US20130030167A1 - Production of Resistant Dextrins - Google Patents

Production of Resistant Dextrins Download PDF

Info

Publication number
US20130030167A1
US20130030167A1 US13/191,169 US201113191169A US2013030167A1 US 20130030167 A1 US20130030167 A1 US 20130030167A1 US 201113191169 A US201113191169 A US 201113191169A US 2013030167 A1 US2013030167 A1 US 2013030167A1
Authority
US
United States
Prior art keywords
mixture
dextrose
maltodextrin
starch
glc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/191,169
Inventor
Lin Wang
Perminus Mungara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grain Processing Corp
Original Assignee
Grain Processing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grain Processing Corp filed Critical Grain Processing Corp
Priority to US13/191,169 priority Critical patent/US20130030167A1/en
Assigned to GRAIN PROCESSING CORPORATION reassignment GRAIN PROCESSING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUNGARA, PERMINUS, WANG, LIN
Priority to PCT/US2012/041583 priority patent/WO2013015890A1/en
Publication of US20130030167A1 publication Critical patent/US20130030167A1/en
Priority to US14/670,896 priority patent/US9422372B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/18Dextrin, e.g. yellow canari, white dextrin, amylodextrin or maltodextrin; Methods of depolymerisation, e.g. by irradiation or mechanically
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres

Definitions

  • the present application relates to dextrins and, more particularly, to dextrins resistant to digestion and methods of manufacturing.
  • synthetic sweeteners When a synthetic sweetener such as saccharin or aspartame is used in a dietetic food as a substitute for sugar, the other physical properties which would have been imparted by sugar, such as appearance, bulk mass, and texture, may also be imparted to the dietetic food by a separate ingredient. For instance, because saccharin and aspartame both are substantially sweeter than sugar, it is desirable when providing these sweeteners in commercial form to provide a low-calorie, non-nutritive carrier so that the bulk mass, appearance, and texture of the added sweetener approximates that of sugar.
  • polydextrose has a substantially reduced caloric value relative to sugar (about 1 Kcal/gm), or about 25% that of dextrose. As such, polydextrose may be used as a bulking agent in connection with synthetic sweeteners and other applications.
  • polydextrose is satisfactory for many purposes as a non-nutritive bulking agent, there exist several practical difficulties concerning the use of this material. For instance, the production of polydextrose is not without difficulty. Polydextrose generally is prepared in a condensation reaction that is performed under harsh conditions. As such, the condensation reaction often results in a dark colored product that has an undesirable acidic and bitter flavor. Numerous efforts have been made to address this problem. For instance, efforts to improve on the manufacturing process of polydextrose have been suggested. For instance, in EP 404,227 (to Cooperative Vereniging Suiker Unie V.A.) and in U.S. Pat. No. 5,015,500 (to Elmore), various extrusion techniques for polydextrose are purportedly taught. Another reference, U.S. Pat. No. 5,558,899 (to Kuzee et al.), purports to disclose the production of polydextrose via use of microwave energy.
  • At least one prior method of obtaining resistant dextrins is described in U.S. Pat. No. 5,620,873, Generally, starches are heated with a small amount of strong acid, typically hydrochloric acid, to form a pyrodextrin, in what is known as a dextrinization reaction.
  • the reaction consists of the decomposition of the starch by the acid to small molecular weight carbohydrates like glucose, followed by random re-polymerization of the low molecular weight carbohydrate products to form dextrins which have higher molecular weight.
  • the pyrodextrins made are a mixture of mainly glucose polymers with mixed glycosidic linkages.
  • the mixture of the pyrodextrins is then hydrolyzed with enzymes like alpha-amylase and/or glucoamylase to convert the enzyme-digestible fraction of the dextrin mixture to smaller molecules like glucoses and other oligosaccharides.
  • enzymes like alpha-amylase and/or glucoamylase to convert the enzyme-digestible fraction of the dextrin mixture to smaller molecules like glucoses and other oligosaccharides.
  • chromatographic fraction the smaller molecules can be separated from the larger enzyme-digestion resistant dextrins.
  • the resistant dextrins are considered as water soluble fiber, which have much higher value, while the smaller molecules like glucose have much lower value.
  • polydextrose production are somewhat limited in utility.
  • one principal drawback found in these approaches is that the polydextrose produced by any process typically includes substantial quantities of undesired color and flavor components, and substantial effort is required to reduce the levels of such components to acceptable levels.
  • the polydextrose product that is obtained in a typical condensation reaction has a low molecular weight. It would be desirable to have a low calorie bulking agent that has the properties of a higher molecular weight product such as a maltodextrin.
  • a food acceptable polyol such as sorbitol in the saccharide-carboxylic acid reaction mixtures prior to polycondensation function as internal plasticizers to reduce viscosity, minimize foaming, and also provide improved color and taste.
  • sorbitol other food-acceptable polyols including glycerol, erythritol, xylitol, mannitol and galactitol may be used.
  • polyols as plasticizers has been successful in aiding processibility, consumers are increasingly objecting to their use in foods.
  • some of the polyols some have shown adverse effects including not being well tolerated by the human metabolic system.
  • the invention contemplates in some embodiments a method for producing digestion resistant dextrin from starch hydrolyzates, and in other embodiments contemplates dextrins as disclosed herein.
  • the method includes mixing a starch hydrolyzate, dextrose or another lower order saccharide, and typically an acid catalyst.
  • the hydrolyzate and dextrose are allowed to react under mild vacuum at a temperature range of 130-180° C. to form a resistant dextrin composition.
  • the ingredients require no pre-drying, but may be used as typically supplied with a moisture content of about 10%. Also, in many embodiments no external plasticizers, such as polyp's, are used.
  • any suitable ratio of starch hydrolyzate to dextrose may be employed.
  • one exemplary method includes the steps of combining about 60 to about 80 wt. % dextrose, about 20 to about 40 wt. % maltodextrin and a catalytic amount of citric acid to form a mixture having a moisture content of at least about 5%; reacting the mixture at a temperature range of about 130° C. to about 180° C.; and removing moisture from the mixture using a vacuum of about 5 to about 25 inches of mercury to produce a resistant dextrin composition.
  • the mixture may be substantially free of polyols, although polyols may be provided if desired.
  • the step of removing moisture occurs simultaneously with the reaction, and includes providing a vacuum of about 15 to about 18 inches of mercury.
  • additional purification steps such as treatment with of activated carbon, ion exchange, or chromatographic methods.
  • FIG. 1 is a process flow diagram representing one method for manufacturing resistant dextrins, including optional purification steps.
  • Starches and hydrolyzates suitable for use in the present invention are disclosed in U.S. Patent Application Publication Nos. 2006/0149053; 2005/0282777; 2005/0048191; and 2004/0053886, all assigned to Grain Processing Corporation of Muscatine, Iowa, and all of which are incorporated by reference in their entireties.
  • Exemplary starches include corn, potato, waxy maize, tapioca, rice, and the like.
  • Starches are homopolysaccharides that are composed of repeating glucose units in varying proportions.
  • Starch molecules have one of two molecular structures, which include a linear structure, known as amylose; and a branched structure, known as amylopectin.
  • Amylose and amylopectin associate through hydrogen bonding and arrange themselves radially in layers to form granules.
  • This ratio of amylase to amylopectin varies not only among the different types of starch, but among the many plant varieties within a type. For instance, waxy starches are those that have no more than 10% amylopectin, whereas high amylose starches, are composed of essentially 100% amylose.
  • the starch from which the hydrolyzate is prepared may be a waxy starch, or may be a high amylose starch, or may be any other starch found suitable for use in connection with the invention.
  • a preferred starting material is dent corn starch.
  • One suitable starch is sold under the trademark B200 by Grain Processing Corporation of Muscatine, Iowa.
  • Another is B700 Unmodified/Dried Corn Starch also available from Grain Processing Corporation. The steps of obtaining and hydrolyzing the starch may be performed as part of the inventive method.
  • the oligosaccharide preferably is a malto-oligosaccharide.
  • malto-oligosaccharide any species comprising two or more saccharide units linked predominantly via 1-4 linkages, and including maltodextrins and syrup solids. Maltodextrins have a dextrose equivalent value (DE) of less than 20, whereas syrup solids have a DE of 20 or greater. In preferred embodiments, at least 50% of the saccharide units in the malto-oligosaccharide are linked via 1-4 linkages.
  • Malto-oligosaccharides may include saccharide species having an odd or even DP value, and may include some dextrose (DP 1).
  • the invention is applicable to derivatization of malto-oligosaccharide species in which at least a portion of the malto-oligosaccharides in the mixture have a DP value greater than 5.
  • at least one of the malto-oligosaccharides species in the mixture has a DP value of 8 or more.
  • at least one species has a DP value of at least 10.
  • at least 70% of the malto-oligosaccharide species in the mixtures have a degree of polymerization greater than 5; even more preferably, at least about 80% of the malto-oligosaccharides species in the mixture have a degree of polymerization greater than 5,
  • Suitable malto-oligosaccharides are sold as maltodextrins under the trademark MALTRIN® by Grain Processing Corporation of Muscatine, Iowa.
  • the MALTRIN® malto-oligosaccharides are malto-oligosaccharide products, each product having a known typical DP profile.
  • Suitable MALTRIN® maltodextrins may serve as starting materials in accordance with the present invention and include MALTRIN® M040, MALTRIN® M050, MALTRIN® M100, MALTRIN® M150, and MALTRIN® M180.
  • Typical DP profiles of the subject MALTRIN® maltodextrins are set forth in the following table, which illustrates the DP 1-8 profile and the overall DP profile inclusive of DP>8 malto-oligosaccharides:
  • Each of these maltodextrins has at least 45% DP 10 or greater malto-oligosaccharide.
  • suitable malto-oligosaccharide starting materials can include other malto-oligosaccharides, such as MALTRIN® M440, MALTRIN® M4510, MALTRIN® M580, MALTRIN® M550, and MALTRIN® M700, as well as corn syrup solids, such as MALTRIN® M200, MALTRIN® M250, and MALTRIN® M360.
  • the starting material can include a limit dextrin.
  • Limit dextrins are discussed in more detail in U.S. Pat. No. 6,670,155, assigned to Grain Processing Corporation and incorporated by reference in its entirety.
  • the starting material may include another dextrin that comprises a starch that has been partially hydrolyzed by an alpha amylase enzyme but not to the theoretical or actual limit. Such dextrins are referred to herein as “prelimit dextrins.”
  • At least a portion of the starting material is hydrogenated.
  • suitable teachings regarding the production of hydrogenated starch hydrolyzates, specifically malto-oligosaccharides can be found in U.S. Pat. Nos. 7,728,125; 7,595,393; 7,405,293; 6,919,446; and 6,613,898, each entitled “Reduced Malto-Oligosaccharides” and assigned to Grain Processing Corporation, and incorporated by reference in their entireties.
  • the reduced malto-oligosaccharide mixture thus formed may have a DP profile that is not substantially altered as compared with the DP profile of the starting malto-oligosaccharide mixture.
  • Other hydrogenated starch hydrolyzates may be employed.
  • the reaction mixture may include mixtures of the foregoing materials, all of which are contemplated as starch hydrolyzates suitable for use as starting materials,
  • the starch hydrolyzate as described hereinabove is dextrinized in the presence of a lower molecular weight saccharide, i.e., a saccharide having a degree of polymerization ranging from 1 to 4.
  • the saccharide is denoted as separate ingredient from the starch hydrolyzate, even though starch hydrolyzates themselves typically include some amounts of DP 1-4 materials.
  • the saccharide is dextrose, optionally in combination with one or more other saccharides, such as maltose, maltotriose or maltotetraose.
  • the dextrose may be in the form of a monohydrate.
  • the average DP of the mixture should be in the range of 1 to 4, preferably 1 to 3, and even more preferably 1 to 2.
  • Mixtures of saccharides that can be employed include MALTRIN® M250 and MALTRIN® M360, Alternatively, the derivatizing saccharide may be maltose, maltotriose or maltotetraose in the presence or absence of dextrose. However, dextrose is the preferred saccharide.
  • the dextrose is present as 100% of the weight of the saccharides having a DP ranging from 1 to 4, but dextrose may be present in any relative amount, such as 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% by weight of saccharide having a DP from 1 to 4.
  • the saccharid.e includes dextrose or maltose in an amount of at least 50% by weight of the total saccharides having a DP of four or less.
  • an organic acid catalyst is also combined with the above noted ingredients.
  • the organic acid catalyst is citric acid.
  • Other acids may also be used as a catalyst, such as acetic acid, adipic acid, fumaric acid, gluconic acid, lactic acid, malic acid, phosphoric acid, and tartaric acid, or other food-grade acids.
  • the ingredients may be provided in varying amounts.
  • about 60 to about 80 wt. % dextrose or other saccharide may be combined with about 20 to about 40 wt. % maltodextrin or other hydrolyzate and a catalytic amount of citric acid, such as about 1 wt. %.
  • about 70 wt. % dextrose is combined with about 30 wt. % maltodextrin and a catalytic amount of citric acid.
  • about 75 wt. % dextrose is combined with about 25 wt % maltodextrin and a catalytic amount of citric acid.
  • the percentages of the starch hydrolyzate and the saccharide refer to percentages on a dry solids basis.
  • the percentages of saccharide to hydrolyzate may be 10%/90%; 20%/80%; 30%/70%; 40%/60%; 50%50%; 60%/40%; 70%/30%; 80%/20%; or 90%/10%, or any desired range of ratios among these percentage ratios (e.g., 80%-90% saccharide and 10-20% hydrolyzate).
  • the maltodextrin may be present in an amount of 25%-75% based on the total weight of maltodextrin and dextrose.
  • ingredients may be absent, or may be present in trace amounts, or alternatively in some embodiments other ingredients are added.
  • polyols need not be added and in many embodiments are not added. it is hypothesized that water or dextrose acts as a replacement for the external plasticizers.
  • the starch hydrolyzate and saccharide ingredients may have 5-15% moisture content, and in some cases 5-10% moisture content.
  • the ingredients used in this method may contain their natural equilibrium moisture so that it is not necessary to dry the ingredients prior to use, Alternatively, the ingredients may be partially dried to remove some of the moisture content. It is hypothesized that the moisture content of the ingredients serves two purposes, including reducing the melting point of the mixture (thereby functioning as a plasticizer) and reducing the viscosity of the melt, thus allowing any trapped air to easily escape. As a result, the bubbling problem which is predominant in dry state reactions is ameliorated.
  • the reaction can take place in any reaction vessel or apparatus suitable for derivatizing the starch hydrolyzate with the saccharide.
  • glucose monohydrate, maltodextrins and catalytic amount of citric acid are placed in a conventional pyrodextrin reactor, as illustrated at reference number 10 in FIG. 1 .
  • the reaction may take place in a single pot reactor or may be moved between reaction vessels.
  • the reaction may take place as a batch-type reaction or a continuous process.
  • a temperature range of about 120-170° C. to allow the ingredients to “wet.” More preferably, a temperature range of about 140-160° C. is used.
  • moderate and controlled vacuum is applied to the mixture, as illustrated at reference number 12. For example, a vacuum of about 10 to about 25 inches of mercury, more preferably about 10-20 inches of mercury and even more preferably 15 to 18 inches of mercury is applied into the system. It is hypothesized that this controlled vacuum helps remove air pockets within the ingredient mixture without greatly affecting the moisture content. It is believed that the removal of air further helps to prevent bubbling when the mixture eventually melts.
  • water may be removed slowly and may permit the moisture to act as plasticizer in place of sorbitol. Additionally, the vacuum drives the reaction chemistry through the removal of water from the system. The reaction may be completed within 2-4 hours.
  • the resulting product may then be further processed to adjust the pH, as illustrated at reference number 14.
  • the product may then also be purified, as illustrated at reference number 16, using one or more conventional purification techniques, including, but not limited to, carbon filtration, ion exchange, or chromatographic methods.
  • the purified material may be spray dried, as illustrated at reference number 18, to achieve a final purified and dried product, as illustrated at reference number 20.
  • the process may be operated to provide a product having any suitable digestibility.
  • a digestibility of from 10-20% is preferred in many embodiments, although other digestibility values are contemplated.
  • Those skilled in the an will appreciate that various process parameters may he adjusted to affect the digestibility of the resultant product.
  • Digestibility may be determined via a procedure adapted from Muir and O'Dea, “Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro,” Am. J Clinical Nutrition 56:123-27 (1992), incorporated by reference in its entirety. Generally, this procedure includes the following steps and incorporates the reagents specified below:
  • Pepsin/HCl solution add 0.5 g of pepsin (1:10,000, Sigma P-7000) to 400 mL deionized water. Adjust to pH 2.0 with HCl. Add to 500 mL volumetric flask and bring up to volume with water. Store in refrigerator.
  • Sodium acetate buffer 0.2M add 16.408 g of anhydrous sodium acetate to 500 mL deionized water. Adjust to pH 5.0 with glacial acetic acid. Add to 1 liter volumetric flask and bring up to volume with water,
  • Enzyme solution Place 0.24 g amyloglucosidase (Sigma A-7255) and 1.0 g ⁇ -amylase (Sigma A-6880) in a 100 mL volumetric flask Bring up to volume with 0.2M sodium acetate buffer, pH 5.0. Final solution will be 28 U/mL amyloglucosidase and 10 mg/mL ⁇ -amylase.
  • the process parameters are selected such that the resultant product includes at least 20% 1-4 bonds in the product; in some embodiments, at least 25% 1-4 bonds; in some embodiments, at least 30% 1-4 bonds; in some embodiments, at least 35% 1-4 bonds; in some embodiments, at least 40% 1-4 bonds; in some embodiments, at least 45% 1-4 bonds; and in some embodiments, at least 50% 1-4 bonds.
  • the process likewise should be operated in a manner to form at least 45% 1-4 and 1-6 bonds in total; in some embodiments, at least 50% 1-4 and 1-6 bonds in total; in some embodiments, at least 55% 1-4 and 1-6 bonds in total; in some embodiments, at least 60% 1-4 and 1-6 bonds in total; in some embodiments, at least 65% 1-4 and 1-6 bonds in total; in some embodiments, at least 70% 1-4 and 1-6 bonds in total.
  • Bond methylation analysis may be performed in accordance with the procedures outlined in flakomori, S. I., J. Blochem 55:205-08 (1964), as modified by Kim et al., Carbohydrate Research 341:1061-64 (2006).
  • the material subject to analysis is exhaustively methylated using methyl iodide. This converts the free hydroxyl group to methyl ether.
  • the methylated product is then exhaustively hydrolyzed with acid catalysis, thus creating a hydroxyl group at places where a glycosidic bond once existed.
  • the product is then analyzed and the positions of the hydroxyl groups then determined. This represents where linkage points existed in the original products.
  • the data is reported as t-glc, 2-glc, 3-glc, 4-glc, 6-glc, 3,4-glc, 4,6-glc, 2,6-glc+3,6-glc, 2,4-glc, 3,4,6-glc, 2,3,6-glc, where “t-gic” indicates a monomer resulting from a terminal glucose group, “2-glc” indicates a monomer resulting from a linkage at the 2-carbon position on the glucose ring, and so on.
  • Plural denominations signify multiple branching points on the glucose ring; for instance, “3,4-glc” indicates a monomer formed where a branch point had existed at the 3- and 4-positions.
  • the reducing end is subjected to another chemical step to render the reducing end similar to a similarly substituted interior unit (thus, for instance, a 1-4 linked oligomer resolves to t-glc and 4-glc).
  • a 1-4 linked oligomer resolves to t-glc and 4-glc.
  • Other possible linked structures (2,3-glc or 2,3,4,6-glc) are believed to be formed in very small amounts.
  • the methylation data does not differentiate between alpha and beta bonds, so methylation does not exactly correspond with digestibility as indicated above, but generally the larger number of 1-4 bonds and 1-6 bonds signifies greater digestibility.
  • Example 1 is the material resulting from the above described processing techniques.
  • the extruded sample was produced from a prior art extrusion technique, while the polydextrose sample was produced by the large scale technique as discussed in the background.
  • the FIBERSOL sample and NUTRIOSE samples are samples of commercially available products, also discussed in the background.
  • glucose was reacted with maltodextrin using citric acid as a catalyst.
  • citric acid as a catalyst.
  • a mixture of the ingredients was fed into the reactor without pre-drying.
  • Various exemplary mixtures were prepared as found in Tables 2-4, and further processed as described below.
  • Example 2 Composition of Example 2 Ingredient % of total feedstock Dextrose monohydrate 64.35 Maltodextrin (10 DE) 34.65 Citric acid anhydrous 1.0
  • Example 3 Composition of Example 3 (1885-77-02A) Ingredient % of total feedstock Dextrose monohydrate 74.25 Maltodextrin (10 DE) 24.75 Citric acid anhydrous 1.0
  • Example 4 Composition of Example 4 Ingredient % of total feedstock Dextrose monohydrate 69.3 Maltodextrin (10 DE) 29.7 Citric acid anhydrous 1.0
  • the starting ingredients had moisture content of about 10%
  • the reactor was heated to 180 to 190° C. under mixing without vacuum to allow moisture and trapped air bubbles to escape. Then under vacuum of about 10 to 12 inches of mercury, the mixture was allowed to react at between 140-160° C. for 2 to 4 hours, Under those conditions, glucose and other low molecular weight saccharides and the maltodextrin polymerized to higher MW polymer with mixture of glucosidic bonds.
  • the moisture content at the completion of the reaction was about 2%.
  • Example 7 Formula Dextrose monohydrate Dextrose Dextrose (74.25%) monohydrate monohydrate Maltodextrin (24.75%) (69.3%) (74.25%) Citric acid (1%) Maltodextrin Maltodextrin (29.7%) (24.75%) Citric acid (1%) Citric acid (1%) Reaction 3 hour 50 minutes 2 hours 25 minutes 3 hour Time 45 minutes Reaction 160° C. 160° C. 140° C. Temperature Glucose 8.47 9.01 17.40 Residues PH: 2-3 2.89 2.84 2.92 Moisture 0.95 0.9 0.8 1-2.5
  • the methods described above may provide a number of advantages over previous methods for manufacturing resistant dextrins.
  • the methods described herein may eliminate the step of making a dextrin from a starch.
  • those prior art processes use environment-unfriendly hazardous strong acids like hydrochloric acid to make dextrins through a dry-roasting dextrinization process and requires pre-drying of the feedstock to 2-3% moisture content and high temperature.
  • mineral acids are not used.
  • the presently proposed methods may eliminate the step of hydrolyzing and removing the digestible part of the dextrin made from a starch.
  • prior art methods generally produced materials having a significant portion which was digestible.
  • an amylase or glucoamylase or other enzyme combinations were often used to hydrolyze the digestible part to glucose or maltose so that the non-digestible part could be separated out from the digestible part by organic solvent or alcohol precipitation, membrane separation and other separation technology based on molecular size difference.
  • the proposed methods may reduce waste and increase yield of the finished non-digestible products because there are digestible parts that need to be removed.
  • the starting materials may not need to be pre-dried, as is necessary in the prior art. Additionally, the methods proposed herein may avoid the use of polyols like sorbitol. As noted above, the moisture content of the ingredients along with the processing conditions, such as the temperature ranges and vacuum ranges, permit the materials to react without excessive foaming and without the need to use polyols.
  • the invention contemplates providing a resistant dextrin to a mammal for purposes of reducing the blood cholesterol value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

A method for producing digestion-resistant dextrin from starch hydrolyzates is disclosed. In one form, the method includes mixing the starch hydrolyzate, dextrose and an acid catalyst which are allowed to react under mild vacuum with heat. The ingredients require no pre-drying and the method requires no external plasticizers.

Description

    FIELD OF THE INVENTION
  • The present application relates to dextrins and, more particularly, to dextrins resistant to digestion and methods of manufacturing.
  • BACKGROUND OF THE INVENTION
  • Many substances are used in the manufacture of foods intended for persons and animals that restrict their intake of carbohydrates or calories. Such substances generally should be of low caloric value and of a generally non-nutritive nature. In addition, such substances Should not be toxic or unwholesome. Foods or animal feeds produced using such substances preferably are formulated such that they resemble higher calorie products in texture, taste and physical appearance.
  • Among such substances are synthetic sweeteners. When a synthetic sweetener such as saccharin or aspartame is used in a dietetic food as a substitute for sugar, the other physical properties which would have been imparted by sugar, such as appearance, bulk mass, and texture, may also be imparted to the dietetic food by a separate ingredient. For instance, because saccharin and aspartame both are substantially sweeter than sugar, it is desirable when providing these sweeteners in commercial form to provide a low-calorie, non-nutritive carrier so that the bulk mass, appearance, and texture of the added sweetener approximates that of sugar.
  • Many bulking agents are known in the art. One such bulking agent that is well known in literature is polydextrose, as is taught, for instance, in U.S. Pat. Nos. 3,766,165 and 3,876,794 (both to Rennhard). Polydextrose has a substantially reduced caloric value relative to sugar (about 1 Kcal/gm), or about 25% that of dextrose. As such, polydextrose may be used as a bulking agent in connection with synthetic sweeteners and other applications.
  • Although polydextrose is satisfactory for many purposes as a non-nutritive bulking agent, there exist several practical difficulties concerning the use of this material. For instance, the production of polydextrose is not without difficulty. Polydextrose generally is prepared in a condensation reaction that is performed under harsh conditions. As such, the condensation reaction often results in a dark colored product that has an undesirable acidic and bitter flavor. Numerous efforts have been made to address this problem. For instance, efforts to improve on the manufacturing process of polydextrose have been suggested. For instance, in EP 404,227 (to Cooperative Vereniging Suiker Unie V.A.) and in U.S. Pat. No. 5,015,500 (to Elmore), various extrusion techniques for polydextrose are purportedly taught. Another reference, U.S. Pat. No. 5,558,899 (to Kuzee et al.), purports to disclose the production of polydextrose via use of microwave energy.
  • Other references purport to disclose methods to improve the taste or flavor of polydextrose. For instance, U.S. Pat. No. 4,622,233 (to Tones) purportedly teaches peroxide bleaching of polydextrose in an alcohol solvent. U.S. Pat. No. 4,948,596 (to Bunich et al.) purportedly discloses a liquid/liquid extraction process for purifying polydextrose. U.S. Pat. No. 4,956,458 (to Luo et al) is said to disclose another process said to be useful for purifying polydextrose. U.S. Pat. No. 5,091,015 (to Bunich), U.S. Pat. No. 5,677,593 (to Guzek et al.), and U.S. Pat. No. 5,831,082 (to An et al.) purport to teach chromatographic methods for purifying polydextrose. U.S. Pat. No. 5,573,794 (to Duflot) purports to disclose glucose oxidase treatment of polydextrose followed by ion exchange chromatography, Finally, U.S. Pat. No. 5,601,863 (to Borden et al,) and U.S. Pat. No. 5,424,418 (to Duflot et al.) disclose hydrogenated polydextrose.
  • At least one prior method of obtaining resistant dextrins is described in U.S. Pat. No. 5,620,873, Generally, starches are heated with a small amount of strong acid, typically hydrochloric acid, to form a pyrodextrin, in what is known as a dextrinization reaction. The reaction consists of the decomposition of the starch by the acid to small molecular weight carbohydrates like glucose, followed by random re-polymerization of the low molecular weight carbohydrate products to form dextrins which have higher molecular weight. The pyrodextrins made are a mixture of mainly glucose polymers with mixed glycosidic linkages. The mixture of the pyrodextrins is then hydrolyzed with enzymes like alpha-amylase and/or glucoamylase to convert the enzyme-digestible fraction of the dextrin mixture to smaller molecules like glucoses and other oligosaccharides. By chromatographic fraction, the smaller molecules can be separated from the larger enzyme-digestion resistant dextrins. The resistant dextrins are considered as water soluble fiber, which have much higher value, while the smaller molecules like glucose have much lower value.
  • Another method for making a resistant type of dextrin is disclosed by U.S. Pat. No. 5,358,729. This reference is directed to a process of preparing indigestible polysaccharides by dextrinizing a starch with an inorganic acid like hydrochloric acid in an extruder at high temperature. However, according to the inventors, the products are “not adaptable to be employed as food material due to its “stimulative taste and smell, coloring difficulty, etc,”
  • The foregoing approaches to polydextrose production are somewhat limited in utility. For example, one principal drawback found in these approaches is that the polydextrose produced by any process typically includes substantial quantities of undesired color and flavor components, and substantial effort is required to reduce the levels of such components to acceptable levels. Moreover, the polydextrose product that is obtained in a typical condensation reaction has a low molecular weight. It would be desirable to have a low calorie bulking agent that has the properties of a higher molecular weight product such as a maltodextrin.
  • More recently, to address this latter concern, a number of patents, including U.S. Pat. No. 5,264,568 (to Yamada et al.), U.S. Pat. Nos. 5,358,729, 5,364,652 and 5,430,141 (all to Ohkuma et al.), and EP 368,451 (to Matsutani Chemical Industries Co. Ltd.) purport to disclose a product, commonly known as FIBERSOL®, that is formed by starch pyrodextrinization followed by enzymatic hydrolysis to leave an undigestive carbohydrate remnant. It is said that the disclosed product can be hydrogenated and/or ion exchanged to give a final product with reduced calorie content and soluble fiber benefits. This product is higher molecular weight than most polydextroses, and therefore has certain properties that rival maltodextrins. However, the product &so suffers from low processing yields, significant processing complexities, and high final cost.
  • The inclusion of a food acceptable polyol such as sorbitol in the saccharide-carboxylic acid reaction mixtures prior to polycondensation function as internal plasticizers to reduce viscosity, minimize foaming, and also provide improved color and taste. In addition to sorbitol, other food-acceptable polyols including glycerol, erythritol, xylitol, mannitol and galactitol may be used. Although the use of polyols as plasticizers has been successful in aiding processibility, consumers are increasingly objecting to their use in foods. In addition some of the polyols some have shown adverse effects including not being well tolerated by the human metabolic system.
  • SUMMARY OF THE INVENTION
  • Generally, the invention contemplates in some embodiments a method for producing digestion resistant dextrin from starch hydrolyzates, and in other embodiments contemplates dextrins as disclosed herein.
  • In one form, the method includes mixing a starch hydrolyzate, dextrose or another lower order saccharide, and typically an acid catalyst. The hydrolyzate and dextrose are allowed to react under mild vacuum at a temperature range of 130-180° C. to form a resistant dextrin composition. In many embodiments, the ingredients require no pre-drying, but may be used as typically supplied with a moisture content of about 10%. Also, in many embodiments no external plasticizers, such as polyp's, are used.
  • Any suitable ratio of starch hydrolyzate to dextrose may be employed. For example, one exemplary method includes the steps of combining about 60 to about 80 wt. % dextrose, about 20 to about 40 wt. % maltodextrin and a catalytic amount of citric acid to form a mixture having a moisture content of at least about 5%; reacting the mixture at a temperature range of about 130° C. to about 180° C.; and removing moisture from the mixture using a vacuum of about 5 to about 25 inches of mercury to produce a resistant dextrin composition. The mixture may be substantially free of polyols, although polyols may be provided if desired. In some cases, the step of removing moisture occurs simultaneously with the reaction, and includes providing a vacuum of about 15 to about 18 inches of mercury. The invention further contemplates in some embodiments additional purification steps, such as treatment with of activated carbon, ion exchange, or chromatographic methods.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a process flow diagram representing one method for manufacturing resistant dextrins, including optional purification steps.
  • DETAILED DESCRIPTION
  • Starches and hydrolyzates suitable for use in the present invention are disclosed in U.S. Patent Application Publication Nos. 2006/0149053; 2005/0282777; 2005/0048191; and 2004/0053886, all assigned to Grain Processing Corporation of Muscatine, Iowa, and all of which are incorporated by reference in their entireties. Exemplary starches include corn, potato, waxy maize, tapioca, rice, and the like. Starches are homopolysaccharides that are composed of repeating glucose units in varying proportions. Starch molecules have one of two molecular structures, which include a linear structure, known as amylose; and a branched structure, known as amylopectin. Amylose and amylopectin associate through hydrogen bonding and arrange themselves radially in layers to form granules. This ratio of amylase to amylopectin varies not only among the different types of starch, but among the many plant varieties within a type. For instance, waxy starches are those that have no more than 10% amylopectin, whereas high amylose starches, are composed of essentially 100% amylose.
  • In connection with the present invention, the starch from which the hydrolyzate is prepared may be a waxy starch, or may be a high amylose starch, or may be any other starch found suitable for use in connection with the invention. A preferred starting material is dent corn starch. One suitable starch is sold under the trademark B200 by Grain Processing Corporation of Muscatine, Iowa. Another is B700 Unmodified/Dried Corn Starch also available from Grain Processing Corporation. The steps of obtaining and hydrolyzing the starch may be performed as part of the inventive method.
  • Any suitable starch hydrolyzate may be employed as a starting material. When used, the oligosaccharide preferably is a malto-oligosaccharide. By “malto-oligosaccharide” is contemplated any species comprising two or more saccharide units linked predominantly via 1-4 linkages, and including maltodextrins and syrup solids. Maltodextrins have a dextrose equivalent value (DE) of less than 20, whereas syrup solids have a DE of 20 or greater. In preferred embodiments, at least 50% of the saccharide units in the malto-oligosaccharide are linked via 1-4 linkages. More preferably, at least about 60% of the saccharide units are linked via 1-4 linkages; and even more preferably, at least about 80% of the saccharide units are so linked. Malto-oligosaccharides may include saccharide species having an odd or even DP value, and may include some dextrose (DP 1).
  • The invention is applicable to derivatization of malto-oligosaccharide species in which at least a portion of the malto-oligosaccharides in the mixture have a DP value greater than 5. Preferably, at least one of the malto-oligosaccharides species in the mixture has a DP value of 8 or more. Most preferably, at least one species has a DP value of at least 10. In preferred embodiments in the invention, at least 70% of the malto-oligosaccharide species in the mixtures have a degree of polymerization greater than 5; even more preferably, at least about 80% of the malto-oligosaccharides species in the mixture have a degree of polymerization greater than 5,
  • Suitable malto-oligosaccharides are sold as maltodextrins under the trademark MALTRIN® by Grain Processing Corporation of Muscatine, Iowa. The MALTRIN® malto-oligosaccharides are malto-oligosaccharide products, each product having a known typical DP profile. Suitable MALTRIN® maltodextrins may serve as starting materials in accordance with the present invention and include MALTRIN® M040, MALTRIN® M050, MALTRIN® M100, MALTRIN® M150, and MALTRIN® M180. Typical DP profiles of the subject MALTRIN® maltodextrins are set forth in the following table, which illustrates the DP 1-8 profile and the overall DP profile inclusive of DP>8 malto-oligosaccharides:
  • Typical DP profile (% dry solids basis)
    DP profile M180 M150 M100 M050 M040
    DP > 8 46.6 ± 4%  54.7 ± 4%   67.8 ± 4%   90.6 ± 4%  88.5 ± 4% 
    DP 8 3.9 ± 2% 4.8 ± 1.5% 4.5 ± 1.5% 1.5 ± 1% 2.0 ± 1%
    DP 7 9.5 ± 2% 9.1 ± 1.5% 7.0 ± 1.5% 1.5 ± 1% 2.4 ± 1%
    DP 6 11.4 ± 2%  8.4 ± 1.5% 6.1 ± 1.5% 1.4 ± 1% 1.8 ± 1%
    DP 5 5.9 ± 2% 4.7 ± 1.5% 3.3 ± 1.5% 1.3 ± 1% 1.3 ± 1%
    DP 4 6.4 ± 2% 5.5 ± 1.5% 3.7 ± 1.5% 1.1 ± 1% 1.4 ± 1%
    DP 3 8.3 ± 2% 6.7 ± 1.5% 4.2 ± 1.5% 1.0 ± 1% 1.4 ± 1%
    DP 2 6.2 ± 2% 4.8 ± 1%   2.5 ± 1%   0.8* ± 1%  0.9* ± 1% 
    DP 1   1.8 ± 1.5% 1.3 ± 1%   0.7* ± 1%   0.8* ± 1%  0.3* ± 1% 
    *MINIMUM VALUE = 0%
  • Each of these maltodextrins has at least 45% DP 10 or greater malto-oligosaccharide. Other suitable malto-oligosaccharide starting materials can include other malto-oligosaccharides, such as MALTRIN® M440, MALTRIN® M4510, MALTRIN® M580, MALTRIN® M550, and MALTRIN® M700, as well as corn syrup solids, such as MALTRIN® M200, MALTRIN® M250, and MALTRIN® M360.
  • In some embodiments of the invention, the starting material can include a limit dextrin. Limit dextrins are discussed in more detail in U.S. Pat. No. 6,670,155, assigned to Grain Processing Corporation and incorporated by reference in its entirety. Alternatively, or in addition thereto, the starting material may include another dextrin that comprises a starch that has been partially hydrolyzed by an alpha amylase enzyme but not to the theoretical or actual limit. Such dextrins are referred to herein as “prelimit dextrins.”
  • In accordance with some embodiments of the invention, at least a portion of the starting material is hydrogenated. Suitable teachings regarding the production of hydrogenated starch hydrolyzates, specifically malto-oligosaccharides, can be found in U.S. Pat. Nos. 7,728,125; 7,595,393; 7,405,293; 6,919,446; and 6,613,898, each entitled “Reduced Malto-Oligosaccharides” and assigned to Grain Processing Corporation, and incorporated by reference in their entireties. Generally, when a starting malto-oligosaccharide mixture is catalytically hydrogenated, the reduced malto-oligosaccharide mixture thus formed may have a DP profile that is not substantially altered as compared with the DP profile of the starting malto-oligosaccharide mixture. Other hydrogenated starch hydrolyzates may be employed.
  • The reaction mixture may include mixtures of the foregoing materials, all of which are contemplated as starch hydrolyzates suitable for use as starting materials,
  • The starch hydrolyzate as described hereinabove is dextrinized in the presence of a lower molecular weight saccharide, i.e., a saccharide having a degree of polymerization ranging from 1 to 4. The saccharide is denoted as separate ingredient from the starch hydrolyzate, even though starch hydrolyzates themselves typically include some amounts of DP 1-4 materials. Preferably, the saccharide is dextrose, optionally in combination with one or more other saccharides, such as maltose, maltotriose or maltotetraose. The dextrose may be in the form of a monohydrate.
  • If a mixture of saccharides is employed, the average DP of the mixture should be in the range of 1 to 4, preferably 1 to 3, and even more preferably 1 to 2. Mixtures of saccharides that can be employed include MALTRIN® M250 and MALTRIN® M360, Alternatively, the derivatizing saccharide may be maltose, maltotriose or maltotetraose in the presence or absence of dextrose. However, dextrose is the preferred saccharide. Most preferably, the dextrose is present as 100% of the weight of the saccharides having a DP ranging from 1 to 4, but dextrose may be present in any relative amount, such as 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% by weight of saccharide having a DP from 1 to 4. Preferably, if a mixture of saccharides having a DP of 1 to 4 is employed, the saccharid.e includes dextrose or maltose in an amount of at least 50% by weight of the total saccharides having a DP of four or less.
  • Typically, an organic acid catalyst is also combined with the above noted ingredients. In one form, the organic acid catalyst is citric acid. Other acids may also be used as a catalyst, such as acetic acid, adipic acid, fumaric acid, gluconic acid, lactic acid, malic acid, phosphoric acid, and tartaric acid, or other food-grade acids.
  • The ingredients may be provided in varying amounts. For example, in one form, about 60 to about 80 wt. % dextrose or other saccharide may be combined with about 20 to about 40 wt. % maltodextrin or other hydrolyzate and a catalytic amount of citric acid, such as about 1 wt. %. In another form, about 70 wt. % dextrose is combined with about 30 wt. % maltodextrin and a catalytic amount of citric acid. In yet another form, about 75 wt. % dextrose is combined with about 25 wt % maltodextrin and a catalytic amount of citric acid. When describing the percentages of the starch hydrolyzate and the saccharide, these percentages refer to percentages on a dry solids basis. In other embodiments, the percentages of saccharide to hydrolyzate may be 10%/90%; 20%/80%; 30%/70%; 40%/60%; 50%50%; 60%/40%; 70%/30%; 80%/20%; or 90%/10%, or any desired range of ratios among these percentage ratios (e.g., 80%-90% saccharide and 10-20% hydrolyzate). For example, the maltodextrin may be present in an amount of 25%-75% based on the total weight of maltodextrin and dextrose.
  • Other ingredients (besides water) may be absent, or may be present in trace amounts, or alternatively in some embodiments other ingredients are added. For example, polyols need not be added and in many embodiments are not added. it is hypothesized that water or dextrose acts as a replacement for the external plasticizers.
  • As supplied, the starch hydrolyzate and saccharide ingredients may have 5-15% moisture content, and in some cases 5-10% moisture content. The ingredients used in this method may contain their natural equilibrium moisture so that it is not necessary to dry the ingredients prior to use, Alternatively, the ingredients may be partially dried to remove some of the moisture content. It is hypothesized that the moisture content of the ingredients serves two purposes, including reducing the melting point of the mixture (thereby functioning as a plasticizer) and reducing the viscosity of the melt, thus allowing any trapped air to easily escape. As a result, the bubbling problem which is predominant in dry state reactions is ameliorated.
  • The reaction can take place in any reaction vessel or apparatus suitable for derivatizing the starch hydrolyzate with the saccharide. In one form, glucose monohydrate, maltodextrins and catalytic amount of citric acid are placed in a conventional pyrodextrin reactor, as illustrated at reference number 10 in FIG. 1. The reaction may take place in a single pot reactor or may be moved between reaction vessels. The reaction may take place as a batch-type reaction or a continuous process.
  • After blending the ingredients, heat is applied at a temperature range of about 120-170° C. to allow the ingredients to “wet.” More preferably, a temperature range of about 140-160° C. is used. After allowing the ingredients to “wet” for few minutes, moderate and controlled vacuum is applied to the mixture, as illustrated at reference number 12. For example, a vacuum of about 10 to about 25 inches of mercury, more preferably about 10-20 inches of mercury and even more preferably 15 to 18 inches of mercury is applied into the system. It is hypothesized that this controlled vacuum helps remove air pockets within the ingredient mixture without greatly affecting the moisture content. It is believed that the removal of air further helps to prevent bubbling when the mixture eventually melts. By moderating the amount of vacuum and the temperature range, water may be removed slowly and may permit the moisture to act as plasticizer in place of sorbitol. Additionally, the vacuum drives the reaction chemistry through the removal of water from the system. The reaction may be completed within 2-4 hours.
  • Optionally, the resulting product may then be further processed to adjust the pH, as illustrated at reference number 14. The product may then also be purified, as illustrated at reference number 16, using one or more conventional purification techniques, including, but not limited to, carbon filtration, ion exchange, or chromatographic methods. Finally, the purified material may be spray dried, as illustrated at reference number 18, to achieve a final purified and dried product, as illustrated at reference number 20.
  • The process may be operated to provide a product having any suitable digestibility. A digestibility of from 10-20% is preferred in many embodiments, although other digestibility values are contemplated. Those skilled in the an will appreciate that various process parameters may he adjusted to affect the digestibility of the resultant product. Digestibility may be determined via a procedure adapted from Muir and O'Dea, “Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro,” Am. J Clinical Nutrition 56:123-27 (1992), incorporated by reference in its entirety. Generally, this procedure includes the following steps and incorporates the reagents specified below:
      • 1. Weigh 0.1 g of sample carbohydrate (dsb) into 50 mL centrifuge tubes.
      • 2. Add 2 mL water to each tube & vortex gently
      • 3. Cook sample in a boiling water bath for 15 minutes and cool.
      • 4. Add 1 mL pepsin/HCl solution & vortex gently.
      • 5. Incubate for 30 minutes at 37° C.
      • 6. Neutralize with 0.5 mL NaOH.
        perform steps 7a-10a on zero time sample.
      • 7a. Add 5 mL 0.2M sodium acetate buffer & vortex
      • 8a. Centrifuge at 3620 rpm for 10 minutes.
      • 9a. Decant supernatant into a 50 mL centrifuge tube.
      • 10a. Bring up to 10 mL volume with 0.2M sodium acetate buffer & vortex.
      • 11a. Measure glucose.
        proceed with steps 7-13 on other time interval samples.
      • 7. Add 5 mL 0.2M sodium acetate buffer and 1 mL of enzyme solution & vortex.
      • 8. Incubate for specified time at 37° C. in a shaking water bath.
      • 9. At specified time interval, quench sample at 100° C. for 10 minutes.
      • 10. Centrifuge at 3620 rpm for 10 minutes.
      • 11. Decant supernatant into a 50 mL centrifuge tube.
      • 12. Bring up to 25 mL volume with 0.2M sodium acetate buffer & vortex.
      • 13. Measure glucose
      • 14. Digestibility is determined as the amount of glucose measured as a percentage of the original starch, each measured on a dry starch basis.
    Reagents
  • Pepsin/HCl solution—Add 0.5 g of pepsin (1:10,000, Sigma P-7000) to 400 mL deionized water. Adjust to pH 2.0 with HCl. Add to 500 mL volumetric flask and bring up to volume with water. Store in refrigerator.
  • Sodium acetate buffer 0.2M—Add 16.408 g of anhydrous sodium acetate to 500 mL deionized water. Adjust to pH 5.0 with glacial acetic acid. Add to 1 liter volumetric flask and bring up to volume with water,
  • Enzyme solution—Place 0.24 g amyloglucosidase (Sigma A-7255) and 1.0 g α-amylase (Sigma A-6880) in a 100 mL volumetric flask Bring up to volume with 0.2M sodium acetate buffer, pH 5.0. Final solution will be 28 U/mL amyloglucosidase and 10 mg/mL α-amylase.
  • Those skilled in the art will appreciate that by varying process equipment parameters different products with different bond profiles may be prepared. In some embodiments, the process parameters are selected such that the resultant product includes at least 20% 1-4 bonds in the product; in some embodiments, at least 25% 1-4 bonds; in some embodiments, at least 30% 1-4 bonds; in some embodiments, at least 35% 1-4 bonds; in some embodiments, at least 40% 1-4 bonds; in some embodiments, at least 45% 1-4 bonds; and in some embodiments, at least 50% 1-4 bonds. The process likewise should be operated in a manner to form at least 45% 1-4 and 1-6 bonds in total; in some embodiments, at least 50% 1-4 and 1-6 bonds in total; in some embodiments, at least 55% 1-4 and 1-6 bonds in total; in some embodiments, at least 60% 1-4 and 1-6 bonds in total; in some embodiments, at least 65% 1-4 and 1-6 bonds in total; in some embodiments, at least 70% 1-4 and 1-6 bonds in total.
  • Bond methylation analysis may be performed in accordance with the procedures outlined in flakomori, S. I., J. Blochem 55:205-08 (1964), as modified by Kim et al., Carbohydrate Research 341:1061-64 (2006). Generally, in the methylation analysis, the material subject to analysis is exhaustively methylated using methyl iodide. This converts the free hydroxyl group to methyl ether. The methylated product is then exhaustively hydrolyzed with acid catalysis, thus creating a hydroxyl group at places where a glycosidic bond once existed. The product is then analyzed and the positions of the hydroxyl groups then determined. This represents where linkage points existed in the original products. The data is reported as t-glc, 2-glc, 3-glc, 4-glc, 6-glc, 3,4-glc, 4,6-glc, 2,6-glc+3,6-glc, 2,4-glc, 3,4,6-glc, 2,3,6-glc, where “t-gic” indicates a monomer resulting from a terminal glucose group, “2-glc” indicates a monomer resulting from a linkage at the 2-carbon position on the glucose ring, and so on. Plural denominations signify multiple branching points on the glucose ring; for instance, “3,4-glc” indicates a monomer formed where a branch point had existed at the 3- and 4-positions. The reducing end is subjected to another chemical step to render the reducing end similar to a similarly substituted interior unit (thus, for instance, a 1-4 linked oligomer resolves to t-glc and 4-glc). Other possible linked structures (2,3-glc or 2,3,4,6-glc) are believed to be formed in very small amounts. The methylation data does not differentiate between alpha and beta bonds, so methylation does not exactly correspond with digestibility as indicated above, but generally the larger number of 1-4 bonds and 1-6 bonds signifies greater digestibility.
  • A comparison of various resistant dextrins is shown below in Table 1. More specifically, Example 1 is the material resulting from the above described processing techniques. The extruded sample was produced from a prior art extrusion technique, while the polydextrose sample was produced by the large scale technique as discussed in the background. The FIBERSOL sample and NUTRIOSE samples are samples of commercially available products, also discussed in the background.
  • TABLE 1
    Comparison of resistant dextrins.
    Poly-
    Example 1 Extruded FIBERSOL NUTRIOSE dextrose
    % 10-20 30-40 4 15   5
    Digesti-
    bility
    % glucose 5-8 5 0.4 0-4
    DE 14-18 10-13 8-12 2-10 0-8
    Mw 3200-3800 3500-5000 3200 800-6000 1300
    1-4/1-6 36/27 60/20 48/25 56/38 predom.
    linkages 1-6
    no significant differences in ash, protein, fat, SO2 content or pH
  • In subsequent examples, glucose was reacted with maltodextrin using citric acid as a catalyst. In the process, a mixture of the ingredients was fed into the reactor without pre-drying. Various exemplary mixtures were prepared as found in Tables 2-4, and further processed as described below.
  • TABLE 2
    Composition of Example 2
    Ingredient % of total feedstock
    Dextrose monohydrate 64.35
    Maltodextrin (10 DE) 34.65
    Citric acid anhydrous 1.0
  • TABLE 3
    Composition of Example 3 (1885-77-02A)
    Ingredient % of total feedstock
    Dextrose monohydrate 74.25
    Maltodextrin (10 DE) 24.75
    Citric acid anhydrous 1.0
  • TABLE 4
    Composition of Example 4
    Ingredient % of total feedstock
    Dextrose monohydrate 69.3
    Maltodextrin (10 DE) 29.7
    Citric acid anhydrous 1.0
  • The starting ingredients had moisture content of about 10%, The reactor was heated to 180 to 190° C. under mixing without vacuum to allow moisture and trapped air bubbles to escape. Then under vacuum of about 10 to 12 inches of mercury, the mixture was allowed to react at between 140-160° C. for 2 to 4 hours, Under those conditions, glucose and other low molecular weight saccharides and the maltodextrin polymerized to higher MW polymer with mixture of glucosidic bonds. The moisture content at the completion of the reaction was about 2%.
  • In subsequent examples, following the processing steps shown in FIG. 1 and as described above, the following blends were prepared. The blends were not pre-dried. During reaction, vacuum was held at 15-18 in mercury and not allowed to exceed 20 in mercury. The reacted material was dropped or transferred to a cooling belt and, after cooling, ground to desired particle size. The resulting compositions are illustrated below in Table 5.
  • TABLE 5
    Comparison of Examples 5-7
    Item and
    Target Example 5 Example 6 Example 7
    Formula Dextrose monohydrate Dextrose Dextrose
    (74.25%) monohydrate monohydrate
    Maltodextrin (24.75%) (69.3%) (74.25%)
    Citric acid (1%) Maltodextrin Maltodextrin
    (29.7%) (24.75%)
    Citric acid (1%) Citric acid
    (1%)
    Reaction 3 hour 50 minutes 2 hours 25 minutes 3 hour
    Time 45 minutes
    Reaction 160° C. 160° C. 140° C.
    Temperature
    Glucose 8.47 9.01 17.40
    Residues
    PH: 2-3 2.89 2.84  2.92
    Moisture 0.95 0.9  0.8
    1-2.5
  • Bond methylation data was determined according to the procedure outlined above for Examples 5 and 6, yielding the following,
  • TABLE 6
    Bond Methylation
    % %
    linked-glc Example 5 Example 6
    t-glc 27.5 28.6
    2-glc 6.1 6.4
    3-glc 7.0 7.2
    4-glc 20.0 18.0
    6-glc 17.9 18.6
    3,4-glc 0.7 0.8
    4,6-glc 10.5 9.6
    2,6-glc + 3,6- 6.3 6.6
    glc
    2,4-glc 0.9 1.1
    3,4,6-glc 1.5 1.6
    2,4,6-glc 1.1 1.1
    2,3,6-glc 0.4 0.5
    99.90 100.10
  • From the above, it was determined that the percentages of 1-4 and 1-6 bonds in the product of Example 5 were 35.8 and 38.9, respectively. In the product of Example 6, the percentages of 1-4 and 1-6 bonds were 33.5 and 39.6 respectively.
  • The methods described above may provide a number of advantages over previous methods for manufacturing resistant dextrins. For example, the methods described herein may eliminate the step of making a dextrin from a starch. As noted previously, those prior art processes use environment-unfriendly hazardous strong acids like hydrochloric acid to make dextrins through a dry-roasting dextrinization process and requires pre-drying of the feedstock to 2-3% moisture content and high temperature. In many of the present methods, mineral acids are not used.
  • Further, the presently proposed methods may eliminate the step of hydrolyzing and removing the digestible part of the dextrin made from a starch. As noted above, prior art methods generally produced materials having a significant portion which was digestible. To increase the percentage of the non-digestible dextrins in the final product, an amylase or glucoamylase or other enzyme combinations were often used to hydrolyze the digestible part to glucose or maltose so that the non-digestible part could be separated out from the digestible part by organic solvent or alcohol precipitation, membrane separation and other separation technology based on molecular size difference. Similarly, the proposed methods may reduce waste and increase yield of the finished non-digestible products because there are digestible parts that need to be removed.
  • The starting materials may not need to be pre-dried, as is necessary in the prior art. Additionally, the methods proposed herein may avoid the use of polyols like sorbitol. As noted above, the moisture content of the ingredients along with the processing conditions, such as the temperature ranges and vacuum ranges, permit the materials to react without excessive foaming and without the need to use polyols.
  • It is thus seen that a method for preparation of resistant dextrins is provided. It is believed that the dextrins thus formed may contribute to a cholesterol-lowering effect when consumed by humans or other mammals. In some embodiments, the invention contemplates providing a resistant dextrin to a mammal for purposes of reducing the blood cholesterol value.
  • Uses of singular terms such as “a,” “an,” are intended to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms. Any description of certain embodiments as “preferred” embodiments, and other recitation of embodiments, features, or ranges as being preferred, or suggestion that such are preferred, is not deemed to be limiting. The invention is deemed to encompass embodiments that are presently deemed to be less preferred and that may be described herein as such. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended to illuminate the invention and does not pose a limitation on the scope of the invention. Any statement herein as to the nature or benefits of the invention or of the preferred embodiments is not intended to be limiting. This invention includes all modifications and equivalents of the subject matter recited herein as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. The description herein of any reference or patent, even if identified as “prior,” is not intended to constitute a concession that such reference or patent is available as prior art against the present invention. No unclaimed language should be deemed to limit the invention in scope. Any statements or suggestions herein that certain features constitute a component of the claimed invention are not intended to be limiting unless reflected in the appended claims. Neither the marking of the patent number on any product nor the identification of the patent number in connection with any service should be deemed a representation that all embodiments described herein are incorporated into such product or service.

Claims (14)

1. A method for manufacturing a resistant dextrin composition comprising the steps of:
combining about 60 to about 80 wt. % dextrose, about 20 to about 40 wt % maltodextrin and a catalytic amount of citric acid to form a mixture having a moisture content of at least about 5%;
reacting the mixture to derivatize the maltodextrin with the dextrose at a temperature range of about 130° C. to about 180° C.; and
removing moisture from the mixture using a vacuum thereby forming a resistant dextrin composition.
2. A method according to claim 1, the vacuum comprising about 5 to about 25 inches of mercury.
3. The method of claim 1 wherein the mixture is substantially free of polyols.
4. The method of claim, 1 further comprising the step of purifying the resistant dextrin composition using activated carbon treatment or ion exchange chromatography.
5. The method of claim 1 wherein the mixture includes about 75 wt. % dextrose and about 25 wt % maltodextrin,
6. The method of claim 1 wherein the reacting step is at a temperature range of about 140° C. to about 160° C.
7. The method of claim 1 wherein the removal of moisture occurs simultaneously with the reaction.
8. The method of claim 1 wherein the mixture consists essentially of dextrose, maltodextrin and citric acid.
9. The method of claim 1, wherein the mixture has a moisture content of at least about 10%.
10. The method of claim 1, wherein the dextrin composition has a digestibility ranging from 10-20%.
11. A method for manufacturing a resistant dextrin composition comprising the steps of:
combining a mixture consisting essentially of dextrose and maltodextrin and a catalytic amount of citric acid to form a mixture having a moisture content of at least about 5%;
reacting the mixture to derivatize the maltodextrin with the dextrose at a temperature range of about 130° C. to about 180° C.; and
removing moisture from the mixture using a vacuum thereby forming a resistant dextrin composition.
12. A method according to claim 11, said maltodextrin being present in an amount ranging from 20-75% based on the total weight of maltodextrin and dextrose.
13. A method according to claim 11, the mixture being substantially free of polyols.
14. The method of claim 11, wherein the dextrin composition has a digestibility ranging from 10-20%.
US13/191,169 2011-07-26 2011-07-26 Production of Resistant Dextrins Abandoned US20130030167A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/191,169 US20130030167A1 (en) 2011-07-26 2011-07-26 Production of Resistant Dextrins
PCT/US2012/041583 WO2013015890A1 (en) 2011-07-26 2012-06-08 Production of resistant dextrins
US14/670,896 US9422372B2 (en) 2011-07-26 2015-03-27 Production of resistant dextrins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/191,169 US20130030167A1 (en) 2011-07-26 2011-07-26 Production of Resistant Dextrins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/670,896 Continuation US9422372B2 (en) 2011-07-26 2015-03-27 Production of resistant dextrins

Publications (1)

Publication Number Publication Date
US20130030167A1 true US20130030167A1 (en) 2013-01-31

Family

ID=46420530

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/191,169 Abandoned US20130030167A1 (en) 2011-07-26 2011-07-26 Production of Resistant Dextrins
US14/670,896 Active US9422372B2 (en) 2011-07-26 2015-03-27 Production of resistant dextrins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/670,896 Active US9422372B2 (en) 2011-07-26 2015-03-27 Production of resistant dextrins

Country Status (2)

Country Link
US (2) US20130030167A1 (en)
WO (1) WO2013015890A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106046182A (en) * 2016-08-24 2016-10-26 山东福田药业有限公司 Resistant dextrin synthesis technology
KR101832799B1 (en) 2016-05-19 2018-02-27 주식회사 삼양사 Method for preparing digestion-resistant maltodextrin
US10479840B2 (en) 2016-01-27 2019-11-19 Shandong Bailong Chuangyuan Bio-Tech Co., Ltd Resistant dextrin and method for preparing the same
USD970017S1 (en) 2020-08-25 2022-11-15 Coloplast A/S Ostomy appliance monitor
US11517469B2 (en) 2019-01-31 2022-12-06 Coloplast A/S Base plate and sensor assembly part of an ostomy system having a moisture sensor
US11534323B2 (en) 2017-12-22 2022-12-27 Coloplast A/S Tools and methods for placing a medical appliance on a user
US11540937B2 (en) 2017-12-22 2023-01-03 Coloplast A/S Base plate and sensor assembly of a medical system having a leakage sensor
US11547595B2 (en) 2017-12-22 2023-01-10 Coloplast A/S Base plate and a sensor assembly part for a medical appliance
US11589811B2 (en) 2017-12-22 2023-02-28 Coloplast A/S Monitor device of a medical system and associated method for operating a monitor device
US11590015B2 (en) 2017-12-22 2023-02-28 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a method for manufacturing a sensor assembly part and a base plate
US11607334B2 (en) 2017-12-22 2023-03-21 Coloplast A/S Base plate for a medical appliance, a monitor device and a system for a medical appliance
US11612512B2 (en) 2019-01-31 2023-03-28 Coloplast A/S Moisture detecting base plate for an ostomy appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
US11612508B2 (en) 2017-12-22 2023-03-28 Coloplast A/S Sensor assembly part for a medical appliance and a method for manufacturing a sensor assembly part
US11627891B2 (en) 2017-12-22 2023-04-18 Coloplast A/S Calibration methods for medical appliance tools
US11628084B2 (en) 2017-12-22 2023-04-18 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a device for connecting to a base plate or a sensor assembly part
US11654043B2 (en) 2017-12-22 2023-05-23 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a method for manufacturing a base plate or a sensor assembly part
US11701248B2 (en) 2017-12-22 2023-07-18 Coloplast A/S Accessory devices of a medical system, and related methods for communicating leakage state
US11707376B2 (en) 2017-12-22 2023-07-25 Coloplast A/S Base plate for a medical appliance and a sensor assembly part for a base plate and a method for manufacturing a base plate and sensor assembly part
US11707377B2 (en) 2017-12-22 2023-07-25 Coloplast A/S Coupling part with a hinge for a medical base plate and sensor assembly part
US11717433B2 (en) 2017-12-22 2023-08-08 Coloplast A/S Medical appliance with angular leakage detection
US11730622B2 (en) 2017-12-22 2023-08-22 Coloplast A/S Medical appliance with layered base plate and/or sensor assembly part and related methods
US11786392B2 (en) 2017-12-22 2023-10-17 Coloplast A/S Data collection schemes for an ostomy appliance and related methods
US11819443B2 (en) 2017-12-22 2023-11-21 Coloplast A/S Moisture detecting base plate for a medical appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
US11865029B2 (en) 2017-12-22 2024-01-09 Coloplast A/S Monitor device of a medical system having a connector for coupling to both a base plate and an accessory device
US11872154B2 (en) 2017-12-22 2024-01-16 Coloplast A/S Medical appliance system, monitor device, and method of monitoring a medical appliance
US11890219B2 (en) 2014-04-17 2024-02-06 Coloplast A/S Thermoresponsive skin barrier appliances
US11918506B2 (en) 2017-12-22 2024-03-05 Coloplast A/S Medical appliance with selective sensor points and related methods
US11931285B2 (en) 2018-02-20 2024-03-19 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a device for connecting to a base plate and/or a sensor assembly part
US11986418B2 (en) 2017-12-22 2024-05-21 Coloplast A/S Medical system and monitor device with angular leakage detection
US11998474B2 (en) 2018-03-15 2024-06-04 Coloplast A/S Apparatus and methods for navigating ostomy appliance user to changing room
US11998473B2 (en) 2017-12-22 2024-06-04 Coloplast A/S Tools and methods for cutting holes in a medical appliance
US12029582B2 (en) 2018-02-20 2024-07-09 Coloplast A/S Accessory devices of a medical system, and related methods for changing a medical appliance based on future operating state
US12064258B2 (en) 2018-12-20 2024-08-20 Coloplast A/S Ostomy condition classification with image data transformation, devices and related methods
US12064369B2 (en) 2017-12-22 2024-08-20 Coloplast A/S Processing schemes for an ostomy system, monitor device for an ostomy appliance and related methods

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524181B (en) * 2014-10-23 2017-12-08 华仁药业股份有限公司 The brand-new synthesis technique of Icodextrin bulk drug
CN105237647A (en) * 2015-11-20 2016-01-13 保龄宝生物股份有限公司 Method for preparing high-purity resistant dextrin by improving acidity
EP3572436A4 (en) * 2017-01-20 2020-10-21 Nutri Co., Ltd. Highly dispersible dextrin and production method therefor
CN114126605B (en) * 2019-06-11 2023-05-23 先进制药股份有限公司 Superoxide dismutase soluble fiber composition
WO2023122690A2 (en) * 2021-12-23 2023-06-29 Glucose Health, Inc. Compositions and methods for metabolic health
WO2023159173A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159172A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159175A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159171A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2024036206A1 (en) 2022-08-12 2024-02-15 Cargill, Incorporated Polycondensation of sugars in the presence of water using a microreactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000905A1 (en) * 2003-06-23 2005-01-06 Grain Processing Corporation Saccharide-derivatized oligosaccharides
US20080175977A1 (en) * 2006-01-25 2008-07-24 Harrison Michael D Fiber-Containing Carbohydrate Composition

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766165A (en) 1966-08-17 1973-10-16 Pfizer Polysaccharides and their preparation
US3535123A (en) 1967-10-24 1970-10-20 Cpc International Inc High de starch hydrolysate syrups and method of preparation
US3783100A (en) 1971-06-30 1974-01-01 Staley Mfg Co A E Non-retrograded thinned hydrolyzates
US3876794A (en) 1972-12-20 1975-04-08 Pfizer Dietetic foods
IE56300B1 (en) * 1984-03-19 1991-06-05 Gen Foods Corp Method for fixing volatile flavorants in extruded vitreous substrates
US4622233A (en) 1984-12-06 1986-11-11 Pfizer Inc. Preparation and use of a highly purified polydextrose
US4948596A (en) 1987-04-29 1990-08-14 Warner-Lambert Company Method of purifying polydextrose and composition containing same
US4956458A (en) 1988-05-13 1990-09-11 Warner-Lambert Company Purification of polydextrose by reverse osmosis
EP0368451B1 (en) 1988-10-07 1994-04-06 Matsutani Chemical Industries Co. Ltd. Process for preparing dextrin containing dietary fiber
NL8901579A (en) 1989-06-22 1991-01-16 Suiker Unie METHOD FOR PREPARING POLYSACCHARIDE DERIVATIVES
US5015500A (en) 1989-11-16 1991-05-14 Beloit Corporation Roll coater with perforated deckles
US5091015A (en) 1990-05-22 1992-02-25 Warner-Lambert Company Polydextrose compositions
JPH04173094A (en) 1990-11-08 1992-06-19 Matsutani Kagaku Kogyo Kk Production of low calorie dextrin
RU2098426C1 (en) 1991-02-20 1997-12-10 Калтор Лтд. Polydextrose, method of its synthesis and sweet food product
JPH06102032B2 (en) 1991-05-27 1994-12-14 松谷化学工業株式会社 Enzymatic hydrolysis method for processed starch products
US5358729A (en) 1991-08-28 1994-10-25 Matsutani Chemical Industries Co., Ltd. Indigestible dextrin
JPH05178902A (en) 1991-10-29 1993-07-20 Matsutani Kagaku Kogyo Kk Difficultly digestible dextrin
FR2697023B1 (en) 1992-10-16 1994-12-30 Roquette Freres Low-calorie glucose soluble polymer and process for the preparation of this polymer.
FR2712891B1 (en) 1993-11-22 1996-02-02 Roquette Freres Process for the purification of a hypocaloric soluble polymer of glucose and product thus obtained.
NL9400040A (en) 1994-01-10 1995-08-01 Suiker Unie Process for preparing polysaccharide derivatives.
KR100204660B1 (en) 1996-05-28 1999-06-15 신명수 Process for purifying crude polydextrose and the product thereof
EP1049720A1 (en) 1998-01-20 2000-11-08 Grain Processing Corporation Reduced malto-oligosaccharides
US6919446B1 (en) 1998-01-20 2005-07-19 Grain Processing Corp. Reduced malto-oligosaccharides
DE60137183D1 (en) 2000-02-28 2009-02-12 Grain Processing Corp PROCESS FOR THE PRODUCTION OF HIGH-PURITY MALTOSE
US20060149053A1 (en) 2002-06-21 2006-07-06 Grain Processing Corporation Dextrinized, saccharide-derivatized oligosaccharides
US20040053886A1 (en) 2002-06-21 2004-03-18 Grain Processing Corporation Dextrinized, saccharide-derivatized oligosaccharides
WO2006004748A2 (en) 2004-06-25 2006-01-12 Grainvalue, Llc Improved corn fractionation method
EP2288714A4 (en) 2008-05-09 2014-12-03 Cargill Inc Low-viscosity reduced-sugar syrup, methods of making, and applications thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000905A1 (en) * 2003-06-23 2005-01-06 Grain Processing Corporation Saccharide-derivatized oligosaccharides
US20080175977A1 (en) * 2006-01-25 2008-07-24 Harrison Michael D Fiber-Containing Carbohydrate Composition

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890219B2 (en) 2014-04-17 2024-02-06 Coloplast A/S Thermoresponsive skin barrier appliances
US10479840B2 (en) 2016-01-27 2019-11-19 Shandong Bailong Chuangyuan Bio-Tech Co., Ltd Resistant dextrin and method for preparing the same
KR101832799B1 (en) 2016-05-19 2018-02-27 주식회사 삼양사 Method for preparing digestion-resistant maltodextrin
US10696752B2 (en) 2016-05-19 2020-06-30 Samyang Corporation Method for preparing digestion-resistant maltodextrin
CN106046182A (en) * 2016-08-24 2016-10-26 山东福田药业有限公司 Resistant dextrin synthesis technology
US11590015B2 (en) 2017-12-22 2023-02-28 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a method for manufacturing a sensor assembly part and a base plate
US11717433B2 (en) 2017-12-22 2023-08-08 Coloplast A/S Medical appliance with angular leakage detection
US11540937B2 (en) 2017-12-22 2023-01-03 Coloplast A/S Base plate and sensor assembly of a medical system having a leakage sensor
US11547595B2 (en) 2017-12-22 2023-01-10 Coloplast A/S Base plate and a sensor assembly part for a medical appliance
US11589811B2 (en) 2017-12-22 2023-02-28 Coloplast A/S Monitor device of a medical system and associated method for operating a monitor device
US12064369B2 (en) 2017-12-22 2024-08-20 Coloplast A/S Processing schemes for an ostomy system, monitor device for an ostomy appliance and related methods
US11607334B2 (en) 2017-12-22 2023-03-21 Coloplast A/S Base plate for a medical appliance, a monitor device and a system for a medical appliance
US12004990B2 (en) 2017-12-22 2024-06-11 Coloplast A/S Ostomy base plate having a monitor interface provided with a lock to hold a data monitor in mechanical and electrical connection with electrodes of the base plate
US11612509B2 (en) 2017-12-22 2023-03-28 Coloplast A/S Base plate and a sensor assembly part for an ostomy appliance
US11612508B2 (en) 2017-12-22 2023-03-28 Coloplast A/S Sensor assembly part for a medical appliance and a method for manufacturing a sensor assembly part
US11622719B2 (en) 2017-12-22 2023-04-11 Coloplast A/S Sensor assembly part, base plate and monitor device of a medical system and associated method
US11627891B2 (en) 2017-12-22 2023-04-18 Coloplast A/S Calibration methods for medical appliance tools
US11628084B2 (en) 2017-12-22 2023-04-18 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a device for connecting to a base plate or a sensor assembly part
US11654043B2 (en) 2017-12-22 2023-05-23 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a method for manufacturing a base plate or a sensor assembly part
US11701248B2 (en) 2017-12-22 2023-07-18 Coloplast A/S Accessory devices of a medical system, and related methods for communicating leakage state
US11707376B2 (en) 2017-12-22 2023-07-25 Coloplast A/S Base plate for a medical appliance and a sensor assembly part for a base plate and a method for manufacturing a base plate and sensor assembly part
US11707377B2 (en) 2017-12-22 2023-07-25 Coloplast A/S Coupling part with a hinge for a medical base plate and sensor assembly part
US11534323B2 (en) 2017-12-22 2022-12-27 Coloplast A/S Tools and methods for placing a medical appliance on a user
US11730622B2 (en) 2017-12-22 2023-08-22 Coloplast A/S Medical appliance with layered base plate and/or sensor assembly part and related methods
US11998473B2 (en) 2017-12-22 2024-06-04 Coloplast A/S Tools and methods for cutting holes in a medical appliance
US11786392B2 (en) 2017-12-22 2023-10-17 Coloplast A/S Data collection schemes for an ostomy appliance and related methods
US11819443B2 (en) 2017-12-22 2023-11-21 Coloplast A/S Moisture detecting base plate for a medical appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
US11844718B2 (en) 2017-12-22 2023-12-19 Coloplast A/S Medical device having a monitor mechanically and electrically attachable to a medical appliance
US11865029B2 (en) 2017-12-22 2024-01-09 Coloplast A/S Monitor device of a medical system having a connector for coupling to both a base plate and an accessory device
US11872154B2 (en) 2017-12-22 2024-01-16 Coloplast A/S Medical appliance system, monitor device, and method of monitoring a medical appliance
US11986418B2 (en) 2017-12-22 2024-05-21 Coloplast A/S Medical system and monitor device with angular leakage detection
US11918506B2 (en) 2017-12-22 2024-03-05 Coloplast A/S Medical appliance with selective sensor points and related methods
US11974938B2 (en) 2017-12-22 2024-05-07 Coloplast A/S Ostomy system having an ostomy appliance, a monitor device, and a docking station for the monitor device
US11931285B2 (en) 2018-02-20 2024-03-19 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a device for connecting to a base plate and/or a sensor assembly part
US12029582B2 (en) 2018-02-20 2024-07-09 Coloplast A/S Accessory devices of a medical system, and related methods for changing a medical appliance based on future operating state
US11998474B2 (en) 2018-03-15 2024-06-04 Coloplast A/S Apparatus and methods for navigating ostomy appliance user to changing room
US12064258B2 (en) 2018-12-20 2024-08-20 Coloplast A/S Ostomy condition classification with image data transformation, devices and related methods
US11737907B2 (en) 2019-01-31 2023-08-29 Coloplast A/S Moisture detecting base plate for an ostomy appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
US11612512B2 (en) 2019-01-31 2023-03-28 Coloplast A/S Moisture detecting base plate for an ostomy appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
US11517469B2 (en) 2019-01-31 2022-12-06 Coloplast A/S Base plate and sensor assembly part of an ostomy system having a moisture sensor
USD970017S1 (en) 2020-08-25 2022-11-15 Coloplast A/S Ostomy appliance monitor

Also Published As

Publication number Publication date
US9422372B2 (en) 2016-08-23
WO2013015890A1 (en) 2013-01-31
US20150197580A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
US9422372B2 (en) Production of resistant dextrins
AU2003204157B2 (en) Resistant starch prepared by isoamylase debranching of low amylose starch
JP6811180B2 (en) Method for producing maltooligosaccharide containing a large amount of fiber having low glucose bioavailability
JP4851709B2 (en) Soluble highly branched glucose polymer
US6468355B1 (en) Manufacture of boiling-stable granular resistant starch by acid hydrolysis and hydrothermal treatment
JP5241516B2 (en) Soluble highly branched glucose polymer for enteral and parenteral nutrition and for peritoneal dialysis
JP4893980B2 (en) Branched starch, production method and use thereof
Leong et al. Effect of pullulanase debranching of sago (Metroxylon sagu) starch at subgelatinization temperature on the yield of resistant starch
JP3366038B2 (en) Low caries-inducing hydrogenated starch hydrolysate, its preparation method and use of this hydrolyzate
Wurzburg Modified starches
NZ525809A (en) Slowly digestible starch product
KR20090121313A (en) Production of resistant starch product
Zhang et al. The influence of Konjac glucomannan on the functional and structural properties of wheat starch
JP3150266B2 (en) Glucan having cyclic structure and method for producing the same
Tester et al. β-limit dextrin–Properties and applications
Himat et al. Starch-based novel ingredients for low glycemic food formulation
Laurentin et al. Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria: A study of pyrodextrinised starches from different sources
Guo et al. In vitro enzymatic hydrolysis of amylopectins from rice starches
JP3530567B2 (en) Method for producing resistant starch
DE69521450T2 (en) Cyclic structured glucans and process for their preparation
JP7082066B2 (en) High molecular weight glucan with slow digestion rate
AU2004213451A1 (en) A method of producing resistant starch
KR20040052215A (en) Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods, especially for use as a plasma volume expander
US20060149053A1 (en) Dextrinized, saccharide-derivatized oligosaccharides
Calixto et al. Resistant starch: An indigestible fraction of foods

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRAIN PROCESSING CORPORATION, IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, LIN;MUNGARA, PERMINUS;REEL/FRAME:026710/0604

Effective date: 20110802

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION