US20130146301A1 - Subsea structure flowline connector assembly - Google Patents
Subsea structure flowline connector assembly Download PDFInfo
- Publication number
- US20130146301A1 US20130146301A1 US13/316,907 US201113316907A US2013146301A1 US 20130146301 A1 US20130146301 A1 US 20130146301A1 US 201113316907 A US201113316907 A US 201113316907A US 2013146301 A1 US2013146301 A1 US 2013146301A1
- Authority
- US
- United States
- Prior art keywords
- connector
- fly
- flowline
- connector assembly
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012636 effector Substances 0.000 claims abstract description 13
- 238000004891 communication Methods 0.000 claims abstract description 12
- 238000007789 sealing Methods 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 9
- 239000012530 fluid Substances 0.000 description 13
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 241000191291 Abies alba Species 0.000 description 2
- 235000004507 Abies alba Nutrition 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
- E21B43/013—Connecting a production flow line to an underwater well head
Definitions
- the present invention relates to subsea structure flowline connection systems. More particularly, the present invention the relates to systems whereby a fly-in connector is joined to subsea structures so as to establish a flow communication therewith. More particularly, the present invention the relates to a flowline connector assembly for use with large bore connections between the fly-in connector and the flowline connector.
- Flowlines are used to interconnect pieces of subsea oil-field equipment for fluid communication. They generally take the form of somewhat flexible armoured hoses or pipes, provided with subsea matable connectors at either end. Typically, they are installed by being lowered into place from a pipe-laying vessel, with the final positioning and make-up of the end connectors carried out by divers or by an ROV. Short ROV-installable hoses and pipes are used to interconnect adjacent pieces of subsea equipment.
- each flowline is generally lowered vertically to the seabed from a pipe-laying vessel.
- the flowline is then laid out horizontally between the points to be interconnected.
- the flowline ends must then be retrieved from the seabed bed by an ROV.
- the end connectors are aligned with the subsea equipment for make-up of the required fluid-tight connections.
- a known type of flowline has a first part mounted to a piece of subsea equipment, such as a wellhead, and a mating second part fitted to the end of a flowline.
- the second part is lowered towards the sea bed and is stabbed from above into the first.
- a pivot arrangement guides the second part and attached flowline so as to hinge over into a generally horizontal position, in which the flowline may be laid away along the sea bed, and in which the connector first and second mating parts are axially aligned for make-up of a fluid-tight connection between them.
- flying leads In order to connect various flowlines to items of equipment on the ocean floor, special connectors known as “flying leads” are often employed.
- the flying leads connect the ends of lines to subsea equipment, such as connecting to a control pod on a manifold or subsea tree at one end to an umbilical termination assembly at the other end.
- flying leads In shallow water, flying leads are connected to subsea equipment by divers.
- ROV remotely-operated vehicles
- flying leads Different configurations of flying leads are presently available. Two types of flying leads for interconnecting the elements of a subsea production system are hydraulic flying leads or steel flying leads. Both types of leads may house lines for monitoring, control and, when necessary, chemical injection in the subsea system. Each type of lead has benefits and limitations.
- the hydraulic flying leads commonly are made up of thermoplastic hoses of various sizes and configurations.
- a nylon “type 11” internal pressure sheath is utilized as the inner layer.
- a reinforcement layer is provided around the internal pressure sheath.
- a polyurethane outer sheath is bonded thereto so as to provide waterproofing.
- End fittings are provided on each end of the thermoplastic hoses. The end fittings are typically crimped or swaged onto the hose.
- a multiple quick-connect junction plate Connected to the end fittings on each of the ends of the hoses is a multiple quick-connect junction plate. This plate provides the connection plate between the subsea equipment and communication lines. It is usually installed using ROV unit subsea.
- Steel flying leads presently being used define a collection of separate steel tubes bundled within a flexible vented plastic tube.
- a “Cobra” type end connection containing multiple quick-connect junction plate connections is provided at each end of the tubes.
- the individual tubes are routed into the respective end connections and welded into socket fitting in the opposing junction plate connections.
- These plates are usually installed by means of ROV units.
- U.S. Pat. No. 4,728,125 issued on Mar. 1, 1988 to B. J. Reneau, describes a grip-and-seal mechanically-locking flowline connector.
- flowlines have separately actuated gripping and sealing assemblies which are actuated by hydraulic pressure but are held in actuated positions using internally mounted mechanical-type mechanisms.
- the flowline connector has a frame which supports a seal carrier plate assembly. Springs allow axial movement of the carrier plate assembly during engagement of mating hubs of flowlines.
- a metal seal carried by the carrier plate assembly engages conical seats in the hubs of the two flowlines.
- An elastomeric test seal located radially outward of the metal seal seals between flat faces of the hubs of the flowlines.
- U.S. Pat. No. 5,593,249 provides a diverless flowline connection system for connecting a flowline to a subsea wellhead or other subsea structure.
- the diverless flowline connection system is used with an ROV.
- the diverless flowline connection system includes a frame assembly having clamping arms for mounting the frame assembly to the flowline.
- a pair of winches are mounted to the frame assembly.
- Each winch includes a winch line for attachment to the wellhead to which the flowline is to be connected.
- Each winch is independently controlled so that the lateral position of the flowline may be variously adjusted by controlling each of the winches.
- U.S. Pat. No. 5,730,551 issued on Mar. 24, 1998 to Skeels et al., discloses a subsea connector system and method using a skid on the sea floor for coupling a subsea conduit carried by the skid to a subsea conduit on a fixed subsea structure.
- a lift line device has an upper lift line connected by a spreader bar to a pair of lower guide lines which are directed from a vertical position to a generally horizontal position by J-tubes.
- the ends of the guide lines have anchor members thereon which are anchored to guides on the subsea facility.
- the skid Upon raising of the upper lift line, the skid moves in a combined pulling and lifting motion to engage a side of the subsea facility for being guided into a docked position with aligned guides on the subsea facility.
- An ROV secures the skid into a releasably locked position by insertion of retainer pins into aligned openings of the skid.
- the coupling on the end of flowline conduit is coupled onto an aligned conduit on the subsea facility.
- U.S. Pat. No. 5,794,701 issued on Aug. 18, 1998 to Cunningham et al., teaches a subsea connection usable with subsea wellheads.
- a female receptacle end is provided on the wellhead which has connections to an umbilical or a flowline.
- the male end has an orientation lug for rough orientation. Once rough orientation is made, the male end is advanced into the female end and the shaft rotated by a ROV for alignment of lugs with a detent. Once the lugs advance past the detent, they are rotated so that a segment of the shaft on the male end of the connection can no longer turn. Further rotational movements by the ROV on another portion of the shaft advances a plate which makes up the connection.
- U.S. Pat. No. 5,807,027 shows a system for pull-in and interconnection of two pipelines in subsea position.
- a first pipeline is initially freely suspended.
- a second pipeline is mounted on a bottom-based manifold frame.
- the end section of the first pipeline is provided with a socket-like termination with a front end, which is provided with means for coupling of the terminator to complementary pipe coupling means on the second pipeline.
- the terminator is provided with a laterally-directed, longitudinally-shaped anchor member.
- the manifold frame is provided with receiving means for receipt and fixation of the anchor element.
- the anchor element and the receiving means are dimensioned and positioned such that when the anchor element is placed in position in the receiving means, the coupling means of the terminator will be positioned straight in front of the complementary coupling means on the second pipeline.
- U.S. Pat. No. 6,481,504 issued on Nov. 19, 2002 to N. Gatherar, provides a flowline connector having a first connector portion for mounting on a first piece of subsea equipment and a second connector portion attached to the end portion of a flowline.
- Each connector portion has a respective guide inter-engageable by lowering the second connector portion, on the end portion of the flowline, into the first connector portion.
- the guides allow the second connector portion to pivot relative to the first connector portion to bring the first connector portion and the second connector portion into axial alignment for make-up of a fluid-tight connection therebetween.
- U.S. Pat. No. 6,805,382 issued on Oct. 19, 2004 to C. E. Jennings, describes a one-stroke soft-land flowline connector.
- a frame is used to land on a base and soft land a connector receptacle on the end of a flowline to a mandrel protruding from the base. After the frame lands on the base, the frame and the receptacle are pushed toward the base so as to cause frame latching members to latch the frame to the base.
- the frame holds the base and the receptacle above the mandrel.
- the frame and receptacle are pushed further towards the base and the connector receptacle abuts the mandrel.
- the connector receptacle moves relative to the frame as the frame is pushed closer to the base. This causes an actuator on the frame to move dogs on the receptacle to engage the mandrel and lock the receptacle to the mandrel.
- U.S. Pat. No. 6,098,715 issued on Aug. 8, 2000 to Seixas et al., provides a flowline connection system having a pivotally-mounted funnel which is a permanent part of a subsea structure.
- the funnel is rotatably mounted so as to rotate from a vertical position to a horizontal position.
- Retractable pins engage a slot in the funnel to lock the funnel in a vertical position. This allows the funnel to rotate to the horizontal position to engage a hub connector.
- a flowline end termination stabs into the funnel while the funnel is in the vertical position.
- the flowline termination body has a flange connector on one end that connects to a flexible flowline.
- U.S. Pat. No. 6,902,199 issued on Jun. 7, 2005 to Colyer et al., provides an ROV-activated subsea connector so as to connect a subsea flowline to a subsea connector hub.
- the connector has a frame with a tubular mandrel located within it.
- the mandrel connects to the flowline and has a forward end that engages the connector end.
- the mandrel moves axially relative to the frame between retracted and extended positions.
- a lock member on the forward end of the mandrel will engage the profile of the connector hub.
- An actuator mounted to the mandrel causes the lock member to move into engagement with the connector hub after the mandrel has been moved into engagement with the connector hub.
- U.S. Pat. No. 7,112,009 issued on Sep. 26, 2006 to C. Mackinnon, provides an apparatus for substantially horizontal connection of a conduit to a subsea structure.
- a frame connectable to and supportable by the subsea structure.
- the frame has a docking device operable to allow a horizontal connection device to dock with the frame such that the frame is capable of bearing at least part of an operational load associated with the horizontal connection of the conduit to the subsea structure.
- U.S. Patent Publication No. 2007/0227740 published on Oct. 4, 2007 to Fontenette et al., discloses a flying lead connector and method for making subsea connections.
- the flying lead arrangement is configured to provide fluid communication between a first item of subsea equipment and a second item of subsea equipment.
- the flying lead includes a first substantially rigid end kit disposed at a first end of the flying lead and a second substantially rigid end kit disposed at a second end of the flying lead.
- a substantially rigid midsection is defined between the first end kit and the second end kit.
- At least one fluid communication line is disposed within the midsection so as to provide fluid communication between the items of subsea equipment.
- the hot stab has a fluid conduit connector thereon.
- a hydraulic hose has a connector assembly at an end thereof suitable for joining to the fluid conduit connector of the hot stab.
- a sleeve is affixed to the hot stab and to the hydraulic hose so as to extend over and surround the fluid conduit connector and the connector assembly.
- a jam nut is affixed to the tubular portion of the fluid conduit connector. The sleeve is threadedly connected to the threaded exterior surface of the jam nut.
- the present invention is a subsea flowline connection assembly having a flowline therein, a junction plate affixed to the subsea structure so as to support a flowline connector thereon, a receptacle affixed to or adjacent to the junction plate, and a fly-in connector assembly having a connector thereon.
- the receptacle has an interior opening to the flowline connector of the junction plate.
- the connector of the fly-in connector assembly is engaged with the flowline connector of the junction plate.
- the fly-in connector assembly has a flow passageway in communication with the connector of the fly-in connector assembly.
- the flowline connector has a male connector at an end thereof.
- the connector of the flowline connector assembly has a female connector overlying the male connector in liquid-tight sealing relationship.
- the male connector defines a sealing surface with the female connector.
- the sealing surface has a metal seal at an end thereof.
- the sealing surface also has a first elastomeric seal extending around the male connector.
- the sealing surface further has a second elastomeric seal extending around the male connector in spaced relationship to the first elastomeric seal.
- a hole extends through a wall of the female connector. This hole has an opening at the sealing surface between the first elastomeric seal and the second elastomeric seal.
- the fly-in connector has an actuator coupled to the connector thereof.
- the actuator has an end effector suitable for allowing an ROV to rotate the end effector and the actuator so as to move the connector of the fly-in connector assembly toward the flowline connector.
- the actuator is a threaded member arranged in threaded relationship with the fly-in connector assembly.
- the receptacle includes a first plate and a second plate in spaced relation to the first plate.
- Each of the first and second plates has an end positioned against or adjacent to the junction plate.
- Each of the first and second plates has a slot formed adjacent an opposite end thereof.
- the fly-in connector assembly has a first insert member and second insert member formed on opposite sides thereof. The first insert member is received in the slot of the first plate. The second insert member is received in the slot of the second plate.
- Each of the first and second insert members has a wing shape tapering such that a wide end is joined to the fly-in connector assembly and such that a narrow end is away from the fly-in connector assembly.
- the wing shape has a flat surface at an end thereof.
- the slot has a bearing surface thereon.
- the flat surface bears against the bearing surface.
- the slot of the first and second plates has a bottom surface.
- Each of the first and second insert members has a bottom abutting the bottom surface of the slots.
- the slot also has walls spaced from each other for a distance greater than a width of the insert member.
- Each of the first and second plates is directly affixed to the subsea structure.
- the junction plate has a slot formed therein adjacent the flowline connector.
- the fly-in connector assembly has a key extending outwardly therefrom. This key is received by the slot.
- the flow passageway comprising a conduit extending downwardly and outwardly from the fly-in connector assembly.
- the fly-in connector assembly also has a brace affixed thereto. This brace is affixed to the conduit.
- FIG. 1 is a perspective view showing the subsea flowline connection assembly of the present invention with the fly-in connector assembly in spaced relationship to the junction plate and receptacle of the subsea structure.
- FIG. 2 is a close-up perspective view showing the positioning of the fly-in connector assembly adjacent to the junction plate and receptacle.
- FIG. 3 is a perspective view showing the positioning of the fly-in connector assembly within the receptacle.
- FIG. 4 is a cross-sectional view showing the installation of the fly-in connector assembly with the junction plate and associated flowline connector of the subsea structure.
- FIG. 5 is a cross-sectional view showing the sealing relationship between the male portion of the flowline connector and the female portion of the connector fly-in connector assembly.
- the subsea flowline connection assembly 10 includes a subsea structure 12 having a flowline 14 therein.
- a junction plate 16 is affixed to the subsea structure 12 .
- This junction plate 16 supports a flowline connector 18 thereon.
- a receptacle 20 is affixed to or adjacent to the junction plate 16 .
- the receptacle 20 has an interior opening to the flowline connector 18 of the junction plate 16 .
- a fly-in connector assembly 22 has a connector 24 thereon. The connector 24 will be engaged with the flowline connector 18 of the junction plate 16 .
- the fly-in connector assembly 22 also has a flow passageway 26 in communication with the connector 24 .
- the subsea structure 12 is in the nature of a capping stack or a flow diverter.
- a “subsea structure” can take on a wide variety of configurations.
- the subsea structure can be a flow stack, a blowout preventer, a manifold, a Christmas tree, or any other subsea application that requires hydraulic connections.
- the subsea structure 12 is a high pressure structure that utilizes large bore hydraulic connections. Typically, these large bore hydraulic connections will be in the order of two inches or greater in diameter. However, the dimensions of such a large bore should not be construed, in any way, as limiting of the present invention.
- the subsea structure 12 will be placed on the seabed.
- the junction plate 16 is affixed to the flowline connector 18 .
- this junction plate 16 is a surface that allows for fly-in connector assembly 22 to have its connector 24 joined thereto.
- the junction plate 16 along with the flowline connector 18 , will be supported adjacent an exterior surface of the subsea structure 12 .
- the receptacle 20 is directly bolted by flange plates 28 and 30 to the subsea structure 12 .
- the receptacle 20 can also be directly affixed to the junction plate 16 . In any circumstances, the receptacle 20 will be positioned at least adjacent to the junction plate 16 and positioned around the flowline connector 18 .
- the direct affixing of the receptacle 20 through the use of flange plates 28 and 30 allows the structure of the receptacle 20 to be directly supported by the subsea structure 12 . As such, this will avoid any undesired bending moment imparted to the junction plate 16 and/or to the flowline 14 or the flowline connector 18 .
- the receptacle 20 includes a first plate 32 and a second plate 34 arranged in generally spaced parallel relationship on opposite sides of the flowline connector 18 . As such, these plates 32 and 34 will define an interior opening to the flowline connector 18 . As will be described hereinafter, each of the plates 32 and 34 has a slot formed at an end thereof opposite the junction plate 16 that can be used for the receipt of the fly-in connector assembly 22 .
- the fly-in connector assembly 22 has the connector 24 at one end thereof.
- the flow passageway 26 is in nature of a conduit that will communicate with an interior of the fly-in connector assembly 22 adjacent to the connector 24 .
- a brace 36 extends so as to be engaged with the body of the fly-in connector assembly 22 and with the flow passageway 26 . As such, the flow passageway 26 is rigidly support by the fly-in connector assembly 22 .
