US20130204513A1 - Protect information stored in ecu from unintentional writing and overwriting - Google Patents

Protect information stored in ecu from unintentional writing and overwriting Download PDF

Info

Publication number
US20130204513A1
US20130204513A1 US13/368,443 US201213368443A US2013204513A1 US 20130204513 A1 US20130204513 A1 US 20130204513A1 US 201213368443 A US201213368443 A US 201213368443A US 2013204513 A1 US2013204513 A1 US 2013204513A1
Authority
US
United States
Prior art keywords
data
ecu
event data
electronic tool
locked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/368,443
Inventor
Ananda PANDY
Mark A. Bennett
Brendan J. Chan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Commercial Vehicle Systems LLC
Original Assignee
Bendix Commercial Vehicle Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Commercial Vehicle Systems LLC filed Critical Bendix Commercial Vehicle Systems LLC
Priority to US13/368,443 priority Critical patent/US20130204513A1/en
Assigned to BENDIX COMMERCIAL VEHICLE SYSTEMS LLC reassignment BENDIX COMMERCIAL VEHICLE SYSTEMS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, MARK A., CHAN, BRENDAN J., PANDY, ANANDA
Publication of US20130204513A1 publication Critical patent/US20130204513A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1416Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights
    • G06F12/1425Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights the protection being physical, e.g. cell, word, block
    • G06F12/1441Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights the protection being physical, e.g. cell, word, block for a range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D28/00Programme-control of engines
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C2205/00Indexing scheme relating to group G07C5/00
    • G07C2205/02Indexing scheme relating to group G07C5/00 using a vehicle scan tool

Abstract

Systems and methods that facilitate protecting vehicle impact event data from overwrite include an electronic control unit (ECU) having a processor that records event data related to vehicle operation, a memory that stores the event data, and an electronic tool that communicates with the ECU and comprises a data locking module that sends a data lock signal to the ECU to lock the stored event data as locked data such that the stored event data cannot be overwritten. The ECU, in response to the data lock signal, stores the event data as locked data in a dedicated portion of the memory to preserve the event data for subsequent review.

Description

    BACKGROUND
  • The present application finds particular application in vehicle data preservation, particularly involving event data surrounding an event of interest (e.g. vehicle accident, deceleration above a threshold, vehicle speed over a threshold, etc.). However, it will be appreciated that the described technique may also find application in other data recording systems, other data preservation systems, or other vehicle safety systems.
  • Conventional vehicle data recording systems do not protect event data recorded at or near the time of a vehicle crash. One data recording approach locks event data during field alteration of a vehicle electronic control unit (ECU). A separate authorized tool is used to update the ECU if event data is stored in the programmable memory in order to prevent the event data from being overwritten. Another conventional data recording approach relates to a video recording unit on a train. The unit continuously records video data until the emergency brake is actuated and the train whistle blows. At that time the video recording stops after a predetermined time period and access to the video information is restricted.
  • Another classical approach to vehicle data recording relates to a vehicle data recording system that collects vehicle information, including video. The recording device is programmed to continuously record data until triggered by an event, such as sudden acceleration. The vehicle status surrounding the sudden acceleration can be analyzed later. The system records new information in a separate re-writable portion of memory. A competent authority must remove the recording device in order to read the data.
  • The present innovation provides new and improved vehicle event data locking and unlocking systems and methods, which overcome the above-referenced problems and others.
  • SUMMARY
  • In accordance with one aspect, a system that facilitates protecting vehicle impact event data from overwrite comprises an electronic control unit (ECU) having a processor that records event data related to vehicle operation, and a memory that stores the event data. The system further comprises a electronic tool that communicates with the ECU and comprises a data locking module that sends a data lock signal to the ECU to lock the stored event data as locked data such that the stored event data cannot be overwritten. The ECU, in response to the data lock signal, stores the event data as locked data in a dedicated portion of the memory to preserve the event data for subsequent review.
  • In accordance with another aspect, an ECU that facilitates protecting vehicle impact event data from overwrite comprises a processor that records event data related to vehicle operation, and a memory that stores the event data. The ECU, in response to an authorized data lock signal received from an electronic tool, stores the event data as locked data in a dedicated portion of the memory that cannot be overwritten to preserve the event data for subsequent review.
  • In accordance with another aspect, an electronic tool that facilitates protecting vehicle impact event data from overwrite comprises a processor that communicates with an ECU in a vehicle, wherein the ECU stores event data related to vehicle operating conditions. The electronic tool further comprises a data locking module that sends a data lock signal to the ECU to lock stored event data as locked data such that the stored event data cannot be overwritten, and a data unlocking module that sends a data unlock signal to the ECU to unlock the locked event data for analysis. Additionally, the electronic tool comprises an authorization module that verifies user-entered authorization information prior to sending one of the data lock signal and the data unlock signal to the ECU.
  • In accordance with another aspect, a method of protecting vehicle impact event data from overwrite comprises recording, in an ECU, event data related to vehicle operation, and receiving an authorized data lock signal from an electronic tool. The method further comprises, in response to the authorized data lock signal, storing the event data as locked data in a dedicated portion of a vehicle ECU memory that cannot be overwritten, in order to preserve the event data for subsequent review.
  • According to another aspect, an apparatus for protecting vehicle impact event data from overwrite comprises recording means in an ECU, for recording event data related to vehicle operation, and receiving means for receiving an authorized data lock signal from an electronic tool. The apparatus further comprises storing means for storing, in response to the authorized data lock signal, the event data as locked data in a dedicated portion of a vehicle ECU memory that cannot be overwritten, in order to preserve the event data for subsequent review.
  • Still further advantages of the subject innovation will be appreciated by those of ordinary skill in the art upon reading and understanding the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The innovation may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating various aspects and are not to be construed as limiting the invention.
  • FIG. 1 illustrates a system that facilitates locking an anti-lock braking system (ABS) electronic control unit (ECU) event memory via a serial bus.
  • FIG. 2 illustrates a method for preserving event data at the time of a vehicle event of interest
  • FIG. 3 illustrates a method for locking event data associated with a vehicle event of interest, in accordance with one or more aspects described herein.
  • FIG. 4 illustrates a method for unlocking event data associated with a vehicle event of interest, in accordance with one or more aspects described herein.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates a system 10 that facilitates locking an electronic control unit (ECU) event memory via a serial bus. The electronic control unit can be an anti-lock braking system (ABS) ECU, an Electronic Stability Control (ESC) ECU, an engine ECU or other ECU that communicates over the vehicle serial bus and has the functional capability to access the desired information and store for later use. Alternatively, an electronic data storage device, separate from an ECU and connected independently to the vehicle serial bus, may be used.
  • With conventional ABS ECUs, it is difficult to determine the sequence of faults that occur during an event of interest from the stored fault data. There may be one or more faults that occur after an event of interest but that are stored in the ECU as current active faults. The described systems and methods address the above problem by providing a device that communicates with the ECU and requests the ECU to respond by locking its current data and entering a “data vault mode.” The data in the ECU can then be extracted by trained personnel, after which the ECU is released from vault mode. This process ensures that the fault data is protected for subsequent analysis and/or evidentiary use. In one example, upon arriving at the scene of an accident, a police officer or the like connects to a diagnostic port on the vehicle with a device to communicate a message or command that puts the ECU in the vault mode.
  • Accordingly, the system 10 comprises an electronic tool 12 that can be coupled to a vehicle ECU 14 via a serial bus 16. The ECU comprises a processor 18 that executes, and a memory 20 that persistently stores, computer-executable instructions for performing the various methods, functions, protocols, procedures, etc., described herein. The memory 20 may include volatile, non-volatile memory, solid state memory, flash memory, random-access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electronic erasable programmable read-only memory (EEPROM), variants of the foregoing memory types, combinations thereof, and/or any other type(s) of memory suitable for providing the described functionality and/or storing computer-executable instructions for execution by the processor 18. Additionally, “module,” as used herein denotes a set of computer-executable instructions (e.g., a routine, sub-routine, program, application, or the like) that is persistently stored on the computer-readable medium or memory and executed by the processor to perform the various methods, techniques, functions, etc., described herein.
  • The memory 20 stores an event data recording module 21 that is executed by the processor 18 to store event data 22 (i.e., system fault data or the like). The data storage capacity in some systems may be limited, such that the stored event data 22 may comprise a predetermined time period worth of data (e.g., a week, a month, etc.) after which event data is overwritten in a first-in-first-out manner. For example, if a vehicle in which the ECU is employed experiences an event of particular interest (e.g. a vehicle maneuver, location, or operator identity of particular predefined interest) to safety researchers, enforcement agencies, logistics planners, the vehicle owner or operator, it is desirable to preserve that data for subsequent analysis by only that party whish is interested in or has authorization to access it. Accordingly, when an authorized party wishes to query the stored data, the electronic tool is put into communication with the data storage device (e.g. ECU) via a wired or wireless connection. In another example, if a vehicle in which the ECU is employed is in an accident, it is desirable to preserve the most recent event data for subsequent analysis (e.g., to determine the cause of the accident, for use as evidence, etc.). Accordingly, when a law enforcement or public safety personnel (e.g., a paramedic or fireman, etc.) arrives at the scene of the accident, the electronic tool is coupled to the ECU (e.g., via a wired or wireless connection).
  • The electronic tool comprises a processor 24 that executes, and a memory 26 that persistently stores, computer-executable instructions for performing the various methods, functions, protocols, procedures, etc., described herein. The memory 26 may include volatile, non-volatile memory, solid state memory, flash memory, random-access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electronic erasable programmable read-only memory (EEPROM), variants of the foregoing memory types, combinations thereof, and/or any other type(s) of memory suitable for providing the described functionality and/or storing computer-executable instructions for execution by the processor 24.
  • Once coupled to the ECU 14, the processor 24 executes a data locking module 28 that transmits a data lock command to the ECU. The data lock command can be transmitted over the serial bus 16 or can be transmitted wirelessly. Upon receiving the data lock command, the ECU enters the vault mode and stores the event data as locked data 30. In one embodiment, the locked data 30 is stored in the memory location where it was originally recorded. In another embodiment, the processor executes a data partitioning module 32 that moves the locked data to a separate memory location that is dedicated to locked data storage and cannot be overwritten. Once locked, the locked data 32 cannot be overwritten or unlocked until an authorized operator unlocks the locked data via an electronic tool 12. It will be understood that the ECU 14 is still functional while the event data is locked, but that the locked event data cannot be overwritten and is preserved.
  • Partitioning is useful because events of interest are likely to have varying levels of interest to varying parties with varying levels of need and/or authority to access the stored data. For instance, partitioning facilitates managing the stored data so that an authorized party has access to data in his area of interest, need, concern, and/or authority. Access authorizations can be managed via the electronic tool (or a version of a PC-based tool, such as ACOM® from Bendix Commercial Vehicle Systems LLC″). Future events of interest can continue to be stored, while other events may not be stored. Events of only questionable or minimal interest can be discarded after a period of time or upon being overwritten by events of greater interest. For example, the ECU memory can be partitioned into sections such as a National Highway Transportation Safety Association and/or National Transportation Safety Board section that is accessible for research purposes; a Law Enforcement and/or Legal section that is accessible for evidentiary purposes; a Manufacturer section that is accessible for proprietary data for research and development purposes; etc. The data storage and retrieval is managed through partitioning to mitigate unauthorized access to the data.
  • The electronic tool 12 comprises a user interface 34 via which the operator is presented with selectable options to initiate the data lock procedure. Additionally, when an operator desires to unlock the locked data 30 for analysis, the operator initiates a data unlocking program or module 36 that is executed by the processor 24 to transmit a data unlock command to the ECU. Once unlocked the unlocked event data 38 is stored to the electronic tool 12 for analysis and/or transmission to another storage device.
  • According to one embodiment, the memory 26 includes an authorization module 40 that is executed by the processor 24 when the electronic tool is coupled to the ECU to verify that the operator is authorized to lock and/or unlock the data. This feature ensures that locked data is not tampered with, and that data locking is performed by an authorized operator (e.g., a law enforcement officer or other public employee). For instance, upon arriving at the scene of an accident and coupling the electronic tool to the ECU of the vehicle, an officer is prompted to enter an authorization code or some other identification information. The electronic tool comprises a wireless communication module 42 (e.g., a transceiver that provides wireless communication functionality to the electronic tool) for communicating with the ECU and/or for communicating with a wireless network serving the area in which the accident occurred. The electronic tool further comprises a cellular communication module 44 (e.g., a transceiver that provides cellular communication functionality to the electronic tool) for communicating with a cellular network serving the area in which the accident occurred. Upon entry of the authorization code or identification information, the electronic tool communicates with a remote server (not shown) to verify the officer's authority to lock the event data. Similarly, when the event data is to be unlocked, the unlocking party enters an authorization code or other identification information, which the electronic tool verifies before transmitting the unlock data command to the ECU.
  • In another embodiment, the electronic tool 12 comprises a GPS module or system 46 that acquires location information (e.g., coordinates) of the electronic tool. The electronic tool processor 24 appends location information to the locked event data 30 for verification and/or authentication. Such information can he useful if or when the event data is submitted as evidence (e.g., in a legal proceeding or the like related to an accident), for example to verify that the event data corresponds to the accident being litigated or otherwise analyzed. In a related embodiment, the electronic tool processor 24 can obtain current weather condition information (e.g., via the wireless or cellular communication modules), which can also be appended to the locked data. This information, in addition to the GPS and/or timestamp data appended to the locked data can further aid in subsequent analysis of the data. Additionally or alternatively, the ECU 14 includes a GPS module 50 that functions similarly or identically to the GPS 46 of the electronic tool 12.
  • According to an example, a highway patrol officer at an accident scene employs electronic tool 12 to communicate to the vehicle, ECU 14, brake controllers, or any other data recorder on the vehicle, to broadcast a message to cause the ECU to enter vault mode to protect the data and fault information. In one embodiment the electronic tool is a RDU™ Remote Diagnostic Unit, such as is manufactured by Bendix Commercial Vehicle Systems LLC or a RP120 unit such as the Brake Link® tool manufactured by Nexiq™ Technologies.
  • In another embodiment, the system 10 comprises a vehicle sensor 48, such as an accelerometer, which indicates a vehicle state, such as deceleration. If the sensor exceeds a predetermined threshold, which triggers an event of interest, the ECU records the data in the partitioned section for a predetermined time period. The authorities can use the electronic tool to collect this information.
  • In another embodiment, the processor 18 of the ECU 14 retrieves current weather information for the location of the vehicle (e.g., periodically or continuously) as determined by the GPS module. For instance, the processor can retrieve local weather conditions via one or more of the wireless communication module and the cellular communication module. Weather condition information (e.g., raining, snowing, temperature, wet roads, icy conditions, etc.) at the time of a perceived vehicle crash can be appended to the stored event data. Such information can be useful in subsequent event data analysis. In another embodiment, the electronic tool processor 24 performs the above-described weather information retrieval and appending functions.
  • FIGS. 2-4 illustrate methods such as may be performed by the system of FIG. 1. FIG. 2 illustrates a method for preserving event data at the time of a vehicle accident or the like such as is performed by the ECU 14 and/or the processor 18. At 100, vehicle systems are monitored for fault conditions. At 102, a determination is made regarding whether a trigger event (e.g., an ABS event, a braking event, an acceleration event, an impact event, or some other event that is outside of predetermined tolerances) is detected. If no trigger event is detected, then the method reverts to 100 for continued systems monitoring. If a trigger event is detected at 102, then at 104 event data is recorded for a predetermined time period. In one embodiment, event data that occurred before the trigger event is recorded, e.g. from a data buffer or other memory (not shown), in a portion of the memory dedicated or reserved for event data. For instance, upon detection of the trigger event, the ECU can store event data for 60 seconds prior to the trigger event to 5 minutes after the event (or some other predetermined time period) to dedicated event data memory. At 106, the ECU receives a data lock command from the electronic tool. At 108, the ECU stores the recorded event data in a “locked” portion of the ECU memory to prevent the data from being overwritten (e.g., by fault codes the ECU may detect when the vehicle is towed or the like).
  • FIG. 3 illustrates a method for locking event data associated with a vehicle accident or impact, in accordance with one or more aspects described herein. At 130, a data retrieval tool such as the electronic tool 12 of FIG. 1 is coupled to the vehicle's ECU. At 132, user authentication is requested. For instance, a user of the electronic tool is prompted to enter an authentication code or other identification information (e.g., digital fingerprint, retina scan, voice recognition data, or any other suitable manner of identifying the user as being authorized to access the ECU). At 134, a determination is made regarding whether the user is authorized to access the ECU. This determination may be made by comparing the user's input authentication or identification information to a remote database (not shown) via a cellular or wireless communication link. If the user is not authorized to access the ECU, then at 136, access to the event data in the ECU is denied. The method then reverts to 132 where user authentication is requested.
  • If the user is authorized to access the ECU as determined at 134, then at 138, access is granted and the event data is locked and stored in a protected portion of the ECU memory where it cannot be overwritten. Additionally or alternatively, the event data is locked and stored in a protected memory of the electronic tool.
  • FIG. 4 illustrates a method for unlocking event data associated with a vehicle accident or impact, in accordance with one or more aspects described herein. At 150, a data retrieval tool such as the electronic tool 12 of FIG. 1 is coupled to the vehicle's ECU. At 152, user authentication is requested. For instance, a user of the electronic tool is prompted to enter an authentication code or other identification information (e.g., digital fingerprint, retina scan, voice recognition data, or any other suitable manner of identifying the user as being authorized to access the ECU). At 154, a determination is made regarding whether the user is authorized to access the ECU. This determination may be made by comparing the user's input authentication or identification information to a remote database (not shown) via a cellular or wireless communication link. If the user is not authorized to access the ECU, then at 156, access to the locked event data in the ECU is denied. The method then reverts to 152 where user authentication is requested.
  • If the user is authorized to access the ECU as determined at 154, then at 158, access is granted and the locked event data is unlocked and retrieved by the retrieval tool. At 160, the unlocked event data is stored in a protected memory of the retrieval tool.
  • The innovation has been described with reference to several embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the innovation be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (24)

Having thus described the preferred embodiments, the invention is now claimed to be:
1. A system that facilitates protecting vehicle event data from overwrite, comprising:
an electronic control unit (ECU) having a processor that records event data related to vehicle operation;
a memory that stores the event data; and
an electronic tool that communicates with the ECU and comprises a data locking module that sends a data lock signal to the ECU to lock the stored event data as locked data such that the stored event data cannot be overwritten;
wherein the ECU, in response to the data lock signal, stores the event data as locked data in a dedicated portion of the memory to preserve the event data for subsequent review.
2. The system according to claim 1, further comprising a serial bus via which the electronic tool communicates with the ECU.
3. The system according to claim 1, wherein the electronic tool communicates with the ECU wirelessly.
4. The system according to claim 1, wherein the electronic tool comprises a data unlocking module that sends a signal to the ECU to unlock locked data.
5. The system according to claim 1, wherein the electronic tool comprises an authentication module that prompts a user to enter authentication information, verifies the authentication information, and permits the user to at least one of lock the event data and unlock the locked data.
6. The system according to claim 1, wherein the electronic tool comprises:
a global positioning system that retrieves coordinate information describing the location of the electronic tool; and
a processor that appends the coordinate information to the event data whenever the event data is locked or unlocked.
7. The system according to claim 1, wherein the processor retrieves local weather condition information for the location of the vehicle and appends weather condition information to the event data stored by the ECU.
8. An electronic control unit (ECU) that facilitates protecting vehicle event data from overwrite, comprising:
a processor that records event data related to vehicle operation;
a memory that stores the event data; and
wherein the ECU, in response to an authorized data lock signal received from an electronic tool, stores the event data as locked data in a dedicated portion of the memory that cannot be overwritten to preserve the event data for subsequent review.
9. The ECU according to claim 8, wherein the ECU communicates with the electronic tool wirelessly.
10. The ECU according to claim 8, wherein the ECU subsequently receives a data unlock signal from the electronic tool, in response to which the ECU unlocks the locked data.
11. The ECU according to claim 8, wherein the ECU comprises:
a global positioning system that retrieves coordinate information describing the location of the electronic tool; and
a processor that appends the coordinate information to the event data whenever the event data is locked or unlocked.
12. The ECU according to claim 8, wherein the processor retrieves local weather condition information for the location of the vehicle and appends weather condition information to the event data stored by the ECU.
13. A electronic tool that facilitates protecting vehicle event data from overwrite, comprising:
a processor that communicates with an electronic control unit in a vehicle, wherein the ECU stores event data related to vehicle operating conditions;
a data locking module that sends a data lock signal to the ECU to lock stored event data as locked data such that the stored event data cannot be overwritten; and
a data unlocking module that sends a data unlock signal to the ECU to unlock the locked event data for analysis; and
an authorization module that verifies user-entered authorization information prior to sending one of the data lock signal and the data unlock signal to the ECU.
14. The electronic tool according to claim 13, further comprising a serial bus via which the electronic tool communicates with the ECU.
15. The electronic tool according to claim 13, wherein the electronic tool communicates with the ECU wirelessly.
16. The electronic tool according to claim 13, wherein the electronic tool comprises:
a global positioning system that retrieves coordinate information describing the location of the electronic tool; and
a processor that appends the coordinate information to the event data whenever the event data is locked or unlocked.
17. The electronic tool according to claim 13, wherein the processor retrieves local weather condition information for the location of the vehicle and appends weather condition information to the event data stored by the ECU when the event data is locked.
18. A method of protecting vehicle event data from overwrite, comprising:
recording, in an electronic control unit, event data related to vehicle operation;
receiving an authorized data lock signal from an electronic tool; and
in response to the authorized data lock signal, storing the event data as locked data in a dedicated portion of a vehicle ECU memory that cannot be overwritten, in order to preserve the event data for subsequent review.
19. The method according to claim 18, further comprising receiving the authorized data lock signal from the electronic tool via a wireless connection.
20. The method according to claim 18, further comprising receiving the authorized data lock signal from the electronic tool via a serial bus connection.
21. The method according to claim 18, further comprising receiving a data unlock signal from the electronic tool, and unlocking the locked data in response to in response to the data unlock signal.
22. The method according to claim 18, further comprising:
retrieving coordinate information describing the location of at least one of the electronic tool and the ECU; and
appending the coordinate information to the event data whenever the event data is locked or unlocked.
23. The method according to claim 18, further comprising:
retrieving local weather condition information for the location of at least one of the vehicle and the electronic tool; and
appending the weather condition information to the event data stored by the ECU.
24. An apparatus for protecting vehicle event data from overwrite, comprising:
recording means, in a data storage device, for recording event data related to vehicle operation;
receiving means for receiving an authorized data lock signal from an electronic tool; and
storing means for storing, in response to the authorized data lock signal, the event data as locked data in a dedicated portion of a the data storage device memory that cannot be overwritten, in order to preserve the event data for subsequent review.
US13/368,443 2012-02-08 2012-02-08 Protect information stored in ecu from unintentional writing and overwriting Abandoned US20130204513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/368,443 US20130204513A1 (en) 2012-02-08 2012-02-08 Protect information stored in ecu from unintentional writing and overwriting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/368,443 US20130204513A1 (en) 2012-02-08 2012-02-08 Protect information stored in ecu from unintentional writing and overwriting
US15/095,497 US10275366B2 (en) 2012-02-08 2016-04-11 Protect information stored in ECU from unintentional writing and overwriting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/095,497 Continuation US10275366B2 (en) 2012-02-08 2016-04-11 Protect information stored in ECU from unintentional writing and overwriting

Publications (1)

Publication Number Publication Date
US20130204513A1 true US20130204513A1 (en) 2013-08-08

Family

ID=48903637

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/368,443 Abandoned US20130204513A1 (en) 2012-02-08 2012-02-08 Protect information stored in ecu from unintentional writing and overwriting
US15/095,497 Active 2032-06-27 US10275366B2 (en) 2012-02-08 2016-04-11 Protect information stored in ECU from unintentional writing and overwriting

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/095,497 Active 2032-06-27 US10275366B2 (en) 2012-02-08 2016-04-11 Protect information stored in ECU from unintentional writing and overwriting

Country Status (1)

Country Link
US (2) US20130204513A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140317729A1 (en) * 2012-02-20 2014-10-23 Denso Corporation Data communication authentication system for vehicle gateway apparatus for vehicle data communication system for vehicle and data communication apparatus for vehicle
US20150289121A1 (en) * 2014-04-03 2015-10-08 Comcast Cable Communications, Llc Emergency Information Delivery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024925A (en) * 2017-05-25 2017-08-08 奇瑞汽车股份有限公司 A kind of automobile ECU controller writes with a brush dipped in Chinese ink system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193347A1 (en) * 2003-03-26 2004-09-30 Fujitsu Ten Limited Vehicle control apparatus, vehicle control method, and computer program
US20080140281A1 (en) * 2006-10-25 2008-06-12 Idsc Holdings, Llc Automatic system and method for vehicle diagnostic data retrieval using multiple data sources
US20080195271A1 (en) * 2007-02-12 2008-08-14 Spx Corporation Scan tool with integrated global positioning system
US20090235019A1 (en) * 2008-03-12 2009-09-17 Gm Global Technology Operations, Inc. Securing safety-critical variables
US20100042288A1 (en) * 2008-08-14 2010-02-18 Edward Lipscomb Docked/Undocked Vehicle Communication Interface Module
US20120166038A1 (en) * 2010-12-24 2012-06-28 Denso Corporation Apparatus for recording vehicular data, controller for recording vehicular data, and vehicular data recording system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523948A (en) * 1990-09-06 1996-06-04 Adrain; John B. Apparatus and method for modifying control of an originally manufactured engine control module
DE4435705A1 (en) * 1994-10-06 1996-04-11 Manfred Roessle Method and device for limiting the speed of a motor vehicle
JP3491419B2 (en) * 1995-12-04 2004-01-26 株式会社デンソー Electronic control unit
US6076026A (en) 1997-09-30 2000-06-13 Motorola, Inc. Method and device for vehicle control events data recording and securing
US6950013B2 (en) 1998-06-01 2005-09-27 Robert Jeffery Scaman Incident recording secure database
US6088635A (en) 1998-09-28 2000-07-11 Roadtrac, Llc Railroad vehicle accident video recorder
US6246933B1 (en) 1999-11-04 2001-06-12 BAGUé ADOLFO VAEZA Traffic accident data recorder and traffic accident reproduction system and method
US6298290B1 (en) 1999-12-30 2001-10-02 Niles Parts Co., Ltd. Memory apparatus for vehicle information data
JP3954271B2 (en) * 2000-03-16 2007-08-08 本田技研工業株式会社 Memory rewriting system for vehicle control device
US7743055B2 (en) * 2000-03-28 2010-06-22 E.I. Du Pont De Nemours And Company Digital display of color and appearance and the use thereof
DE60011945T2 (en) * 2000-04-24 2005-08-25 Video Domain Technologies Ltd. Monitoring system with camera
US6804752B2 (en) 2001-04-02 2004-10-12 Delphi Technologies, Inc. Event data protection method for a flash programmable microprocessor-based control module
US6937926B2 (en) * 2002-09-27 2005-08-30 Spx Corporation Multi-application data display
US8255108B2 (en) * 2005-08-31 2012-08-28 Spx Corporation Dynamic file system creation for scan tools
US7593034B2 (en) * 2006-08-31 2009-09-22 Dekeyser Paul Loop recording with book marking
US8015433B2 (en) * 2006-09-13 2011-09-06 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with nonvolatile memory for storage of failure-related data
JP4325691B2 (en) * 2007-03-22 2009-09-02 株式会社デンソー Memory readout system for vehicle control apparatus
JP4404147B2 (en) * 2008-01-23 2010-01-27 株式会社デンソー In-vehicle electronic control device and information updating method for in-vehicle electronic control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193347A1 (en) * 2003-03-26 2004-09-30 Fujitsu Ten Limited Vehicle control apparatus, vehicle control method, and computer program
US20080140281A1 (en) * 2006-10-25 2008-06-12 Idsc Holdings, Llc Automatic system and method for vehicle diagnostic data retrieval using multiple data sources
US20080195271A1 (en) * 2007-02-12 2008-08-14 Spx Corporation Scan tool with integrated global positioning system
US20090235019A1 (en) * 2008-03-12 2009-09-17 Gm Global Technology Operations, Inc. Securing safety-critical variables
US20100042288A1 (en) * 2008-08-14 2010-02-18 Edward Lipscomb Docked/Undocked Vehicle Communication Interface Module
US20120166038A1 (en) * 2010-12-24 2012-06-28 Denso Corporation Apparatus for recording vehicular data, controller for recording vehicular data, and vehicular data recording system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140317729A1 (en) * 2012-02-20 2014-10-23 Denso Corporation Data communication authentication system for vehicle gateway apparatus for vehicle data communication system for vehicle and data communication apparatus for vehicle
US9489544B2 (en) * 2012-02-20 2016-11-08 Denso Corporation Data communication authentication system for vehicle gateway apparatus for vehicle data communication system for vehicle and data communication apparatus for vehicle
US20150289121A1 (en) * 2014-04-03 2015-10-08 Comcast Cable Communications, Llc Emergency Information Delivery
US9877177B2 (en) * 2014-04-03 2018-01-23 Comcast Cable Communications, Llc Emergency information delivery
US10285036B2 (en) * 2014-04-03 2019-05-07 Comcast Cable Communications, Llc Emergency information delivery
US20190215675A1 (en) * 2014-04-03 2019-07-11 Comcast Cable Communications, Llc Emergency Information Delivery

Also Published As

Publication number Publication date
US10275366B2 (en) 2019-04-30
US20160224476A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6148296B2 (en) Vehicle communication
US20170032317A1 (en) Cargo tracking and monitoring system
US10127810B2 (en) Vehicle safety and driver condition monitoring, and geographic information based road safety systems
EP3049761B1 (en) Dynamic uploading protocol
US9710983B2 (en) Method and system for authenticating vehicle equipped with passive keyless system
ES2680583T3 (en) Saving of bandwidth determined by server in the transmission of events
EP3007020B1 (en) Internet of things automotive intelligent control panel and internet of things automotive intelligent management system
US10471828B2 (en) Vehicle exception event management systems
US9824064B2 (en) System and method for use of pattern recognition in assessing or monitoring vehicle status or operator driving behavior
CN104240437B (en) Method and apparatus for detecting and reporting vehicle operators injury
US20170200333A1 (en) System and method to detect execution of driving maneuvers
US9245391B2 (en) Driver risk assessment system and method employing automated driver log
EP2830023B1 (en) Managing the camera acquiring interior data
EP2530666B1 (en) Detection of traffic violations
US20140129050A1 (en) Method For Granting Permission to Access a Transport Network
US8749350B2 (en) Method of processing vehicle crash data
US20150112542A1 (en) Transportation event recorder for vehicle
EP1706849B1 (en) System, method and apparatus for collecting telematics and sensor information in a delivery vehicle
US7853376B2 (en) Vehicle running-data recording device capable of recording moving tracks and environmental audio/video data
RU2621505C2 (en) Telematics on-board device for vehicles
US10388080B2 (en) Automobile monitoring for operation analysis
KR100876752B1 (en) Apparatus and method for automated transfer of collision information
US7348895B2 (en) Advanced automobile accident detection, data recordation and reporting system
US9792740B2 (en) Triggering a specialized data collection mode
US8600604B2 (en) Data integrity verification device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENDIX COMMERCIAL VEHICLE SYSTEMS LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANDY, ANANDA;BENNETT, MARK A.;CHAN, BRENDAN J.;SIGNING DATES FROM 20120111 TO 20120113;REEL/FRAME:027669/0538

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION