US20130126816A1 - Memory Arrays and Methods of Forming Memory Cells - Google Patents

Memory Arrays and Methods of Forming Memory Cells Download PDF

Info

Publication number
US20130126816A1
US20130126816A1 US13/298,840 US201113298840A US2013126816A1 US 20130126816 A1 US20130126816 A1 US 20130126816A1 US 201113298840 A US201113298840 A US 201113298840A US 2013126816 A1 US2013126816 A1 US 2013126816A1
Authority
US
United States
Prior art keywords
material
memory cell
series
lines
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/298,840
Other versions
US9252188B2 (en
Inventor
Sanh D. Tang
Scott E. Sills
John K. Zahurak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US13/298,840 priority Critical patent/US9252188B2/en
Assigned to MICRON TECHNOLOGY, INC reassignment MICRON TECHNOLOGY, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILLS, SCOTT E., TANG, SANH D., ZAHURAK, JOHN K.
Publication of US20130126816A1 publication Critical patent/US20130126816A1/en
Publication of US9252188B2 publication Critical patent/US9252188B2/en
Application granted granted Critical
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC. reassignment MICRON SEMICONDUCTOR PRODUCTS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/08Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H01L45/085Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/24Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures
    • H01L27/2409Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures comprising two-terminal selection components, e.g. diodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/24Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures
    • H01L27/2436Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures comprising multi-terminal selection components, e.g. transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/24Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures
    • H01L27/2463Arrangements comprising multiple bistable or multistable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays, details of the horizontal layout
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/12Details
    • H01L45/122Device geometry
    • H01L45/1233Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/14Selection of switching materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/14Selection of switching materials
    • H01L45/148Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/16Manufacturing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/16Manufacturing
    • H01L45/1666Patterning of the switching material
    • H01L45/1675Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography

Abstract

Some embodiments include methods of forming memory cells. A series of rails is formed to include bottom electrode contact material. Sacrificial material is patterned into a series of lines that cross the series of rails. A pattern of the series of lines is transferred into the bottom electrode contact material. At least a portion of the sacrificial material is subsequently replaced with top electrode material. Some embodiments include memory arrays that contain a second series of electrically conductive lines crossing a first series of electrically conductive lines. Memory cells are at locations where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. First and second memory cell materials are within the memory cell locations. The first memory cell material is configured as planar sheets and the second memory cell material is configured as upwardly-opening containers.

Description

    TECHNICAL FIELD
  • Memory arrays and methods of forming memory cells.
  • BACKGROUND
  • Memory is one type of integrated circuitry, and is used in computer systems for storing data. Integrated memory is usually fabricated in one or more arrays of individual memory cells. The memory cells are configured to retain or store memory in at least two different selectable states. In a binary system, the states are considered as either a “0” or a “1”. In other systems, at least some individual memory cells may be configured to store more than two levels or states of information.
  • Integrated circuit fabrication continues to strive to produce smaller and denser integrated circuits. Accordingly, there has been substantial interest in memory cells that can be utilized in cross-point architectures. Example types of memory cells that are suitable for utilization in cross-point architectures are resistive RAM (RRAM) cells, phase change RAM (PCRAM) cells, and programmable metallization cells (PMCs)—which may be alternatively referred to as a conductive bridging RAM (CBRAM) cells, nanobridge memory cells, or electrolyte memory cells. The memory cell types are not mutually exclusive. For example, RRAM may be considered to encompass PCRAM and PMCs.
  • The cross-point architectures may comprise memory cell material between a pair of electrodes. Various problems can be encountered in the development of such architectures. The problems can involve, for example, mask misalignment during the various patterning steps utilized to pattern the electrodes and the memory cell material. Each electrode may be patterned with a separate masking step, and the memory cell material may be patterned with yet another masking step. Thus, there can be at least three masking steps to align during the fabrication of the memory cells. As another example, the problems may involve difficulties in utilizing some types of memory cell materials. For instance, some memory cell materials comprise oxides which are reactive toward many conductive materials. Thus it can be desired to use noble metals (for instance, platinum, silver, etc.) in electrodes that contact such oxides. However, the non-reactivity of the noble metals can make them difficult to pattern.
  • It would be desirable to develop improvements in memory cell fabrication which alleviate one or more of the above-discussed problems, and to develop improved memory cells.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-7 are diagrammatic three-dimensional views of a portion of a construction shown at various process stages of an example embodiment method of fabricating memory cells.
  • FIGS. 8-12 are diagrammatic three-dimensional views of a portion of a construction shown at various process stages of another example embodiment method of fabricating memory cells.
  • FIGS. 13 and 14 are diagrammatic three-dimensional views of a portion of a construction shown at various process stages of another example embodiment method of fabricating memory cells.
  • FIG. 15 is a diagrammatic three-dimensional view of a portion of a construction shown at a process stage of another example embodiment method of fabricating memory cells.
  • FIG. 16 is a diagrammatic three-dimensional view of a portion of a construction shown at a process stage of another example embodiment method of fabricating memory cells.
  • FIGS. 17-23 are diagrammatic three-dimensional views of a portion of a construction shown at various process stages of another example embodiment method of fabricating memory cells.
  • FIG. 24 is a diagrammatic three-dimensional view of a portion of a construction shown at a process stage of another example embodiment method of fabricating memory cells.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • In some embodiments, the invention includes a two-mask, damascene scheme that may be utilized for forming cross-point memory. In some embodiments, the scheme may be utilized for patterning select devices (for instance, diodes, transistors, etc.) in addition to memory cells; and in some embodiments the scheme may be utilized for patterning memory cells separate from select devices. The scheme may be utilized for patterning noble metals, and may be utilized in combination with pitch-multiplication technologies. In some embodiments, the scheme may be utilized for forming highly integrated memory; such as, for example, memory having feature sizes of less than or equal to about 20 nanometers.
  • Example embodiments are described with reference to FIGS. 1-24.
  • Referring to FIG. 1, a construction 10 comprises an electrically insulative material 12 supporting a plurality of rails 14-18. The rails are elongated along a direction of an illustrated axis 5 in the shown embodiment, and such axis may be referred to as a first axis. Although the rails are substantially straight in the shown embodiment, in other embodiments the rails may be curved or wavy. Even if the rails are curved or wavy, such rails may extend primarily along the illustrated axis 5 in some embodiments.
  • The electrically insulative material 12 may comprise any suitable composition or combination of compositions, and in some embodiments may comprise one or more of silicon nitride, silicon dioxide, and any of various doped glasses (for instance, borophosphosilicate glass, phosphosilicate glass, fluorosilicate glass, etc.). The insulative material 12 may be supported over a semiconductor base (not shown). Such base may comprise, for example, monocrystalline silicon. If the electrically insulative material is supported by a semiconductor base, the combination of the electrically insulative material 12 and the underlying semiconductor base may be referred to as a semiconductor substrate, or as a portion of a semiconductor substrate. The terms “semiconductive substrate,” “semiconductor construction” and “semiconductor substrate” mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductor substrates described above. In some embodiments, the insulative material 12 may be over a semiconductor construction which comprises a semiconductor base and one or more levels of integrated circuitry. In such embodiments, the levels of integrated circuitry may comprise, for example, one or more of refractory metal materials, barrier materials, diffusion materials, insulator materials, etc.
  • The rails 14-18 may comprise several stacked materials in some embodiments. The bottom material of the shown rails is an electrically conductive material 20. Such electrically conductive material may comprise any suitable composition or combination of compositions; and in some embodiments may comprise, consist essentially of, or consist of one or more of various metals (for instance, tungsten, titanium, copper, etc.), metal-containing substances (for instance, metal nitride, metal silicide, metal carbide, etc.) and conductively-doped semiconductor materials (for instance, conductively-doped silicon, conductively-doped germanium, etc.). The electrically conductive material 20 forms electrically conductive lines 21 (only some of which are labeled) contained within the series of rails 14-18. Such electrically conductive lines may correspond to access/sense lines; and may, for example, correspond to wordlines or bitlines in some embodiments. The lines 21 may be referred to as a first series of lines to distinguish them from another series of lines formed in subsequent processing.
  • The individual rails 14-18 comprise one or more materials over the lines 21. The materials over lines 21 are diagrammatically illustrated as regions 22 (only some of which are labeled) over the individual lines 21. Uppermost portions of the regions 22 comprise electrically conductive material 24. The uppermost surface of material 24 may ultimately correspond to the top of a bottom electrode of a memory cell. In other words, the uppermost surface of material 24 may be a region where a bottom electrode of a memory cell contacts memory cell material (described below); and thus material 24 may be referred to as bottom electrode contact material.
  • Materials 20 and 24 may or may not comprise the same composition as one another. In some embodiments, materials 20 and 24 may be the same conductive material as one another, and the intervening segment of region 22 may simply be more of the same conductive material. In other embodiments, region 22 may comprise one or more materials suitable for fabrication into select devices (for instance, transistors, diodes, etc.)—with an example of such other embodiments being described below with reference to FIGS. 8-12.
  • Each of the rails 14-18 extends along multiple memory cell locations, with example memory cell locations 31-33 being labeled relative to the rail 14. Ultimately, memory cells may be fabricated within such memory cell locations such that memory cell material of the memory cells is directly against the bottom electrode contact material 24 (as shown, for example, in FIG. 7).
  • The rails 14-18 may be formed with any suitable processing. For instance, the various materials of the rails 14-18 may be formed across substrate 12, and a patterned mask (not shown) may be formed over such materials to define locations of the rails 14-18. A pattern may then be transferred from the mask into the materials of the rails with one or more suitable etches, and then the mask may be removed to leave the shown construction of FIG. 1. The mask may comprise any suitable composition or combination of compositions. For instance, the mask may comprise photolithographically-patterned photoresist. As another example, the mask may comprise one or more materials patterned utilizing pitch-multiplication methodologies.
  • In the shown embodiment of FIG. 1, the rails 14-18 are spaced from one another by intervening gaps. FIG. 2 shows dielectric material 36 formed within such gaps. The dielectric material may comprise any suitable composition or combination of compositions; and in some embodiments may comprise, consist essentially of or consist of silicon dioxide. The construction of FIG. 2 is shown to have a planarized surface 37 extending across rails 14-18, and across the dielectric material 36. Such construction may be formed by initially forming dielectric material 36 to fill the gaps between the rails 14-18, and to extend across upper surfaces of the rails; and then utilizing chemical-mechanical polishing (CMP) to remove the dielectric material from over the rails and form the planarized surface 37.
  • Referring to FIG. 3, an expanse of pad material 38 is formed across the planarized upper surface 37, and an expanse of sacrificial material 40 is formed across the pad material.
  • In some embodiments, the pad material may comprise a sacrificial material provided as a buffer between the material 40 and the bottom electrode contact material 24. In some embodiments, the pad material may be omitted and the sacrificial material 40 may be provided directly on the bottom electrode contact material. In some embodiments, the pad material may correspond to a memory cell material which is ultimately incorporated into memory cells. The memory cell material may be any material either now known, or yet to be developed, which is suitable for utilization in cross-point memory. For instance, the memory cell material may be a material suitable for utilization in one or more of PCRAM, RRAM, CBRAM, PCM, etc. In some embodiments, the memory cell material may comprise an oxide containing one or more of aluminum, antimony, barium, calcium, cesium, germanium, hafnium, iron, lanthanum, lead, manganese, praseodymium, ruthenium, samarium, selenium, silicon, strontium, sulfur, tellurium, titanium, yttrium and zirconium. In some embodiments, the memory cell material may comprise multivalent metal oxide; and may, for example, comprise, consist essentially of or consist of one or more of barium, ruthenium, strontium, titanium, calcium, manganese, praseodymium, lanthanum and samarium. For instance, the multivalent metal oxide may comprise, consist essentially of, or consist of calcium manganese oxide doped with one or more of Pr, La, Sr and Sm. In some embodiments, the memory cell material may comprise chalcogenide-type materials (for instance, materials comprising germanium in combination with one or more of antimony, tellurium, sulfur and selenium). In some embodiments, the memory cell material may include additional layers, such as an ion source material suitable for contributing ions which ultimately form conductive bridges in PMC devices. The ion source material may comprise, for example, one or both of copper and silver; and may thus be configured for contributing copper cations and/or silver cations for formation of a conductive bridge. For instance, the ion source material may comprise a combination of copper and tellurium. The memory cell material may be a solid, gel, or any other suitable phase.
  • Since the material 38 may be alternatively either a sacrificial material or a memory cell material in some embodiments, the material 38 may be referred to herein as a pad material, sacrificial material, or memory cell material in describing various different embodiments. The term “pad material” as utilized in referring to material 38 is generic relative to the terms “sacrificial material” and “memory cell material.”
  • The sacrificial material 40 may comprise any suitable composition or combination of compositions; and in some embodiments may comprise, consist essentially of, or consist of silicon (for instance, may consist of one or both of amorphous silicon and polycrystalline silicon).
  • Referring to FIG. 4, the sacrificial material 40 is patterned into a series of lines 41-44. The lines 41-44 may be referred to as a second series of lines to distinguish them from the first series of lines corresponding to the lines 21 contained within the rails 14-18. The lines 41-44 cross the rails 14-18; and in the shown embodiment are substantially orthogonal to the rails 14-18. Specifically, the lines 41-44 are elongated along an axis 7, and the rails 14-18 are elongated along the axis 5 which is substantially orthogonal to the axis 7. The term “substantially orthogonal” is utilized to indicate that the two axes are orthogonal within reasonable tolerances of design and measurement.
  • The sacrificial material lines 41-44 are directly over the memory cell locations (for instance, the locations 31-33). The pattern of the sacrificial material lines 41-44 is transferred into the bottom electrode contact material 24 to singulate such material into segments 46 (only some of which are labeled). Each segment is associated with only a single memory cell location. The pattern may be transferred into the bottom electrode contact material with any suitable etch or combination of etches.
  • The pattern of the sacrificial material lines is also transferred into the one or more materials beneath the bottom electrode contact material of the rails 14-18. Such singulates the regions 22 into pedestals (or pillars) 48 (only some of which are labeled). In embodiments in which the regions 22 comprise materials suitable for incorporation into select devices, the singulation of regions 22 into pedestals 48 may form individual select devices. For instance, FIGS. 8-12 describe an embodiment in which the singulation forms individual diodes. The pattern may be transferred into the one or more materials of regions 22 with any suitable etch or combination of etches. The pedestals 48 are capped with the bottom electrode contact material 24, and are directly between the memory cell locations (for instance, the locations 31-33) and the conductive material 20.
  • The sacrificial material 40 may be patterned into the lines 41-44 with any suitable processing. For instance, a patterned mask (not shown) may be formed over sacrificial material 40 to define locations of the lines 41-44, a pattern may be transferred from the mask into material 40 with one or more suitable etches, and then the mask may be removed. The mask may comprise any suitable composition or combination of compositions. For instance, the mask may comprise photolithographically-patterned photoresist. As another example, the mask may comprise one or more materials patterned utilizing pitch-multiplication methodologies. The mask may remain during the patterning of the materials of regions 22 in some embodiments, and may be removed prior to such patterning in other embodiments.
  • The illustrated construction 10 at the processing stage of FIG. 4 has a plurality of trenches 51-53 formed between the lines 41-44. The trenches 51-53 extend along the same direction as the lines 41-44. In some embodiments, the trenches 51-53 may be referred to as a first series of trenches.
  • Referring to FIG. 5, dielectric material 54 is formed within the trenches 51-53. Although a single dielectric material is shown, in other embodiments multiple dielectric materials may be formed within such trenches. In some embodiments, the dielectric formed within the trenches 51-53 may comprise one or both of silicon nitride and silicon carbide. The material 54 may be formed with any suitable processing, including, for example, one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD) and physical vapor deposition (PVD). In some embodiments, material 54 may be formed to extend across upper surfaces of lines 41-44, and may then be subjected to CMP to form the illustrated planarized upper surface 55.
  • In the shown embodiment, the material 54 is deposited under conditions which leave voids 56 within trenches 51-53. Suitable conditions for leaving such voids are conditions in which the dielectric material pinches off across the tops of the trenches before uniformly filling central regions of the trenches. It can be advantageous that the dielectric provided within trenches 51-53 have a low dielectric constant in that such can alleviate or prevent cross-talk that may otherwise occur between memory cells on opposing sides of the trenches. Air has a low dielectric constant, and thus it can be advantageous to have the illustrated voids remaining within the trenches after formation of dielectric material 54 within such trenches.
  • In some embodiments, the dielectric within the trenches 51-53 may be referred to as dielectric lines 60-62. In the shown embodiment, such dielectric lines comprise the illustrated voids 56 in combination with dielectric material 54. In some embodiments, the illustrated voids 56 may consume at least about 10 percent of the volume of the dielectric lines formed within the trenches.
  • Although voids 56 are present in the shown embodiment, in other embodiments the dielectric 54 may be provided to entirely fill trenches 51-53. Thus, the voids may be omitted.
  • Referring to FIG. 6, sacrificial material 40 (FIG. 5) is removed to leave trenches 65-68. The trenches 65-68 may be referred to as a second series of trenches to distinguish them from the first series of trenches 51-53 (FIG. 4). If the sacrificial material consists of silicon (for instance, polycrystalline silicon), such may be removed utilizing tetramethylammonium hydroxide in some embodiments.
  • The trenches 65-68 are directly over the bottom electrode contact material 24. In the shown embodiment, the formation of trenches 65-68 exposes memory cell material 38. In other embodiments, material 38 may correspond to a sacrificial pad material which is removed from over bottom electrode contact material 24, and then replaced with memory cell material. In yet other embodiments, material 38 may be omitted (as discussed above with reference to FIG. 3); and in such embodiments the memory cell material may be formed subsequent to the formation of the trenches 65-68 to create the shown construction of FIG. 6.
  • The memory cell material 38 in the embodiment of FIG. 6 is configured as a planar sheet. If the memory cell material is deposited after removal of sacrificial material 40 (FIG. 5), the memory cell material may have a different configuration. For instance, FIG. 14 (discussed below) shows an embodiment in which memory cell material is configured as upwardly-opening container structures.
  • Although only the single memory cell material 38 is shown in the embodiment of FIG. 6, in other embodiments multiple memory cell materials may be utilized. The one or more memory cell materials may be any materials suitable for forming cross-point memory cells, either now known or later developed. For instance, the memory cell materials may be suitable for utilization in one or more of PCRAM, RRAM, CBRAM, PCM, etc.
  • Referring to FIG. 7, top electrode material 70 is formed within the trenches 65-68. The top electrode material may comprise any suitable composition or combination of compositions, and in some embodiments may comprise, consist essentially of, or consist of one or more of platinum, silver and copper. Accordingly, the top electrode material may comprise, consist essentially of, or consist of one or more noble metals. As discussed above in the “background” section of this disclosure, it can be difficult to pattern noble metals. However, in some embodiments the trenches 65-68 enable utilization of a damascene process for patterning the electrode material 70. Specifically, top electrode material 70 may be formed to fill trenches 65-68 and to extend over dielectric lines 60-62. The top electrode material may then be planarized (for instance, subjected to CMP) to remove the top electrode material 70 from over the dielectric material lines and thereby form the illustrated top electrode lines 71-74. Such top electrode lines extend along the axis 7, and thus cross the bottom electrode lines 21.
  • In some embodiments, the top electrode material 70 may comprise copper. In such embodiments, it may be desired for dielectric 54 to comprise copper barrier material, such as one or more nitrides and/or it may be desired for the conductive top electrode material to be surrounded by electrically conductive barrier material.
  • Memory cells 76 (only some of which are labeled) are formed in the memory cell locations (for instance, the locations 31-33), with such memory cells having memory cell material 38 directly between the bottom electrode contact material 24 and the electrode material 70. The memory cells may be considered to be configured as a memory array.
  • In some embodiments, the formation of the top electrode lines 71-74 may be considered to be replacement of at least some of the sacrificial material 40 of lines 41-44 (FIG. 5) with top electrode material 70. In the shown embodiment, all of the sacrificial material 40 of lines 41-44 is replaced with electrode material 70. In some embodiments, memory cell material may be formed within trenches 65-68 prior to formation of the electrode material 70; and in such embodiments a portion of the sacrificial material 40 of lines 41-44 may be considered to be replaced with the memory cell material, and another portion of the sacrificial material 40 of lines 41-44 may be considered to be replaced with the electrode material 70.
  • As discussed above, in some embodiments the materials of region 22 (FIG. 1) may correspond to materials suitable for forming select devices. Example select devices are transistors (for instance, vertical transistors) and diodes. FIGS. 8-12 illustrate an example embodiment in which region 22 comprises materials suitable for fabrication into diodes.
  • Referring to FIG. 8, a construction 10 a is shown at a processing stage analogous to that of FIG. 1. The rails 14-18 comprise stacks of materials 20, 78 and 80. Such materials may correspond to suitable compositions for a diode construction. For instance, materials 20, 78 and 80 may be suitable compositions for a metal-silicon-metal diode (specifically, materials 20 and 80 may be metal, and material 78 may be silicon), or may be suitable compositions for a PIN diode (specifically, region 78 may be intrinsic semiconductor material, one of the regions 20 and 80 may be n-type doped semiconductor material, and the other of the regions 20 and 80 may be p-type doped semiconductor material). The bottom electrode contact material 24 is shown to correspond to a top surface of material 80. In some embodiments, the bottom electrode contact material may be a separate conductive material from the material 80 of the diode compositions rather than being the shown top surface of material 80. Also, although conductive line 20 is shown to also be one of the diode compositions, in other embodiments the line may be a separate conductive material from the bottom diode composition.
  • The diode compositions 20, 78 and 80 extend along the memory cell locations (for instance, the locations 31-33).
  • Referring to FIG. 9, construction 10 a is shown at a processing stage analogous to the above-discussed processing stage of FIG. 4. Accordingly, the pad material 38 and sacrificial material 40 have been formed over rails 14-18, and then the construction has been subjected to patterning to form the lines 41-44 and the trenches 51-53. The formation of the trenches singulates diodes 82 (only some of which are labeled) from the diode compositions 20, 78 and 80. Specifically, the trenches extend through materials 78 and 80 to form individual diodes under individual memory cell locations (for instance, the memory cell locations 31-33). In embodiments in which the bottom diode composition is a different conductive material from the material of the conductive line 20, the trenches may extend through the bottom diode composition in addition to extending through the diode compositions 78 and 80.
  • Referring to FIG. 10, construction 10 a is shown at a processing stage analogous to the above-discussed processing stage of FIG. 5. The construction comprises the dielectric lines 60-62 within the trenches 51-53. Such dielectric lines comprise the voids 56 in combination with the dielectric material 54 in the shown embodiment. The construction 10 a also comprises the planarized upper surface 55.
  • Referring to FIG. 11, construction 10 a is shown at a processing stage analogous to that discussed above with reference to FIG. 6. The sacrificial material 40 (FIG. 10) has been removed to leave the trenches 65-68 between the dielectric lines 60-62. The material 38 is at the bottoms of the trenches 65-68, and corresponds to memory cell material of the type described above with reference to FIG. 6. In other embodiments, the material 38 may be sacrificial material which is removed and replaced with memory cell material, as discussed above with reference to FIG. 6.
  • Referring to FIG. 12, construction 10 a is shown at a processing stage analogous to that discussed above with reference to FIG. 7. Top electrode material 70 has been formed within the trenches 65-68 and patterned to form the top electrode lines 71-74.
  • Memory cells 76 (only some of which are labeled) are formed in the memory cell locations (for instance, the locations 31-33), with such memory cells having memory cell material 38 directly between the bottom electrode contact material 24 and the electrode material 70. Each memory cell is directly over one of the diodes 82.
  • The embodiment of FIGS. 8-12 singulates the diodes 82 during patterning of the memory cell material 38, which consolidates process steps relative to prior art processing. Such may improve throughput of a fabrication process relative to prior art processes, and may eliminate masking steps relative to prior art processes.
  • FIGS. 13 and 14 illustrate another example embodiment method.
  • Referring to FIG. 13, a construction 10 b is shown at a processing stage analogous to that described above with reference to FIG. 6. However, unlike the embodiment of FIG. 6 which had the pad material 38 at the bottoms of the trenches 65-68, the embodiment of FIG. 13 does not have such pad material at the bottoms of such trenches.
  • Referring to FIG. 14, memory cell material 90 is formed within the trenches 65-68 to line such trenches. The memory cell material forms upwardly-opening container structures within the trenches. Subsequently, top electrode material 70 is formed within such upwardly-opening container structures and patterned to form the top electrode lines 71-74.
  • In some embodiments, the memory cell material 90 may be formed as a planar structure rather than as the container-shaped structure of FIG. 14. For instance, FIG. 15 shows a construction 10 c at a processing stage analogous to that of FIG. 14, but in which the memory cell material 90 has been formed as a planar structure.
  • In some embodiments, multiple memory cell materials may be utilized in the memory cells. In such embodiments, the memory cell materials may have different shapes relative to one another. For instance, FIG. 16 shows a construction 10 d utilizing two different memory cell materials 92 and 94. The memory cell material 92 is configured as a planar structure, and the memory cell material 94 is configured as a container-shaped structure provided directly over and directly against the memory cell material 92. The memory cell materials 92 and 94 may be referred to as first and second memory cell materials, respectively.
  • In some embodiments, the memory cell material 92 may correspond to the pad material 38 of FIG. 6, and the material 94 may be provided within trenches 65-68 prior to forming the top electrode material 70 of FIG. 7. In other embodiments, the memory cell materials 92 and 94 may both be formed within trenches 65-68 following a process stage analogous to that of FIG. 13 so that neither of the memory cell materials corresponds to the pad material 38 of FIG. 6.
  • The utilization of two memory cell materials may be useful in, for example, forming PCM cells in which one of the memory cell materials is an ion source (for instance, a combination of copper and tellurium) and the other is a switching region (for instance, an oxide or solid state electrolyte); forming RRAM cells in which one of the memory cell materials is a multivalent oxide and the other is a high k dielectric; etc. In some embodiments, more than two memory cell materials may be utilized.
  • In some embodiments, a construction analogous to that of FIG. 16 may be configured to have the electrode material 70 comprise copper, and the container-shaped material 94 may comprise a copper barrier material (such as a nitride). In such embodiments, the material 94 may or may not be a memory cell material.
  • FIGS. 17-23 illustrate another example embodiment method of fabricating an array of memory cells. Referring to FIG. 17, a construction 10 e is shown at a processing stage analogous to that of FIG. 1. However, unlike the construction of FIG. 1, the rails 14-18 include memory cell material 38 and an electrically conductive material 100. The material 100 may comprise any suitable composition or combination of compositions, and in some embodiments may comprise one or more of various metals (for instance, tungsten, platinum, silver, copper, etc.), metal-containing compositions (for instance, metal silicide, metal carbide, etc.) and conductively-doped semiconductor materials (for instance, conductively-doped silicon, conductively-doped germanium, etc.). Although only one memory cell material is shown, in other embodiments multiple memory cells may be provided between conductive materials 24 and 100.
  • FIGS. 18-23 show the construction 10 e processed with methodology analogous to that discussed above with reference to FIGS. 2-7 to form an array of memory cells (with such array comprising the illustrated memory cells 31-33 in FIG. 23). The memory cell material 38 of FIGS. 17-23 is singulated during the singulation of conductive material 24. Accordingly, each of the memory cells in the memory array of FIG. 23 (for instance, the memory cells 31-33) comprises a segment of material 38, with each segment of material 38 being associated with only a single memory cell location. In contrast, the memory cell material 38 within the memory array of FIG. 7 is shown to be patterned into expanses which extended across multiple memory cells. In the shown embodiment of FIGS. 17-23, the conductive material 100 is patterned together with the memory cell material 38 to form segments of material 100 in one-to-one correspondence with the memory cells (for instance, the memory cells 31-33).
  • The materials of region 22 (FIGS. 17-23) may correspond to materials suitable for forming select devices. Example select devices are transistors (for instance, vertical transistors) and diodes. FIG. 24 illustrates an example embodiment in which region 22 comprises materials suitable for fabrication into diodes. Specifically, FIG. 24 shows a construction 10 f at a processing stage analogous to that of FIG. 12, with construction 10 f comprising the singulated memory cell material 38 and conductive material 100 discussed above with reference to FIGS. 17-23. The regions 20, 78 and 80 may be regions of a diode (for instance, region 20 may be an n-type doped region, region 78 may be an intrinsic region, and region 80 may be a p-type doped region, as discussed above with reference to FIGS. 8-12). In the shown embodiment, the memory cells 76 also comprise a conductive material 102 between the top diode region 80 and the memory cell material 38. Such conductive material may be utilized to improve adhesion between of material 38, improve electrical transfer to material 38 and/or to improve other properties of the memory cells. The conductive material 102 may comprise any suitable composition or combination of compositions and in some embodiments may comprise one or more of various metals (for instance, tungsten, platinum, silver, copper, etc.), metal-containing compositions (for instance, metal silicide, metal carbide, etc.) and conductively-doped semiconductor materials (for instance, conductively-doped silicon, conductively-doped germanium, etc.). The materials 100 and 102 are shown to have different thicknesses relative to one another, with material 100 being thicker than material 102. In other embodiments, materials 100 and 102 may be about the same thickness as one another, or material 102 may be thicker than material 100.
  • The memory cells and arrays discussed above may be incorporated into electronic systems. Such electronic systems may be any of a broad range of systems either now known or yet to be developed; with example electronic systems being clocks, televisions, cell phones, personal computers, automobiles, industrial control systems, aircraft, etc.
  • The particular orientation of the various embodiments in the drawings is for illustrative purposes only, and the embodiments may be rotated relative to the shown orientations in some applications. The description provided herein, and the claims that follow, pertain to any structures that have the described relationships between various features, regardless of whether the structures are in the particular orientation of the drawings, or are rotated relative to such orientation.
  • The cross-sectional views of the accompanying illustrations only show features within the planes of the cross-sections, and do not show materials behind the planes of the cross-sections in order to simplify the drawings.
  • When a structure is referred to above as being “on” or “against” another structure, it can be directly on the other structure or intervening structures may also be present. In contrast, when a structure is referred to as being “directly on” or “directly against” another structure, there are no intervening structures present. When a structure is referred to as being “connected” or “coupled” to another structure, it can be directly connected or coupled to the other structure, or intervening structures may be present. In contrast, when a structure is referred to as being “directly connected” or “directly coupled” to another structure, there are no intervening structures present.
  • Some embodiments include a method of forming a plurality of memory cells. A series of rails is formed to extend along a first direction. Individual rails extend along multiple memory cell locations. The individual rails comprise bottom electrode contact material over electrically conductive lines. The electrically conductive lines are a first series of lines. An expanse of sacrificial material is formed to extend across the rails. The sacrificial material is patterned into a second series of lines that extends along a second direction that crosses the first direction. A pattern of the second series of lines is transferred into the bottom electrode contact material to singulate the bottom electrode contact material into segments associated with only single memory cell locations. At least a portion of the sacrificial material of the second series of lines is replaced with top electrode material.
  • Some embodiments include a method of forming a plurality of memory cells. A series of rails is formed to extend along a first direction. Individual rails extend along multiple memory cell locations. The individual rails comprise bottom electrode contact material stacked over electrically conductive lines. A series of sacrificial material lines is formed to extend along a second direction that crosses the first direction. The sacrificial material lines are directly over the memory cell locations. A pattern of the sacrificial material lines is transferred into the bottom electrode contact material to singulate the bottom electrode contact material into segments associated with only single memory cell locations. A series of dielectric lines is formed between the sacrificial material lines. The dielectric lines extend along the second direction. The sacrificial material lines are removed to leave trenches between the dielectric lines. The trenches are directly over the segments of the bottom electrode contact material. Top electrode material is formed within the trenches and over the dielectric material lines. The top electrode material is planarized to remove the top electrode material from over the dielectric material lines and thereby form a plurality of top electrode lines directly over the memory cell locations. The top electrode lines extend along the second direction.
  • Some embodiments include a method of forming a plurality of memory cells. A series of rails is formed to extend along a first direction. Individual rails extend along multiple memory cell locations. The individual rails comprise bottom electrode contact material stacked over electrically conductive lines. The electrically conductive lines are a first series of lines. An expanse of sacrificial material is formed to extend across the rails. The sacrificial material is patterned into a second series of lines which extend along a second direction that crosses the first direction. A pattern of the second series of lines is transferred into the bottom electrode contact material to singulate the bottom electrode contact material into segments associated with only single memory cell locations. The transferring of the pattern forms a series of first trenches that extend along the second direction. Individual trenches of the first series are between adjacent lines of the second series. One or more dielectric materials are formed within the first series of trenches. After said one or more dielectric materials are formed, the sacrificial material is removed to leave a second series of trenches that extend along the second direction. Individual trenches of the second series are directly over the segments of bottom electrode contact material. Top electrode material is formed within the second series of trenches and over the one or more dielectric materials. The top electrode material is planarized to remove the top electrode material from over the one or more dielectric materials and thereby form a plurality of top electrode lines that extend along the second direction.
  • Some embodiments include a memory array that comprises a first series of electrically conductive lines extending along a first direction. Pillars are over the first series of electrically conductive lines. The pillars are capped with bottom electrode contact material and are directly between the electrically conductive lines of the first series and memory cell locations. One or more memory cell materials are over the pillars and within the memory cell locations. A second series of electrically conductive lines extends along a second direction that crosses the first direction. The second series of electrically conductive lines comprises top electrode material. The memory cell locations are directly between the electrically conductive lines of the first and second series, and are in regions where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. The electrically conductive lines of the second series comprise one or more of platinum, copper and silver.
  • Some embodiments include a memory array that comprises a first series of electrically conductive lines extending along a first direction. Pillars are over the first series of electrically conductive lines. The pillars are capped with bottom electrode contact material and are directly between the electrically conductive lines of the first series and memory cell locations. A first memory cell material is over the pillars and within the memory cell locations. The first memory cell material is a planar sheet within the memory cell locations, and is directly against the bottom electrode contact material. A second memory cell material is over the first memory cell material. The second memory cell material is configured as a plurality of upwardly-opening containers that extend linearly along a second direction that crosses the first direction. A second series of electrically conductive lines is within the containers. The second series of electrically conductive lines comprises top electrode material. The memory cell locations are directly between the electrically conductive lines of the first and second series, and are in regions where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series.
  • In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.

Claims (37)

I/we claim:
1. A method of forming a plurality of memory cells, comprising:
forming a series of rails extending along a first direction, individual rails extending along multiple memory cell locations, the individual rails comprising bottom electrode contact material over electrically conductive lines, the electrically conductive lines being a first series of lines;
forming an expanse of sacrificial material extending across the rails;
patterning the sacrificial material into a second series of lines extending along a second direction that crosses the first direction;
transferring a pattern of the second series of lines into the bottom electrode contact material to singulate the bottom electrode contact material into segments associated with only single memory cell locations; and
replacing at least a portion of the sacrificial material of the second series of lines with top electrode material.
2. The method of claim 1 wherein the rails further comprise memory cell material over the bottom electrode contact material, and wherein the pattern of the second series of lines is transferred into the memory cell material to singulate the memory cell material into segments associated with only single memory cell locations.
3. The method of claim 1 further comprising forming one or more memory cell materials within the memory cell locations prior to replacing at least a portion of the sacrificial material with the top electrode material.
4. The method of claim 1 wherein a first memory cell material is formed within the memory cell locations prior to forming the expanse of sacrificial material, and wherein a second memory cell material is formed within the memory cell locations by replacing a portion of the sacrificial material of the second series of lines with the second memory cell material.
5. The method of claim 1 wherein the top electrode material comprises one or more noble metals.
6. The method of claim 1 wherein the top electrode material comprises one or more of platinum, copper and silver.
7. A method of forming a plurality of memory cells, comprising:
forming a series of rails extending along a first direction, individual rails extending along multiple memory cell locations, the individual rails comprising bottom electrode contact material stacked over electrically conductive lines;
forming a series of sacrificial material lines extending along a second direction that crosses the first direction, the sacrificial material lines being directly over the memory cell locations;
transferring a pattern of the sacrificial material lines into the bottom electrode contact material to singulate the bottom electrode contact material into segments associated with only single memory cell locations;
forming a series of dielectric lines between the sacrificial material lines, the dielectric lines extending along the second direction;
removing the sacrificial material lines to leave trenches between the dielectric lines, the trenches being directly over the segments of the bottom electrode contact material;
forming top electrode material within the trenches and over the dielectric material lines; and
planarizing the top electrode material to remove the top electrode material from over the dielectric material lines and thereby form a plurality of top electrode lines directly over the memory cell locations and extending along the second direction.
8. The method of claim 7 wherein the rails further comprise memory cell material over the bottom electrode contact material; and wherein pattern of the sacrificial material lines is transferred into the memory cell material to singulate the memory cell material into segments associated with only single memory cell locations.
9. The method of claim 7 wherein the sacrificial material lines consist of silicon.
10. The method of claim 7 further comprising forming memory cell material over the bottom electrode contact material within the memory cell locations prior to forming the top electrode material within the trenches.
11. The method of claim 10 wherein at least some of the memory cell material is formed within the trenches.
12. The method of claim 11 wherein the forming of the memory cell material within the trenches comprises forming planar sheets of the memory cell material along bottoms of the trenches.
13. The method of claim 11 wherein the forming of the memory cell material within the trenches comprises forming upwardly opening container-shaped structures of the memory cell material.
14. The method of claim 10 wherein at least some of the memory cell material is formed between the sacrificial material lines and the bottom electrode contact material.
15. The method of claim 7 wherein the segments of the bottom electrode contact material are along tops of select devices.
16. The method of claim 15 wherein the select devices are transistors.
17. The method of claim 15 wherein the select devices are diodes which are singulated during the singulation of the bottom electrode contact material.
18. A method of forming a plurality of memory cells, comprising:
forming a series of rails extending along a first direction, individual rails extending along multiple memory cell locations, the individual rails comprising bottom electrode contact material stacked over electrically conductive lines, the electrically conductive lines being a first series of lines;
forming an expanse of sacrificial material extending across the rails;
patterning the sacrificial material into a second series of lines extending along a second direction that crosses the first direction;
transferring a pattern of the second series of lines into the bottom electrode contact material to singulate the bottom electrode contact material into segments associated with only single memory cell locations; the transferring of the pattern forming a first series of trenches that extends along the second direction; individual trenches of the first series being between adjacent lines of the second series;
forming one or more dielectric materials within the first series of trenches;
after forming said one or more dielectric materials, removing the sacrificial material to leave a second series of trenches that extends along the second direction;
individual trenches of the second series being directly over the segments of bottom electrode contact material;
forming top electrode material within the second series of trenches and over the one or more dielectric materials; and
planarizing the top electrode material to remove the top electrode material from over the one or more dielectric materials and thereby form a plurality of top electrode lines extending along the second direction.
19. The method of claim 18 wherein the rails further comprise memory cell material over the bottom electrode contact material; and wherein the pattern of the second series of lines is transferred into the memory cell material to singulate the memory cell material into segments associated with only single memory cell locations.
20. The method of claim 18 wherein the one or more dielectric materials comprise one or both of silicon nitride and silicon carbide.
21. The method of claim 18 wherein the one or more dielectric materials are formed to pinch off across tops of the trenches of the first series and thereby leave air gaps within the trenches of the first series.
22. The method of claim 18 further comprising forming memory cell material within the trenches of the second series prior to forming the top electrode material within such trenches.
23. The method of claim 22 wherein the memory cell material forms upwardly-opening containers within the trenches of the second series; and wherein the top electrode material is formed within said upwardly-opening containers.
24. The method of claim 18 further comprising forming an expanse of memory cell material across the rails, and forming the expanse of sacrificial material over the expanse of memory cell material; and wherein the pattern of the second series of lines is transferred into the expanse of memory cell material.
25. The method of claim 24 wherein the memory cell material is a first memory cell material, and further comprising forming a second memory cell material within the trenches of the second series prior to forming the top electrode material within such trenches.
26. The method of claim 25 wherein the second memory cell material forms upwardly-opening containers within the trenches of the second series; and wherein the top electrode material is formed within said upwardly-opening containers.
27. A memory array, comprising:
a first series of electrically conductive lines extending along a first direction;
pillars over the first series of electrically conductive lines; the pillars being capped with bottom electrode contact material and being directly between the electrically conductive lines of the first series and memory cell locations;
one or more memory cell materials over the pillars and within the memory cell locations;
a second series of electrically conductive lines extending along a second direction that crosses the first direction; the second series of electrically conductive lines comprising top electrode material; the memory cell locations being directly between the electrically conductive lines of the first and second series, and being in regions where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series; and
wherein the electrically conductive lines of the second series comprise one or more of platinum, copper and silver.
28. The memory array of claim 27 wherein the one or more memory cell materials include a memory cell material configured as a plurality of upwardly-opening containers that extend linearly along the second direction; and wherein the electrically conductive lines of the second series are within the containers.
29. The memory array of claim 27 further comprising dielectric lines between the electrically conductive lines of the second series; and wherein the dielectric lines comprise one or both of silicon nitride and silicon carbide.
30. The memory array of claim 29 wherein the dielectric lines comprise air gaps that consume at least about 10% of a volume of the dielectric lines.
31. The memory array of claim 27 wherein the one or more memory cell materials comprise one or more of aluminum, antimony, barium, calcium, cesium, germanium, hafnium, iron, lanthanum, lead, manganese, oxygen, praseodymium, ruthenium, samarium, selenium, silicon, strontium, sulfur, tellurium, titanium, yttrium and zirconium.
32. The memory array of claim 31 wherein the one or more memory cell materials comprise an ion source region comprising one or more of copper, silver and tellurium.
33. The memory array of claim 27 wherein the pillars comprise at least portions of select devices.
34. The memory array of claim 27 wherein the select devices are transistors or diodes.
35. A memory array, comprising:
a first series of electrically conductive lines extending along a first direction;
pillars over the first series of electrically conductive lines; the pillars being capped with bottom electrode contact material and being directly between the electrically conductive lines of the first series and memory cell locations;
a first memory cell material over the pillars and within the memory cell locations, the first memory cell material being a planar sheet within the memory cell locations and being directly against the bottom electrode contact material;
a second memory cell material over the first memory cell material, the second memory cell material being configured as a plurality of upwardly-opening containers that extend linearly along a second direction that crosses the first direction; and
a second series of electrically conductive lines within the containers; the second series of electrically conductive lines comprising top electrode material; the memory cell locations being directly between the electrically conductive lines of the first and second series, and being in regions where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series.
36. The memory array of claim 35 wherein the top electrode material comprises one or more noble metals.
37. The memory array of claim 35 wherein the top electrode material comprises one or more of platinum, copper and silver.
US13/298,840 2011-11-17 2011-11-17 Methods of forming memory cells Active 2032-09-13 US9252188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/298,840 US9252188B2 (en) 2011-11-17 2011-11-17 Methods of forming memory cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/298,840 US9252188B2 (en) 2011-11-17 2011-11-17 Methods of forming memory cells
US15/003,715 US9893277B2 (en) 2011-11-17 2016-01-21 Memory arrays and methods of forming memory cells
US15/857,448 US10069067B2 (en) 2011-11-17 2017-12-28 Memory arrays and methods of forming memory cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/003,715 Division US9893277B2 (en) 2011-11-17 2016-01-21 Memory arrays and methods of forming memory cells

Publications (2)

Publication Number Publication Date
US20130126816A1 true US20130126816A1 (en) 2013-05-23
US9252188B2 US9252188B2 (en) 2016-02-02

Family

ID=48425920

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/298,840 Active 2032-09-13 US9252188B2 (en) 2011-11-17 2011-11-17 Methods of forming memory cells
US15/003,715 Active US9893277B2 (en) 2011-11-17 2016-01-21 Memory arrays and methods of forming memory cells
US15/857,448 Active US10069067B2 (en) 2011-11-17 2017-12-28 Memory arrays and methods of forming memory cells

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/003,715 Active US9893277B2 (en) 2011-11-17 2016-01-21 Memory arrays and methods of forming memory cells
US15/857,448 Active US10069067B2 (en) 2011-11-17 2017-12-28 Memory arrays and methods of forming memory cells

Country Status (1)

Country Link
US (3) US9252188B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682094A (en) * 2013-12-11 2014-03-26 上海新安纳电子科技有限公司 Phase change memory structure and manufacturing method thereof
US8975148B2 (en) 2011-11-17 2015-03-10 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US8994489B2 (en) 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US20150207068A1 (en) * 2013-04-25 2015-07-23 SK Hynix Inc. Resistive memory device and fabrication method thereof
US9118004B2 (en) 2011-03-23 2015-08-25 Micron Technology, Inc. Memory cells and methods of forming memory cells
US20150255284A1 (en) * 2013-12-18 2015-09-10 Robert L. Bristol Self-aligned via patterning with multi-colored photobuckets for back end of line (beol) interconnects
US20150263277A1 (en) * 2014-03-11 2015-09-17 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
WO2015148728A1 (en) * 2014-03-27 2015-10-01 Micron Technology, Inc. Replacement materials processes for forming cross point memory
US9184384B2 (en) 2012-03-22 2015-11-10 Micron Technology, Inc. Memory cells and methods of forming memory cells
US20160028009A1 (en) * 2014-07-25 2016-01-28 Globalfoundries Singapore Pte. Ltd. Resistive memory device
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US9263577B2 (en) 2014-04-24 2016-02-16 Micron Technology, Inc. Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
US9276134B2 (en) 2014-01-10 2016-03-01 Micron Technology, Inc. Field effect transistor constructions and memory arrays
CN105390436A (en) * 2014-08-20 2016-03-09 格罗方德半导体公司 Precut metal lines
CN105405972A (en) * 2015-12-15 2016-03-16 上海新储集成电路有限公司 Preparation method of three-dimensional resistive random access memory retaining air layer
US9299930B2 (en) 2011-11-17 2016-03-29 Micron Technology, Inc. Memory cells, integrated devices, and methods of forming memory cells
US9305929B1 (en) 2015-02-17 2016-04-05 Micron Technology, Inc. Memory cells
US9337210B2 (en) 2013-08-12 2016-05-10 Micron Technology, Inc. Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
US20160133671A1 (en) * 2014-11-07 2016-05-12 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
CN105609465A (en) * 2014-11-18 2016-05-25 格罗方德半导体公司 Self-aligned via process flow
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9391269B2 (en) 2014-01-29 2016-07-12 Samsung Electronics Co., Ltd. Variable resistance memory devices
US20160254360A1 (en) * 2013-02-22 2016-09-01 Taiwain Semiconductor Manufacturing Company, Ltd. Semiconductor Device Having Electrode and Manufacturing Method Thereof
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US9472560B2 (en) 2014-06-16 2016-10-18 Micron Technology, Inc. Memory cell and an array of memory cells
US20160307999A1 (en) * 2015-04-20 2016-10-20 SK Hynix Inc. Semiconductor device having air gap and method for manufacturing the same, memory cell having the same and electronic device having the same
US20170025604A1 (en) * 2015-07-24 2017-01-26 Micron Technology, Inc. Array Of Cross Point Memory Cells And Methods Of Forming An Array Of Cross Point Memory Cells
US9559194B2 (en) 2014-10-16 2017-01-31 Micron Technology, Inc. Transistors and methods of forming transistors
US9608111B2 (en) 2014-10-07 2017-03-28 Micro Technology, Inc. Recessed transistors containing ferroelectric material
US9627611B2 (en) 2012-11-21 2017-04-18 Micron Technology, Inc. Methods for forming narrow vertical pillars and integrated circuit devices having the same
US9773977B2 (en) 2012-04-30 2017-09-26 Micron Technology, Inc. Phase change memory cells
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US10134982B2 (en) 2015-07-24 2018-11-20 Micron Technology, Inc. Array of cross point memory cells
US10153196B1 (en) 2017-08-24 2018-12-11 Micron Technology, Inc. Arrays of cross-point memory structures
US10396145B2 (en) 2017-01-12 2019-08-27 Micron Technology, Inc. Memory cells comprising ferroelectric material and including current leakage paths having different total resistances

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197394A1 (en) * 2007-02-20 2008-08-21 Qimonda Ag Methods of manufacturing semiconductor structures
US20090127538A1 (en) * 2007-11-15 2009-05-21 Samsung Electronics Co. Ltd. Phase-Changeable Memory Devices Having Reduced Susceptibility to Thermal Interference
US20090230505A1 (en) * 2008-03-14 2009-09-17 Ovonyx, Inc. Self-aligned memory cells and method for forming
US20100019221A1 (en) * 2008-07-22 2010-01-28 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US20100176368A1 (en) * 2009-01-14 2010-07-15 Ko Nikka Method of manufacturing semiconductor memory device, and semiconductor memory device
US20100207168A1 (en) * 2009-02-19 2010-08-19 Scott Sills Cross-Point Memory Structures, And Methods Of Forming Memory Arrays
US20110215436A1 (en) * 2010-03-02 2011-09-08 Micron Technology, Inc. Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7510903A (en) 1975-09-17 1977-03-21 Philips Nv A method of manufacturing a semiconductor device, and device manufactured by the method.
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4630355A (en) 1985-03-08 1986-12-23 Energy Conversion Devices, Inc. Electric circuits having repairable circuit lines and method of making the same
US4849247A (en) 1987-12-14 1989-07-18 Sundstrand Corporation Enhanced adhesion of substrate materials using ion-beam implantation
US5055423A (en) 1987-12-28 1991-10-08 Texas Instruments Incorporated Planarized selective tungsten metallization system
JP2921889B2 (en) 1989-11-27 1999-07-19 株式会社東芝 A method of manufacturing a semiconductor device
US4987099A (en) 1989-12-29 1991-01-22 North American Philips Corp. Method for selectively filling contacts or vias or various depths with CVD tungsten
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
JP3147149B2 (en) 1997-02-07 2001-03-19 日本電気株式会社 Semiconductor device and manufacturing method thereof
WO2000057498A1 (en) 1999-03-25 2000-09-28 Energy Conversion Devices, Inc. Electrically programmable memory element with improved contacts
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6143670A (en) 1998-12-28 2000-11-07 Taiwan Semiconductor Manufacturing Company Method to improve adhesion between low dielectric constant layer and silicon containing dielectric layer
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
WO2003088257A1 (en) 2002-04-10 2003-10-23 Jeng-Jye Shau Embedded electrically programmable read only memory devices
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6611453B2 (en) 2001-01-24 2003-08-26 Infineon Technologies Ag Self-aligned cross-point MRAM device with aluminum metallization layers
US6692898B2 (en) 2001-01-24 2004-02-17 Infineon Technologies Ag Self-aligned conductive line for cross-point magnetic memory integrated circuits
US6664182B2 (en) 2001-04-25 2003-12-16 Macronix International Co. Ltd. Method of improving the interlayer adhesion property of low-k layers in a dual damascene process
US6927430B2 (en) 2001-06-28 2005-08-09 Sharp Laboratories Of America, Inc. Shared bit line cross-point memory array incorporating P/N junctions
US6764894B2 (en) 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6815818B2 (en) 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6661330B1 (en) 2002-07-23 2003-12-09 Texas Instruments Incorporated Electrical fuse for semiconductor integrated circuits
US7314776B2 (en) 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
JP2004281612A (en) 2003-03-14 2004-10-07 Renesas Technology Corp Semiconductor device
US7719875B2 (en) 2003-03-18 2010-05-18 Kabushiki Kaisha Toshiba Resistance change memory device
US7129560B2 (en) 2003-03-31 2006-10-31 International Business Machines Corporation Thermal memory cell and memory device including the thermal memory cell
KR100504698B1 (en) 2003-04-02 2005-08-02 삼성전자주식회사 Phase change memory device and method for forming the same
JP4563655B2 (en) 2003-04-23 2010-10-13 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP3752589B2 (en) 2003-06-25 2006-03-08 松下電器産業株式会社 Method for driving non-volatile memory
JP2005032855A (en) 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Semiconductor storage device and its fabricating process
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
DE10349750A1 (en) 2003-10-23 2005-05-25 Commissariat à l'Energie Atomique Phase change memory, phase change memory arrangement, phase change memory cell, 2D phase change memory cell array, 3D phase change memory cell array and electronic component
KR100568109B1 (en) 2003-11-24 2006-04-05 삼성전자주식회사 Phase change memory devices and methods of forming the same
US7034332B2 (en) 2004-01-27 2006-04-25 Hewlett-Packard Development Company, L.P. Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making
TWI357148B (en) 2004-02-06 2012-01-21 Renesas Electronics Corp
US6906940B1 (en) 2004-02-12 2005-06-14 Macronix International Co., Ltd. Plane decoding method and device for three dimensional memories
DE102004018715B3 (en) 2004-04-17 2005-11-17 Infineon Technologies Ag Memory cell for storing information, memory circuit and method for producing a memory cell
US8188600B2 (en) 2004-06-24 2012-05-29 Nec Corporation Semiconductor device and method of fabricating the same
US7148140B2 (en) 2004-07-28 2006-12-12 Texas Instruments Incorporated Partial plate anneal plate process for deposition of conductive fill material
US6984549B1 (en) 2004-08-19 2006-01-10 Micron Technology, Inc. Methods of forming semiconductor fuse arrangements
US7687830B2 (en) 2004-09-17 2010-03-30 Ovonyx, Inc. Phase change memory with ovonic threshold switch
US7135696B2 (en) 2004-09-24 2006-11-14 Intel Corporation Phase change memory with damascene memory element
KR100593450B1 (en) 2004-10-08 2006-06-28 삼성전자주식회사 Feeder having a vertically positioned turn, a plurality of active regions. The raemdeul and a method.
US7338857B2 (en) 2004-10-14 2008-03-04 Ovonyx, Inc. Increasing adherence of dielectrics to phase change materials
KR100626388B1 (en) 2004-10-19 2006-09-20 삼성전자주식회사 Phase-changable memory device and method of forming the same
JP2006156886A (en) 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor
US7259038B2 (en) 2005-01-19 2007-08-21 Sandisk Corporation Forming nonvolatile phase change memory cell having a reduced thermal contact area
US7307268B2 (en) 2005-01-19 2007-12-11 Sandisk Corporation Structure and method for biasing phase change memory array for reliable writing
US7465951B2 (en) 2005-01-19 2008-12-16 Sandisk Corporation Write-once nonvolatile phase change memory array
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
US8022382B2 (en) 2005-03-11 2011-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory devices with reduced programming current
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7728390B2 (en) 2005-05-06 2010-06-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-level interconnection memory device
WO2006123306A1 (en) 2005-05-19 2006-11-23 Koninklijke Philips Electronics N.V. Method for controlling the 'first-to-melt' region in a pcm cell and devices obtained thereof
EP1729355B1 (en) 2005-06-03 2008-11-19 STMicroelectronics S.r.l. Self-aligned process for manufacturing phase change memory cells
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7426128B2 (en) 2005-07-11 2008-09-16 Sandisk 3D Llc Switchable resistive memory with opposite polarity write pulses
US7504652B2 (en) 2005-07-13 2009-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change random access memory
JP2007042804A (en) 2005-08-02 2007-02-15 Renesas Technology Corp Semiconductor device and manufacturing method thereof
US20070054486A1 (en) 2005-09-05 2007-03-08 Ta-Hung Yang Method for forming opening
EP1764847B1 (en) 2005-09-14 2008-12-24 STMicroelectronics S.r.l. Ring heater for a phase change memory device
KR100800469B1 (en) 2005-10-05 2008-02-01 삼성전자주식회사 Circuitry device comprising vertical transistors with buried bit lines and manufacturing method for the same
KR100675289B1 (en) 2005-11-14 2007-01-22 삼성전자주식회사 Phase changeable memory cell array region and methods of forming the same
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
DE602005021382D1 (en) 2005-12-23 2010-07-01 St Microelectronics Srl Method for producing a selection element with reduced leakage current, and a selection component, in particular for phase change memory
WO2007086155A1 (en) 2006-01-24 2007-08-02 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device, signal processing method, and camera
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US20070252127A1 (en) 2006-03-30 2007-11-01 Arnold John C Phase change memory element with a peripheral connection to a thin film electrode and method of manufacture thereof
US7545667B2 (en) 2006-03-30 2009-06-09 International Business Machines Corporation Programmable via structure for three dimensional integration technology
KR100748557B1 (en) 2006-05-26 2007-08-06 삼성전자주식회사 Phase-change memory device
US20070279974A1 (en) 2006-06-06 2007-12-06 Dennison Charles H Forming heaters for phase change memories with select devices
KR100791071B1 (en) 2006-07-04 2008-01-02 삼성전자주식회사 One time programmable device, electronic system including the same and operating method of the same
US7696077B2 (en) 2006-07-14 2010-04-13 Micron Technology, Inc. Bottom electrode contacts for semiconductor devices and methods of forming same
US7453081B2 (en) 2006-07-20 2008-11-18 Qimonda North America Corp. Phase change memory cell including nanocomposite insulator
EP1883113B1 (en) 2006-07-27 2010-03-10 SGS-THOMSON MICROELECTRONICS S.r.l. Phase change memory device
US7800092B2 (en) 2006-08-15 2010-09-21 Micron Technology, Inc. Phase change memory elements using energy conversion layers, memory arrays and systems including same, and methods of making and using
US7491585B2 (en) 2006-10-19 2009-02-17 International Business Machines Corporation Electrical fuse and method of making
US8106376B2 (en) 2006-10-24 2012-01-31 Macronix International Co., Ltd. Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
KR100816759B1 (en) 2006-11-09 2008-03-25 삼성전자주식회사 Nonvolatile memory device having a storage of variable resistor and method of operating the same
KR101131137B1 (en) 2006-11-30 2012-04-03 삼성전자주식회사 Phase change random access memory comprising diffusion barrier and method of manufacturing the same
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
TWI516573B (en) 2007-02-06 2016-01-11 安堤格里斯公司 Composition and process for the selective removal of tisin
TW200903777A (en) 2007-07-05 2009-01-16 Ind Tech Res Inst Phase-change memory element and method for fabricating the same
DE102008032067A1 (en) 2007-07-12 2009-01-15 Samsung Electronics Co., Ltd., Suwon Method for forming phase change memories with lower electrodes
US7742323B2 (en) 2007-07-26 2010-06-22 Unity Semiconductor Corporation Continuous plane of thin-film materials for a two-terminal cross-point memory
US7795132B2 (en) 2007-07-31 2010-09-14 Molecular Imprints, Inc. Self-aligned cross-point memory fabrication
KR20090013419A (en) 2007-08-01 2009-02-05 삼성전자주식회사 Phase change memory devices and methods of forming the same
TW200908293A (en) 2007-08-01 2009-02-16 Ind Tech Res Inst Phase change memory device and fabrications thereof
US20090039333A1 (en) 2007-08-09 2009-02-12 Heon Yong Chang Phase change memory device and method for manufacturing the same
US9129845B2 (en) 2007-09-19 2015-09-08 Micron Technology, Inc. Buried low-resistance metal word lines for cross-point variable-resistance material memories
US7719039B2 (en) 2007-09-28 2010-05-18 Freescale Semiconductor, Inc. Phase change memory structures including pillars
US7619933B2 (en) 2007-10-05 2009-11-17 Micron Technology, Inc. Reducing effects of program disturb in a memory device
US7773413B2 (en) 2007-10-08 2010-08-10 Anobit Technologies Ltd. Reliable data storage in analog memory cells in the presence of temperature variations
US7729162B2 (en) 2007-10-09 2010-06-01 Ovonyx, Inc. Semiconductor phase change memory using multiple phase change layers
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US20090108249A1 (en) 2007-10-31 2009-04-30 Fang-Shi Jordan Lai Phase Change Memory with Diodes Embedded in Substrate
US7646631B2 (en) 2007-12-07 2010-01-12 Macronix International Co., Ltd. Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
KR100972917B1 (en) 2007-12-26 2010-08-03 주식회사 하이닉스반도체 Semiconductor device and method for manufacturing the same
US20090166601A1 (en) 2008-01-02 2009-07-02 Ovonyx, Inc. Non-volatile programmable variable resistance element
US7682945B2 (en) 2008-02-04 2010-03-23 International Business Machines Corporation Phase change element extension embedded in an electrode
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
JP2009212202A (en) 2008-03-03 2009-09-17 Elpida Memory Inc Phase change memory device and fabrication method thereof
KR20090097362A (en) 2008-03-11 2009-09-16 삼성전자주식회사 Resistive memory device and method for forming thereof
KR100973273B1 (en) 2008-04-28 2010-07-30 주식회사 하이닉스반도체 Phase change memory device and method for manufacturing the same
US20090298222A1 (en) 2008-05-28 2009-12-03 Ovonyx, Inc. Method for manufacturing Chalcogenide devices
KR101038314B1 (en) 2008-06-05 2011-06-01 주식회사 하이닉스반도체 Phase change memory device and method for manufacturing the same
US8742387B2 (en) 2008-06-25 2014-06-03 Qimonda Ag Resistive memory devices with improved resistive changing elements
US7732235B2 (en) 2008-06-30 2010-06-08 Sandisk 3D Llc Method for fabricating high density pillar structures by double patterning using positive photoresist
KR100985184B1 (en) 2008-07-23 2010-10-05 삼성전자주식회사 Electric device and the method of forming the same
US8124950B2 (en) 2008-08-26 2012-02-28 International Business Machines Corporation Concentric phase change memory element
KR100972074B1 (en) 2008-09-18 2010-07-22 주식회사 하이닉스반도체 Phase Change RAM device and method of manufacturing the same
DE102008054073A1 (en) 2008-10-31 2010-05-12 Advanced Micro Devices, Inc., Sunnyvale Semiconductor device with electronic fuses with increased programming efficiency
KR20110086083A (en) 2008-12-22 2011-07-27 캐논 아네르바 가부시키가이샤 Semiconductor storage element manufacturing method and sputter device
KR101069645B1 (en) 2008-12-26 2011-10-04 주식회사 하이닉스반도체 Phase Changeable Memory Device Being Able To Decrease of Thermal Burden And Method of Manufacturing The Same
US20100163833A1 (en) 2008-12-31 2010-07-01 Stmicroelectronics S.R.I. Electrical fuse device based on a phase-change memory element and corresponding programming method
US8093661B2 (en) 2009-01-07 2012-01-10 Macronix International Co., Ltd. Integrated circuit device with single crystal silicon on silicide and manufacturing method
US7785978B2 (en) 2009-02-04 2010-08-31 Micron Technology, Inc. Method of forming memory cell using gas cluster ion beams
KR101535653B1 (en) 2009-02-09 2015-07-10 삼성전자주식회사 Method for fabricating phase change memory device
US20100213431A1 (en) 2009-02-20 2010-08-26 Tung-Ti Yeh Treated Chalcogenide Layer for Semiconductor Devices
JP4810581B2 (en) 2009-03-25 2011-11-09 株式会社東芝 Nonvolatile memory device
US8270199B2 (en) * 2009-04-03 2012-09-18 Sandisk 3D Llc Cross point non-volatile memory cell
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8053809B2 (en) 2009-05-26 2011-11-08 International Business Machines Corporation Device including high-K metal gate finfet and resistive structure and method of forming thereof
US8168538B2 (en) 2009-05-26 2012-05-01 Macronix International Co., Ltd. Buried silicide structure and method for making
US8212233B2 (en) 2009-05-28 2012-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. Forming phase-change memory using self-aligned contact/via scheme
US20100308296A1 (en) 2009-06-09 2010-12-09 Agostino Pirovano Phase change memory cell with self-aligned vertical heater
US20100327251A1 (en) 2009-06-30 2010-12-30 Hynix Semiconductor Inc. Phase change memory device having partially confined heating electrodes capable of reducing heating disturbances between adjacent memory cells
US9246093B2 (en) 2009-07-01 2016-01-26 Micron Technology, Inc. Phase change memory cell with self-aligned vertical heater and low resistivity interface
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
JP5010658B2 (en) 2009-09-18 2012-08-29 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US20110074538A1 (en) 2009-09-25 2011-03-31 Kuei-Sheng Wu Electrical fuse structure and method for fabricating the same
DE102010061572A1 (en) 2009-12-29 2011-07-14 Samsung Electronics Co., Ltd., Kyonggi Phase change structure, method of forming a phase change layer, phase change memory device, and method of manufacturing a phase change memory device
US8847186B2 (en) 2009-12-31 2014-09-30 Micron Technology, Inc. Self-selecting PCM device not requiring a dedicated selector transistor
JP2011165854A (en) 2010-02-09 2011-08-25 Toshiba Corp Memory device and method of manufacturing the same
US8389375B2 (en) 2010-02-11 2013-03-05 Sandisk 3D Llc Memory cell formed using a recess and methods for forming the same
KR101716472B1 (en) 2010-05-24 2017-03-15 삼성전자 주식회사 Non-volatile memory device having phase-change material
KR20110135285A (en) 2010-06-10 2011-12-16 삼성전자주식회사 Methods for fabricating phase change memory devices
US8507353B2 (en) 2010-08-11 2013-08-13 Samsung Electronics Co., Ltd. Method of forming semiconductor device having self-aligned plug
KR101753256B1 (en) 2010-10-14 2017-07-05 삼성전자주식회사 Semiconductor deivces having a variable resistor and methods of fabricating the same
US8361833B2 (en) 2010-11-22 2013-01-29 Micron Technology, Inc. Upwardly tapering heaters for phase change memories
KR101819595B1 (en) 2011-02-28 2018-01-18 삼성전자주식회사 Semiconductor memory devices and methods for forming the same
US8486743B2 (en) 2011-03-23 2013-07-16 Micron Technology, Inc. Methods of forming memory cells
US8933491B2 (en) 2011-03-29 2015-01-13 Micron Technology, Inc. Arrays of memory cells and methods of forming an array of vertically stacked tiers of memory cells
US8409960B2 (en) 2011-04-08 2013-04-02 Micron Technology, Inc. Methods of patterning platinum-containing material
US8735862B2 (en) 2011-04-11 2014-05-27 Micron Technology, Inc. Memory cells, methods of forming memory cells and methods of forming memory arrays
JP5674548B2 (en) 2011-04-28 2015-02-25 株式会社日立製作所 Semiconductor memory device
KR20120133676A (en) 2011-05-31 2012-12-11 에스케이하이닉스 주식회사 Phase Change Random Access Memory And Method For Fabricating The Same
KR20120135628A (en) 2011-06-07 2012-12-17 삼성전자주식회사 Semiconductor device and method for manufacturing the same
JP5858350B2 (en) 2011-09-14 2016-02-10 インテル・コーポレーション Apparatus, method and system
US8994489B2 (en) 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US8723155B2 (en) 2011-11-17 2014-05-13 Micron Technology, Inc. Memory cells and integrated devices
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US8546231B2 (en) 2011-11-17 2013-10-01 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US8765555B2 (en) 2012-04-30 2014-07-01 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US9136467B2 (en) 2012-04-30 2015-09-15 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US20140117302A1 (en) 2012-11-01 2014-05-01 Micron Technology, Inc. Phase Change Memory Cells, Methods Of Forming Phase Change Memory Cells, And Methods Of Forming Heater Material For Phase Change Memory Cells
US9553262B2 (en) 2013-02-07 2017-01-24 Micron Technology, Inc. Arrays of memory cells and methods of forming an array of memory cells
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
US9425390B2 (en) 2014-10-16 2016-08-23 Micron Technology, Inc. Select device for memory cell applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197394A1 (en) * 2007-02-20 2008-08-21 Qimonda Ag Methods of manufacturing semiconductor structures
US20090127538A1 (en) * 2007-11-15 2009-05-21 Samsung Electronics Co. Ltd. Phase-Changeable Memory Devices Having Reduced Susceptibility to Thermal Interference
US20090230505A1 (en) * 2008-03-14 2009-09-17 Ovonyx, Inc. Self-aligned memory cells and method for forming
US20100019221A1 (en) * 2008-07-22 2010-01-28 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US20100176368A1 (en) * 2009-01-14 2010-07-15 Ko Nikka Method of manufacturing semiconductor memory device, and semiconductor memory device
US20100207168A1 (en) * 2009-02-19 2010-08-19 Scott Sills Cross-Point Memory Structures, And Methods Of Forming Memory Arrays
US20110215436A1 (en) * 2010-03-02 2011-09-08 Micron Technology, Inc. Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620174B2 (en) 2010-12-02 2017-04-11 Micron Technology, Inc. Arrays of nonvolatile memory cells comprising a repetition of a unit cell, arrays of nonvolatile memory cells comprising a combination of vertically oriented and horizontally oriented memory cells, and arrays of vertically stacked tiers of nonvolatile memory cells
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US9236566B2 (en) 2011-03-23 2016-01-12 Micron Technology, Inc. Memory cells and methods of forming memory cells
US9118004B2 (en) 2011-03-23 2015-08-25 Micron Technology, Inc. Memory cells and methods of forming memory cells
US8994489B2 (en) 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US9514905B2 (en) 2011-10-19 2016-12-06 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US10290456B2 (en) 2011-10-19 2019-05-14 Micron Technology, Inc. Methods of forming and using fuses
US9570677B2 (en) 2011-11-17 2017-02-14 Micron Technology, Inc. Memory cells, integrated devices, and methods of forming memory cells
US9299930B2 (en) 2011-11-17 2016-03-29 Micron Technology, Inc. Memory cells, integrated devices, and methods of forming memory cells
US8975148B2 (en) 2011-11-17 2015-03-10 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US10069067B2 (en) 2011-11-17 2018-09-04 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US9893277B2 (en) 2011-11-17 2018-02-13 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US9184384B2 (en) 2012-03-22 2015-11-10 Micron Technology, Inc. Memory cells and methods of forming memory cells
US9773977B2 (en) 2012-04-30 2017-09-26 Micron Technology, Inc. Phase change memory cells
US9627611B2 (en) 2012-11-21 2017-04-18 Micron Technology, Inc. Methods for forming narrow vertical pillars and integrated circuit devices having the same
US9941372B2 (en) * 2013-02-22 2018-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having electrode and manufacturing method thereof
US20160254360A1 (en) * 2013-02-22 2016-09-01 Taiwain Semiconductor Manufacturing Company, Ltd. Semiconductor Device Having Electrode and Manufacturing Method Thereof
US20150207068A1 (en) * 2013-04-25 2015-07-23 SK Hynix Inc. Resistive memory device and fabrication method thereof
US9337210B2 (en) 2013-08-12 2016-05-10 Micron Technology, Inc. Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
US9559118B2 (en) 2013-08-12 2017-01-31 Micron Technology, Inc. Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
CN103682094A (en) * 2013-12-11 2014-03-26 上海新安纳电子科技有限公司 Phase change memory structure and manufacturing method thereof
US20150255284A1 (en) * 2013-12-18 2015-09-10 Robert L. Bristol Self-aligned via patterning with multi-colored photobuckets for back end of line (beol) interconnects
US9406512B2 (en) * 2013-12-18 2016-08-02 Intel Corporation Self-aligned via patterning with multi-colored photobuckets for back end of line (BEOL) interconnects
US9276134B2 (en) 2014-01-10 2016-03-01 Micron Technology, Inc. Field effect transistor constructions and memory arrays
US9450024B2 (en) 2014-01-10 2016-09-20 Micron Technology, Inc. Field effect transistor constructions and memory arrays
US9391269B2 (en) 2014-01-29 2016-07-12 Samsung Electronics Co., Ltd. Variable resistance memory devices
US20150263277A1 (en) * 2014-03-11 2015-09-17 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US9685607B2 (en) * 2014-03-11 2017-06-20 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
WO2015148728A1 (en) * 2014-03-27 2015-10-01 Micron Technology, Inc. Replacement materials processes for forming cross point memory
US9306165B2 (en) 2014-03-27 2016-04-05 Micron Technology, Inc. Replacement materials processes for forming cross point memory
TWI555129B (en) * 2014-03-27 2016-10-21 美光科技公司 Replacement materials processes for forming cross point memory
CN106165085A (en) * 2014-03-27 2016-11-23 美光科技公司 For forming the displacement material technology of cross point memory
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US10332934B2 (en) 2014-04-01 2019-06-25 Micron Technology, Inc. Memory arrays and methods of forming memory arrays
US9263577B2 (en) 2014-04-24 2016-02-16 Micron Technology, Inc. Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
US9761715B2 (en) 2014-04-24 2017-09-12 Micron Technology, Inc. Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9673393B2 (en) 2014-06-04 2017-06-06 Micron Technology, Inc. Methods of forming memory arrays
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
US9917253B2 (en) 2014-06-04 2018-03-13 Micron Technology, Inc. Methods of forming memory arrays
US9472560B2 (en) 2014-06-16 2016-10-18 Micron Technology, Inc. Memory cell and an array of memory cells
US10333065B2 (en) 2014-07-25 2019-06-25 Globalfoundries Singapore Pte. Ltd. Resistive memory device
US20160028009A1 (en) * 2014-07-25 2016-01-28 Globalfoundries Singapore Pte. Ltd. Resistive memory device
US9728721B2 (en) * 2014-07-25 2017-08-08 Globalfoundries Singapore Pte. Ltd. Resistive memory device
US10396026B2 (en) * 2014-08-20 2019-08-27 Globalfoundries Inc. Precut metal lines
CN105390436A (en) * 2014-08-20 2016-03-09 格罗方德半导体公司 Precut metal lines
US20160118341A1 (en) * 2014-08-20 2016-04-28 Globalfoundries Inc. Precut metal lines
US9608111B2 (en) 2014-10-07 2017-03-28 Micro Technology, Inc. Recessed transistors containing ferroelectric material
US10026836B2 (en) 2014-10-07 2018-07-17 Micron Technology, Inc. Recessed transistors containing ferroelectric material
US9773976B2 (en) 2014-10-16 2017-09-26 Micron Technology, Inc. Transistors and methods of forming transistors
US9559194B2 (en) 2014-10-16 2017-01-31 Micron Technology, Inc. Transistors and methods of forming transistors
US10388864B2 (en) 2014-10-16 2019-08-20 Micron Technology, Inc. Transistors and methods of forming transistors
JP2017537470A (en) * 2014-11-07 2017-12-14 マイクロン テクノロジー, インク. Crosspoint memory and manufacturing method thereof
US10396125B2 (en) * 2014-11-07 2019-08-27 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
KR20170081671A (en) * 2014-11-07 2017-07-12 마이크론 테크놀로지, 인크. Cross-point memory and methods for fabrication of same
US20160133671A1 (en) * 2014-11-07 2016-05-12 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
KR101976966B1 (en) * 2014-11-07 2019-05-09 마이크론 테크놀로지, 인크. Cross-point memory and methods for fabrication of same
US20170358628A1 (en) * 2014-11-07 2017-12-14 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US9748311B2 (en) * 2014-11-07 2017-08-29 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
CN107078150A (en) * 2014-11-07 2017-08-18 美光科技公司 Cross point memory and its manufacture method
CN105609465A (en) * 2014-11-18 2016-05-25 格罗方德半导体公司 Self-aligned via process flow
US9305929B1 (en) 2015-02-17 2016-04-05 Micron Technology, Inc. Memory cells
US9673203B2 (en) 2015-02-17 2017-06-06 Micron Technology, Inc. Memory cells
US9525025B2 (en) * 2015-04-20 2016-12-20 SK Hynix Inc. Semiconductor device having air gap and method for manufacturing the same, memory cell having the same and electronic device having the same
US20160307999A1 (en) * 2015-04-20 2016-10-20 SK Hynix Inc. Semiconductor device having air gap and method for manufacturing the same, memory cell having the same and electronic device having the same
US9853211B2 (en) * 2015-07-24 2017-12-26 Micron Technology, Inc. Array of cross point memory cells individually comprising a select device and a programmable device
TWI609513B (en) * 2015-07-24 2017-12-21 美光科技公司 Array of cross point memory cells and methods of forming an array of cross point memory cells
US10134982B2 (en) 2015-07-24 2018-11-20 Micron Technology, Inc. Array of cross point memory cells
US20170025604A1 (en) * 2015-07-24 2017-01-26 Micron Technology, Inc. Array Of Cross Point Memory Cells And Methods Of Forming An Array Of Cross Point Memory Cells
CN105405972A (en) * 2015-12-15 2016-03-16 上海新储集成电路有限公司 Preparation method of three-dimensional resistive random access memory retaining air layer
US10396145B2 (en) 2017-01-12 2019-08-27 Micron Technology, Inc. Memory cells comprising ferroelectric material and including current leakage paths having different total resistances
US10153196B1 (en) 2017-08-24 2018-12-11 Micron Technology, Inc. Arrays of cross-point memory structures

Also Published As

Publication number Publication date
US9893277B2 (en) 2018-02-13
US20160155936A1 (en) 2016-06-02
US20180123035A1 (en) 2018-05-03
US10069067B2 (en) 2018-09-04
US9252188B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
CN101297402B (en) High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes
US8492195B2 (en) Method for forming stackable non-volatile resistive switching memory devices
US8258020B2 (en) Interconnects for stacked non-volatile memory device and method
US8519485B2 (en) Pillar structure for memory device and method
CN101872778B (en) Integrated circuit 3d phase change memory array and manufacturing method
US8373149B2 (en) Resistance change element and manufacturing method thereof
US9502471B1 (en) Multi tier three-dimensional memory devices including vertically shared bit lines
US8298931B2 (en) Dual damascene with amorphous carbon for 3D deep via/trench application
TWI445136B (en) Cross-point memory structures, and methods of forming memory arrays
US6486065B2 (en) Method of forming nonvolatile memory device utilizing a hard mask
US7238607B2 (en) Method to minimize formation of recess at surface planarized by chemical mechanical planarization
CN100440486C (en) Manufacturing method for phase change ram with electrode layer process
JP2008277543A (en) Nonvolatile semiconductor memory device
US20080272355A1 (en) Phase change memory device and method for forming the same
KR101860508B1 (en) Two terminal resistive switching device structure and method of fabricating
US7479650B2 (en) Method of manufacture of programmable conductor memory
US8575584B2 (en) Resistive memory device having vertical transistors and method for making the same
TWI450390B (en) Nonvolatile memory devices that use resistance materials and internal electrodes, and related methods and processing systems
US7923286B2 (en) Method of fabricating a phase-change memory
US10424732B2 (en) Fin selector with gated RRAM
US8541765B2 (en) Resistance variable memory cell structures and methods
JP5422231B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP2009218598A (en) Resistive memory device and method of forming the same
US7319235B2 (en) Resistive semiconductor element based on a solid-state ion conductor
CN103022347B (en) Semiconductor device and manufacture method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC, IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, SANH D.;SILLS, SCOTT E.;ZAHURAK, JOHN K.;REEL/FRAME:027246/0140

Effective date: 20111110

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731