US20130220528A1 - Method of Fabricating Bubble-Type Micro-Pump - Google Patents

Method of Fabricating Bubble-Type Micro-Pump Download PDF

Info

Publication number
US20130220528A1
US20130220528A1 US13/859,779 US201313859779A US2013220528A1 US 20130220528 A1 US20130220528 A1 US 20130220528A1 US 201313859779 A US201313859779 A US 201313859779A US 2013220528 A1 US2013220528 A1 US 2013220528A1
Authority
US
United States
Prior art keywords
bubble
micro
forming
top surface
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/859,779
Inventor
Chen Peng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BenQ Materials Corp
Original Assignee
BenQ Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BenQ Materials Corp filed Critical BenQ Materials Corp
Priority to US13/859,779 priority Critical patent/US20130220528A1/en
Assigned to Benq Materials Corp. reassignment Benq Materials Corp. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PENG, CHEN
Publication of US20130220528A1 publication Critical patent/US20130220528A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1861Means for temperature control using radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device

Definitions

  • the invention relates in general to a method of fabricating a bubble-type micro-pump, and more particularly to a method of fabricating an electrolysis bubble-type micro-pump applied to a microfluidic chip.
  • microfluidic chip roughly includes a fluidic channel and a fluid-dynamic mechanism.
  • the design of micro-pump especially plays an important role in the movement of the fluid.
  • micro-pump can be divided into two types according to the driving principle of the fluid.
  • One is to drive fluid through mechanical method, such as bubble pump, membrane pump, diffuser pump, etc. These pumps use the mechanical elements to drive fluid.
  • the other one is to drive fluid through induced electric field, such as electro-osmotic pump, electrophoretic pump, electro-wetting pump, etc. Fixed electrodes are formed in these pumps, and electric field is generated to drive fluid after voltage is applied.
  • the invention is directed to a method of fabricating a bubble-type micro-pump. Variation of the material, density, thickness or surface roughness is formed by sputtering or a laser beam in order to form a surface energy gradient on the top surface in the bubble-generating section of the micro-channel. As a result, the manufacturing process is simplified, and the manufacturing cost is lowered.
  • a method of fabricating a bubble-type micro-pump includes following steps. First, a micro-channel having a top surface, a bottom surface and two side walls is provided. The micro-channel has at least a bubble-generating section. Next, a bubble-generating unit is provided in the bubble-generating section of the micro-channel for generating a bubble in a liquid between the front end and the rear end of the bubble-generating section. Then, a surface treatment is applied to the top surface of the bubble-generating section to form a surface energy gradient. When a bubble vanishes, the backfilling velocity of the liquid toward the front end is different from that of the liquid toward the rear end due to the surface energy gradient on the top surface, which drives liquid to flow toward the front end or the rear end.
  • At least two regions or parts with different surface energies are formed by sputtering or a laser beam for forming a surface energy gradient on the top surface in the bubble-generating section.
  • FIG. 1 illustrates a microfluidic chip according to the first embodiment of the present invention
  • FIG. 2 illustrates the bubble-generating section of the micro-channel in FIG. 1 ;
  • FIG. 3 is a side view of the bubble-generating section of the micro-channel in FIG. 2 when the pump operates;
  • FIG. 4 is a side view of a micro-channel according to the first embodiment of the present invention.
  • FIG. 5 is a side view of another micro-channel according to the first embodiment of the present invention.
  • FIG. 6 is a side view of another micro-channel according to the first embodiment of the present invention.
  • FIG. 7 is a side view of the micro-channel according to the second embodiment of the present invention.
  • FIG. 8 is a side view of the micro-channel according to the third embodiment of the present invention.
  • FIG. 9A illustrates several micro-cylinders on the top surface of the micro-channel according to the fourth embodiment of the present invention.
  • FIG. 9B is a side view of the micro-channel according to the fourth embodiment of the present invention.
  • a micro-channel has a top surface, a bottom surface and two side walls. At least a bubble-generating unit is provided on the bottom surface for generating a bubble in a bubble-generating section of the micro-channel.
  • the top surface has a surface energy gradient. When the generated bubble starts to vanish, the backfilling velocity of the liquid flowing toward the front end of the bubble-generating section is different from the backfilling velocity of the liquid flowing toward the rear end of the bubble-generating section. As a result, the fluid is driven to flow toward the front end or the rear end.
  • the method of the present invention uses laser or sputtering method to form the surface energy gradient on the top surface of the micro-channel.
  • a microfluidic chip of a bubble-type micro-pump is provided as follows to illustrate the fabricating method of the present invention.
  • the microfluidic chip in the drawings is used as an example.
  • the present invention is not limited thereto.
  • unnecessary elements are not shown in the drawings for clarity.
  • FIG. 1 illustrates a microfluidic chip according to the present invention.
  • FIG. 2 illustrates the bubble-generating section of the micro-channel in FIG. 1 .
  • FIG. 3 is a side view of the bubble-generating section of the micro-channel in FIG. 2 when the pump operates. Please refer to FIG. 1 , FIG. 2 and FIG. 3 at the same time.
  • the microfluidic chip 100 includes a micro-channel 110 and a bubble-generating unit 120 .
  • the bubble-generating unit 120 includes the first electrode 121 and the second electrode 122 .
  • the first electrode 121 and the second electrode 122 are respectively adjacent to the front end e 1 and the rear end e 2 of the bubble-generating section S.
  • a contact angle is formed by the tension of the vapor-liquid-solid three-phase interface.
  • the value of the contact angle is related to the surface wettability of the micro-channel.
  • the contact angle ⁇ 1 is less than the contact angle ⁇ 2 .
  • the backfilling velocity of the liquid L toward the front end e 1 is different from that toward the rear end e 2 due to capillary force, which drives the liquid to flow toward the side with slower backfilling velocity (namely, the right side).
  • the contact angle ⁇ 1 is larger than the contact angle ⁇ 2 , the liquid flows toward the side with slower backfilling velocity (namely, the left side).
  • an electrode control circuit (not shown in the drawings) can be disposed on the second substrate 140 for controlling the electrodes 121 and 122 to generate the bubble B.
  • the first substrate 130 with a recess 131 and the second substrate 140 are provided respectively.
  • the first substrate 130 and the second substrate 140 are bonded to each other by light cure adhesive or pressure sensitive adhesive.
  • the surface of the recess 131 of the first substrate 130 forms the top surface 110 a and the two side walls of the micro-channel 110 .
  • the surface of the second substrate 140 forms the bottom surface 110 b of the micro-channel 110 .
  • the first electrode 121 and the second electrode 122 are disposed on the second substrate 140 and respectively adjacent to the front end e 1 and the rear end e 2 of the bubble-generating section S.
  • the recess 131 of the first substrate 130 is preferably fabricated by low-cost injection molding, pressure casting or etching.
  • the second substrate 140 having the first electrode 121 and the second electrode 122 is fabricated through PCB (printed circuit board) manufacturing process or MEMS (micro-electro-mechanical system) manufacturing process. Besides, the first substrate 130 and the second substrate 140 can be bonded to each other through the pressure sensitive adhesive with re-workability. When a defective product is generated in the manufacturing process, the pressure sensitive adhesive can be peeled off and re-fabricated to increase the yield rate. Even after the product is used, the substrates can be separated, cleaned and sterilized for recycling the costly second substrate 140 . The second substrate 140 is reused for saving energy and protecting the environment.
  • PCB printed circuit board
  • MEMS micro-electro-mechanical system
  • the first electrode 121 and the second electrode 122 are used as the bubble-generating unit 120 in the embodiment.
  • any one who has ordinary skills in the related field can understand that the present invention is not limited thereto.
  • Other suitable bubble-generating devices can be provided in the bubble-generating section S of the micro-channel 110 for generating a bubble. Please refer to an essay “engineering surface roughness to manipulate droplets in micro-fluidic systems” (Ashutosh Shastry, etc, pp 694-697, 30 Jan. ⁇ 3 Feb. 2005, IEEE) for the description of the bubble-type micro-pump.
  • FIG. 1 Several modes of operation of the microfluidic chip of the present invention in FIG. 1 are provided as follows with reference to the accompanying drawings.
  • the fabricating method can be mainly divided as sputtering method (the first embodiment) and laser method (the second to fourth embodiments) according to the present invention for forming the surface energy gradient on the top surface of the micro-channel.
  • the structures and the fabricating steps of the micro-channel in the modes of operation are merely used as examples for illustrating the invention. Therefore, the embodiments disclosed herein are used for illustrating the invention, but not for limiting the scope of the invention. Furthermore, unnecessary elements are not shown in the drawings for clarity.
  • FIG. 4 is a side view of a micro-channel according to the first embodiment of the present invention.
  • the top surface of the bubble-generating section includes two films.
  • a surface treatment is applied to the first substrate 230 before the first substrate 230 and the second substrate 240 are bonded to each other, so that the first film 235 is formed in the first region r 1 of the top surface 210 a adjacent to the front end e 1 of the bubble-generating section S.
  • the second film 236 is formed in the second region r 2 of the top surface 210 a adjacent to the rear end e 2 of the bubble-generating section S.
  • the second film 236 adjacent to the rear end e 2 connects to the first film 235 adjacent to the front end e 1 so as to form the micro-channel 210 in FIG. 4 .
  • the first film 235 and the second film 236 are deposited by sputtering method.
  • the first surface energy of the first film 235 is different from the second surface energy of the second film 236 to form a surface energy gradient on the top surface 210 a′.
  • the surface energy difference between the first film 235 and the second film 236 can be formed by using the same material.
  • the first film 235 and the second film 236 have different thickness or sputtering density in order to form a surface energy gradient on the top surface 210 a ′. Therefore, selection and modification can be made in the practical manufacturing process according to the application conditions.
  • FIG. 5 is a side view of another micro-channel according to the first embodiment of the present invention.
  • the difference between FIG. 4 and FIG. 5 is that a single film 335 is formed by sputtering method on the top surface 310 a in the bubble-generating section S of the first substrate 330 in FIG. 5 .
  • the thickness of the film 335 gradually increases or decreases from the front end e 1 to the rear end e 2 .
  • a surface energy gradient is formed on the top surface 310 a ′ through the thickness variation of the film 335 .
  • the density of the film 335 remains constant.
  • FIG. 6 is a side view of another micro-channel according to the first embodiment of the present invention.
  • the film 435 with the same thickness is deposited on the top surface 410 a in the bubble-generating section S of the first substrate 430 .
  • the density of the film 435 increases or decreases from the front end e 1 to the rear end e 2 .
  • a surface energy gradient is formed through the density variation of the film 335 .
  • the surface energy gradient is formed on the top surface in the bubble-generating section through the variation of the material, thickness or density of the film.
  • the first substrate 230 / 330 / 430 with the recess 231 / 331 / 431 can be formed by disc manufacturing process.
  • the present invention significantly reduces the manufacturing cost, increases the production speed and further improves the yield rate.
  • FIG. 7 is a side view of the micro-channel according to the second embodiment of the present invention.
  • some regions of a multi-layer film are heated by laser so that the surface energy is varied between the heated region and un-heated region, which causes a surface energy gradient.
  • a surface treatment is applied to the first substrate 530 for forming a reflective layer 534 on the top surface 510 a in the bubble-generating section S.
  • the first film 535 is formed on the reflective layer 534 .
  • the second film 536 is formed on the first film 535 for forming a multi-layer film.
  • several regions of the multi-layer film namely, the first film 535 and the second film 536 ) in the bubble-generating section S are heated by a laser beam in order to form a complex 537 of the first film 535 and the second film 536 .
  • the surface energy in the region heated by the laser beam is different from that in the un-heated region in order to form a surface energy gradient on the top surface 510 a ′.
  • the first film 535 and the second film 536 are preferably deposited by sputtering method.
  • the present invention is not limited thereto.
  • FIG. 8 is a side view of the micro-channel according to the third embodiment of the present invention.
  • a substance undergoes chemical changes or foams by a laser beam, which causes the variation of roughness to form a surface energy gradient on the top surface of the micro-channel.
  • a surface treatment is applied to the first substrate 630 before the first substrate 630 and the second substrate 640 are bonded to each other, for forming a reflective layer 634 on the top surface 610 a in the bubble-generating section S.
  • a mixed film 635 with pressure sensitive adhesive and foaming agent is formed on the reflective layer 634 .
  • several regions of the bubble-generating section S is heated by a laser beam so that several foaming protruding parts 637 are formed in the heated region.
  • the protruding parts 637 heated by a laser beam has different surface energy from the un-heated region, which forms a surface energy gradient on the top surface 610 ′.
  • a mixed film 635 with pressure sensitive adhesive and dye is formed on the reflective layer 634 and heated by a laser beam.
  • Several concaves are formed in the heated regions.
  • the concaves heated by the laser beam has different surface energy from the un-heated region, which forms a surface energy gradient on the top surface 610 ′
  • the first substrate 530 / 630 with the recess 531 / 631 in the second and third embodiments can be formed through fast and low-cost disc manufacturing process.
  • the films on the top surface of the micro-channel have different surface energy through sputtering method.
  • the film is formed first and then a laser beam is used for producing chemical changes to form a surface energy gradient.
  • several micro-cylinders are formed on the top surface of the micro-channel by laser technology to change the surface roughness of the plane to replace the conventional manufacturing process with high cost and complicated steps by MEMS technology.
  • FIG. 9A illustrates several micro-cylinders on the top surface of the micro-channel according to the fourth embodiment of the present invention.
  • FIG. 9B is a side view of the micro-channel according to the fourth embodiment of the present invention.
  • a surface treatment is applied to the first substrate 730 before the first substrate 730 and the second substrate 740 are bonded to each other.
  • the top surface in the bubble-generating section S is sintered by a laser beam for forming several micro-cylinders.
  • the micro-cylinders change the surface roughness of the top surface 710 a , which forms a surface energy gradient on the top surface 710 a′.
  • the first cylinder group G 1 and the second cylinder group G 2 are formed on the first substrate 730 (such as a silicon substrate) and respectively corresponding to the two regions of the first substrate 730 .
  • the first cylinder group G 1 includes several first micro-cylinders 751 with the same cross-sectional area.
  • the area proportion of the first cylinder group G 1 determines the first roughness factor ⁇ 1 .
  • the second cylinder group G 2 includes several second micro-cylinders 752 with the same cross-sectional area, and the cross-sectional area of the second micro-cylinders 752 is greater than that of the first micro-cylinders 751 .
  • the area proportion of the second cylinder group G 2 determines the second roughness factor ⁇ 2 .
  • the first roughness ⁇ 1 is different from the second roughness factor ⁇ 2 because the first micro-cylinders 751 and the second micro-cylinders 752 have different cross-sectional area, which forms a surface energy gradient on the top surface 710 a′.
  • the first cylinder group G 1 and the second cylinder group G 2 respectively include the first micro-cylinders 751 with less cross-sectional area and the second micro-cylinders 752 with larger cross-sectional area.
  • the present invention is not limited thereto.
  • Several micro-cylinders with the cross-sectional area gradually changing from the front end e 1 to the rear end e 2 can be formed by a laser beam on the top surface 710 a of the first substrate 730 .
  • the top surface 710 a of the channel has rough surface with different roughness factors, which forms a surface energy gradient.
  • the variation of the surface energy gradient on the top surface 710 a of the first substrate 730 is formed by a laser beam, which is accurate and fast, and further lowers the manufacturing cost.
  • the variation of material, density, thickness or surface roughness is formed through laser or sputtering to form a surface energy gradient on the top surface in a bubble-generating section of the micro-channel.
  • the first substrate can be formed through disc manufacturing process, which reduces manufacturing cost and increases production speed and yield rate.
  • the first substrate and the second substrate are preferably bonded to each other by pressure sensitive adhesive, so that the defective products can be re-fabricated and the costly second substrate can be recycled.

Abstract

A manufacturing method of a bubble-type micro-pump is provided. At least a bubble-generating unit is provided on the bubble-generating section. Because of the varied surface energies on the top of the bubble-generating section, the varied backfilling velocities of the fluid of the front end and the rear end cause fluid moving when a bubble vanishes. The top surface of the bubble-generating section is subjected to a particular surface treatment to form a surface energy gradient. Examples of surface treatment include sputtering a thin film with varied densities or thickness, radiating one or multi-layer thin films by a laser beam, etc.

Description

  • This application is a Divisional of co-pending U.S. patent application Ser. No. 12/610,736, filed Nov. 2, 2009, and entitled “METHOD OF FABRICATING BUBBLE-TYPE MICRO-PUMP”, which claims the benefit of Taiwan application Serial No. 97149831, filed Dec. 19, 2008, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates in general to a method of fabricating a bubble-type micro-pump, and more particularly to a method of fabricating an electrolysis bubble-type micro-pump applied to a microfluidic chip.
  • 2. Description of the Related Art
  • As the technology continues to evolve, the application of microfluidic chip is brought out in recent years. Generally speaking, a microfluidic chip roughly includes a fluidic channel and a fluid-dynamic mechanism. The design of micro-pump especially plays an important role in the movement of the fluid.
  • The detailed design, operating principle and various application fields can be found in many research documents and journals. For example, in “droplet movement on horizontal surface with gradient surface energy” disclosed in Science in China, volume 37, page 402-408 (2007), dodecyltrichlorosilane is used on silicon substrate to form a surface with gradient surface energy by chemical vapor deposition. The U.S. Pat. No. 6,231,948 reveals a pervious web to rapidly transport fluid away from the contacting surface toward another surface. The U.S. Pat. No. 6,232,521 reveals a low surface energy material applied to a back sheet of sanitary napkin to form a hydrophobic gradient between the back sheet and the core, which reduces leakage. A similar patent, U.S. Pat. No. 5,658,639, reveals a non-woven web having the opposite first and the second surfaces. Several channels are used for transporting liquid. When liquid contacts the first surface with lower surface energy, the surface energy gradient drives the liquid to flow toward the second surface. Therefore, the web is suited for use as a top sheet of a sanitary napkin. Furthermore, the U.S. Pat. No. 5,792,404 reveals a method for forming surface energy gradients. Several three-dimensional raised rib-like portions are produced to increase the caliper of the non-woven web, so that fluid can flow away from the wearer-contacting surface and into the absorbent structure.
  • The design of micro-pump can be divided into two types according to the driving principle of the fluid. One is to drive fluid through mechanical method, such as bubble pump, membrane pump, diffuser pump, etc. These pumps use the mechanical elements to drive fluid. The other one is to drive fluid through induced electric field, such as electro-osmotic pump, electrophoretic pump, electro-wetting pump, etc. Fixed electrodes are formed in these pumps, and electric field is generated to drive fluid after voltage is applied.
  • It is an object to overcome the limitations of the process and to fabricate a microfluidic chip, such as a micro-pump, with precision structure and high-precision flow-rate control while controlling the manufacture cost to meet the demand of mass production.
  • SUMMARY OF THE INVENTION
  • The invention is directed to a method of fabricating a bubble-type micro-pump. Variation of the material, density, thickness or surface roughness is formed by sputtering or a laser beam in order to form a surface energy gradient on the top surface in the bubble-generating section of the micro-channel. As a result, the manufacturing process is simplified, and the manufacturing cost is lowered.
  • According to the present invention, a method of fabricating a bubble-type micro-pump is provided. The method includes following steps. First, a micro-channel having a top surface, a bottom surface and two side walls is provided. The micro-channel has at least a bubble-generating section. Next, a bubble-generating unit is provided in the bubble-generating section of the micro-channel for generating a bubble in a liquid between the front end and the rear end of the bubble-generating section. Then, a surface treatment is applied to the top surface of the bubble-generating section to form a surface energy gradient. When a bubble vanishes, the backfilling velocity of the liquid toward the front end is different from that of the liquid toward the rear end due to the surface energy gradient on the top surface, which drives liquid to flow toward the front end or the rear end.
  • When surface treatment is applied to the top surface, at least two regions or parts with different surface energies are formed by sputtering or a laser beam for forming a surface energy gradient on the top surface in the bubble-generating section.
  • The invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a microfluidic chip according to the first embodiment of the present invention;
  • FIG. 2 illustrates the bubble-generating section of the micro-channel in FIG. 1;
  • FIG. 3 is a side view of the bubble-generating section of the micro-channel in FIG. 2 when the pump operates;
  • FIG. 4 is a side view of a micro-channel according to the first embodiment of the present invention;
  • FIG. 5 is a side view of another micro-channel according to the first embodiment of the present invention;
  • FIG. 6 is a side view of another micro-channel according to the first embodiment of the present invention;
  • FIG. 7 is a side view of the micro-channel according to the second embodiment of the present invention;
  • FIG. 8 is a side view of the micro-channel according to the third embodiment of the present invention;
  • FIG. 9A illustrates several micro-cylinders on the top surface of the micro-channel according to the fourth embodiment of the present invention; and
  • FIG. 9B is a side view of the micro-channel according to the fourth embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A method of fabricating a bubble-type micro-pump is provided by the present invention. According to the present invention, a micro-channel has a top surface, a bottom surface and two side walls. At least a bubble-generating unit is provided on the bottom surface for generating a bubble in a bubble-generating section of the micro-channel. The top surface has a surface energy gradient. When the generated bubble starts to vanish, the backfilling velocity of the liquid flowing toward the front end of the bubble-generating section is different from the backfilling velocity of the liquid flowing toward the rear end of the bubble-generating section. As a result, the fluid is driven to flow toward the front end or the rear end. The method of the present invention uses laser or sputtering method to form the surface energy gradient on the top surface of the micro-channel.
  • A microfluidic chip of a bubble-type micro-pump is provided as follows to illustrate the fabricating method of the present invention. However, the microfluidic chip in the drawings is used as an example. The present invention is not limited thereto. Furthermore, unnecessary elements are not shown in the drawings for clarity.
  • FIG. 1 illustrates a microfluidic chip according to the present invention. FIG. 2 illustrates the bubble-generating section of the micro-channel in FIG. 1. FIG. 3 is a side view of the bubble-generating section of the micro-channel in FIG. 2 when the pump operates. Please refer to FIG. 1, FIG. 2 and FIG. 3 at the same time.
  • The microfluidic chip 100 includes a micro-channel 110 and a bubble-generating unit 120. The bubble-generating unit 120 includes the first electrode 121 and the second electrode 122. The first electrode 121 and the second electrode 122 are respectively adjacent to the front end e1 and the rear end e2 of the bubble-generating section S.
  • According to the operating principle of the bubble-type micro-pump, a contact angle is formed by the tension of the vapor-liquid-solid three-phase interface. The value of the contact angle is related to the surface wettability of the micro-channel. When the bubble B is generated in the bubble-generating section S, the wettability of the solid surface on both sides of the bubble is different due to a surface energy gradient formed on the top surface 110 a of the bubble-generating section S, which results in varied contact angles. It is assumed herein that the contact angle θ1 is less than the contact angle θ2. As a result, when the bubble B vanishes (FIG. 3), the backfilling velocity of the liquid L toward the front end e1 is different from that toward the rear end e2 due to capillary force, which drives the liquid to flow toward the side with slower backfilling velocity (namely, the right side). On the contrary, when the contact angle θ1 is larger than the contact angle θ2, the liquid flows toward the side with slower backfilling velocity (namely, the left side). Moreover, an electrode control circuit (not shown in the drawings) can be disposed on the second substrate 140 for controlling the electrodes 121 and 122 to generate the bubble B.
  • When the microfluidic chip 100 is fabricated, the first substrate 130 with a recess 131 and the second substrate 140 are provided respectively. The first substrate 130 and the second substrate 140 are bonded to each other by light cure adhesive or pressure sensitive adhesive. The surface of the recess 131 of the first substrate 130 forms the top surface 110 a and the two side walls of the micro-channel 110. The surface of the second substrate 140 forms the bottom surface 110 b of the micro-channel 110. The first electrode 121 and the second electrode 122 are disposed on the second substrate 140 and respectively adjacent to the front end e1 and the rear end e2 of the bubble-generating section S. The recess 131 of the first substrate 130 is preferably fabricated by low-cost injection molding, pressure casting or etching. The second substrate 140 having the first electrode 121 and the second electrode 122 is fabricated through PCB (printed circuit board) manufacturing process or MEMS (micro-electro-mechanical system) manufacturing process. Besides, the first substrate 130 and the second substrate 140 can be bonded to each other through the pressure sensitive adhesive with re-workability. When a defective product is generated in the manufacturing process, the pressure sensitive adhesive can be peeled off and re-fabricated to increase the yield rate. Even after the product is used, the substrates can be separated, cleaned and sterilized for recycling the costly second substrate 140. The second substrate 140 is reused for saving energy and protecting the environment.
  • The first electrode 121 and the second electrode 122 are used as the bubble-generating unit 120 in the embodiment. However, any one who has ordinary skills in the related field can understand that the present invention is not limited thereto. Other suitable bubble-generating devices can be provided in the bubble-generating section S of the micro-channel 110 for generating a bubble. Please refer to an essay “engineering surface roughness to manipulate droplets in micro-fluidic systems” (Ashutosh Shastry, etc, pp 694-697, 30 Jan.˜3 Feb. 2005, IEEE) for the description of the bubble-type micro-pump.
  • Several modes of operation of the microfluidic chip of the present invention in FIG. 1 are provided as follows with reference to the accompanying drawings. The fabricating method can be mainly divided as sputtering method (the first embodiment) and laser method (the second to fourth embodiments) according to the present invention for forming the surface energy gradient on the top surface of the micro-channel. The structures and the fabricating steps of the micro-channel in the modes of operation are merely used as examples for illustrating the invention. Therefore, the embodiments disclosed herein are used for illustrating the invention, but not for limiting the scope of the invention. Furthermore, unnecessary elements are not shown in the drawings for clarity.
  • Forming a Surface Energy Gradient on the Top Surface of the Micro-Channel by Sputtering Method First Embodiment
  • Please refer to FIG. 4. FIG. 4 is a side view of a micro-channel according to the first embodiment of the present invention. The top surface of the bubble-generating section includes two films. In the fabricating method, a surface treatment is applied to the first substrate 230 before the first substrate 230 and the second substrate 240 are bonded to each other, so that the first film 235 is formed in the first region r1 of the top surface 210 a adjacent to the front end e1 of the bubble-generating section S. Then, the second film 236 is formed in the second region r2 of the top surface 210 a adjacent to the rear end e2 of the bubble-generating section S. The second film 236 adjacent to the rear end e2 connects to the first film 235 adjacent to the front end e1 so as to form the micro-channel 210 in FIG. 4. As shown in FIG. 4, the first film 235 and the second film 236 are deposited by sputtering method. The first surface energy of the first film 235 is different from the second surface energy of the second film 236 to form a surface energy gradient on the top surface 210 a′.
  • Moreover, besides using different materials, the surface energy difference between the first film 235 and the second film 236 can be formed by using the same material. However, the first film 235 and the second film 236 have different thickness or sputtering density in order to form a surface energy gradient on the top surface 210 a′. Therefore, selection and modification can be made in the practical manufacturing process according to the application conditions.
  • Please refer to FIG. 5. FIG. 5 is a side view of another micro-channel according to the first embodiment of the present invention. The difference between FIG. 4 and FIG. 5 is that a single film 335 is formed by sputtering method on the top surface 310 a in the bubble-generating section S of the first substrate 330 in FIG. 5. However, the thickness of the film 335 gradually increases or decreases from the front end e1 to the rear end e2. A surface energy gradient is formed on the top surface 310 a′ through the thickness variation of the film 335. The density of the film 335 remains constant.
  • Please refer to FIG. 6. FIG. 6 is a side view of another micro-channel according to the first embodiment of the present invention. The film 435 with the same thickness is deposited on the top surface 410 a in the bubble-generating section S of the first substrate 430. The density of the film 435 increases or decreases from the front end e1 to the rear end e2. A surface energy gradient is formed through the density variation of the film 335.
  • In the above description, the surface energy gradient is formed on the top surface in the bubble-generating section through the variation of the material, thickness or density of the film. However, in practical application, the first substrate 230/330/430 with the recess 231/331/431 can be formed by disc manufacturing process. Compared to the conventional method of manufacturing the first substrate by MEMS technology, the present invention significantly reduces the manufacturing cost, increases the production speed and further improves the yield rate.
  • Forming a Surface Energy Gradient on the Top Surface of the Micro-Channel by a Laser Beam Second Embodiment
  • Please refer to FIG. 7. FIG. 7 is a side view of the micro-channel according to the second embodiment of the present invention. In the second embodiment, some regions of a multi-layer film are heated by laser so that the surface energy is varied between the heated region and un-heated region, which causes a surface energy gradient.
  • In the fabricating method, before the first substrate 530 and the second substrate 540 are bonded to each other, a surface treatment is applied to the first substrate 530 for forming a reflective layer 534 on the top surface 510 a in the bubble-generating section S. Next, the first film 535 is formed on the reflective layer 534. Then, the second film 536 is formed on the first film 535 for forming a multi-layer film. Later, several regions of the multi-layer film (namely, the first film 535 and the second film 536) in the bubble-generating section S are heated by a laser beam in order to form a complex 537 of the first film 535 and the second film 536. The surface energy in the region heated by the laser beam is different from that in the un-heated region in order to form a surface energy gradient on the top surface 510 a′. In the present embodiment, the first film 535 and the second film 536 are preferably deposited by sputtering method. However, the present invention is not limited thereto.
  • Third Embodiment
  • Please refer to FIG. 8. FIG. 8 is a side view of the micro-channel according to the third embodiment of the present invention. In the third embodiment, a substance undergoes chemical changes or foams by a laser beam, which causes the variation of roughness to form a surface energy gradient on the top surface of the micro-channel.
  • In the fabricating method, a surface treatment is applied to the first substrate 630 before the first substrate 630 and the second substrate 640 are bonded to each other, for forming a reflective layer 634 on the top surface 610 a in the bubble-generating section S. Next, a mixed film 635 with pressure sensitive adhesive and foaming agent is formed on the reflective layer 634. Then, several regions of the bubble-generating section S is heated by a laser beam so that several foaming protruding parts 637 are formed in the heated region. In the present embodiment, the protruding parts 637 heated by a laser beam has different surface energy from the un-heated region, which forms a surface energy gradient on the top surface 610′.
  • Furthermore, different materials can be used selectively. For example, a mixed film 635 with pressure sensitive adhesive and dye is formed on the reflective layer 634 and heated by a laser beam. Several concaves are formed in the heated regions. Similarly, the concaves heated by the laser beam has different surface energy from the un-heated region, which forms a surface energy gradient on the top surface 610
  • Similar to the first embodiment, the first substrate 530/630 with the recess 531/631 in the second and third embodiments can be formed through fast and low-cost disc manufacturing process.
  • Fourth Embodiment
  • In the first embodiment, the films on the top surface of the micro-channel have different surface energy through sputtering method. In the second and third embodiments, the film is formed first and then a laser beam is used for producing chemical changes to form a surface energy gradient. In the fourth embodiment, several micro-cylinders are formed on the top surface of the micro-channel by laser technology to change the surface roughness of the plane to replace the conventional manufacturing process with high cost and complicated steps by MEMS technology.
  • Please refer to FIGS. 9A and 9B at the same time. FIG. 9A illustrates several micro-cylinders on the top surface of the micro-channel according to the fourth embodiment of the present invention. FIG. 9B is a side view of the micro-channel according to the fourth embodiment of the present invention.
  • In the fabricating method, a surface treatment is applied to the first substrate 730 before the first substrate 730 and the second substrate 740 are bonded to each other. The top surface in the bubble-generating section S is sintered by a laser beam for forming several micro-cylinders. The micro-cylinders change the surface roughness of the top surface 710 a, which forms a surface energy gradient on the top surface 710 a′.
  • As shown in FIGS. 9A and 9B, the first cylinder group G1 and the second cylinder group G2 are formed on the first substrate 730 (such as a silicon substrate) and respectively corresponding to the two regions of the first substrate 730. The first cylinder group G1 includes several first micro-cylinders 751 with the same cross-sectional area. The area proportion of the first cylinder group G1 determines the first roughness factor ω1 . The second cylinder group G2 includes several second micro-cylinders 752 with the same cross-sectional area, and the cross-sectional area of the second micro-cylinders 752 is greater than that of the first micro-cylinders 751. Similarly, the area proportion of the second cylinder group G2 determines the second roughness factor ω2. The first roughness ω1 is different from the second roughness factor ω2 because the first micro-cylinders 751 and the second micro-cylinders 752 have different cross-sectional area, which forms a surface energy gradient on the top surface 710 a′.
  • In FIGS. 9A and 9B, the first cylinder group G1 and the second cylinder group G2 respectively include the first micro-cylinders 751 with less cross-sectional area and the second micro-cylinders 752 with larger cross-sectional area. However, the present invention is not limited thereto. Several micro-cylinders with the cross-sectional area gradually changing from the front end e1 to the rear end e2 can be formed by a laser beam on the top surface 710 a of the first substrate 730. As a result, the top surface 710 a of the channel has rough surface with different roughness factors, which forms a surface energy gradient. Compared to conventional method through MEMS technology, the variation of the surface energy gradient on the top surface 710 a of the first substrate 730 is formed by a laser beam, which is accurate and fast, and further lowers the manufacturing cost.
  • In the method of fabricating a bubble-type micro-pump disclosed in the above embodiments of the present invention, the variation of material, density, thickness or surface roughness is formed through laser or sputtering to form a surface energy gradient on the top surface in a bubble-generating section of the micro-channel. Furthermore, in the fabricating method disclosed in the embodiments, the first substrate can be formed through disc manufacturing process, which reduces manufacturing cost and increases production speed and yield rate. Moreover, the first substrate and the second substrate are preferably bonded to each other by pressure sensitive adhesive, so that the defective products can be re-fabricated and the costly second substrate can be recycled.
  • While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.

Claims (15)

What is claimed is:
1. A method of fabricating a bubble-type micro-pump, comprising:
providing a micro-channel having a top surface, a bottom surface and two side walls, the micro-channel comprising at least a bubble-generating section;
providing a bubble-generating unit in the bubble-generating section of the micro-channel, for generating a bubble in a liquid between a front end and a rear end of the bubble-generating section; and
applying a surface treatment to the top surface of the bubble-generating section to form a surface energy gradient on the top surface, so that a difference between a backfilling velocity at the front end and that at the rear end drives the liquid to flow toward the front end or the rear end;
wherein the surface energy gradient is formed by using a laser beam.
2. The method according to claim 1, wherein at least two regions with different surface energies are formed by laser technology to form the surface energy gradient on the top surface.
3. The method according to claim 2, wherein the step of forming the surface energy gradient on the top surface comprises:
forming a reflective layer on the top surface in the bubble-generating section;
forming a first film on the reflective layer after forming the reflective layer;
forming a second film on the first film after forming the first film;
heating a plurality of regions of the first film and the second film in the bubble-generating section by a laser beam, and the heated regions comprising complex of the first film and the second film, wherein the surface energy of the heated regions is different from that of the un-heated regions.
4. The method according to claim 3, wherein the first film and the second film are formed by sputtering.
5. The method according to claim 2, wherein the step of forming the surface energy gradient on the top surface comprises:
forming a reflective layer on the top surface in the bubble-generating section;
forming a mixed film on the reflective layer after the step of forming the reflective layer; and
heating a plurality of regions of the mixed film in the bubble-generating section by a laser beam, wherein the surface energy of the heated regions is different from that of the un-heated regions.
6. The method according to claim 5, wherein the mixed film comprises a pressure sensitive adhesive and a foaming agent, a plurality of foaming protruding parts are formed in the laser-heated regions, and the surface energy of the foaming protruding parts is different from that of the un-heated regions.
7. The method according to claim 5, wherein the mixed film comprises a pressure sensitive adhesive and a dye, a plurality of concaves are formed in the laser-heated regions, and the surface energy of the concaves is different from that of the un-heated regions.
8. The method according to claim 2, wherein the step of forming the surface energy gradient on the top surface comprises:
forming a plurality of micro-cylinders on the top surface by a laser beam, the variation of the cross-sectional area of the micro-cylinders causing varied surface roughness of the top surface for forming the surface energy gradient.
9. The method according to claim 8, wherein the step of forming a plurality of micro-cylinders on the top surface by a laser beam comprises:
forming a first cylinder group comprising a plurality of first micro-cylinders with the same cross-sectional area; and
forming a second cylinder group comprising a plurality of second micro-cylinders with the same cross-sectional area, wherein the cross-sectional area of the first micro-cylinders is different from that of the second micro-cylinders.
10. The method according to claim 9, wherein the step of forming a plurality of micro-cylinders on the top surface by a laser beam comprises forming a plurality of micro-cylinders with the cross-sectional area gradually increasing or decreasing from the front end to the rear end, which forms a surface energy gradient on the top surface of the bubble-generating section.
11. The method according to claim 1, wherein the step of providing the micro-channels comprises:
providing a first substrate and a second substrate, the first substrate comprising at least a recess having the bubble-generating section; and
attaching the first substrate and the second substrate, wherein the surface of the recess forms the top surface and the two walls of the micro-channel, and surface of the second substrate forms the bottom surface of the micro-channel.
12. The method according to claim 11, wherein the step of providing the bubble-generating unit comprises:
disposing a first electrode and a second electrode on the bottom surface in the bubble-generating section, the first electrode and the second electrode respectively adjacent to the front end and the rear end of the bubble-generating section.
13. The method according to claim 11, wherein the first substrate is manufactured by a disc manufacturing process.
14. The method according to claim 11, wherein the first substrate with the recess is manufactured by injection molding, pressure casting or etching.
15. The method according to claim 11, wherein the first substrate and the second substrate are attached by a pressure sensitive adhesive.
US13/859,779 2008-12-19 2013-04-10 Method of Fabricating Bubble-Type Micro-Pump Abandoned US20130220528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/859,779 US20130220528A1 (en) 2008-12-19 2013-04-10 Method of Fabricating Bubble-Type Micro-Pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW97149831 2008-12-19
TW97149831A TWI360517B (en) 2008-12-19 2008-12-19 Method of making bubble-type micro-pump
US12/610,736 US8500964B2 (en) 2008-12-19 2009-11-02 Method of fabricating bubble-type micro-pump
US13/859,779 US20130220528A1 (en) 2008-12-19 2013-04-10 Method of Fabricating Bubble-Type Micro-Pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/610,736 Division US8500964B2 (en) 2008-12-19 2009-11-02 Method of fabricating bubble-type micro-pump

Publications (1)

Publication Number Publication Date
US20130220528A1 true US20130220528A1 (en) 2013-08-29

Family

ID=42264458

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/610,736 Active 2031-12-28 US8500964B2 (en) 2008-12-19 2009-11-02 Method of fabricating bubble-type micro-pump
US13/859,779 Abandoned US20130220528A1 (en) 2008-12-19 2013-04-10 Method of Fabricating Bubble-Type Micro-Pump

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/610,736 Active 2031-12-28 US8500964B2 (en) 2008-12-19 2009-11-02 Method of fabricating bubble-type micro-pump

Country Status (2)

Country Link
US (2) US8500964B2 (en)
TW (1) TWI360517B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227583B2 (en) 2016-12-12 2019-03-12 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
US11156626B2 (en) 2016-12-30 2021-10-26 xCella Biosciences, Inc. Multi-stage sample recovery system
US11473081B2 (en) 2016-12-12 2022-10-18 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448413B (en) * 2011-09-07 2014-08-11 Ind Tech Res Inst Pneumatic micropump
WO2014165373A1 (en) * 2013-04-04 2014-10-09 Surnetics, Llc Microfluidic products with controlled fluid flow

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305018A (en) * 1990-08-16 1994-04-19 Hewlett-Packard Company Excimer laser-ablated components for inkjet printhead
US6143382A (en) * 1997-06-04 2000-11-07 Nippon Sheet Glass Co., Ltd. Glass substrate having fine holes
US20020063764A1 (en) * 2000-11-30 2002-05-30 Kneezel Gary A. Laser ablated filter
US6554406B1 (en) * 1998-12-07 2003-04-29 Fuji Xerox Co., Ltd. Inkjet recording head and method of producing the same
US20060092224A1 (en) * 2004-10-29 2006-05-04 Sung Gee-Young Nozzle plate, inkjet printhead with the same and method of manufacturing the same
US8419145B2 (en) * 2008-07-25 2013-04-16 Eastman Kodak Company Inkjet printhead and method of printing with multiple drop volumes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130098A (en) * 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US7004184B2 (en) * 2000-07-24 2006-02-28 The Reagents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
US6533951B1 (en) * 2000-07-27 2003-03-18 Eastman Kodak Company Method of manufacturing fluid pump
US20050189225A1 (en) * 2001-02-09 2005-09-01 Shaorong Liu Apparatus and method for small-volume fluid manipulation and transportation
WO2005012729A1 (en) * 2003-08-04 2005-02-10 Nec Corporation Diaphragm pump and cooling system with the diaphragm pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305018A (en) * 1990-08-16 1994-04-19 Hewlett-Packard Company Excimer laser-ablated components for inkjet printhead
US6143382A (en) * 1997-06-04 2000-11-07 Nippon Sheet Glass Co., Ltd. Glass substrate having fine holes
US6554406B1 (en) * 1998-12-07 2003-04-29 Fuji Xerox Co., Ltd. Inkjet recording head and method of producing the same
US20020063764A1 (en) * 2000-11-30 2002-05-30 Kneezel Gary A. Laser ablated filter
US20060092224A1 (en) * 2004-10-29 2006-05-04 Sung Gee-Young Nozzle plate, inkjet printhead with the same and method of manufacturing the same
US8419145B2 (en) * 2008-07-25 2013-04-16 Eastman Kodak Company Inkjet printhead and method of printing with multiple drop volumes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227583B2 (en) 2016-12-12 2019-03-12 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
US11085039B2 (en) 2016-12-12 2021-08-10 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
US11473081B2 (en) 2016-12-12 2022-10-18 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
US11156626B2 (en) 2016-12-30 2021-10-26 xCella Biosciences, Inc. Multi-stage sample recovery system

Also Published As

Publication number Publication date
TWI360517B (en) 2012-03-21
US20100155230A1 (en) 2010-06-24
TW201024205A (en) 2010-07-01
US8500964B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
US20130220528A1 (en) Method of Fabricating Bubble-Type Micro-Pump
CN102165076B (en) Method and system for manufacturing integrated fluidic chips
US7138032B2 (en) Methods of fabricating polymeric structures incorporating microscale fluidic elements
US8393356B2 (en) Device for controlling fluid motion into micro/nanochannels by means of surface acoustic waves
US20110272093A1 (en) Laminated microfluidic structures and method for making
US8679423B2 (en) Method for producing reconfigurable microchannels
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
CN110496657B (en) Microfluidic chip capable of forming liquid metal droplets and preparation method thereof
Li Fundamentals of microfluidics and lab on a chip for biological analysis and discovery
US20080186801A1 (en) Bubble micro-pump and two-way fluid-driving device, particle-sorting device, fluid-mixing device, ring-shaped fluid-mixing device and compound-type fluid-mixing device using the same
US20050045539A1 (en) Control device and method for controlling liquid droplets
Metwally et al. Roll manufacturing of flexible microfluidic devices in thin PMMA and COC foils by embossing and lamination
He et al. Automating fluid delivery in a capillary microfluidic device using low-voltage electrowetting valves
CN106955803B (en) Negative flow resistance oscillator and construction method
CN102417157A (en) Driving and control method of liquid crystal microfluid used for MEMS
Wang et al. Electro-hydro-dynamic (EHD) micropumps with electrode protection by parylene and gelatin
US7517043B2 (en) Fluidic structures
JP2006136990A (en) Microfluid device having valve
Li et al. Texture-structure-based liquid metal filling for blind-end microchannels and its application on multi-layer chips
TWI427360B (en) Liquid crystal device, display and display system
Yunas et al. Investigation of simple process technology for the fabrication of valveless micropumps
CN114887673B (en) Integrated flow channel digital micro-fluidic chip and preparation method and application thereof
Jahanshahi Development of a stretchable platform for the fabrication of biocompatible microsystems
JP2004045055A (en) Micropipette
TWI310021B (en) Bubble-type micro-pump and two-way fluid driving device, particles sorting device, fluids mixing device, ring-shaped fluids mixing device and compound-type fluids mixing device using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENQ MATERIALS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PENG, CHEN;REEL/FRAME:030183/0916

Effective date: 20091026

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION