US20130191743A1 - Method and apparatus for controlling volume - Google Patents

Method and apparatus for controlling volume Download PDF

Info

Publication number
US20130191743A1
US20130191743A1 US13/560,903 US201213560903A US2013191743A1 US 20130191743 A1 US20130191743 A1 US 20130191743A1 US 201213560903 A US201213560903 A US 201213560903A US 2013191743 A1 US2013191743 A1 US 2013191743A1
Authority
US
United States
Prior art keywords
line
volume
volume level
audio track
timeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/560,903
Inventor
Glenn Reid
James Brasure
Original Assignee
Glenn Reid
James Brasure
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/337,925 priority Critical patent/US7319764B1/en
Priority to US11/949,764 priority patent/US8265300B2/en
Application filed by Glenn Reid, James Brasure filed Critical Glenn Reid
Priority to US13/560,903 priority patent/US20130191743A1/en
Publication of US20130191743A1 publication Critical patent/US20130191743A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders, dials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00

Abstract

Some embodiments of the invention provide a method for controlling the volume of an audio track. This method represents the volume of an audio track with a graph. This graph is defined along two axes, with one axis representing time and the other representing the volume level. A user can adjust the graph at different instances in time in order to change the volume level in the audio track at these instances. Different embodiments use different types of graphs to represent volume. For instance, some embodiments use a deformable line bar.

Description

    FIELD OF THE INVENTION
  • The invention is directed towards method and apparatus for controlling volume.
  • BACKGROUND OF THE INVENTION
  • Controlling volume is often an important aspect of creating multimedia content. This is especially the case when several tracks of audio are mixed to create the content. Controlling the volume of several audio tracks, however, often requires expensive equipment. Less expensive equipment often does not provide sufficient control over the volume level. In addition, the prior art does not provide a visual and intuitive technique for controlling volume. Therefore, there is a need for a simple method that controls the volume of an audio track in a visual and intuitive manner.
  • SUMMARY OF THE INVENTION
  • Some embodiments of the invention provide a method for controlling the volume of an audio track. This method represents the volume of an audio track with a graph. This graph is defined along two axes, with one axis representing time and the other representing the volume level. A user can adjust the graph at different instances in time in order to change the volume level in the audio track at these instances. Different embodiments use different types of graphs to represent volume. For instance, some embodiments use a deformable line bar.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
  • FIG. 1 illustrates a deformable line bar of some embodiments of the invention.
  • FIG. 2 illustrates a deformation of the volume-control bar of FIG. 1.
  • FIGS. 3 and 4 illustrate a click-and-drag operation that results in the deformation illustrated in FIG. 2.
  • FIG. 5 illustrates an example where the user drags a duration-control knob associated with a deformity in the volume-control bar.
  • FIG. 6 illustrates an example of moving a deformity in the volume-control bar left or right along the timeline by dragging a volume-control knob associated with this deformity.
  • FIG. 7 illustrates an example of moving the volume-control bar up or down along a volume-level axis in order to change the volume-level specified by a deformity in the volume-control bar.
  • FIG. 8 illustrates the attributes of a volume marker in some embodiments.
  • FIG. 9A illustrates a process that creates a volume marker.
  • FIG. 9B illustrates an example of performing a click-and-drag operation on a portion of a previously defined deformity along the volume-control bar.
  • FIG. 10 illustrates an example of drawing a dashed line to assist in the vertical movement of a volume-control knob.
  • FIG. 11 illustrates a process for modifying a volume marker by performing a click-and-drag operation on the marker's volume-control knob.
  • FIG. 12 illustrates a process for modifying a volume marker by performing a click-and-drag operation on the marker's duration-control knob.
  • FIGS. 13, 14, and 15 illustrate how some embodiments use the volume markers specified along a volume bar to define the volume level of an audio track.
  • FIG. 16 illustrates an example where the invention is useful in mixing two audio tracks.
  • FIG. 17 illustrates a computer system with which one embodiment of the invention is implemented.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following description, numerous details are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention may be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.
  • Some embodiments of the invention provide a method for controlling the volume of an audio track. The audio track can be a standalone track, or it can be associated with, or a part of, a visual presentation (such as a slide show, a movie, an animation, etc.). This method represents the volume of an audio track with a graph. This graph is defined along two axes, with one axis representing time and the other representing the volume level. A user can adjust the graph at different instances in time in order to change the volume level in the audio track at these instances.
  • Different embodiments use different types of graphs to represent volume. For instance, the embodiments described below use a deformable line bar. Specifically, FIG. 1 illustrates a deformable line bar 105 that is superimposed on a rectangular box 110. This box is a graphical representation of the audio track. In some embodiments, the line bar 105 and the rectangular box are part of a graphical user interface (“GUI”) with which the user can interact through traditional GUI operations, such as click operations (e.g., to select an item), click-and-drag operations (e.g., to move an item), etc.
  • Above the rectangular box are a timeline 115 and a time marker 120. When the audio track is playing, the time marker 120 moves along the timeline 115 to specify the portion of the track that is playing at each instance in time. A user can also drag the time marker 120 to a particular time on the timeline 115 to listen to the audio track starting at that time.
  • In FIG. 1, the volume-control bar 105 is defined by reference to two axes. One axis is the above-described horizontal timeline 115, while the other is a vertical volume axis 117. Different embodiments express different volume indicia along the volume axis. For instance, in some embodiments, this volume axis expresses the volume levels in terms of percentages that are to be multiplied with a base volume value. The volume-axis value of the volume-control bar 105 at any instance in time (i.e., at any point along the time axis) represents the volume level of the audio track at that instance. Initially, this bar is flat about a midrange volume value M. In other words, the initial volume along the entire track is equal to the midrange volume value M.
  • Through the volume-control bar 105, the user can easily change the volume level. For instance, this bar has a volume-control knob 125 at its beginning. The user can drag this knob vertically up or down to increase or reduce the volume level of the audio track. This is illustrated in FIG. 1. In some embodiments, this knob is not visible or is only visible once the user clicks on the start of the bar.
  • The user can also change the volume level at any point in time by deforming the bar at that point in time. For instance, FIG. 2 illustrates the deformation of the volume-control bar 105 starting at a time t1. As a result of this deformation, the volume-control bar 105 has three different portions. These are (1) a flat portion 205 representing the audio track's volume before the time t1, (2) a ramping portion 210 representing the track's volume between times t1 and t2, and (3) a flat portion 215 representing the track's volume after time t2. The flat portion 205 signifies that the audio track's volume before the time t1 is constant and equal to the midrange value M. The ramping portion 210 signifies that the track's volume changes from the midrange value M to an adjusted value A between the time t1 and a time t2. The flat portion 215 signifies that the audio track's volume after the time t2 is constant and equal to the adjusted value A. Two control knobs 220 and 225 specify the beginning and end of the ramping portion 210. These control knobs are further described below. Also, some embodiments specify the ramp as a smooth spline curve, instead of specifying it as a straight line.
  • The user can deform the bar through a simple click-and-drag operation. Specifically, to modify the bar, the user can (1) move the cursor to a portion of the bar that is not within a specified distance of a control knob, (2) perform a click-and-hold operation (e.g., press a mouse button down and hold it in a depressed state), (3) drag the cursor to a new location within the box 110, and (4) terminate the click operation (e.g., release the mouse button).
  • FIGS. 3 and 4 illustrate the click-and-drag operation that results in the modification illustrated in FIG. 2. FIG. 3 shows that a cursor 305 is initially positioned at a location 310 on the bar 105. As shown in FIG. 3, the moment that the user starts to perform the click-and-drag operation at location 310, the two control knobs 225 and 220 are defined on the volume bar. The knob 225 is initially defined at the location of the click, while the knob 220 is a time interval (e.g., 0.5 seconds) behind the other knob. These knobs are further described below.
  • FIG. 4 shows the cursor 305 after it has been dragged to a new position 315. As shown in this figure, this dragging specifies a ramp 320 that divides a previously undivided portion of the bar (which in this case is the entire bar) into two portions 325 and 330 that are at different volume levels. Once the user drags the cursor to the position 335, the user terminates the click-and-drag operation (e.g., releases the mouse button). At this point, the modification illustrated in FIG. 2 is specified. Some embodiments automatically set the duration of a ramp to a particular value (e.g., 0.5 seconds) in most instances when a portion of the volume bar is deformed and a ramp is defined. This duration, however, can be modified, as further described below.
  • As shown in FIG. 2, the click-and-drag operation creates two knobs 220 and 225 that respectively specify the beginning and end of ramp 210 (i.e., specify the beginning and end of the deformation). The knob 220 is square and specifies the beginning of the ramp, while the knob 225 is round and specifies the end of the ramp. In the embodiments described below, the square knob is always to the left of the round knob. As shown in FIG. 3, the round knob coincides with the location of the cursor during the click-and-drag operation, while the square knob typically remains a particular time interval behind the round knob.
  • During the entire click-and-drag operation, the volume level of the square knob remains the initial volume level of the bar at the position that the user clicked when he initiated the click-and-drag operation. In other words, the volume-axis value of the square knob 220 is the volume level of the audio track before it was changed. On the other hand, the volume-axis value of the round knob 225 specifies a new volume level for the audio track. The audio track will be at this new volume level unless the bar is modified again.
  • The knobs 220 and 225 are selectable data points that can be used to modify attributes of the ramp 210. All control knobs (such as knobs 125, 220, and 225) of the volume bar can be dragged through click-and-drag operations. Specifically, to drag any control knob, the user can place the cursor over the knob, perform a click-and-hold operation to select the knob, drag the knob to the desired location, and then terminate the click operation.
  • A user can increase or decrease the duration of the ramp by dragging the square knob 220 away or towards the round knob 225. Accordingly, the square knob will be referred to below as the duration-control knob. FIG. 5 illustrates an example of the operation of the square knob. In this example, the user drags the knob 220 in a direction away from the knob 225 to increase the duration of the ramp 210. A duration-control knob can also be moved towards the round knob, in order to reduce the duration of the ramp. The duration-control knob, however, cannot pass the round knob.
  • The round knob 225 can be used to change the ramp's location or to change the new-volume level specified by the ramp. Accordingly, the round knob is referred to below as the volume-control knob. FIG. 6 illustrates an example of the operation of the volume-control knob. This figure illustrates that the ramp 210 can be moved left or right along the timeline by dragging the round knob 225 horizontally right or left along the timeline. FIG. 7 illustrates that dragging the round knob 225 vertically up or down changes the volume-level specified by the ramp.
  • In the embodiments described below, the duration-control knob of one ramp cannot move the volume-control knob of another ramp. However, the volume-control knob of one ramp can move the duration-control knob of another ramp. In fact, one ramp's volume-control knob can push another ramp's duration-control knob so much that the two ramp's volume-control knobs overlap. When two volume-control knobs overlap, the ramp that possesses the duration-control knob that is being pushed (i.e., the ramp that does not contain the volume-control knob that is doing the pushing) is deleted. A user can also delete a ramp by selecting it and pressing the delete key.
  • Some embodiments use one or more volume markers to specify the volume levels along the volume-control bar. These embodiments define an initial volume marker that specifies the volume level at the start of the volume-control bar. For each modification along the volume-control bar, these embodiments also define a volume marker to represent the change in the volume level due to the modification. For instance, in FIG. 2, two volume markers are defined, an initial volume marker for the initial volume-control knob 125, and another volume marker for the modification 235 specified by the duration-control knob 220, ramp 210, and volume-control knob 225. Each volume marker is associated with a volume-control knob.
  • FIG. 8 illustrates the attributes of a volume marker in some embodiments. These attributes include a time value, a volume value, and a ramp duration. The time value and the volume value are respectively the time-axis value and the volume-axis value of the volume-control knob that is associated with the volume marker. For example, in the example illustrated in FIG. 2, the time-axis value t2 and the volume-axis value A are the time- and volume-values associated with the volume-control knob 225 for this modification. Hence, the time and volume values t2 and A are stored for the volume marker of the modification 235. Similarly, in this example, the time-axis value 0 and the volume-axis value M of the knob 125 are the time and volume values of the volume-control knob 125 that is associated with the bar's initial volume marker.
  • The initial volume marker, which is specified at the start of the volume-control bar, does not have an associated ramp, since it is not defined for a volume-bar modification. Hence, its ramp duration is null. On the other hand, each volume marker that is specified for a volume-bar modification has an associated ramp, and the duration of this ramp is stored as an attribute of the volume marker. This duration is the difference between the time-axis values of the duration-control and volume control knobs of the volume bar modification. For instance, the ramp duration of a volume marker specified for the modification 235 in FIG. 2 is the difference in the time-axis values (i.e., (t2−t1)) of the knobs 225 and 220.
  • FIG. 9A illustrates a process 900 that creates a volume marker. This process starts (at 905) when it detects that a user has started a click-and-drag operation on a portion of the volume-control bar that is not within a specified distance of a control knob. The process then creates (at 910) a volume marker for the modification to the volume bar that the user has started to make.
  • If the click-and-drag operation is performed on a portion of a previously defined ramp, the process also modifies (at 910) the duration attribute of the volume marker of the previously defined ramp. For instance, FIG. 9B illustrates one such operation that starts at a location 970 of a ramp 960 of a previously defined volume modification. A volume-control knob 962 and a duration-control knob 964 define the ramp 960. Once the user starts his click-and-drag operation, the ramp 960 is modified. Specifically, the location of its duration-control knob 964 is given to a duration-control knob 966 of a new ramp 968 that is defined in response to the click-and-drag operation. For the new ramp 968, a volume-control knob 972 is defined to the left of the start location 970 of the click-and-drag operation, as shown in FIG. 9B. The duration-control knob 964 of the ramp 960 moves to the right of the start location 970. Hence, when the click-and-drag operation is performed on the previously defined ramp 960, the process modifies the duration attribute of the volume marker of the ramp 960 to reflect the movement of this ramp's duration-control knob 964. In the example illustrated in FIG. 9B, if the user starts to drag the cursor to the right of the location 970, the volume-control knob 972 starts to modify immediately the ramp 960. The handling of such a modification will be described further below.
  • At 910, the process also sets the duration of the volume marker that it created at 910. In most situations, the process typically sets this value to 0.5 seconds. The process might set this value to less than 0.5 seconds when the volume marker is close to the temporal boundary of the audio track, or when the volume marker is defined in a middle of a previously defined ramp that is relatively short.
  • After 910, the process identifies (at 915) the current y-coordinate of the cursor. At 915, the process maps this coordinate to a volume level Current_Vol along the volume axis 117. Next, the process determines (at 920) whether the volume level Current_Vol is within a first threshold of a volume level of any other volume marker of the volume bar 105. If not, the process transitions to 930, which is further described below. Otherwise, to show each volume level that is within the first threshold of the volume level Current_Vol, the process specifies (at 925) a dashed line for the graphics system to draw. FIG. 10 illustrates an example of drawing such a dashed line. In this example, the user is specifying another modification 1005 after a first modification 235 on the volume bar 105. The modification 1005 is specified by a volume control knob 1010, which follows the cursor's movement. Accordingly, when the cursor's gets close to the volume level prior to the modification 235 (i.e., when the volume level of the knob 1010 is within a first threshold of the volume level of the initial volume control knob 125), the process 900 specifies a dashed line 1015, which the graphics system draws to specify the volume level of the initial volume control knob 125.
  • After 925, the process transitions to 930. At 930, the process determines whether the volume level Current_Vol is within a second threshold of the volume level of any other volume marker of the volume bar. The second threshold is typically smaller than the first threshold. When the volume level Current_Vol is not within the second threshold of any other volume level, the process transitions to 940.
  • Otherwise, if the process identifies (at 930) a volume level that is within a threshold of Current_Vol, the process sets (at 935) the volume level Current_Vol to the identified volume level. For instance, in the example illustrated in FIG. 10, the process will define the volume level Current_Vol to be the volume level 1015, when the control knob 1010 gets within a second threshold of the volume level 1015. In some embodiments, the process also causes (at 935) the cursor to snap to the volume level identified at 930. Some embodiments snap to, and/or specify dashed lines for, only volume levels of volume markers that are before the current volume marker.
  • After 935, the process transitions to 940. At 940, the process records the volume level Current_Vol as the volume-level attribute of the volume marker. At 945, the process then identifies the current x-coordinate of the cursor, maps this x-coordinate to a time value along the timeline 115, and then records this time value as the time-value attribute of the volume marker. As mentioned before, this time value is the time value of the volume-control knob of the volume marker.
  • After 945, the process determines (950) whether the click-and-drag operation is still continuing. If so, the process returns to 915 to repeat its operations and update the volume marker attributes. Each time the process reaches 950, it has updated the volume marker's volume and time attributes. Hence, each time the process reaches 950, the graphics system can redraw the volume marker, the volume bar, and/or the other attributes of this bar to provide an up to date representation of the volume marker and volume bar on the display. The process terminates when it determines (at 950) that the click-and-drag operation has terminated.
  • FIG. 11 illustrates a process 1100 for modifying a volume marker by performing a click-and-drag operation on the marker's volume-control knob (such as knob 225 for the volume marker 235 in FIG. 2). In some embodiments, this process 1100 starts when the user clicks within a certain distance of the volume-control knob and drags this knob by a slight amount. In other words, this click-and-drag operation starts (at 1105) the process 1100. Once this process starts, its operation is similar to the operations after 910 of the process 900 of FIG. 9A. In other words, the operations 915-950 of the process 1100 are similar to the similarly numbered operations 915-950 of the process 900. These similar operations are not further described below in order not to obscure the description of the invention with unnecessary detail.
  • FIG. 12 illustrates a process 1200 for modifying a volume marker by performing a click-and-drag operation on the marker's duration-control knob (such as knob 220 for the volume marker 235 in FIG. 2). In some embodiments, this process 1200 starts (at 1205) when the user (1) clicks within a certain distance of the duration-control knob of a volume marker, and (2) drags this knob by a slight amount. Once the process detects this click-and-drag operation, the process identifies (at 1210) the current x-coordinate cursor. It maps (at 1210) this coordinate to a time value along the time axis 115.
  • Next, at 1215, it computes a new duration for the volume marker's ramp. This new duration equals the difference between the time value attribute of the volume marker (where this attribute corresponds to the time value of the marker's volume-control knob) and the time value identified at 1210. This difference can never be less than zero, as the duration-control knob can never pass the volume-control knob on the timeline. At 1215, the process records the new computed duration in the volume marker.
  • After 1215, the process determines (at 1220) whether the click-and-drag operation is still continuing. If so, the process returns to 1210 to repeat its operations and again update the volume marker duration attribute. Each time the process reaches 1220, it has updated the volume marker's duration attribute. Hence, each time the process reaches 1220, the graphics system can redraw the volume marker, the volume bar, and/or the other attributes of this bar to provide an up to date representation of the volume marker and the volume bar on the display. The process terminates when it determines (at 1220) that the click-and-drag operation has terminated.
  • As mentioned above, the duration of a particular volume marker can also be modified if another volume marker's volume-control knob pushes the particular volume marker's duration-control knob towards the particular volume marker's volume-control knob. In this circumstance, some embodiments use a process similar to process 1200, except that the process in this case deletes the volume marker when its ramp duration has reached zero, as at this point the two volume-control knobs of the two volume markers overlap.
  • FIGS. 13 and 14 illustrate how some embodiments use the volume markers specified along a volume bar to define the volume level of an audio track. FIG. 13 illustrates a mixer that receives audio tracks 1 to N and produces an output audio based on these tracks. The mixer also receives volume levels for each track from a volume setting process 1300 for the track.
  • FIG. 14 illustrates one example of a volume setting process 1300. Some embodiments perform this process each time a user directs these embodiments to play an audio track that has set according to the invention. The user might direct the audio track to start playing from its beginning or from some other part of the track. As mentioned above by reference to FIG. 1, a user in some embodiments can drag a timer marker 120 along a timeline 115 to specify where to start playing the audio track.
  • The process 1300 initially identifies (at 1405) the volume marker that sets the volume level for the part of the audio track that starts the current play. When the audio track starts from its beginning, this volume marker is the initial volume marker associated with the initial volume-control knob 125. However, when the audio track starts at some time t within the track, the volume marker identified at 1405 is the volume marker that has a time-value attribute that (1) is before the start time t and (2) is the closest to the start time t. For instance, FIG. 15 illustrates an example of an audio track that starts to play at a time t1. In this example, the process 1300 identifies (at 1405) the volume marker that is associated with the volume modification 1505. This is because this volume modification occurs before the time t1 and is the closest modification to this time. At 1405, the process defines the marker that it identified at 1405 as the Current_Marker.
  • Next, at 1410, the process supplies to the mixer 1310 the volume level that is specified by the volume marker identified at 1405. In the example illustrated in FIG. 15, this volume level is the level 1510. The process then determines (at 1415) whether there is another volume marker after the Current_Marker on the volume bar. If not, the process terminates. Otherwise, at 1420, the process identifies the volume marker that is after the Current_Marker on the volume bar, and specifies this identified marker as the new Current_Marker. In FIG. 15, the next volume marker is the marker for the modification 1515.
  • After 1420, the process transitions to 1425, where it stays until the mixer has played the audio track up to the time value specified in the Current_Marker. The time value specified in this marker corresponds to the time that the ramp associated with this marker ends. When the process 1300 is at 1425 and the track's play time falls between the start and end times of the ramp associated with the Current_Marker, the process periodically (at 1425) (1) computes the volume level based on the ramp's attributes, and (2) supplies the computed volume levels to the mixer. As mentioned above, some embodiments specify the ramp as a smooth spline curve. Hence, the values computed at 1425 are value along this curve at different points in time.
  • FIG. 15 provides an example of the periodic computation at 1425. Specifically, this figure illustrates that while the track's play time falls between the start and end times t2 and t3 of the ramp 1520, the process 1300 computes four volume levels, where each volume level is generated at a different time during the audio's play. The process computes the first level 1525 at time t4, the second level 1530 at time t5, the third level 1535 at time t6, and the fourth level 1540 at time t3.
  • Once the process 1300 determines (at 1420) that the play time has passed the time value specified in the Current_Marker, it transitions back to 1415. For instance, in FIG. 15, the process transitions back to 1415 after it computes the fourth level 1540 and then determines that the play time has past t3. The operation of the process 1300 from 1415 was described above.
  • The above-described embodiments have numerous advantages. These embodiments allow a user to set easily different volume levels at different times for the same track. They enable the user to do this in a visual and intuitive manner. This volume control is especially beneficially when mixing several audio tracks, where at different times the volumes of different tracks need to be raised while others need to be lowered.
  • For instance, this is a useful feature when dubbing commentary over the audio track of a video clip. It is also useful when wishing to reduce the background music associated with a video clip in order to listen to the audio component of the video clip. FIG. 16 illustrates one such example. This figure illustrates the GUI interface of a movie editing application. In this example, a user is utilizing the editing application to work on a video clip that has an audio track associated with it. The volume level of the audio track appears as a line bar 1605 that is superimposed on the rectangular box 1610, which represents the video clip. This line bar is superimposed on this box since the user has checked an edit volume button 1640.
  • In FIG. 16, the user has added a second audio track to the clip. This added audio track appears as a rectangular box 1615 below the box 1610. A line bar 1620 is superimposed on the box 1615. This line bar represents the volume level of the second audio track. As shown in FIG. 16, the volume level of the video clip's audio component is increased in a time interval 1625, while the volume level of the added audio track is decreased in this interval. This allows the viewer to hear the video clip's audio much more clearly during the timer interval 1625. Another volume feature in FIG. 16 should be noted. This feature is the volume control bar 1630. After selecting an audio track (which can be either the audio component of a visual clip or a separate audio track), the user can drag a marker 1635 along this bar to reduce or increase the overall volume level.
  • FIG. 17 presents a computer system with which one embodiment of the invention is implemented. Computer system 1700 includes a bus 1705, a processor 1710, a system memory 1715, a read-only memory 1720, a permanent storage device 1725, input devices 1730, and output devices 1735.
  • The bus 1705 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 1700. For instance, the bus 1705 communicatively connects the processor 1710 with the read-only memory 1720, the system memory 1715, and the permanent storage device 1725.
  • From these various memory units, the processor 1710 retrieves instructions to execute and data to process in order to execute the processes of the invention. The read-only-memory (ROM) 1720 stores static data and instructions that are needed by the processor 1710 and other modules of the computer system.
  • The permanent storage device 1725, on the other hand, is read-and-write memory device. This device is a non-volatile memory unit that stores instruction and data even when the computer system 1700 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 1725.
  • Other embodiments use a removable storage device (such as a floppy disk or Zip® disk, and its corresponding disk drive) as the permanent storage device. Like the permanent storage device 1725, the system memory 1715 is a read-and-write memory device. However, unlike storage device 1725, the system memory is a volatile read-and-write memory, such as a random access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 1715, the permanent storage device 1725, and/or the read-only memory 1720.
  • The bus 1705 also connects to the input and output devices 1730 and 1735. The input devices enable the user to communicate information and select commands to the computer system. The input devices 1730 include alphanumeric keyboards and cursor-controllers. The output devices 1735 display images generated by the computer system. For instance, these devices display IC design layouts. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD).
  • Finally, as shown in FIG. 17, bus 1705 also couples computer 1700 to a network 1765 through a network adapter (not shown). In this manner, the computer can be a part of a network of computers (such as a local area network (“LAN”), a wide area network (“WAN”), or an Intranet) or a network of networks (such as the Internet). Any or all of the components of computer system 1700 may be used in conjunction with the invention. However, one of ordinary skill in the art would appreciate that any other system configuration may also be used in conjunction with the present invention.
  • While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims (23)

1-22. (canceled)
23. A method for controlling a volume of an audio track, the method comprising:
generating a graphical representation of a user-modifiable line within a timeline, the user-modifiable line representing a volume level during times depicted by the timeline, wherein the graphical representation is generated for display in a graphical user interface;
identifying a select command received within the graphical user interface for modification of the line, the select command identifying a point of the line used to modify a selected portion of the line;
modifying, in response to the select command, the graphical representation of the volume level to illustrate a change to the volume level during a period of time corresponding to the selected portion of the line, the graphical representation of the volume level modified to depict multiple portions including: a representation of the volume level before the selected portion of the line, a representation of the volume level within the selected portion of the line, and a representation of the volume level after the selected portion of the line; and
specifying the volume level of the audio track according to a volume level before the selected portion of the line, a volume level within the selected portion of the line, and a volume level after the portion of the line, based on the user interaction with the line received in the graphical user interface.
24. The method of claim 23, wherein generating a graphical representation of a user-modifiable line includes generating a deformable line configured to move in the graphical user interface in correspondence to a determined amount of user interaction with the line identified from the select command.
25. The method of claim 24, further comprising generating a graphical representation of the audio track along the timeline.
26. The method of claim 25, wherein the deformable line is superimposed on the graphical representation of the audio track.
27. The method of claim 26, wherein identifying a select command received within the graphical user interface includes identifying when the line is being dragged in the select command, and wherein modifying the graphical representation of the volume level includes deforming the line based on the select command.
28. The method of claim 24, wherein the select command includes a movement of the point along the line from a first position to a second position at a point in time within the timeline.
29. The method of claim 24, wherein the deformed line is modified to include a deformity that is bounded by two points, wherein the two points are respective points in time within the timeline, wherein at least one of the two points is moveable to adjust the deformity.
30. The method of claim 29, wherein the at least one of the two points that is moveable is used to modify one or more of: the volume after the deformity, the duration of the deformity, or a location of the deformity in the deformable line.
31. A computer readable storage medium comprising a computer program for controlling a volume of an audio track, the computer program comprising instructions for:
representing a volume level of the audio track during a period of time with a timeline for display in a graphical user interface, a first axis of the timeline representing the period of time and a second axis of the timeline representing the volume level;
receiving a modification to a portion of a line of the timeline displayed in the graphical user interface, the modification provided from a user command to select and modify a portion of the line, resulting in: the volume level represented before the portion of the line, the volume level represented with the portion of the line, and the volume level represented after the portion of the line; and
specifying the volume level of the audio track at different instances in time corresponding to a time location of the portion of the line.
32. The computer readable storage medium of claim 31, wherein the line is a deformable line configured to move in the graphical user interface in correspondence to a user interaction with the line determined from the user command.
33. The computer readable storage medium of claim 32, wherein the computer program further comprises a set of instructions for:
providing a graphical representation of the audio track along the first axis; and
superimposing the deformable line on the graphical representation of the audio track.
34. The computer readable storage medium of claim 31, wherein the user command includes a drag operation, and wherein the computer program further comprises sets of instructions for:
identifying when the drag operation is applied to the line; and
deforming the line based on the drag operation.
35. The computer readable storage medium of claim 31, wherein the computer program further comprises a set of instructions for displaying the line in the graphical user interface, and wherein the line is manipulated through select and drag operations received in the graphical user interface.
36. The computer readable storage medium of claim 31, wherein the line is modified to include a deformity in the portion of the line, the portion of the line being bounded by two points.
37. The computer readable storage medium of claim 36, wherein the two points are two data points defined along the axes, wherein at least one of the two points is moveable to adjust the deformity in the portion of the line.
38. The computer readable storage medium of claim 31, wherein the modification to the portion of the line produces a nonlinear line.
39. The computer readable storage medium of claim 38, wherein the modification to the portion of the line produces a spline curve in the portion of the line.
40. A computing system, comprising:
a processor;
a system memory;
a display device; and
instructions stored with the system memory, the instructions configured for execution with the processor to provide a graphical user interface for output to the display device to control a volume of an audio track, the instructions configured to implement operations to:
represent a volume level of the audio track with a deformable line in a timeline area, wherein the timeline area is defined along two axes, including a first axis to represent time and a second axis to represent the volume level;
receive a modification to the deformable line from a selection operation and a movement operation provided from user input in the graphical user interface;
illustrate the modification to the timeline as a first point and a second point on the timeline, producing multiple portions of the line, the multiple portions of the line including a portion of the line before the first point, a portion of the line between the first point and the second point, and a portion of the line after the second point; and
determine volume levels of the audio track at different instances in time corresponding to the modification to the deformable line.
41. The computing system of claim 40, wherein the deformable line in the timeline is configured to respond in the graphical user interface to a corresponding amount of movement of the line generated from the selection operation and the movement operation.
42. The computing system of claim 40, wherein the instructions are further configured to implement operations to:
provide a graphical representation of the audio track along the first axis; and
superimpose the deformable line on the graphical representation of the audio track.
43. The computing system of claim 40, wherein the display device is configured to display a display area for displaying a video clip, and wherein the instructions are further configured to implement operations to:
represent the volume level of a first audio track for the video clip in the timeline, the timeline configured for receiving modifications that modify the volume level of the first audio track during portions of the displayed video clip.
44. The computing system of claim 43, wherein the instructions are further configured to implement operations to:
represent the volume level of a second audio track for the video clip in a second timeline, the second audio track added to the video by a user, and the second timeline configured for receiving modifications that modify the volume level of the second audio track during portions of the displayed video clip.
US13/560,903 2003-01-06 2012-07-27 Method and apparatus for controlling volume Abandoned US20130191743A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/337,925 US7319764B1 (en) 2003-01-06 2003-01-06 Method and apparatus for controlling volume
US11/949,764 US8265300B2 (en) 2003-01-06 2007-12-03 Method and apparatus for controlling volume
US13/560,903 US20130191743A1 (en) 2003-01-06 2012-07-27 Method and apparatus for controlling volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/560,903 US20130191743A1 (en) 2003-01-06 2012-07-27 Method and apparatus for controlling volume

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/949,764 Continuation US8265300B2 (en) 2003-01-06 2007-12-03 Method and apparatus for controlling volume

Publications (1)

Publication Number Publication Date
US20130191743A1 true US20130191743A1 (en) 2013-07-25

Family

ID=38921065

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/337,925 Active 2024-09-17 US7319764B1 (en) 2003-01-06 2003-01-06 Method and apparatus for controlling volume
US11/949,764 Active 2025-11-30 US8265300B2 (en) 2003-01-06 2007-12-03 Method and apparatus for controlling volume
US13/560,903 Abandoned US20130191743A1 (en) 2003-01-06 2012-07-27 Method and apparatus for controlling volume

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/337,925 Active 2024-09-17 US7319764B1 (en) 2003-01-06 2003-01-06 Method and apparatus for controlling volume
US11/949,764 Active 2025-11-30 US8265300B2 (en) 2003-01-06 2007-12-03 Method and apparatus for controlling volume

Country Status (1)

Country Link
US (3) US7319764B1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140351733A1 (en) * 2013-05-23 2014-11-27 Ramin Soheili Systems and methods for programming embedded devices using graphical user interface
USD735227S1 (en) * 2013-04-01 2015-07-28 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9721611B2 (en) 2015-10-20 2017-08-01 Gopro, Inc. System and method of generating video from video clips based on moments of interest within the video clips
US9754159B2 (en) 2014-03-04 2017-09-05 Gopro, Inc. Automatic generation of video from spherical content using location-based metadata
US9794632B1 (en) 2016-04-07 2017-10-17 Gopro, Inc. Systems and methods for synchronization based on audio track changes in video editing
US9812175B2 (en) 2016-02-04 2017-11-07 Gopro, Inc. Systems and methods for annotating a video
US9838731B1 (en) * 2016-04-07 2017-12-05 Gopro, Inc. Systems and methods for audio track selection in video editing with audio mixing option
US9836853B1 (en) 2016-09-06 2017-12-05 Gopro, Inc. Three-dimensional convolutional neural networks for video highlight detection
US9966108B1 (en) 2015-01-29 2018-05-08 Gopro, Inc. Variable playback speed template for video editing application
US9984293B2 (en) 2014-07-23 2018-05-29 Gopro, Inc. Video scene classification by activity
US10083718B1 (en) 2017-03-24 2018-09-25 Gopro, Inc. Systems and methods for editing videos based on motion
US10096341B2 (en) 2015-01-05 2018-10-09 Gopro, Inc. Media identifier generation for camera-captured media
US10109319B2 (en) 2016-01-08 2018-10-23 Gopro, Inc. Digital media editing
US10127943B1 (en) 2017-03-02 2018-11-13 Gopro, Inc. Systems and methods for modifying videos based on music
US10187690B1 (en) 2017-04-24 2019-01-22 Gopro, Inc. Systems and methods to detect and correlate user responses to media content
US10186012B2 (en) 2015-05-20 2019-01-22 Gopro, Inc. Virtual lens simulation for video and photo cropping
US10185895B1 (en) 2017-03-23 2019-01-22 Gopro, Inc. Systems and methods for classifying activities captured within images
US10185891B1 (en) 2016-07-08 2019-01-22 Gopro, Inc. Systems and methods for compact convolutional neural networks
US10192585B1 (en) 2014-08-20 2019-01-29 Gopro, Inc. Scene and activity identification in video summary generation based on motion detected in a video
US10204273B2 (en) 2015-10-20 2019-02-12 Gopro, Inc. System and method of providing recommendations of moments of interest within video clips post capture
US10262639B1 (en) 2016-11-08 2019-04-16 Gopro, Inc. Systems and methods for detecting musical features in audio content
US10284809B1 (en) 2016-11-07 2019-05-07 Gopro, Inc. Systems and methods for intelligently synchronizing events in visual content with musical features in audio content
US10341712B2 (en) 2016-04-07 2019-07-02 Gopro, Inc. Systems and methods for audio track selection in video editing
US10360945B2 (en) 2011-08-09 2019-07-23 Gopro, Inc. User interface for editing digital media objects

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319764B1 (en) 2003-01-06 2008-01-15 Apple Inc. Method and apparatus for controlling volume
US7610553B1 (en) * 2003-04-05 2009-10-27 Apple Inc. Method and apparatus for reducing data events that represent a user's interaction with a control interface
US9977561B2 (en) 2004-04-01 2018-05-22 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide guest access
US8234395B2 (en) 2003-07-28 2012-07-31 Sonos, Inc. System and method for synchronizing operations among a plurality of independently clocked digital data processing devices
US7725828B1 (en) * 2003-10-15 2010-05-25 Apple Inc. Application of speed effects to a video presentation
US8290603B1 (en) 2004-06-05 2012-10-16 Sonos, Inc. User interfaces for controlling and manipulating groupings in a multi-zone media system
US8868698B2 (en) 2004-06-05 2014-10-21 Sonos, Inc. Establishing a secure wireless network with minimum human intervention
US7831054B2 (en) * 2005-06-28 2010-11-09 Microsoft Corporation Volume control
US8788080B1 (en) 2006-09-12 2014-07-22 Sonos, Inc. Multi-channel pairing in a media system
US9202509B2 (en) 2006-09-12 2015-12-01 Sonos, Inc. Controlling and grouping in a multi-zone media system
US8483853B1 (en) 2006-09-12 2013-07-09 Sonos, Inc. Controlling and manipulating groupings in a multi-zone media system
US8086752B2 (en) 2006-11-22 2011-12-27 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data
KR100815523B1 (en) * 2007-02-08 2008-03-20 삼성전자주식회사 Method for playing and displaying music in terminal and apparatus using the same
US9159325B2 (en) * 2007-12-31 2015-10-13 Adobe Systems Incorporated Pitch shifting frequencies
US8543921B2 (en) * 2009-04-30 2013-09-24 Apple Inc. Editing key-indexed geometries in media editing applications
US8566721B2 (en) 2009-04-30 2013-10-22 Apple Inc. Editing key-indexed graphs in media editing applications
US8392004B2 (en) 2009-04-30 2013-03-05 Apple Inc. Automatic audio adjustment
US8332757B1 (en) * 2009-09-23 2012-12-11 Adobe Systems Incorporated Visualizing and adjusting parameters of clips in a timeline
KR20110067755A (en) * 2009-12-15 2011-06-22 삼성전자주식회사 Method and apparatus for outputting audio signal in portable terminal
JP2011145386A (en) * 2010-01-13 2011-07-28 Fuji Xerox Co Ltd Display control device, display device, and program
US8875025B2 (en) 2010-07-15 2014-10-28 Apple Inc. Media-editing application with media clips grouping capabilities
US8966367B2 (en) 2011-02-16 2015-02-24 Apple Inc. Anchor override for a media-editing application with an anchored timeline
US8954477B2 (en) 2011-01-28 2015-02-10 Apple Inc. Data structures for a media-editing application
US9997196B2 (en) 2011-02-16 2018-06-12 Apple Inc. Retiming media presentations
US10324605B2 (en) 2011-02-16 2019-06-18 Apple Inc. Media-editing application with novel editing tools
EP2525359A1 (en) * 2011-05-20 2012-11-21 Eldon Technology Limited Systems and methods for reducing a user's ability to perceive hard drive noise
US8965774B2 (en) 2011-08-23 2015-02-24 Apple Inc. Automatic detection of audio compression parameters
US9423944B2 (en) * 2011-09-06 2016-08-23 Apple Inc. Optimized volume adjustment
US9729115B2 (en) 2012-04-27 2017-08-08 Sonos, Inc. Intelligently increasing the sound level of player
WO2013170368A1 (en) * 2012-05-18 2013-11-21 Scratchvox Inc. Method, system, and computer program for enabling flexible sound composition utilities
US9374607B2 (en) 2012-06-26 2016-06-21 Sonos, Inc. Media playback system with guest access
US8995687B2 (en) 2012-08-01 2015-03-31 Sonos, Inc. Volume interactions for connected playback devices
US9008330B2 (en) 2012-09-28 2015-04-14 Sonos, Inc. Crossover frequency adjustments for audio speakers
GB2510323A (en) * 2012-11-13 2014-08-06 Snell Ltd Management of broadcast audio loudness by using time-varying gain control
US10027303B2 (en) 2012-11-13 2018-07-17 Snell Advanced Media Limited Management of broadcast audio loudness
US9251850B2 (en) * 2012-12-19 2016-02-02 Bitcentral Inc. Nonlinear proxy-based editing system and method having improved audio level controls
US9438193B2 (en) 2013-06-05 2016-09-06 Sonos, Inc. Satellite volume control
CN103400592A (en) * 2013-07-30 2013-11-20 北京小米科技有限责任公司 Recording method, playing method, device, terminal and system
US9355555B2 (en) 2013-09-27 2016-05-31 Sonos, Inc. System and method for issuing commands in a media playback system
US9231545B2 (en) 2013-09-27 2016-01-05 Sonos, Inc. Volume enhancements in a multi-zone media playback system
US9300268B2 (en) * 2013-10-18 2016-03-29 Apple Inc. Content aware audio ducking
US9716909B2 (en) * 2013-11-19 2017-07-25 SketchPost, LLC Mobile video editing and sharing for social media
US9226073B2 (en) 2014-02-06 2015-12-29 Sonos, Inc. Audio output balancing during synchronized playback
US9226087B2 (en) 2014-02-06 2015-12-29 Sonos, Inc. Audio output balancing during synchronized playback
USD766976S1 (en) * 2014-08-18 2016-09-20 Rockwell Collins, Inc. Display panel with icon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204969A (en) * 1988-12-30 1993-04-20 Macromedia, Inc. Sound editing system using visually displayed control line for altering specified characteristic of adjacent segment of stored waveform
US20030164845A1 (en) * 2002-03-01 2003-09-04 Fayan Randy M. Performance retiming effects on synchronized data in an editing system

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US670429A (en) * 1900-04-02 1901-03-26 George Albert Lyon Lug-strap for loom picker-sticks.
US4868687A (en) * 1987-12-21 1989-09-19 International Business Machines Corporation Audio editor display interface
US5151998A (en) 1988-12-30 1992-09-29 Macromedia, Inc. sound editing system using control line for altering specified characteristic of adjacent segment of the stored waveform
JPH06505817A (en) * 1990-11-30 1994-06-30
US5359712A (en) 1991-05-06 1994-10-25 Apple Computer, Inc. Method and apparatus for transitioning between sequences of digital information
US5999173A (en) * 1992-04-03 1999-12-07 Adobe Systems Incorporated Method and apparatus for video editing with video clip representations displayed along a time line
US5682326A (en) * 1992-08-03 1997-10-28 Radius Inc. Desktop digital video processing system
US5331111A (en) * 1992-10-27 1994-07-19 Korg, Inc. Sound model generator and synthesizer with graphical programming engine
DE4418203C2 (en) * 1994-05-25 1997-09-11 Siemens Audiologische Technik A method of adjusting the transmission characteristic of a hearing aid
US5659793A (en) * 1994-12-22 1997-08-19 Bell Atlantic Video Services, Inc. Authoring tools for multimedia application development and network delivery
GB2306750B (en) * 1995-10-23 1999-11-10 Quantel Ltd An audio editing system
US7091948B2 (en) * 1997-04-25 2006-08-15 Immersion Corporation Design of force sensations for haptic feedback computer interfaces
US5874950A (en) * 1995-12-20 1999-02-23 International Business Machines Corporation Method and system for graphically displaying audio data on a monitor within a computer system
JP2970526B2 (en) * 1996-01-17 1999-11-02 ヤマハ株式会社 Sound source system using the computer software
US5892506A (en) * 1996-03-18 1999-04-06 Discreet Logic, Inc. Multitrack architecture for computer-based editing of multimedia sequences
US6154601A (en) * 1996-04-12 2000-11-28 Hitachi Denshi Kabushiki Kaisha Method for editing image information with aid of computer and editing system
US6628303B1 (en) * 1996-07-29 2003-09-30 Avid Technology, Inc. Graphical user interface for a motion video planning and editing system for a computer
US6154600A (en) * 1996-08-06 2000-11-28 Applied Magic, Inc. Media editor for non-linear editing system
US5929867A (en) * 1996-08-07 1999-07-27 Adobe System Incorporated Floating keyframes
WO1998012702A1 (en) * 1996-09-20 1998-03-26 Sony Corporation Editing system, editing method, clip management apparatus, and clip management method
GB2323991B (en) * 1997-04-04 1999-05-12 Questech Ltd Improvements in and relating to the processing of digital video images
US6956574B1 (en) * 1997-07-10 2005-10-18 Paceworks, Inc. Methods and apparatus for supporting and implementing computer based animation
US5880722A (en) * 1997-11-12 1999-03-09 Futuretel, Inc. Video cursor with zoom in the user interface of a video editor
US6188403B1 (en) * 1997-11-21 2001-02-13 Portola Dimensional Systems, Inc. User-friendly graphics generator using direct manipulation
EP0947955B1 (en) * 1998-04-03 2001-09-12 Da Vinci Systems, Inc. Apparatus for generating custom gamma curves for color correction equipment
GB2336022A (en) * 1998-04-03 1999-10-06 Discreet Logic Inc Edit processing audio-visual data
JP4103192B2 (en) * 1998-09-17 2008-06-18 ソニー株式会社 Editing system and editing method
JP4203779B2 (en) * 1999-03-15 2009-01-07 ソニー株式会社 Display element three-dimensional apparatus and method
JP4227241B2 (en) 1999-04-13 2009-02-18 キヤノン株式会社 Image processing apparatus and method
US6512522B1 (en) * 1999-04-15 2003-01-28 Avid Technology, Inc. Animation of three-dimensional characters along a path for motion video sequences
US6392135B1 (en) * 1999-07-07 2002-05-21 Yamaha Corporation Musical sound modification apparatus and method
US6624826B1 (en) * 1999-09-28 2003-09-23 Ricoh Co., Ltd. Method and apparatus for generating visual representations for audio documents
US6678661B1 (en) * 2000-02-11 2004-01-13 International Business Machines Corporation Method and system of audio highlighting during audio edit functions
US6614729B2 (en) * 2000-09-26 2003-09-02 David D. Griner System and method of creating digital recordings of live performances
CH694882A5 (en) * 2000-09-27 2005-08-15 Bernafon Ag A method for setting a transmission characteristic of an electronic circuit.
EP1249792A3 (en) * 2001-04-12 2006-01-18 Matsushita Electric Industrial Co., Ltd. Animation data generation apparatus, animation data generation method, animated video generation apparatus, and animated video generation method
US7134093B2 (en) * 2001-04-18 2006-11-07 International Business Machines Corporation Graphical user interface for direct control of display of data
GB2374719A (en) * 2001-04-20 2002-10-23 Discreet Logic Inc Image data processing apparatus with two timelines
GB2374748A (en) * 2001-04-20 2002-10-23 Discreet Logic Inc Image data editing for transitions between sequences
TW520602B (en) * 2001-06-28 2003-02-11 Ulead Systems Inc Device and method of editing video program
US6928613B1 (en) * 2001-11-30 2005-08-09 Victor Company Of Japan Organization, selection, and application of video effects according to zones
US6952655B2 (en) * 2001-12-11 2005-10-04 Lecroy Corporation User defined processing function
US20040088723A1 (en) * 2002-11-01 2004-05-06 Yu-Fei Ma Systems and methods for generating a video summary
US7319764B1 (en) 2003-01-06 2008-01-15 Apple Inc. Method and apparatus for controlling volume
US7653550B2 (en) * 2003-04-04 2010-01-26 Apple Inc. Interface for providing modeless timeline based selection of an audio or video file
US7328412B1 (en) * 2003-04-05 2008-02-05 Apple Inc. Method and apparatus for displaying a gain control interface with non-linear gain levels
US7610553B1 (en) * 2003-04-05 2009-10-27 Apple Inc. Method and apparatus for reducing data events that represent a user's interaction with a control interface
US7317457B2 (en) * 2003-07-21 2008-01-08 Autodesk, Inc. Processing image data
US7042464B1 (en) * 2003-08-01 2006-05-09 Apple Computer, Inc. Methods and apparatuses for the automated display of visual effects
US7725828B1 (en) * 2003-10-15 2010-05-25 Apple Inc. Application of speed effects to a video presentation
US20050231512A1 (en) 2004-04-16 2005-10-20 Niles Gregory E Animation of an object using behaviors
US7411590B1 (en) 2004-08-09 2008-08-12 Apple Inc. Multimedia file format
US8566721B2 (en) 2009-04-30 2013-10-22 Apple Inc. Editing key-indexed graphs in media editing applications
US8543921B2 (en) 2009-04-30 2013-09-24 Apple Inc. Editing key-indexed geometries in media editing applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204969A (en) * 1988-12-30 1993-04-20 Macromedia, Inc. Sound editing system using visually displayed control line for altering specified characteristic of adjacent segment of stored waveform
US20030164845A1 (en) * 2002-03-01 2003-09-04 Fayan Randy M. Performance retiming effects on synchronized data in an editing system

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10360945B2 (en) 2011-08-09 2019-07-23 Gopro, Inc. User interface for editing digital media objects
USD735227S1 (en) * 2013-04-01 2015-07-28 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9521729B2 (en) * 2013-05-23 2016-12-13 Ramin Soheili Systems and methods for programming embedded devices using graphical user interface
US20140351733A1 (en) * 2013-05-23 2014-11-27 Ramin Soheili Systems and methods for programming embedded devices using graphical user interface
US10084961B2 (en) 2014-03-04 2018-09-25 Gopro, Inc. Automatic generation of video from spherical content using audio/visual analysis
US9754159B2 (en) 2014-03-04 2017-09-05 Gopro, Inc. Automatic generation of video from spherical content using location-based metadata
US9760768B2 (en) 2014-03-04 2017-09-12 Gopro, Inc. Generation of video from spherical content using edit maps
US10074013B2 (en) 2014-07-23 2018-09-11 Gopro, Inc. Scene and activity identification in video summary generation
US10339975B2 (en) 2014-07-23 2019-07-02 Gopro, Inc. Voice-based video tagging
US9984293B2 (en) 2014-07-23 2018-05-29 Gopro, Inc. Video scene classification by activity
US10192585B1 (en) 2014-08-20 2019-01-29 Gopro, Inc. Scene and activity identification in video summary generation based on motion detected in a video
US10262695B2 (en) 2014-08-20 2019-04-16 Gopro, Inc. Scene and activity identification in video summary generation
US10096341B2 (en) 2015-01-05 2018-10-09 Gopro, Inc. Media identifier generation for camera-captured media
US9966108B1 (en) 2015-01-29 2018-05-08 Gopro, Inc. Variable playback speed template for video editing application
US10186012B2 (en) 2015-05-20 2019-01-22 Gopro, Inc. Virtual lens simulation for video and photo cropping
US10395338B2 (en) 2015-05-20 2019-08-27 Gopro, Inc. Virtual lens simulation for video and photo cropping
US10204273B2 (en) 2015-10-20 2019-02-12 Gopro, Inc. System and method of providing recommendations of moments of interest within video clips post capture
US9721611B2 (en) 2015-10-20 2017-08-01 Gopro, Inc. System and method of generating video from video clips based on moments of interest within the video clips
US10186298B1 (en) 2015-10-20 2019-01-22 Gopro, Inc. System and method of generating video from video clips based on moments of interest within the video clips
US10109319B2 (en) 2016-01-08 2018-10-23 Gopro, Inc. Digital media editing
US10424102B2 (en) 2016-02-04 2019-09-24 Gopro, Inc. Digital media editing
US9812175B2 (en) 2016-02-04 2017-11-07 Gopro, Inc. Systems and methods for annotating a video
US10083537B1 (en) 2016-02-04 2018-09-25 Gopro, Inc. Systems and methods for adding a moving visual element to a video
US9794632B1 (en) 2016-04-07 2017-10-17 Gopro, Inc. Systems and methods for synchronization based on audio track changes in video editing
US10341712B2 (en) 2016-04-07 2019-07-02 Gopro, Inc. Systems and methods for audio track selection in video editing
US9838731B1 (en) * 2016-04-07 2017-12-05 Gopro, Inc. Systems and methods for audio track selection in video editing with audio mixing option
US10185891B1 (en) 2016-07-08 2019-01-22 Gopro, Inc. Systems and methods for compact convolutional neural networks
US9836853B1 (en) 2016-09-06 2017-12-05 Gopro, Inc. Three-dimensional convolutional neural networks for video highlight detection
US10284809B1 (en) 2016-11-07 2019-05-07 Gopro, Inc. Systems and methods for intelligently synchronizing events in visual content with musical features in audio content
US10262639B1 (en) 2016-11-08 2019-04-16 Gopro, Inc. Systems and methods for detecting musical features in audio content
US10127943B1 (en) 2017-03-02 2018-11-13 Gopro, Inc. Systems and methods for modifying videos based on music
US10185895B1 (en) 2017-03-23 2019-01-22 Gopro, Inc. Systems and methods for classifying activities captured within images
US10083718B1 (en) 2017-03-24 2018-09-25 Gopro, Inc. Systems and methods for editing videos based on motion
US10187690B1 (en) 2017-04-24 2019-01-22 Gopro, Inc. Systems and methods to detect and correlate user responses to media content

Also Published As

Publication number Publication date
US7319764B1 (en) 2008-01-15
US20080080721A1 (en) 2008-04-03
US8265300B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
US6803930B1 (en) Facilitating content viewing during navigation
EP1242989B1 (en) Graduated visual and manipulative translucency for windows
US7333120B2 (en) Zooming controller
US8312387B2 (en) Target element zoom
US8255815B2 (en) Motion picture preview icons
US6809720B2 (en) Information cursors
US8261191B2 (en) Multi-point representation
US9261958B2 (en) Apparatus and method for navigation in digital object using gaze information of user
US8555170B2 (en) Tool for presenting and editing a storyboard representation of a composite presentation
CN101802763B (en) Method for providing GUI and multimedia device using same
US5874961A (en) Scroll bar amplification apparatus and method
US8522144B2 (en) Media editing application with candidate clip management
US5611060A (en) Auto-scrolling during a drag and drop operation
EP0852047B1 (en) Reading aid
US8140971B2 (en) Dynamic and intelligent hover assistance
US6339436B1 (en) User defined dynamic help
US9032299B2 (en) Tool for grouping media clips for a media editing application
US8170396B2 (en) Changing video playback rate
US20090144653A1 (en) Method and Apparatus for Dynamically Resizing Windows
JP2019164790A (en) Device and method for navigating between user interfaces
US20060190808A1 (en) Methods, systems, and processes for the design and creation of rich-media applications via the Internet
US20020140736A1 (en) Method for manipulating multiple multimedia objects
US20040025112A1 (en) Method and apparatus for resizing video content displayed within a graphical user interface
US9459771B2 (en) Method and apparatus for modifying attributes of media items in a media editing application
US9311965B2 (en) Method and apparatus for controlling a display of multimedia content using a timeline-based interface

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION