US20130243021A1 - Epitaxial structures on sides of a substrate - Google Patents

Epitaxial structures on sides of a substrate Download PDF

Info

Publication number
US20130243021A1
US20130243021A1 US13/892,051 US201313892051A US2013243021A1 US 20130243021 A1 US20130243021 A1 US 20130243021A1 US 201313892051 A US201313892051 A US 201313892051A US 2013243021 A1 US2013243021 A1 US 2013243021A1
Authority
US
United States
Prior art keywords
substrate
epitaxial
side
epitaxial structure
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/892,051
Inventor
Brad M. Siskavich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JPMorgan Chase Bank NA
Original Assignee
Masimo Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/807,399 priority Critical patent/US8455290B2/en
Application filed by Masimo Semiconductor Inc filed Critical Masimo Semiconductor Inc
Priority to US13/892,051 priority patent/US20130243021A1/en
Publication of US20130243021A1 publication Critical patent/US20130243021A1/en
Assigned to JPMORGAN CHASE BANK, NATIONAL ASSOCIATION reassignment JPMORGAN CHASE BANK, NATIONAL ASSOCIATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MASIMO AMERICAS, INC., MASIMO CORPORATION
Assigned to JPMORGAN CHASE BANK, NATIONAL ASSOCIATION reassignment JPMORGAN CHASE BANK, NATIONAL ASSOCIATION CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 032784 FRAME: 0864. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT. Assignors: MASIMO AMERICAS, INC., MASIMO CORPORATION
Assigned to MASIMO SEMICONDUCTOR, INC. reassignment MASIMO SEMICONDUCTOR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SISKAVICH, BRAD M.
Assigned to MASIMO CORPORATION, MASIMO AMERICAS, INC. reassignment MASIMO CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, NATIONAL ASSOCIATION
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

A method of fabricating epitaxial structures including applying an etch stop to one side of a substrate and then growing at least one epitaxial layer on a first side of said substrate, flipping the substrate, growing a second etch stop and at least one epitaxial layer on a second side of the substrate, applying a carrier medium to the ultimate epitaxial layer on each side, dividing the substrate into two parts generally along an epitaxial plane to create separate epitaxial structures, removing any residual substrate and removing the etch stop.

Description

    FIELD OF THE INVENTION
  • This invention relates to a method of fabricating epitaxial devices.
  • BACKGROUND OF THE INVENTION
  • Fabricating epitaxial structures such as solar cells, LED's, lasers and IR cells is costly and complex. Solar cells have been fabricated forming inverted metamorphic (IMM) cells, by depositing the layers such as InGaP, GaAs, and InGaAs on a wafer or substrate such as GaAs often resulting in an array of a multiplicity of solar cells and then applying a carrier and removing the substrate by side etching it away. This process is slow and difficult and can result in poor and inconsistent performance. After removal of the substrate the processed epitaxial layers may be sawed into the individual solar cells. Solar cells have also been made by singulating the multiplicity of cells on, for example, a four inch wafer and then applying a carrier. The individual cells are then lifted off the substrate by etching along the singulation lines and underneath the individual cells This process is not optimal for mounting onto metal carriers and the individual cells so formed are difficult to process and handle. Often another material such as epoxy is incorporated, and further processing as well as final cell performance may be limited. Another shortcoming of such processing is that the wafers or substrates on which the epitaxial layers are grown, is often damaged or rendered unable to be reused, eliminating the cost benefits of epitaxial removal and substrate reuse.
  • SUMMARY OF THE INVENTION
  • In accordance with various aspects of the subject invention in at least one embodiment the invention presents an improved method of fabricating epitaxial structures which reduces the number of substrates required for the fabrication process by a factor of two and which admits of a simple and direct removal of the substrate, and the use of a number of different carriers including metals, which does not require singulation before separation from the substrate, and is compatible with further processing.
  • The subject invention results from the realization that, in part, an improved method of fabricating epitaxial structures in various aspects can be achieved by applying an etch stop layer and growing at least one epitaxial layer on each side; applying a carrier to the ultimate layer on each side and then dividing the substrate into two parts generally along an epitaxial plane to create two separate epitaxial structures from a single substrate.
  • The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
  • This invention features a method of fabricating epitaxial structures including applying an etch stop to one side of a substrate and then growing at least one epitaxial layer on a first side of the substrate, flipping the substrate, growing a second etch stop and at least one epitaxial layer on a second side of the substrate, applying a carrier medium to the ultimate epitaxial layer on each side, dividing the substrate into two parts generally along an epitaxial plane to create separate epitaxial structures, removing any residual substrate and removing the etch stop.
  • In a preferred embodiment the epitaxial structures may include solar cells. The solar cells may include inverted metamorphic structures. The solar cells may include inverted triple junction tandem solar cells. Each solar cell may include lattice matched top and middle layers and a lattice mismatched bottom layer. The lattice mismatched bottom layer may include InGaAs, and the top and middle layers may include InGaP and GaAs, respectively. The lattice mismatched bottom layer may include lattice matched 1 eV, and the top and middle layers may include lattice matched 1.9 eV and lattice matched 1.42 eV, respectively. The carrier medium may include a material from the group of silicon, metal or glass. The carrier medium may include a metal from the group of gold, silver, copper, nickel, titanium or platinum. Dividing the substrate into two parts may include cutting using a wire saw or laser. Each epitaxial structure may include an array of a multiplicity of individual cells. The method may further include separating the array of a multiplicity of cells in each epitaxial structure into the individual cells.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
  • FIG. 1 is a three dimensional diagrammatic view of two epitaxial structures formed on opposite sides of a substrate according to one embodiment of this invention;
  • FIGS. 2 and 3 are views, similar to FIG. 1, of the epitaxial structures after they have been separated by dividing the common substrate along an epitaxial plane;
  • FIG. 4 is a block diagram of one embodiment of a method of fabrication according to this invention;
  • FIGS. 5, 6 and 7 are more detailed schematic side sectional views of the bi-facial growth substrate during saw, etch stop, and residual substrate removal steps, respectively, according to one embodiment of the fabrication method of this invention; and
  • FIG. 8 is a view similar to FIGS. 5, 6, and 7 of one of the two resulting epitaxial structures formed in the operations of FIGS. 5, 6, and 7.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
  • The method of fabricating epitaxial structures according to this invention in one embodiment employs bi-facial epitaxial growth where both the bottom and the top of the semiconductor wafer or substrate is processed into separate epitaxial structures. The notion is to grow epistructures on one side of the wafer or substrate and then grow a similar epistructure on the opposite side of the substrate. This is done by stopping the growth after one epistructure is complete flipping the substrate and carrying out the growth of a second same or similar epistructure on the opposite side of the substrate. In this way two sets of epitaxial structures can be grown on a single common substrate, thereby reducing the number of substrates required by a factor of two.
  • There is shown in FIG. 1 a pair of epitaxial structures 10, 12 grown on a single common substrate 14. The epitaxial structure may contain one or more laser, IR, LED, or solar cell or cells. For example, substrate 14 may be a typical four inch diameter wafer or substrate and the epitaxial structure 10 may include an array of a multiplicity of individual devices or chips 16 which are subsequently diced or sawn apart perpendicular to the epitaxial plane as a part of the processing. After the growth of the epitaxial structures 10 and 12 on substrate 14 has been completed substrate 14 is divided, according to one embodiment of this invention, along an epitaxial plane 18 separating the two epitaxial structures 10 and 12 as shown in FIGS. 2 and 3.
  • A method of accomplishing the results suggested by FIGS. 1, 2 and 3 is shown in FIG. 4. An etch stop layer and then an epitaxial layer or layers are grown on the first side of the substrate 22, after which the substrate is flipped and a second etch stop layer and one or more epitaxial layers are grown on the opposite side of the substrate 24. A metallization or dielectric layer, considered a carrier, is added 26 to the ultimate epitaxial layer on each side. Then the substrate is divided 28 to separate the two epitaxial structures. The residual substrate and etch stop is removed 30. If the epitaxial structures 10 and 12 actually contain an array of a multiplicity of individual cells 16, 16 a, 16 b then each of the epitaxial structures may be processed and then diced or sawn into the individual devices. One use of the method according to this invention would be in the growth of inverted triple junction tandem solar cell structures. More particularly perhaps to two three junction inverted tandem cells in which the lattice match top and middle cells in addition to a lattice mismatch bottom In GaAs cell are grown on one side of the wafer and the same structure is then grown on the opposite side. The ultimate layer on both sides of the wafer or substrate is then metallized that is a carrier medium is formed on it using for example a conventional back-metal approach. Once the carrier is in place the substrate may be divided along an epitaxial plane, a plane generally parallel to the epitaxial plane. For example it may be sawn in two using a laser or diamond wire sawing method to separate the two epitaxial structures and create two separate devices. The two epitaxial structures may then be processed in a conventional manner as two separate substrates containing epitaxial growth which will be processed and diced into inverted metamorphic (IMM) solar cells.
  • Such an approach is shown in FIGS. 5, 6 and 7. In FIG. 5 a GaAs substrate 50 which may be 150 to 700 microns in thickness receives an etch stop layer 52. The etch stop 52 may be one micron or less in thickness and may be composed of such materials as InAlP, or AlGaAs. Then an epitaxial layer 56 of InGaP is grown on etch stop 52. A GaAs epitaxial layer 58 is grown on layer 56 and an InGaAs epitaxial layer 60 is grown on layer 58. Layers 56, 58 and 60 may be referred to as IMM or inverted metamorphic device. At this point substrate 50 would be flipped and an etch stop layer 54 and an epitaxial layer 62 of InGaP would be grown after which would be grown epitaxial layer 64 of GaAs and epitaxial layer 66 of InGaAs. The irregular lines 70 in layers 60 and 66 represent stress lines that typically can occur in InGaAs layers. By making these layers the last layer deposited, the stress lines and the resulting poor qualities associated therewith will not be communicated to the accompanying GaAs 58, 64 and InGaP 56 and 62 epitaxial layers. In the specific example shown in FIG. 5 layers 52, 56, 58 and 60 may be referred to as an epitaxial structure as may the epitaxial layers 54, 62, 64, and 66. After the bi-facial growth in FIG. 5, carrier mediums 72, 74, are added, FIG. 6. The carrier mediums may be 50-1000 microns thick and may be made of silicon wafer material, metal such as gold, silver, copper, nickel, titanium, platinum, silicon nitride or glass. Metal is often the preferred carrier medium; however in many devices a carrier transparent to wavelengths of light may be desired. Substrate 50 is sawn in two along an epitaxial plane 18 b as shown by the rough saw marks 76. With the epitaxial structures separated, FIG. 7, the remaining GaAs substrate material 50′ is removed and then the etch stops 52, and 54. Each of the epitaxial structures 40, 42 may then be processed as conventional IMM, inverted metamorphic devices, and can be used as a typical solar cell as shown in FIG. 8.
  • The bi-facial epitaxial growth specifically shown as inverted triple junction solar cells in FIGS. 5-8 on each side of the substrate 50 use lattice matched 1.9 eV InGaP epitaxial layers 56 and 62 and lattice matched 142 .eV GaAs epitaxial layers 58 and 64 and ˜2% of lattice mismatched 1 .eV InGaAs epitaxial layers 60 and 66.
  • Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
  • In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
  • Other embodiments will occur to those skilled in the art and are within the following claims.

Claims (21)

What is claimed is:
1-12. (canceled)
13. A semiconductor device comprising a substrate, the substrate comprising a first epitaxial structure on a first side of the substrate and a second epitaxial structure on a second side of the substrate, each of the first and second epitaxial structures comprising an etch stop, an epitaxial layer, and a carrier medium, the first side being on an opposite side of the substrate from the second side.
14. The semiconductor device of claim 13, wherein the first epitaxial structure comprises one or more laser cells.
15. The semiconductor device of claim 13, wherein the first epitaxial structure comprises one or more light emitting diode cells.
16. The semiconductor device of claim 13, wherein the first epitaxial structure comprises one or more infrared sensor cells.
17. The semiconductor device of claim 13, wherein the first epitaxial structure comprises one or more inverted metamorphic structures.
18. The semiconductor device of claim 13, wherein the first epitaxial structure comprises one or more solar cells.
19. The semiconductor device of claim 13, wherein the carrier mediums comprise at least one of silicon, metal, glass, gold, silver, copper, nickel, titanium, and platinum.
20. The semiconductor device of claim 13, wherein the first epitaxial structure comprises an array of individual cells.
21. A method of fabricating epitaxial structures, the method comprising:
growing a first etch stop on a first side of a substrate;
growing a first epitaxial layer on the first side of the substrate;
growing a second etch stop on a second side of the substrate, the second side being on an opposite side of the substrate from the first side;
growing a second epitaxial layer on the second side of the substrate;
applying a first carrier medium to the first side of the substrate; and
applying a second carrier medium to the second side of the substrate,
wherein a first epitaxial structure comprises the first etch stop, the first epitaxial layer, and the first carrier medium.
22. The method of claim 21, further comprising dividing the substrate into two parts to separate the first epitaxial structure and a second epitaxial structure including the second etch stop, the second epitaxial layer, and the second carrier medium.
23. The method of claim 21, further comprising flipping the substrate.
24. The method of claim 21, wherein the first epitaxial structure comprises one or more laser cells.
25. The method of claim 21, wherein the first epitaxial structure comprises one or more light emitting diode cells.
26. The method of claim 21, wherein the first epitaxial structure comprises one or more infrared sensor cells.
27. A method of fabricating epitaxial structures, the method comprising dividing a substrate including a first epitaxial structure on a first side of the substrate and a second epitaxial structure on a second side of the substrate into two parts to separate the first epitaxial structure and the second epitaxial structure, each of the first and second epitaxial structures comprising an etch stop, an epitaxial layer, and a carrier medium, the first side being on an opposite side of the substrate from the second side.
28. The method of claim 27, further comprising removing residual substrate from the first and second epitaxial structures.
29. The method of claim 27, further comprising removing the etch stops.
30. The method of claim 27, wherein the first epitaxial structure comprises one or more laser cells.
31. The method of claim 27, wherein the first epitaxial structure comprises one or more light emitting diode cells.
32. The method of claim 27, wherein the first epitaxial structure comprises one or more infrared sensor cells.
US13/892,051 2010-09-04 2013-05-10 Epitaxial structures on sides of a substrate Abandoned US20130243021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/807,399 US8455290B2 (en) 2010-09-04 2010-09-04 Method of fabricating epitaxial structures
US13/892,051 US20130243021A1 (en) 2010-09-04 2013-05-10 Epitaxial structures on sides of a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/892,051 US20130243021A1 (en) 2010-09-04 2013-05-10 Epitaxial structures on sides of a substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/807,399 Continuation US8455290B2 (en) 2010-09-04 2010-09-04 Method of fabricating epitaxial structures

Publications (1)

Publication Number Publication Date
US20130243021A1 true US20130243021A1 (en) 2013-09-19

Family

ID=45771018

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/807,399 Active 2031-08-13 US8455290B2 (en) 2010-09-04 2010-09-04 Method of fabricating epitaxial structures
US13/892,051 Abandoned US20130243021A1 (en) 2010-09-04 2013-05-10 Epitaxial structures on sides of a substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/807,399 Active 2031-08-13 US8455290B2 (en) 2010-09-04 2010-09-04 Method of fabricating epitaxial structures

Country Status (1)

Country Link
US (2) US8455290B2 (en)

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852994B2 (en) 2010-05-24 2014-10-07 Masimo Semiconductor, Inc. Method of fabricating bifacial tandem solar cells
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US9113832B2 (en) 2002-03-25 2015-08-25 Masimo Corporation Wrist-mounted physiological measurement device
US9119595B2 (en) 2008-10-13 2015-09-01 Masimo Corporation Reflection-detector sensor position indicator
US9131882B2 (en) 2005-03-01 2015-09-15 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US9142117B2 (en) 2007-10-12 2015-09-22 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US9161713B2 (en) 2004-03-04 2015-10-20 Masimo Corporation Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
US9351673B2 (en) 1997-04-14 2016-05-31 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US9370335B2 (en) 2009-10-15 2016-06-21 Masimo Corporation Physiological acoustic monitoring system
US9370325B2 (en) 2009-05-20 2016-06-21 Masimo Corporation Hemoglobin display and patient treatment
US9386953B2 (en) 1999-12-09 2016-07-12 Masimo Corporation Method of sterilizing a reusable portion of a noninvasive optical probe
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US9492110B2 (en) 1998-06-03 2016-11-15 Masimo Corporation Physiological monitor
US9510779B2 (en) 2009-09-17 2016-12-06 Masimo Corporation Analyte monitoring using one or more accelerometers
US9538980B2 (en) 2009-10-15 2017-01-10 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9538949B2 (en) 2010-09-28 2017-01-10 Masimo Corporation Depth of consciousness monitor including oximeter
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US9591975B2 (en) 2008-07-03 2017-03-14 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9622693B2 (en) 2002-12-04 2017-04-18 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
USD788312S1 (en) 2012-02-09 2017-05-30 Masimo Corporation Wireless patient monitoring device
US9668679B2 (en) 2004-08-11 2017-06-06 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
US9668680B2 (en) 2009-09-03 2017-06-06 Masimo Corporation Emitter driver for noninvasive patient monitor
US9675286B2 (en) 1998-12-30 2017-06-13 Masimo Corporation Plethysmograph pulse recognition processor
US9687160B2 (en) 2006-09-20 2017-06-27 Masimo Corporation Congenital heart disease monitor
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9724024B2 (en) 2010-03-01 2017-08-08 Masimo Corporation Adaptive alarm system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9775546B2 (en) 2012-04-17 2017-10-03 Masimo Corporation Hypersaturation index
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9782110B2 (en) 2010-06-02 2017-10-10 Masimo Corporation Opticoustic sensor
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9795358B2 (en) 2008-12-30 2017-10-24 Masimo Corporation Acoustic sensor assembly
US9795310B2 (en) 2010-05-06 2017-10-24 Masimo Corporation Patient monitor for determining microcirculation state
US9801588B2 (en) 2003-07-08 2017-10-31 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
US9801556B2 (en) 2011-02-25 2017-10-31 Masimo Corporation Patient monitor for monitoring microcirculation
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9814418B2 (en) 2001-06-29 2017-11-14 Masimo Corporation Sine saturation transform
US9833180B2 (en) 2008-03-04 2017-12-05 Masimo Corporation Multispot monitoring for use in optical coherence tomography
US9839379B2 (en) 2013-10-07 2017-12-12 Masimo Corporation Regional oximetry pod
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9848806B2 (en) 2001-07-02 2017-12-26 Masimo Corporation Low power pulse oximeter
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US9867578B2 (en) 2009-10-15 2018-01-16 Masimo Corporation Physiological acoustic monitoring system
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9949676B2 (en) 2006-10-12 2018-04-24 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9980667B2 (en) 2009-07-29 2018-05-29 Masimo Corporation Non-invasive physiological sensor cover
US10002870B2 (en) * 2016-08-16 2018-06-19 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US10052037B2 (en) 2010-07-22 2018-08-21 Masimo Corporation Non-invasive blood pressure measurement system
US10058275B2 (en) 2003-07-25 2018-08-28 Masimo Corporation Multipurpose sensor port
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US10092249B2 (en) 2005-10-14 2018-10-09 Masimo Corporation Robust alarm system
US10098591B2 (en) 2004-03-08 2018-10-16 Masimo Corporation Physiological parameter system
US10098550B2 (en) 2010-03-30 2018-10-16 Masimo Corporation Plethysmographic respiration rate detection
US10130289B2 (en) 1999-01-07 2018-11-20 Masimo Corporation Pulse and confidence indicator displayed proximate plethysmograph
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
US10154815B2 (en) 2014-10-07 2018-12-18 Masimo Corporation Modular physiological sensors
US10159412B2 (en) 2010-12-01 2018-12-25 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
US10194847B2 (en) 2006-10-12 2019-02-05 Masimo Corporation Perfusion index smoother
US10201298B2 (en) 2003-01-24 2019-02-12 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US10205291B2 (en) 2015-02-06 2019-02-12 Masimo Corporation Pogo pin connector
US10205272B2 (en) 2009-03-11 2019-02-12 Masimo Corporation Magnetic connector
USRE47249E1 (en) 2008-07-29 2019-02-19 Masimo Corporation Alarm suspend system
US10219746B2 (en) 2006-10-12 2019-03-05 Masimo Corporation Oximeter probe off indicator defining probe off space
US10226576B2 (en) 2006-05-15 2019-03-12 Masimo Corporation Sepsis monitor
US10226187B2 (en) 2015-08-31 2019-03-12 Masimo Corporation Patient-worn wireless physiological sensor
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10231676B2 (en) 1999-01-25 2019-03-19 Masimo Corporation Dual-mode patient monitor
US10258266B1 (en) 2008-07-03 2019-04-16 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10271748B2 (en) 2017-09-19 2019-04-30 Masimo Corporation Patient monitor for determining microcirculation state

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8781544B2 (en) 2007-03-27 2014-07-15 Cercacor Laboratories, Inc. Multiple wavelength optical sensor
US7919713B2 (en) 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US8764671B2 (en) 2007-06-28 2014-07-01 Masimo Corporation Disposable active pulse sensor
EP2227843B1 (en) 2007-10-12 2019-03-06 Masimo Corporation Connector assembly
US8911377B2 (en) 2008-09-15 2014-12-16 Masimo Corporation Patient monitor including multi-parameter graphical display
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US8430817B1 (en) 2009-10-15 2013-04-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US8821415B2 (en) 2009-10-15 2014-09-02 Masimo Corporation Physiological acoustic monitoring system
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US8455290B2 (en) * 2010-09-04 2013-06-04 Masimo Semiconductor, Inc. Method of fabricating epitaxial structures
US8723677B1 (en) 2010-10-20 2014-05-13 Masimo Corporation Patient safety system with automatically adjusting bed
US8969711B1 (en) * 2011-04-07 2015-03-03 Magnolia Solar, Inc. Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
WO2013148605A1 (en) 2012-03-25 2013-10-03 Masimo Corporation Physiological monitor touchscreen interface
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9986952B2 (en) 2013-03-14 2018-06-05 Masimo Corporation Heart sound simulator
US9474474B2 (en) 2013-03-14 2016-10-25 Masimo Corporation Patient monitor as a minimally invasive glucometer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209390A1 (en) * 2001-06-06 2004-10-21 Masanobu Senda III group nitride based semiconductor element and method for manufacture thereof
US20090280635A1 (en) * 2008-05-06 2009-11-12 Leo Mathew Method of forming an electronic device using a separation-enhancing species
US20100116784A1 (en) * 2008-10-10 2010-05-13 Alta Devices, Inc. Mesa etch method and composition for epitaxial lift off
US20100248499A1 (en) * 2009-01-16 2010-09-30 Zimmerman Scott M Enhanced efficiency growth processes based on rapid thermal processing of gallium nitride films
US20100326518A1 (en) * 2008-02-21 2010-12-30 Hiroyuki Juso Solar cell and method of manufacturing solar cell
US20110050838A1 (en) * 2009-09-02 2011-03-03 Oki Data Corporation Semiconductor composite device, method of manufacturing the same, optical print head and image forming apparatus
US20110186117A1 (en) * 2008-03-08 2011-08-04 Kumar Ananda H Thin film solar cell with ceramic handling layer
US20110287578A1 (en) * 2010-05-24 2011-11-24 Wojtczuk Steven J Method of fabricating bifacial tandem solar cells
US20110290312A1 (en) * 2009-02-06 2011-12-01 Takaaki Agui Compound semiconductor solar battery and method for manufacturing compound semiconductor solar battery
US20110303268A1 (en) * 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
US8877077B2 (en) * 2008-12-23 2014-11-04 Siltectra Gmbh Method for producing thin, free-standing layers of solid state materials with structured surfaces

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20060185582A1 (en) * 2005-02-18 2006-08-24 Atwater Harry A Jr High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
EP2392030A4 (en) * 2009-01-28 2013-10-30 Microlink Devices Inc High efficiency group iii-v compound semiconductor solar cell with oxidized window layer
WO2010118529A1 (en) * 2009-04-17 2010-10-21 Arise Technologies Corporation Base structure for iii-v semiconductor devices on group iv substrates and method of fabrication thereof
US8187907B1 (en) * 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US8455290B2 (en) * 2010-09-04 2013-06-04 Masimo Semiconductor, Inc. Method of fabricating epitaxial structures

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209390A1 (en) * 2001-06-06 2004-10-21 Masanobu Senda III group nitride based semiconductor element and method for manufacture thereof
US20100326518A1 (en) * 2008-02-21 2010-12-30 Hiroyuki Juso Solar cell and method of manufacturing solar cell
US20110186117A1 (en) * 2008-03-08 2011-08-04 Kumar Ananda H Thin film solar cell with ceramic handling layer
US20090280635A1 (en) * 2008-05-06 2009-11-12 Leo Mathew Method of forming an electronic device using a separation-enhancing species
US7749884B2 (en) * 2008-05-06 2010-07-06 Astrowatt, Inc. Method of forming an electronic device using a separation-enhancing species
US20100227475A1 (en) * 2008-05-06 2010-09-09 Leo Mathew Method of forming an electronic device using a separation technique
US20100116784A1 (en) * 2008-10-10 2010-05-13 Alta Devices, Inc. Mesa etch method and composition for epitaxial lift off
US8877077B2 (en) * 2008-12-23 2014-11-04 Siltectra Gmbh Method for producing thin, free-standing layers of solid state materials with structured surfaces
US20100248499A1 (en) * 2009-01-16 2010-09-30 Zimmerman Scott M Enhanced efficiency growth processes based on rapid thermal processing of gallium nitride films
US20110290312A1 (en) * 2009-02-06 2011-12-01 Takaaki Agui Compound semiconductor solar battery and method for manufacturing compound semiconductor solar battery
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
US20110050838A1 (en) * 2009-09-02 2011-03-03 Oki Data Corporation Semiconductor composite device, method of manufacturing the same, optical print head and image forming apparatus
US20110287578A1 (en) * 2010-05-24 2011-11-24 Wojtczuk Steven J Method of fabricating bifacial tandem solar cells
US20110303268A1 (en) * 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9351673B2 (en) 1997-04-14 2016-05-31 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US9492110B2 (en) 1998-06-03 2016-11-15 Masimo Corporation Physiological monitor
US9675286B2 (en) 1998-12-30 2017-06-13 Masimo Corporation Plethysmograph pulse recognition processor
US10130289B2 (en) 1999-01-07 2018-11-20 Masimo Corporation Pulse and confidence indicator displayed proximate plethysmograph
US10231676B2 (en) 1999-01-25 2019-03-19 Masimo Corporation Dual-mode patient monitor
US9386953B2 (en) 1999-12-09 2016-07-12 Masimo Corporation Method of sterilizing a reusable portion of a noninvasive optical probe
US9814418B2 (en) 2001-06-29 2017-11-14 Masimo Corporation Sine saturation transform
US9848806B2 (en) 2001-07-02 2017-12-26 Masimo Corporation Low power pulse oximeter
US9788735B2 (en) 2002-03-25 2017-10-17 Masimo Corporation Body worn mobile medical patient monitor
US9113831B2 (en) 2002-03-25 2015-08-25 Masimo Corporation Physiological measurement communications adapter
US9872623B2 (en) 2002-03-25 2018-01-23 Masimo Corporation Arm mountable portable patient monitor
US9113832B2 (en) 2002-03-25 2015-08-25 Masimo Corporation Wrist-mounted physiological measurement device
US9795300B2 (en) 2002-03-25 2017-10-24 Masimo Corporation Wearable portable patient monitor
US10219706B2 (en) 2002-03-25 2019-03-05 Masimo Corporation Physiological measurement device
US10213108B2 (en) 2002-03-25 2019-02-26 Masimo Corporation Arm mountable portable patient monitor
US9622693B2 (en) 2002-12-04 2017-04-18 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
US10201298B2 (en) 2003-01-24 2019-02-12 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US9801588B2 (en) 2003-07-08 2017-10-31 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
US10058275B2 (en) 2003-07-25 2018-08-28 Masimo Corporation Multipurpose sensor port
US9161713B2 (en) 2004-03-04 2015-10-20 Masimo Corporation Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation
US10098591B2 (en) 2004-03-08 2018-10-16 Masimo Corporation Physiological parameter system
US10130291B2 (en) 2004-08-11 2018-11-20 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
US9668679B2 (en) 2004-08-11 2017-06-06 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
US9241662B2 (en) 2005-03-01 2016-01-26 Cercacor Laboratories, Inc. Configurable physiological measurement system
US9131882B2 (en) 2005-03-01 2015-09-15 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9351675B2 (en) 2005-03-01 2016-05-31 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10251585B2 (en) 2005-03-01 2019-04-09 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10123726B2 (en) 2005-03-01 2018-11-13 Cercacor Laboratories, Inc. Configurable physiological measurement system
US9549696B2 (en) 2005-03-01 2017-01-24 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US9750443B2 (en) 2005-03-01 2017-09-05 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10092249B2 (en) 2005-10-14 2018-10-09 Masimo Corporation Robust alarm system
US10226576B2 (en) 2006-05-15 2019-03-12 Masimo Corporation Sepsis monitor
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
US9687160B2 (en) 2006-09-20 2017-06-27 Masimo Corporation Congenital heart disease monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US10194847B2 (en) 2006-10-12 2019-02-05 Masimo Corporation Perfusion index smoother
US10064562B2 (en) 2006-10-12 2018-09-04 Masimo Corporation Variable mode pulse indicator
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US9949676B2 (en) 2006-10-12 2018-04-24 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US10219746B2 (en) 2006-10-12 2019-03-05 Masimo Corporation Oximeter probe off indicator defining probe off space
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US10251586B2 (en) 2007-04-21 2019-04-09 Masimo Corporation Tissue profile wellness monitor
US9142117B2 (en) 2007-10-12 2015-09-22 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US9833180B2 (en) 2008-03-04 2017-12-05 Masimo Corporation Multispot monitoring for use in optical coherence tomography
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US10258265B1 (en) 2008-07-03 2019-04-16 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US9591975B2 (en) 2008-07-03 2017-03-14 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
US9717425B2 (en) 2008-07-03 2017-08-01 Masimo Corporation Noise shielding for a noninvaise device
US10258266B1 (en) 2008-07-03 2019-04-16 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
USRE47244E1 (en) 2008-07-29 2019-02-19 Masimo Corporation Alarm suspend system
USRE47353E1 (en) 2008-07-29 2019-04-16 Masimo Corporation Alarm suspend system
USRE47249E1 (en) 2008-07-29 2019-02-19 Masimo Corporation Alarm suspend system
US9119595B2 (en) 2008-10-13 2015-09-01 Masimo Corporation Reflection-detector sensor position indicator
US9795358B2 (en) 2008-12-30 2017-10-24 Masimo Corporation Acoustic sensor assembly
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US10255994B2 (en) 2009-03-04 2019-04-09 Masimo Corporation Physiological parameter alarm delay
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US10205272B2 (en) 2009-03-11 2019-02-12 Masimo Corporation Magnetic connector
US9795739B2 (en) 2009-05-20 2017-10-24 Masimo Corporation Hemoglobin display and patient treatment
US9370325B2 (en) 2009-05-20 2016-06-21 Masimo Corporation Hemoglobin display and patient treatment
US9980667B2 (en) 2009-07-29 2018-05-29 Masimo Corporation Non-invasive physiological sensor cover
US10194848B1 (en) 2009-07-29 2019-02-05 Masimo Corporation Non-invasive physiological sensor cover
US10188331B1 (en) 2009-07-29 2019-01-29 Masimo Corporation Non-invasive physiological sensor cover
US9668680B2 (en) 2009-09-03 2017-06-06 Masimo Corporation Emitter driver for noninvasive patient monitor
US9510779B2 (en) 2009-09-17 2016-12-06 Masimo Corporation Analyte monitoring using one or more accelerometers
US9538980B2 (en) 2009-10-15 2017-01-10 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US10098610B2 (en) 2009-10-15 2018-10-16 Masimo Corporation Physiological acoustic monitoring system
US9370335B2 (en) 2009-10-15 2016-06-21 Masimo Corporation Physiological acoustic monitoring system
US9867578B2 (en) 2009-10-15 2018-01-16 Masimo Corporation Physiological acoustic monitoring system
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US9847002B2 (en) 2009-12-21 2017-12-19 Masimo Corporation Modular patient monitor
US9724024B2 (en) 2010-03-01 2017-08-08 Masimo Corporation Adaptive alarm system
USRE47218E1 (en) 2010-03-01 2019-02-05 Masimo Corporation Adaptive alarm system
US9775570B2 (en) 2010-03-01 2017-10-03 Masimo Corporation Adaptive alarm system
US10098550B2 (en) 2010-03-30 2018-10-16 Masimo Corporation Plethysmographic respiration rate detection
US9876320B2 (en) 2010-05-03 2018-01-23 Masimo Corporation Sensor adapter cable
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US9795310B2 (en) 2010-05-06 2017-10-24 Masimo Corporation Patient monitor for determining microcirculation state
US9368671B2 (en) 2010-05-24 2016-06-14 Masimo Semiconductor, Inc. Bifacial tandem solar cells
US8852994B2 (en) 2010-05-24 2014-10-07 Masimo Semiconductor, Inc. Method of fabricating bifacial tandem solar cells
US9782110B2 (en) 2010-06-02 2017-10-10 Masimo Corporation Opticoustic sensor
US10052037B2 (en) 2010-07-22 2018-08-21 Masimo Corporation Non-invasive blood pressure measurement system
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
US9538949B2 (en) 2010-09-28 2017-01-10 Masimo Corporation Depth of consciousness monitor including oximeter
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US9693737B2 (en) 2010-10-13 2017-07-04 Masimo Corporation Physiological measurement logic engine
US10159412B2 (en) 2010-12-01 2018-12-25 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US9801556B2 (en) 2011-02-25 2017-10-31 Masimo Corporation Patient monitor for monitoring microcirculation
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9913617B2 (en) 2011-10-13 2018-03-13 Masimo Corporation Medical monitoring hub
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9993207B2 (en) 2011-10-13 2018-06-12 Masimo Corporation Medical monitoring hub
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10188296B2 (en) 2012-02-09 2019-01-29 Masimo Corporation Wireless patient monitoring device
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
USD788312S1 (en) 2012-02-09 2017-05-30 Masimo Corporation Wireless patient monitoring device
US9775546B2 (en) 2012-04-17 2017-10-03 Masimo Corporation Hypersaturation index
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US9839379B2 (en) 2013-10-07 2017-12-12 Masimo Corporation Regional oximetry pod
US10010276B2 (en) 2013-10-07 2018-07-03 Masimo Corporation Regional oximetry user interface
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10154815B2 (en) 2014-10-07 2018-12-18 Masimo Corporation Modular physiological sensors
US10205291B2 (en) 2015-02-06 2019-02-12 Masimo Corporation Pogo pin connector
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
US10226187B2 (en) 2015-08-31 2019-03-12 Masimo Corporation Patient-worn wireless physiological sensor
US10002870B2 (en) * 2016-08-16 2018-06-19 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
US10271748B2 (en) 2017-09-19 2019-04-30 Masimo Corporation Patient monitor for determining microcirculation state
US10271749B2 (en) 2017-10-30 2019-04-30 Masimo Corporation Patient monitor for monitoring microcirculation

Also Published As

Publication number Publication date
US8455290B2 (en) 2013-06-04
US20120058591A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
CN101366121B (en) Vertical structure semiconductor devices
US6878563B2 (en) Radiation-emitting semiconductor element and method for producing the same
US4722130A (en) Method of manufacturing a semiconductor device
US6083811A (en) Method for producing thin dice from fragile materials
US8541290B2 (en) Optoelectronic substrate and methods of making same
KR100390670B1 (en) Process for bonding crystalline substrates with different crystal lattices
KR100807447B1 (en) Method for making a substrate in particular for optics, electronics or optoelectronics and resulting substrate
JP5021302B2 (en) A method of manufacturing a semiconductor chip
US20080070380A1 (en) Production Method of Compound Semiconductor Device Wafer
US20070145402A1 (en) Semiconductor component which emits radiation, and method for producing the same
JP2813080B2 (en) Semiconductor device and manufacturing method thereof
US20030127428A1 (en) Method for separating chips from diamond wafer
JP5194334B2 (en) Method for producing Iii Nitride semiconductor devices
US6033927A (en) Method for separating a substrate of a group III nitride semiconductor light-emitting device
JP3230572B2 (en) Manufacturing method and a semiconductor light emitting element of the nitride-based compound semiconductor device
US20080128722A1 (en) Fabrication of Semiconductor Devices
US20080210970A1 (en) Fabrication of Conductive Metal Layer on Semiconductor Devices
US20020037631A1 (en) Method for manufacturing semiconductor devices
US5716459A (en) Monolithically integrated solar cell microarray and fabrication method
KR20140140053A (en) Systems and methods for laser splitting and device layer transfer
TW476142B (en) Method of dicing semiconductor wafer into chips, and structure of groove formed in dicing area
WO2002043112A2 (en) Method for making a substrate
KR20090004462A (en) Iii-v nitride semiconductor layer-bonded substrate and semiconductor device
KR20080002644A (en) Substrate having thin film of gan joined thereon and method of fabricating the same, and a gan-based semiconductor device and method of fabricating the same
JPH11154648A (en) Manufacture of plural semiconductor chip

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, NATIONAL ASSOCIATION, ILLINOI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MASIMO CORPORATION;MASIMO AMERICAS, INC.;REEL/FRAME:032784/0864

Effective date: 20140423

AS Assignment

Owner name: JPMORGAN CHASE BANK, NATIONAL ASSOCIATION, ILLINOI

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 032784 FRAME: 0864. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:MASIMO AMERICAS, INC.;MASIMO CORPORATION;REEL/FRAME:033032/0426

Effective date: 20140423

AS Assignment

Owner name: MASIMO SEMICONDUCTOR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SISKAVICH, BRAD M.;REEL/FRAME:033112/0414

Effective date: 20140402

AS Assignment

Owner name: MASIMO AMERICAS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, NATIONAL ASSOCIATION;REEL/FRAME:047443/0109

Effective date: 20180405

Owner name: MASIMO CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, NATIONAL ASSOCIATION;REEL/FRAME:047443/0109

Effective date: 20180405