US20130131953A1 - Anti-Sticking And Diagnostic Strategy For Exhaust System Valves - Google Patents

Anti-Sticking And Diagnostic Strategy For Exhaust System Valves Download PDF

Info

Publication number
US20130131953A1
US20130131953A1 US13/300,941 US201113300941A US2013131953A1 US 20130131953 A1 US20130131953 A1 US 20130131953A1 US 201113300941 A US201113300941 A US 201113300941A US 2013131953 A1 US2013131953 A1 US 2013131953A1
Authority
US
United States
Prior art keywords
wastegate
electronically controlled
engine
valve
diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/300,941
Other versions
US8849548B2 (en
Inventor
Aaron Conrad Luft
Daniel Streutker
Rammohan Sankar
Travis Eugene Barnes
Gregory L. Armstrong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US13/300,941 priority Critical patent/US8849548B2/en
Assigned to CATERPILLAR INC. reassignment CATERPILLAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STREUTKER, Daniel, ARMSTRONG, GREGORY L., LUFT, AARON CONRAD, BARNES, TRAVIS EUGENE, SANKAR, RAMMOHAN
Priority to DE112012004837.7T priority patent/DE112012004837T5/en
Priority to PCT/US2012/065243 priority patent/WO2013078061A1/en
Priority to CN201280057164.7A priority patent/CN103946513B/en
Publication of US20130131953A1 publication Critical patent/US20130131953A1/en
Application granted granted Critical
Publication of US8849548B2 publication Critical patent/US8849548B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates generally to engine systems with electronically controlled valves located in the exhaust system, and more particularly to proactive diagnostics to detect and avoid stuck closed valve fault conditions.
  • Today's engine systems are often equipped with one or more turbochargers, an exhaust gas circulation system and electronically controlled valves in the exhaust system to control compressor bypass pathways, turbine bypass pathways, mass flow rate of exhaust gas recirculated and other known control features.
  • An exhaust pathway that avoids the turbine is often controlled by what is termed in the art as a wastegate valve.
  • the wastegate valve may be opened to channel exhaust directly from the exhaust manifold toward the tailpipe, without imparting energy to the turbocharger. Due to varying temperatures and the constituents in the engine exhaust, these valves can accumulate a build-up of hydrocarbons, soot and other compounds that inhibit proper operation to the extent that the valve can sometimes be stuck closed.
  • U.S. Patent Publication 2009/0164106 teaches opening and closing an EGR valve when the engine ignition is on but the engine is not running in order to inhibit sticking after the engine begins operation. While maybe not true for all valves, such as valves controlling exhaust gas recirculation, a stuck closed wastegate valve can potentially lead to catastrophic turbocharger or engine failure.
  • the present disclosure is directed toward one or more of the problems set forth above.
  • an engine system includes an exhaust system fluidly connected to an electronically controlled engine.
  • the exhaust system has a first pathway through a turbine of a turbocharger, and a second pathway that bypasses the turbine.
  • An electronically controlled wastegate valve is biased to close the second pathway.
  • At least one electronic controller is in communication with the electronically controlled engine and the electronically controlled wastegate valve.
  • the electronic controller is configured to execute a wastegate diagnostic algorithm to detect a stuck closed fault condition of the electronically controlled wastegate valve, and derate the electronically controlled engine in response to detection of a stuck closed fault condition of the electronically controlled wastegate valve.
  • a method of operating an engine system includes detecting a stuck closed fault condition of an electronically controlled wastegate valve.
  • the electronically controlled engine is derated responsive to detection of the stuck closed fault condition of the electronically controlled wastegate valve.
  • FIG. 1 is a schematic view of an engine system according to one aspect of the present disclosure.
  • FIG. 2 is a software flow diagram for carrying out the logic of detecting and logging a stuck closed valve condition according to the present disclosure.
  • Engine system 10 includes an electronically controlled engine 11 that is fluidly connected to an exhaust system 12 .
  • engine 11 is a sixteen cylinder large bore compression ignition engine whose operation is controlled by an electronic controller 13 .
  • One aspect of engine control being operation of electronically controlled fuel injectors (not shown) associated with each of the individual large bore cylinders 19 , which may have a bore size in excess of 140 millimeters each.
  • electronically controlled engine 11 has a V configuration with two separate banks of eight engine cylinders.
  • Engine 11 has a first exhaust manifold 31 and a second exhaust manifold 32 that can be considered portions of exhaust system 12 that terminates at a tailpipe 35 .
  • a balance tube 33 may fluidly connect the two exhaust manifolds 31 and 32 .
  • Engine system 10 may include a pair of turbochargers 15 a and 15 b that are associated with the respective exhaust manifolds 31 and 32 .
  • exhaust from manifold 31 passes through a turbine 16 a of turbocharger 15 a before being channeled in a turbine exhaust 28 a through an aftertreatment system, which may include a diesel particulate filter 34 , before arriving at tailpipe 35 .
  • exhaust from second manifold 32 and maybe additional exhaust from manifold 31 through balance tube 33 , passes through a turbine 16 b of turbocharger 15 b before being channeled to an exhaust aftertreatment system by turbine exhaust 28 b .
  • Turbochargers 15 a and 15 b also include compressors 17 a and 17 b that receive incoming ambient air 50 a and 50 b and pressurize the same before channeling the compressed air to aftercooler 44 .
  • Output air from the aftercooler 44 may be mixed with recirculated exhaust gas at mixers 43 a and 43 b before being channeled to respective intake manifolds 45 a and 45 b .
  • exhaust gas recirculation is provided by seven cylinders in the exhaust manifold 32 , and the rate of exhaust gas circulation is partially controlled by an exhaust restriction valve 48 in a known manner.
  • the recirculated exhaust gas may be cooled at coolers 41 before passing through an EGR cold valve 42 on the way to mixers 43 a and 43 b.
  • electronic controller 13 is also in control communication with an electronically controlled wastegate valve 30 and an electronically controlled compress bypass valve 55 .
  • Electronically controlled wastegate valve 30 may be biased to a closed position but open in response to an open signal transmitted from electronic controller 13 .
  • electronically controlled wastegate valve 30 is normally biased closed, but may be opened by any suitable actuator, including but not limited to electrical actuators, pneumatic actuators, and hydraulic actuators.
  • exhaust travels a first pathway 20 through turbine 16 .
  • wastegate valve 30 When wastegate valve 30 is open, exhaust travels a second pathway 22 directly from balance tube 33 to the exhaust aftertreatment system that is represented by diesel particulate filter 34 .
  • wastegate valve 30 might be opened to avoid a turbine overspeed condition, to reduce boost pressure or any other reason known in the art.
  • Electronically controlled wastegate valve 30 may utilize any known actuator to move from a closed position to an open position, and any known sensor for communicating valve condition to electronic controller 13 in a known manner.
  • the valve condition sensor may be as simple as one bit of information relating to open or closed, or may have any desired granularity to also detect partially opened valve conditions without departing from the present disclosure. All versions of the present disclosure include one or more electronically controlled wastegate valves that allow exhaust to be channeled through a second pathway 22 that avoids a turbocharger(s) 15 .
  • the present disclosure contemplates an engine system with any number of turbochargers with or without exhaust gas recirculation and any number of electronically controlled wastegate and/or bypass valves that permit the exhaust or air to bypass one or more of the turbochargers and/or engine, respectively.
  • the compress bypass valve 55 allows the electronic controller 13 to directly fluidly connect aftercooler 44 to balance tube 33 via a bypass passageway 47 .
  • air from aftercooler 44 may be directed along a first pathway 56 through compressor 17 , through aftercooler 44 and into engine 11 via a respective intake manifold 45 .
  • a second pathway 57 fluidly connects aftercooler 44 directly to balance tube 33 to bypass engine 11 .
  • compress bypass valve 55 is normally closed, and thus is also exposed to hydrocarbon build up on the downstream side of the valve where it connects to balance tube 33 .
  • Electronically controlled compress bypass valve 55 may include any suitable actuator for opening the valve from a normally closed position to an open position, and may include a valve condition sensor that communicates the valve position to electronic controller 13 with any desired level of granularity, ranging from a simple open or closed indicator to a sensor that actually senses a continuum of different valve positions.
  • a flow diagram illustrates a small fraction of the software executed by electronic controller 13 when engine system 10 is in operation.
  • the engine system 10 is operated as rated at box 81 .
  • engine system 10 has its full rated maximum power available.
  • Electronic controller 13 may be configured to execute a diagnostic opportunity detection algorithm 70 by executing a query 82 to determine whether a diagnostic opportunity is available.
  • a diagnostic opportunity means that the engine is operating in a condition where the exhaust valve (e.g., wastegate valve 30 or compress bypass valve 55 ) is normally closed, and there is no need for boost pressure or opening the exhaust valve will not significantly degrade from a desired boost level.
  • a diagnostic opportunity could be during low idle conditions when there is no need for boost.
  • Another diagnostic opportunity according to the present disclosure could be when electronic controller is commanding zero fueling, such as when a machine equipped with engine system 10 is coasting downhill.
  • Another diagnostic opportunity might be when electronic controller 13 requests a large deceleration of engine 11 , such as a deceleration change of maybe 500 RPM.
  • the open signal may be transmitted to the exhaust valve 33 , 55 while the engine is decelerating, and may actually assist in the deceleration.
  • Other less desirable diagnostic opportunities might occur during low boost levels combined with low fueling levels such that opening one or both of the exhaust valve 33 and 55 will not significantly degrade from a desired boost level.
  • diagnostic opportunity query 82 is only executed when engine system 10 is running, the valve to be diagnosed is in its normally closed position and the other opportunity conditions discussed above are met. If query 82 returns a negative, the software will loop back and continue to operate engine system 10 in a rated condition. If the diagnostic opportunity query returns a yes, electronic controller 13 will execute a valve diagnostic algorithm 75 with respect to each exhaust valve. For instance, electronic controller may execute valve diagnostic algorithm 75 for each of the exhaust valves in question in series, or in parallel without departing from the present disclosure. At box 83 , an open signal is communicated from electronic controller 13 to the valve in question, such as wastegate valve 30 or compress bypass valve 55 .
  • electronic controller 13 reads the valve condition sensor and determines whether the valve is indeed open. If the query 84 returns yes, the open signal to the valve is discontinued at box 88 , and at box 89 the software loops back to continue engine operation as rated at box 81 . If the valve opening query 84 returns a no, electronic controller 13 logs a stuck closed valve fault in memory at box 86 , the open signal is discontinued and the engine is derated. At box 87 , the engine is operated as derated and the logic flow diagram ends at box 90 .
  • the term derated means that engine system 10 is allowed to operate at any condition that does not require the valve in question to open, which typically is less than its rated maximum power, until the stuck closed valve condition is remedied.
  • a derated engine according to the present disclosure means that engine system 10 operation will be prevented from entering a range where the electronic controller 13 would command the valve in question to open, which typically occurs at higher speed and load conditions for engine 11 .
  • the engine may continue to operate at full power after a fault is detected, but will reduce available power when there is a need to open the valve in question to avoid engine and/or turbocharger damage.
  • the valve diagnostic algorithm 75 may be executed sequentially for the electronically controlled wastegate valve 30 followed by the electronically controlled compress bypass valve 55 .
  • Either valve being found in a stuck closed position can cause the engine to be derated until the valve stuck closed default condition is remedied in a known manner.
  • the derated range of available operation of engine 11 may be different depending on which valve is stuck closed. In some instances, continued operation of the engine may relieve the stuck closed valve condition without any outside intervention. Otherwise, servicing by a technician may be necessary in order to remedy the stuck closed valve condition and reset the fault condition to return the engine to rated operation.
  • the present disclosure finds potential application in any engine system (e.g. compression ignition, spark ignition, etc.) that includes one or more electronically controlled exhaust valves that are normally closed and may become stuck closed due to the build up of hydrocarbons, soot and other compounds in the exhaust.
  • the present disclosure finds specific application in large bore compression ignition engines where opening of the exhaust valve may be necessary during certain engine operating conditions in order to avoid risks associated with catastrophic turbocharger or engine failure.
  • the present disclosure finds potential application in any engine system that includes an exhaust valve that may become stuck closed and the engine system has any of a wide variety of system configurations that may or may not include exhaust gas recirculation, and may or may not include one or more turbochargers in series or parallel, etc.
  • the exhaust valve in question is electrically controlled to move to an open position, and includes some sensor or other means (e.g. inferred from other sensors) for communicating the valve condition to the electronic controller for execution of the valve diagnostic algorithm according to the present disclosure.
  • the present disclosure advantageously utilizes a valve diagnostic algorithm to detect a stuck closed valve condition before there is a need to open the valve in question. While this is important, the diagnostic activity may proactively inhibit sticking problems by exercising the valve to open when to do so would not undermine current engine operation conditions, such as significantly effecting boost pressure. Thus, depending upon the particular application, engineers may be more or less aggressive in deciding what constitutes a diagnostic opportunity according to the present disclosure. In those applications where build up may occur more rapidly and a stuck closed valve condition may be more likely to occur, the software might be implemented to look for as many diagnostic opportunities as possible to exercise the valve between open and closed positions more often than in instances where valve closed stuck conditions are extremely rare.
  • one application might only choose to encode a diagnostic opportunity as corresponding to electronic controller 13 requesting a deceleration of engine 11 greater than some determined RPM, such as 500 RPM.
  • the diagnostic opportunity algorithm may be encoded to execute the valve diagnostic algorithm in regular intervals during idle conditions, when a large engine deceleration is requested, when zero fueling is requested and look for other opportunities such as low boost and low fueling conditions to exercise the exhaust valves, especially if a counter has determined that the valves have been closed for some extended duration.
  • the diagnostic opportunity algorithm may include programming to expand opportunities to low boost and low fueling conditions to help proactively ensure that the valve does not become stuck closed.
  • valve diagnostic opportunity algorithm 70 provides enough opportunities to execute the valve diagnostic algorithm 75 , the valve should be regularly exercised so that hydrocarbon, soot and other compound build up never reaches a point where the valve becomes stuck closed and a fault condition is actually detected and acted upon to derate engine system 10 .
  • the valve diagnostic algorithm 75 is acting upon wastegate valve 30 , that logic may be considered as a wastegate diagnostic algorithm according to the present disclosure.
  • the algorithm may be characterized as a compress bypass valve diagnostic algorithm without departing from the present disclosure.
  • valves that are biased toward a closed position
  • present disclosure also contemplates systems in which the valves are biased to a partially or fully open position such that the valve must be actuated to be moved to a closed position.
  • the actuator for the respective valve would be actuated to maintain the same closed until the controller determined that the valve was in need of being opened.
  • communicating an open signal” to a valve that is biased to an open or partially opened position means discontinuing a signal that actuates the valve to a closed position.
  • valves that need no actuation energy in order to open would also fall within the present disclosure.

Abstract

An engine system includes an exhaust system fluidly connected to an electronically controlled engine. Exhaust from the engine may travel a first pathway through a turbine of a turbocharger, or a second pathway that bypasses the turbine. An electronically controlled wastegate vale is biased to close the second pathway. An electronic controller is in communication with the electronically controlled engine and the electronically controlled wastegate valve. The electronic controller is configured to execute a wastegate diagnostic algorithm to detect a stuck closed default condition of the electronically controlled wastegate valve, and derate the engine in response to detection of a stuck closed fault condition.

Description

    TECHNICAL FIELD
  • The present disclosure relates generally to engine systems with electronically controlled valves located in the exhaust system, and more particularly to proactive diagnostics to detect and avoid stuck closed valve fault conditions.
  • BACKGROUND
  • Today's engine systems are often equipped with one or more turbochargers, an exhaust gas circulation system and electronically controlled valves in the exhaust system to control compressor bypass pathways, turbine bypass pathways, mass flow rate of exhaust gas recirculated and other known control features. An exhaust pathway that avoids the turbine is often controlled by what is termed in the art as a wastegate valve. For instance, when boost pressure approaches some predetermined maximum or there is a risk of turbine overspeed, the wastegate valve may be opened to channel exhaust directly from the exhaust manifold toward the tailpipe, without imparting energy to the turbocharger. Due to varying temperatures and the constituents in the engine exhaust, these valves can accumulate a build-up of hydrocarbons, soot and other compounds that inhibit proper operation to the extent that the valve can sometimes be stuck closed. In an effort to prevent valves located in the exhaust system from becoming stuck closed, the art recognizes various strategies for exercising the valve to inhibit sticking. For instance, U.S. Patent Publication 2009/0164106 teaches opening and closing an EGR valve when the engine ignition is on but the engine is not running in order to inhibit sticking after the engine begins operation. While maybe not true for all valves, such as valves controlling exhaust gas recirculation, a stuck closed wastegate valve can potentially lead to catastrophic turbocharger or engine failure.
  • The present disclosure is directed toward one or more of the problems set forth above.
  • SUMMARY
  • In one aspect, an engine system includes an exhaust system fluidly connected to an electronically controlled engine. The exhaust system has a first pathway through a turbine of a turbocharger, and a second pathway that bypasses the turbine. An electronically controlled wastegate valve is biased to close the second pathway. At least one electronic controller is in communication with the electronically controlled engine and the electronically controlled wastegate valve. The electronic controller is configured to execute a wastegate diagnostic algorithm to detect a stuck closed fault condition of the electronically controlled wastegate valve, and derate the electronically controlled engine in response to detection of a stuck closed fault condition of the electronically controlled wastegate valve.
  • In another aspect, a method of operating an engine system includes detecting a stuck closed fault condition of an electronically controlled wastegate valve. The electronically controlled engine is derated responsive to detection of the stuck closed fault condition of the electronically controlled wastegate valve.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an engine system according to one aspect of the present disclosure; and
  • FIG. 2 is a software flow diagram for carrying out the logic of detecting and logging a stuck closed valve condition according to the present disclosure.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, one example engine system 10 according to the present disclosure is shown. Engine system 10 includes an electronically controlled engine 11 that is fluidly connected to an exhaust system 12. In the illustrated embodiment, engine 11 is a sixteen cylinder large bore compression ignition engine whose operation is controlled by an electronic controller 13. One aspect of engine control being operation of electronically controlled fuel injectors (not shown) associated with each of the individual large bore cylinders 19, which may have a bore size in excess of 140 millimeters each. Also, in the illustrated embodiment, electronically controlled engine 11 has a V configuration with two separate banks of eight engine cylinders. Thus, Engine 11 has a first exhaust manifold 31 and a second exhaust manifold 32 that can be considered portions of exhaust system 12 that terminates at a tailpipe 35. Although not required, a balance tube 33 may fluidly connect the two exhaust manifolds 31 and 32.
  • Engine system 10 may include a pair of turbochargers 15 a and 15 b that are associated with the respective exhaust manifolds 31 and 32. Thus, exhaust from manifold 31 passes through a turbine 16 a of turbocharger 15 a before being channeled in a turbine exhaust 28 a through an aftertreatment system, which may include a diesel particulate filter 34, before arriving at tailpipe 35. Likewise, exhaust from second manifold 32, and maybe additional exhaust from manifold 31 through balance tube 33, passes through a turbine 16 b of turbocharger 15 b before being channeled to an exhaust aftertreatment system by turbine exhaust 28 b. Turbochargers 15 a and 15 b also include compressors 17 a and 17 b that receive incoming ambient air 50 a and 50 b and pressurize the same before channeling the compressed air to aftercooler 44. Output air from the aftercooler 44 may be mixed with recirculated exhaust gas at mixers 43 a and 43 b before being channeled to respective intake manifolds 45 a and 45 b. In the illustrated embodiment, exhaust gas recirculation is provided by seven cylinders in the exhaust manifold 32, and the rate of exhaust gas circulation is partially controlled by an exhaust restriction valve 48 in a known manner. The recirculated exhaust gas may be cooled at coolers 41 before passing through an EGR cold valve 42 on the way to mixers 43 a and 43 b.
  • Apart from controlling Engine 11, electronic controller 13 is also in control communication with an electronically controlled wastegate valve 30 and an electronically controlled compress bypass valve 55. Electronically controlled wastegate valve 30 may be biased to a closed position but open in response to an open signal transmitted from electronic controller 13. Thus electronically controlled wastegate valve 30 is normally biased closed, but may be opened by any suitable actuator, including but not limited to electrical actuators, pneumatic actuators, and hydraulic actuators. When closed, exhaust travels a first pathway 20 through turbine 16. When wastegate valve 30 is open, exhaust travels a second pathway 22 directly from balance tube 33 to the exhaust aftertreatment system that is represented by diesel particulate filter 34. For instance, wastegate valve 30 might be opened to avoid a turbine overspeed condition, to reduce boost pressure or any other reason known in the art. Because electronically controlled wastegate valve 30 is normally closed, and continuously exposed to hydrocarbon build-up, there is a risk that the build-up can cause the valve to be stuck in a closed position. Electronically controlled wastegate valve 30 may utilize any known actuator to move from a closed position to an open position, and any known sensor for communicating valve condition to electronic controller 13 in a known manner. The valve condition sensor may be as simple as one bit of information relating to open or closed, or may have any desired granularity to also detect partially opened valve conditions without departing from the present disclosure. All versions of the present disclosure include one or more electronically controlled wastegate valves that allow exhaust to be channeled through a second pathway 22 that avoids a turbocharger(s) 15. Thus, the present disclosure contemplates an engine system with any number of turbochargers with or without exhaust gas recirculation and any number of electronically controlled wastegate and/or bypass valves that permit the exhaust or air to bypass one or more of the turbochargers and/or engine, respectively.
  • The compress bypass valve 55 allows the electronic controller 13 to directly fluidly connect aftercooler 44 to balance tube 33 via a bypass passageway 47. Thus, air from aftercooler 44 may be directed along a first pathway 56 through compressor 17, through aftercooler 44 and into engine 11 via a respective intake manifold 45. When electronically controlled compress bypass valve 55 is open, a second pathway 57 fluidly connects aftercooler 44 directly to balance tube 33 to bypass engine 11. Like wastegate valve 30, compress bypass valve 55 is normally closed, and thus is also exposed to hydrocarbon build up on the downstream side of the valve where it connects to balance tube 33. Electronically controlled compress bypass valve 55 may include any suitable actuator for opening the valve from a normally closed position to an open position, and may include a valve condition sensor that communicates the valve position to electronic controller 13 with any desired level of granularity, ranging from a simple open or closed indicator to a sensor that actually senses a continuum of different valve positions.
  • Referring to FIG. 2, a flow diagram illustrates a small fraction of the software executed by electronic controller 13 when engine system 10 is in operation. After start box 80, the engine system 10 is operated as rated at box 81. When operated in a rated condition, engine system 10 has its full rated maximum power available. Electronic controller 13 may be configured to execute a diagnostic opportunity detection algorithm 70 by executing a query 82 to determine whether a diagnostic opportunity is available. In general, according to the present disclosure a diagnostic opportunity means that the engine is operating in a condition where the exhaust valve (e.g., wastegate valve 30 or compress bypass valve 55) is normally closed, and there is no need for boost pressure or opening the exhaust valve will not significantly degrade from a desired boost level. For instance, a diagnostic opportunity could be during low idle conditions when there is no need for boost. Another diagnostic opportunity according to the present disclosure could be when electronic controller is commanding zero fueling, such as when a machine equipped with engine system 10 is coasting downhill. Another diagnostic opportunity might be when electronic controller 13 requests a large deceleration of engine 11, such as a deceleration change of maybe 500 RPM. In such a case, the open signal may be transmitted to the exhaust valve 33, 55 while the engine is decelerating, and may actually assist in the deceleration. Other less desirable diagnostic opportunities might occur during low boost levels combined with low fueling levels such that opening one or both of the exhaust valve 33 and 55 will not significantly degrade from a desired boost level. Those skilled in the art will appreciate that the diagnostic opportunity query 82 is only executed when engine system 10 is running, the valve to be diagnosed is in its normally closed position and the other opportunity conditions discussed above are met. If query 82 returns a negative, the software will loop back and continue to operate engine system 10 in a rated condition. If the diagnostic opportunity query returns a yes, electronic controller 13 will execute a valve diagnostic algorithm 75 with respect to each exhaust valve. For instance, electronic controller may execute valve diagnostic algorithm 75 for each of the exhaust valves in question in series, or in parallel without departing from the present disclosure. At box 83, an open signal is communicated from electronic controller 13 to the valve in question, such as wastegate valve 30 or compress bypass valve 55. At query 84, electronic controller 13 reads the valve condition sensor and determines whether the valve is indeed open. If the query 84 returns yes, the open signal to the valve is discontinued at box 88, and at box 89 the software loops back to continue engine operation as rated at box 81. If the valve opening query 84 returns a no, electronic controller 13 logs a stuck closed valve fault in memory at box 86, the open signal is discontinued and the engine is derated. At box 87, the engine is operated as derated and the logic flow diagram ends at box 90. As used in the present disclosure, the term derated means that engine system 10 is allowed to operate at any condition that does not require the valve in question to open, which typically is less than its rated maximum power, until the stuck closed valve condition is remedied. In other words a derated engine according to the present disclosure means that engine system 10 operation will be prevented from entering a range where the electronic controller 13 would command the valve in question to open, which typically occurs at higher speed and load conditions for engine 11. Thus, the engine may continue to operate at full power after a fault is detected, but will reduce available power when there is a need to open the valve in question to avoid engine and/or turbocharger damage. When implemented, the valve diagnostic algorithm 75 may be executed sequentially for the electronically controlled wastegate valve 30 followed by the electronically controlled compress bypass valve 55. Either valve being found in a stuck closed position can cause the engine to be derated until the valve stuck closed default condition is remedied in a known manner. However, the derated range of available operation of engine 11 may be different depending on which valve is stuck closed. In some instances, continued operation of the engine may relieve the stuck closed valve condition without any outside intervention. Otherwise, servicing by a technician may be necessary in order to remedy the stuck closed valve condition and reset the fault condition to return the engine to rated operation.
  • INDUSTRIAL APPLICABILITY
  • The present disclosure finds potential application in any engine system (e.g. compression ignition, spark ignition, etc.) that includes one or more electronically controlled exhaust valves that are normally closed and may become stuck closed due to the build up of hydrocarbons, soot and other compounds in the exhaust. The present disclosure finds specific application in large bore compression ignition engines where opening of the exhaust valve may be necessary during certain engine operating conditions in order to avoid risks associated with catastrophic turbocharger or engine failure. The present disclosure finds potential application in any engine system that includes an exhaust valve that may become stuck closed and the engine system has any of a wide variety of system configurations that may or may not include exhaust gas recirculation, and may or may not include one or more turbochargers in series or parallel, etc. In all versions of the present disclosure the exhaust valve in question is electrically controlled to move to an open position, and includes some sensor or other means (e.g. inferred from other sensors) for communicating the valve condition to the electronic controller for execution of the valve diagnostic algorithm according to the present disclosure.
  • The present disclosure advantageously utilizes a valve diagnostic algorithm to detect a stuck closed valve condition before there is a need to open the valve in question. While this is important, the diagnostic activity may proactively inhibit sticking problems by exercising the valve to open when to do so would not undermine current engine operation conditions, such as significantly effecting boost pressure. Thus, depending upon the particular application, engineers may be more or less aggressive in deciding what constitutes a diagnostic opportunity according to the present disclosure. In those applications where build up may occur more rapidly and a stuck closed valve condition may be more likely to occur, the software might be implemented to look for as many diagnostic opportunities as possible to exercise the valve between open and closed positions more often than in instances where valve closed stuck conditions are extremely rare. For instance, one application might only choose to encode a diagnostic opportunity as corresponding to electronic controller 13 requesting a deceleration of engine 11 greater than some determined RPM, such as 500 RPM. In other instances, the diagnostic opportunity algorithm may be encoded to execute the valve diagnostic algorithm in regular intervals during idle conditions, when a large engine deceleration is requested, when zero fueling is requested and look for other opportunities such as low boost and low fueling conditions to exercise the exhaust valves, especially if a counter has determined that the valves have been closed for some extended duration. For instance, if electronic controller 13 is programmed to keep track of time past since the last time the respective exhaust valve was open, the diagnostic opportunity algorithm may include programming to expand opportunities to low boost and low fueling conditions to help proactively ensure that the valve does not become stuck closed. Thus, during normal operation, if the diagnostic opportunity algorithm 70 provides enough opportunities to execute the valve diagnostic algorithm 75, the valve should be regularly exercised so that hydrocarbon, soot and other compound build up never reaches a point where the valve becomes stuck closed and a fault condition is actually detected and acted upon to derate engine system 10. When the valve diagnostic algorithm 75 is acting upon wastegate valve 30, that logic may be considered as a wastegate diagnostic algorithm according to the present disclosure. In addition, when the valve diagnostic algorithm 75 is acting upon the compress bypass valve 55, the algorithm may be characterized as a compress bypass valve diagnostic algorithm without departing from the present disclosure.
  • Although the present disclosure has been illustrated in the context of valves that are biased toward a closed position, the present disclosure also contemplates systems in which the valves are biased to a partially or fully open position such that the valve must be actuated to be moved to a closed position. In such a case, during normal operation when the valve is normally closed, the actuator for the respective valve would be actuated to maintain the same closed until the controller determined that the valve was in need of being opened. As used in the present disclosure, “communicating an open signal” to a valve that is biased to an open or partially opened position means discontinuing a signal that actuates the valve to a closed position. Likewise, the phrase “discontinuing an open signal” to a valve that is biased to an open or partially open position means communicating a signal to the valve actuator to cause the valve to close. Thus, valves that need no actuation energy in order to open would also fall within the present disclosure.
  • It should be understood that the above description is intended for illustrative purposes only, and is not intended to limit the scope of the present disclosure in any way. Thus, those skilled in the art will appreciate that other aspects of the disclosure can be obtained from a study of the drawings, the disclosure and the appended claims.

Claims (20)

What is claimed is:
1. An engine system comprising:
an electronically controlled engine;
an exhaust system fluidly connected to the engine having a first pathway through a turbine of a turbocharger, and a second pathway that bypasses the turbine, and including an electronically controlled wastegate valve to close the second pathway; and
at least one electronic controller in communication with the electronically controlled engine and the electronically controlled wastegate valve, the at least one electronic controller configured to execute a wastegate diagnostic algorithm to detect a stuck closed fault condition of the electronically controlled wastegate valve and derate the electronically controlled engine in response to a detection of the stuck closed fault condition of the electronically controlled wastegate valve.
2. The engine system of claim 1 wherein the at least one electronic controller is further configured to execute a diagnostic opportunity detection algorithm to detect a diagnostic opportunity window, and to execute the wastegate diagnostic algorithm in response to a detection of the diagnostic opportunity window.
3. The engine system of claim 2 wherein the wastegate diagnostic algorithm is configured to:
communicate an open signal to the electronically controlled wastegate valve;
receive a wastegate configuration signal while communicating the open signal; and
either log a stuck closed fault condition of the electronically controlled wastegate valve in response to the wastegate configuration signal indicating a closed wastegate condition, or to discontinue the open signal in response to the wastegate configuration signal indicating an open wastegate condition.
4. The engine system of claim 3 wherein the diagnostic opportunity window corresponds to a requested engine deceleration greater than a predetermined RPM.
5. The engine system of claim 4 wherein the electronically controlled engine has a bore size greater than one hundred forty millimeters.
6. The engine system of claim 1 including an intake system with a first pathway through a compressor of the turbocharger and into the engine; a second pathway that bypasses the engine into the exhaust system; and including an electronically controlled compress bypass valve to close the second pathway; and
the at least one electronic controller being in communication with the electronically controlled compress bypass valve, the at least one electronic controller configured to execute a compress bypass diagnostic algorithm configured to detect a stuck closed fault condition of the electronically controlled compress bypass valve, and to derate the electronically controlled engine responsive to detection of the stuck closed fault condition of the electronically controlled compress bypass valve.
7. The engine system of claim 6 wherein the at least one electronic controller is further configured to execute a diagnostic opportunity detection algorithm to detect a diagnostic opportunity window, and to execute the wastegate diagnostic algorithm and the compress bypass diagnostic algorithm in response to a detection of the diagnostic opportunity window; and
the diagnostic opportunity window corresponding to an engine operation condition corresponding to a normally closed wastegate valve and normally closed compress bypass valve.
8. The engine system of claim 7 wherein the wastegate diagnostic algorithm is configured to:
communicate an open signal to the electronically controlled wastegate valve;
receive a wastegate configuration signal while communicating the open signal; and
either log a stuck closed fault condition of the electronically controlled wastegate valve in response to the wastegate configuration signal indicating a closed wastegate condition, or discontinue the open signal in response to the wastegate configuration signal indicating an open wastegate condition, and wherein the compress bypass diagnostic algorithm is configured to:
communicate an open signal to the electronically controlled compress bypass valve;
receive a compress bypass configuration signal while communicating the open signal; and
either log a stuck closed fault condition of the electronically controlled compress bypass valve in response to the compress bypass configuration signal indicating a closed compress bypass condition, or discontinue the open signal in response to the compress bypass configuration signal indicating an open compress bypass condition.
9. The engine system of claim 8 wherein the diagnostic opportunity window corresponds to a requested engine deceleration greater than a predetermined RPM.
10. The engine system of claim 9 wherein the electronically controlled engine has a bore size greater than one hundred forty millimeters.
11. A method of operating an engine system that includes an electronically controlled engine; an exhaust system fluidly connected to the engine having a first pathway through a turbine of a turbocharger, and a second pathway that bypasses the turbine, and including an electronically controlled wastegate valve to close the second pathway; and at least one electronic controller in control communication with the electronically controlled engine and the electronically controlled wastegate valve, and the method comprising the steps of:
detecting a stuck closed fault condition of the electronically controlled wastegate valve; and
derating the electronically controlled engine responsive to detection of the stuck closed fault condition of the electronically controlled wastegate valve.
12. The method of claim 11 including detecting a diagnostic opportunity window;
executing a wastegate diagnostic algorithm responsive to detection of the diagnostic opportunity window;
the step of detecting a stuck closed fault condition is performed responsive to executing the wastegate diagnostic algorithm; and
the diagnostic opportunity window corresponding to an engine operation condition corresponding to a normally closed wastegate valve and normally closed compress bypass valve.
13. The method of claim 12 wherein executing the wastegate diagnostic algorithm includes:
communicating an open signal to the electronically controlled wastegate valve;
receiving a wastegate configuration signal while communicating the open signal; and
logging a stuck closed fault condition of the electronically controlled wastegate valve responsive to the wastegate configuration signal indicating a closed wastegate condition, or discontinuing the open signal responsive to the wastegate configuration signal indicating an open wastegate condition.
14. The method of claim 13 wherein the step of detecting the diagnostic opportunity window includes detection of a decrease in desired engine speed greater than a predetermined RPM.
15. The method of claim 14 wherein the step of executing the wastegate diagnostic algorithm is performed while the electronically controlled engine is decelerating.
16. The method of claim 11 wherein the engine system includes an intake system with a first pathway through a compressor of the turbocharger and into the engine, a second pathway that bypasses the engine into the exhaust system, and including an electronically controlled compress bypass valve to close the second pathway, and the at least one electronic controller being in control communication with the electronically controlled compress bypass valve; and the method including the steps of:
detecting a stuck closed fault condition of the electronically controlled compress bypass valve; and
derating the electronically controlled engine responsive to detection of the stuck closed fault condition of the electronically controlled compress bypass valve.
17. The method of claim 16 including detecting a diagnostic opportunity window;
executing a compress bypass diagnostic algorithm and a wastegate diagnostic algorithm responsive to detection of the diagnostic opportunity window;
the step of detecting a stuck closed fault condition of the compress bypass valve is performed responsive to executing the compress bypass diagnostic algorithm;
the step of detecting a stuck closed fault condition of the wastegate valve is performed responsive to executing the wastegate diagnostic algorithm; and
the diagnostic opportunity window corresponding to an engine operation condition corresponding to a normally closed wastegate valve and normally closed compress bypass valve.
18. The method of claim 17 wherein executing the wastegate diagnostic algorithm includes:
communicating an open signal to the electronically controlled wastegate valve;
receiving a wastegate configuration signal while communicating the open signal to the electronically controlled wastegate valve; and
logging a stuck closed fault condition of the electronically controlled wastegate valve responsive to the wastegate configuration signal indicating a closed wastegate condition, or discontinuing the open signal responsive to the wastegate configuration signal indicating an open wastegate condition; and executing the compress bypass diagnostic algorithm includes:
communicating an open signal to the electronically controlled compress bypass valve;
receiving a compress bypass configuration signal while communicating the open signal to the electronically controlled compress bypass valve; and
logging a stuck closed fault condition of the electronically controlled compress bypass valve responsive to the compress bypass configuration signal indicating a closed compress bypass condition, or discontinuing the open signal to the electronically controlled compress bypass valve responsive to the compress bypass configuration signal indicating an open compress bypass condition.
19. The method of claim 18 wherein the step of detecting the diagnostic opportunity window includes detection of a decrease in desired engine speed greater than a predetermined RPM.
20. The method of claim 19 wherein the step of executing the wastegate diagnostic algorithm and executing the compress bypass diagnostic algorithm is performed while the electronically controlled engine is decelerating.
US13/300,941 2011-11-21 2011-11-21 Anti-sticking and diagnostic strategy for exhaust system valves Active 2032-10-12 US8849548B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/300,941 US8849548B2 (en) 2011-11-21 2011-11-21 Anti-sticking and diagnostic strategy for exhaust system valves
DE112012004837.7T DE112012004837T5 (en) 2011-11-21 2012-11-15 Strategy for avoiding the sticking and diagnostics of exhaust system valves
PCT/US2012/065243 WO2013078061A1 (en) 2011-11-21 2012-11-15 Anti-sticking and diagnostic strategy for exhaust system valves
CN201280057164.7A CN103946513B (en) 2011-11-21 2012-11-15 Engine system and the method for running engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/300,941 US8849548B2 (en) 2011-11-21 2011-11-21 Anti-sticking and diagnostic strategy for exhaust system valves

Publications (2)

Publication Number Publication Date
US20130131953A1 true US20130131953A1 (en) 2013-05-23
US8849548B2 US8849548B2 (en) 2014-09-30

Family

ID=48427719

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/300,941 Active 2032-10-12 US8849548B2 (en) 2011-11-21 2011-11-21 Anti-sticking and diagnostic strategy for exhaust system valves

Country Status (4)

Country Link
US (1) US8849548B2 (en)
CN (1) CN103946513B (en)
DE (1) DE112012004837T5 (en)
WO (1) WO2013078061A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130211693A1 (en) * 2012-02-15 2013-08-15 Ford Global Technologies, Llc Method for operating an internal combustion engine with a turbocharger arrangement and control unit for an engine with a turbocharger arrangement
US20150159545A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbocharger compressor temperature control systems and methods
US20150159544A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbo speed control for mode transitions in a dual turbo system
US20160090926A1 (en) * 2014-09-30 2016-03-31 Toyota Jidosha Kabushiki Kaisha Supercharging system
US9546591B2 (en) 2014-11-26 2017-01-17 Caterpillar Inc. Exhaust system with exhaust gas recirculation and multiple turbochargers, and method for operating same
DE102015105296B4 (en) 2014-04-24 2018-05-09 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
CN111911303A (en) * 2019-05-07 2020-11-10 丰田自动车株式会社 Vehicle with a steering wheel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869239B2 (en) * 2012-08-23 2018-01-16 Toyota Jidosha Kabushiki Kaisha Wastegate valve control device
US9528430B2 (en) * 2014-12-10 2016-12-27 Ford Global Technologies, Llc Methods and system for compensating compressor recirculation sludge
US9631564B2 (en) * 2014-12-10 2017-04-25 Ford Global Technologies, Llc Methods and system for determining compressor recirculation valve sludge
DE102015002598A1 (en) * 2015-02-28 2016-09-01 Man Truck & Bus Ag Method and device for controlling a drive system of a motor vehicle with a supercharged internal combustion engine
US10618380B2 (en) 2017-08-01 2020-04-14 Ford Global Technologies, Llc Method and system for coolant temperature sensor diagnostics
US10746089B2 (en) * 2018-01-25 2020-08-18 Caterpillar Inc. Inline turbocharger arrangement and method
KR102024738B1 (en) * 2018-11-19 2019-09-24 콘티넨탈 오토모티브 시스템 주식회사 Apparatus and method for diagnosing failure of bypass valve
US10823092B2 (en) 2019-01-24 2020-11-03 Ford Global Technologies, Llc System and method for waste-gate valve diagnostics
CN109882283B (en) * 2019-03-27 2020-09-29 潍柴动力股份有限公司 Control method and device for sequential pressurization system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500363B2 (en) * 2006-07-25 2009-03-10 Honda Motor Co., Ltd. Failure detecting device for supercharging-pressure control means in supercharging device of engine
US7593828B2 (en) * 2007-08-16 2009-09-22 Gm Global Technology Operations, Inc. Method and apparatus for monitoring a variable geometry intake air compressor device
US20120210710A1 (en) * 2011-02-21 2012-08-23 Ford Global Technologies, Llc Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
US8347625B2 (en) * 2009-07-30 2013-01-08 Robert Bosch Gmbh Method and device for operating a wastegate actuator for a wastegate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762954A (en) 1980-09-30 1982-04-16 Aisin Seiki Co Ltd Egr control valve apparatus and its control method
JP2002070655A (en) 2000-08-31 2002-03-08 Calsonic Kansei Corp Vehicular exhaust gas recirculation device
US6497227B2 (en) 2001-01-31 2002-12-24 Cummins, Inc. System for diagnosing fault conditions associated with an air handling system for an internal combustion engine
JP4396581B2 (en) 2005-06-02 2010-01-13 株式会社デンソー EGR control device for internal combustion engine
JP4487887B2 (en) 2005-09-02 2010-06-23 トヨタ自動車株式会社 Valve control device for internal combustion engine
CN101082318B (en) 2006-05-31 2011-09-21 卡特彼勒公司 Turbo-charger control system
JP4655002B2 (en) 2006-08-02 2011-03-23 株式会社デンソー Control device for internal combustion engine
EP2067956B1 (en) 2007-12-04 2011-03-02 Caterpillar Motoren GmbH & Co. KG Exhaust gas waste gate system with charge pressure control
US7757549B2 (en) 2008-02-21 2010-07-20 Cummins Ip, Inc Apparatus, system, and method for predictive control of a turbocharger
JP4730448B2 (en) 2009-02-18 2011-07-20 トヨタ自動車株式会社 Control device for internal combustion engine
US8347609B2 (en) 2009-12-23 2013-01-08 Ford Global Technologies, Llc Methods and systems for emission system control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500363B2 (en) * 2006-07-25 2009-03-10 Honda Motor Co., Ltd. Failure detecting device for supercharging-pressure control means in supercharging device of engine
US7593828B2 (en) * 2007-08-16 2009-09-22 Gm Global Technology Operations, Inc. Method and apparatus for monitoring a variable geometry intake air compressor device
US8347625B2 (en) * 2009-07-30 2013-01-08 Robert Bosch Gmbh Method and device for operating a wastegate actuator for a wastegate
US20120210710A1 (en) * 2011-02-21 2012-08-23 Ford Global Technologies, Llc Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169796B2 (en) * 2012-02-15 2015-10-27 Ford Global Technologies, Llc Method for operating an internal combustion engine with a turbocharger arrangement and control unit for an engine with a turbocharger arrangement
US20130211693A1 (en) * 2012-02-15 2013-08-15 Ford Global Technologies, Llc Method for operating an internal combustion engine with a turbocharger arrangement and control unit for an engine with a turbocharger arrangement
US9309803B2 (en) * 2013-12-05 2016-04-12 GM Global Technology Operations LLC Turbocharger compressor temperature control systems and methods
US20150159544A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbo speed control for mode transitions in a dual turbo system
US9303553B2 (en) * 2013-12-05 2016-04-05 GM Global Technology Operations LLC Turbo speed control for mode transitions in a dual turbo system
US20150159545A1 (en) * 2013-12-05 2015-06-11 GM Global Technology Operations LLC Turbocharger compressor temperature control systems and methods
DE102015105296B4 (en) 2014-04-24 2018-05-09 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine
US20160090926A1 (en) * 2014-09-30 2016-03-31 Toyota Jidosha Kabushiki Kaisha Supercharging system
US10267245B2 (en) * 2014-09-30 2019-04-23 Toyota Jidosha Kabushiki Kaisha Supercharging system
US9546591B2 (en) 2014-11-26 2017-01-17 Caterpillar Inc. Exhaust system with exhaust gas recirculation and multiple turbochargers, and method for operating same
CN111911303A (en) * 2019-05-07 2020-11-10 丰田自动车株式会社 Vehicle with a steering wheel
JP2020183717A (en) * 2019-05-07 2020-11-12 トヨタ自動車株式会社 vehicle
JP7243420B2 (en) 2019-05-07 2023-03-22 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
CN103946513A (en) 2014-07-23
DE112012004837T5 (en) 2014-09-04
CN103946513B (en) 2016-11-09
US8849548B2 (en) 2014-09-30
WO2013078061A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
US8849548B2 (en) Anti-sticking and diagnostic strategy for exhaust system valves
EP2489851B1 (en) Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
EP2489850B1 (en) Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
JP4883221B2 (en) Control valve abnormality determination device for internal combustion engine
JP3818118B2 (en) Fault diagnosis device for variable capacity turbocharger
US10006384B2 (en) Control device for internal combustion engine
RU2711433C2 (en) Method (embodiments) and system for engine
RU2711575C2 (en) Method (embodiments) and compressor recirculation valve defect detection system
US8813493B2 (en) Supercharger control device for an internal combustion engine
US9464586B2 (en) Exhaust gas recirculation system of engine
EP2963263A1 (en) Control device for internal combustion engine
WO2012086002A1 (en) Control device for internal combustion engine equipped with supercharger
US20130008417A1 (en) Control system for engine with exhaust gas recirculation
US9080502B2 (en) Engine with variable valve mechanism
JP2008240576A (en) Failure diagnosis device for turbocharging system
JP2013096372A (en) Control device of internal combustion engine with supercharger
WO2012157108A1 (en) Internal combustion engine control apparatus
JP2015010497A (en) Diesel engine and control method for the same
JP2010229901A (en) Control apparatus of internal combustion engine with superchargers
JP2010209748A (en) Malfunction detecting device for supercharging system
JP5930288B2 (en) Internal combustion engine
JP5843543B2 (en) Control device for internal combustion engine
JP5570317B2 (en) Control method for internal combustion engine
JP4638842B2 (en) Control method for internal combustion engine with supercharger and internal combustion engine with supercharger
JP6065850B2 (en) Supercharging diagnosis device for supercharged engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUFT, AARON CONRAD;STREUTKER, DANIEL;SANKAR, RAMMOHAN;AND OTHERS;SIGNING DATES FROM 20111027 TO 20111116;REEL/FRAME:027257/0806

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8