- the fly-in connector assembly 22 has a key 28 extending radially outwardly therefrom. This key 38 can be engaged with a slot 40 in the junction plate 16 adjacent to the flowline connector 18 .
- the fly-in connector assembly 22 also includes a torque bucket 42 at an end thereof opposite the connector 24 .
- An end effector 44 is positioned within the torque bucket 42 . The end effector 44 can be utilized by an ROV so as to carry out the necessary function of connecting the connector 24 to the flowline connector 18 , to be described hereinafter.
- the fly-in connector assembly 22 can be lowered by winch and line to the seabed adjacent to the subsea structure 12 .
- An ROV can grasp the fly-in connector assembly 22 so as to move the fly-in connector assembly 22 to a position, such as illustrated in FIG. 1 , in proximity to the receptacle 20 .
- the torque tool of the ROV can then be applied to the end effector 44 within the torque bucket 42 so as to properly attach the fly-in connector assembly 22 to the junction plate 16 and the flowline connector 18 .
- FIG. 2 shows the positioning of the fly-in connector assembly 22 relative to the receptacle 20 .
- the receptacle 20 has a first plate 32 and a second plate 34 in generally spaced parallel relationship.
- Flange plates 28 and 30 are rigidly affixed to the top of the plates 32 and 34 , respectively.
- the flange plates 28 and 30 are illustrated as threadedly bolted to the plates 32 and 34 .
- the bolt holes associated with the flange plates 28 and 30 can be securely bolted to the subsea structure 12 .
- the junction plate 16 extends between the plates 32 and 34 at one end of the receptacle.
- the flowline connector 18 is positioned by the junction plate 16 so as to securely mount the flowline connector 18 thereto. It can be seen that the flowline connector 18 is a male connector having a sealing surface on exterior surface thereof.
- Support bracket 50 is shown as affixed to the plate 34 and to the junction plate 16 so as to provide structural support thereto.
- the receptacle 20 has a slot 52 formed at an end thereof opposite the junction plate 16 .
- the plate 34 has a slot 54 formed at an end thereof opposite the junction plate 16 .
- Slot 54 has a bottom surface 56 at a lower end thereof.
- Each of the slots 52 and 54 opens at an upper end thereof so as to provide an area whereby the wing-shaped surfaces of the fly-in connector assembly 22 can be received therein.
- the fly-in connector assembly 22 is illustrated as in a position slightly above the receptacle 20 .
- the connector 24 of the fly-in connector assembly 22 is located at one end thereof.
- the torque bucket 42 is positioned at an opposite end thereof.
- the flow passageway 26 is a conduit that extends downwardly and outwardly from the body of the fly-in connector assembly 22 .
- the flow passageway 26 has another connector 58 formed therein so as to allow the flow passageway 26 to be joined to another conduit in a conventional manner.
- the fly-in connector assembly 22 includes a first insert member 60 and second insert member 62 extending outwardly therefrom.
- Each of the insert members 60 and 62 has a generally wing shape. This wing shape has a wide end adjacent to the fly-in connector assembly 22 and a narrow end away from the fly-in connector assembly 22 . Generally, the width of each of the inserts members 60 and 62 will be less than the width of the respective slots 52 and 54 of the receptacle 20 .
- the key 38 is illustrated as extending upwardly from the top of the fly-in connector assembly 22 . Also, the brace 36 extends downwardly so as to be rigidly secured to the flow passageway 26 .
- FIG. 3 it can be seen that the fly-in connector assembly 22 has been received within the receptacle 20 .
- the plates 32 and 34 will extend on opposite sides of the fly-in connector assembly 22 .
- the connector 24 of the fly-in connector assembly 22 is illustrated in a position suitable for being joined to the flowline connector 18 at the junction plate 16 .
- FIG. 3 shows that the insert member 60 is inserted into the slot 52 of the plate 32 .
- the insert member 62 is inserted within the slot 54 of the plate 34 . Since each of the slots 52 and 54 has a width that is greater than the width of the insert members 60 and 62 , there will be a certain amount of play therebetween.
- the insert members 60 and 62 can be aligned easily with the slots 52 and 54 .
- the ROV can then lower the fly-in connector assembly 22 such that the insert members 60 and 62 are received, respectively, within the slots 52 and 54 .
- the extra space and play that is provided allows for this connection to be easily established.
- the torque bucket 42 and its end effector 44 are positioned outwardly of the receptacle 20 .
- the bottom of the insert members 60 and 62 will reside against the respective bottoms 56 of the slots 52 and 54 so as to establish a properly aligned position between the fly-in connector assembly 22 and the flowline connector 18 of the junction plate 16 .
- FIG. 4 shows the installation of the fly-in connector assembly 22 within the receptacle 20 such that the connector 24 of the fly-in connector assembly 22 is joined with the flowline connector 18 of the junction plate 16 .
- the connector 24 is a female connector that will reside in liquid-tight relationship over the exterior of the male connector 18 . As such, a suitable sealing relationship can be established therewith.
- the end effector 44 is connected with an actuator 70 .
- Actuator 70 has a threaded surface 72 formed on an exterior thereof. Threaded surface 72 will engage with the internal threads 74 of another portion 76 of the actuator 70 .
- the threaded surface 72 and the internal threads 74 are acme threads.
- FIG. 4 it can be seen that the insert member 62 resides against internal surface 80 of the slot 54 .
- the actuator 70 As the actuator 70 is rotated, the insert member 62 will move backward, away from the junction plate 16 , so as to be in surface-to-surface contact with flat surface 80 of the slot 54 .
- a bearing surface will be established between the end surface 82 of the insert member 62 and the bearing surface 80 of the slot 54 .
- a similar action will happen with respect to the insert member 60 and the slot 52 .
- the flow passageway 26 of the fly-in connector assembly 22 will open to the interior 88 of the connector 24 . As such, it will be in fluid communication with the flowline 86 of the flowline connector 80 .
- a sealing surface 90 is defined between the exterior of the male flowline connector 18 and the female connector 24 .
- Various seals can be placed in association with the sealing surface 90 so as to provide a strong sealing relationship therebetween. The nature of this sealing surface is described hereinafter in FIG. 5 .
- FIG. 5 illustrates the configuration of the sealing surface 90 .
- the sealing surface 90 is defined between the exterior surface of the male flowline connector 18 and the inside surface of the female connector 24 .
- a metal seal 92 is affixed in the area between the end 94 of the male flowline connector 18 and the inner shoulder 96 of the female connector 24 . As such, this metal seal 92 can provide a strong metal seal between these surfaces. Typically, the metal seal 92 will deform under the strong connection forces between the flowline connector 18 and the connector 24 of the fly-in connector assembly 22 . As such, a liquid-tight seal is formed at the interface between the male flowline connector 18 and the female connector 24 .
- a first elastomeric seal 98 is received within a notch 100 formed on the inner wall of the female connector 24 .
- This elastomeric seal 98 is in the nature of an O-ring seal.
- This O-ring elastomeric seal 98 will extend around the outer diameter of the male flowline connector 18 .
- the elastomeric seal 98 will provide a secondary liquid-tight seal at the sealing surface 90 .
- a second elastomeric seal 102 is received within an notch 104 formed on the inner wall of the female connector 24 . This second elastomeric seal 102 will extend around the outer surface of the male flowline connector 18 .
- the elastomeric seal 102 is in generally spaced relationship to the first elastomeric seal 98 .
- the second elastomeric seal 102 will provide a tertiary seal as to prevent the release of any hydraulic fluids through the sealing surface 90 .
- a hole 106 is formed through the wall of the female connector 24 . Hole 106 opens to the sealing surface 90 and is positioned between the first elastomeric seal 98 and the second elastomeric seal 102 . Hole 106 can allow well fluids to escape therethrough if the pressure of the well fluids is beyond the ability of the seals 92 and 98 to withstand. These fluids can be diverted outwardly of the hole 106 .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Quick-Acting Or Multi-Walled Pipe Joints (AREA)
- Earth Drilling (AREA)
Abstract
A subsea structure flowline connection assembly has a subsea structure with a flowline therein, a junction plate affixed to the subsea structure so as to support a flowline connector thereon, a receptacle affixed to or adjacent to the junction plate, and a fly-in connector assembly having a connector thereon. The connector of the fly-in connector assembly being engaged with the flowline connector of the junction plate. The fly-in connector assembly having a flow passageway in communication with the connector of the fly-in connector assembly. The receptacle has at least one slot formed therein. The fly-in connector assembly has an insert member slidably received by the slot. The fly-in connector assembly has an actuator coupled to the connector thereof so as to allow an ROV to rotate an end effector so as to move the connector of the fly-in connector assembly toward the flowline connector.
Description
- Not applicable.
- Not applicable.
- Not applicable.
- Not applicable.
- 1. Field of the Invention
- The present invention relates to subsea structure flowline connection systems. More particularly, the present invention the relates to systems whereby a fly-in connector is joined to subsea structures so as to establish a flow communication therewith. More particularly, the present invention the relates to a flowline connector assembly for use with large bore connections between the fly-in connector and the flowline connector.
- 2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
- Flowlines are used to interconnect pieces of subsea oil-field equipment for fluid communication. They generally take the form of somewhat flexible armoured hoses or pipes, provided with subsea matable connectors at either end. Typically, they are installed by being lowered into place from a pipe-laying vessel, with the final positioning and make-up of the end connectors carried out by divers or by an ROV. Short ROV-installable hoses and pipes are used to interconnect adjacent pieces of subsea equipment.
- Examples of subsea equipment that may be interconnected using flowlines include subsea Christmas trees, manifolds, capping stacks, blowout preventors or any other subsea structures that require hydraulic connections. This equipment is located on the seabed.
- When there are several different pieces of equipment to be interconnected, installation of the necessary pipes and flowlines can be time-consuming. An end of each flowline is generally lowered vertically to the seabed from a pipe-laying vessel. The flowline is then laid out horizontally between the points to be interconnected. The flowline ends must then be retrieved from the seabed bed by an ROV. The end connectors are aligned with the subsea equipment for make-up of the required fluid-tight connections.
- A known type of flowline has a first part mounted to a piece of subsea equipment, such as a wellhead, and a mating second part fitted to the end of a flowline. In use, the second part is lowered towards the sea bed and is stabbed from above into the first. A pivot arrangement then guides the second part and attached flowline so as to hinge over into a generally horizontal position, in which the flowline may be laid away along the sea bed, and in which the connector first and second mating parts are axially aligned for make-up of a fluid-tight connection between them.
- In order to connect various flowlines to items of equipment on the ocean floor, special connectors known as “flying leads” are often employed. The flying leads connect the ends of lines to subsea equipment, such as connecting to a control pod on a manifold or subsea tree at one end to an umbilical termination assembly at the other end. In shallow water, flying leads are connected to subsea equipment by divers. In deeper waters, one or more remotely-operated vehicles (ROV) are utilized.
- Different configurations of flying leads are presently available. Two types of flying leads for interconnecting the elements of a subsea production system are hydraulic flying leads or steel flying leads. Both types of leads may house lines for monitoring, control and, when necessary, chemical injection in the subsea system. Each type of lead has benefits and limitations.
- The hydraulic flying leads commonly are made up of thermoplastic hoses of various sizes and configurations. In known arrangement, a nylon “type 11” internal pressure sheath is utilized as the inner layer. A reinforcement layer is provided around the internal pressure sheath. A polyurethane outer sheath is bonded thereto so as to provide waterproofing. End fittings are provided on each end of the thermoplastic hoses. The end fittings are typically crimped or swaged onto the hose. Connected to the end fittings on each of the ends of the hoses is a multiple quick-connect junction plate. This plate provides the connection plate between the subsea equipment and communication lines. It is usually installed using ROV unit subsea.
- Steel flying leads presently being used define a collection of separate steel tubes bundled within a flexible vented plastic tube. Typically, a “Cobra” type end connection containing multiple quick-connect junction plate connections is provided at each end of the tubes. The individual tubes are routed into the respective end connections and welded into socket fitting in the opposing junction plate connections. These plates are usually installed by means of ROV units.
- One of the problems with the existing systems is that, while they are effective for small bores of less than two inches, they are extremely difficult to install with respect to large bore applications (of greater than two inches). In these large bore applications, the large pressures involve tend to create greater separation pressures. As such, they would generally be ineffective in supporting the connection under the effect of great pressures. As such, a need has developed so as to provide a subsea flowline connection assembly which can be used for large bore applications and which can withstand the great pressures involved in such applications.
- In the past, various patents have issued relating to subsea flowline connection assemblies. For example, U.S. Pat. No. 4,661,016, issued on Apr. 28, 1987 to Baugh et al., describes a subsea flowline connector for remotely connecting and releasing a first flowline to a complementary second flowline at a submerged location without the use of divers. Seals in the connector may be remotely replaced without the need to bring the connector to the surface. A bundle of control/supply lines are remotely connected to respective submerged lines at the same time as the flowline is connected.
- U.S. Pat. No. 4,728,125, issued on Mar. 1, 1988 to B. J. Reneau, describes a grip-and-seal mechanically-locking flowline connector. In particular, flowlines have separately actuated gripping and sealing assemblies which are actuated by hydraulic pressure but are held in actuated positions using internally mounted mechanical-type mechanisms.
- U.S. Pat. No. 5,468,023, issued on Nov. 21, 1995 to Galle et al., teaches a flowline connector which remotely connects subsea flowlines without the use of a diver. The flowline connector has a frame which supports a seal carrier plate assembly. Springs allow axial movement of the carrier plate assembly during engagement of mating hubs of flowlines. A metal seal carried by the carrier plate assembly engages conical seats in the hubs of the two flowlines. An elastomeric test seal located radially outward of the metal seal seals between flat faces of the hubs of the flowlines.
- U.S. Pat. No. 5,593,249, issued on Jan. 14, 1997 to Cox et al., provides a diverless flowline connection system for connecting a flowline to a subsea wellhead or other subsea structure. The diverless flowline connection system is used with an ROV. The diverless flowline connection system includes a frame assembly having clamping arms for mounting the frame assembly to the flowline. A pair of winches are mounted to the frame assembly. Each winch includes a winch line for attachment to the wellhead to which the flowline is to be connected. Each winch is independently controlled so that the lateral position of the flowline may be variously adjusted by controlling each of the winches.
- U.S. Pat. No. 5,730,551, issued on Mar. 24, 1998 to Skeels et al., discloses a subsea connector system and method using a skid on the sea floor for coupling a subsea conduit carried by the skid to a subsea conduit on a fixed subsea structure. A lift line device has an upper lift line connected by a spreader bar to a pair of lower guide lines which are directed from a vertical position to a generally horizontal position by J-tubes. The ends of the guide lines have anchor members thereon which are anchored to guides on the subsea facility. Upon raising of the upper lift line, the skid moves in a combined pulling and lifting motion to engage a side of the subsea facility for being guided into a docked position with aligned guides on the subsea facility. An ROV secures the skid into a releasably locked position by insertion of retainer pins into aligned openings of the skid. The coupling on the end of flowline conduit is coupled onto an aligned conduit on the subsea facility.
- U.S. Pat. No. 5,794,701, issued on Aug. 18, 1998 to Cunningham et al., teaches a subsea connection usable with subsea wellheads. A female receptacle end is provided on the wellhead which has connections to an umbilical or a flowline. The male end has an orientation lug for rough orientation. Once rough orientation is made, the male end is advanced into the female end and the shaft rotated by a ROV for alignment of lugs with a detent. Once the lugs advance past the detent, they are rotated so that a segment of the shaft on the male end of the connection can no longer turn. Further rotational movements by the ROV on another portion of the shaft advances a plate which makes up the connection.
- U.S. Pat. No. 5,807,027, issued on Sep. 15, 1998 to I. Ostergaard, shows a system for pull-in and interconnection of two pipelines in subsea position. A first pipeline is initially freely suspended. A second pipeline is mounted on a bottom-based manifold frame. The end section of the first pipeline is provided with a socket-like termination with a front end, which is provided with means for coupling of the terminator to complementary pipe coupling means on the second pipeline. The terminator is provided with a laterally-directed, longitudinally-shaped anchor member. The manifold frame is provided with receiving means for receipt and fixation of the anchor element. The anchor element and the receiving means are dimensioned and positioned such that when the anchor element is placed in position in the receiving means, the coupling means of the terminator will be positioned straight in front of the complementary coupling means on the second pipeline.
- U.S. Pat. No. 6,481,504, issued on Nov. 19, 2002 to N. Gatherar, provides a flowline connector having a first connector portion for mounting on a first piece of subsea equipment and a second connector portion attached to the end portion of a flowline. Each connector portion has a respective guide inter-engageable by lowering the second connector portion, on the end portion of the flowline, into the first connector portion. The guides allow the second connector portion to pivot relative to the first connector portion to bring the first connector portion and the second connector portion into axial alignment for make-up of a fluid-tight connection therebetween.
- U.S. Pat. No. 6,805,382, issued on Oct. 19, 2004 to C. E. Jennings, describes a one-stroke soft-land flowline connector. A frame is used to land on a base and soft land a connector receptacle on the end of a flowline to a mandrel protruding from the base. After the frame lands on the base, the frame and the receptacle are pushed toward the base so as to cause frame latching members to latch the frame to the base. The frame holds the base and the receptacle above the mandrel. The frame and receptacle are pushed further towards the base and the connector receptacle abuts the mandrel. The connector receptacle moves relative to the frame as the frame is pushed closer to the base. This causes an actuator on the frame to move dogs on the receptacle to engage the mandrel and lock the receptacle to the mandrel.
- U.S. Pat. No. 6,098,715, issued on Aug. 8, 2000 to Seixas et al., provides a flowline connection system having a pivotally-mounted funnel which is a permanent part of a subsea structure. The funnel is rotatably mounted so as to rotate from a vertical position to a horizontal position. Retractable pins engage a slot in the funnel to lock the funnel in a vertical position. This allows the funnel to rotate to the horizontal position to engage a hub connector. A flowline end termination stabs into the funnel while the funnel is in the vertical position. The flowline termination body has a flange connector on one end that connects to a flexible flowline.
- U.S. Pat. No. 6,902,199, issued on Jun. 7, 2005 to Colyer et al., provides an ROV-activated subsea connector so as to connect a subsea flowline to a subsea connector hub. The connector has a frame with a tubular mandrel located within it. The mandrel connects to the flowline and has a forward end that engages the connector end. The mandrel moves axially relative to the frame between retracted and extended positions. A lock member on the forward end of the mandrel will engage the profile of the connector hub. An actuator mounted to the mandrel causes the lock member to move into engagement with the connector hub after the mandrel has been moved into engagement with the connector hub.
- U.S. Pat. No. 7,112,009, issued on Sep. 26, 2006 to C. Mackinnon, provides an apparatus for substantially horizontal connection of a conduit to a subsea structure. A frame connectable to and supportable by the subsea structure. The frame has a docking device operable to allow a horizontal connection device to dock with the frame such that the frame is capable of bearing at least part of an operational load associated with the horizontal connection of the conduit to the subsea structure.
- U.S. Patent Publication No. 2007/0227740, published on Oct. 4, 2007 to Fontenette et al., discloses a flying lead connector and method for making subsea connections. The flying lead arrangement is configured to provide fluid communication between a first item of subsea equipment and a second item of subsea equipment. The flying lead includes a first substantially rigid end kit disposed at a first end of the flying lead and a second substantially rigid end kit disposed at a second end of the flying lead. A substantially rigid midsection is defined between the first end kit and the second end kit. At least one fluid communication line is disposed within the midsection so as to provide fluid communication between the items of subsea equipment.
- U.S. Patent Publication No. 2009/0283274, published on Nov. 19, 2009 to M. R. Lugo, discloses a connector assembly for connecting a hot stab to a hydraulic hose. The hot stab has a fluid conduit connector thereon. A hydraulic hose has a connector assembly at an end thereof suitable for joining to the fluid conduit connector of the hot stab. A sleeve is affixed to the hot stab and to the hydraulic hose so as to extend over and surround the fluid conduit connector and the connector assembly. A jam nut is affixed to the tubular portion of the fluid conduit connector. The sleeve is threadedly connected to the threaded exterior surface of the jam nut.
- It is an object of the present invention to provide a subsea flowline connection system which is particularly configured to withstand the high pressures associated with large bore applications.
- It is another object of the present invention to provide a subsea flowline connection system which facilitates the ability of an ROV to join the fly-in connector to the flowline connector of the subsea structure.
- It is still another object of the present invention to provide a subsea flowline connection system which allows the large pressures from the flowline of the subsea structure to be distributed over structural surfaces of the fly-in connector.
- It is still another object of the present invention to provide a subsea flowline connection system which effects a secure and strong seal between the fly-in connector and the flowline connector.
- These and other objects and advantages of the present invention will become apparent from a reading of the attached specification and appended claims.
- The present invention is a subsea flowline connection assembly having a flowline therein, a junction plate affixed to the subsea structure so as to support a flowline connector thereon, a receptacle affixed to or adjacent to the junction plate, and a fly-in connector assembly having a connector thereon. The receptacle has an interior opening to the flowline connector of the junction plate. The connector of the fly-in connector assembly is engaged with the flowline connector of the junction plate. The fly-in connector assembly has a flow passageway in communication with the connector of the fly-in connector assembly.
- The flowline connector has a male connector at an end thereof. The connector of the flowline connector assembly has a female connector overlying the male connector in liquid-tight sealing relationship. The male connector defines a sealing surface with the female connector. The sealing surface has a metal seal at an end thereof. The sealing surface also has a first elastomeric seal extending around the male connector. The sealing surface further has a second elastomeric seal extending around the male connector in spaced relationship to the first elastomeric seal. A hole extends through a wall of the female connector. This hole has an opening at the sealing surface between the first elastomeric seal and the second elastomeric seal.
- The fly-in connector has an actuator coupled to the connector thereof. The actuator has an end effector suitable for allowing an ROV to rotate the end effector and the actuator so as to move the connector of the fly-in connector assembly toward the flowline connector. The actuator is a threaded member arranged in threaded relationship with the fly-in connector assembly.
- The receptacle includes a first plate and a second plate in spaced relation to the first plate. Each of the first and second plates has an end positioned against or adjacent to the junction plate. Each of the first and second plates has a slot formed adjacent an opposite end thereof. The fly-in connector assembly has a first insert member and second insert member formed on opposite sides thereof. The first insert member is received in the slot of the first plate. The second insert member is received in the slot of the second plate. Each of the first and second insert members has a wing shape tapering such that a wide end is joined to the fly-in connector assembly and such that a narrow end is away from the fly-in connector assembly. The wing shape has a flat surface at an end thereof. The slot has a bearing surface thereon. The flat surface bears against the bearing surface. The slot of the first and second plates has a bottom surface. Each of the first and second insert members has a bottom abutting the bottom surface of the slots. The slot also has walls spaced from each other for a distance greater than a width of the insert member.
- Each of the first and second plates is directly affixed to the subsea structure. The junction plate has a slot formed therein adjacent the flowline connector. The fly-in connector assembly has a key extending outwardly therefrom. This key is received by the slot.
- The flow passageway comprising a conduit extending downwardly and outwardly from the fly-in connector assembly. The fly-in connector assembly also has a brace affixed thereto. This brace is affixed to the conduit.
- This foregoing section intends to be a summary of the preferred embodiment of the present invention. As such, the language used in this section is not intended to limiting of the various embodiments and configurations that are possible within scope of the present invention. The present invention should be defined by the claims herein and not by the foregoing section.
-
FIG. 1 is a perspective view showing the subsea flowline connection assembly of the present invention with the fly-in connector assembly in spaced relationship to the junction plate and receptacle of the subsea structure. -
FIG. 2 is a close-up perspective view showing the positioning of the fly-in connector assembly adjacent to the junction plate and receptacle. -
FIG. 3 is a perspective view showing the positioning of the fly-in connector assembly within the receptacle. -
FIG. 4 is a cross-sectional view showing the installation of the fly-in connector assembly with the junction plate and associated flowline connector of the subsea structure. -
FIG. 5 is a cross-sectional view showing the sealing relationship between the male portion of the flowline connector and the female portion of the connector fly-in connector assembly. - Referring to
FIG. 1 , there is shown the subseaflowline connection assembly 10 in accordance with the preferred embodiment of the present invention. The subseaflowline connection assembly 10 includes asubsea structure 12 having aflowline 14 therein. Ajunction plate 16 is affixed to thesubsea structure 12. Thisjunction plate 16 supports aflowline connector 18 thereon. Areceptacle 20 is affixed to or adjacent to thejunction plate 16. Thereceptacle 20 has an interior opening to theflowline connector 18 of thejunction plate 16. A fly-inconnector assembly 22 has aconnector 24 thereon. Theconnector 24 will be engaged with theflowline connector 18 of thejunction plate 16. The fly-inconnector assembly 22 also has aflow passageway 26 in communication with theconnector 24. - In
FIG. 1 , it can be seen that thesubsea structure 12 is in the nature of a capping stack or a flow diverter. However, within the concept of the present invention, such a “subsea structure” can take on a wide variety of configurations. For example, the subsea structure can be a flow stack, a blowout preventer, a manifold, a Christmas tree, or any other subsea application that requires hydraulic connections. In particular, thesubsea structure 12 is a high pressure structure that utilizes large bore hydraulic connections. Typically, these large bore hydraulic connections will be in the order of two inches or greater in diameter. However, the dimensions of such a large bore should not be construed, in any way, as limiting of the present invention. Typically, thesubsea structure 12 will be placed on the seabed. Thejunction plate 16 is affixed to theflowline connector 18. In other words, thisjunction plate 16 is a surface that allows for fly-inconnector assembly 22 to have itsconnector 24 joined thereto. Typically, thejunction plate 16, along with theflowline connector 18, will be supported adjacent an exterior surface of thesubsea structure 12. - The
receptacle 20 is directly bolted byflange plates subsea structure 12. Thereceptacle 20 can also be directly affixed to thejunction plate 16. In any circumstances, thereceptacle 20 will be positioned at least adjacent to thejunction plate 16 and positioned around theflowline connector 18. The direct affixing of thereceptacle 20 through the use offlange plates receptacle 20 to be directly supported by thesubsea structure 12. As such, this will avoid any undesired bending moment imparted to thejunction plate 16 and/or to theflowline 14 or theflowline connector 18. - The
receptacle 20 includes afirst plate 32 and asecond plate 34 arranged in generally spaced parallel relationship on opposite sides of theflowline connector 18. As such, theseplates flowline connector 18. As will be described hereinafter, each of theplates junction plate 16 that can be used for the receipt of the fly-inconnector assembly 22. - The fly-in
connector assembly 22 has theconnector 24 at one end thereof. Theflow passageway 26 is in nature of a conduit that will communicate with an interior of the fly-inconnector assembly 22 adjacent to theconnector 24. Abrace 36 extends so as to be engaged with the body of the fly-inconnector assembly 22 and with theflow passageway 26. As such, theflow passageway 26 is rigidly support by the fly-inconnector assembly 22. - The fly-in
connector assembly 22 has a key 28 extending radially outwardly therefrom. This key 38 can be engaged with aslot 40 in thejunction plate 16 adjacent to theflowline connector 18. The fly-inconnector assembly 22 also includes atorque bucket 42 at an end thereof opposite theconnector 24. Anend effector 44 is positioned within thetorque bucket 42. Theend effector 44 can be utilized by an ROV so as to carry out the necessary function of connecting theconnector 24 to theflowline connector 18, to be described hereinafter. - In use, the fly-in
connector assembly 22 can be lowered by winch and line to the seabed adjacent to thesubsea structure 12. An ROV can grasp the fly-inconnector assembly 22 so as to move the fly-inconnector assembly 22 to a position, such as illustrated inFIG. 1 , in proximity to thereceptacle 20. The torque tool of the ROV can then be applied to theend effector 44 within thetorque bucket 42 so as to properly attach the fly-inconnector assembly 22 to thejunction plate 16 and theflowline connector 18. -
FIG. 2 shows the positioning of the fly-inconnector assembly 22 relative to thereceptacle 20. InFIG. 2 , thereceptacle 20 has afirst plate 32 and asecond plate 34 in generally spaced parallel relationship.Flange plates plates flange plates plates flange plates subsea structure 12. Thejunction plate 16 extends between theplates flowline connector 18 is positioned by thejunction plate 16 so as to securely mount theflowline connector 18 thereto. It can be seen that theflowline connector 18 is a male connector having a sealing surface on exterior surface thereof.Support bracket 50 is shown as affixed to theplate 34 and to thejunction plate 16 so as to provide structural support thereto. - The
receptacle 20 has aslot 52 formed at an end thereof opposite thejunction plate 16. Theplate 34 has aslot 54 formed at an end thereof opposite thejunction plate 16.Slot 54 has abottom surface 56 at a lower end thereof. Each of theslots connector assembly 22 can be received therein. - The fly-in
connector assembly 22 is illustrated as in a position slightly above thereceptacle 20. Theconnector 24 of the fly-inconnector assembly 22 is located at one end thereof. Thetorque bucket 42 is positioned at an opposite end thereof. Theflow passageway 26 is a conduit that extends downwardly and outwardly from the body of the fly-inconnector assembly 22. Ultimately, theflow passageway 26 has anotherconnector 58 formed therein so as to allow theflow passageway 26 to be joined to another conduit in a conventional manner. - The fly-in
connector assembly 22 includes afirst insert member 60 andsecond insert member 62 extending outwardly therefrom. Each of theinsert members connector assembly 22 and a narrow end away from the fly-inconnector assembly 22. Generally, the width of each of theinserts members respective slots receptacle 20. The key 38 is illustrated as extending upwardly from the top of the fly-inconnector assembly 22. Also, thebrace 36 extends downwardly so as to be rigidly secured to theflow passageway 26. - In
FIG. 3 , it can be seen that the fly-inconnector assembly 22 has been received within thereceptacle 20. In particular, theplates connector assembly 22. Theconnector 24 of the fly-inconnector assembly 22 is illustrated in a position suitable for being joined to theflowline connector 18 at thejunction plate 16. - Importantly,
FIG. 3 shows that theinsert member 60 is inserted into theslot 52 of theplate 32. Similarly, theinsert member 62 is inserted within theslot 54 of theplate 34. Since each of theslots insert members connector assembly 22 into a position above thereceptacle 20, theinsert members slots connector assembly 22 such that theinsert members slots torque bucket 42 and itsend effector 44 are positioned outwardly of thereceptacle 20. Ultimately, the bottom of theinsert members respective bottoms 56 of theslots connector assembly 22 and theflowline connector 18 of thejunction plate 16. -
FIG. 4 shows the installation of the fly-inconnector assembly 22 within thereceptacle 20 such that theconnector 24 of the fly-inconnector assembly 22 is joined with theflowline connector 18 of thejunction plate 16. Theconnector 24 is a female connector that will reside in liquid-tight relationship over the exterior of themale connector 18. As such, a suitable sealing relationship can be established therewith. Theend effector 44 is connected with anactuator 70.Actuator 70 has a threadedsurface 72 formed on an exterior thereof. Threadedsurface 72 will engage with the internal threads 74 of anotherportion 76 of theactuator 70. The threadedsurface 72 and the internal threads 74 are acme threads. The rotation of theend effector 44 by a suitable torque tool from an ROV will cause a rotation of theactuator portion 70. This rotation will cause the internal thread 74 to react with theexternal threads 72 so as to cause theactuator portion 76 to move inwardly. As such, theconnector 24 will be pushed toward theflowline connector 18 such that the female connector engages with the male connector in a tight and fixed manner. A strong mechanical connection is established between theconnector 24 of the fly-inconnector assembly 22 and theflowline connector 18. - In
FIG. 4 , it can be seen that theinsert member 62 resides againstinternal surface 80 of theslot 54. As theactuator 70 is rotated, theinsert member 62 will move backward, away from thejunction plate 16, so as to be in surface-to-surface contact withflat surface 80 of theslot 54. As such, a bearing surface will be established between theend surface 82 of theinsert member 62 and the bearingsurface 80 of theslot 54. A similar action will happen with respect to theinsert member 60 and theslot 52. - When a strong mechanical connection is established between the
connector 24 and theflowline connector 18, the strong hydraulic forces passing through the interior 86 of theflowline connector 80 and through the interior of theconnector 24 will be resisted by the mechanical connection between the threaded surfaces 72 and 74 of theactuator 70. The bearing surfaces 82 of theinsert member 62 against theflat surface 80 of theslot 54 provide a secondary bearing surface for the hydraulic connection. As such, the hydraulic forces are effectively resisted by the strong mechanical connections between these surfaces. - The
flow passageway 26 of the fly-inconnector assembly 22 will open to the interior 88 of theconnector 24. As such, it will be in fluid communication with theflowline 86 of theflowline connector 80. - A sealing
surface 90 is defined between the exterior of themale flowline connector 18 and thefemale connector 24. Various seals can be placed in association with the sealingsurface 90 so as to provide a strong sealing relationship therebetween. The nature of this sealing surface is described hereinafter inFIG. 5 . -
FIG. 5 illustrates the configuration of the sealingsurface 90. As can be seen, the sealingsurface 90 is defined between the exterior surface of themale flowline connector 18 and the inside surface of thefemale connector 24. Ametal seal 92 is affixed in the area between theend 94 of themale flowline connector 18 and theinner shoulder 96 of thefemale connector 24. As such, thismetal seal 92 can provide a strong metal seal between these surfaces. Typically, themetal seal 92 will deform under the strong connection forces between theflowline connector 18 and theconnector 24 of the fly-inconnector assembly 22. As such, a liquid-tight seal is formed at the interface between themale flowline connector 18 and thefemale connector 24. - A first
elastomeric seal 98 is received within anotch 100 formed on the inner wall of thefemale connector 24. Thiselastomeric seal 98 is in the nature of an O-ring seal. This O-ringelastomeric seal 98 will extend around the outer diameter of themale flowline connector 18. As such, theelastomeric seal 98 will provide a secondary liquid-tight seal at the sealingsurface 90. A secondelastomeric seal 102 is received within annotch 104 formed on the inner wall of thefemale connector 24. This secondelastomeric seal 102 will extend around the outer surface of themale flowline connector 18. Theelastomeric seal 102 is in generally spaced relationship to the firstelastomeric seal 98. The secondelastomeric seal 102 will provide a tertiary seal as to prevent the release of any hydraulic fluids through the sealingsurface 90. Ahole 106 is formed through the wall of thefemale connector 24.Hole 106 opens to the sealingsurface 90 and is positioned between the firstelastomeric seal 98 and the secondelastomeric seal 102.Hole 106 can allow well fluids to escape therethrough if the pressure of the well fluids is beyond the ability of theseals hole 106. - The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction can be made within the scope of the appended claims without departing from the true spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.
Claims (20)
1. An apparatus comprising:
a subsea structure having a flowline therein;
a junction plate affixed to said subsea structure, said junction plate supporting a flowline connector thereon, said flowline connector connected to said flowline of said subsea structure;
a receptacle affixed to or adjacent to said junction plate, said receptacle having an interior opening to said flowline connector of said junction plate; and
a fly-in connector assembly having a connector thereon, said connector of said fly-in connector assembly engaged with said flowline connector of said junction plate, said fly-in connector assembly having a flow passageway in communication with said connector of said fly-in connector assembly.
2. The apparatus of claim 1 , said flowline connector being a male connector, said connector of said fly-in connector assembly being a female connector overlying said male connector in liquid-tight sealing relationship.
3. The apparatus of claim 2 , said male connector defining a sealing surface with said female connector, said sealing surface having a metal seal at an end thereof.
4. The apparatus of claim 3 , said sealing surface having a first elastomeric seal extending around said male connector and a second elastomeric seal extending around said male connector in spaced relationship to said first elastomeric seal.
5. The apparatus of claim 4 , further comprising:
a hole extending through a wall of said female connector, said hole having an opening at said sealing surface between said first elastomeric seal and said second elastomeric seal.
6. The apparatus of claim 1 , said fly-in connector assembly having an actuator coupled to said connector thereof, said actuator having an end effector suitable for allowing an ROV to rotate said end effector and said actuator so as to move said connector of said fly-in connector assembly toward said flowline connector.
7. The apparatus of claim 6 , said actuator comprising a threaded member in threaded relation with said fly-in connector assembly.
8. The apparatus of claim 1 , said receptacle comprising:
a first plate; and
a second plate in spaced relation to said first plate, each of said first and second plates having an end positioned against or adjacent to said junction plate.
9. The apparatus of claim 8 , each of said first and second plates having a slot formed adjacent an opposite end thereof, said fly-in connector assembly having a first insert member and second insert member formed on opposite sides thereof, said first insert member received in said slot of said first plate, said second insert member received in said slot of said second plate.
10. The apparatus of claim 9 , each of said first and second insert members having a wing shape tapering such that a wide end is joined to said fly-in connector assembly and such that a narrow end is away from said fly-in connector assembly.
11. The apparatus of claim 10 , said wing shape having a flat surface at an end thereof, said slot having a bearing surface thereon, said flat surface bearing against said bearing surface.
12. The apparatus of claim 9 , said slot of said first and second plates having a bottom surface, each of said first and second insert members having a bottom abutting said bottom surface of the slots.
13. The apparatus of claim 9 , said slot having walls spaced from each other for a distance greater than a width of the insert member.
14. The apparatus of claim 8 , each of said first and second plates being directly affixed to said subsea structure.
15. The apparatus of claim 1 , said junction plate having a slot formed therein adjacent said flowline connector, said fly-in connector assembly having a key extending outwardly therefrom, said key received by said slot.
16. The apparatus of claim 1 , said flow passageway comprising a conduit extending downwardly and outwardly from said fly-in connector assembly, said fly-in connector assembly having a brace affixed thereto, said brace affixed to said conduit.
17. A subsea structure flowline connector assembly for a subsea structure comprising:
a junction plate having a flowline connector therein;
a receptacle affixed to or adjacent to said junction plate, said receptacle having an interior opening to said flowline connector of said junction plate; and
a fly-in connector assembly having a connector thereon, said connector of said fly-in connector assembly engaged with said flowline connector of said junction plate, said fly-in connector assembly having a flow passageway in communication with said connector of said fly-in connector assembly.
18. The subsea structure flowline connector assembly of claim 17 , said receptacle having at least one slot formed thereon, said fly-in connector assembly having an insert member extending therefrom, said insert member slidably received by the slot.
19. The subsea structure flowline connector assembly of claim 17 , said fly-in connector assembly having an actuator coupled to said connector thereof, said actuator having an end effector suitable for allowing an ROV to rotate said end effector and said actuator so as to move said connector of said fly-in connector assembly toward said flowline connector, said actuator comprising a threaded member in threaded relation with said fly-in connector assembly.
20. The subsea structure flowline connector assembly of claim 17 , said flowline connector being a male connector, said connector of said fly-in connector assembly being a female connector overlying said male connector in liquid-tight sealing relationship, said male connector defining a sealing surface with said female connector, said sealing surface having a metal seal at an end thereof, said sealing surface having a first elastomeric seal extending around said male connector.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/316,907 US20130146301A1 (en) | 2011-12-12 | 2011-12-12 | Subsea structure flowline connector assembly |
EP12858293.9A EP2791461B1 (en) | 2011-12-12 | 2012-12-11 | Subsea structure flowline connector assembly |
SG2013059506A SG192628A1 (en) | 2011-12-12 | 2012-12-11 | Subsea structure flowline connector assembly |
AU2012353016A AU2012353016B2 (en) | 2011-12-12 | 2012-12-11 | Subsea structure flowline connector assembly |
PCT/SG2012/000466 WO2013089643A1 (en) | 2011-12-12 | 2012-12-11 | Subsea structure flowline connector assembly |
US14/355,167 US9163486B2 (en) | 2011-12-12 | 2012-12-11 | Subsea structure flowline connector assembly |
PCT/US2012/069182 WO2013090388A1 (en) | 2011-12-12 | 2012-12-12 | Subsea structure flowline connector assembly |
NO13768513A NO2831105T3 (en) | 2011-12-12 | 2013-03-28 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/316,907 US20130146301A1 (en) | 2011-12-12 | 2011-12-12 | Subsea structure flowline connector assembly |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/355,167 Continuation-In-Part US9163486B2 (en) | 2011-12-12 | 2012-12-11 | Subsea structure flowline connector assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130146301A1 true US20130146301A1 (en) | 2013-06-13 |
Family
ID=48570932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/316,907 Abandoned US20130146301A1 (en) | 2011-12-12 | 2011-12-12 | Subsea structure flowline connector assembly |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130146301A1 (en) |
EP (1) | EP2791461B1 (en) |
AU (1) | AU2012353016B2 (en) |
NO (1) | NO2831105T3 (en) |
SG (1) | SG192628A1 (en) |
WO (2) | WO2013089643A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016038396A1 (en) * | 2014-09-14 | 2016-03-17 | Subsea Technologies Limited | Flow line connector assembly |
WO2017109579A1 (en) * | 2015-12-22 | 2017-06-29 | Technip France | Direct tie-in method |
WO2017173147A1 (en) * | 2016-03-30 | 2017-10-05 | Oceaneering International, Inc. | Compact distributed subsea distribution of hydraulic power and chemical injection |
US10100618B2 (en) * | 2016-05-11 | 2018-10-16 | Onesubsea Ip Uk Limited | Bore connector engagement technique |
EP3444428A1 (en) | 2017-08-16 | 2019-02-20 | Trendsetter Engineering, Inc. | Subsea connection system for connecting a hot stab of a flowline to a subsea structure |
US10605393B2 (en) | 2015-04-02 | 2020-03-31 | Subsea Technologies Limited | Flow line connector assembly |
CN116409452A (en) * | 2023-04-10 | 2023-07-11 | 南京全信传输科技股份有限公司 | Seabed power communication pressure-resistant cabin with adjustable function and disassembly and assembly method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3840071A (en) * | 1972-06-26 | 1974-10-08 | Stewart & Stevenson Inc Jim | Underwater connector for wellheads |
US4842075A (en) * | 1987-06-09 | 1989-06-27 | Mobil Oil Corporation | Subsea flowline connection system |
US5024467A (en) * | 1988-09-21 | 1991-06-18 | S.A. Des Etablissements Staubli | Device for coupling element-holding plates of multiple connections |
US5417459A (en) * | 1994-02-24 | 1995-05-23 | Sonsub, Inc. | Subsea umbilical connector |
US5807027A (en) * | 1994-05-06 | 1998-09-15 | Abb Offshore Technology As | Connection system for subsea pipelines |
US6805382B2 (en) * | 2002-03-06 | 2004-10-19 | Abb Vetco Gray Inc. | One stroke soft-land flowline connector |
US20060180313A1 (en) * | 2005-02-11 | 2006-08-17 | Oceaneering International, Inc. | Subsea hydraulic junction plate actuator with R.O.V. mechanical override |
US20100059229A1 (en) * | 2008-09-11 | 2010-03-11 | Deep Down, Inc. | Loose tube flying lead assembly |
US20100139925A1 (en) * | 2007-03-16 | 2010-06-10 | Lewis Limited | Connector |
US20120168168A1 (en) * | 2010-11-22 | 2012-07-05 | Keith David Cruden | System and method for connection and installation of underwater lines |
US20120279718A1 (en) * | 2011-05-03 | 2012-11-08 | Svend Erik Rocke | Method for connecting two coupling parts of a subsea coupling arrangement to each other |
US8387702B2 (en) * | 2007-05-31 | 2013-03-05 | Cameron International Corporation | Multicoupler |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075862A (en) * | 1976-09-15 | 1978-02-28 | Fmc Corporation | Method and apparatus for installing underwater flowlines |
JPS5663189A (en) * | 1979-10-24 | 1981-05-29 | Mac Evoy Oilfield Equipment | Cnnecting and sealing device of flow line |
GB2176559B (en) * | 1985-06-05 | 1989-04-26 | Vetco Offshore Ind Inc | Diverless flowline connection and pull-in system |
US5593249A (en) * | 1995-05-02 | 1997-01-14 | Sonsub, Inc. | Diverless flowline connection system |
US5730551A (en) * | 1995-11-14 | 1998-03-24 | Fmc Corporation | Subsea connector system and method for coupling subsea conduits |
US5788291A (en) * | 1996-07-19 | 1998-08-04 | Williams; Jack R. | Detachable hose assembly with debris cavity |
US6098715A (en) * | 1997-07-30 | 2000-08-08 | Abb Vetco Gray Inc. | Flowline connection system |
GB0005013D0 (en) * | 2000-03-02 | 2000-04-19 | Rockwater Limited | Connector |
WO2004106696A1 (en) * | 2003-05-28 | 2004-12-09 | Vetco Aibel As | A spool piece termination structure, a connection arrangement comprising such a termination structure and a pipeline termination |
NO321979B1 (en) * | 2004-06-30 | 2006-07-31 | Vetco Aibel As | A pipeline coupling frame, a coupling device comprising such a pipeline coupling frame, and a pipeline termination |
GB0625227D0 (en) * | 2006-12-19 | 2007-01-24 | Aker Kvaerner Subsea Ltd | Subsea couplers |
NO329288B1 (en) * | 2007-12-21 | 2010-09-27 | Fmc Kongsberg Subsea As | Tool and method for connection of pipelines |
-
2011
- 2011-12-12 US US13/316,907 patent/US20130146301A1/en not_active Abandoned
-
2012
- 2012-12-11 AU AU2012353016A patent/AU2012353016B2/en active Active
- 2012-12-11 WO PCT/SG2012/000466 patent/WO2013089643A1/en active Application Filing
- 2012-12-11 SG SG2013059506A patent/SG192628A1/en unknown
- 2012-12-11 EP EP12858293.9A patent/EP2791461B1/en active Active
- 2012-12-12 WO PCT/US2012/069182 patent/WO2013090388A1/en not_active Application Discontinuation
-
2013
- 2013-03-28 NO NO13768513A patent/NO2831105T3/no unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3840071A (en) * | 1972-06-26 | 1974-10-08 | Stewart & Stevenson Inc Jim | Underwater connector for wellheads |
US4842075A (en) * | 1987-06-09 | 1989-06-27 | Mobil Oil Corporation | Subsea flowline connection system |
US5024467A (en) * | 1988-09-21 | 1991-06-18 | S.A. Des Etablissements Staubli | Device for coupling element-holding plates of multiple connections |
US5417459A (en) * | 1994-02-24 | 1995-05-23 | Sonsub, Inc. | Subsea umbilical connector |
US5807027A (en) * | 1994-05-06 | 1998-09-15 | Abb Offshore Technology As | Connection system for subsea pipelines |
US6805382B2 (en) * | 2002-03-06 | 2004-10-19 | Abb Vetco Gray Inc. | One stroke soft-land flowline connector |
US20060180313A1 (en) * | 2005-02-11 | 2006-08-17 | Oceaneering International, Inc. | Subsea hydraulic junction plate actuator with R.O.V. mechanical override |
US20100139925A1 (en) * | 2007-03-16 | 2010-06-10 | Lewis Limited | Connector |
US8387702B2 (en) * | 2007-05-31 | 2013-03-05 | Cameron International Corporation | Multicoupler |
US20100059229A1 (en) * | 2008-09-11 | 2010-03-11 | Deep Down, Inc. | Loose tube flying lead assembly |
US20120168168A1 (en) * | 2010-11-22 | 2012-07-05 | Keith David Cruden | System and method for connection and installation of underwater lines |
US20120279718A1 (en) * | 2011-05-03 | 2012-11-08 | Svend Erik Rocke | Method for connecting two coupling parts of a subsea coupling arrangement to each other |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016038396A1 (en) * | 2014-09-14 | 2016-03-17 | Subsea Technologies Limited | Flow line connector assembly |
GB2545852A (en) * | 2014-09-14 | 2017-06-28 | Subsea Tech Ltd | Flow line connector assembly |
GB2545852B (en) * | 2014-09-14 | 2019-03-13 | Subsea Tech Limited | Flow line connector assembly |
US10605393B2 (en) | 2015-04-02 | 2020-03-31 | Subsea Technologies Limited | Flow line connector assembly |
WO2017109579A1 (en) * | 2015-12-22 | 2017-06-29 | Technip France | Direct tie-in method |
US11162329B2 (en) | 2015-12-22 | 2021-11-02 | Technip France | Direct tie-in method |
WO2017173147A1 (en) * | 2016-03-30 | 2017-10-05 | Oceaneering International, Inc. | Compact distributed subsea distribution of hydraulic power and chemical injection |
US10100618B2 (en) * | 2016-05-11 | 2018-10-16 | Onesubsea Ip Uk Limited | Bore connector engagement technique |
EP3444428A1 (en) | 2017-08-16 | 2019-02-20 | Trendsetter Engineering, Inc. | Subsea connection system for connecting a hot stab of a flowline to a subsea structure |
US10753182B2 (en) | 2017-08-16 | 2020-08-25 | Trendsetter Engineering, Inc. | Subsea connection system for connecting a hot stab of a flowline to a subsea structure |
CN116409452A (en) * | 2023-04-10 | 2023-07-11 | 南京全信传输科技股份有限公司 | Seabed power communication pressure-resistant cabin with adjustable function and disassembly and assembly method |
Also Published As
Publication number | Publication date |
---|---|
EP2791461B1 (en) | 2018-02-21 |
WO2013089643A1 (en) | 2013-06-20 |
WO2013090388A1 (en) | 2013-06-20 |
EP2791461A4 (en) | 2016-08-03 |
AU2012353016B2 (en) | 2017-09-14 |
AU2012353016A1 (en) | 2014-03-13 |
EP2791461A1 (en) | 2014-10-22 |
SG192628A1 (en) | 2013-09-30 |
NO2831105T3 (en) | 2018-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9163486B2 (en) | Subsea structure flowline connector assembly | |
US20130146301A1 (en) | Subsea structure flowline connector assembly | |
US6742594B2 (en) | Flowline jumper for subsea well | |
US10753182B2 (en) | Subsea connection system for connecting a hot stab of a flowline to a subsea structure | |
US9617819B2 (en) | Subsea collet connection system | |
US11629559B2 (en) | Apparatus for connecting drilling components between rig and riser | |
US7806187B2 (en) | Connector assembly for connecting a hot stab to a hydraulic hose | |
US11708727B2 (en) | Connection system for a marine drilling riser | |
US8961070B1 (en) | Subsea pipe connection system and process | |
EP3241976A1 (en) | Subsea connector | |
US11268332B2 (en) | Self-aligning, multi-stab connections for managed pressure drilling between rig and riser components | |
US20200408072A1 (en) | Apparatus for Accessing Subsea Production Flow Systems | |
US11506319B2 (en) | Hot tap assembly and method | |
US20160153256A1 (en) | Mono bore riser adapter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRENDSETTER ENGINEERING, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUGO, MARIO R.;REEL/FRAME:027448/0440 Effective date: 20111220 |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |