more detail below, the visual cue (e.g., tooltip) may be selectable. For example, tapping the visual cue may cause an action associated with the visual cue, such as a character input, to be performed. In such examples, it is easier for a finger in the opposite hand to select the visual cue (e.g., tooltip) if the visual appears in the direction of the opposite hand. For example, in FIG. 23, if the character icon 2350 for the ‘X’ key was an actionable item, the directional bias would make it easier for the right hand thumb to tap the character icon 2350 to input the character “x” or perform a command associated with the “X” key.
  • FIG. 24 shows another example of a virtual keyboard 2120 on which a user is providing a touch input on the “U” key with the user's right thumb 2150B. In this example, the device detects the touch input and determines that the input direction of the touch input is from the right. Based on this input direction, the device displays a visual cue in the form of a “U” character icon 2350 which is offset above and to the left of the touched “U” key.
  • In some examples, the visual cue is displayed for a short duration before disappearing again. In some examples, the visual cue is displayed for as long as the touch input is maintained at the key. For example, if a user presses and holds a key, the visual cue may remain displayed on the display until the user releases the key.
  • As mentioned above, in some examples, the input direction may be determined in accordance with the shape of the contact area of the touch input. As part of the determining the input direction in such examples, the device determines a shape of the contact area of the touch input. Each touch input is caused by a touch event detected by the touchscreen 118. The touch event is defined by a contact area caused by interaction of a user's finger or stylus with the touchscreen 118. The touchscreen 118, or the main processor 102, may determine a shape or profile of the contact area of the user's finger.
  • Referring now to FIG. 25, a Cartesian (two dimensional) coordinate system suitable for mapping locations of the touchscreen 118 and determining a shape of the contact area of the user's finger will be described. The touchscreen 118 defines a Cartesian coordinate system defined by x and y-axes in an input plane of the touchscreen 118. The x and y-axes of the Cartesian coordinate system are used to map locations of the touchscreen 118 and are aligned with the x and y-axes of the positional sensor; however in other embodiments these may be different. Each touch event on the touchscreen 118 returns a touch point defined in terms of an (x, y) value. The returned touch point is typically the centroid of the contact area. In the shown embodiment, the coordinate system has an origin (0, 0) which is located at a bottom-left corner of the touchscreen 118; however, it will be appreciated that the origin (0, 0) could be located elsewhere such as a top-left corner of the touchscreen 118.
  • The contact area caused by a user's finger roughly represents an ellipse. In at least some examples, the touchscreen 118, or the main processor 102, may determine an input direction based on the shape of the contact area of the user's finger by performing a mathematical analysis on the contact area. As part of calculating performed in the mathematical analysis, a center point (or centroid) of the contact area and two lines which symmetrically bisect the ellipse through the center point are determined. The longer of the bisectors represents a major axis (A) of the ellipse and the shorter of the bisectors represents a minor axis (B) of the ellipse. The angle (θ) of the major axis (A) relative to an edge of the display 112 or a screen orientation may be used to determine the direction of the touch input. The screen orientation of the content displayed on the display 112, which is a parameter of the GUI and known to the device, or a device orientation of the display 112 which is detected by the orientation sensor 197, may be used to determine the direction along the major axis (A). More details of an example method of calculating a shape of the contact area of the user's finger is found in U.S. Patent Publication No. 2007/0097096, which is incorporated herein by reference.
  • The centroid of the contact area is calculated based on raw location and magnitude data (e.g., capacitance data) obtained from the contact area. The centroid is typically defined in Cartesian coordinates by a value (Xc, Yc). The centroid of the contact area is the weighted averaged of the pixels in the contact area and represents the central coordinate of the contact area. By way of example, the centroid may be found using the following equations:
  • X c = i = 1 n Z i * x i i = 1 n Z i ( 1 ) Y c = i = 1 n Z i * y i i = 1 n Z i ( 2 )
  • where Xc represents the x-coordinate of the centroid of the contact area, Yc represents the y-coordinate of the centroid of the contact area, x represents the x-coordinate of each pixel in the contact area, y represents the y-coordinate of each pixel in the contact area, Z represents the magnitude (e.g., capacitance value) at each pixel in the contact area, the index i represents the pixel (or electrode) in the contact area and n represents the number of pixels (or electrodes) in the contact area. Other methods of calculating the centroid will be understood to persons skilled in the art.
  • In other examples, the touchscreen 118, or the main processor 102, may determine an input direction based on the shape of the contact area of the user's finger by performing a comparative analysis on the contact area. As part of the comparative analysis, the detected contact area is compared to one or more touch profiles stored, for example, in the memory 110 on the device. In some examples, the touch profiles may include common shapes of touch inputs by a left thumb press or right thumb press. In some examples, profiles may also include common shapes for left or right finger touches. In some examples, these profiles may include common shapes of stylus touches when held by a left hand or when held by a right hand.
  • In some examples, the device determines the input direction of a touch input by determining whether the shape of the touch input corresponds to one of the touch profiles stored in memory. For example, if the device determines that a touch input shape corresponds to a touch profile for a left thumb press, the device may determine that the input direction of the touch input is from the left.
  • The shape of the touch input does not necessarily have to identically match a touch profile. In some examples, the device may determine the corresponding touch profile by selecting the touch profile which most closely resembles the shape of the touch input.
  • FIG. 26 illustrates non-limiting example touch shapes of a left thumb touch 2450A and a right thumb touch 2450B. The touch shapes have been shown as ellipses for illustrative purposes; however, the shape of actual contact areas may vary. In other examples, the device may determine the input direction of the touch input based on which portion of the device the touch input was received. In some examples, if the touch input is detected on a left portion of the virtual keyboard, the device determines that the input direction of the touch input is from the left. Similarly, in some examples, if the touch input is detected on a right portion of the virtual keyboard, the device determines that the input direction of the touch input is from the right.
  • FIG. 27 shows an example virtual keyboard 2120 having a number of keys in a left portion 2710 and a number of keys in a right portion 2720. A different number of divisions of the keyboard may be used in other examples. In some examples, the keys may be assigned into upper and lower portions instead of, or in addition to, the left portion 2710 and the right portion 2720.
  • FIG. 28 shows an example virtual keyboard 2120 having keys in a left portion 2810, a right portion 2820, a mid-left portion 2830, and a mid-right portion 2840. In some examples, a touch input at a key in the left portion 2810 may cause the electronic device 100 to display a visual cue above and to the right of the touched key at an offset n degrees (e.g., 45 degrees) from the vertical, while a touch input at a key in the mid-left portion 2830 may cause the electronic device 100 to display a visual cue above and to the right of the touched key at an offset m degrees (e.g., 30 degrees) from the vertical, where n and m are different. Similarly, a touch input at a key in the right portion 2820 may cause the electronic device 100 to display a visual cue above and to the left of the touched key at an offset n degrees (e.g., 45 degrees) from the vertical, while a touch input at a key in the mid-right portion 2840 may cause the electronic device 100 to display a visual cue above and to the left of the touched key at an offset m degrees (e.g., 30 degrees) from the vertical, where n and m are different. Accordingly, the offset distance and/or position between the touched key and the visual cue may vary based on which portion the activated key is located in. This solution allows the offset distance and/or position to more precisely adjust to the position of the user's finger.
  • In some examples, when a touch input is detected in a middle portion of the virtual keyboard such as mid-left 2830 and mid-right 2840 portions illustrated in FIG. 28, the electronic device 100 may display a visual cue offset such that it is directly above the touched key.
  • In some examples, when a touch input is detected in a middle portion of the virtual keyboard (such as mid-left 2830 and mid-right 2840 portions illustrated in FIG. 28, such as mid-left 2830 and mid-right 2840 portions illustrated in FIG. 28), the electronic device 100 may display a visual cue offset in a direction away from the next most probable letter based on letter or word predictions, as mentioned previously.
  • In some examples, the electronic device 100 may determine the input direction of the touch input, at least in part, by detecting proximity information on the one or more proximity sensor 198 or detecting ambient light information on the one or more ambient light sensors 199. The electronic device 100 detects proximity of an object at or near the display 112 at a time when the touch input was detected (using proximity information and/or ambient light information), and determines the input direction as left or right in accordance with a side of the display at which proximity of an object was detected. In some examples, a first proximity sensor 198 on a left side of the electronic device 100 and a second proximity sensor 198 on the right side of the electronic device 100 may detect the proximity of a user's hand approaching from the left or right side of the electronic device 100. In some examples, a single proximity sensor 198 at a central position on the electronic device 100 may be configured to detect objects in close proximity to either the left or the right sides of the electronic device 100. In some examples, the one or more proximity sensors 198 may also detect the proximity of an object close to the top or bottom of the electronic device 100. In any of these examples, the proximity of an object to a particular side of the electronic device 100 may correspond to a determination that a touch input is coming from that particular side of the electronic device 100.
  • Similar to the proximity sensor examples described above, the ambient light sensor 199 may detect proximity of an object at or near the display 112 in accordance with a lower intensity ambient light at a particular side of the electronic device 100. In some examples, the lower intensity ambient light may correspond to a shadow cast by an object approaching from that particular direction, and may therefore correspond to a determination that a touch input is coming from that direction.
  • In some examples, the electronic device 100 may determine the input direction of the touch input, at least in part, by detecting the orientation of the electronic device 100 using an orientation sensor 197 such as an accelerometer. In some examples, the electronic device 100 may determine that the electronic device 100 is lying on a flat surface such as a desk when the orientation sensor 197 detects that the electronic device 100 is horizontal with the face of the touchscreen 118 facing upwards. With this information, the electronic device 100 may determine that touch input corresponds to a finger other than the user's thumbs because it would be difficult for a user to use his/her thumbs when the device is lying on a flat surface. In such cases, any analysis of the shape of the contact area of the touch input may be restricted to fingers other than the thumbs, and may be restricted to index fingers, which are typically used for typing when using the electronic device 100. This allows, for example, shape analysis to be limited to a subset of data, such as fingers other than thumbs or merely index fingers.
  • In some examples, the orientation sensor 197 may detect that the electronic device 100 is partially upright with the top of the electronic device 100 facing upwards and slightly to the right. In this orientation, a user may be holding the device only in his/her right hand, and therefore, a user may likely be using his/her right hand to provide touch inputs. Accordingly, the device may use the detected orientation information to determine that a touch input is from the right side of the electronic device 100. Similarly, in some examples, the orientation sensor 197 may detect that electronic device 100 is in a position which may correspond to a user holding the electronic device 100 only in his/her left hand, and therefore, the electronic device 100 may use the detected orientation information to determine that a touch input is from the left side of the electronic device 100.
  • Other techniques may be used alone or in conjunction with other techniques to determine the finger input direction and/or where the visual cue (e.g., tooltip) should be located. For example, settings may be used. The electronic device 100 may allow users to specify which finger he or she uses for which key. This may be useful to adjust a mapping model which, for example, may have been learned by the electronic device 100 through other means. For example, the electronic device 100 may determine that a left-hand finger is being used when the character ‘g’ is typed and a right-biased visual cue (e.g. tooltip) appears whereas the user may want the tooltip direction to be biased to the left because the user uses the right-hand finger when the character ‘g’ is typed or for other reasons. A settings menu to modify the behaviour of the visual cues may be useful. Finger mapping may also be used. Finger mapping, i.e., which finger tapped which character key in a particular context, may be learned from an external camera-based system which analyses the virtual keyboard or other means.
  • While the foregoing description in connection with FIG. 21-28 has been focused on two-finger typing, the teachings of the present disclosure can also be applied to one-finger typing. One-finger typing (e.g., one-thumb typing) is typically performed when users hold the device in one hand and use only one finger (typically a thumb) to activate the keys on the virtual keyboard. One-thumb typing is common in portrait screen orientations but may also be used in landscape screen orientations (typically only when the size of the touchscreen 118 is sufficiently small).
  • The device may be able to detect one-finger typing, for example, by the shape of the touch inputs as described previously. The direction/angle of the major axis of the contact area of touch inputs can be used to identify the handedness of the user, or at least the hand with which the user is typing. The angle (θ) of the major axis (A) forms an acute angle relative to a vertical component (y-axis) of the GUI in a given screen orientation as shown in FIG. 25. The angle (θ) is positive relative to the vertical component when the user is typing with the left hand, whereas the angle (θ) is negative relative to the vertical component when the user is typing with the right hand. When a threshold amount of detected touch events are associated with one hand, one-finger typing is detected. The particular hand with which the touch events are associated is determined to be the typing hand. One-finger typing may be presumed when a portrait screen orientation is used. In such cases, only handedness needs to be determined. Alternatively, handedness may be a known parameter, for example, a parameter stored in the memory 110.
  • When left-handed typing is determined or detected, the visual cue is located to the right of the activated key (typically above and to the right of the activated key). When right-handed typing is determined or detected, the visual cue is located to the left of the activated key (typically above and to the left of the activated key).
  • FIG. 29 shows in flowchart form a method 2900 in accordance with some example embodiments. The example method 2900 described herein can be implemented with a processor, such as main processor 102, and stored on a tangible computer readable medium, such as hard drives, CDs, DVDs, flash memory, and the like. At block 2910, the device detects a touch input at a key 2130 of the virtual keyboard 2120 in the form of a touch gesture.
  • At block 2920, the device determines the input direction of the touch input. In some examples, the input direction of the touch input corresponds to the direction of the touch gesture in relation to an initial contact point of the touch input.
  • At block 2930, when the direction of the touch motion corresponds to a peek gesture, a visual cue of a command associated with the key at which the touch input was detected (i.e., the activated key) is displayed. In some examples, the visual cue is displayed proximate to the activated key. In some examples, the visual cue is displayed proximate to the activated key and offset in a direction away from the input direction of the touch input as described similar to visual cues described previously.
  • In some examples, the peek gesture is a small touch gesture having a travel distance which is greater than a first threshold distance but less than a second threshold distance. The use of a small touch gesture in a given direction may be used to differentiate from the touch input from a longer touch gesture in the same direction which is associated with another action. The touch gesture, in some examples, may be a downward gesture (such as a downward swipe). In other examples, the peek gesture may be a small upward gesture (e.g., upward swipe). In other examples, the peek gesture may be any direction, pattern or combination of touch gestures such as a circular gesture around the key, or an L-shaped gesture comprising a downward gesture (e.g., swipe) followed by a left-to-right downward gesture (e.g., swipe).
  • Alternatively, in another embodiment, at block 2930, when the direction of the touch motion corresponds to a peek gesture, a visual cue of an alternate character associated with the key at which the touch input was detected (i.e., the activated key) is displayed rather than a visual cue of a command associated with the key.
  • At block 2940, the command associated with the activated key is executed by the device in response to a trigger. Alternatively, in other examples the alternate character associated with the key may be input in response to the trigger. The trigger may be that contact with virtual keyboard 2120 is released at or near an end of the peek gesture. In contrast, the command associated with the activated key is not executed if the contact point is moved back towards its initial position before being released, or is otherwise within a threshold distance of the initial position when contact with virtual keyboard 2120 is released. In other examples, the trigger is continuing the peek gesture until a second threshold distance has been travelled by the touch input. In yet other examples, the trigger is determining a duration of the touch input exceeds a threshold duration (also known as a touch-and-hold or press-and-hold). Typically, the touch-and-hold or press-and-hold is performed at or near an end of the peek gesture.
  • FIG. 30 shows an example of a virtual keyboard 2120 on which a user provides a touch gesture on the “R” key. Initially, the user touches the virtual keyboard 2120 at the initial contact point indicated by the reference 3010. While maintaining contact with the virtual keyboard 2120, the user moves the contact point downwards to the contact point indication by the reference 3020. In this example, the downward touch gesture corresponds to a peek gesture, and the device displays a visual cue in the form of a “reply” command icon 3030 which is associated with the “R” key. In the shown example, the command icon 3030 is displayed proximate to the associated key. In other examples in which predicted words are shown in a prediction bar, the command icon 3030 may be shown in the prediction bar.
  • As mentioned above, after the command icon 3030 is displayed, the command (e.g., reply command for replying a received communication such as an email) associated with the activated key is executed by the device in response to a trigger.
  • In the example shown in FIG. 30, the “R” key is associated with the “Reply” command. In the context of messaging, this command may reply to a sender of a currently selected or displayed email message. In some examples, different keys may be associated with different commands and in different contexts. In a messaging context, in some examples, the “R” key may be associated with the “Reply” command as noted above, the “L” key may be associated with the “Reply All” command to reply to all recipients of the currently selected or displayed email message, the “F” key may be associated the “Forward” command to forward the currently selected or displayed email message, the “S” key may be associated the “Send” command to send an open message under composition, the “N” key may be associated with a “Next Message” command to display a next message in a list (e.g., inbox or folder), a “P” key may be associated with a “Previous Message” command to display a previous message in a list (e.g., inbox or folder), or any combination thereof. Alternatively, the “Send” command for sending an electronic message may be associated with an “Enter” key in the virtual keyboard. In a text entry mode, which may be in a messaging context, the “Backspace” key may be associated with a “Delete” command for deleting an input character at the position of a cursor in an input field rather than the “Backspace” command for deleting an input character at a position before the position cursor in the input field.
  • In the example described above, a “Reply” command icon associated with the “Reply” command is displayed when the touch gesture is performed on the “R” key, a “Reply All” command icon associated with a “Reply All” command is displayed when the touch gesture is performed on the “L” key, a “Forward” command icon associated with a “Forward” command is displayed when the touch gesture is performed on the “F” key, a “Send” command icon associated with the “Send” is displayed when the touch gesture is performed on the “S” key (or possibly “Enter” key), a “Next Message” command icon associated with the “Next Message” is displayed when the touch gesture is performed on the “N” key, a “Previous Message” command icon associated with a “Previous Message” command is displayed when the touch gesture is performed on the “P” key, “Delete” command icon associated with the “Delete” command is displayed when the touch gesture is performed on the “Backspace” key.
  • In a navigating or browsing context, in some examples, the “N” key may be associated with a “Next Page” command for displaying a next page of content, “P” key may be associated with a “Previous Page” command for displaying a previous page of content, the “T” key may be associated with a “Top” command which displays a top portion of a currently displayed item (e.g., web page, document, list, electronic message etc.), the “B” key may be associated with a “Bottom” command which displays a bottom portion of the currently displayed item, or any combination thereof. Accordingly, a “Next Page” command icon associated with the “Next page command is displayed when the touch gesture is performed on the “N” key, a “Previous Page” command icon associated with the “Previous Page” command is displayed when the touch gesture is performed on the “P” key, a “Top” command icon associated with the “Top” command is displayed when the touch gesture is performed on the “T” key, and a “Bottom” command icon associated with the “Bottom” command is displayed when the touch gesture is performed on the “B” key.
  • Other keys may be associated with a command (a so-called key-command assignment), and may have a peek gesture associated with it in a similar manner to the example commands described above. The commands associated with the keys may be context dependent, for example, depending on an active mode or open application.
  • The virtual keyboard 2120 is typically displayed or invoked automatically in response to the display or selection of a text entry field. In some examples, the virtual keyboard 2120 may be toggled between a hidden state and a shown state in response to respective input such as, but not limited to, an onscreen virtual keyboard toggle button. In some examples, the virtual keyboard 2120 may be displayed or invoked out-of-context when no text entry field is present to permit the peek gestures and associated shortcuts for executing commands to be used. The associated shortcuts may be faster and more intuitive for some users compared with navigating a menu or other graphical user interface element to select the appropriate command. For example, users familiar with shortcuts on a device with a physical keyboard may be familiar with certain key-command associations and may be able to execute commands more quickly using the key-command associations via the virtual keyboard 2120, even if the virtual keyboard 2120 has to be invoked to access the keys and activate the shortcut commands. Advantageously, this solution can be used to leverage shortcuts conventionally used in devices having physical keyboards in a virtual way.
  • The visual cues described above are believed to have potential advantages in several respects which provide a more natural interaction with the device. Offsetting visual cues based on the input direction of the touch input, reduces or eliminates obscuring of the visual cue by an input implement (e.g., finger or stylus) and facilities interaction with the visual cue (e.g., tooltip). Moreover, in some instances, the visibility of the touch input feedback to the user may be improved. Providing more natural interaction with the device involves identifying efficient interactions (such as gestures) which are relatively easy to perform, relatively easy to remember, have discoverability which allows users to “discover” functions during normal use without formal training, and which can be differentiated from other interactions (such as gestures) by users (and by the device) relatively easily. Arbitrary or poorly considered interaction-action assignments (e.g., gesture-action assignments) tend to create awkward and unnatural user experiences which make the required interaction harder to perform, harder to remember, undiscoverable (or at least less discoverable), and harder to differentiate from other interactions by users.
  • Unlike a conventional physical keyboard, a virtual keyboard presents an opportunity for shortcuts, hot keys or other commands to be discovered by the user. This allows users to “discover” functions during normal use without formal training. The specific interaction-action assignments described herein are also believed to be relatively easy to perform, relatively easy to remember, have good discoverability, and which can be differentiated from other interactions by users (and by the device) relatively easily.
  • FIG. 31 is a flowchart of a method 3100 for input using a virtual keyboard rendered on a display of an electronic device 100 in accordance with one example embodiment of the present disclosure. The virtual keyboard has at least two input states but could have more than two input inputs. The method 3100 may be carried out, at least in part, by firmware or software executed by the processor 102. Coding of software for carrying out such a method 3100 is within the scope of a person of ordinary skill in the art provided the present disclosure. The method 3100 may contain additional or fewer processes than shown and/or described, and may be performed in a different order. Computer-readable code executable by the processor 102 to perform the method 3100 may be stored in a computer-readable medium such as the memory 110.
  • At 3120, a virtual keyboard is rendered and displayed on the touch-sensitive display 118. The virtual keyboard may be displayed automatically when an input field is displayed or may be called or invoked, for example, in response to corresponding input (such as activation of a keyboard button or icon). The virtual keyboard includes a plurality of keys including a plurality of character keys as previously described. Each key in the plurality of character keys corresponds to a character in an input character set. The input character set, in at least some examples, is an English alphanumeric character set. The plurality of character keys are arranged in a familiar QWERTY layout in the shown example but may be arranged in another suitable format in other examples. The virtual keyboard may be arranged in the same or similar configuration to those described above.
  • At block 3130, a touch input is detected on the touchscreen 118 at a location associated with a key.
  • At block 3140, the electronic device 100 determines a type of touch gesture of the detected touch input. In some examples, the electronic device 100 determines whether the touch input is a first type of gesture input or a second type of gesture. In some examples, the first type of gesture is a tap on or near the key and the second type of gesture is a swipe in a particular direction (e.g., down swipe) which has an initial contact point on or near the key.
  • At block 3150, when the touch input is a first type of gesture, a first input associated with the key is input. When the key is a character key, the first input is character input which corresponds to a character displayed in the key in the virtual keyboard. For example, tapping a character key inputs a character from an input character set associated with the key. The first input may be a command when the key is a non-character key (e.g., function key).
  • At optional block 3145, the electronic device 100 may perform an action if the touch input does not correspond to either the first touch gesture or second touch gesture but does correspond to other designated input (such as a third touch gesture). The action could be input of an alternative character or execution of an alternative command different than that associated with the first touch gesture and second touch gesture for the particular key.
  • At block 3160, when the touch input is a second type of gesture and a command is associated with the key and the second type of gesture, the command associated with the key is executed by the electronic device 100 is executed by the electronic device 100. Unlike the previously described example in FIG. 29, no visual cue of the command is provided.
  • In a messaging context, in some examples, the “R” key may be associated with the “Reply” command, the “L” key may be associated with the “Reply All” command, the “F” key may be associated the “Forward” command, the “S” key may be associated the “Send” command to send an open message under composition, the “N” key may be associated with the “Next Message” commands the “N”, the “P” key may be associated with the “Previous Message” command, or any combination thereof. Alternatively, the “Send” command may be associated with the “Enter” key. In a text entry mode, which may be in a messaging context, the “Backspace” key may be associated with the “Delete” command.
  • In a navigating or browsing context, in some examples, the “N” key may be associated with the “Next Page”, the “P” key may be associated with the “Previous Page” commands, the “T” key may be associated with the “Top” command, the “B” key may be associated with the “Bottom” command, or any combination thereof.
  • Other keys may be associated with a command (a so-called key-command assignment) in a similar manner to the example commands described above. The commands associated with the keys may be context dependent, for example, depending on an active mode or open application.
  • While the various methods of the present disclosure have been described in terms of functions shown as separate blocks in the Figures, the functions of the various blocks may be combined during processing on an electronic device. Furthermore, some of the functional blocks in the Figures may be separated into one or more sub steps during processing on an electronic device.
  • While the present disclosure is described, at least in part, in terms of methods, a person of ordinary skill in the art will understand that the present disclosure is also directed to the various components for performing at least some of the aspects and features of the described methods, be it by way of hardware components, software or any combination of the two, or in any other manner. Moreover, the present disclosure is also directed to a pre-recorded storage device or other similar computer readable medium including program instructions stored thereon for performing the methods described herein.
  • The present disclosure may be embodied in other specific forms without departing from the subject matter of the claims. The described example embodiments are to be considered in all respects as being only illustrative and not restrictive. The present disclosure intends to cover and embrace all suitable changes in technology. The scope of the present disclosure is, therefore, described by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are intended to be embraced within their scope.

Claims (11)

1. A method for providing visual cues on a display of an electronic device, comprising:
displaying on the display a virtual keyboard having one or more selectable keys, at least some of the keys configured to display characters;
detecting a touch input reflecting selection of one of the keys;
determining an input direction associated with the touch input; and
displaying on the display a visual cue associated with the selected key at a location proximate to the selected key and offset in a direction determined based on the determined input direction.
2. The method of claim 1, wherein detecting the touch input comprises determining a shape of the touch input, and determining the input direction of the touch input comprises identifying a direction that matches the shape of the touch input.
3. The method of claim 2, wherein identifying the direction that matches the shape of the touch input comprises determining a major axis of a contact area of the touch input, and determining the input direction as a direction of the major axis in accordance with a screen orientation of the content displayed on the display or a device orientation of the display.
4. The method of claim 2, wherein identifying the direction that matches the shape of the touch input comprises identifying a touch profile that matches the shape of the touch input, and determining the input direction as a direction of the touch profile that matches the shape of the touch input.
5. The method of claim 1, wherein determining the input direction of the touch input comprises determining whether the touch input was detected at a left portion or a right portion of the display.
6. The method of claim 1, wherein determining the input direction of the touch input comprises detecting proximity of an object at or near the display when the touch input was detected, and determining the input direction as left or right in accordance with a side of the display at which proximity of an object was detected.
7. The method of claim 1, wherein determining the input direction of the touch input comprises detecting an orientation of the display.
8. The method of claim 1, wherein detecting the touch input comprises detecting a touch gesture, wherein determining the input direction of the touch input comprises determining the direction of the touch gesture, and wherein displaying the visual cue comprises displaying an alternate character associated with the selected key when the direction of the touch gesture corresponds to a peek gesture.
9. The method of claim 8, further comprising:
inputting the alternate character associated with the selected key in response to a trigger.
10. A method for providing visual cues rendered on a display, comprising:
displaying on the display a virtual keyboard having one or more selectable keys, at least some of the keys configured to display characters;
detecting a touch input reflecting selection of one of the keys;
determining whether the touch input is associated with a left hand or a right hand of a user; and
displaying on the display a visual cue associated with the selected key, wherein the visual cue is located at a position proximate to the selected key and offset in a direction determined based on the determination that the touch input is associated with the left hand or the right hand.
11. The method of claim 10, wherein the visual cue is located to the right of the selected key when the touch input is associated with the left hand of the user, and the visual cue is located to the left of the selected key when the touch input is associated with the right hand of the user.
US13/560,796 2012-04-16 2012-07-27 Method and device having touchscreen keyboard with visual cues Abandoned US20130271375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/560,796 US20130271375A1 (en) 2012-04-16 2012-07-27 Method and device having touchscreen keyboard with visual cues

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/447,704 US9201510B2 (en) 2012-04-16 2012-04-16 Method and device having touchscreen keyboard with visual cues
US13/560,796 US20130271375A1 (en) 2012-04-16 2012-07-27 Method and device having touchscreen keyboard with visual cues

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/447,704 Continuation US9201510B2 (en) 2012-04-16 2012-04-16 Method and device having touchscreen keyboard with visual cues

Publications (1)

Publication Number Publication Date
US20130271375A1 true US20130271375A1 (en) 2013-10-17

Family

ID=49324622

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/447,704 Active US9201510B2 (en) 2012-04-16 2012-04-16 Method and device having touchscreen keyboard with visual cues
US13/560,796 Abandoned US20130271375A1 (en) 2012-04-16 2012-07-27 Method and device having touchscreen keyboard with visual cues
US14/953,627 Abandoned US20160077733A1 (en) 2012-04-16 2015-11-30 Method and device having touchscreen keyboard with visual cues

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/447,704 Active US9201510B2 (en) 2012-04-16 2012-04-16 Method and device having touchscreen keyboard with visual cues

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/953,627 Abandoned US20160077733A1 (en) 2012-04-16 2015-11-30 Method and device having touchscreen keyboard with visual cues

Country Status (1)

Country Link
US (3) US9201510B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208274A1 (en) * 2013-01-18 2014-07-24 Microsoft Corporation Controlling a computing-based device using hand gestures
US20150121311A1 (en) * 2013-07-15 2015-04-30 Tencent Technology (Shenzhen) Company Limited Methods and systems for quick reply operations
US9032322B2 (en) 2011-11-10 2015-05-12 Blackberry Limited Touchscreen keyboard predictive display and generation of a set of characters
US9063653B2 (en) 2012-08-31 2015-06-23 Blackberry Limited Ranking predictions based on typing speed and typing confidence
WO2015095415A1 (en) * 2013-12-19 2015-06-25 Makuch Jason David Input control assignment
US20150212699A1 (en) * 2014-01-27 2015-07-30 Lenovo (Singapore) Pte. Ltd. Handedness for hand-held devices
US9116552B2 (en) 2012-06-27 2015-08-25 Blackberry Limited Touchscreen keyboard providing selection of word predictions in partitions of the touchscreen keyboard
US9122672B2 (en) 2011-11-10 2015-09-01 Blackberry Limited In-letter word prediction for virtual keyboard
US9152323B2 (en) 2012-01-19 2015-10-06 Blackberry Limited Virtual keyboard providing an indication of received input
US9201510B2 (en) 2012-04-16 2015-12-01 Blackberry Limited Method and device having touchscreen keyboard with visual cues
US9207860B2 (en) 2012-05-25 2015-12-08 Blackberry Limited Method and apparatus for detecting a gesture
US9310889B2 (en) 2011-11-10 2016-04-12 Blackberry Limited Touchscreen keyboard predictive display and generation of a set of characters
US20160266659A1 (en) * 2013-03-15 2016-09-15 Blackberry Limited Method and apparatus for word prediction using the position of a non-typing digit
US9524290B2 (en) 2012-08-31 2016-12-20 Blackberry Limited Scoring predictions based on prediction length and typing speed
US9557913B2 (en) 2012-01-19 2017-01-31 Blackberry Limited Virtual keyboard display having a ticker proximate to the virtual keyboard
US20170060413A1 (en) * 2014-02-21 2017-03-02 Drnc Holdings, Inc. Methods, apparatus, systems, devices and computer program products for facilitating entry of user input into computing devices
US9652448B2 (en) 2011-11-10 2017-05-16 Blackberry Limited Methods and systems for removing or replacing on-keyboard prediction candidates
US9715489B2 (en) 2011-11-10 2017-07-25 Blackberry Limited Displaying a prediction candidate after a typing mistake
US9910588B2 (en) 2012-02-24 2018-03-06 Blackberry Limited Touchscreen keyboard providing word predictions in partitions of the touchscreen keyboard in proximate association with candidate letters
WO2018125684A1 (en) * 2016-12-28 2018-07-05 Amazon Technologies, Inc. Feedback animation for touch-based interactions
US20190107938A1 (en) * 2012-04-19 2019-04-11 Sony Corporation Information processing apparatus, information processing method, program, and information processing system
US10409480B2 (en) 2016-12-28 2019-09-10 Amazon Technologies, Inc. Interruption and resumption of feedback animation for touch-based interactions
US10521854B1 (en) 2017-01-04 2019-12-31 Amazon Technologies, Inc. Selection and display of custom user interface controls
US10922743B1 (en) 2017-01-04 2021-02-16 Amazon Technologies, Inc. Adaptive performance of actions associated with custom user interface controls

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354805B2 (en) 2012-04-30 2016-05-31 Blackberry Limited Method and apparatus for text selection
US8484573B1 (en) * 2012-05-23 2013-07-09 Google Inc. Predictive virtual keyboard
CN103513877A (en) * 2012-06-29 2014-01-15 联想(北京)有限公司 Method for processing operating object and electronic device
CN102981764B (en) * 2012-11-19 2018-07-20 北京三星通信技术研究有限公司 The processing method and equipment of touch control operation
CN103870186A (en) * 2012-12-17 2014-06-18 华为终端有限公司 Input method and input device of touch-screen electronic device
US20140215375A1 (en) * 2013-01-30 2014-07-31 Apple Inc. Presenting shortcuts to provide computer software commands
US10389675B2 (en) * 2013-02-19 2019-08-20 Sudheer A. Grandhi User interfaces and associated processes in email communication
US9665279B2 (en) 2014-03-21 2017-05-30 Blackberry Limited Electronic device and method for previewing content associated with an application
US10579212B2 (en) 2014-05-30 2020-03-03 Apple Inc. Structured suggestions
US10565219B2 (en) 2014-05-30 2020-02-18 Apple Inc. Techniques for automatically generating a suggested contact based on a received message
US20150350118A1 (en) 2014-05-30 2015-12-03 Apple Inc. Canned answers in messages
US9727218B2 (en) * 2015-01-02 2017-08-08 Microsoft Technology Licensing, Llc Contextual browser frame and entry box placement
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US10003938B2 (en) 2015-08-14 2018-06-19 Apple Inc. Easy location sharing
CN107924256B (en) * 2015-09-09 2021-03-26 苹果公司 Emoticons and preset replies
US10445425B2 (en) 2015-09-15 2019-10-15 Apple Inc. Emoji and canned responses
WO2018186821A1 (en) * 2017-04-03 2018-10-11 Hewlett-Packard Development Company, L.P. Displaying visual cues on speakers
US10726792B2 (en) 2017-04-17 2020-07-28 Intel Corporation Glare and occluded view compensation for automotive and other applications
US11163331B2 (en) 2018-04-27 2021-11-02 Hewlett-Packard Development Company, L.P. Keyboard mode
DK180171B1 (en) 2018-05-07 2020-07-14 Apple Inc USER INTERFACES FOR SHARING CONTEXTUALLY RELEVANT MEDIA CONTENT
DK201870380A1 (en) 2018-05-07 2020-01-29 Apple Inc. Displaying user interfaces associated with physical activities
DK201970530A1 (en) 2019-05-06 2021-01-28 Apple Inc Avatar integration with multiple applications
US11194467B2 (en) 2019-06-01 2021-12-07 Apple Inc. Keyboard management user interfaces
US11074408B2 (en) 2019-06-01 2021-07-27 Apple Inc. Mail application features

Family Cites Families (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872433A (en) 1973-06-07 1975-03-18 Optical Business Machines Optical character recognition system
DE2915673A1 (en) 1979-04-18 1980-10-30 Olympia Werke Ag TEXT EDITING DEVICE WITH A DISPLAY DEVICE
US5261009A (en) 1985-10-15 1993-11-09 Palantir Corporation Means for resolving ambiguities in text passed upon character context
US5963671A (en) 1991-11-27 1999-10-05 International Business Machines Corporation Enhancement of soft keyboard operations using trigram prediction
US5416895A (en) 1992-04-08 1995-05-16 Borland International, Inc. System and methods for improved spreadsheet interface with user-familiar objects
JP3546337B2 (en) 1993-12-21 2004-07-28 ゼロックス コーポレイション User interface device for computing system and method of using graphic keyboard
US5574840A (en) 1994-08-29 1996-11-12 Microsoft Corporation Method and system for selecting text utilizing a plurality of text using switchable minimum granularity of selection
JPH10154144A (en) 1996-11-25 1998-06-09 Sony Corp Document inputting device and method therefor
US6073036A (en) 1997-04-28 2000-06-06 Nokia Mobile Phones Limited Mobile station with touch input having automatic symbol magnification function
US20060033724A1 (en) 2004-07-30 2006-02-16 Apple Computer, Inc. Virtual input device placement on a touch screen user interface
US7614008B2 (en) 2004-07-30 2009-11-03 Apple Inc. Operation of a computer with touch screen interface
US8479122B2 (en) 2004-07-30 2013-07-02 Apple Inc. Gestures for touch sensitive input devices
GB2335822B (en) 1998-03-25 2003-09-10 Nokia Mobile Phones Ltd Context sensitive pop-up window for a portable phone
US6421453B1 (en) 1998-05-15 2002-07-16 International Business Machines Corporation Apparatus and methods for user recognition employing behavioral passwords
KR100306277B1 (en) 1998-05-29 2001-11-02 윤종용 Method for registering and confirming a password in character recognition portable phone
US6064340A (en) 1998-07-02 2000-05-16 Intersil Corporation Electrostatic discharge locating apparatus and method
US7679534B2 (en) 1998-12-04 2010-03-16 Tegic Communications, Inc. Contextual prediction of user words and user actions
US6226299B1 (en) 1999-01-20 2001-05-01 Emulex Corporation Sanitizing fibre channel frames
GB2347240A (en) 1999-02-22 2000-08-30 Nokia Mobile Phones Ltd Communication terminal having a predictive editor application
US7030863B2 (en) 2000-05-26 2006-04-18 America Online, Incorporated Virtual keyboard system with automatic correction
EP1192716B1 (en) 1999-05-27 2009-09-23 Tegic Communications, Inc. Keyboard system with automatic correction
US6573844B1 (en) 2000-01-18 2003-06-03 Microsoft Corporation Predictive keyboard
US6621424B1 (en) 2000-02-18 2003-09-16 Mitsubishi Electric Research Laboratories Inc. Method for predicting keystroke characters on single pointer keyboards and apparatus therefore
US6646572B1 (en) 2000-02-18 2003-11-11 Mitsubish Electric Research Laboratories, Inc. Method for designing optimal single pointer predictive keyboards and apparatus therefore
US6922810B1 (en) 2000-03-07 2005-07-26 Microsoft Corporation Grammar-based automatic data completion and suggestion for user input
US7107204B1 (en) 2000-04-24 2006-09-12 Microsoft Corporation Computer-aided writing system and method with cross-language writing wizard
EP1303805B1 (en) 2000-07-21 2010-02-10 Speedscript AG Method for a high-speed writing system and high-speed writing device
US20050195173A1 (en) 2001-08-30 2005-09-08 Mckay Brent User Interface for Large-Format Interactive Display Systems
CA2323856A1 (en) 2000-10-18 2002-04-18 602531 British Columbia Ltd. Method, system and media for entering data in a personal computing device
US6891551B2 (en) 2000-11-10 2005-05-10 Microsoft Corporation Selection handles in editing electronic documents
US6696985B2 (en) 2001-04-24 2004-02-24 International Business Machines Corporation Reformable keyboard with variable key design
US20050024341A1 (en) 2001-05-16 2005-02-03 Synaptics, Inc. Touch screen with user interface enhancement
GB2380583A (en) 2001-10-04 2003-04-09 Ilam Samson Touch pad/screen for electronic equipment
US20090040184A9 (en) 2001-10-04 2009-02-12 Infogation Corporation Information entry mechanism
FI115254B (en) 2001-12-20 2005-03-31 Nokia Corp Use of touch screen with a touch screen
US7394346B2 (en) 2002-01-15 2008-07-01 International Business Machines Corporation Free-space gesture recognition for transaction security and command processing
JP4073215B2 (en) 2002-01-28 2008-04-09 富士通株式会社 Character input device
FI20021655A (en) 2002-06-19 2003-12-20 Nokia Corp Method of deactivating locking and a portable electronic device
US7259752B1 (en) 2002-06-28 2007-08-21 Microsoft Corporation Method and system for editing electronic ink
CA2410057C (en) 2002-07-03 2008-04-29 2012244 Ontario Inc. Apparatus and method for input of ideographic korean syllables from reduced keyboard
WO2004008404A1 (en) 2002-07-12 2004-01-22 Dana Suess Modified-qwerty letter layout for rapid data entry
US20040111475A1 (en) 2002-12-06 2004-06-10 International Business Machines Corporation Method and apparatus for selectively identifying misspelled character strings in electronic communications
JP2004213269A (en) 2002-12-27 2004-07-29 Toshiba Corp Character input device
US7194699B2 (en) 2003-01-14 2007-03-20 Microsoft Corporation Animating images to reflect user selection
US7382358B2 (en) 2003-01-16 2008-06-03 Forword Input, Inc. System and method for continuous stroke word-based text input
US7098896B2 (en) 2003-01-16 2006-08-29 Forword Input Inc. System and method for continuous stroke word-based text input
US20040153963A1 (en) 2003-02-05 2004-08-05 Simpson Todd G. Information entry mechanism for small keypads
US7136047B2 (en) 2003-04-09 2006-11-14 Microsoft Corporation Software multi-tap input system and method
US20070061753A1 (en) 2003-07-17 2007-03-15 Xrgomics Pte Ltd Letter and word choice text input method for keyboards and reduced keyboard systems
US7533351B2 (en) 2003-08-13 2009-05-12 International Business Machines Corporation Method, apparatus, and program for dynamic expansion and overlay of controls
US7499040B2 (en) 2003-08-18 2009-03-03 Apple Inc. Movable touch pad with added functionality
KR100537280B1 (en) 2003-10-29 2005-12-16 삼성전자주식회사 Apparatus and method for inputting character using touch screen in portable terminal
WO2005069159A1 (en) 2004-01-14 2005-07-28 Aroop Kumar Banerjee Method of data entry for indic languages
JP2005202527A (en) 2004-01-14 2005-07-28 Fujitsu Component Ltd Input device and user authentication method
US7439959B2 (en) 2004-07-30 2008-10-21 Research In Motion Limited Key arrangement for a keyboard
US20060176283A1 (en) 2004-08-06 2006-08-10 Daniel Suraqui Finger activated reduced keyboard and a method for performing text input
US7561145B2 (en) 2005-03-18 2009-07-14 Microsoft Corporation Systems, methods, and computer-readable media for invoking an electronic ink or handwriting interface
GB0505941D0 (en) 2005-03-23 2005-04-27 Patel Sanjay Human-to-mobile interfaces
US7680333B2 (en) 2005-04-21 2010-03-16 Microsoft Corporation System and method for binary persistence format for a recognition result lattice
US7487461B2 (en) 2005-05-04 2009-02-03 International Business Machines Corporation System and method for issuing commands based on pen motions on a graphical keyboard
US20090193334A1 (en) 2005-05-18 2009-07-30 Exb Asset Management Gmbh Predictive text input system and method involving two concurrent ranking means
US8036878B2 (en) 2005-05-18 2011-10-11 Never Wall Treuhand GmbH Device incorporating improved text input mechanism
EP2109046A1 (en) 2008-04-07 2009-10-14 ExB Asset Management GmbH Predictive text input system and method involving two concurrent ranking means
US8185841B2 (en) 2005-05-23 2012-05-22 Nokia Corporation Electronic text input involving a virtual keyboard and word completion functionality on a touch-sensitive display screen
US7886233B2 (en) 2005-05-23 2011-02-08 Nokia Corporation Electronic text input involving word completion functionality for predicting word candidates for partial word inputs
US9019209B2 (en) 2005-06-08 2015-04-28 3M Innovative Properties Company Touch location determination involving multiple touch location processes
JP4619882B2 (en) 2005-07-12 2011-01-26 株式会社東芝 Mobile phone and remote control method thereof
US7443316B2 (en) 2005-09-01 2008-10-28 Motorola, Inc. Entering a character into an electronic device
US20100095238A1 (en) 2005-09-14 2010-04-15 Gilles Baudet Device, Method, Computer Program Product and User Interface for Enabling a User to Vary Which Items are displayed to the user
US20080098331A1 (en) * 2005-09-16 2008-04-24 Gregory Novick Portable Multifunction Device with Soft Keyboards
CN101292213B (en) 2005-10-21 2014-09-24 三洋电机株式会社 Input device for inputting password or the like and mobile telephone having the input device
US10152139B2 (en) 2005-12-13 2018-12-11 International Business Machines Corporation Autocompletion method and system
US7657849B2 (en) 2005-12-23 2010-02-02 Apple Inc. Unlocking a device by performing gestures on an unlock image
US7877685B2 (en) 2005-12-29 2011-01-25 Sap Ag Persistent adjustable text selector
GB0605386D0 (en) 2006-03-17 2006-04-26 Malvern Scient Solutions Ltd Character input method
US20070097096A1 (en) 2006-03-25 2007-05-03 Outland Research, Llc Bimodal user interface paradigm for touch screen devices
US20100045705A1 (en) 2006-03-30 2010-02-25 Roel Vertegaal Interaction techniques for flexible displays
KR100686165B1 (en) 2006-04-18 2007-02-26 엘지전자 주식회사 Portable terminal having osd function icon and method of displaying osd function icon using same
KR100771626B1 (en) 2006-04-25 2007-10-31 엘지전자 주식회사 Terminal device and method for inputting instructions thereto
US20070256029A1 (en) 2006-05-01 2007-11-01 Rpo Pty Llimited Systems And Methods For Interfacing A User With A Touch-Screen
US20070263932A1 (en) 2006-05-12 2007-11-15 Waterloo Maple Inc. System and method of gesture feature recognition
US20070271466A1 (en) 2006-05-18 2007-11-22 Genevieve Mak Security or authentication system and method using manual input measurements, such as via user manipulation of a computer mouse
US7661068B2 (en) 2006-06-12 2010-02-09 Microsoft Corporation Extended eraser functions
US20080141125A1 (en) 2006-06-23 2008-06-12 Firooz Ghassabian Combined data entry systems
US20080033713A1 (en) 2006-07-10 2008-02-07 Sony Ericsson Mobile Communications Ab Predicting entered text
US7941760B2 (en) 2006-09-06 2011-05-10 Apple Inc. Soft keyboard display for a portable multifunction device
US8564544B2 (en) 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons
US7934156B2 (en) 2006-09-06 2011-04-26 Apple Inc. Deletion gestures on a portable multifunction device
US7856605B2 (en) 2006-10-26 2010-12-21 Apple Inc. Method, system, and graphical user interface for positioning an insertion marker in a touch screen display
US8022934B2 (en) 2006-10-31 2011-09-20 Research In Motion Limited Handheld electronic device with text disambiguation and selective disabling of frequency learning
KR20080041856A (en) 2006-11-08 2008-05-14 팅크웨어(주) Method for displaying menu
KR20090098967A (en) 2006-11-08 2009-09-18 큐빅 디자인 스튜디오스 엘엘씨 Asymmetric shuffle keyboard
US7900145B2 (en) 2006-11-08 2011-03-01 Yahoo! Inc. System and method for synchronizing data
US8125312B2 (en) 2006-12-08 2012-02-28 Research In Motion Limited System and method for locking and unlocking access to an electronic device
US8115658B2 (en) 2006-12-29 2012-02-14 Research In Motion Limited Handheld electronic device providing confirmation of input, and associated method
EP1939715B1 (en) 2006-12-29 2011-01-26 Research In Motion Limited handheld electronic device providing confirmation of input, and associated method
US8074172B2 (en) 2007-01-05 2011-12-06 Apple Inc. Method, system, and graphical user interface for providing word recommendations
US8665225B2 (en) 2007-01-07 2014-03-04 Apple Inc. Portable multifunction device, method, and graphical user interface for interpreting a finger gesture
US7978176B2 (en) 2007-01-07 2011-07-12 Apple Inc. Portrait-landscape rotation heuristics for a portable multifunction device
US20090213081A1 (en) 2007-01-10 2009-08-27 Case Jr Charlie W Portable Electronic Device Touchpad Input Controller
US8311530B2 (en) 2007-01-26 2012-11-13 Research In Motion Limited Touch entry of password on a mobile device
US8201087B2 (en) 2007-02-01 2012-06-12 Tegic Communications, Inc. Spell-check for a keyboard system with automatic correction
US8225203B2 (en) 2007-02-01 2012-07-17 Nuance Communications, Inc. Spell-check for a keyboard system with automatic correction
US7912700B2 (en) 2007-02-08 2011-03-22 Microsoft Corporation Context based word prediction
CA2581824A1 (en) 2007-03-14 2008-09-14 602531 British Columbia Ltd. System, apparatus and method for data entry using multi-function keys
CN101021762A (en) 2007-03-26 2007-08-22 宇龙计算机通信科技(深圳)有限公司 Touch screen locking device and method
US20100295801A1 (en) 2007-04-10 2010-11-25 Nokia Corporation Electronic devices
WO2008125130A1 (en) 2007-04-12 2008-10-23 Nokia Corporation Keypad
US20080266261A1 (en) 2007-04-25 2008-10-30 Idzik Jacek S Keystroke Error Correction Method
US8130202B2 (en) 2007-05-01 2012-03-06 International Business Machines Corporation Infrared touch screen gated by touch force
EP2156316A4 (en) 2007-05-07 2013-03-06 Fourthwall Media Inc Providing personalized resources on-demand over a broadband network to consumer device applications
US8018441B2 (en) 2007-06-11 2011-09-13 Samsung Electronics Co., Ltd. Character input apparatus and method for automatically switching input mode in terminal having touch screen
JP4775332B2 (en) 2007-06-14 2011-09-21 ブラザー工業株式会社 Image selection apparatus and image selection method
US7970438B2 (en) 2007-06-19 2011-06-28 Lg Electronics Inc. Mobile terminal and keypad control method
US8059101B2 (en) 2007-06-22 2011-11-15 Apple Inc. Swipe gestures for touch screen keyboards
US8009146B2 (en) 2007-06-28 2011-08-30 Nokia Corporation Method, apparatus and computer program product for facilitating data entry via a touchscreen
US8065624B2 (en) 2007-06-28 2011-11-22 Panasonic Corporation Virtual keypad systems and methods
US8127254B2 (en) 2007-06-29 2012-02-28 Nokia Corporation Unlocking a touch screen device
US8365282B2 (en) 2007-07-18 2013-01-29 Research In Motion Limited Security system based on input shortcuts for a computer device
US20090044124A1 (en) 2007-08-06 2009-02-12 Nokia Corporation Method, apparatus and computer program product for facilitating data entry using an offset connection element
US20090058823A1 (en) 2007-09-04 2009-03-05 Apple Inc. Virtual Keyboards in Multi-Language Environment
US8661340B2 (en) 2007-09-13 2014-02-25 Apple Inc. Input methods for device having multi-language environment
CN100592249C (en) 2007-09-21 2010-02-24 上海汉翔信息技术有限公司 Method for quickly inputting related term
US8125458B2 (en) 2007-09-28 2012-02-28 Microsoft Corporation Detecting finger orientation on a touch-sensitive device
EP2045700A1 (en) 2007-10-04 2009-04-08 LG Electronics Inc. Menu display method for a mobile communication terminal
US20090125848A1 (en) 2007-11-14 2009-05-14 Susann Marie Keohane Touch surface-sensitive edit system
US7870164B2 (en) 2007-11-20 2011-01-11 Microsoft Corporation Database part creation, merge and reuse
WO2009066289A2 (en) 2007-11-20 2009-05-28 Avi Elazari Character input system for limited keyboards
US20090144667A1 (en) 2007-11-30 2009-06-04 Nokia Corporation Apparatus, method, computer program and user interface for enabling user input
JP2009139544A (en) 2007-12-05 2009-06-25 Denso Corp Input device
CN101464741B (en) 2007-12-19 2011-12-07 联想(北京)有限公司 Touch panel and its use method and notebook computer with the same
US8610671B2 (en) 2007-12-27 2013-12-17 Apple Inc. Insertion marker placement on touch sensitive display
TWI420344B (en) 2007-12-31 2013-12-21 Htc Corp Method for switching touch keyboard and handheld electronic device and storage medium using the same
US8232973B2 (en) 2008-01-09 2012-07-31 Apple Inc. Method, device, and graphical user interface providing word recommendations for text input
US8201109B2 (en) 2008-03-04 2012-06-12 Apple Inc. Methods and graphical user interfaces for editing on a portable multifunction device
US8650507B2 (en) 2008-03-04 2014-02-11 Apple Inc. Selecting of text using gestures
US8289283B2 (en) 2008-03-04 2012-10-16 Apple Inc. Language input interface on a device
US8358277B2 (en) 2008-03-18 2013-01-22 Microsoft Corporation Virtual keyboard based activation and dismissal
US8627231B2 (en) 2008-03-28 2014-01-07 Sprint Communications Company L.P. List-position locator
JP2009245239A (en) 2008-03-31 2009-10-22 Sony Corp Pointer display device, pointer display/detection method, pointer display/detection program and information apparatus
US20090254818A1 (en) 2008-04-03 2009-10-08 International Business Machines Corporation Method, system and user interface for providing inline spelling assistance
TWI361613B (en) 2008-04-16 2012-04-01 Htc Corp Mobile electronic device, method for entering screen lock state and recording medium thereof
CN101266520B (en) 2008-04-18 2013-03-27 上海触乐信息科技有限公司 System for accomplishing live keyboard layout
US8949743B2 (en) 2008-04-22 2015-02-03 Apple Inc. Language input interface on a device
US20090271731A1 (en) 2008-04-27 2009-10-29 Htc Corporation Electronic device and user interface display method thereof
JP2009288873A (en) 2008-05-27 2009-12-10 Ntt Docomo Inc Mobile terminal and character input method
US9355090B2 (en) 2008-05-30 2016-05-31 Apple Inc. Identification of candidate characters for text input
CN101604216B (en) 2008-06-10 2012-11-21 鸿富锦精密工业(深圳)有限公司 Password protection method
US8683582B2 (en) 2008-06-16 2014-03-25 Qualcomm Incorporated Method and system for graphical passcode security
US8570279B2 (en) * 2008-06-27 2013-10-29 Apple Inc. Touch screen device, method, and graphical user interface for inserting a character from an alternate keyboard
JP4632102B2 (en) 2008-07-17 2011-02-16 ソニー株式会社 Information processing apparatus, information processing method, and information processing program
US20100020033A1 (en) 2008-07-23 2010-01-28 Obinna Ihenacho Alozie Nwosu System, method and computer program product for a virtual keyboard
US20100020036A1 (en) 2008-07-23 2010-01-28 Edward Hui Portable electronic device and method of controlling same
US20100026650A1 (en) 2008-07-29 2010-02-04 Samsung Electronics Co., Ltd. Method and system for emphasizing objects
US20100070908A1 (en) 2008-09-18 2010-03-18 Sun Microsystems, Inc. System and method for accepting or rejecting suggested text corrections
JP2010079441A (en) 2008-09-24 2010-04-08 Sharp Corp Mobile terminal, software keyboard display method, and software keyboard display program
WO2010035574A1 (en) 2008-09-29 2010-04-01 シャープ株式会社 Input device, input method, program, and recording medium
US20100079413A1 (en) 2008-09-29 2010-04-01 Denso Corporation Control device
WO2010041092A1 (en) 2008-10-07 2010-04-15 Tiki'labs Method and device for controlling an inputting data
KR20100042976A (en) 2008-10-17 2010-04-27 엘지전자 주식회사 Terminal and method for controlling the same
JP5371371B2 (en) 2008-10-29 2013-12-18 京セラ株式会社 Mobile terminal and character display program
CN101533403B (en) 2008-11-07 2010-12-01 广东国笔科技股份有限公司 Derivative generating method and system
US9501694B2 (en) 2008-11-24 2016-11-22 Qualcomm Incorporated Pictorial methods for application selection and activation
WO2010068445A2 (en) 2008-11-25 2010-06-17 Spetalnick Jeffrey R Methods and systems for improved data input, compression, recognition, correction, and translation through frequency-based language analysis
KR20100060192A (en) 2008-11-27 2010-06-07 삼성전자주식회사 Apparatus and method for controlling locking function with a direction sensor in a portable device
US9041660B2 (en) 2008-12-09 2015-05-26 Microsoft Technology Licensing, Llc Soft keyboard control
US20100161538A1 (en) 2008-12-22 2010-06-24 Kennedy Jr Thomas William Device for user input
US8451236B2 (en) 2008-12-22 2013-05-28 Hewlett-Packard Development Company L.P. Touch-sensitive display screen with absolute and relative input modes
US8686952B2 (en) 2008-12-23 2014-04-01 Apple Inc. Multi touch with multi haptics
US8326358B2 (en) 2009-01-30 2012-12-04 Research In Motion Limited System and method for access control in a portable electronic device
EP2400426B1 (en) 2009-01-30 2013-03-13 Research In Motion Limited System and method for access control in a portable electronic device
US20100199176A1 (en) 2009-02-02 2010-08-05 Chronqvist Fredrik A Electronic device with text prediction function and method
US8605039B2 (en) 2009-03-06 2013-12-10 Zimpl Ab Text input
US8661362B2 (en) 2009-03-16 2014-02-25 Apple Inc. Methods and graphical user interfaces for editing on a multifunction device with a touch screen display
GB0905457D0 (en) 2009-03-30 2009-05-13 Touchtype Ltd System and method for inputting text into electronic devices
US8539382B2 (en) 2009-04-03 2013-09-17 Palm, Inc. Preventing unintentional activation and/or input in an electronic device
US9213477B2 (en) 2009-04-07 2015-12-15 Tara Chand Singhal Apparatus and method for touch screen user interface for handheld electric devices part II
US20100259482A1 (en) 2009-04-10 2010-10-14 Microsoft Corporation Keyboard gesturing
US8300023B2 (en) 2009-04-10 2012-10-30 Qualcomm Incorporated Virtual keypad generator with learning capabilities
KR101537706B1 (en) 2009-04-16 2015-07-20 엘지전자 주식회사 Mobile terminal and control method thereof
US20100265181A1 (en) 2009-04-20 2010-10-21 ShoreCap LLC System, method and computer readable media for enabling a user to quickly identify and select a key on a touch screen keypad by easing key selection
CN101876878A (en) 2009-04-29 2010-11-03 深圳富泰宏精密工业有限公司 Word prediction input system and method
US8739055B2 (en) 2009-05-07 2014-05-27 Microsoft Corporation Correction of typographical errors on touch displays
US20100293475A1 (en) * 2009-05-12 2010-11-18 International Business Machines Corporation Notification of additional recipients of email messages
JP5158014B2 (en) 2009-05-21 2013-03-06 ソニー株式会社 Display control apparatus, display control method, and computer program
US20100313158A1 (en) 2009-06-08 2010-12-09 Lg Electronics Inc. Method for editing data in mobile terminal and mobile terminal using the same
US8856649B2 (en) 2009-06-08 2014-10-07 Business Objects Software Limited Aggregation level and measure based hinting and selection of cells in a data display
US20100315266A1 (en) 2009-06-15 2010-12-16 Microsoft Corporation Predictive interfaces with usability constraints
US8458485B2 (en) 2009-06-17 2013-06-04 Microsoft Corporation Image-based unlock functionality on a computing device
US20100333027A1 (en) 2009-06-26 2010-12-30 Sony Ericsson Mobile Communications Ab Delete slider mechanism
WO2010149224A1 (en) 2009-06-26 2010-12-29 Nokia Corporation Method, apparatus and computer program code handling a user input
WO2011008861A2 (en) 2009-07-14 2011-01-20 Eatoni Ergonomics, Inc Keyboard comprising swipe-switches performing keyboard actions
US20110018812A1 (en) 2009-07-21 2011-01-27 Cisco Technology, Inc. Fast Typographical Error Correction for Touchscreen Keyboards
US20110029862A1 (en) 2009-07-30 2011-02-03 Research In Motion Limited System and method for context based predictive text entry assistance
EP2282252A1 (en) 2009-07-31 2011-02-09 France Telecom Method of and apparatus for converting a character sequence input
US20110041056A1 (en) 2009-08-14 2011-02-17 Research In Motion Limited Electronic device with touch-sensitive display and method of facilitating input at the electronic device
US8531410B2 (en) 2009-08-18 2013-09-10 Fuji Xerox Co., Ltd. Finger occlusion avoidance on touch display devices
WO2011025200A2 (en) 2009-08-23 2011-03-03 (주)티피다시아이 Information input system and method using extension key
TW201109990A (en) 2009-09-04 2011-03-16 Higgstec Inc Touch gesture detecting method of a touch panel
US20110060984A1 (en) 2009-09-06 2011-03-10 Lee Yung-Chao Method and apparatus for word prediction of text input by assigning different priorities to words on a candidate word list according to how many letters have been entered so far by a user
US20110063231A1 (en) 2009-09-14 2011-03-17 Invotek, Inc. Method and Device for Data Input
US9122393B2 (en) 2009-09-30 2015-09-01 At&T Mobility Ii Llc Predictive sensitized keypad
US8812972B2 (en) 2009-09-30 2014-08-19 At&T Intellectual Property I, L.P. Dynamic generation of soft keyboards for mobile devices
WO2011044664A1 (en) 2009-10-14 2011-04-21 Research In Motion Limited Touch-input determination based on relative distances of contact
US20110099506A1 (en) 2009-10-26 2011-04-28 Google Inc. Predictive Text Entry for Input Devices
US8627224B2 (en) 2009-10-27 2014-01-07 Qualcomm Incorporated Touch screen keypad layout
EP2320312A1 (en) 2009-11-10 2011-05-11 Research In Motion Limited Portable electronic device and method of controlling same
KR101595029B1 (en) 2009-11-18 2016-02-17 엘지전자 주식회사 Mobile terminal and method for controlling the same
TW201122890A (en) 2009-12-18 2011-07-01 Best Solution Technology Inc Touch-control lock operated according to gesture or figure.
CA2783774A1 (en) 2009-12-20 2011-06-23 Keyless Systems Ltd. Features of a data entry system
KR20110071612A (en) 2009-12-21 2011-06-29 삼성전자주식회사 Image forming apparatus and character input method of document thereof
US20110171617A1 (en) 2010-01-11 2011-07-14 Ideographix, Inc. System and method for teaching pictographic languages
US20110179355A1 (en) 2010-01-15 2011-07-21 Sony Ericsson Mobile Communications Ab Virtual information input arrangement
US8782556B2 (en) 2010-02-12 2014-07-15 Microsoft Corporation User-centric soft keyboard predictive technologies
US20110202835A1 (en) 2010-02-13 2011-08-18 Sony Ericsson Mobile Communications Ab Item selection method for touch screen devices
US9104312B2 (en) 2010-03-12 2015-08-11 Nuance Communications, Inc. Multimodal text input system, such as for use with touch screens on mobile phones
JP5556270B2 (en) 2010-03-17 2014-07-23 富士通株式会社 Candidate display device and candidate display method
US9292161B2 (en) 2010-03-24 2016-03-22 Microsoft Technology Licensing, Llc Pointer tool with touch-enabled precise placement
CN102202130A (en) 2010-03-25 2011-09-28 鸿富锦精密工业(深圳)有限公司 Electronic device with unlocking and locking functions and unlocking and locking method thereof
US20110242138A1 (en) 2010-03-31 2011-10-06 Tribble Guy L Device, Method, and Graphical User Interface with Concurrent Virtual Keyboards
US8502856B2 (en) 2010-04-07 2013-08-06 Apple Inc. In conference display adjustments
KR101642725B1 (en) 2010-04-14 2016-08-11 삼성전자 주식회사 Method and apparatus for managing lock function in mobile terminal
EP2381384B1 (en) 2010-04-21 2019-02-27 BlackBerry Limited Method of providing security on a portable electronic device having a touch-sensitive display
US20110260829A1 (en) 2010-04-21 2011-10-27 Research In Motion Limited Method of providing security on a portable electronic device having a touch-sensitive display
DE102010020474A1 (en) 2010-05-14 2011-11-17 Deutsche Telekom Ag Touch screen screen with function lock
WO2011146740A2 (en) 2010-05-19 2011-11-24 Google Inc. Sliding motion to change computer keys
US20110302518A1 (en) 2010-06-07 2011-12-08 Google Inc. Selecting alternate keyboard characters via motion input
US20110305494A1 (en) 2010-06-11 2011-12-15 Chulho Kang Portable and ease-of-use ergonomic keyboard
KR101694154B1 (en) 2010-06-29 2017-01-09 엘지전자 주식회사 Mobile terminal and operation control method thereof
JP5573457B2 (en) 2010-07-23 2014-08-20 ソニー株式会社 Information processing apparatus, information processing method, and information processing program
US20120030566A1 (en) 2010-07-28 2012-02-02 Victor B Michael System with touch-based selection of data items
US8918734B2 (en) 2010-07-28 2014-12-23 Nuance Communications, Inc. Reduced keyboard with prediction solutions when input is a partial sliding trajectory
US20120030624A1 (en) * 2010-07-30 2012-02-02 Migos Charles J Device, Method, and Graphical User Interface for Displaying Menus
US8799815B2 (en) 2010-07-30 2014-08-05 Apple Inc. Device, method, and graphical user interface for activating an item in a folder
JP5510185B2 (en) 2010-08-20 2014-06-04 ソニー株式会社 Information processing apparatus, program, and display control method
US8904311B2 (en) 2010-09-01 2014-12-02 Nokia Corporation Method, apparatus, and computer program product for implementing a variable content movable control
US9122318B2 (en) 2010-09-15 2015-09-01 Jeffrey R. Spetalnick Methods of and systems for reducing keyboard data entry errors
US20120068937A1 (en) 2010-09-16 2012-03-22 Sony Ericsson Mobile Communications Ab Quick input language/virtual keyboard/ language dictionary change on a touch screen device
JP5657973B2 (en) 2010-09-24 2015-01-21 Necエンベデッドプロダクツ株式会社 Information processing apparatus, selected character display method, and program
US8516386B2 (en) 2010-09-29 2013-08-20 Apple Inc. Scrolling virtual music keyboard
KR101688944B1 (en) 2010-10-01 2016-12-22 엘지전자 주식회사 Keyboard controlling apparatus and method thereof
US9027117B2 (en) 2010-10-04 2015-05-05 Microsoft Technology Licensing, Llc Multiple-access-level lock screen
JP5782699B2 (en) 2010-10-15 2015-09-24 ソニー株式会社 Information processing apparatus, input control method for information processing apparatus, and program
US9104306B2 (en) 2010-10-29 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Translation of directional input to gesture
US8754860B2 (en) 2010-11-05 2014-06-17 Apple Inc. Device, method, and graphical user interface for manipulating soft keyboards
GB2485999A (en) 2010-11-30 2012-06-06 St Microelectronics Res & Dev Optical keyboard each key recognising multiple different inputs
US20120167009A1 (en) 2010-12-22 2012-06-28 Apple Inc. Combining timing and geometry information for typing correction
US20120223959A1 (en) 2011-03-01 2012-09-06 Apple Inc. System and method for a touchscreen slider with toggle control
JP6073782B2 (en) * 2011-05-16 2017-02-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Display device, display control method and display control program, and input device, input support method and program
US9092130B2 (en) 2011-05-31 2015-07-28 Apple Inc. Devices, methods, and graphical user interfaces for document manipulation
KR101838260B1 (en) 2011-06-03 2018-03-13 구글 엘엘씨 Gestures for selecting text
JP5298161B2 (en) * 2011-06-13 2013-09-25 シャープ株式会社 Operating device and image forming apparatus
US20130007606A1 (en) 2011-06-30 2013-01-03 Nokia Corporation Text deletion
US20130067411A1 (en) 2011-09-08 2013-03-14 Google Inc. User gestures indicating rates of execution of functions
US9785251B2 (en) 2011-09-14 2017-10-10 Apple Inc. Actuation lock for a touch sensitive mechanical keyboard
US20130104068A1 (en) 2011-10-20 2013-04-25 Microsoft Corporation Text prediction key
US20130120268A1 (en) 2011-11-10 2013-05-16 Research In Motion Limited Touchscreen keyboard predictive display and generation of a set of characters
US8490008B2 (en) 2011-11-10 2013-07-16 Research In Motion Limited Touchscreen keyboard predictive display and generation of a set of characters
US9122672B2 (en) 2011-11-10 2015-09-01 Blackberry Limited In-letter word prediction for virtual keyboard
US20130125035A1 (en) 2011-11-10 2013-05-16 Research In Motion Limited Virtual keyboard configuration
US9310889B2 (en) 2011-11-10 2016-04-12 Blackberry Limited Touchscreen keyboard predictive display and generation of a set of characters
US9652448B2 (en) 2011-11-10 2017-05-16 Blackberry Limited Methods and systems for removing or replacing on-keyboard prediction candidates
US9715489B2 (en) 2011-11-10 2017-07-25 Blackberry Limited Displaying a prediction candidate after a typing mistake
CA2789827C (en) 2012-01-19 2017-06-13 Research In Motion Limited Virtual keyboard providing an indication of received input
US9557913B2 (en) 2012-01-19 2017-01-31 Blackberry Limited Virtual keyboard display having a ticker proximate to the virtual keyboard
GB2503968B (en) 2012-02-24 2021-02-17 Blackberry Ltd Touchscreen keyboard providing word predictions in partitions of the touchscreen keyboard in proximate association with candidate letters
CA2865272C (en) 2012-02-24 2019-11-05 Blackberry Limited Virtual keyboard with dynamically reconfigurable layout
US9001058B2 (en) * 2012-03-05 2015-04-07 International Business Machines Corporation Computer action detection
US9223497B2 (en) 2012-03-16 2015-12-29 Blackberry Limited In-context word prediction and word correction
CA2812457C (en) 2012-04-16 2017-03-21 Research In Motion Limited Method and device having touchscreen keyboard with visual cues
EP2653955B1 (en) 2012-04-16 2017-02-08 BlackBerry Limited Method and device having touchscreen keyboard with visual cues
US9201510B2 (en) 2012-04-16 2015-12-01 Blackberry Limited Method and device having touchscreen keyboard with visual cues
US20130271385A1 (en) 2012-04-16 2013-10-17 Research In Motion Limited Method of Changing Input States
EP2660727B1 (en) 2012-04-30 2016-10-26 BlackBerry Limited Method and apparatus for text selection
CA2813393C (en) 2012-04-30 2019-10-22 Research In Motion Limited Touchscreen keyboard providing word predictions at locations in association with candidate letters
EP2660697B1 (en) 2012-04-30 2017-03-01 BlackBerry Limited Method and apparatus for text selection
US9354805B2 (en) 2012-04-30 2016-05-31 Blackberry Limited Method and apparatus for text selection
US20130285927A1 (en) 2012-04-30 2013-10-31 Research In Motion Limited Touchscreen keyboard with correction of previously input text
US20130285916A1 (en) 2012-04-30 2013-10-31 Research In Motion Limited Touchscreen keyboard providing word predictions at locations in association with candidate letters
CN103534676A (en) 2012-04-30 2014-01-22 黑莓有限公司 Touchscreen keyboard with correction of previously input text
EP2660699A1 (en) 2012-04-30 2013-11-06 BlackBerry Limited Touchscreen keyboard with correction of previously input text
EP2660696B1 (en) 2012-04-30 2014-06-11 BlackBerry Limited Method and apparatus for text selection
GB2506956A (en) 2012-04-30 2014-04-16 Blackberry Ltd Method and apparatus for text selection
US9292192B2 (en) 2012-04-30 2016-03-22 Blackberry Limited Method and apparatus for text selection
US10025487B2 (en) 2012-04-30 2018-07-17 Blackberry Limited Method and apparatus for text selection
US9207860B2 (en) 2012-05-25 2015-12-08 Blackberry Limited Method and apparatus for detecting a gesture
US20130342452A1 (en) 2012-06-21 2013-12-26 Research In Motion Limited Electronic device including touch-sensitive display and method of controlling a position indicator
EP2680120B1 (en) 2012-06-27 2018-03-21 BlackBerry Limited Touchscreen keyboard providing selection of word predictions in partitions of the touchscreen keyboard
US9116552B2 (en) 2012-06-27 2015-08-25 Blackberry Limited Touchscreen keyboard providing selection of word predictions in partitions of the touchscreen keyboard
CA2820997C (en) 2012-07-13 2016-10-18 Research In Motion Limited Methods and systems for removing or replacing on-keyboard prediction candidates
US9524290B2 (en) 2012-08-31 2016-12-20 Blackberry Limited Scoring predictions based on prediction length and typing speed
EP2703956B1 (en) 2012-08-31 2014-11-26 BlackBerry Limited Ranking predictions based on typing speed and typing confidence
EP2703955B1 (en) 2012-08-31 2014-11-26 BlackBerry Limited Scoring predictions based on prediction length and typing speed
US20140063067A1 (en) 2012-08-31 2014-03-06 Research In Motion Limited Method to select word by swiping capacitive keyboard
EP2703957B1 (en) 2012-08-31 2018-06-06 BlackBerry Limited Method to select word by swiping capacitive keyboard
US9063653B2 (en) 2012-08-31 2015-06-23 Blackberry Limited Ranking predictions based on typing speed and typing confidence

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032322B2 (en) 2011-11-10 2015-05-12 Blackberry Limited Touchscreen keyboard predictive display and generation of a set of characters
US9715489B2 (en) 2011-11-10 2017-07-25 Blackberry Limited Displaying a prediction candidate after a typing mistake
US9652448B2 (en) 2011-11-10 2017-05-16 Blackberry Limited Methods and systems for removing or replacing on-keyboard prediction candidates
US9310889B2 (en) 2011-11-10 2016-04-12 Blackberry Limited Touchscreen keyboard predictive display and generation of a set of characters
US9122672B2 (en) 2011-11-10 2015-09-01 Blackberry Limited In-letter word prediction for virtual keyboard
US9152323B2 (en) 2012-01-19 2015-10-06 Blackberry Limited Virtual keyboard providing an indication of received input
US9557913B2 (en) 2012-01-19 2017-01-31 Blackberry Limited Virtual keyboard display having a ticker proximate to the virtual keyboard
US9910588B2 (en) 2012-02-24 2018-03-06 Blackberry Limited Touchscreen keyboard providing word predictions in partitions of the touchscreen keyboard in proximate association with candidate letters
US9201510B2 (en) 2012-04-16 2015-12-01 Blackberry Limited Method and device having touchscreen keyboard with visual cues
US20190107938A1 (en) * 2012-04-19 2019-04-11 Sony Corporation Information processing apparatus, information processing method, program, and information processing system
US10942620B2 (en) * 2012-04-19 2021-03-09 Sony Corporation Information processing apparatus, information processing method, program, and information processing system
US9207860B2 (en) 2012-05-25 2015-12-08 Blackberry Limited Method and apparatus for detecting a gesture
US9116552B2 (en) 2012-06-27 2015-08-25 Blackberry Limited Touchscreen keyboard providing selection of word predictions in partitions of the touchscreen keyboard
US9524290B2 (en) 2012-08-31 2016-12-20 Blackberry Limited Scoring predictions based on prediction length and typing speed
US9063653B2 (en) 2012-08-31 2015-06-23 Blackberry Limited Ranking predictions based on typing speed and typing confidence
US20140208274A1 (en) * 2013-01-18 2014-07-24 Microsoft Corporation Controlling a computing-based device using hand gestures
US20160266659A1 (en) * 2013-03-15 2016-09-15 Blackberry Limited Method and apparatus for word prediction using the position of a non-typing digit
US9916063B2 (en) * 2013-07-15 2018-03-13 Tencent Technology (Shenzhen) Company Limited Methods and systems for quick reply operations
US10514829B2 (en) 2013-07-15 2019-12-24 Tencent Technology (Shenzhen) Company Limited Methods and systems for quick reply operations
US20180164962A1 (en) * 2013-07-15 2018-06-14 Tencent Technology (Shenzhen) Company Limited Methods and systems for quick reply operations
US20150121311A1 (en) * 2013-07-15 2015-04-30 Tencent Technology (Shenzhen) Company Limited Methods and systems for quick reply operations
US9086759B2 (en) 2013-12-19 2015-07-21 Amazon Technologies, Inc. Input control assignment
US9710107B1 (en) 2013-12-19 2017-07-18 Amazon Technologies, Inc. Input control assignment
WO2015095415A1 (en) * 2013-12-19 2015-06-25 Makuch Jason David Input control assignment
US10402014B2 (en) 2013-12-19 2019-09-03 Amazon Technologies, Inc. Input control assignment
US10416856B2 (en) * 2014-01-27 2019-09-17 Lenovo (Singapore) Pte. Ltd. Handedness for hand-held devices
US20150212699A1 (en) * 2014-01-27 2015-07-30 Lenovo (Singapore) Pte. Ltd. Handedness for hand-held devices
US20170060413A1 (en) * 2014-02-21 2017-03-02 Drnc Holdings, Inc. Methods, apparatus, systems, devices and computer program products for facilitating entry of user input into computing devices
WO2018125684A1 (en) * 2016-12-28 2018-07-05 Amazon Technologies, Inc. Feedback animation for touch-based interactions
US10289300B2 (en) 2016-12-28 2019-05-14 Amazon Technologies, Inc. Feedback animation for touch-based interactions
US10409480B2 (en) 2016-12-28 2019-09-10 Amazon Technologies, Inc. Interruption and resumption of feedback animation for touch-based interactions
US10521854B1 (en) 2017-01-04 2019-12-31 Amazon Technologies, Inc. Selection and display of custom user interface controls
US10922743B1 (en) 2017-01-04 2021-02-16 Amazon Technologies, Inc. Adaptive performance of actions associated with custom user interface controls

Also Published As

Publication number Publication date
US20160077733A1 (en) 2016-03-17
US9201510B2 (en) 2015-12-01
US20130275923A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
US9201510B2 (en) Method and device having touchscreen keyboard with visual cues
EP2653955B1 (en) Method and device having touchscreen keyboard with visual cues
CA2812457C (en) Method and device having touchscreen keyboard with visual cues
US9134810B2 (en) Next letter prediction for virtual keyboard
US20170344128A1 (en) Touchscreen Keyboard Providing Word Predictions at Locations in Association with Candidate Letters
US9122672B2 (en) In-letter word prediction for virtual keyboard
US20130285926A1 (en) Configurable Touchscreen Keyboard
US9910588B2 (en) Touchscreen keyboard providing word predictions in partitions of the touchscreen keyboard in proximate association with candidate letters
US9128921B2 (en) Touchscreen keyboard with corrective word prediction
US20130285914A1 (en) Touchscreen keyboard with correction of previously input text
US20130271385A1 (en) Method of Changing Input States
CA2813393C (en) Touchscreen keyboard providing word predictions at locations in association with candidate letters
US20140002363A1 (en) Touchscreen keyboard providing selection of word predictions in partitions of the touchscreen keyboard
EP2660699A1 (en) Touchscreen keyboard with correction of previously input text
WO2013163718A1 (en) Touchscreen keyboard with correction of previously input text
EP2680120A1 (en) Touchscreen keyboard providing selection of word predictions in partitions of the touchscreen keyboard
CA2817262C (en) Touchscreen keyboard with corrective word prediction
EP2660692A1 (en) Configurable touchscreen keyboard
US20130125035A1 (en) Virtual keyboard configuration
EP2660684A1 (en) User interface for changing an input state of a virtual keyboard
CA2812033C (en) Touchscreen keyboard providing word predictions in partitions of the touchscreen keyboard in proximate association with candidate letters
EP2660693B1 (en) Touchscreen keyboard providing word predictions at locations in association with candidate letters
EP2653959A1 (en) Method of changing input states

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESEARCH IN MOTION LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRIFFIN, JASON TYLER;PASQUERO, JEROME;SIGNING DATES FROM 20120523 TO 20120524;REEL/FRAME:028848/0395

Owner name: RESEARCH IN MOTION CORPORATION, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAMILTON, ALISTAIR ROBERT;REEL/FRAME:028848/0400

Effective date: 20120605

Owner name: RESEARCH IN MOTION LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH IN MOTION CORPORATION;REEL/FRAME:028848/0416

Effective date: 20120621

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BLACKBERRY LIMITED, ONTARIO

Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH IN MOTION LIMITED;REEL/FRAME:033987/0576

Effective date: 20130709

AS Assignment

Owner name: MALIKIE INNOVATIONS LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLACKBERRY LIMITED;REEL/FRAME:064104/0103

Effective date: 20230511