US20130238081A1 - Molybdenum Endoprostheses - Google Patents

Molybdenum Endoprostheses Download PDF

Info

Publication number
US20130238081A1
US20130238081A1 US13/845,865 US201313845865A US2013238081A1 US 20130238081 A1 US20130238081 A1 US 20130238081A1 US 201313845865 A US201313845865 A US 201313845865A US 2013238081 A1 US2013238081 A1 US 2013238081A1
Authority
US
United States
Prior art keywords
molybdenum
endoprosthesis
titanium
weight percent
surface region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/845,865
Inventor
Jonathan S. Stinson
Matthew Cambronne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39645487&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130238081(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US13/845,865 priority Critical patent/US20130238081A1/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMBRONNE, MATTHEW, STINSON, JONATHAN S.
Publication of US20130238081A1 publication Critical patent/US20130238081A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials

Definitions

  • This invention relates to endoprostheses, and more particularly to stents.
  • the body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis.
  • An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Examples of endoprostheses include stents, covered stents, and stent-grafts.
  • Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, for example, so that it can contact the walls of the lumen.
  • the expansion mechanism can include forcing the endoprosthesis to expand radially.
  • the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis.
  • Balloon-expandable endoprostheses are commonly made of 316L stainless steel or L605 alloys.
  • the balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn.
  • endoprosthesis When the endoprosthesis is advanced through the body, its progress can be monitored, e.g., tracked, so that the endoprosthesis can be delivered properly to a target site. After the endoprosthesis is delivered to the target site, the endoprosthesis can be monitored to determine whether it has been placed properly and/or is functioning properly.
  • Methods of monitoring a medical device include X-ray fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI).
  • an endoprosthesis having a member that includes molybdenum and at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof.
  • the member having a microstructure characterized by: (a) a molybdenum-rich base region comprising at least 50 weight percent molybdenum, (b) a surface region comprising at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof, and (c) an inter-diffusion region in which the concentration of molybdenum decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.
  • the molybdenum base region can include no more than 10 weight percent of any of the following elements: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, zirconium, hafnium, iridium, and chromium.
  • the molybdenum-rich base region can include at least 95 weight percent molybdenum.
  • the molybdenum-rich base region can include 1.25 weight percent titanium, 0.3 weight percent zirconium, 0.15 weight percent carbon, and a balance of molybdenum.
  • the molybdenum-rich base region could also include between 0.25 and 1.0 weight percent titanium, between 0.04 and 2.0 weight percent zirconium, between 0.01 and 0.04 weight percent carbon, and a balance of molybdenum.
  • the molybdenum-rich base region can include 99.95% pure molybdenum doped with potassium silicate.
  • the surface region can be essentially free of molybdenum. In other embodiments, the surface region can include less than 50 percent by weight molybdenum. In some embodiments, the surface region can include titanium. For example, the surface region can include a titanium-molybdenum alloy or can consist essentially of titanium.
  • the inter-diffusion region can be at between 10 nanometers and 10 microns thick. In some embodiments, the inter-diffusion region is at least 1 micron thick. In some embodiments, the inter-diffusion region can include iridium. For example, inter-diffusion region can include a higher concentration of iridium than either the molybdenum-rich base region or the surface region.
  • the member can further include oxides, carbides, nitrides, or a combination thereof overlying the surface region.
  • the oxides, carbides, and nitrides can be selected from the group consisting of zirconium oxide, hafnium oxide, chromium oxide, iridium oxide, titanium oxy-nitride, TiO2, Nb2O5, Ta2O5, and combinations thereof.
  • the member can include a coating of zirconium, hafnium, chromium, iridium, or combinations thereof overlying the surface region.
  • the member can include a drug-eluting polymer coating overlying the surface region.
  • the member can have a modulus of between 44 and 50 msi, a 0.2% offset yield strength of at least 50 ksi, and/or an elongation to break of at least about 15%.
  • the molybdenum-rich base region can have a density of at least 9.5 g/cc.
  • endoprosthesis can be a stent.
  • the endoprosthesis can be a balloon-expandable stent.
  • an endoprosthesis having a member that includes molybdenum and titanium.
  • the member having a microstructure characterized by: (a) a molybdenum-rich base region including at least 50 weight percent molybdenum, and (b) a surface region including titanium.
  • the surface region can consists essentially of titanium. In other embodiments, the surface region can include a titanium-molybdenum alloy.
  • the member can further include an intermediate region comprising iridium. In some embodiments, the member can further include a coating of zirconium, hathium, chromium, iridium, or combinations thereof overlying the surface region.
  • the endoprosthesis can be a stent.
  • the endoprosthesis can be a balloon-expandable stent.
  • FIG. 1 is a perspective view of an embodiment of an expanded stent.
  • FIG. 2 is a cross sectional view of a band or connector of a stent.
  • FIGS. 3A-3C depict a process for producing a member having an inter-diffusion region between a molybdenum-rich base region and a surface region.
  • FIG. 4 is a flow chart of an embodiment of a method of making a stent.
  • a balloon-expandable stent 20 can have the form of a tubular member defined by a plurality of bands 22 and a plurality of connectors 24 that extend between and connect adjacent bands.
  • bands 22 can be expanded from an initial, smaller diameter to a larger diameter to contact stent 20 against a wall of a vessel, thereby maintaining the patency of the vessel.
  • Connectors 24 can provide stent 20 with flexibility and conformability that allow the stent to adapt to the contours of the vessel.
  • the bands 22 and connectors 24 of the balloon-expandable stent 20 can include molybdenum and at least one of the following metals, alone or in combination with each other: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and chromium.
  • Molybdenum has an advantageous combination of mechanical and physical properties, including a unique balance of modulus and yield strength. The modulus for molybdenum is higher than the modulus of 316L stainless steel and of L605 alloys, while molybdenum's yield strength is between the yield strengths of 316L stainless steel and of L605 alloys.
  • This balance of properties would provide a lower diameter recoil for better securement on the delivery system and expanded diameter retention (apposition to the vessel wall) than 316L stainless steel and L605 alloys when used in the same stent configuration.
  • a molybdenum stent could also be more MRI compatible because molybdenum has a lower magnetic susceptibility than iron and cobalt, which are ferromagnetic elements.
  • Molybdenum also has higher radiopacity than 316L stainless steel and L605 alloys because molybdenum has a higher material mass absorption coefficient and a higher density.
  • Molybdenum is commercially available in tubing form from Eagle Alloys, Goodfellow, and Minitubes. A comparison of the material properties of commercially pure molybdenum versus 316L stainless steel and L605 is presented in Table I, below.
  • FIG. 2 depicts a cross section of a band 22 or connector 24 of a stent.
  • the member can have a microstructure that includes a molybdenum-rich base region 32 , an inter-diffusion region 34 , and a surface region 36 .
  • the molybdenum-rich base region 32 can include at least 50 weight percent molybdenum.
  • the surface region 36 can include at least one of the following metals, alone or in combination with each other: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and chromium.
  • the inter-diffusion region 34 can include a varying concentration of molybdenum, which decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.
  • the molybdenum-rich base region 32 can include at least 50 weight percent molybdenum, but can also include other metals, such as titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, zirconium, hafnium, iridium, and/or chromium. In some embodiments, the molybdenum-rich base region 32 can be limited to no more than 10 weight percent of any of these elements.
  • the molybdenum-rich base region can have a density of at least 9.5 g/cc.
  • the molybdenum-rich base region can have a molybdenum concentration of at least 95 weight percent.
  • the molybdenum-rich base region can include Mo TZM, Mo TZC, or Mo HCT alloys.
  • Mo TZC alloy includes 1.25 weight percent titanium, 0.3 weight percent zirconium, 0.15 weight percent carbon, and a balance of essentially molybdenum.
  • Mo TZM alloy includes between 0.25 and 1.0 weight percent titanium, between 0.04 and 2.0 weight percent zirconium, between 0.01 and 0.04 weight percent carbon, and a balance of essentially molybdenum.
  • Mo HCT from Elmet Technologies, includes 99.95% pure Mo doped with potassium silicate.
  • Mo HCT can have a maximum of 150 ppm potassium, a maximum of 300 ppm silicon, and a maximum of 200 ppm oxygen. HCT stands for High reCrystallization Temperature. The properties for Mo HCT are essentially the same as for pure Mo, but the benefit of using Mo HCT is that it allows for diffusion heat treatment at higher temperatures than for pure Mo and thus it can allow for interdiffusion in shorter processing times.
  • the material properties of Mo TZC and Mo TZM are included below in Table II.
  • the surface region 36 can include at least one of the following metals, alone or in combination with each other: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and chromium.
  • the surface region can enhance corrosion resistance and/or improve the biocompatibility of the stent.
  • the surface region can be essentially free of molybdenum.
  • the surface region can include molybdenum in amounts lower than 50 percent by weight.
  • the surface region can include titanium.
  • the surface region can include essentially pure titanium or can include a titanium-molybdenum alloy.
  • the microstructure can also include an inter-diffusion region in which the concentration of molybdenum decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.
  • the inter-diffusion region can be at least 1 micron thick. In some embodiments, the inter-diffusion region can be between 10 nanometers and 10 microns.
  • the inter-diffusion region can include a mixture of the constituents of the surface region 36 and the molybdenum-rich base region 32 with a concentration gradient transitioning from a region of higher molybdenum concentration adjacent to the molybdenum-rich base region 32 to a lower molybdenum concentration adjacent to the surface region 36 .
  • FIGS. 3A-3C depict an exemplary method for producing a member having a molybdenum-rich base region 32 , a surface region 36 , and an inter-diffusion region 34 therebetween.
  • a molybdenum-rich substrate 32 having at least 50 weight percent molybdenum can be provided.
  • the substrate 32 can be cleaned in a plasma vapor deposition coating chamber with an oxide reduction process using an argon-hydrogen plasma.
  • a layer of a second metal 38 can be deposited onto the substrate 32 .
  • the second material 38 can include titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, or chromium.
  • the second material 38 can be deposited using conventional plasma deposition equipment.
  • the second material 38 can form a deposit of up to about 20 microns thick (e.g., between 20 nanometers and 1 micron thick).
  • the layer of second material 38 can also be deposited by other commercially available ion implantation, sputter coating, chemical vapor deposition, or electroplating methods.
  • the inter-diffusion region can be created by applying a surface-alloying diffusion treatment.
  • a heat treatment can be performed in high vacuum at greater than about 10 ⁇ 5 torr.
  • the heat treatment can be performed at a temperature selected from the range of 100° C. below the molybdenum tubing recrystallization temperature to 100° C. above the recrystallization temperature for 30 to 240 minutes. During this thermal exposure, the molybdenum and second metal would interdiffuse and produce an alloy of the constituents of the molybdenum-rich substrate 32 and the second material 38 .
  • the resulting surface region 36 can either be made up entirely of the second material 38 or can include molybdenum diffused from the molybdenum-rich substrate 32 .
  • the surface of the stent can contain 0 to 50% molybdenum, which can be controlled by controlling the extent of inter-diffusion. For example, the diffusivity of molybdenum in titanium at 1,000° C. was calculated to be 5.852 ⁇ 2 /second and at 1,200° C. was calculated to be 294.5 ⁇ 2 /second.
  • the diffusion treatment can also convert a work hardened molybdenum-rich substrate to a condition of lower strength and higher ductility.
  • the tensile properties of the diffusion treated surface alloyed stent material such as that shown in FIG. 2 , would be between 44 and 50 msi Young's modulus, between 50 and 80 ksi 0.2% offset yield strength, between 65 and 95 ksi ultimate tensile strength, and/or greater than 15 percent elongation to break.
  • the surface region 36 can be essentially pure titanium. In other embodiments, the surface region 36 comprises a titanium-molybdenum alloy.
  • a titanium-molybdenum alloy can include up to about 50 weight percent molybdenum, and in some embodiments can contain less than 40 weight percent molybdenum.
  • a titanium containing surface region 36 can also include rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and/or chromium as additional alloying elements.
  • the surface region 36 can further be converted to oxides, nitrides, carbides, or combinations thereof.
  • zirconium, hathium, iridium, or chromium can further be applied to the surface region 36 and converted to an oxide. If the surface region 36 includes titanium and the air atmosphere were supplemented with a partial pressure of nitrogen, titanium oxynitride can form on the surface region 36 instead of titanium oxide. Titanium oxynitride may have a pro-healing response to minimize restenosis.
  • the surface can include TiO 2 , Nb 2 O 5 and/or Ta 2 O 5 . An alternate method could be to use electrochemical anodizing to build an oxide layer rather than thermal treatment methods.
  • the stent can include iridium and/or iridium oxide.
  • iridium can be applied to a molybdenum base metal and converted into an iridium oxide. Iridium can also be present as an intermediate alloying constituent present in the inter-diffusion region 34 .
  • a stent can include a molybdenum base metal, a concentration gradient transitioning from the molybdenum base metal to iridium or an alloy thereof, and a concentration gradient transitioning from iridium or an alloy thereof to titanium or an alloy thereof.
  • the intermediate iridium or iridium alloy can be between about 5 to 10 microns thick in order to prevent small cracks from reaching the molybdenum base metal.
  • a drug eluting polymer coating can also be applied to the surface region 36 .
  • drug eluding polymer coatings include those described in U.S. Pat. No. 5,674,242, U.S. Ser. No. 09/895,415, filed Jul. 2, 2001, and U.S. Ser. No. 10/232,265, filed Aug. 30, 2002.
  • the therapeutic agents, drugs, or pharmaceutically active compounds can include, for example, anti-thrombogenic agents, antioxidants, anti-inflammatory agents, anesthetic agents, anti-coagulants, and antibiotics.
  • FIG. 4 shows an example of a method 40 of making a stent 20 .
  • method 40 can include forming a tube (step 42 ) that includes molybdenum or a molybdenum alloy.
  • the tube can be subsequently cut to form bands 22 and connectors 24 (step 44 ) to produce an unfinished stent. Areas of the unfinished stent affected by the cutting can be subsequently removed (step 46 ).
  • the unfinished stent can be finished by applying a second material and heat treating to form a stent 20 having a molybdenum-rich base region 32 , a surface region 36 , and an inter-diffusion region 34 (step 48 ).
  • a stent can be made from a hollow rod of molybdenum or a molybdenum alloy.
  • the hollow rod can have an outer diameter of 0.8 to 1.2 inches and an inner diameter of 0.4 to 0.6 inches and a length of 6 to 9 inches.
  • the hollow rod could be conventionally canned and hot-extruded to reduce the wall thickness to about 0.05 inches.
  • the tube can be reduced in size via fixed mandrel or floating plug tube drawing operations with intermediate stress relieving steps to the final configuration of a 0.060 to 0.080 inch outer diameter and a 0.050 to 0.070 inch inner diameter (depending on the desired finished stent size).
  • the stent tubing can be subjected to laser machining to cut the stent bands 22 and connectors 24 in the wall.
  • Electrochemical etching and polishing can be used to remove the laser-affected layer of material, to produce the final dimensions of the stent substrate 32 , and to produce a smooth surface texture.
  • the stent substrate 32 would then be subject to the deposition and diffusion treatments as discussed above in regard to FIGS. 3A-3C to produce a stent having bands 22 and/or connectors 24 having a molybdenum-rich base region 32 , a surface region 36 , and an inter-diffusion region 34 as shown in FIG. 2 .
  • the finished molybdenum containing stent can be crimped onto a balloon catheter, packaged, and sterilized.
  • Stent 20 can be of a desired shape and size (e.g., coronary stents, aortic stents, peripheral vascular stents, gastrointestinal stents, urology stents, and neurology stents).
  • stent 20 can have a diameter of between, for example, 1 mm to 46 mm.
  • a coronary stent can have an expanded diameter of from 2 mm to 6 mm.
  • a peripheral stent can have an expanded diameter of from 5 mm to 24 mm.
  • a gastrointestinal and/or urology stent can have an expanded diameter of from 6 mm to about 30 mm.
  • a neurology stent can have an expanded diameter of from about 1 mm to about 12 mm.
  • An abdominal aortic aneurysm (AAA) stent and a thoracic aortic aneurysm (TAA) stent can have a diameter from about 20 mm to about 46 mm.
  • a molybdenum-containing bare-metal balloon-expandable coronary stent can have a wall thickness of 0.0030 inches.
  • Such a balloon-expandable stent can have a diameter recoil of less than 6 percent upon balloon expansion to 3.2 mm diameter.
  • the stent can require between 0.20 and 0.40 Newtons force per millimeter of stent length to compress it from an initial balloon expanded diameter of 3.2 mm to 2.75 mm diameter oval within a V-shaped platens compression tester.
  • stent 20 can be used, e.g., delivered and expanded, using a catheter delivery system.
  • Catheter systems are described in, for example, Wang U.S. Pat. No. 5,195,969, Hamlin U.S. Pat. No. 5,270,086, and Raeder-Devens, U.S. Pat. No. 6,726,712. Stents and stent delivery are also exemplified by the Sentinol system, available from Boston Scientific Scimed, Maple Grove, Minn.
  • a stent can be fabricated by forming a wire including a molybdenum-rich base region 32 , a surface region 36 , and an inter-diffusion region 34 , and knitting and/or weaving the wire into a tubular member.
  • Stent 20 can also be a part of a covered stent or a stent-graft.
  • stent 20 can include and/or be attached to a biocompatible, non-porous or semi-porous polymer matrix made of polytetrafluoroethylene (PTFE), expanded PTFE, polyethylene, urethane, or polypropylene.
  • PTFE polytetrafluoroethylene
  • expanded PTFE polyethylene
  • urethane polypropylene
  • the molybdenum containing members described herein can be used to form other endoprostheses.
  • the molybdenum containing members can be used to form a guidewire or a hypotube.
  • the molybdenum members can also be used to form metal staples and wires used for wound closure.

Abstract

An endoprosthesis can have a member that includes molybdenum and at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof. The member can have a microstructure characterized by: (a) a molybdenum-rich base region comprising at least 50 weight percent molybdenum, (b) a surface region comprising at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof, and (c) an inter-diffusion region in which the concentration of molybdenum decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims the benefit of priority under 35 U.S.C. §120 to U.S. application Ser. No. 11/771,731, filed Jun. 29, 2007, which will issue as U.S. Pat. No. 8,398,702, on Mar. 19, 2013, the entire contents of which is hereby fully incorporated by reference.
  • TECHNICAL FIELD
  • This invention relates to endoprostheses, and more particularly to stents.
  • BACKGROUND
  • The body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis. An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Examples of endoprostheses include stents, covered stents, and stent-grafts.
  • Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, for example, so that it can contact the walls of the lumen.
  • The expansion mechanism can include forcing the endoprosthesis to expand radially. For example, the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis. Balloon-expandable endoprostheses are commonly made of 316L stainless steel or L605 alloys. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn.
  • When the endoprosthesis is advanced through the body, its progress can be monitored, e.g., tracked, so that the endoprosthesis can be delivered properly to a target site. After the endoprosthesis is delivered to the target site, the endoprosthesis can be monitored to determine whether it has been placed properly and/or is functioning properly. Methods of monitoring a medical device include X-ray fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI).
  • SUMMARY
  • In one aspect, an endoprosthesis is disclosed having a member that includes molybdenum and at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof. The member having a microstructure characterized by: (a) a molybdenum-rich base region comprising at least 50 weight percent molybdenum, (b) a surface region comprising at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof, and (c) an inter-diffusion region in which the concentration of molybdenum decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.
  • In some embodiments, the molybdenum base region can include no more than 10 weight percent of any of the following elements: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, zirconium, hafnium, iridium, and chromium. In some embodiments, the molybdenum-rich base region can include at least 95 weight percent molybdenum. For example, the molybdenum-rich base region can include 1.25 weight percent titanium, 0.3 weight percent zirconium, 0.15 weight percent carbon, and a balance of molybdenum. The molybdenum-rich base region could also include between 0.25 and 1.0 weight percent titanium, between 0.04 and 2.0 weight percent zirconium, between 0.01 and 0.04 weight percent carbon, and a balance of molybdenum. In some embodiments, the molybdenum-rich base region can include 99.95% pure molybdenum doped with potassium silicate.
  • In some embodiments, the surface region can be essentially free of molybdenum. In other embodiments, the surface region can include less than 50 percent by weight molybdenum. In some embodiments, the surface region can include titanium. For example, the surface region can include a titanium-molybdenum alloy or can consist essentially of titanium.
  • In some embodiments, the inter-diffusion region can be at between 10 nanometers and 10 microns thick. In some embodiments, the inter-diffusion region is at least 1 micron thick. In some embodiments, the inter-diffusion region can include iridium. For example, inter-diffusion region can include a higher concentration of iridium than either the molybdenum-rich base region or the surface region.
  • In some embodiments, the member can further include oxides, carbides, nitrides, or a combination thereof overlying the surface region. For example, the oxides, carbides, and nitrides can be selected from the group consisting of zirconium oxide, hafnium oxide, chromium oxide, iridium oxide, titanium oxy-nitride, TiO2, Nb2O5, Ta2O5, and combinations thereof. In some embodiments, the member can include a coating of zirconium, hafnium, chromium, iridium, or combinations thereof overlying the surface region. In some embodiments, the member can include a drug-eluting polymer coating overlying the surface region.
  • In some embodiments, the member can have a modulus of between 44 and 50 msi, a 0.2% offset yield strength of at least 50 ksi, and/or an elongation to break of at least about 15%. In some embodiments, the molybdenum-rich base region can have a density of at least 9.5 g/cc.
  • In some embodiments, endoprosthesis can be a stent. For example, the endoprosthesis can be a balloon-expandable stent.
  • In another aspect, there is disclosed an endoprosthesis having a member that includes molybdenum and titanium. The member having a microstructure characterized by: (a) a molybdenum-rich base region including at least 50 weight percent molybdenum, and (b) a surface region including titanium.
  • In some embodiments, the surface region can consists essentially of titanium. In other embodiments, the surface region can include a titanium-molybdenum alloy.
  • In some embodiments, the member can further include an intermediate region comprising iridium. In some embodiments, the member can further include a coating of zirconium, hathium, chromium, iridium, or combinations thereof overlying the surface region.
  • In some embodiments, the endoprosthesis can be a stent. For example, the endoprosthesis can be a balloon-expandable stent.
  • Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective view of an embodiment of an expanded stent.
  • FIG. 2 is a cross sectional view of a band or connector of a stent.
  • FIGS. 3A-3C depict a process for producing a member having an inter-diffusion region between a molybdenum-rich base region and a surface region.
  • FIG. 4 is a flow chart of an embodiment of a method of making a stent.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, a balloon-expandable stent 20 can have the form of a tubular member defined by a plurality of bands 22 and a plurality of connectors 24 that extend between and connect adjacent bands. During use, bands 22 can be expanded from an initial, smaller diameter to a larger diameter to contact stent 20 against a wall of a vessel, thereby maintaining the patency of the vessel. Connectors 24 can provide stent 20 with flexibility and conformability that allow the stent to adapt to the contours of the vessel.
  • The bands 22 and connectors 24 of the balloon-expandable stent 20 can include molybdenum and at least one of the following metals, alone or in combination with each other: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and chromium. Molybdenum has an advantageous combination of mechanical and physical properties, including a unique balance of modulus and yield strength. The modulus for molybdenum is higher than the modulus of 316L stainless steel and of L605 alloys, while molybdenum's yield strength is between the yield strengths of 316L stainless steel and of L605 alloys. This balance of properties would provide a lower diameter recoil for better securement on the delivery system and expanded diameter retention (apposition to the vessel wall) than 316L stainless steel and L605 alloys when used in the same stent configuration. A molybdenum stent could also be more MRI compatible because molybdenum has a lower magnetic susceptibility than iron and cobalt, which are ferromagnetic elements. Molybdenum also has higher radiopacity than 316L stainless steel and L605 alloys because molybdenum has a higher material mass absorption coefficient and a higher density. Molybdenum is commercially available in tubing form from Eagle Alloys, Goodfellow, and Minitubes. A comparison of the material properties of commercially pure molybdenum versus 316L stainless steel and L605 is presented in Table I, below.
  • TABLE I
    Young's %
    Modulus 0.2% offset yield elongation Density,
    Alloy: (E), msi strength, ksi at fracture g/cc
    Molybdenum
    44 70 20 10.2
    316L stainless steel 28 45 55 8.0
    L605 33 89 50 9.3
  • FIG. 2 depicts a cross section of a band 22 or connector 24 of a stent. The member can have a microstructure that includes a molybdenum-rich base region 32, an inter-diffusion region 34, and a surface region 36. The molybdenum-rich base region 32 can include at least 50 weight percent molybdenum. The surface region 36 can include at least one of the following metals, alone or in combination with each other: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and chromium. The inter-diffusion region 34 can include a varying concentration of molybdenum, which decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.
  • The molybdenum-rich base region 32 can include at least 50 weight percent molybdenum, but can also include other metals, such as titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, zirconium, hafnium, iridium, and/or chromium. In some embodiments, the molybdenum-rich base region 32 can be limited to no more than 10 weight percent of any of these elements. The molybdenum-rich base region can have a density of at least 9.5 g/cc.
  • In some embodiments, the molybdenum-rich base region can have a molybdenum concentration of at least 95 weight percent. For example, the molybdenum-rich base region can include Mo TZM, Mo TZC, or Mo HCT alloys. Mo TZC alloy includes 1.25 weight percent titanium, 0.3 weight percent zirconium, 0.15 weight percent carbon, and a balance of essentially molybdenum. Mo TZM alloy includes between 0.25 and 1.0 weight percent titanium, between 0.04 and 2.0 weight percent zirconium, between 0.01 and 0.04 weight percent carbon, and a balance of essentially molybdenum. Mo HCT, from Elmet Technologies, includes 99.95% pure Mo doped with potassium silicate. Mo HCT can have a maximum of 150 ppm potassium, a maximum of 300 ppm silicon, and a maximum of 200 ppm oxygen. HCT stands for High reCrystallization Temperature. The properties for Mo HCT are essentially the same as for pure Mo, but the benefit of using Mo HCT is that it allows for diffusion heat treatment at higher temperatures than for pure Mo and thus it can allow for interdiffusion in shorter processing times. The material properties of Mo TZC and Mo TZM are included below in Table II.
  • TABLE II
    Ultimate Yield
    Tensile Strength, Elongation, Modulus, Density,
    Alloy: Strength, ksi ksi % msi g/cc
    Mo TZC 144 105 22 47 10.1
    Mo TZM 140 125 10 47 10.2
  • The surface region 36 can include at least one of the following metals, alone or in combination with each other: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and chromium. The surface region can enhance corrosion resistance and/or improve the biocompatibility of the stent. In some embodiments, the surface region can be essentially free of molybdenum. In other embodiments, the surface region can include molybdenum in amounts lower than 50 percent by weight. In some embodiments, the surface region can include titanium. For example, the surface region can include essentially pure titanium or can include a titanium-molybdenum alloy.
  • The microstructure can also include an inter-diffusion region in which the concentration of molybdenum decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member. In some embodiments, the inter-diffusion region can be at least 1 micron thick. In some embodiments, the inter-diffusion region can be between 10 nanometers and 10 microns. The inter-diffusion region can include a mixture of the constituents of the surface region 36 and the molybdenum-rich base region 32 with a concentration gradient transitioning from a region of higher molybdenum concentration adjacent to the molybdenum-rich base region 32 to a lower molybdenum concentration adjacent to the surface region 36.
  • FIGS. 3A-3C depict an exemplary method for producing a member having a molybdenum-rich base region 32, a surface region 36, and an inter-diffusion region 34 therebetween. For example, as shown in FIG. 3A, a molybdenum-rich substrate 32 having at least 50 weight percent molybdenum can be provided. The substrate 32 can be cleaned in a plasma vapor deposition coating chamber with an oxide reduction process using an argon-hydrogen plasma.
  • As shown in FIG. 3B, a layer of a second metal 38 can be deposited onto the substrate 32. The second material 38 can include titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, or chromium. The second material 38 can be deposited using conventional plasma deposition equipment. The second material 38 can form a deposit of up to about 20 microns thick (e.g., between 20 nanometers and 1 micron thick). The layer of second material 38 can also be deposited by other commercially available ion implantation, sputter coating, chemical vapor deposition, or electroplating methods.
  • As shown in FIG. 3C, the inter-diffusion region can be created by applying a surface-alloying diffusion treatment. For example, a heat treatment can be performed in high vacuum at greater than about 10−5 torr. The heat treatment can be performed at a temperature selected from the range of 100° C. below the molybdenum tubing recrystallization temperature to 100° C. above the recrystallization temperature for 30 to 240 minutes. During this thermal exposure, the molybdenum and second metal would interdiffuse and produce an alloy of the constituents of the molybdenum-rich substrate 32 and the second material 38. The resulting surface region 36 can either be made up entirely of the second material 38 or can include molybdenum diffused from the molybdenum-rich substrate 32. The surface of the stent can contain 0 to 50% molybdenum, which can be controlled by controlling the extent of inter-diffusion. For example, the diffusivity of molybdenum in titanium at 1,000° C. was calculated to be 5.852 μ2/second and at 1,200° C. was calculated to be 294.5 μ2/second. The diffusion treatment can also convert a work hardened molybdenum-rich substrate to a condition of lower strength and higher ductility.
  • The tensile properties of the diffusion treated surface alloyed stent material, such as that shown in FIG. 2, would be between 44 and 50 msi Young's modulus, between 50 and 80 ksi 0.2% offset yield strength, between 65 and 95 ksi ultimate tensile strength, and/or greater than 15 percent elongation to break.
  • In some embodiments, the surface region 36 can be essentially pure titanium. In other embodiments, the surface region 36 comprises a titanium-molybdenum alloy. A titanium-molybdenum alloy can include up to about 50 weight percent molybdenum, and in some embodiments can contain less than 40 weight percent molybdenum. In some embodiments, a titanium containing surface region 36 can also include rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, and/or chromium as additional alloying elements.
  • In some embodiments, the surface region 36 can further be converted to oxides, nitrides, carbides, or combinations thereof. In some embodiments, zirconium, hathium, iridium, or chromium can further be applied to the surface region 36 and converted to an oxide. If the surface region 36 includes titanium and the air atmosphere were supplemented with a partial pressure of nitrogen, titanium oxynitride can form on the surface region 36 instead of titanium oxide. Titanium oxynitride may have a pro-healing response to minimize restenosis. In some embodiments, the surface can include TiO2, Nb2O5 and/or Ta2O5. An alternate method could be to use electrochemical anodizing to build an oxide layer rather than thermal treatment methods.
  • In some embodiments, the stent can include iridium and/or iridium oxide. For example, iridium can be applied to a molybdenum base metal and converted into an iridium oxide. Iridium can also be present as an intermediate alloying constituent present in the inter-diffusion region 34. In some embodiments, a stent can include a molybdenum base metal, a concentration gradient transitioning from the molybdenum base metal to iridium or an alloy thereof, and a concentration gradient transitioning from iridium or an alloy thereof to titanium or an alloy thereof. The intermediate iridium or iridium alloy can be between about 5 to 10 microns thick in order to prevent small cracks from reaching the molybdenum base metal.
  • In some embodiments, a drug eluting polymer coating can also be applied to the surface region 36. For example, drug eluding polymer coatings include those described in U.S. Pat. No. 5,674,242, U.S. Ser. No. 09/895,415, filed Jul. 2, 2001, and U.S. Ser. No. 10/232,265, filed Aug. 30, 2002. The therapeutic agents, drugs, or pharmaceutically active compounds can include, for example, anti-thrombogenic agents, antioxidants, anti-inflammatory agents, anesthetic agents, anti-coagulants, and antibiotics.
  • FIG. 4 shows an example of a method 40 of making a stent 20. As shown, method 40 can include forming a tube (step 42) that includes molybdenum or a molybdenum alloy. The tube can be subsequently cut to form bands 22 and connectors 24 (step 44) to produce an unfinished stent. Areas of the unfinished stent affected by the cutting can be subsequently removed (step 46). The unfinished stent can be finished by applying a second material and heat treating to form a stent 20 having a molybdenum-rich base region 32, a surface region 36, and an inter-diffusion region 34 (step 48).
  • For example, a stent can be made from a hollow rod of molybdenum or a molybdenum alloy. The hollow rod can have an outer diameter of 0.8 to 1.2 inches and an inner diameter of 0.4 to 0.6 inches and a length of 6 to 9 inches. The hollow rod could be conventionally canned and hot-extruded to reduce the wall thickness to about 0.05 inches. The tube can be reduced in size via fixed mandrel or floating plug tube drawing operations with intermediate stress relieving steps to the final configuration of a 0.060 to 0.080 inch outer diameter and a 0.050 to 0.070 inch inner diameter (depending on the desired finished stent size). The stent tubing can be subjected to laser machining to cut the stent bands 22 and connectors 24 in the wall. Electrochemical etching and polishing can be used to remove the laser-affected layer of material, to produce the final dimensions of the stent substrate 32, and to produce a smooth surface texture. The stent substrate 32 would then be subject to the deposition and diffusion treatments as discussed above in regard to FIGS. 3A-3C to produce a stent having bands 22 and/or connectors 24 having a molybdenum-rich base region 32, a surface region 36, and an inter-diffusion region 34 as shown in FIG. 2. The finished molybdenum containing stent can be crimped onto a balloon catheter, packaged, and sterilized.
  • Stent 20 can be of a desired shape and size (e.g., coronary stents, aortic stents, peripheral vascular stents, gastrointestinal stents, urology stents, and neurology stents). Depending on the application, stent 20 can have a diameter of between, for example, 1 mm to 46 mm. In certain embodiments, a coronary stent can have an expanded diameter of from 2 mm to 6 mm. In some embodiments, a peripheral stent can have an expanded diameter of from 5 mm to 24 mm. In certain embodiments, a gastrointestinal and/or urology stent can have an expanded diameter of from 6 mm to about 30 mm. In some embodiments, a neurology stent can have an expanded diameter of from about 1 mm to about 12 mm. An abdominal aortic aneurysm (AAA) stent and a thoracic aortic aneurysm (TAA) stent can have a diameter from about 20 mm to about 46 mm.
  • For example, a molybdenum-containing bare-metal balloon-expandable coronary stent can have a wall thickness of 0.0030 inches. Such a balloon-expandable stent can have a diameter recoil of less than 6 percent upon balloon expansion to 3.2 mm diameter. The stent can require between 0.20 and 0.40 Newtons force per millimeter of stent length to compress it from an initial balloon expanded diameter of 3.2 mm to 2.75 mm diameter oval within a V-shaped platens compression tester.
  • In use, stent 20 can be used, e.g., delivered and expanded, using a catheter delivery system. Catheter systems are described in, for example, Wang U.S. Pat. No. 5,195,969, Hamlin U.S. Pat. No. 5,270,086, and Raeder-Devens, U.S. Pat. No. 6,726,712. Stents and stent delivery are also exemplified by the Sentinol system, available from Boston Scientific Scimed, Maple Grove, Minn.
  • In some embodiments, a stent can be fabricated by forming a wire including a molybdenum-rich base region 32, a surface region 36, and an inter-diffusion region 34, and knitting and/or weaving the wire into a tubular member.
  • Stent 20 can also be a part of a covered stent or a stent-graft. For example, stent 20 can include and/or be attached to a biocompatible, non-porous or semi-porous polymer matrix made of polytetrafluoroethylene (PTFE), expanded PTFE, polyethylene, urethane, or polypropylene.
  • The molybdenum containing members described herein can be used to form other endoprostheses. For example, the molybdenum containing members can be used to form a guidewire or a hypotube. The molybdenum members can also be used to form metal staples and wires used for wound closure.
  • All publications, references, applications, and patents referred to herein are incorporated by reference in their entirety.
  • Other embodiments are within the claims.

Claims (20)

What is claimed is:
1. An endoprosthesis comprising a member that includes molybdenum and at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof,
the member having a microstructure characterized by:
(a) a molybdenum-rich base region comprising at least 50 weight percent molybdenum,
(b) a surface region comprising at least one metal selected from the group consisting of titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, iridium, zirconium, hafnium, niobium, chromium, and combinations thereof, and
(c) an inter-diffusion region in which the concentration of molybdenum decreases in the thickness direction from the molybdenum-rich base region to the surface region of the member.
2. The endoprosthesis of claim 1, wherein the molybdenum-rich base region comprises no more than 10 weight percent of any of the following elements: titanium, rhenium, yttrium, palladium, rhodium, ruthenium, tungsten, tantalum, zirconium, hafnium, iridium, and chromium.
3. The endoprosthesis of claim 1, wherein the member has a modulus of between 44 and 50 msi.
4. The endoprosthesis of claim 1, wherein the member has a 0.2% offset yield strength of at least 50 ksi.
5. The endoprosthesis of claim 1, wherein the member has an elongation to break of at least about 15%.
6. The endoprosthesis of claim 1, wherein the molybdenum-rich base region has a density of at least 9.5 g/cc.
7. The endoprosthesis of claim 1, wherein the molybdenum-rich base region comprises at least 95 weight percent molybdenum.
8. The endoprosthesis of claim 7, wherein the molybdenum-rich base region comprises 1.25 weight percent titanium, 0.3 weight percent zirconium, 0.15 weight percent carbon, and a balance of molybdenum.
9. The endoprosthesis of claim 7, wherein the molybdenum-rich base region comprises between 0.25 and 1.0 weight percent titanium, between 0.04 and 2.0 weight percent zirconium, between 0.01 and 0.04 weight percent carbon, and a balance of molybdenum.
10. The endoprosthesis of claim 7, wherein the molybdenum-rich base region comprises 99.95% pure molybdenum doped with potassium silicate.
11. The endoprosthesis of claim 1, wherein the surface region is essentially free of molybdenum.
12. The endoprosthesis of claim 1, wherein the surface region comprises less than 50 percent by weight molybdenum.
13. The endoprosthesis of claim 1, wherein the surface region comprises titanium.
14. The endoprosthesis of claim 1, wherein the surface region comprises a titanium-molybdenum alloy.
15. The endoprosthesis of claim 1, wherein the surface region consists essentially of titanium.
16. The endoprosthesis of claim 1, wherein the inter-diffusion region is between 10 nanometers and 10 microns thick.
17. The endoprosthesis of claim 1, wherein the inter-diffusion region is at least 1 micron thick.
18. The endoprosthesis of claim 1, wherein the inter-diffusion region comprises iridium.
19. The endoprosthesis of claim 18, wherein the inter-diffusion region comprises a higher concentration of iridium than either the molybdenum-rich base region or the surface region.
20. The endoprosthesis of claim 1, wherein the member further comprises oxides, carbides, nitrides, or a combination thereof overlying the surface region.
US13/845,865 2007-06-29 2013-03-18 Molybdenum Endoprostheses Abandoned US20130238081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/845,865 US20130238081A1 (en) 2007-06-29 2013-03-18 Molybdenum Endoprostheses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/771,731 US8398702B2 (en) 2007-06-29 2007-06-29 Molybdenum endoprostheses
US13/845,865 US20130238081A1 (en) 2007-06-29 2013-03-18 Molybdenum Endoprostheses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/771,731 Continuation US8398702B2 (en) 2007-06-29 2007-06-29 Molybdenum endoprostheses

Publications (1)

Publication Number Publication Date
US20130238081A1 true US20130238081A1 (en) 2013-09-12

Family

ID=39645487

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/771,731 Active 2030-07-01 US8398702B2 (en) 2007-06-29 2007-06-29 Molybdenum endoprostheses
US13/845,865 Abandoned US20130238081A1 (en) 2007-06-29 2013-03-18 Molybdenum Endoprostheses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/771,731 Active 2030-07-01 US8398702B2 (en) 2007-06-29 2007-06-29 Molybdenum endoprostheses

Country Status (4)

Country Link
US (2) US8398702B2 (en)
EP (1) EP2170422A2 (en)
JP (1) JP2010532222A (en)
WO (1) WO2009006076A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003926A1 (en) * 2015-07-02 2017-01-05 Icon Medical Corporation Molybdenum alloys for medical devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284409B2 (en) * 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US10711334B2 (en) * 2013-10-09 2020-07-14 Mirus Llc Metal alloy for medical devices
US11266767B2 (en) 2014-06-24 2022-03-08 Mirus Llc Metal alloys for medical devices
KR101787639B1 (en) * 2015-02-24 2017-10-18 주식회사 엘지화학 Battery apparatus
WO2017151548A1 (en) 2016-03-04 2017-09-08 Mirus Llc Stent device for spinal fusion
WO2019014206A1 (en) * 2017-07-11 2019-01-17 Mirus Llc Tungsten and rhenium alloy for medical device
CN114032430A (en) * 2021-11-19 2022-02-11 山东瑞安泰医疗技术有限公司 Method for preparing biliary tract stent by using degradable metal molybdenum and alloy

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812270A (en) * 1954-01-28 1957-11-05 Continental Can Co Method and apparatus for depositing metal coatings on metal bases
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5091205A (en) 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
US5059205A (en) 1989-09-07 1991-10-22 Boston Scientific Corporation Percutaneous anti-migration vena cava filter
US5226909A (en) 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
WO1993019803A1 (en) 1992-03-31 1993-10-14 Boston Scientific Corporation Medical wire
WO1994016646A1 (en) 1993-01-19 1994-08-04 Schneider (Usa) Inc. Clad composite stent
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5344402A (en) 1993-06-30 1994-09-06 Cardiovascular Dynamics, Inc. Low profile perfusion catheter
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
WO1995030384A2 (en) 1994-05-09 1995-11-16 Schneider (Usa) Inc. Clad composite stent
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5755770A (en) 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5681347A (en) 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
US5891191A (en) 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
US6123712A (en) 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
US5824046A (en) 1996-09-27 1998-10-20 Scimed Life Systems, Inc. Covered stent
US5772669A (en) 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US6137060A (en) 1997-05-02 2000-10-24 General Science And Technology Corp Multifilament drawn radiopaque highly elastic cables and methods of making the same
US6120522A (en) 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
US6620192B1 (en) 1999-03-16 2003-09-16 Advanced Cardiovascular Systems, Inc. Multilayer stent
US6238491B1 (en) 1999-05-05 2001-05-29 Davitech, Inc. Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US6755770B2 (en) * 2000-08-09 2004-06-29 Philip S. Martens Weight lifting exercise machine for use with dumbbell weights
US7001419B2 (en) 2000-10-05 2006-02-21 Boston Scientific Scimed, Inc. Stent delivery system with membrane
US20030181972A1 (en) 2002-03-22 2003-09-25 Scimed Life Systems, Inc. MRI and x-ray compatible stent material
US20040049261A1 (en) 2002-09-09 2004-03-11 Yixin Xu Medical devices
US20050059994A1 (en) * 2003-09-17 2005-03-17 Steven Walak Fatigue resistant medical devices
US20050131522A1 (en) * 2003-12-10 2005-06-16 Stinson Jonathan S. Medical devices and methods of making the same
US8323333B2 (en) 2005-03-03 2012-12-04 Icon Medical Corp. Fragile structure protective coating
WO2007076376A2 (en) * 2005-12-19 2007-07-05 Stout Medical Group, L.P. Expandable delivery device
US8585753B2 (en) * 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003926A1 (en) * 2015-07-02 2017-01-05 Icon Medical Corporation Molybdenum alloys for medical devices
CN108348339A (en) * 2015-07-02 2018-07-31 米如斯有限公司 Molybdenum alloy for medical treatment device

Also Published As

Publication number Publication date
WO2009006076A3 (en) 2009-11-19
JP2010532222A (en) 2010-10-07
WO2009006076A2 (en) 2009-01-08
EP2170422A2 (en) 2010-04-07
US8398702B2 (en) 2013-03-19
US20090005850A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
US20130238081A1 (en) Molybdenum Endoprostheses
US7344560B2 (en) Medical devices and methods of making the same
CA2442057C (en) Medical device having radio-opacification and barrier layers
EP1545395B1 (en) Niobium stent
US7604662B2 (en) Endoprostheses containing boride intermetallic phases
EP1866006B1 (en) Medical devices including composites
EP1877112B1 (en) Medical devices and methods of making the same
US20080243234A1 (en) Magnesium Alloy Stent
US8435280B2 (en) Flexible stent with variable width elements
JP2008541935A (en) Endoprosthesis
JP2008515563A6 (en) Medical device and manufacturing method thereof
US7972375B2 (en) Endoprostheses including metal matrix composite structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STINSON, JONATHAN S.;CAMBRONNE, MATTHEW;SIGNING DATES FROM 20130321 TO 20130605;REEL/FRAME:030730/0176

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION