US20130025711A1 - Self Piloted Check Valve - Google Patents

Self Piloted Check Valve Download PDF

Info

Publication number
US20130025711A1
US20130025711A1 US13/632,890 US201213632890A US2013025711A1 US 20130025711 A1 US20130025711 A1 US 20130025711A1 US 201213632890 A US201213632890 A US 201213632890A US 2013025711 A1 US2013025711 A1 US 2013025711A1
Authority
US
United States
Prior art keywords
ball
valve
spring
seat
flapper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/632,890
Inventor
Larry Rayner Russell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/066,817 external-priority patent/US20110266472A1/en
Application filed by Individual filed Critical Individual
Priority to US13/632,890 priority Critical patent/US20130025711A1/en
Priority to CA 2792718 priority patent/CA2792718A1/en
Publication of US20130025711A1 publication Critical patent/US20130025711A1/en
Priority to US14/171,325 priority patent/US9309979B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/10Valve arrangements in drilling-fluid circulation systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/04Ball valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/05Flapper valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7838Plural

Definitions

  • the present invention relates in general to a method and apparatus for controlling fluid flow using as check valve. More particularly, the invention relates to a self piloted check valve for controlling fluid flow in high vibration environments.
  • Check valves are used in a wide variety of applications. Historically, conventional check valves are generally the least reliable type of valve. This is consequence of flow for an open valve continually passing both the seat and the settling plug or ball of those check valves. This problem can lead to very rapid valve failure, particularly in abrasive flow applications or when larger objects pass by the valve. Oilfield applications, particularly use in the drilling of wells, typically cause conventional poppet valves or flapper valves to leak in 15 hours or less of service. Such check valve applications are particularly critical, since they provide the first line of defense against well blowouts.
  • Float valves are exposed to very high vibratory accelerations of 10 times gravity or more while passing flows often in excess of 600 gallons per minute. Relative motion of adjacent parts in the abrasive drilling fluid environment can cause rapid wear sufficient to cause misalignment between the sealing member of a valve and its valve seat.
  • Embodiments of the present invention include to self piloted check valve which utilizes closure of a piloting flapper valve to permit development of closure forces for a ball valve.
  • the normally open ball valve has a central flow passage and simultaneously rotates and translates as it traverses between its fully open and fully closed positions.
  • An opening bias system utilizes a combination of a first less stiff spring and a second stiffer spring. Reversible decoupling means disconnects and reconnects the second spring at a short travel distance from the normally open position of the ball, while the first spring always provides opening bias forces to the ball.
  • the pressure induced force required to fully close the ball valve following decoupling of the second spring is more than the force required to overcome the combination of the first and second springs.
  • One embodiment of the present invention is a valve apparatus comprising: (a) a tubular body having a main counterbore; and (b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including: (i) a ball seat having a seat flow passage; (ii) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body, a second ball position abutting the ball seat wherein the flow passage is not in fluid communication with the seat flow passage such that the main counterbore of the tubular body and the flow passage are closed, and a third ball position intermediate between the first and second ball positions; (iii) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers, wherein each flapper
  • a second embodiment of the present invention is a valve apparatus comprising: (a) a tubular body having a main counterbore; and (b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the it valving components including: (i) a ball seat having a seat flow passage; (ii) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation about an axis of rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body and a second ball position abutting the ball seat wherein the flow passage is not in fluid communication with the seat flow passage such that the main counterbore of the tubular body and the flow passage is closed; (iii) a spring biasing system for providing a bias on the ball valve, the spring biasing system including a reciprocable latching system, a first spring and a
  • a third embodiment of the present invention is A valve apparatus comprising: (a) a tubular body having a main counterbore; and (b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including: (i) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation about an axis of rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body and to a second ball position such that the main counterbore of the tubular body and the valve flow passage are closed to fluid flow; (ii) as ball seat having a seat flow passage, wherein when the ball valve is in the second ball position a spherical surface of the ball valve sealingly abuts a comatable spherical surface of the ball seat such that fluid flow past the ball seat is prevented and the ball flow passage
  • FIG. 1 shows a longitudinal section taken of the check valve housed in a tubular body suitable for connection into an oilfield drill string, whereby it can operate as an inside blowout preventer valve.
  • FIG. 2 shows a longitudinal section corresponding to FIG. 1 , but showing only the internal component parts of the valve in its open, flowing condition.
  • the ball is biased open by the action of two coacting, separate springs.
  • FIG. 3 shows a longitudinal sectional view corresponding to FIG. 2 , but with the piloting flapper valve closed and the ball open. This view shows the valve in its normal position when flow has ceased, but there is no back pressure. In this position, the ball is still biased open by the action of two coacting, separate springs.
  • FIG. 4 is a longitudinal section corresponding to FIGS. 2 and 3 , but showing the valve with the ball forced sufficiently upstream by back pressure from its position in FIG. 2 that the latch assembly with its secondary spring nearing disengagement or reengagement from the ball pusher.
  • the ball pusher in this case continues to apply a reduced opening spring bias force from a single spring to the upstream side of the ball.
  • FIG. 5 is a longitudinal section corresponding to FIGS. 2 , 3 , and 4 , but showing the ball fully seated in response to reverse flow so that reverse flow through the self piloted check valve is prevented.
  • FIG. 6 is an exploded oblique view of the ball cage assembly.
  • FIG. 7 is an exploded oblique view of the flappers and seat of the piloting flapper valve assembly.
  • FIG. 8 is an exploded oblique view of the latch assembly.
  • FIG. 9 is an exploded oblique coaxially aligned view of the piloting flapper assembly and ball.
  • FIG. 10 is an exploded oblique view of the components used to retain the valve internals within the body of the inside blowout preventer body.
  • FIG. 11 is an axial view of the closed piloting flapper and seat assembly for the inside blowout preventer version of the self piloted check valve.
  • FIG. 12 is an axial view of the closed flapper and seat assembly for the choke and kill manifold version of the self piloted check valve.
  • FIG. 13 is a longitudinal sectional view of a choke and kill check valve.
  • FIG. 14 is a longitudinal sectional view of a float valve version of the cheek valve.
  • FIG. 15 is a figure illustrating the valve opening bias force versus distance relationship.
  • FIG. 16 is a detail view taken within the circle 16 shown in FIG. 4 .
  • the view shows the relationship of the latch balls and their adjacent parts at the time that a disconnection or reconnection of the secondary spring biased trigger sleeve to the ball pusher occurs when the ball valve is respectively closing or reopening.
  • the self piloted check valve of the present invention is generally suitable for high reliability applications where no rapid cycling of the valve is required.
  • the materials of the valve typically are low alloy steel, with elastomeric seals sealing between parts as required.
  • the flappers will be an abrasion resistant material such as a wear resistant cobalt alloy.
  • the basic internals of the self piloted check valve are suitable for use with several different housing body types, as described below in three examples.
  • check valve is suitable for placement in an inside blowout preventer valve (inside BOP).
  • inside BOP inside blowout preventer valve
  • FIG. 1 one embodiment of the self piloted check valve 10 is shown in a longitudinal sectional view as an inside blowout preventer, wherein its internal components 20 are mounted in a body 11 suitable for interconnection into an oilfield drillstring. Provision is also made to use a split retention ring 100 and an interior support ring 101 with a snap ring 102 to retain the valve internal components 20 in the body 11 .
  • the exterior of the inside blowout preventer body 11 has a constant outer diameter over most of its length and a reduced diameter tapered male thread 12 at its first, lower end.
  • the terms upper and lower refer respectively to the normal flow inlet and the normal flow outlet.
  • the body 11 has a tapered female thread 13 , a straight main bore 14 interrupted by an axially short retention groove 16 near its upper end and having a transverse lower end, and a straight reduced diameter outlet bore 15 having a short downwardly increasing diameter tapered bore at its lower end.
  • an ample radius is used at the transition between the lower end of the main bore 14 and the outlet bore 15 .
  • the external corners of the short retention groove 16 are also radiused for the same reason.
  • the primary check valve 10 internal components 20 include a ball stop 21 , a ball cage assembly 24 , a ball assembly 33 including an internal flapper valve assembly 34 and a main ball 53 valve, a ball pusher assembly 70 , a main spring 78 and spacer sleeve 80 , a latch assembly 84 , a spring retainer 90 , and a retaining means (e.g., split retention ring 100 , interior support ring 101 , and snap ring 102 ) to retain the inside blowout preventer internal components in the body 11 .
  • a retaining means e.g., split retention ring 100 , interior support ring 101 , and snap ring 102
  • the internal components 20 of the valve 10 of FIG. 1 are shown removed from the inside of the blowout preventer body valve 11 .
  • the valve has a ball stop 21 with an integrally molded elastomeric ball step bumper 22 for cushioning the impact of ball 53 on the ball assembly 33 when the valve 10 opens rapidly.
  • the ball stop 21 is an axially short annular ring which, starting from its transverse lower end, has on its exterior a large taper, a short constant diameter section, a verse external upwardly facing shoulder, and a constant reduced diameter axially upward extension.
  • the constant reduced diameter axially upward extension closely conforms to the inner diameter of the semicircular end arm 26 half rings on the ends of the ball cage halves 25 of the ball cage assembly 24 .
  • the outer diameter of the short constant outer diameter section of the ball stop is a close slip fit to the main bore 14 of the body 11 of the inside blowout preventer 10 .
  • the ball stop 21 From its lower interior end, the ball stop 21 has a small chamfer, a very short constant diameter minimum bore, a frustroconical upwardly increasing bore, a groove for containing a molded-in elastomeric ball stop bumper and a spherical bore intersecting a radially narrow transverse upper end.
  • the spherical bore of the ball stop 21 has the same diameter as that of the ball 53 , so that the open ball 53 can abut the ball stop with good support over a relatively large contact surface.
  • the elastomeric molded in ball stop bumper 22 extends a short distance inwardly from the spherical bore of the ball stop 21 so that it cushions the contact of the axially translating ball 53 with the ball stop 21 when the valve 10 is opening.
  • the ball cage assembly 24 shown in FIG. 6 , consists of two opposed mirror image semicylindrical halves 25 . Each ball cage half is symmetrical about its midplane perpendicular to the semicylindrical axis. At both its upper and lower ends, a ball cage half 25 has identical thin, axially short semicylindrical end arms 26 which have a constant rectangular cross section, wherein the radial thickness of the arm is approximately a quarter of the axial length of the arm.
  • the outer diameter of the semicylindrical surface of the arms 26 is a close slip fit to the main bore 14 of the body 11 for the valve 10 .
  • the inner diameter of an arm 26 closely conforms to the constant reduced outer diameter portion of the lower ball stop 21 , with which it is mated in the assembled valve.
  • the width of the arm 26 in the axial direction is the same as the length of the reduced constant outer diameter portion of the ball stop 21 , and the upward looking intermediate transverse external shoulder of the ball stop abuts the lower side of the arm 26 of each installed ball cage half 25 .
  • the middle portion of the ball cage half 25 has a cylindrical outer face 27 and a flat internal face 28 which mounts an inwardly extending cylindrical camming pin 29 which is normal to the face 28 .
  • the outer diameter of the middle section cylindrical surface 27 is the same as that of the semicircular end arms 26 and is also a close slip fit to the main bore 14 of the body 11 for the valve 10 .
  • the middle portion of the ball cage ball 25 is symmetrically positioned between the end anus 26 so that the cylindrical external face 27 matches the outer diameter of the end arms 26 . Also, the center of the middle portion of the ball cage half 25 matches the center of the arc of each of the semicircular end arms 26 .
  • each ball cage half 25 Symmetrically placed in the middle of the middle portion of each ball cage half 25 is a ball guide groove 30 parallel to the axis of the inside blowout preventer internal components 20 .
  • Groove 30 fully penetrates the middle section of the ball cage half 25 .
  • the groove 30 extends in the axial direction perpendicular to the flat internal face 28 and has semicircular ends with parallel flat sides.
  • An inwardly extending cylindrical canning pin 29 is located at midlength of the ball cage half 25 and offset to one side of the ball guide groove 20 .
  • the ball assembly 33 consists of a ball 53 , a snap ring 59 , and a piloting valve assembly 34 which is mounted internally in the ball 53 , as indicated in an exploded view in FIG. 9 .
  • the flapper valve assembly 34 is shown in exploded view in FIG. 7 .
  • the flapper valve assembly 34 primarily consists of a flapper seat ring 35 , a flapper shroud 40 , and three flappers 44 .
  • the flappers 44 are individually connected to trunnions 37 on the flapper seat ring 35 by flapper pivot pins 48 and are biased to be normally closed by torsional flapper springs 46 .
  • the flapper seat ring 35 is a cylindrical ring having a transverse seating surface 36 and a right circular cylindrical coaxial through bore.
  • the diameter of the through bore is the same as the diameter of the through hole for the ball 53 .
  • a male annular O-ring groove containing externally sealing O-ring 50 is positioned on the frustroconical face of the flapper seat ring 35 .
  • Each flapper support trunnion 37 consists of a pair of mirror image spaced apart projections normal to the seating surface 36 .
  • the trunnions 37 each have a hinge bore parallel to the surface of the seating surface 36 and perpendicular to the midplane of that trunnion 37 .
  • the flapper shroud 40 is a right circular cylindrical annular ring having a length equal to about 80% of its outer diameter. The outer diameter of the flapper shroud 40 matches that of the flapper seat ring 35 . As seen in FIGS. 7 and 9 , the flapper recesses 41 are three radially penetrating identical windows located at 120° spacings in the flapper shroud. The recesses 41 are cut in the flapper shroud 40 from its first end to closely accommodate the open flappers 44 of the flapper and seat assembly 34 . The flapper recesses 41 are symmetrical about their radial midplanes and have parallel sides extending approximately half of the axial length of the shroud 40 . The inner end of each flapper recess 41 has converging opposed sides each inclined at 60° from the radial midplane of the recess.
  • the first end of the flapper shroud 40 has three small diameter blind holes parallel to the part axis in the same pattern as the alignment pin holes 38 of the flapper seat ring 35 and with each hole located midway between adjacent flapper recesses 41 . These holes have an interference fit with the alignment roll pins 39 of the flapper seat ring 35 and serve to permit the roll pins to firmly connect the shroud with the seat ring.
  • the flappers 44 are three identical abrasion resistant metal pieces made of a material such as a wear resistant cobalt alloy.
  • the flappers 44 have a planar sealing face on a first side and have a single plane of symmetry perpendicular to their sealing face.
  • a second planar face is opposed and parallel to the planar flapper sealing face and extends in the direction of the plane of symmetry.
  • the width of the second planar face is approximately 30% of the width of the flapper 44 perpendicular to its plane of symmetry. Outboard of the second planar face on each side, the thickness of the flappers 44 is reduced linearly as a function of the distance from its intersection with the second planar face.
  • first planar edge faces Viewing a flapper 44 normal to its sealing face, two mirror image first planar edge faces, each normal to the sealing face, are each inclined at 60° from the plane of symmetry and extend to small planar edge outer ends parallel to the plane of symmetry.
  • the first planar edge faces will be adjacent to corresponding faces of adjacent flappers 44 when they are assembled in their closed positions in the flapper and seat assembly 34 , as shown in FIG. 11 .
  • Short second planar edge faces extend inwardly towards the plane of symmetry from the small planar outer ends of the flapper 44 .
  • Adjoining the second planar faces on the side towards the plane of symmetry are symmetrically placed short planar faces perpendicular to both the plane of symmetry and the sealing surface on the first side of the flapper.
  • These second planar edge faces on their inward ends are joined by third planar edge faces perpendicular to the sealing surface 36 and parallel to the plane of symmetry. The separation of the third planar edge faces is approximately the width of the second planar face which is opposed to the sealing surface on the first side of the flapper.
  • the third planar edge faces through hinge holes are drilled at mid thickness of the flappers 44 and perpendicular to the midplane of symmetry.
  • the outer end of a flapper 44 where its hinge holes are positioned is radiused about the axis of the hinge holes.
  • a central gap, with sides parallel to the plane of symmetry, extending inwardly in the direction of the plane of symmetry is cut between the third planar faces. This central gap is wide enough to accommodate a torsional flapper bias spring 46 .
  • the second planar face opposed to the sealing face of the flapper 44 has a shallow central notch parallel to the sealing face and plane of symmetry and intersecting the central gap of the flapper 44 . This shallow central notch provides a spring slot for a reaction point for an arm of the torsional flapper bias spring 46 .
  • the flapper pivot pins 48 are elongated cylindrical rods with multiple symmetrically placed molded narrow elastomeric rings on their outer ends.
  • the flapper pivot pins 48 are engaged both in the hinge holes of the flappers 44 and in the trunnion holes of the flapper seat ring 35 .
  • the elastomeric rings permit the flappers to seal with the seating surface 36 of the flapper seat ring 35 in spite of small deviations in hole locations for the flappers 44 and the trunnions 37 of the flapper seat ring.
  • the flapper and seat assembly 34 is seen to have three flappers 44 mounted to the flapper seat ring 35 by flapper pivot pins 48 .
  • the individual torsional flapper springs 46 seen in FIG. 7 , are located surrounding the pins 48 in the central gaps of the flappers 44 with one arm of the spring bearing on the shallow slot of a flapper and the other on a spring slot on the outer diameter of the flapper seat ring 35 .
  • an O-ring 50 is installed into the groove on the frustroconical face of the flapper seat ring 35 and the flapper shroud 40 is attached to the flapper seat ring by alignment roll pins 39 engaged in the holes 38 of the ring 35 and the corresponding holes in the flapper shroud 40 .
  • the closed set of flappers 44 has only a slight clearance between adjacent flappers to prevent mutual interference. For this reason, the flappers 44 do not form a bubble tight seal when seated on the flapper seat ring 35 .
  • the open flappers 44 also fit with only small clearance gaps into the flapper recesses 41 of the flapper shroud 40 .
  • the large planar sealing faces of the open flappers 44 are open sufficiently to permit passage of a body having the same outer diameter as the bore through the flapper seat ring 35 . While the flapper valve assembly is shown with three flappers herein, closure of the flow passage of the ball can be achieved with only one or two flappers or more than three. Utilizing three flappers permits a reduction in the mass of individual flappers while minimizing leak paths. Additionally, use of three flappers simplifies construction of the shroud 40 .
  • the ball 53 has a spherical outer surface with two mirror image parallel flats on its exterior.
  • the outer diameter of the spherical lace of the ball 53 is only slightly less than the main bore 14 of the flowpath of the valve body ii.
  • Each flat of the ball 53 has a central cylindrical guide pin 55 which is normal to its flat and is a close slip fit to a ball guide groove 30 of a ball cage half 25 .
  • the opposed guide pins 55 are located on a common ball diameter.
  • Parallel to and centrally located between the opposed flats of the ball 53 is a through bore 57 . From its large end, the through bore 57 has a long larger straight bore with a snap ring groove 58 near its outer end, an inwardly extending frustroconical face, and a shorter smaller straight fluid entry bore.
  • the smaller bore diameter for the ball 53 is the same as the central bore through the flapper seat ring 35 . These two bore diameters determine the through clearance hole for the valve 10 .
  • a fillet connects the frustroconical face and the larger bore.
  • the snap ring groove 58 accommodates snap ring 59 so that when the flapper and seat assembly 34 is inserted in the larger portion of the bore 57 of the ball 53 with the orientation shown in FIG. 9 , it is retained with the O-ring 50 in the annular groove of the flapper seat ring sealing between the ball and the flapper seat ring 35 .
  • a shallow camming groove 56 is cut into each flat of the ball in a radial direction of the face, with the opposed grooves being parallel and mirror images relative to the midplane of symmetry of the ball.
  • the inner ends of the camming grooves 56 are radiused and spaced apart from the guide pins 55 .
  • the camming grooves 56 extend outwardly to the spherical surface of the ball 53 .
  • the orientation of the camming grooves 56 is such that the through bore 57 of the ball 53 is aligned with the valve axis when the ball is open and engaged in the ball cage assembly 24 .
  • the longitudinal axis of the valve 10 penetrates the spherical face of the ball 53 midway between the exits of the large exit hole and of the small exit hole of bore 57 of the ball on the plane of symmetry of the ball. This necessitates that the axis of the ramming grooves 56 to be inclined from the axis of the ball bore 57 by an angle of more than 45°.
  • the main seat 62 of the valve shown in FIG. 2 , is an axially relatively short hollow cylinder having a transverse upper end with a smaller relieved transverse face on its interior side.
  • the relieved face which provides clearance for a snap ring 74 of the ball pusher assembly 70 , is connected to the larger transverse end by a short frustoconical section.
  • the bore of the main seat 62 is straight and larger than the smaller bore through the ball 53 in order to permit a slip tit of the lower exterior end of the ball pusher assembly 70 .
  • the exterior cylindrical face of the main seat 62 has, from its upper end, a constant diameter first section extending about half of the axial length of the seat and with an intermediately placed male O-ring groove containing an O-ring 65 and a backup ring 66 .
  • the outer diameter of the first section of the exterior cylindrical face of the main seat 62 is a close slip fit to the main bore 14 of the body 11 of the valve 10 .
  • the O-ring 65 seals between the main seat 62 and the main bore 14 of the body 11 .
  • the exterior cylindrical face of the main seat 62 On its lower end, the exterior cylindrical face of the main seat 62 has an inwardly extending transverse shoulder facing downwardly.
  • a second section having a reduced diameter cylindrical section extends downwardly to a short inwardly extending transverse shoulder.
  • the outer diameter of the second cylindrical section is a close fit to the inner cylindrical face of the semicircular end arms 26 of the ball cage halves 25 , and the length of the second cylindrical section is the same as the axial length of a ball cage end arm 26 .
  • the main seat 62 On its lower end, the main seat 62 has on its interior side a spherical face 63 having the same diameter as the ball 53 and having an intermediate seal ring groove.
  • the seal ring groove is undercut and contains a molded in elastomeric face seal 64 which extends radially inwardly from the spherical face 63 of the seat 62 .
  • the net volume of the molded in elastomeric lace seal is less than the volume of the groove in the main seat 62 due to molded ridging of the exposed face of the seal 64 . This permits the avoidance of extrusive seal damage when the ball 53 forcefully abuts the spherical face of the main seat 62 .
  • the ball assembly 33 with its ball 53 and flapper and seat assembly 34 is held between two opposed ball cage halves 25 so that its guide pins 55 are engaged in the ball guide grooves 30 of the ball cage assembly 24 and the camming pins 29 of the ball cage assembly are engaged with the camming grooves 56 of the ball.
  • the lower ball stop 21 is then engaged with the lower semicircular end arms 26 of the ball cage assembly 24 so that the side of the lower ball stop with the molded in ball stop bumper 22 is facing the ball.
  • the main seat is engaged with the upper semicircular end arms 26 of the ball cage assembly so that the side of the main seat with the spherical face 63 is facing the ball.
  • the resultant subassembly has a slip tit with the main bore 14 of the body 11 .
  • An O-ring 65 with a backup ring 66 seals the annular gap between the main seat 62 and the main bore 14 of the body 11 .
  • the ball pusher assembly 70 consists of ball pusher body 71 , a ball pusher seat 73 , a snap ring 74 , and a spring washer 75 .
  • the ball pusher body 71 is an elongated thin wall right circular cylindrical tube having a transverse external annular latch groove 72 located at about 30% of the length of the ball pusher body from its upper end. Additionally, an external snap ring groove mounting snap ring 74 is located at about 60% of the length of the ball pusher body 71 from its upper end.
  • the bore of the ball pusher body 71 is the same as the smaller bore through the ball 53 .
  • the latch groove 72 is relative shallow and narrow, with frustroconical radially outwardly opening faces inclined at approximately 60° from the axis of the ball pusher body 71 joining the groove to the outer diameter portion of the ball pusher body 71 .
  • the ball pusher body 71 has as female thread which is threadedly engaged with the male thread of a ball pusher seat 73 .
  • the ball pusher seat 73 is axially short and has the same inner and outer diameters as the ball pusher body 71 .
  • the ball pusher seat 73 is fabricated from either an elastomer or a plastic polymer such as a glass filled polytetrafluoroethylene.
  • the lower face of the ball pusher seat 73 has a concave frustroconical or spherical face which is able to sealingly bear on the spherical face of the ball 53 .
  • the ball pusher seat 73 has a reduced diameter male thread comatable with the female thread on the ball pusher body 71 .
  • the spring washer 75 is a relatively thin cylindrical flat washer with a central hole which is a close slip fit to the outer diameter of the ball pusher body 71 .
  • the outer diameter of the spring washer 75 is slightly less than the bore of the spacer sleeve 80 so that it also has as close slip fit to that sleeve.
  • the spring washer 75 is located on the tippet side of the mounted snap ring 74 and bears against the snap ring.
  • the lower end of the helical main spring 78 bears against the upper side of the spring washer 75 and when the spring is compressed, it urges the ball pusher assembly 70 downwardly so that the ball pusher seat 73 normally remains in contact with the ball 53 .
  • the upper end of the main spring 78 bears against a downwardly facing transverse shoulder of the spring retainer 90 .
  • the spacer sleeve 80 is a thin wall right circular cylindrical sleeve with transverse ends and the central portion of its outer diameter slightly relieved.
  • the outer diameter of the spacer sleeve is a slip it to the main bore 14 of the body 11 of the valve 10 .
  • the outer diameter of the main spring 78 has sufficient clearance with the bore of the spacer sleeve 80 to ensure clearance, even when the main spring is fully compressed.
  • the spacer sleeve 80 has as length equal to about 75% of its outer diameter and abuts against both the upper end of the main seat 62 and the larger diameter lower transverse face of the spring retainer 90 .
  • the latch assembly 84 consists of an axially short thin wall right circular cylindric latch sleeve 85 , multiple latch balls 86 , and a secondary spring 87 .
  • the inner diameter of the latch sleeve 85 is a slip fit to the outer diameter of the ball pusher body 71 .
  • the latch sleeve 85 is provided with multiple equispaced radial holes in a transverse plane located at midlength of the sleeve. The radial holes are close fits to the latch balls 86 .
  • the radial wall of the latch sleeve 85 is approximately 60% of the diameter of the latch balls 86 .
  • the secondary spring 87 of the latch assembly 84 is a stiff short helical spring with an inner diameter slightly larger than the outer diameter of the ball pusher body 71 and an outer diameter slightly smaller than that of the latch sleeve 85 .
  • the secondary spring 87 is mounted coaxially with the spring retainer 90 and the latch sleeve 85 of the latch assembly 84 .
  • the secondary spring 87 bears against the upper end of the latch sleeve 85 mid a downwardly facing transverse end of a downwardly opening interior secondary spring recess 92 of the spring retainer 90 .
  • the spring rate of the secondary spring 87 is higher than that of the main spring 78 , but the maximum axial force applied to the ball pusher assembly 70 by the secondary spring 87 is less than the maximum force ever applied to the spring washer 75 of the ball pusher by the main spring 78 . Further, the maximum combined force of the main spring 78 and the secondary spring 87 is less than the peak force on the ball pusher assembly 70 applied by the main spring 78 alone.
  • the force from the secondary spring 87 acts on the latch sleeve 85 and also the ball pusher assembly 70 as long as the latch sleeve is engaged with the ball pusher assembly by the latch balls 86 .
  • the releasable interconnection which permits axial loads to be transferred from the radial holes of the latch sleeve 85 to the annular latch groove 72 of the ball pusher body 71 is provided by the radially reciprocable latch balls 86 , which are radially reciprocable in the radial holes of the latch sleeve.
  • the spring retainer 90 is a right circular cylindrical sleeve with a length slightly longer than its outer diameter. From its upper end, the spring retainer 90 has on its exterior side a first cylindrical section which has an outer diameter which is a close slip fit to the main bore 14 of the body 11 of the valve 10 .
  • This first section has a length equal to approximately half of the total length of the spring retainer and contains an annular male O-ring groove 91 mounting an O-ring 96 and backup ring 98 which provide sealing between the spring retainer 90 and the main bore 14 of the valve body 11 .
  • An inwardly extending downwardly facing intermediate, transverse shoulder on the lower end of the first cylindrical section connects to a reduced diameter second external cylindrical section which extends to the lower end of the spring retainer 90 .
  • the outer diameter of the second external cylindrical section is such that it provides clearance to the inner diameter of the main spring 78 .
  • the intermediate downwardly facing shoulder abuts both the upper end of the main spring 78 and the upper end of the spacer sleeve 80 .
  • a chamfer joins the lower end of the second external cylindrical section to a narrow downwardly facing transverse end.
  • the bore of the spring retainer 90 has a first counterbore with a transverse inner end serving as a secondary spring recess 92 and containing an intermediate female annular latch groove 93 .
  • the annular latch groove 93 has a short central enlarged constant diameter section with radially inwardly opening chamfers at its upper and lower ends extending to the counterbore for the secondary spring recess 92 .
  • the angle of these chamfers from the axis of the spring retainer 90 is approximately 60°.
  • the depth of the annular latch groove 93 is such that, when a latch ball 86 is positioned in the groove at its maximum radially outward position, the innermost portion of the ball will clear the outer diameter of the ball pusher assembly 70 .
  • the diameter of the counterbore of the secondary spring recess 92 is a close slip fit to the outer diameter of the latch sleeve 85 .
  • the length of the secondary spring recess is sufficiently long to fully contain the installed secondary spring 85 and roost of the length of the latch sleeve 85 when the secondary spring 87 is fully compressed.
  • Adjoining the secondary spring recess 92 at its upper end is a smaller short straight bore which contains an intermediate female O-ring groove 94 mounting O-ring 97 .
  • the diameter of this bore is such that it has a close slip fit with the outer diameter of the ball pusher body 71 .
  • the O-ring 97 seals between the spring retainer 90 and the outer diameter of the ball pusher assembly 70 .
  • an intermediate complex counterbore provides a female landing profile 95 for a lock-open tool which is not described herein.
  • This concave profile varies, depending upon the type of lock-open tool to be used with the valve.
  • Upwardly sequentially from the lower end of profile 95 are located an outwardly opening chamfer, a first profile counterbore, another upwardly opening chamfer, a larger second profile counterbore, a narrow female groove, and a short inwardly extending shoulder which has a counterbore smaller than that of the second counterbore.
  • the inwardly extending shoulder and the female groove of the landing profile 95 permit the extraction, using a puller device, of the spring retainer 90 from the main bore 14 of the body 11 of the valve 10 during valve disassembly.
  • the upper transverse face of the spring retainer 90 is adjacent to the lower end of the latch groove 16 of the body 11 of the valve.
  • the inside blowout preventer internal components 20 of the valve 10 are retained within the body 11 of the valve by the combination of the installed split retention ring 100 , the solid interior support ring 101 , and the male snap ring 102 .
  • the split retention ring 100 has a cross section with a straight interior bore having near its upper end a female snap ring groove for the mounting of snap ring 102 .
  • the lower transverse end of the cross section of the split retention ring 100 is joined to the right circular cylindrical external side by a liberally radiused corner.
  • the cross section of the external cylindrical side of the split retention ring 100 has a short reduced diameter section joined to the larger diameter section below, with a second radiused upper corner serving as the transition to the reduced diameter section.
  • the radius of both external corners of the larger outer diameter section is the same.
  • the outer diameter of the split retention ring is as close fit to the diameter of the groove 16 of the body 11 .
  • the outer diameter of the reduced diameter section at the upper end of the ring 100 is a slip fit to the main bore of the body 11 of the valve 10 .
  • the length of the larger diameter portion of the split retention ring 100 is equal to or slightly less than the axial length of the latch groove 16 of the valve, body 11 .
  • the split retention ring 100 is separated into four parts by two parallel cuts made parallel to but equally offset to opposite sides from the axis of symmetry of the part.
  • the length of the longer segments of the ring 100 is less than the diameter of the main bore 14 of the body 11 of the valve 10 . This permits the radial insertion of the diametrically opposed longer segments of the split retention ring 100 into groove 16 of the body 11 followed by the radial insertion of the shorter segments of the split ring 100 into the gaps between the longer segments.
  • the upper transverse end of the spring retainer 90 of the other assembled valve internals 20 is abutted on its upper end by the downwardly facing transverse shoulder of the split retention ring 100 .
  • the interior support ring 101 has an outer diameter which is a close slip fit to the straight interior bore of the installed split retention ring 100 .
  • the length of the interior support ring 101 is just slightly less than the distance from the lower transverse end to the lower side of the female retaining ring groove of the split retention ring 100 .
  • the interior support ring 101 has two opposed narrow transverse ends.
  • the interior side of the interior support ring has from its upper end a frustroconical converging counterbore, a downwardly facing transverse shoulder, and a downwardly facing short counterbore engagable by a puller tool so that the ring can readily be extracted during valve 10 disassembly.
  • the split retention ring 100 When the interior support ring 101 is inserted within the bore of the assembled split retention ring 100 , the split retention ring is trapped within the groove 16 of the body 11 of the valve 10 . In this position, the split retention ring 100 abuts the upper end of the spring retainer 90 so that the internal components 20 of the inside blowout preventer are maintained in position within the body 11 of the valve.
  • FIG. 13 shows as longitudinal sectional view of one embodiment of the self piloted check valve mounted in a body arrangement having weld neck flanges suitable for connection into an oilfield drilling choke and kill piping system.
  • This choke and kill valve 200 has internal components which are functionally the same as those of the inside blowout preventer valve 10 with the exception of the structure and behavior of the flappers of the flapper and seat assembly 234 of the valve 200 . Where minor structural differences exist between the inside blowout preventer 10 and the choke and kill valve 200 , the modifications are described herein.
  • the choke and kill valve body 201 is a right circular cylindrical body with a constant outer diameter equal to approximately 65 percent of its length. At its first end, the body 201 has a short fluid entry bore 202 which has a diameter equal to the inner diameter of the valve internals 220 .
  • the main bore 203 is a counterbore for the entry bore 202 and enters from the end opposed to the end with the fluid entry bore 202 and has a diameter which is a close slip fit to the choke and kill valve internal components 220 .
  • the length of the main bore 203 is such that the valve internals 220 can be fitted into the bore both with allowance for fabrication tolerances and without interfering with mounting of the large seal 208 and the large flange 215 .
  • Both ends of the choke and kill valve body 201 are provided with regular arrays of drilled and tapped holes for engagement by flange bolting.
  • the drilled and tapped holes are parallel and equally offset from the longitudinal axis of the body 201 .
  • the fluid entry bore 202 On its outer end the fluid entry bore 202 has a short inwardly converging frustroconical small seal recess 204 which mounts a commercially available small diameter metallic seal 205 .
  • the annular small metallic seal 205 has a thin central flange on its outer side with a straight through bore equal to that of the short fluid entry bore 202 .
  • the seal 205 has mirror image seal surfaces which externally radially inwardly taper with distance from the central flange. The tapered seal surfaces seal with an interference fit with the small seal recesses 204 and 211 when the seal flange is clamped between the body 201 and the small flange 210 .
  • the main bore 203 On its outer end the main bore 203 has a short inwardly converging frustroconical large seal recess 207 which mounts a large diameter metallic seal 208 .
  • the annular large diameter metallic seal 208 has the same type of construction and operation as that of the small metallic seal 205 , with the only difference being related to seal size.
  • the tapered large seal surfaces seal with an interference fit with the large seal recesses 207 and 216 when the seal flange is clamped between the body 201 and the large flange 215 .
  • the small flange 210 is a typical bolted weld neck flange, but it has a seal groove appropriate for use with seal 205 .
  • the outer diameter of the small flange 210 is the same as that of the body 201 and its through bore is the same as that of the valve internals 220 .
  • Flange 210 has a regularly spaced pattern of bolt holes offset from its axis of symmetry corresponding to those on the inlet end of the body 201 and as cylindrical weld neck that extends outwardly on the back side of the flange.
  • the flange 210 On the entry to the through bore on the side facing the valve body 201 , the flange 210 has a small seal recess 211 identical to the small seal recess 204 of the body. Studs 212 and nuts 213 are used to clamp the small flange 210 to the body 201 and to energize the seal 205 .
  • the large flange 215 also is a typical bolted weld neck flange, but thicker than the small flange 210 .
  • the outer diameter of the large flange 215 is the same as that of the body 201 and its through bore is the same as that of the valve internals 220 .
  • Flange 215 has a regularly spaced pattern of bolt holes corresponding to those at the exit of the main bore 203 of the body 201 .
  • the large flange 215 On its axis of symmetry, the large flange 215 has a cylindrical weld neck which extends outwardly on the outer side of the flange. On the entry to the through bore on the side facing the valve body 201 , the flange 215 has a large seal recess 216 identical to the large seal recess 207 of the body. Studs 212 and nuts 213 are used to clamp the large flange 215 to the body 201 and to energize the seal 208 .
  • the seal groove diameter for mounting the small flange 210 is smaller than that for the large flange 215 , although the groove and flange for the fluid entry bore end could alternatively be made identical with that for the fluid exit end of the valve 200 .
  • the choke and kill valve internal components 220 include a choke and kill valve lower ball stop 221 , a choke and kill flapper assembly 234 with flappers 244 , and a choke and kill spring retainer 290 . Other than the flappers, these components differ only slightly structurally but not functionally from the corresponding components of the inside blowout preventer 10 .
  • the other choke and kill valve internal components 220 are the same as for the inside blowout preventer 10 , with the exception that the split retention ring 100 , the interior support ring 101 , and the snap ring 102 are omitted. These omitted parts are not required because the large flange 215 serves to retain the valve internal components 220 in the valve body 201 so that they bear against the inwardly extending shoulder at the small flange end of the valve 200 .
  • the choke and kill lower ball stop 221 with its molded-in ball stop bumper 22 does not need the large chamfer on its external flow outlet corner that the inside blowout preventer ball stop 21 requires to fit in body 11 . That corner for the choke and kill ball stop 221 is only lightly chamfered, and the axial length of the ball stop 221 is slightly reduced from that of ball stop 21 for the inside blowout preventer in order to limit the overall length of the valve. Otherwise, the ball stop 221 and its molded in bumper are structurally and functionally identical to the lower ball stop 21 of the inside blowout preventer 10 .
  • the ball cage assembly 24 , ball 53 , and main seat 62 are the same as for the inside blowout preventer 10 and are assembled with the same relationships.
  • the ball stop 221 and the main seat 62 support the opposed halves 25 of the ball cage assembly 24 .
  • the ball 53 has its guide pins 55 engaged in the ball guide groove 30 of the ball cage assembly 24 in the same way as for the inside blowout preventer 10 .
  • the camming grooves 56 of the ball 53 are engaged by the camming pins 29 of the ball cage halves 25 in the same manner as for the inside blowout preventer 10 .
  • the flapper and seat assembly 234 of the valve 200 is identical to the corresponding assembly 34 for the inside blowout preventer except for use of flappers 244 for valve 200 .
  • the flapper and seat assemblies 34 of the inside blowout preventer 10 and 234 of the valve 200 are respectively shown in axial views seen from their outlet sides.
  • the ball pusher assembly 70 , the main spring 78 , the spacer sleeve 80 , and the latch assembly 84 are common to both the choke and kill check valve 200 and the inside blowout preventer 10 and function the same in both devices.
  • the choke and kill spring retainer 290 is different from the spring retainer 90 for the inside blowout preventer valve 10 because no provision for lock open tools is required for valve 200 .
  • the bore on the inlet end of the spring retainer 290 is enlarged sufficiently to permit engagement with puller or pusher means (not shown) to forcibly extract the choke and kill valve internals 220 from the body 201 for servicing.
  • FIG. 14 shows a longitudinal sectional view of one embodiment of a drilling float valve 300 installed in a housing for mounting between a drill bit and the drill collars of a drill string.
  • Drilling float valves are routinely used near the drill hit to avoid uncontrolled backflows through the drillstring, during the making of connections.
  • the primary differences between float valves and inside blowout preventers are related to their bodies and provisions for the severe vibrational environment near the bit for float valves. Float valves are used routinely, rather than for emergencies, and are particularly important when the well is being drilled in an underbalanced condition.
  • the float valve 300 uses the same self piloted check valve with internal components which are functionally the same as those of the inside blowout preventer valve 10 .
  • the float valve body 301 differs from those of the inside blowout preventer 10 and the choke and kill valve 200 .
  • Most of the internal parts of the drilling, float valve 300 are structurally identical to those of the inside blowout preventer 10 or the choke and kill manifold valve 200 . Minor changes to some internal parts are necessitated for mounting the valve internals in as different type of body, but both those parts and the assembled valve 300 function in the same manner as for the inside blowout preventer 10 .
  • Some additional parts are required to ameliorate the high vibration problem for the float valve 300 , but those parts do not affect the principles or manner of the flow controlling operation of the key valve components.
  • the drilling float valve body 301 has a right circular cylindrical body with a constant outer diameter equal to approximately 25% of its length. At its transverse upper first end, the body 301 has a tapered female drill pipe thread so that it can be threadedly interconnected into a drill string. At the lower end of the upper thread, a frustroconical transition section that downwardly reduces in diameter connects to a straight fluid entry bore 303 which has a diameter equal to or slightly greater than the inner diameter of the float valve internal components 320 .
  • the initial length of the fluid entry bore 303 is between 50 percent and 100 percent of the diameter of body 301 . This length permits several recuts of the threads on the upper end of the body 301 .
  • the fluid entry bore 303 is joined to the larger main bore 302 by a transverse shoulder 305 which has a filleted intersection with the transverse shoulder.
  • the body 301 At its lower fluid outlet end 304 , the body 301 has a female drill pipe thread for connection with the threaded shank 308 of a drill hit.
  • a slightly tapered, upwardly converging short frustroconical transition connects the lower female thread with the main bore 302 .
  • the transverse shoulder 305 forms the upper end of the main bore 303 of the body 301 .
  • the main bore 302 has a diameter which is a close slip fit to the float valve internal components 320 , permitting the male O-rings of the float valve internal components to seal against the main bore.
  • the length of the main bore 302 is such that the valve internals 320 can be fitted into the bore along with upper 310 and lower 314 damper assemblies and axial space filler rings 318 , 319 .
  • the axial space filler rings 318 , 319 are required to fill axial gaps between the valve internals 320 and the upper end of the drill bit shank 308 without interfering with the threaded make up of a drill bit shank into the female oilfield thread at the outlet lower end of the body 301 .
  • the depth of the internal shoulder 305 of the body 301 is initially made larger in order to provide space for reclining worn lower end threads. This initial extra length creates the need for the first 318 and second 319 filler rings.
  • the axial length of the individual filler rings 318 , 319 corresponds to the length of the body 301 removed during a thread recutting operation.
  • the upper damper assembly 310 consists plan upper damper retainer ring 311 , an annular upper damper elastomeric element 312 , and a upper damper abutment ring 313 .
  • the outer diameter of the upper damper assembly 310 is a slip fit to the main bore 302 of the body 301 .
  • the outer diameters of the rings 311 and 313 are close slip fits to the main bore 302 of the body 301 .
  • the upper and lower ends of the elastomeric element 312 are bonded respectively to the end rings 311 , 313 .
  • the upper damper retainer ring 311 has a straight bore, a narrow transverse lower end, an upwardly extending external cylindrical face, a downwardly facing and outwardly extending transverse face, and a radiused shoulder connecting to a narrow transverse upper end which extends to the straight bore.
  • the upper damper elastomeric element 312 is an annular cylinder which has equal transverse ends.
  • the outer cylindrical face has a reduced diameter in its central portion, while the inner cylindrical face has an increased diameter in its central portion.
  • Multiple equispaced radial holes penetrate through the middle portions of the elastomeric element 312 .
  • the upper damper abutment ring 313 has a right circular cylindrical outer face adjoined to two relatively narrow transverse ends.
  • the bore through the ring 313 is frustroconical and opens upwardly.
  • the outer diameters of rings 311 and 313 and the transverse ends of the elastomeric element 312 are the same.
  • the inner diameters of the rings 311 and 313 are less than the inner diameter of the elastomeric element 312 .
  • the lower damper 314 is a cylindrical assembly of end support rings and an elastomeric element which is symmetric about its transverse midplane and which has a loose slip fit with the main bore 302 of the body 301 .
  • the cross-sections of the upper 312 and the lower 316 elastomeric damper elements differ, so that they exhibit different stiffness properties.
  • Two opposed identical thin flat annular rings serve as lower damper support rings 315 .
  • the lower damper elastomeric element 316 is constructed, similarly to the upper damper elastomeric element 312 .
  • the rings 315 are respectively bonded to the opposed upper and lower transverse ends of the lower damper elastomeric element 316 . Different properties of the elastomeric elements 312 and 316 may be selected.
  • durometers, compositions, and hence stiffness properties of the elastomers of different embodiments of the elastomeric elements 312 and 316 may be selectively varied.
  • the cross-sectional profiles of the elastomeric elements 312 and 316 may be varied as required for different operating conditions.
  • Both the upper 310 and the lower 314 dampers are required to be compressed when the valve internals 320 are retained in the body 301 by the drill hit shank 308 .
  • the accelerations and resultant forces applied during drilling to the float valve internal components are reduced by energy absorption in the elastomeric elements 312 and 316 .
  • the differences in cross-sections and elastomeric properties cause the two dampers 310 and 314 to have different frequency responses and vibrational energy absorption characteristics.
  • First 318 and second 319 filler rings may be used to avoid the need to remachine the main bore 302 of the valve 300 whenever the threads at the lower end of the body 301 are recut.
  • Each cylindrical lower filler ring 318 , 319 has a length equal to the length removed during a single thread recut.
  • the first filler ring 318 has a downwardly extending annular outer ridge on its lower transverse face which closely comates with a corresponding outer annular groove on the upper transverse face of the second filler ring 319 in order to maintain axial alignment of the rings.
  • Both rings 318 and 319 are a close, slip it to the main bore 302 of the float valve body 301 .
  • the first filler ring 318 is removed and only the second ring 319 is used.
  • the second filler ring 319 is also removed.
  • the float valve internal components 320 are identical to those of the choke and kill manifold valve 200 .
  • the primary components include a choke and kill valve lower ball stop 221 and spring retainer 290 that differ structurally but not functionally from the corresponding components of the inside blowout preventer 10 .
  • the split retention ring 100 , the interior support ring 101 , and the snap ring 102 are omitted. These omitted parts are not required because the shank 308 of the drill bit serves to retain the components 320 in the valve body 301 .
  • the float valve 300 internal components 320 also include a ball cage assembly 24 , a ball assembly with internal flapper and seat assembly 34 using, flappers 44 , a ball 53 , a main seat 62 , a ball pusher assembly 70 , and a latch assembly 84 with latch balls 86 .
  • flappers 44 flappers 44
  • flappers 44 flappers 44
  • ball 53 ball 53
  • main seat 62 ball pusher assembly 70
  • latch assembly 84 with latch balls 86 .
  • Other than the flappers, these components are common to all three types of valve.
  • the unidirectional flow control provided by the self piloted check valve works substantially the same in all configurations 10 , 200 , and 300 despite their being housed in a variety of bodies and minor component changes to accommodate those bodies and their service conditions.
  • the description of valve operation first will treat the inside blowout preventer embodiment 10 of the self piloted cheek valve, since all embodiments work in the same manner with only minor differences.
  • the differences in behavior from that exhibited by the inside blowout preventer 10 will be noted.
  • the self piloted check valve 10 disclosed herein uses a ball valve 53 with a central flow passage 57 to seal against reverse flow by blocking the cylindrical axial flow path through the body 11 and, excluding the piloting flapper valve assembly 34 , the assemblage of other internal parts of the valve.
  • the valve 10 prevents backflows by using a ball 53 having a through flow passage 57 which is supported in a ball cage 24 so that it simultaneously translates axially on the longitudinal axis of the valve 10 and rotates about a ball axis transverse to the longitudinal axis of the valve 10 .
  • the axis of rotation of the ball 53 is also the axis of the guide pins 55 of the ball.
  • the ball 53 moves between a fully open first position with the ball flow path aligned with the axis of valve 10 and a fully closed second position with the ball bore flow path out of alignment with the valve axis and the ball 53 bearing against the main seat 62 and sealing against the main seat.
  • the ball 53 of the improved self piloted check valve 10 has two spaced apart opposed limits to its movements along the valve axis.
  • the lower ball stop 21 shown in FIGS. 1 , 2 , and 3 , determines a first limit to ball 53 travel at the valve open position, while abutting the main seat 62 as seen in FIG. 5 determines a second limit to ball travel at the valve closed position.
  • the positioning of the spherical face of the ball stop 21 and the spherical face of the main seat 62 relative to the camming pins 29 of the ball cage halves 25 determines the alignments of the ball bore 57 at the limits of its axial travel in the valve.
  • the axis of the ball guide pins 57 and the axis of the camming pins 29 lie in the same plane transverse to the axis of the valve body 11 .
  • the ball 53 is provided with a stepped cylindrical internal through flow passage bore 57 which can permit flow when the ball 53 is in its first, open position with its bore 57 aligned with the valve 10 longitudinal axis.
  • the flow passage bore 57 of the ball 53 is out of alignment with the longitudinal axis of the valve 10 and the outer spherical surface of the ball is in engagement with the molded-in elastomeric seal 64 of the valve seat 62 to block flow through the valve, as seen in FIG. 5 .
  • flow around the main seat 62 is blocked by both the O-ring 65 with its backup ring pair 66 and the molded-in elastomeric seal 64 .
  • the opposed ball flats parallel to and laterally offset from the flow passage 57 of the ball 53 mount central guide pins 55 which have axes that intersect the axis of the ball through bore 57 at right angles. These ball guide pins 55 and the flats of the ball 53 coact with the ball guide grooves 30 and flat internal faces 28 of the ball cage halves 25 to maintain the ball guide pin 55 axis perpendicular to and intersecting with the longitudinal axis of the valve 10 .
  • the two mirror image ball cart grooves 56 are cut into the face of each opposed flat of the ball 53 with one groove per side. These grooves 56 extend outwardly in the radial direction relative to the guide pins 55 on the flats of the ball 53 .
  • the axes of the ramming pins 29 of the stationary ball cage halves 25 are laterally offset from the ball rotational axis defined by the pins of the mounted ball.
  • the camming pins 29 are also offset from the longitudinal axis of the valve 10 and are engaged with the ramming grooves 56 of the ball 53 .
  • a downwardly acting spring bias is used to urge the ball valve 53 to its normally open condition where it permits exiting flow through the valve 10
  • separate torsional spring 46 biases are used to urge the flappers 44 of the piloting flapper valve 34 to their normally closed positions.
  • the opening spring bias for the ball valve 10 is provided by combining two separate springs 78 and 87 with different properties working in parallel.
  • the main spring 78 is stronger at its maximum deflection than the secondary spring 87 at its respective maximum deflection, but the main spring, is less stiff. Because the travel of the main spring 78 is relatively long and a large bias force resisting full ball closure is undesirable at the closed second ball position, a low stiffness for the main spring is required.
  • axial vibrations of the open ball 53 lead to wear in the ball guide grooves 30 of the ball cage halves 25 , the ball grooves 56 , on the cylindrical surfaces of the guide pins 55 of the ball 5 , and the camming pins 29 of the ball cage.
  • the preload and stiffness of the secondary spring 87 are selected so that the peak combined spring bias force from the springs 78 and 87 applied to the ball pusher 70 and hence the ball 53 at the third, position of the ball is less than the maximum force applied by the main spring 78 alone when the main spring is at its maximum deflection with the ball 53 at its second position.
  • a tubular ball pusher assembly 70 having a ball pusher seat 73 bears on the spherical surface of the ball valve 53 and transmits the forces of the opening spring biases to the ball.
  • the biasing forces applied by the main spring 78 continuously act on the ball pusher assembly 70 through the spring washer 75 and the snap ring 74 .
  • Biasing forces from the secondary spring 87 react against the latch sleeve 85 of the latch assembly 84 .
  • the multiple small diameter latch balls 86 engaged in the radial holes through the latch sleeve 85 are not completely housed in the radial direction within those radial holes, but rather can protrude radially either outwardly or inwardly or both since their diameters are greater than the radial thickness of the latch sleeve 85 .
  • the body 71 of the ball pusher assembly 70 has a close fit to the inner diameter of the latch sleeve 85 of the latch assembly 84
  • the secondary spring recess 92 of the spring retainer 90 has a close fit to the outer diameter of the latch sleeve 85 .
  • the male annular latch groove 72 of the ball pusher assembly 70 has as radial depth sufficient to permit the radially inwardly urged balls 86 of the latch assembly 84 to not extend radially outwardly of the outer diameter of the latch sleeve 85 when the holes in the latch sleeve groove 72 are adjacent the ball pusher latch groove 72 .
  • the radial depth of the female annular groove 93 of the spring retainer 90 is sufficient to allow the latch balls 86 engaged in the latch sleeve 85 to extend radially inwardly no farther than the inner diameter of the latch sleeve 85 when the spring retainer latch groove 91 is adjacent the holes of the latch sleeve.
  • the radial forces urging radial movement of the balls 86 result from the interaction of the balls with the frustroconical ends of the grooves 72 , 93 whenever loadings in the axial direction of the valves 10 , 200 , and 300 are applied to the balls.
  • the balls 86 shift outwardly when they reach the annular latch groove 93 of the spring retainer 90 when the main spring 78 is sufficiently compressed during the closure of the ball 53 .
  • the balls 86 shift inwardly when they reach the annular latch groove 72 of the ball pusher body 71 when the main spring 78 is sufficiently decompressed during the opening of the ball 53 .
  • FIG. 4 and the detail view FIG. 16 show the balls 86 when they are almost fully shifted into full engagement with the spring retainer latch groove 93 as the ball 53 nears its third position during its closure.
  • the balls 86 move close enough to the annular latch groove 93 in this situation, they will fully shift out of engagement with the groove 72 of the ball pusher assembly 70 and into full engagement with the groove 93 .
  • the ball pusher 70 is then fully decoupled from the latch assembly 84 , as shown in FIG. 5 .
  • FIGS. 4 and 16 also illustrate the situation when the balls 86 are in the process of disengaging from the female latch groove 93 of the spring retainer 90 and reengaging with the male latch groove 72 of the ball pusher.
  • the ball pusher seat 73 continues to seal against the main ball between the first and third ball positions.
  • the inner and outer diameters of the ball pusher seat 73 are selected to ensure that this is the case. This sealing action blocks off any reverse flow passing through the clearance gap between the main ball and the main bore 14 of the valve body 11 , thus ensuring maximization of the back pressure force acting on the flappers 44 mounted in the ball. This prevention of bypassing flow during the initial closing action of the main ball thus aids in overcoming the extra resistance to closure of the main ball provided by the secondary spring 87 between the first and third main ball positions.
  • the spring bias provided by the secondary spring 87 will cause the ball pusher body 71 with its attached snap ring 74 to continuously urge the main ball 53 towards the ball stop 21 .
  • the main spring 78 will also urge the spring washer 75 downwards at this time.
  • the spring washer 75 is not restrained axially on its upper side, so typically the spring washer will lag behind the ball pusher body 71 due to fluid damping.
  • the amount of fluid damping in this return motion case is somewhat reduced, as the spring washer no longer abuts the snap ring 74 to restrict flow between the spring washer and the ball pusher.
  • the flapper and seat assembly 34 is fixedly mounted in the ball 53 with O-ring 50 sealing between the ball bore 57 and the flapper seat ring 35 .
  • the springs 46 urge the flappers 44 to their normally closed position, but are easily overcome by minor flows from the inlet end of the valve 10 . However, when there are no or reverse flow conditions for the valve, the flappers 44 are firmly biased against their seating surface 36 by their flapper springs 46 . When the flappers 44 are seated against the seating surface 36 of the flapper seat ring 35 , the combination of the ball 53 and the flappers 44 functions like a piston for reverse flow.
  • the amount of reverse flow allowed by the flappers 44 in any case is minor and flapper wear kill require only a very small increase in reverse flow from that required for the unworn full flapper closure condition to produce sufficient force to bias the ball 53 to full closure against its main seat 62 .
  • the ball pusher seat 73 loses its seal with the spherical face of the ball. This opens an additional extraneous flow path first through the gap between the main ball and the main bore 14 of the valve body 11 and then between the ball pusher seat and the main ball. Restricting the clearance between the main ball and the body minimizes the resulting extraneous flow so that only minor increases in back flow pressure are required to overcome the resulting loss of force urging the main ball to close at its second position.
  • FIG. 15 illustrates the variation in the opening spring bias forces on the main ball 53 as a function of the displacement of the ball from its fully open first position resting against the ball stop 21 .
  • a relatively high force produced by reverse flow in the valve 10 is required to initiate valve movement sufficiently away from the ball stop 21 to decouple the biasing forces of the secondary spring 87 from biasing the ball toward its open position.
  • the fluid induced closure forces needed to produce full ball closure at the second ball position against the main seat 62 are relatively reduced for much of the travel of the ball between its third and second positions.
  • the choke and kill manifold check valve 200 has deliberately enlarged clearances between adjacent faces of its individual flappers 244 .
  • the resulting increased flow leakage area in the choke and kill flapper assembly 234 causes the valve 200 to act as a hydraulic fuse. While this behavior occurs to some extent for each of the valve types 10 , 200 and 300 , it is deliberately enhanced for this application.
  • valve 200 will close only when the backflow through the flappers 244 exceeds an analytically determinable desired level. As a consequence of this increased flapper leakage flow area, the choke and kill manifold check valve will not close during the relatively low flows associated with normal wireline or coiled tubing operations. However, if the well to which the valve 200 is connected loses stability during such operations so that excessive outflows tend to occur through the valve, the valve 200 will shut to isolate the well.
  • the conventional, approach to wireline or coiled tubing operations in a well is to remove the internal components from a conventional poppet type choke and kill manifold check valve. This action removes necessary blowout protection daring operations which can inadvertently start a well to flow uncontrollably.
  • use of the choke and kill manifold check valve 200 provides necessary enhanced safety to wireline and coiled tubing operations in live wells.
  • the float valve version of the cheek valve is functionally identical to the inside blowout preventer version 10 of the valve, with the exception of the vibration damping provided by the elastomeric upper 310 and lower 314 damper assemblies. These dampers act to reduce vibratory movement of the valve internals and the resultant wear.
  • the cross-sections of the upper 312 and lower 316 damper elastomeric elements differ, and their elastomer compositions may also be different. Consequently, their axial stiffnesses differ and their vibrational energy absorptions differ. Additionally, the axial stiffnesses of these elastomeric elements also change as a function of their amounts of axial compression, due to geometry changes during compression. The consequence of these effects is that the elastomeric elements 312 and 316 have different frequency responses and hence damp different portions of the vibration amplitude spectrum to which the valve 300 is exposed.
  • the use of elastomeric dampers having different stiffnesses and energy absorption characteristics permits improving motion damping for the valve elements suspended between the two dampers. Since both dampers 310 and 314 are installed in compression, both are generally active at the same time.
  • the embodiments of the self-piloted check valve described herein offer numerous benefits compared to conventional check valves. Because of its full opening construction, the valve has very low pressure losses, even with unusually high flow rates. The full opening construction also permits the unimpeded passage of objects through the bore of the valve when normal flow is occurring. This feature is useful in some service conditions. The low flow restriction is a result of minimal flow turbulence due to the straight flow path through the valve, which leads to a consequent reduced tendency for wear from abrasive flows.
  • piloting flappers are always susceptible to abrasive and other types of fluid erosion, they do not have to fully seal when closed to pilot the valve. With the ball closed against its seat, the flappers are pressure balanced and inactive in preventing reverse flow. Only engagement of the ball and its seat prevent reverse flow. As the flappers wear, the reverse flow necessary to obtain ball valve closure increases, but the valve still functions.
  • the primary reason for the long life of the improved self-piloted check valve is the protection of both the spherical sealing surface of the ball and its seat from all flow except the low flows passing the ball and its seat during bidirectional shifting of the valve between its open and closed positions. These low bypass flows are sufficiently slow to not present an erosion problem to the sealing surfaces of the ball and seat.
  • the improved self piloted check valve When used as either an inside blowout preventer or a float valve in a drillstring or as a drilling choke and kill manifold check valve, it is actually desirable that the flappers not be pressure tight.
  • the inherent leakiness of the flapper valve utilized permits the transmission of pressure downstream of the valve through the normally closed flappers and normally ball valve so that it can be measured by gauging means if all flow is temporarily prevented. This capability of pressure measurement through the improved self piloted check valve is critical for safety in drilling applications.
  • Provision of a two stage ball opening bias is important for avoiding excessive ball motion whenever the valve is strongly vibrated, such as is the case for drilling float valves. If the contacts between the ball and its ball cage are subject to excessive vibration, such as can occur in near bit drilling applications of the float valve version of the valve, then the provision of the higher opening bias on the ball due to use of the secondary spring can substantially limit wear on the ball and its ball cage.
  • Having to overcome a higher initial ball opening spring bias is also desirable to ensure the development of sufficient force from reverse flow to ensure complete displacement of the ball from its open position to its sealing position abutting its seat. This is particularly advantageous when the valve is to be used in film forming fluids, such as crude oils with high paraffin contents. Also, isolating the exterior of the open ball from film forming fluids due to sealing of the ball pusher seat with the ball when the valve is open further minimizes the tendencies for the valve to stick partially open or closed due to film buildup.
  • the space between the main seat of the valve and the spring retainer is essentially isolated by the O-ring of the spring retainer. This permits the spring washer to provide damping for upward movement of the ball pusher and ball. As a result, component wear is reduced by this feature. Engaging the spring washer on both sides by snap rings can permit bidirectional damping. Bidirectional damping of ball motion is important to reduce wear in high vibration situations such as those encountered by float valves.

Abstract

A self piloted check valve which utilizes closure of a piloting flapper valve to permit development of closure forces for a ball valve. The normally open ball valve has a central flow passage and simultaneously rotates and translates as it traverses between its fully open and fully closed positions. An opening bias system utilizes a combination of a first less stiff spring and a second stiffer spring. Reversible decoupling means disconnects and reconnects the second spring at a short travel distance from the normally open position of the ball, white the first spring always provides opening bias forces to the ball. The pressure induced force required to fully close the ball valve following decoupling of the second spring is more than the force required to overcome the combination of the first and second springs.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation-in-part of U.S. Ser. No. 13/066,817 filed Apr. 26, 2011, entitled “Self Piloted Check Valve” by inventor Larry Rayner Russell, which claims the benefit under USC 119 of the filing date of provisional application Ser. No. 61/343,381 filed Apr. 28, 2011 entitled “Check Valve.”
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates in general to a method and apparatus for controlling fluid flow using as check valve. More particularly, the invention relates to a self piloted check valve for controlling fluid flow in high vibration environments.
  • 2. Description of the Related Art
  • Check valves are used in a wide variety of applications. Historically, conventional check valves are generally the least reliable type of valve. This is consequence of flow for an open valve continually passing both the seat and the settling plug or ball of those check valves. This problem can lead to very rapid valve failure, particularly in abrasive flow applications or when larger objects pass by the valve. Oilfield applications, particularly use in the drilling of wells, typically cause conventional poppet valves or flapper valves to leak in 15 hours or less of service. Such check valve applications are particularly critical, since they provide the first line of defense against well blowouts.
  • Another major problem for any check valve is survival in high vibration environments. Relative motion of components resulting from high vibrations can rapidly induce wear in the constituent valve components, particularly in abrasive environments, such as oilfield drilling muds or slurries. When a valve is used immediately above the bit in oilfield drilling, it is commonly termed a “float valve”. Float valves are exposed to very high vibratory accelerations of 10 times gravity or more while passing flows often in excess of 600 gallons per minute. Relative motion of adjacent parts in the abrasive drilling fluid environment can cause rapid wear sufficient to cause misalignment between the sealing member of a valve and its valve seat.
  • The earlier self piloted chock valve, covered by U.S. Pat. Nos. 4,220,176 and 4,254,836, performs exceptionally well in nonvibratory environments. While the check valve covered by these earlier patents is exceptionally durable and can in general operate without maintenance for much longer periods than other types of check valve, improvements to the existing design are needed in its resistance to vibration induced wear caused by vibrational relative motion between valve components.
  • A critical need exists for an improved check valve which has enhanced resistance to both flow induced and vibration induced wear.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention include to self piloted check valve which utilizes closure of a piloting flapper valve to permit development of closure forces for a ball valve. The normally open ball valve has a central flow passage and simultaneously rotates and translates as it traverses between its fully open and fully closed positions. An opening bias system utilizes a combination of a first less stiff spring and a second stiffer spring. Reversible decoupling means disconnects and reconnects the second spring at a short travel distance from the normally open position of the ball, while the first spring always provides opening bias forces to the ball. The pressure induced force required to fully close the ball valve following decoupling of the second spring is more than the force required to overcome the combination of the first and second springs.
  • One embodiment of the present invention is a valve apparatus comprising: (a) a tubular body having a main counterbore; and (b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including: (i) a ball seat having a seat flow passage; (ii) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body, a second ball position abutting the ball seat wherein the flow passage is not in fluid communication with the seat flow passage such that the main counterbore of the tubular body and the flow passage are closed, and a third ball position intermediate between the first and second ball positions; (iii) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers, wherein each flapper is rotatable between a closed position and an open position and a plurality of flapper bias springs wherein each flapper spring biases as flapper toward the closed position; and (iv) a spring biasing system for providing a bias on the ball valve, the spring biasing system including a first spring and a second spring, wherein the first spring provides a continuous bias on the ball valve to urge the ball valve towards the first ball position and wherein the second spring is activated to bias the ball valve towards the first ball position only when the ball valve is at the first ball position or when the ball valve is moving between the first ball position and the third ball position.
  • A second embodiment of the present invention is a valve apparatus comprising: (a) a tubular body having a main counterbore; and (b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the it valving components including: (i) a ball seat having a seat flow passage; (ii) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation about an axis of rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body and a second ball position abutting the ball seat wherein the flow passage is not in fluid communication with the seat flow passage such that the main counterbore of the tubular body and the flow passage is closed; (iii) a spring biasing system for providing a bias on the ball valve, the spring biasing system including a reciprocable latching system, a first spring and a second spring, wherein the first spring provides a continuous bias on the ball valve to urge the ball valve towards the first ball position and wherein the second spring is activated only when the ball valve is at the first ball position or moving between the first ball position and the third ball position; and (iv) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers wherein each flapper is rotatable between a closed position and an open position and a plurality of flapper bias springs wherein each flapper bias spring biases a flapper toward the closed position; whereby a fluid flowing in a first direction from the first, end of the valving components toward the second end of the valving components with sufficient force to overcome the bias of the flapper bias springs rotates the flappers to the open position allowing fluid flow through the ball valve flow passage and wherein the fluid flowing in a second direction from the second end of the valving components toward the first end of the valving components with sufficient force against the flappers in the closed position to overcome the bias of the first and second springs will cause the ball valve to rotate to the second ball position.
  • A third embodiment of the present invention is A valve apparatus comprising: (a) a tubular body having a main counterbore; and (b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including: (i) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation about an axis of rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body and to a second ball position such that the main counterbore of the tubular body and the valve flow passage are closed to fluid flow; (ii) as ball seat having a seat flow passage, wherein when the ball valve is in the second ball position a spherical surface of the ball valve sealingly abuts a comatable spherical surface of the ball seat such that fluid flow past the ball seat is prevented and the ball flow passage is not in fluid communication with the seat flow passage; (iii) a ball cage that supports the ball valve, wherein the ball cage is stationarily positioned in the main counterbore of the tubular body and eccentrically engages the ball valve eccentric to a ball valve, axis of rotation through a pair of opposed eccentric pins mounted on the ball cage; (iv) a spring biasing system for providing a bias on the ball valve, the spring biasing system comprising: a ball pusher seat having a ball side and an opposed side, wherein the ball side bears against a first side of the ball valve; a tubular ball pusher mounted on the opposed side of the ball pusher seat, wherein the internal diameter of the ball pusher equals the diameter of the flow passage of the ball valve; a spring retainer, wherein a portion of the spring retainer encircles a portion of the ball pusher; a first spring; a second spring; and a reciprocable latching mechanism, wherein the latching mechanism is coupled to the ball pusher when the ball valve is in the first ball position, the latching mechanism uncouples at an intermediate point when the ball valve is moving from the first ball position to the second ball position and recouples at the intermediate point when the ball valve is moving between the second ball position and the first ball position, and the latching mechanism is coupled to the spring retainer when the ball valve is in the second ball position; and (v) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers, each flapper rotatable between to closed position and an open position, wherein a flapper bias spring biases each flapper toward the closed position; whereby a fluid flowing in a first direction from the first end of the valving components toward the second end of the valving components with sufficient force to overcome the bias of the flapper bias springs rotates the flappers to the open position allowing fluid now through the ball valve flow passage and wherein the fluid flowing in a second direction from the second end of the valving components toward the first end of the valving components with sufficient force against the flappers in the closed position to overcome the bias of the first and second springs will cause the ball valve to rotate to the second ball position.
  • The foregoing has outlined rather broadly several aspects of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described, hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed might be readily utilized as a basis for modifying or redesigning the structures for carrying out the same purposes as the invention. It should be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 shows a longitudinal section taken of the check valve housed in a tubular body suitable for connection into an oilfield drill string, whereby it can operate as an inside blowout preventer valve.
  • FIG. 2 shows a longitudinal section corresponding to FIG. 1, but showing only the internal component parts of the valve in its open, flowing condition. In this case, the ball is biased open by the action of two coacting, separate springs.
  • FIG. 3 shows a longitudinal sectional view corresponding to FIG. 2, but with the piloting flapper valve closed and the ball open. This view shows the valve in its normal position when flow has ceased, but there is no back pressure. In this position, the ball is still biased open by the action of two coacting, separate springs.
  • FIG. 4 is a longitudinal section corresponding to FIGS. 2 and 3, but showing the valve with the ball forced sufficiently upstream by back pressure from its position in FIG. 2 that the latch assembly with its secondary spring nearing disengagement or reengagement from the ball pusher. The ball pusher in this case continues to apply a reduced opening spring bias force from a single spring to the upstream side of the ball.
  • FIG. 5 is a longitudinal section corresponding to FIGS. 2, 3, and 4, but showing the ball fully seated in response to reverse flow so that reverse flow through the self piloted check valve is prevented.
  • FIG. 6 is an exploded oblique view of the ball cage assembly.
  • FIG. 7 is an exploded oblique view of the flappers and seat of the piloting flapper valve assembly.
  • FIG. 8 is an exploded oblique view of the latch assembly.
  • FIG. 9 is an exploded oblique coaxially aligned view of the piloting flapper assembly and ball.
  • FIG. 10 is an exploded oblique view of the components used to retain the valve internals within the body of the inside blowout preventer body.
  • FIG. 11 is an axial view of the closed piloting flapper and seat assembly for the inside blowout preventer version of the self piloted check valve.
  • FIG. 12 is an axial view of the closed flapper and seat assembly for the choke and kill manifold version of the self piloted check valve.
  • FIG. 13 is a longitudinal sectional view of a choke and kill check valve.
  • FIG. 14 is a longitudinal sectional view of a float valve version of the cheek valve.
  • FIG. 15 is a figure illustrating the valve opening bias force versus distance relationship.
  • FIG. 16 is a detail view taken within the circle 16 shown in FIG. 4. The view shows the relationship of the latch balls and their adjacent parts at the time that a disconnection or reconnection of the secondary spring biased trigger sleeve to the ball pusher occurs when the ball valve is respectively closing or reopening.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The self piloted check valve of the present invention is generally suitable for high reliability applications where no rapid cycling of the valve is required. The materials of the valve typically are low alloy steel, with elastomeric seals sealing between parts as required. The flappers will be an abrasion resistant material such as a wear resistant cobalt alloy. With only minor or no modifications, the basic internals of the self piloted check valve are suitable for use with several different housing body types, as described below in three examples.
  • Inside Blowout Preventer Valve
  • One embodiment of the check valve is suitable for placement in an inside blowout preventer valve (inside BOP). Referring to FIG. 1, one embodiment of the self piloted check valve 10 is shown in a longitudinal sectional view as an inside blowout preventer, wherein its internal components 20 are mounted in a body 11 suitable for interconnection into an oilfield drillstring. Provision is also made to use a split retention ring 100 and an interior support ring 101 with a snap ring 102 to retain the valve internal components 20 in the body 11.
  • The exterior of the inside blowout preventer body 11 has a constant outer diameter over most of its length and a reduced diameter tapered male thread 12 at its first, lower end. Herein, the terms upper and lower refer respectively to the normal flow inlet and the normal flow outlet. Sequentially from its upper end, the body 11 has a tapered female thread 13, a straight main bore 14 interrupted by an axially short retention groove 16 near its upper end and having a transverse lower end, and a straight reduced diameter outlet bore 15 having a short downwardly increasing diameter tapered bore at its lower end. To avoid stress concentrations, an ample radius is used at the transition between the lower end of the main bore 14 and the outlet bore 15. The external corners of the short retention groove 16 are also radiused for the same reason.
  • The primary check valve 10 internal components 20 include a ball stop 21, a ball cage assembly 24, a ball assembly 33 including an internal flapper valve assembly 34 and a main ball 53 valve, a ball pusher assembly 70, a main spring 78 and spacer sleeve 80, a latch assembly 84, a spring retainer 90, and a retaining means (e.g., split retention ring 100, interior support ring 101, and snap ring 102) to retain the inside blowout preventer internal components in the body 11.
  • Referring to FIG. 2, the internal components 20 of the valve 10 of FIG. 1 are shown removed from the inside of the blowout preventer body valve 11. At the lower, normal outflow end, the valve has a ball stop 21 with an integrally molded elastomeric ball step bumper 22 for cushioning the impact of ball 53 on the ball assembly 33 when the valve 10 opens rapidly.
  • The ball stop 21 is an axially short annular ring which, starting from its transverse lower end, has on its exterior a large taper, a short constant diameter section, a verse external upwardly facing shoulder, and a constant reduced diameter axially upward extension. The constant reduced diameter axially upward extension closely conforms to the inner diameter of the semicircular end arm 26 half rings on the ends of the ball cage halves 25 of the ball cage assembly 24. The outer diameter of the short constant outer diameter section of the ball stop is a close slip fit to the main bore 14 of the body 11 of the inside blowout preventer 10.
  • From its lower interior end, the ball stop 21 has a small chamfer, a very short constant diameter minimum bore, a frustroconical upwardly increasing bore, a groove for containing a molded-in elastomeric ball stop bumper and a spherical bore intersecting a radially narrow transverse upper end. The spherical bore of the ball stop 21 has the same diameter as that of the ball 53, so that the open ball 53 can abut the ball stop with good support over a relatively large contact surface. The elastomeric molded in ball stop bumper 22 extends a short distance inwardly from the spherical bore of the ball stop 21 so that it cushions the contact of the axially translating ball 53 with the ball stop 21 when the valve 10 is opening.
  • The ball cage assembly 24, shown in FIG. 6, consists of two opposed mirror image semicylindrical halves 25. Each ball cage half is symmetrical about its midplane perpendicular to the semicylindrical axis. At both its upper and lower ends, a ball cage half 25 has identical thin, axially short semicylindrical end arms 26 which have a constant rectangular cross section, wherein the radial thickness of the arm is approximately a quarter of the axial length of the arm.
  • The outer diameter of the semicylindrical surface of the arms 26 is a close slip fit to the main bore 14 of the body 11 for the valve 10. The inner diameter of an arm 26 closely conforms to the constant reduced outer diameter portion of the lower ball stop 21, with which it is mated in the assembled valve. The width of the arm 26 in the axial direction is the same as the length of the reduced constant outer diameter portion of the ball stop 21, and the upward looking intermediate transverse external shoulder of the ball stop abuts the lower side of the arm 26 of each installed ball cage half 25.
  • The middle portion of the ball cage half 25 has a cylindrical outer face 27 and a flat internal face 28 which mounts an inwardly extending cylindrical camming pin 29 which is normal to the face 28. The outer diameter of the middle section cylindrical surface 27 is the same as that of the semicircular end arms 26 and is also a close slip fit to the main bore 14 of the body 11 for the valve 10. The middle portion of the ball cage ball 25 is symmetrically positioned between the end anus 26 so that the cylindrical external face 27 matches the outer diameter of the end arms 26. Also, the center of the middle portion of the ball cage half 25 matches the center of the arc of each of the semicircular end arms 26.
  • Symmetrically placed in the middle of the middle portion of each ball cage half 25 is a ball guide groove 30 parallel to the axis of the inside blowout preventer internal components 20. Groove 30 fully penetrates the middle section of the ball cage half 25. The groove 30 extends in the axial direction perpendicular to the flat internal face 28 and has semicircular ends with parallel flat sides. An inwardly extending cylindrical canning pin 29 is located at midlength of the ball cage half 25 and offset to one side of the ball guide groove 20.
  • The ball assembly 33 consists of a ball 53, a snap ring 59, and a piloting valve assembly 34 which is mounted internally in the ball 53, as indicated in an exploded view in FIG. 9. The flapper valve assembly 34 is shown in exploded view in FIG. 7. The flapper valve assembly 34 primarily consists of a flapper seat ring 35, a flapper shroud 40, and three flappers 44. The flappers 44 are individually connected to trunnions 37 on the flapper seat ring 35 by flapper pivot pins 48 and are biased to be normally closed by torsional flapper springs 46.
  • The flapper seat ring 35 is a cylindrical ring having a transverse seating surface 36 and a right circular cylindrical coaxial through bore. The diameter of the through bore is the same as the diameter of the through hole for the ball 53. On its exterior surface, as short right circular cylindrical surface adjoins the seating surface 36 and is joined by a fillet to a frustroconical end surface opposed to the seating surface 36. A male annular O-ring groove containing externally sealing O-ring 50 is positioned on the frustroconical face of the flapper seat ring 35.
  • Mounted on 120° spacings on seating surface 36 of the flapper seat ring 35 are three flapper support trunnions 37. Each flapper support trunnion 37 consists of a pair of mirror image spaced apart projections normal to the seating surface 36. The trunnions 37 each have a hinge bore parallel to the surface of the seating surface 36 and perpendicular to the midplane of that trunnion 37.
  • On the external cylindrical side of the flapper seat ring 35 between the trunnion 37 halves, flat bottom spring recesses parallel to the axis of symmetry of the ring are machined to provide clearance and support for the reaction arms of the torsional flapper bias springs 46. Equispaced on a circular pattern and symmetrically placed between each adjacent pair of trunnions 37 is a small diameter blind alignment pin hole 38 parallel to the axis of symmetry of the flapper seat ring and penetrating the seating surface. The alignment pins 39 are short roll pins which have an interference fit with the alignment pin holes 38.
  • The flapper shroud 40 is a right circular cylindrical annular ring having a length equal to about 80% of its outer diameter. The outer diameter of the flapper shroud 40 matches that of the flapper seat ring 35. As seen in FIGS. 7 and 9, the flapper recesses 41 are three radially penetrating identical windows located at 120° spacings in the flapper shroud. The recesses 41 are cut in the flapper shroud 40 from its first end to closely accommodate the open flappers 44 of the flapper and seat assembly 34. The flapper recesses 41 are symmetrical about their radial midplanes and have parallel sides extending approximately half of the axial length of the shroud 40. The inner end of each flapper recess 41 has converging opposed sides each inclined at 60° from the radial midplane of the recess.
  • The first end of the flapper shroud 40 has three small diameter blind holes parallel to the part axis in the same pattern as the alignment pin holes 38 of the flapper seat ring 35 and with each hole located midway between adjacent flapper recesses 41. These holes have an interference fit with the alignment roll pins 39 of the flapper seat ring 35 and serve to permit the roll pins to firmly connect the shroud with the seat ring.
  • The flappers 44 are three identical abrasion resistant metal pieces made of a material such as a wear resistant cobalt alloy. The flappers 44 have a planar sealing face on a first side and have a single plane of symmetry perpendicular to their sealing face. A second planar face is opposed and parallel to the planar flapper sealing face and extends in the direction of the plane of symmetry. The width of the second planar face is approximately 30% of the width of the flapper 44 perpendicular to its plane of symmetry. Outboard of the second planar face on each side, the thickness of the flappers 44 is reduced linearly as a function of the distance from its intersection with the second planar face.
  • Viewing a flapper 44 normal to its sealing face, two mirror image first planar edge faces, each normal to the sealing face, are each inclined at 60° from the plane of symmetry and extend to small planar edge outer ends parallel to the plane of symmetry. The first planar edge faces will be adjacent to corresponding faces of adjacent flappers 44 when they are assembled in their closed positions in the flapper and seat assembly 34, as shown in FIG. 11.
  • Short second planar edge faces, inclined at 45° from the plane of symmetry and perpendicular to the sealing surface 36, extend inwardly towards the plane of symmetry from the small planar outer ends of the flapper 44. Adjoining the second planar faces on the side towards the plane of symmetry are symmetrically placed short planar faces perpendicular to both the plane of symmetry and the sealing surface on the first side of the flapper. These second planar edge faces on their inward ends are joined by third planar edge faces perpendicular to the sealing surface 36 and parallel to the plane of symmetry. The separation of the third planar edge faces is approximately the width of the second planar face which is opposed to the sealing surface on the first side of the flapper.
  • On the third planar edge faces, through hinge holes are drilled at mid thickness of the flappers 44 and perpendicular to the midplane of symmetry. The outer end of a flapper 44 where its hinge holes are positioned is radiused about the axis of the hinge holes. A central gap, with sides parallel to the plane of symmetry, extending inwardly in the direction of the plane of symmetry is cut between the third planar faces. This central gap is wide enough to accommodate a torsional flapper bias spring 46. The second planar face opposed to the sealing face of the flapper 44 has a shallow central notch parallel to the sealing face and plane of symmetry and intersecting the central gap of the flapper 44. This shallow central notch provides a spring slot for a reaction point for an arm of the torsional flapper bias spring 46.
  • The flapper pivot pins 48 are elongated cylindrical rods with multiple symmetrically placed molded narrow elastomeric rings on their outer ends. The flapper pivot pins 48 are engaged both in the hinge holes of the flappers 44 and in the trunnion holes of the flapper seat ring 35. The elastomeric rings permit the flappers to seal with the seating surface 36 of the flapper seat ring 35 in spite of small deviations in hole locations for the flappers 44 and the trunnions 37 of the flapper seat ring.
  • Referring to FIGS. 7 and 11, the flapper and seat assembly 34 is seen to have three flappers 44 mounted to the flapper seat ring 35 by flapper pivot pins 48. The individual torsional flapper springs 46, seen in FIG. 7, are located surrounding the pins 48 in the central gaps of the flappers 44 with one arm of the spring bearing on the shallow slot of a flapper and the other on a spring slot on the outer diameter of the flapper seat ring 35.
  • To complete the flapper and seat assembly 34, an O-ring 50 is installed into the groove on the frustroconical face of the flapper seat ring 35 and the flapper shroud 40 is attached to the flapper seat ring by alignment roll pins 39 engaged in the holes 38 of the ring 35 and the corresponding holes in the flapper shroud 40. The closed set of flappers 44 has only a slight clearance between adjacent flappers to prevent mutual interference. For this reason, the flappers 44 do not form a bubble tight seal when seated on the flapper seat ring 35.
  • The open flappers 44 also fit with only small clearance gaps into the flapper recesses 41 of the flapper shroud 40. The large planar sealing faces of the open flappers 44 are open sufficiently to permit passage of a body having the same outer diameter as the bore through the flapper seat ring 35. While the flapper valve assembly is shown with three flappers herein, closure of the flow passage of the ball can be achieved with only one or two flappers or more than three. Utilizing three flappers permits a reduction in the mass of individual flappers while minimizing leak paths. Additionally, use of three flappers simplifies construction of the shroud 40.
  • As seen in FIG. 9, the ball 53 has a spherical outer surface with two mirror image parallel flats on its exterior. The outer diameter of the spherical lace of the ball 53 is only slightly less than the main bore 14 of the flowpath of the valve body ii. Each flat of the ball 53 has a central cylindrical guide pin 55 which is normal to its flat and is a close slip fit to a ball guide groove 30 of a ball cage half 25. The opposed guide pins 55 are located on a common ball diameter. Parallel to and centrally located between the opposed flats of the ball 53 is a through bore 57. From its large end, the through bore 57 has a long larger straight bore with a snap ring groove 58 near its outer end, an inwardly extending frustroconical face, and a shorter smaller straight fluid entry bore.
  • The smaller bore diameter for the ball 53 is the same as the central bore through the flapper seat ring 35. These two bore diameters determine the through clearance hole for the valve 10. A fillet connects the frustroconical face and the larger bore. The snap ring groove 58 accommodates snap ring 59 so that when the flapper and seat assembly 34 is inserted in the larger portion of the bore 57 of the ball 53 with the orientation shown in FIG. 9, it is retained with the O-ring 50 in the annular groove of the flapper seat ring sealing between the ball and the flapper seat ring 35.
  • A shallow camming groove 56 is cut into each flat of the ball in a radial direction of the face, with the opposed grooves being parallel and mirror images relative to the midplane of symmetry of the ball. The inner ends of the camming grooves 56 are radiused and spaced apart from the guide pins 55. The camming grooves 56 extend outwardly to the spherical surface of the ball 53. The orientation of the camming grooves 56 is such that the through bore 57 of the ball 53 is aligned with the valve axis when the ball is open and engaged in the ball cage assembly 24.
  • When the valve 10 is closed by the ball, the longitudinal axis of the valve 10 penetrates the spherical face of the ball 53 midway between the exits of the large exit hole and of the small exit hole of bore 57 of the ball on the plane of symmetry of the ball. This necessitates that the axis of the ramming grooves 56 to be inclined from the axis of the ball bore 57 by an angle of more than 45°.
  • The main seat 62 of the valve, shown in FIG. 2, is an axially relatively short hollow cylinder having a transverse upper end with a smaller relieved transverse face on its interior side. The relieved face, which provides clearance for a snap ring 74 of the ball pusher assembly 70, is connected to the larger transverse end by a short frustoconical section. The bore of the main seat 62 is straight and larger than the smaller bore through the ball 53 in order to permit a slip tit of the lower exterior end of the ball pusher assembly 70.
  • The exterior cylindrical face of the main seat 62 has, from its upper end, a constant diameter first section extending about half of the axial length of the seat and with an intermediately placed male O-ring groove containing an O-ring 65 and a backup ring 66. The outer diameter of the first section of the exterior cylindrical face of the main seat 62 is a close slip fit to the main bore 14 of the body 11 of the valve 10. The O-ring 65 seals between the main seat 62 and the main bore 14 of the body 11.
  • On its lower end, the exterior cylindrical face of the main seat 62 has an inwardly extending transverse shoulder facing downwardly. A second section having a reduced diameter cylindrical section extends downwardly to a short inwardly extending transverse shoulder. The outer diameter of the second cylindrical section is a close fit to the inner cylindrical face of the semicircular end arms 26 of the ball cage halves 25, and the length of the second cylindrical section is the same as the axial length of a ball cage end arm 26.
  • On its lower end, the main seat 62 has on its interior side a spherical face 63 having the same diameter as the ball 53 and having an intermediate seal ring groove. The seal ring groove is undercut and contains a molded in elastomeric face seal 64 which extends radially inwardly from the spherical face 63 of the seat 62. However, the net volume of the molded in elastomeric lace seal is less than the volume of the groove in the main seat 62 due to molded ridging of the exposed face of the seal 64. This permits the avoidance of extrusive seal damage when the ball 53 forcefully abuts the spherical face of the main seat 62.
  • When the inside blowout preventer internal components 20 of the valve 10 are being assembled, the ball assembly 33 with its ball 53 and flapper and seat assembly 34 is held between two opposed ball cage halves 25 so that its guide pins 55 are engaged in the ball guide grooves 30 of the ball cage assembly 24 and the camming pins 29 of the ball cage assembly are engaged with the camming grooves 56 of the ball.
  • The lower ball stop 21 is then engaged with the lower semicircular end arms 26 of the ball cage assembly 24 so that the side of the lower ball stop with the molded in ball stop bumper 22 is facing the ball. Following this, the main seat is engaged with the upper semicircular end arms 26 of the ball cage assembly so that the side of the main seat with the spherical face 63 is facing the ball. The resultant subassembly has a slip tit with the main bore 14 of the body 11. An O-ring 65 with a backup ring 66 seals the annular gap between the main seat 62 and the main bore 14 of the body 11.
  • The ball pusher assembly 70 consists of ball pusher body 71, a ball pusher seat 73, a snap ring 74, and a spring washer 75. The ball pusher body 71 is an elongated thin wall right circular cylindrical tube having a transverse external annular latch groove 72 located at about 30% of the length of the ball pusher body from its upper end. Additionally, an external snap ring groove mounting snap ring 74 is located at about 60% of the length of the ball pusher body 71 from its upper end. The bore of the ball pusher body 71 is the same as the smaller bore through the ball 53. The latch groove 72 is relative shallow and narrow, with frustroconical radially outwardly opening faces inclined at approximately 60° from the axis of the ball pusher body 71 joining the groove to the outer diameter portion of the ball pusher body 71.
  • At its lower end, the ball pusher body 71 has as female thread which is threadedly engaged with the male thread of a ball pusher seat 73. The ball pusher seat 73 is axially short and has the same inner and outer diameters as the ball pusher body 71. The ball pusher seat 73 is fabricated from either an elastomer or a plastic polymer such as a glass filled polytetrafluoroethylene. The lower face of the ball pusher seat 73 has a concave frustroconical or spherical face which is able to sealingly bear on the spherical face of the ball 53. At its upper end, the ball pusher seat 73 has a reduced diameter male thread comatable with the female thread on the ball pusher body 71.
  • The spring washer 75 is a relatively thin cylindrical flat washer with a central hole which is a close slip fit to the outer diameter of the ball pusher body 71. The outer diameter of the spring washer 75 is slightly less than the bore of the spacer sleeve 80 so that it also has as close slip fit to that sleeve. The spring washer 75 is located on the tippet side of the mounted snap ring 74 and bears against the snap ring. In turn, the lower end of the helical main spring 78 bears against the upper side of the spring washer 75 and when the spring is compressed, it urges the ball pusher assembly 70 downwardly so that the ball pusher seat 73 normally remains in contact with the ball 53. The upper end of the main spring 78 bears against a downwardly facing transverse shoulder of the spring retainer 90.
  • The spacer sleeve 80 is a thin wall right circular cylindrical sleeve with transverse ends and the central portion of its outer diameter slightly relieved. The outer diameter of the spacer sleeve is a slip it to the main bore 14 of the body 11 of the valve 10. The outer diameter of the main spring 78 has sufficient clearance with the bore of the spacer sleeve 80 to ensure clearance, even when the main spring is fully compressed. The spacer sleeve 80 has as length equal to about 75% of its outer diameter and abuts against both the upper end of the main seat 62 and the larger diameter lower transverse face of the spring retainer 90.
  • The latch assembly 84 consists of an axially short thin wall right circular cylindric latch sleeve 85, multiple latch balls 86, and a secondary spring 87. The inner diameter of the latch sleeve 85 is a slip fit to the outer diameter of the ball pusher body 71. The latch sleeve 85 is provided with multiple equispaced radial holes in a transverse plane located at midlength of the sleeve. The radial holes are close fits to the latch balls 86.
  • The radial wall of the latch sleeve 85 is approximately 60% of the diameter of the latch balls 86. When the radial holes of the latch sleeve 85 are positioned to be coplanar with the middle of the annular latch groove 72 of the ball pusher body 71, the latch balls 86 positioned in the radial holes and abutting the minimum diameter portion of the latch groove 72 do not extend beyond the outer diameter of the latch sleeve 85.
  • The secondary spring 87 of the latch assembly 84 is a stiff short helical spring with an inner diameter slightly larger than the outer diameter of the ball pusher body 71 and an outer diameter slightly smaller than that of the latch sleeve 85. The secondary spring 87 is mounted coaxially with the spring retainer 90 and the latch sleeve 85 of the latch assembly 84. The secondary spring 87 bears against the upper end of the latch sleeve 85 mid a downwardly facing transverse end of a downwardly opening interior secondary spring recess 92 of the spring retainer 90.
  • The spring rate of the secondary spring 87 is higher than that of the main spring 78, but the maximum axial force applied to the ball pusher assembly 70 by the secondary spring 87 is less than the maximum force ever applied to the spring washer 75 of the ball pusher by the main spring 78. Further, the maximum combined force of the main spring 78 and the secondary spring 87 is less than the peak force on the ball pusher assembly 70 applied by the main spring 78 alone.
  • The force from the secondary spring 87 acts on the latch sleeve 85 and also the ball pusher assembly 70 as long as the latch sleeve is engaged with the ball pusher assembly by the latch balls 86. The releasable interconnection which permits axial loads to be transferred from the radial holes of the latch sleeve 85 to the annular latch groove 72 of the ball pusher body 71 is provided by the radially reciprocable latch balls 86, which are radially reciprocable in the radial holes of the latch sleeve.
  • The spring retainer 90 is a right circular cylindrical sleeve with a length slightly longer than its outer diameter. From its upper end, the spring retainer 90 has on its exterior side a first cylindrical section which has an outer diameter which is a close slip fit to the main bore 14 of the body 11 of the valve 10. This first section has a length equal to approximately half of the total length of the spring retainer and contains an annular male O-ring groove 91 mounting an O-ring 96 and backup ring 98 which provide sealing between the spring retainer 90 and the main bore 14 of the valve body 11.
  • An inwardly extending downwardly facing intermediate, transverse shoulder on the lower end of the first cylindrical section connects to a reduced diameter second external cylindrical section which extends to the lower end of the spring retainer 90. The outer diameter of the second external cylindrical section is such that it provides clearance to the inner diameter of the main spring 78. The intermediate downwardly facing shoulder abuts both the upper end of the main spring 78 and the upper end of the spacer sleeve 80. A chamfer joins the lower end of the second external cylindrical section to a narrow downwardly facing transverse end.
  • From its lower end, the bore of the spring retainer 90 has a first counterbore with a transverse inner end serving as a secondary spring recess 92 and containing an intermediate female annular latch groove 93. The annular latch groove 93 has a short central enlarged constant diameter section with radially inwardly opening chamfers at its upper and lower ends extending to the counterbore for the secondary spring recess 92. The angle of these chamfers from the axis of the spring retainer 90 is approximately 60°.
  • The depth of the annular latch groove 93 is such that, when a latch ball 86 is positioned in the groove at its maximum radially outward position, the innermost portion of the ball will clear the outer diameter of the ball pusher assembly 70. The diameter of the counterbore of the secondary spring recess 92 is a close slip fit to the outer diameter of the latch sleeve 85. The length of the secondary spring recess is sufficiently long to fully contain the installed secondary spring 85 and roost of the length of the latch sleeve 85 when the secondary spring 87 is fully compressed.
  • Adjoining the secondary spring recess 92 at its upper end is a smaller short straight bore which contains an intermediate female O-ring groove 94 mounting O-ring 97. The diameter of this bore is such that it has a close slip fit with the outer diameter of the ball pusher body 71. The O-ring 97 seals between the spring retainer 90 and the outer diameter of the ball pusher assembly 70.
  • At the upper end of the short straight bore with O-ring groove 94, an intermediate complex counterbore provides a female landing profile 95 for a lock-open tool which is not described herein. This concave profile varies, depending upon the type of lock-open tool to be used with the valve. Upwardly sequentially from the lower end of profile 95 are located an outwardly opening chamfer, a first profile counterbore, another upwardly opening chamfer, a larger second profile counterbore, a narrow female groove, and a short inwardly extending shoulder which has a counterbore smaller than that of the second counterbore.
  • The inwardly extending shoulder and the female groove of the landing profile 95 permit the extraction, using a puller device, of the spring retainer 90 from the main bore 14 of the body 11 of the valve 10 during valve disassembly. For the assembled valve 10, the upper transverse face of the spring retainer 90 is adjacent to the lower end of the latch groove 16 of the body 11 of the valve.
  • The inside blowout preventer internal components 20 of the valve 10 are retained within the body 11 of the valve by the combination of the installed split retention ring 100, the solid interior support ring 101, and the male snap ring 102. Referring to FIG. 10, these components can be seen in an exploded view. The split retention ring 100 has a cross section with a straight interior bore having near its upper end a female snap ring groove for the mounting of snap ring 102. The lower transverse end of the cross section of the split retention ring 100 is joined to the right circular cylindrical external side by a liberally radiused corner.
  • Near its upper end, the cross section of the external cylindrical side of the split retention ring 100 has a short reduced diameter section joined to the larger diameter section below, with a second radiused upper corner serving as the transition to the reduced diameter section. The radius of both external corners of the larger outer diameter section is the same. The outer diameter of the split retention ring is as close fit to the diameter of the groove 16 of the body 11. The outer diameter of the reduced diameter section at the upper end of the ring 100 is a slip fit to the main bore of the body 11 of the valve 10. The length of the larger diameter portion of the split retention ring 100 is equal to or slightly less than the axial length of the latch groove 16 of the valve, body 11.
  • As seen in FIG. 10, the split retention ring 100 is separated into four parts by two parallel cuts made parallel to but equally offset to opposite sides from the axis of symmetry of the part. The length of the longer segments of the ring 100 is less than the diameter of the main bore 14 of the body 11 of the valve 10. This permits the radial insertion of the diametrically opposed longer segments of the split retention ring 100 into groove 16 of the body 11 followed by the radial insertion of the shorter segments of the split ring 100 into the gaps between the longer segments. The upper transverse end of the spring retainer 90 of the other assembled valve internals 20 is abutted on its upper end by the downwardly facing transverse shoulder of the split retention ring 100.
  • The interior support ring 101 has an outer diameter which is a close slip fit to the straight interior bore of the installed split retention ring 100. The length of the interior support ring 101 is just slightly less than the distance from the lower transverse end to the lower side of the female retaining ring groove of the split retention ring 100. The interior support ring 101 has two opposed narrow transverse ends. The interior side of the interior support ring has from its upper end a frustroconical converging counterbore, a downwardly facing transverse shoulder, and a downwardly facing short counterbore engagable by a puller tool so that the ring can readily be extracted during valve 10 disassembly.
  • When the interior support ring 101 is inserted within the bore of the assembled split retention ring 100, the split retention ring is trapped within the groove 16 of the body 11 of the valve 10. In this position, the split retention ring 100 abuts the upper end of the spring retainer 90 so that the internal components 20 of the inside blowout preventer are maintained in position within the body 11 of the valve.
  • This is the case even when the closed valve 10 is resisting high pressures from reverse flow tendencies acting on its ball 53. The forces from pressure on the closed ball 53 and seat 62 are transferred through the split ring and into the groove 16 of the body 11. Insertion of the snap ring 102 into the female snap ring groove of the split retention ring retains the interior support ring 101 within the bore of the split retention ring, but when removed readily permits selective disassembly and removal of the rings 100, 101 so that the valve internals 20 can be removed.
  • Choke and Kill Manifold Cheek Valve
  • FIG. 13 shows as longitudinal sectional view of one embodiment of the self piloted check valve mounted in a body arrangement having weld neck flanges suitable for connection into an oilfield drilling choke and kill piping system. This choke and kill valve 200 has internal components which are functionally the same as those of the inside blowout preventer valve 10 with the exception of the structure and behavior of the flappers of the flapper and seat assembly 234 of the valve 200. Where minor structural differences exist between the inside blowout preventer 10 and the choke and kill valve 200, the modifications are described herein.
  • In the case of the flappers 244, the structural change is minor and produces only a slightly exaggerated valve behavior which is exhibited to some degree for all versions of the valve. Most of the internal parts of the choke and kill manifold check valve 200 are structurally identical to those of the inside blowout preventer 10. Other than the changes to the flappers 244, minor changes to some parts are necessitated for mounting the valve internals in a different type of body, but both those parts and the choke and kill manifold valve 200 function in substantially the same manner as the inside blowout preventer 10.
  • Referring to FIG. 13, the choke and kill valve body 201 is a right circular cylindrical body with a constant outer diameter equal to approximately 65 percent of its length. At its first end, the body 201 has a short fluid entry bore 202 which has a diameter equal to the inner diameter of the valve internals 220. The main bore 203 is a counterbore for the entry bore 202 and enters from the end opposed to the end with the fluid entry bore 202 and has a diameter which is a close slip fit to the choke and kill valve internal components 220. The length of the main bore 203 is such that the valve internals 220 can be fitted into the bore both with allowance for fabrication tolerances and without interfering with mounting of the large seal 208 and the large flange 215.
  • Both ends of the choke and kill valve body 201 are provided with regular arrays of drilled and tapped holes for engagement by flange bolting. The drilled and tapped holes are parallel and equally offset from the longitudinal axis of the body 201. On its outer end the fluid entry bore 202 has a short inwardly converging frustroconical small seal recess 204 which mounts a commercially available small diameter metallic seal 205.
  • The annular small metallic seal 205 has a thin central flange on its outer side with a straight through bore equal to that of the short fluid entry bore 202. The seal 205 has mirror image seal surfaces which externally radially inwardly taper with distance from the central flange. The tapered seal surfaces seal with an interference fit with the small seal recesses 204 and 211 when the seal flange is clamped between the body 201 and the small flange 210.
  • On its outer end the main bore 203 has a short inwardly converging frustroconical large seal recess 207 which mounts a large diameter metallic seal 208. The annular large diameter metallic seal 208 has the same type of construction and operation as that of the small metallic seal 205, with the only difference being related to seal size. The tapered large seal surfaces seal with an interference fit with the large seal recesses 207 and 216 when the seal flange is clamped between the body 201 and the large flange 215.
  • The small flange 210 is a typical bolted weld neck flange, but it has a seal groove appropriate for use with seal 205. The outer diameter of the small flange 210 is the same as that of the body 201 and its through bore is the same as that of the valve internals 220. Flange 210 has a regularly spaced pattern of bolt holes offset from its axis of symmetry corresponding to those on the inlet end of the body 201 and as cylindrical weld neck that extends outwardly on the back side of the flange. On the entry to the through bore on the side facing the valve body 201, the flange 210 has a small seal recess 211 identical to the small seal recess 204 of the body. Studs 212 and nuts 213 are used to clamp the small flange 210 to the body 201 and to energize the seal 205.
  • The large flange 215 also is a typical bolted weld neck flange, but thicker than the small flange 210. The outer diameter of the large flange 215 is the same as that of the body 201 and its through bore is the same as that of the valve internals 220. Flange 215 has a regularly spaced pattern of bolt holes corresponding to those at the exit of the main bore 203 of the body 201.
  • On its axis of symmetry, the large flange 215 has a cylindrical weld neck which extends outwardly on the outer side of the flange. On the entry to the through bore on the side facing the valve body 201, the flange 215 has a large seal recess 216 identical to the large seal recess 207 of the body. Studs 212 and nuts 213 are used to clamp the large flange 215 to the body 201 and to energize the seal 208.
  • As shown herein, the seal groove diameter for mounting the small flange 210 is smaller than that for the large flange 215, although the groove and flange for the fluid entry bore end could alternatively be made identical with that for the fluid exit end of the valve 200.
  • The choke and kill valve internal components 220 include a choke and kill valve lower ball stop 221, a choke and kill flapper assembly 234 with flappers 244, and a choke and kill spring retainer 290. Other than the flappers, these components differ only slightly structurally but not functionally from the corresponding components of the inside blowout preventer 10. The other choke and kill valve internal components 220 are the same as for the inside blowout preventer 10, with the exception that the split retention ring 100, the interior support ring 101, and the snap ring 102 are omitted. These omitted parts are not required because the large flange 215 serves to retain the valve internal components 220 in the valve body 201 so that they bear against the inwardly extending shoulder at the small flange end of the valve 200.
  • Referring to FIG. 13, the choke and kill lower ball stop 221 with its molded-in ball stop bumper 22 does not need the large chamfer on its external flow outlet corner that the inside blowout preventer ball stop 21 requires to fit in body 11. That corner for the choke and kill ball stop 221 is only lightly chamfered, and the axial length of the ball stop 221 is slightly reduced from that of ball stop 21 for the inside blowout preventer in order to limit the overall length of the valve. Otherwise, the ball stop 221 and its molded in bumper are structurally and functionally identical to the lower ball stop 21 of the inside blowout preventer 10.
  • For the choke and kill manifold valve 200, the ball cage assembly 24, ball 53, and main seat 62 are the same as for the inside blowout preventer 10 and are assembled with the same relationships. The ball stop 221 and the main seat 62 support the opposed halves 25 of the ball cage assembly 24. The ball 53 has its guide pins 55 engaged in the ball guide groove 30 of the ball cage assembly 24 in the same way as for the inside blowout preventer 10. The camming grooves 56 of the ball 53 are engaged by the camming pins 29 of the ball cage halves 25 in the same manner as for the inside blowout preventer 10.
  • The flapper and seat assembly 234 of the valve 200 is identical to the corresponding assembly 34 for the inside blowout preventer except for use of flappers 244 for valve 200. Referring to FIGS. 11 and 12, the flapper and seat assemblies 34 of the inside blowout preventer 10 and 234 of the valve 200 are respectively shown in axial views seen from their outlet sides.
  • Only small clearance gaps sufficient for operating clearances between adjacent flapper 44 faces are provided for the inside blowout preventer 10 flapper and seat assembly 34 shown in FIG. 11. However, some limited backflow is necessary for the choke and kill manifold valve 200 in order to accommodate valve backflows due to fluid displacement during wireline or coiled tubing operations while still providing protection against dangerous higher flows. For the choke and kill manifold valve 200, the gaps between adjacent flapper faces 244 are made larger to permit this additional reverse flow, as seen in FIG. 12. The desired size of the gap for the flappers 244 can be determined readily by calculation.
  • The ball pusher assembly 70, the main spring 78, the spacer sleeve 80, and the latch assembly 84 are common to both the choke and kill check valve 200 and the inside blowout preventer 10 and function the same in both devices. The choke and kill spring retainer 290 is different from the spring retainer 90 for the inside blowout preventer valve 10 because no provision for lock open tools is required for valve 200. However, the bore on the inlet end of the spring retainer 290 is enlarged sufficiently to permit engagement with puller or pusher means (not shown) to forcibly extract the choke and kill valve internals 220 from the body 201 for servicing.
  • Drilling Float Valve
  • FIG. 14 shows a longitudinal sectional view of one embodiment of a drilling float valve 300 installed in a housing for mounting between a drill bit and the drill collars of a drill string. Drilling float valves are routinely used near the drill hit to avoid uncontrolled backflows through the drillstring, during the making of connections. The primary differences between float valves and inside blowout preventers are related to their bodies and provisions for the severe vibrational environment near the bit for float valves. Float valves are used routinely, rather than for emergencies, and are particularly important when the well is being drilled in an underbalanced condition.
  • The float valve 300 uses the same self piloted check valve with internal components which are functionally the same as those of the inside blowout preventer valve 10. The float valve body 301 differs from those of the inside blowout preventer 10 and the choke and kill valve 200. Most of the internal parts of the drilling, float valve 300 are structurally identical to those of the inside blowout preventer 10 or the choke and kill manifold valve 200. Minor changes to some internal parts are necessitated for mounting the valve internals in as different type of body, but both those parts and the assembled valve 300 function in the same manner as for the inside blowout preventer 10. Some additional parts are required to ameliorate the high vibration problem for the float valve 300, but those parts do not affect the principles or manner of the flow controlling operation of the key valve components.
  • Referring to FIG. 14, the drilling float valve body 301 has a right circular cylindrical body with a constant outer diameter equal to approximately 25% of its length. At its transverse upper first end, the body 301 has a tapered female drill pipe thread so that it can be threadedly interconnected into a drill string. At the lower end of the upper thread, a frustroconical transition section that downwardly reduces in diameter connects to a straight fluid entry bore 303 which has a diameter equal to or slightly greater than the inner diameter of the float valve internal components 320.
  • The initial length of the fluid entry bore 303 is between 50 percent and 100 percent of the diameter of body 301. This length permits several recuts of the threads on the upper end of the body 301. The fluid entry bore 303 is joined to the larger main bore 302 by a transverse shoulder 305 which has a filleted intersection with the transverse shoulder. At its lower fluid outlet end 304, the body 301 has a female drill pipe thread for connection with the threaded shank 308 of a drill hit. A slightly tapered, upwardly converging short frustroconical transition connects the lower female thread with the main bore 302.
  • The transverse shoulder 305 forms the upper end of the main bore 303 of the body 301. The main bore 302 has a diameter which is a close slip fit to the float valve internal components 320, permitting the male O-rings of the float valve internal components to seal against the main bore. The length of the main bore 302 is such that the valve internals 320 can be fitted into the bore along with upper 310 and lower 314 damper assemblies and axial space filler rings 318, 319.
  • The axial space filler rings 318, 319 are required to fill axial gaps between the valve internals 320 and the upper end of the drill bit shank 308 without interfering with the threaded make up of a drill bit shank into the female oilfield thread at the outlet lower end of the body 301. The depth of the internal shoulder 305 of the body 301 is initially made larger in order to provide space for reclining worn lower end threads. This initial extra length creates the need for the first 318 and second 319 filler rings. The axial length of the individual filler rings 318, 319 corresponds to the length of the body 301 removed during a thread recutting operation.
  • The upper damper assembly 310 consists plan upper damper retainer ring 311, an annular upper damper elastomeric element 312, and a upper damper abutment ring 313. The outer diameter of the upper damper assembly 310 is a slip fit to the main bore 302 of the body 301. The outer diameters of the rings 311 and 313 are close slip fits to the main bore 302 of the body 301. Typically, the upper and lower ends of the elastomeric element 312 are bonded respectively to the end rings 311, 313. The upper damper retainer ring 311 has a straight bore, a narrow transverse lower end, an upwardly extending external cylindrical face, a downwardly facing and outwardly extending transverse face, and a radiused shoulder connecting to a narrow transverse upper end which extends to the straight bore.
  • The upper damper elastomeric element 312 is an annular cylinder which has equal transverse ends. The outer cylindrical face has a reduced diameter in its central portion, while the inner cylindrical face has an increased diameter in its central portion. Multiple equispaced radial holes penetrate through the middle portions of the elastomeric element 312. The upper damper abutment ring 313 has a right circular cylindrical outer face adjoined to two relatively narrow transverse ends. The bore through the ring 313 is frustroconical and opens upwardly. The outer diameters of rings 311 and 313 and the transverse ends of the elastomeric element 312 are the same. The inner diameters of the rings 311 and 313 are less than the inner diameter of the elastomeric element 312.
  • The lower damper 314 is a cylindrical assembly of end support rings and an elastomeric element which is symmetric about its transverse midplane and which has a loose slip fit with the main bore 302 of the body 301. The cross-sections of the upper 312 and the lower 316 elastomeric damper elements differ, so that they exhibit different stiffness properties. Two opposed identical thin flat annular rings serve as lower damper support rings 315. The lower damper elastomeric element 316 is constructed, similarly to the upper damper elastomeric element 312. The rings 315 are respectively bonded to the opposed upper and lower transverse ends of the lower damper elastomeric element 316. Different properties of the elastomeric elements 312 and 316 may be selected. For example, durometers, compositions, and hence stiffness properties of the elastomers of different embodiments of the elastomeric elements 312 and 316 may be selectively varied. Thus, the cross-sectional profiles of the elastomeric elements 312 and 316 may be varied as required for different operating conditions.
  • Both the upper 310 and the lower 314 dampers are required to be compressed when the valve internals 320 are retained in the body 301 by the drill hit shank 308. By supporting the valve internals between the elastomeric upper 310 and lower 315 dampers, the accelerations and resultant forces applied during drilling to the float valve internal components are reduced by energy absorption in the elastomeric elements 312 and 316. The differences in cross-sections and elastomeric properties cause the two dampers 310 and 314 to have different frequency responses and vibrational energy absorption characteristics.
  • Because the body 301 of a float valve is subject to severe operating conditions, its end threads are frequently recut with associated shortening of the valve body. First 318 and second 319 filler rings may be used to avoid the need to remachine the main bore 302 of the valve 300 whenever the threads at the lower end of the body 301 are recut.
  • Each cylindrical lower filler ring 318, 319 has a length equal to the length removed during a single thread recut. The first filler ring 318 has a downwardly extending annular outer ridge on its lower transverse face which closely comates with a corresponding outer annular groove on the upper transverse face of the second filler ring 319 in order to maintain axial alignment of the rings. Both rings 318 and 319 are a close, slip it to the main bore 302 of the float valve body 301. After the first thread recut on the lower flow outlet end of the body 301, the first filler ring 318 is removed and only the second ring 319 is used. Following a second thread recut on the lower end of the float valve body, the second filler ring 319 is also removed.
  • With the exception of the upper 310 and lower 314 dampers, the first 318 and second 319 filler rings, and the flappers 44 of the flapper and seat assembly 34, the float valve internal components 320 are identical to those of the choke and kill manifold valve 200. The primary components include a choke and kill valve lower ball stop 221 and spring retainer 290 that differ structurally but not functionally from the corresponding components of the inside blowout preventer 10. The split retention ring 100, the interior support ring 101, and the snap ring 102 are omitted. These omitted parts are not required because the shank 308 of the drill bit serves to retain the components 320 in the valve body 301.
  • The float valve 300 internal components 320 also include a ball cage assembly 24, a ball assembly with internal flapper and seat assembly 34 using, flappers 44, a ball 53, a main seat 62, a ball pusher assembly 70, and a latch assembly 84 with latch balls 86. Other than the flappers, these components are common to all three types of valve.
  • OPERATION OF THE INVENTION
  • The unidirectional flow control provided by the self piloted check valve works substantially the same in all configurations 10, 200, and 300 despite their being housed in a variety of bodies and minor component changes to accommodate those bodies and their service conditions. For simplicity, the description of valve operation first will treat the inside blowout preventer embodiment 10 of the self piloted cheek valve, since all embodiments work in the same manner with only minor differences. For the other two versions of the valve, the differences in behavior from that exhibited by the inside blowout preventer 10 will be noted.
  • As seen in FIGS. 1, 2, 3, 4, and 5, the self piloted check valve 10 disclosed herein uses a ball valve 53 with a central flow passage 57 to seal against reverse flow by blocking the cylindrical axial flow path through the body 11 and, excluding the piloting flapper valve assembly 34, the assemblage of other internal parts of the valve. The valve 10 prevents backflows by using a ball 53 having a through flow passage 57 which is supported in a ball cage 24 so that it simultaneously translates axially on the longitudinal axis of the valve 10 and rotates about a ball axis transverse to the longitudinal axis of the valve 10. The axis of rotation of the ball 53 is also the axis of the guide pins 55 of the ball. The ball 53 moves between a fully open first position with the ball flow path aligned with the axis of valve 10 and a fully closed second position with the ball bore flow path out of alignment with the valve axis and the ball 53 bearing against the main seat 62 and sealing against the main seat.
  • The ball 53 of the improved self piloted check valve 10 has two spaced apart opposed limits to its movements along the valve axis. The lower ball stop 21, shown in FIGS. 1, 2, and 3, determines a first limit to ball 53 travel at the valve open position, while abutting the main seat 62 as seen in FIG. 5 determines a second limit to ball travel at the valve closed position. The positioning of the spherical face of the ball stop 21 and the spherical face of the main seat 62 relative to the camming pins 29 of the ball cage halves 25 determines the alignments of the ball bore 57 at the limits of its axial travel in the valve.
  • An analytically determinable relationship relates rotation of ball 53 from its fully open position to the linear travel distance of the ball from its fully open position. If Θ is the rotation of the ball from its fully open position, x is the linear movement of the ball from its fully open position, y is the lateral offset of the camming pins 29 from the plane of the ball guide grooves 30 of the installed ball cage assembly 24, and XMID is the distance from the middle of the range of ball travel to the fully open ball position, then Θ=Arctangent(xMID/y)−Arctangent((xMID−x)/y).
  • At the middle of the range of ball travel, the axis of the ball guide pins 57 and the axis of the camming pins 29 lie in the same plane transverse to the axis of the valve body 11.
  • The ball 53 is provided with a stepped cylindrical internal through flow passage bore 57 which can permit flow when the ball 53 is in its first, open position with its bore 57 aligned with the valve 10 longitudinal axis. When the ball 53 is in its second, closed position, the flow passage bore 57 of the ball 53 is out of alignment with the longitudinal axis of the valve 10 and the outer spherical surface of the ball is in engagement with the molded-in elastomeric seal 64 of the valve seat 62 to block flow through the valve, as seen in FIG. 5. When the ball 53 is closed and seated, flow around the main seat 62 is blocked by both the O-ring 65 with its backup ring pair 66 and the molded-in elastomeric seal 64.
  • The opposed ball flats parallel to and laterally offset from the flow passage 57 of the ball 53 mount central guide pins 55 which have axes that intersect the axis of the ball through bore 57 at right angles. These ball guide pins 55 and the flats of the ball 53 coact with the ball guide grooves 30 and flat internal faces 28 of the ball cage halves 25 to maintain the ball guide pin 55 axis perpendicular to and intersecting with the longitudinal axis of the valve 10.
  • The two mirror image ball cart grooves 56 are cut into the face of each opposed flat of the ball 53 with one groove per side. These grooves 56 extend outwardly in the radial direction relative to the guide pins 55 on the flats of the ball 53. The axes of the ramming pins 29 of the stationary ball cage halves 25 are laterally offset from the ball rotational axis defined by the pins of the mounted ball. The camming pins 29 are also offset from the longitudinal axis of the valve 10 and are engaged with the ramming grooves 56 of the ball 53.
  • When force acting along the longitudinal axis of the valve is applied to the ball 53, the ball tends to translate along the valve axis. At the same time, the eccentric camming pins 29 abut the sides of the ramming grooves 56 of the ball 53 to produce reaction forces on the sides of the ball grooves 56. The component parallel to the axis of valve 10 of these reactions on the sides of the ball grooves 56 acting at a separation from the ball rotational axis, together with the force tending to move the ball 53 along the valve axis, constitute a force couple acting on the ball. This resultant force couple produces the simultaneous rotation of the ball 53 to accompany its axial movement.
  • A downwardly acting spring bias is used to urge the ball valve 53 to its normally open condition where it permits exiting flow through the valve 10, while separate torsional spring 46 biases are used to urge the flappers 44 of the piloting flapper valve 34 to their normally closed positions. With the flapper and seat assembly 34 mounted in the counterbored annular recess in the through bore 57 of the ball 53, closure of the flappers 44 prevents or strongly restricts reverse flow through the ball. The flappers 44 readily open in response to forces induced on them by exiting flows moving in the normal flow direction through the valve 10, thereby permitting minimally restricted exiting flow from the valve whenever the ball 53 is in its fully open position.
  • The opening spring bias for the ball valve 10 is provided by combining two separate springs 78 and 87 with different properties working in parallel. The main spring 78 is stronger at its maximum deflection than the secondary spring 87 at its respective maximum deflection, but the main spring, is less stiff. Because the travel of the main spring 78 is relatively long and a large bias force resisting full ball closure is undesirable at the closed second ball position, a low stiffness for the main spring is required. However, at and near the first ball position, axial vibrations of the open ball 53 lead to wear in the ball guide grooves 30 of the ball cage halves 25, the ball grooves 56, on the cylindrical surfaces of the guide pins 55 of the ball 5, and the camming pins 29 of the ball cage.
  • In order to aid in suppressing these vibrations while the ball is in its first position, the application of additional spring bias force for holding the ball 53 against the ball stop 21 is necessary. However, application of the downward biasing force of the secondary spring 87 over the full range of travel of the ball is undesirable, since full closure of the ball 53 would then require an appreciably higher back pressure. For these reasons, provision of a latch mechanism 84 is necessary for disengaging and reengaging the secondary spring 87 at an intermediate ball third position a short distance from the first ball position. The preload and stiffness of the secondary spring 87 are selected so that the peak combined spring bias force from the springs 78 and 87 applied to the ball pusher 70 and hence the ball 53 at the third, position of the ball is less than the maximum force applied by the main spring 78 alone when the main spring is at its maximum deflection with the ball 53 at its second position.
  • A tubular ball pusher assembly 70 having a ball pusher seat 73 bears on the spherical surface of the ball valve 53 and transmits the forces of the opening spring biases to the ball. The biasing forces applied by the main spring 78 continuously act on the ball pusher assembly 70 through the spring washer 75 and the snap ring 74.
  • Biasing forces from the secondary spring 87 react against the latch sleeve 85 of the latch assembly 84. The multiple small diameter latch balls 86 engaged in the radial holes through the latch sleeve 85 are not completely housed in the radial direction within those radial holes, but rather can protrude radially either outwardly or inwardly or both since their diameters are greater than the radial thickness of the latch sleeve 85. The body 71 of the ball pusher assembly 70 has a close fit to the inner diameter of the latch sleeve 85 of the latch assembly 84, while the secondary spring recess 92 of the spring retainer 90 has a close fit to the outer diameter of the latch sleeve 85.
  • The male annular latch groove 72 of the ball pusher assembly 70 has as radial depth sufficient to permit the radially inwardly urged balls 86 of the latch assembly 84 to not extend radially outwardly of the outer diameter of the latch sleeve 85 when the holes in the latch sleeve groove 72 are adjacent the ball pusher latch groove 72. Likewise, the radial depth of the female annular groove 93 of the spring retainer 90 is sufficient to allow the latch balls 86 engaged in the latch sleeve 85 to extend radially inwardly no farther than the inner diameter of the latch sleeve 85 when the spring retainer latch groove 91 is adjacent the holes of the latch sleeve. When the annular latch groove 72 of the ball pusher body 71 is in close proximity to the annular latch groove 93 of the spring retainer 90, the latch balls 86 can be partially engaged in both grooves.
  • Whenever the latch balls 86 are engaged in the both the latch sleeve 85 and the engaged annular latch groove 72 of the ball pusher 70 and held there by the radial reaction of the balls against the cylindrical surface of the secondary spring recess 92 of the spring retainer 90, the application of axial forces on the ball pusher acting through its lower inclined face of the latch groove 72 urges the balls radially outwardly. This situation is shown in FIGS. 1, 2, and 3.
  • Likewise, whenever the latch balls 86 are engaged in the both the latch sleeve 85 and the annular latch groove 93 of the spring retainer 90, the balls are held there by the radial reaction of the balls against the outer diameter of the ball pusher body 71. At that time, the application of axial forces from the secondary spring 87 on the latch sleeve urges the latch balls radially inwardly due to reactive forces applied to the balls from the lower inclined face of the latch groove 93 of the spring retainer 90. This situation is shown in FIG. 5. The radial forces urging radial movement of the balls 86 result from the interaction of the balls with the frustroconical ends of the grooves 72, 93 whenever loadings in the axial direction of the valves 10, 200, and 300 are applied to the balls.
  • Thus the balls 86 shift outwardly when they reach the annular latch groove 93 of the spring retainer 90 when the main spring 78 is sufficiently compressed during the closure of the ball 53. Likewise, the balls 86 shift inwardly when they reach the annular latch groove 72 of the ball pusher body 71 when the main spring 78 is sufficiently decompressed during the opening of the ball 53.
  • FIG. 4 and the detail view FIG. 16 show the balls 86 when they are almost fully shifted into full engagement with the spring retainer latch groove 93 as the ball 53 nears its third position during its closure. When the balls 86 move close enough to the annular latch groove 93 in this situation, they will fully shift out of engagement with the groove 72 of the ball pusher assembly 70 and into full engagement with the groove 93. The ball pusher 70 is then fully decoupled from the latch assembly 84, as shown in FIG. 5.
  • Further upward movement of the ball pusher 70 as the main ball 53 moves upwardly past its third position then causes the balls 86 to be trapped in their outward position in groove 93 by contact with the outer cylindrical wall of the ball pusher 70. When this condition exists, the ball pusher assembly 70 only transmits downward main ball opening bias forces from the main spring 78 to the main ball 53. Neglecting frictional effects, any biasing forces from the secondary spring 87 do not act on the main ball 53 for this situation, since the downward bias force from the secondary spring 87 bearing on the latch sleeve 85 of the latch assembly 84 is fully decoupled from the ball pusher 70 and transmitted only to the spring retainer 90.
  • When the ball pusher assembly 70, biased by only the main spring 78 acting on the spring washer 75 and snap ring 74, is moving downwardly as the main ball 53 moves from its second position towards its third position, the spring bias from the secondary spring 87 urges the latch balls 86 inwardly so that they will begin to shift into engagement with the latch groove 72 of the of the ball pusher assembly 70 when that groove comes sufficiently near. FIGS. 4 and 16 also illustrate the situation when the balls 86 are in the process of disengaging from the female latch groove 93 of the spring retainer 90 and reengaging with the male latch groove 72 of the ball pusher. When the balls 86 move close enough to the annular latch groove 72 in this situation, they will fully shift out of engagement with the groove 93 of the spring retainer 90 and into hill engagement with the groove 72. The ball pusher 70 is then fully recoupled to the latch sleeve 85 and the bias force from the secondary spring 87 again contributes to the downward urging of the ball pusher.
  • As a consequence of this unlatching and relatching action of the secondary spring 87 biased latch assembly 84, between the first and third ball positions the main ball 53 is strongly biased towards the ball stop 21 by both the main spring 78 and the secondary spring 87. This is the case when downward flow, zero flow, or any level of reverse flow occurs. However, whenever the ball 53 is moved upwardly towards its main seat 62 more than a short distance, decoupling of the latch assembly from the ball pusher assembly 70 when the main ball is just past its third position reduces the opening bias forces on the ball to only those provided by the main spring 78. The resulting higher spring forces biasing the open ball 53 against the ball stop 21 when the main ball is between its first and third positions, compared to those obtained by using the main spring 78 alone, greatly aid in minimizing vibratory relative motion in the axial direction between the main ball and the ball cage 24.
  • During closure of the main ball 53 induced by reverse flow in the valve 10, the ball pusher seat 73 continues to seal against the main ball between the first and third ball positions. The inner and outer diameters of the ball pusher seat 73 are selected to ensure that this is the case. This sealing action blocks off any reverse flow passing through the clearance gap between the main ball and the main bore 14 of the valve body 11, thus ensuring maximization of the back pressure force acting on the flappers 44 mounted in the ball. This prevention of bypassing flow during the initial closing action of the main ball thus aids in overcoming the extra resistance to closure of the main ball provided by the secondary spring 87 between the first and third main ball positions.
  • After the main ball moves upwardly past its third position, the seal between the ball pusher seat 73 and the main ball is broken. This opens a small additional flow path for backflow, so less backflow induced force acting to close the ball 53 is available. However, as shown in FIG. 15, the spring resistance to closure is relatively reduced from its value between the first and third main ball positions bier most of the remaining closing travel of the ball.
  • While both the main spring 78 and the secondary spring 87 are active in biasing the ball 53 towards its open position, a relatively high force is available to urge the ball 53 against the lower ball stop 21. When the latch assembly 84 is released from the ball pusher assembly 70, the resistance to closure drops. However, further upward travel of the ball towards its closed position leads to the maximum opening bias force being applied to the ball when the ball is fully closed. The relatively high initial force resisting ball movement away from its open position is highly desirable to minimize ball vibratory motions while at the same time keeping the maximum force required for closure to reasonable levels.
  • Additional resistance to vibratory motion of the ball 53 is provided by fluid damping. The close fit of the spring washer 75 to both the spacer sleeve 80 and the ball pusher body 71 results in sufficient flow restriction in those annular gaps to provide additional resistance to vibratory motion of the ball pusher assembly 70 and hence the ball 53. As a consequence, a further reduction to wear tendencies from the axial motion of the ball 53 is provided by the resultant fluid damping.
  • During vibration when the displaced ball pusher assembly 70 attempts to return to its maximum downward position following its fluid damped upward displacement, the spring bias provided by the secondary spring 87 will cause the ball pusher body 71 with its attached snap ring 74 to continuously urge the main ball 53 towards the ball stop 21. The main spring 78 will also urge the spring washer 75 downwards at this time. However, the spring washer 75 is not restrained axially on its upper side, so typically the spring washer will lag behind the ball pusher body 71 due to fluid damping. For the spring washer 75 the amount of fluid damping in this return motion case is somewhat reduced, as the spring washer no longer abuts the snap ring 74 to restrict flow between the spring washer and the ball pusher. Ensuring the rapid return of the main ball 53 to the ball stop 21 under urging of the secondary spring 87 acting through the ball pusher seat 73 results from this arrangement, and this further aids in minimizing vibratory motion of the main ball
  • Fluid induced forces also act on the ball 53 and the flappers 44. The flapper and seat assembly 34 is fixedly mounted in the ball 53 with O-ring 50 sealing between the ball bore 57 and the flapper seat ring 35. The springs 46 urge the flappers 44 to their normally closed position, but are easily overcome by minor flows from the inlet end of the valve 10. However, when there are no or reverse flow conditions for the valve, the flappers 44 are firmly biased against their seating surface 36 by their flapper springs 46. When the flappers 44 are seated against the seating surface 36 of the flapper seat ring 35, the combination of the ball 53 and the flappers 44 functions like a piston for reverse flow.
  • Of necessity, operating clearances have to exist between adjacent flappers when multiple flappers 44 used. The use of multiple flappers to close the flow passage for the valve 10 permits a reduction in the outer diameter of main ball 53 and, hence, the size of body 11 when compared to the case for use of a single flapper for closure of the flow path through the main ball 53. For a valve 10 newly in service, the resultant clearance gaps result in some small flow past the closed flappers when reverse flow conditions exist, and the gaps can grow over time in abrasive flow conditions. However, the amount of reverse flow allowed by the flappers 44 in any case is minor and flapper wear kill require only a very small increase in reverse flow from that required for the unworn full flapper closure condition to produce sufficient force to bias the ball 53 to full closure against its main seat 62.
  • Whenever the main ball 53 moves in the upward direction a short distance beyond its third position, the ball pusher seat 73 loses its seal with the spherical face of the ball. This opens an additional extraneous flow path first through the gap between the main ball and the main bore 14 of the valve body 11 and then between the ball pusher seat and the main ball. Restricting the clearance between the main ball and the body minimizes the resulting extraneous flow so that only minor increases in back flow pressure are required to overcome the resulting loss of force urging the main ball to close at its second position.
  • FIG. 15 illustrates the variation in the opening spring bias forces on the main ball 53 as a function of the displacement of the ball from its fully open first position resting against the ball stop 21. Between the first and third ball positions, a relatively high force produced by reverse flow in the valve 10 is required to initiate valve movement sufficiently away from the ball stop 21 to decouple the biasing forces of the secondary spring 87 from biasing the ball toward its open position. However, once the has of the secondary spring 87 is removed by displacing the ball towards the second closed position past its third position, the fluid induced closure forces needed to produce full ball closure at the second ball position against the main seat 62 are relatively reduced for much of the travel of the ball between its third and second positions. When the main ball 53 is in its second position fully closed against the main seat 62, the flappers 44 are pressure balanced and play no role in resisting back pressure.
  • When normal flow from the inlet end of the valve 10 initiates with the valve in its closed second position, the spring bias force from the main spring 78 and any flow induced pressure on the main ball 53 from flow in the normal direction of the valve 10 urge the ball towards its normally open first position against the ball stop 21. When the opening ball passes its third position, the bias forces from the secondary spring 87 again contribute to the forces urging the ball towards its first position. The opening bias forces on the main ball are always active unless the flow induced loads on the ball cause it to move more rapidly toward its ball stop 21 than the ball pusher assembly 70 can follow. Opening bias forces on the ball pusher assembly are always active.
  • The choke and kill manifold check valve 200 has deliberately enlarged clearances between adjacent faces of its individual flappers 244. The resulting increased flow leakage area in the choke and kill flapper assembly 234 causes the valve 200 to act as a hydraulic fuse. While this behavior occurs to some extent for each of the valve types 10, 200 and 300, it is deliberately enhanced for this application.
  • Thus, the valve 200 will close only when the backflow through the flappers 244 exceeds an analytically determinable desired level. As a consequence of this increased flapper leakage flow area, the choke and kill manifold check valve will not close during the relatively low flows associated with normal wireline or coiled tubing operations. However, if the well to which the valve 200 is connected loses stability during such operations so that excessive outflows tend to occur through the valve, the valve 200 will shut to isolate the well.
  • The conventional, approach to wireline or coiled tubing operations in a well is to remove the internal components from a conventional poppet type choke and kill manifold check valve. This action removes necessary blowout protection daring operations which can inadvertently start a well to flow uncontrollably. Thus, use of the choke and kill manifold check valve 200 provides necessary enhanced safety to wireline and coiled tubing operations in live wells.
  • The float valve version of the cheek valve is functionally identical to the inside blowout preventer version 10 of the valve, with the exception of the vibration damping provided by the elastomeric upper 310 and lower 314 damper assemblies. These dampers act to reduce vibratory movement of the valve internals and the resultant wear.
  • The cross-sections of the upper 312 and lower 316 damper elastomeric elements differ, and their elastomer compositions may also be different. Consequently, their axial stiffnesses differ and their vibrational energy absorptions differ. Additionally, the axial stiffnesses of these elastomeric elements also change as a function of their amounts of axial compression, due to geometry changes during compression. The consequence of these effects is that the elastomeric elements 312 and 316 have different frequency responses and hence damp different portions of the vibration amplitude spectrum to which the valve 300 is exposed. The use of elastomeric dampers having different stiffnesses and energy absorption characteristics permits improving motion damping for the valve elements suspended between the two dampers. Since both dampers 310 and 314 are installed in compression, both are generally active at the same time.
  • When the float valve 300 is closed, sufficient upwardly axial pressure load acting on the closed valve internal components will cause the upper elastomeric damper element 312 to be so strongly compressed that the upper damper retainer ring 311 and the upper damper abutment ring 313 will come in contact to support the retained axial pressure load. This abutment of the rings 311 and 313 prevents the upper elastomeric element 312 from overstressing and extruding while the axial pressure load is transferred into the body 301 of the float valve 300.
  • ADVANTAGES OF THE INVENTION
  • The embodiments of the self-piloted check valve described herein offer numerous benefits compared to conventional check valves. Because of its full opening construction, the valve has very low pressure losses, even with unusually high flow rates. The full opening construction also permits the unimpeded passage of objects through the bore of the valve when normal flow is occurring. This feature is useful in some service conditions. The low flow restriction is a result of minimal flow turbulence due to the straight flow path through the valve, which leads to a consequent reduced tendency for wear from abrasive flows.
  • While the piloting flappers are always susceptible to abrasive and other types of fluid erosion, they do not have to fully seal when closed to pilot the valve. With the ball closed against its seat, the flappers are pressure balanced and inactive in preventing reverse flow. Only engagement of the ball and its seat prevent reverse flow. As the flappers wear, the reverse flow necessary to obtain ball valve closure increases, but the valve still functions.
  • The primary reason for the long life of the improved self-piloted check valve is the protection of both the spherical sealing surface of the ball and its seat from all flow except the low flows passing the ball and its seat during bidirectional shifting of the valve between its open and closed positions. These low bypass flows are sufficiently slow to not present an erosion problem to the sealing surfaces of the ball and seat.
  • When the improved self piloted check valve is used as either an inside blowout preventer or a float valve in a drillstring or as a drilling choke and kill manifold check valve, it is actually desirable that the flappers not be pressure tight. The inherent leakiness of the flapper valve utilized permits the transmission of pressure downstream of the valve through the normally closed flappers and normally ball valve so that it can be measured by gauging means if all flow is temporarily prevented. This capability of pressure measurement through the improved self piloted check valve is critical for safety in drilling applications.
  • Likewise, permitting some limited reverse flow through the open ball and closed but deliberately leaky valve flappers shown in FIG. 12 for the choke and kill manifold check valve is essential to allowing necessary fluid displacements from wireline or coiled tubing operations through the valve while still having reliable closure for undesirably large reverse flows.
  • Provision of a two stage ball opening bias, such as that indicated in FIG. 15, is important for avoiding excessive ball motion whenever the valve is strongly vibrated, such as is the case for drilling float valves. If the contacts between the ball and its ball cage are subject to excessive vibration, such as can occur in near bit drilling applications of the float valve version of the valve, then the provision of the higher opening bias on the ball due to use of the secondary spring can substantially limit wear on the ball and its ball cage.
  • Having to overcome a higher initial ball opening spring bias is also desirable to ensure the development of sufficient force from reverse flow to ensure complete displacement of the ball from its open position to its sealing position abutting its seat. This is particularly advantageous when the valve is to be used in film forming fluids, such as crude oils with high paraffin contents. Also, isolating the exterior of the open ball from film forming fluids due to sealing of the ball pusher seat with the ball when the valve is open further minimizes the tendencies for the valve to stick partially open or closed due to film buildup. These and other advantages will be apparent to those skilled in the art.
  • The space between the main seat of the valve and the spring retainer is essentially isolated by the O-ring of the spring retainer. This permits the spring washer to provide damping for upward movement of the ball pusher and ball. As a result, component wear is reduced by this feature. Engaging the spring washer on both sides by snap rings can permit bidirectional damping. Bidirectional damping of ball motion is important to reduce wear in high vibration situations such as those encountered by float valves.
  • Various changes can be made to the construction of the self piloted check valve described above without departing from the spirit of the invention. Different materials can be used for reasons of corrosion or temperature resistance. Different spring types can also be substituted for the coil springs, such as the use of a wave spring instead of the coil spring used for the secondary bias spring. A metal-to-metal seat can be substituted for the elastomeric ball seat seal. Minor changes can render the valve fire safe. These and other changes do not depart from the spirit of the invention.

Claims (20)

1. A valve apparatus comprising:
(a) a tubular body having a main counterbore; and
(b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including:
(i) a ball seat having a seat flow passage;
(ii) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body, a second ball position abutting the ball seat wherein the flow passage is not fluid communication with the seat flow passage such that the main counterbore of the tubular body and the flow passage are closed, and a third ball position intermediate between the first and second ball positions;
(iii) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers, wherein each flapper is rotatable between a closed position and an open position and a plurality of flapper bias springs wherein each flapper spring biases a flapper toward the closed position; and
(iv) a spring biasing system for providing a bias on the ball valve, the spring biasing system including a first spring and a second spring, wherein the first spring provides a continuous bias on the ball valve to urge the ball valve towards the first ball position and wherein the second spring is activated to bias the ball valve towards the first ball position only when the ball valve is at the first ball position or when the ball valve is moving between the first ball position and the third ball position.
2. The valve apparatus of claim 1, wherein the maximum combined bias force applied by the first spring and the second spring as the ball valve is moving between the first ball position and the third ball position is less than the maximum bias force applied by the first spring when the first spring is maximally deflected when the ball valve is in the second ball position.
3. The valve apparatus of claim 1, wherein when the flappers are in the closed position the flappers are separated by a predetermined gap.
4. The valve apparatus of claim 1, wherein the first transverse end of the internal valving components abuts a first damper and the second transverse end of the internal valving components abuts a second damper.
5. The valve apparatus of claim 4, wherein the first damper has a first elastomeric element and the second damper has a second elastomeric element and wherein the first elastomeric element has different vibrational energy absorption characteristics from the second elastomeric element.
6. The valve apparatus of claim 1, wherein the spring bias mechanism includes an axially reciprocable latching system.
7. The valve apparatus of claim 1, wherein the spring bias mechanism further comprises:
(a) a ball pusher seat having a ball side and an opposed side, wherein the ball side bears against a first side of the ball valve;
(b) a tubular ball pusher mounted on the opposed side of the ball pusher seat, wherein the internal diameter of the ball pusher equals the diameter of the flow passage of the ball valve;
(c) a spring retainer, wherein a portion of the spring retainer encircles a portion of the ball pusher; and
(d) a latching mechanism, wherein the latching mechanism is latched to the ball pusher when the ball valve is in the first ball position, unlatches from the ball pusher as the ball valve goes from the first ball position to the second ball position, and is latched to the spring retainer when the ball valve is in the second ball position.
8. The valve apparatus of claim 7, further comprising a spring washer fitted between an external surface of the ball pusher and a spacer sleeve, whereby the spring washer dampens an axial vibratory motion of the ball pusher.
9. The valve apparatus of claim 1, further comprising a ball cage stationarily positioned in the main counterbore of the tubular body, wherein the ball valve is eccentrically engaged with the ball cage by a pair of opposed eccentric pins mounted on the ball cage.
10. The valve apparatus of claim 1, wherein when the ball is in the second ball position a spherical surface of the ball sealingly abuts a comatable spherical surface of the ball seat and fluid flow past the valve seat is prevented.
11. The valve apparatus of claim 1, wherein a fluid flowing from the first end of the valving components toward the second end of the valving components with sufficient force to overcome the bias of the flapper bias springs rotates the flappers to the open position thereby allowing fluid flow through the ball valve flow passage.
12. The valve apparatus of claim 1, wherein whenever a fluid flowing from the second end of the valving components toward the first end of the valving components exerts sufficient force against the ball and the flappers in the closed position to overcome the bias of the first and second springs, the ball valve moves to the second ball position.
13. A valve apparatus comprising:
(a) a tubular body having a main counterbore; and
(b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including:
(i) a ball seat having a seat flow passage;
(ii) a ball valve having a flow passage, wherein the ball vale is movable with simultaneous directly related rotation about an axis of rotation translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body and a second ball position abutting the ball seat wherein the flow passage is not in fluid communication with the seat flow passage such that the main counterbore of the tubular body and the flow passage is closed;
(iii) a spring biasing system for providing a bias on the ball valve, the spring biasing system including a reciprocable latching system, a first spring and a second spring, wherein the first spring provides a continuous bias on the ball valve to urge the ball valve towards the first ball position and wherein the second spring is activated only when the ball valve is at the first ball position or moving between the first ball position and the third ball position; and
(iv) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers wherein each flapper is rotatable between as closed position and an open position and a plurality of flapper bias springs wherein each flapper bias spring biases a flapper toward the closed position;
whereby a fluid flowing in a first direction from the first end of the valving components toward the second end of the valving components with sufficient force to overcome the bias of the flapper bias springs rotates the flappers to the open position allowing fluid flow through the ball valve flow passage and wherein the fluid flowing in a second direction from the second end of the valving components toward the first end of the valving components with sufficient force against the flappers in the closed position to overcome the bias of the first and second springs will cause the ball valve to rotate to the second ball position.
14. The valve apparatus of claim 13, wherein the first transverse end of the internal valving components abuts a first damper having a first elastomeric element and the second transverse end of the internal valving components abuts a second damper having a second elastomeric element and wherein the second elastomeric element has different vibrational energy absorption characteristics than the first elastomeric element.
15. The valve apparatus of claim 13, wherein the reciprocable latching system includes:
(a) a ball pusher seat having a ball side and an opposed side, wherein the ball side bears against a first side of the ball valve;
(b) a tubular ball pusher mounted on the opposed side of the ball pusher seat, wherein the internal diameter of the ball pusher equals the diameter of the flow passage of the ball valve; and
(c) a spring retainer, wherein a portion of the spring retainer encircles a portion of the ball pusher;
whereby the latching system is coupled to the ball pusher when the ball valve is in the first ball position, the latching system uncouples at an intermediate point when the ball valve is moving from the first ball position to the second ball position and recouples at the intermediate point when the ball valve is moving between the second ball position and the first ball position, and the latching system is coupled to the spring retainer when the ball valve is in the second ball position.
16. The valve apparatus of claim 13, wherein when the ball is in the second ball position a spherical surface of the ball sealingly abuts a comatable spherical surface of the ball seat and fluid flow past the valve seat is prevented.
17. The valve apparatus of claim 13, wherein each flapper is separated from another flapper by a predetermined gap, the predetermined gap calculated to require a desired fluid pressure force in the second direction to cause the ball valve to rotate to the second ball position.
18. The valve apparatus of claim 13, wherein the maximum combined bias force applied by the first spring and the second spring as the ball valve is moving between the first ball position and the third ball position is less than the maximum bias force applied by the first spring when the first spring is maximally deflected when the ball valve is in the second ball position.
19. A valve apparatus comprising:
(a) a tubular body having a main counterbore; and
(b) a plurality of internal valving components housed within the main counterbore, wherein the internal valving components have a first end and a second end transverse to the main counterbore, the internal valving components including:
(i) a ball valve having a flow passage, wherein the ball valve is movable with simultaneous directly related rotation about an axis of rotation and translation to a first ball position with the flow passage in axial alignment with the main counterbore of the tubular body and to a second ball position such that the main counterbore of the tubular body and the valve now passage are closed to fluid flow;
(ii) a ball seat having a seat flow passage, wherein when the ball valve is in the second ball position a spherical surface of the ball valve sealingly abuts a comatable spherical surface of the ball seat such that fluid flow past the ball seat is prevented and the ball flow passage is not in fluid communication with the seat flow passage;
(iii) a ball cage that supports the ball valve, wherein the ball cage is stationarily positioned in the main counterbore of the tubular body and eccentrically engages the ball valve eccentric to a ball valve axis of rotation through a pair of opposed eccentric pins mounted on the ball cage;
(iv) a spring biasing system for providing a bias on the ball valve, the spring biasing system comprising:
a ball pusher seat having a ball side and an opposed side, wherein the ball side bears against a first side of the ball valve;
a tubular ball pusher mounted on the opposed side of the ball pusher seat, wherein the internal diameter of the ball pusher equals the diameter of the flow passage of the ball valve;
a spring retainer, wherein a portion of the spring retainer encircles a portion of the ball pusher;
a first spring;
a second spring; and
a reciprocable latching mechanism, wherein the latching mechanism is coupled to the ball pusher when the ball valve is in the first ball position, the latching mechanism uncouples at an intermediate point when the ball valve is moving from the first ball position to the second ball position and recouples at the intermediate point when the ball valve is moving between the second ball position and the first ball position, and the latching mechanism is coupled to the spring retainer when the ball valve is in the second ball position; and
(v) a pilot valve mounted within the ball valve flow passage, the pilot valve comprising a plurality of flappers, each flapper rotatable between a closed position and an open position, wherein a flapper bias spring biases each flapper toward the closed position;
whereby a fluid flowing in a first direction from the first end of the valving components toward the second end of the valving components with sufficient force to overcome the bias of the flapper bias springs rotates the flappers to the open position allowing fluid flow through the ball valve flow passage and wherein the fluid flowing in a second direction from the second end of the valving components toward the first end of the valving components with sufficient force against the flappers in the closed position to overcome the bias of the first and second springs will cause the ball valve to rotate to the second ball position.
20. The valve apparatus of claim 19, wherein the first transverse end of the internal valving components abuts a first damper having a first elastomeric element and the second transverse end of the internal valving components abuts a second damper having a second elastomeric element wherein the second elastomeric element has different vibrational energy absorption characteristics than the first elastomeric element.
US13/632,890 2010-04-28 2012-10-01 Self Piloted Check Valve Abandoned US20130025711A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/632,890 US20130025711A1 (en) 2010-04-28 2012-10-01 Self Piloted Check Valve
CA 2792718 CA2792718A1 (en) 2012-10-01 2012-10-16 Self piloted check valve
US14/171,325 US9309979B2 (en) 2010-04-28 2014-02-03 Self piloted check valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34338110P 2010-04-28 2010-04-28
US13/066,817 US20110266472A1 (en) 2010-04-28 2011-04-26 Self piloted check valve
US13/632,890 US20130025711A1 (en) 2010-04-28 2012-10-01 Self Piloted Check Valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/066,817 Continuation-In-Part US20110266472A1 (en) 2010-04-28 2011-04-26 Self piloted check valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/171,325 Continuation-In-Part US9309979B2 (en) 2010-04-28 2014-02-03 Self piloted check valve

Publications (1)

Publication Number Publication Date
US20130025711A1 true US20130025711A1 (en) 2013-01-31

Family

ID=47596235

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/632,890 Abandoned US20130025711A1 (en) 2010-04-28 2012-10-01 Self Piloted Check Valve

Country Status (1)

Country Link
US (1) US20130025711A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081823A1 (en) * 2011-10-03 2013-04-04 National Oilwell Varco Uk Limited Valve
US20140124195A1 (en) * 2012-04-11 2014-05-08 Mit Holdings Ltd Apparatus and method to remotely control fluid flow in tubular strings and wellbore annulus
US9234598B2 (en) 2014-05-08 2016-01-12 Saudi Arabian Oil Company System, method and apparatus for combined ball segment valve and check valve
US20170101848A1 (en) * 2015-10-12 2017-04-13 Samuel P. Hawkins, III Pilot inside a ball suitable for wellbore operations
WO2017066324A1 (en) * 2015-10-12 2017-04-20 Hawkins Samuel P Iii Pilot inside a ball suitable for wellbore operations
US20180010424A1 (en) * 2015-10-12 2018-01-11 Samuel P. Hawkins, III Pilot and stopper inside a ball suitable for wellbore drilling operations
CN112302574A (en) * 2020-12-04 2021-02-02 西南石油大学 Large-drift-diameter blowout-preventing back-pressure valve in hinge type drill column

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827494A (en) * 1972-11-03 1974-08-06 Baker Oil Tools Inc Anti-friction ball valve operating means
US3993136A (en) * 1975-08-25 1976-11-23 Hydril Company Apparatus for operating a closure element of a subsurface safety valve and method of using same
US4078268A (en) * 1975-04-24 1978-03-14 St. Jude Medical, Inc. Heart valve prosthesis
US4160478A (en) * 1977-04-25 1979-07-10 Otis Engineering Corporation Well tools
US4262693A (en) * 1979-07-02 1981-04-21 Bernhardt & Frederick Co., Inc. Kelly valve
US4265305A (en) * 1979-08-27 1981-05-05 Teleco Oilfield Services Inc. Mounting and shock absorber assembly for borehole telemetry apparatus
US4273186A (en) * 1978-11-13 1981-06-16 Otis Engineering Corporation Well safety valve system
US4377179A (en) * 1980-10-28 1983-03-22 Bernhardt & Frederick Co., Inc. Pressure balanced ball valve device
US4716011A (en) * 1985-10-09 1987-12-29 Westinghouse Electric Corp. BWR fuel assembly bottom nozzle with one-way coolant flow valve
US4779852A (en) * 1987-08-17 1988-10-25 Teleco Oilfield Services Inc. Vibration isolator and shock absorber device with conical disc springs

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827494A (en) * 1972-11-03 1974-08-06 Baker Oil Tools Inc Anti-friction ball valve operating means
US4078268A (en) * 1975-04-24 1978-03-14 St. Jude Medical, Inc. Heart valve prosthesis
US3993136A (en) * 1975-08-25 1976-11-23 Hydril Company Apparatus for operating a closure element of a subsurface safety valve and method of using same
US4160478A (en) * 1977-04-25 1979-07-10 Otis Engineering Corporation Well tools
US4273186A (en) * 1978-11-13 1981-06-16 Otis Engineering Corporation Well safety valve system
US4262693A (en) * 1979-07-02 1981-04-21 Bernhardt & Frederick Co., Inc. Kelly valve
US4265305A (en) * 1979-08-27 1981-05-05 Teleco Oilfield Services Inc. Mounting and shock absorber assembly for borehole telemetry apparatus
US4377179A (en) * 1980-10-28 1983-03-22 Bernhardt & Frederick Co., Inc. Pressure balanced ball valve device
US4716011A (en) * 1985-10-09 1987-12-29 Westinghouse Electric Corp. BWR fuel assembly bottom nozzle with one-way coolant flow valve
US4779852A (en) * 1987-08-17 1988-10-25 Teleco Oilfield Services Inc. Vibration isolator and shock absorber device with conical disc springs

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081823A1 (en) * 2011-10-03 2013-04-04 National Oilwell Varco Uk Limited Valve
US9206668B2 (en) * 2011-10-03 2015-12-08 National Oilwell Varco Uk Limited Valve
US20140124195A1 (en) * 2012-04-11 2014-05-08 Mit Holdings Ltd Apparatus and method to remotely control fluid flow in tubular strings and wellbore annulus
US9453388B2 (en) * 2012-04-11 2016-09-27 MIT Innovation Sdn Bhd Apparatus and method to remotely control fluid flow in tubular strings and wellbore annulus
US9234598B2 (en) 2014-05-08 2016-01-12 Saudi Arabian Oil Company System, method and apparatus for combined ball segment valve and check valve
US20170101848A1 (en) * 2015-10-12 2017-04-13 Samuel P. Hawkins, III Pilot inside a ball suitable for wellbore operations
WO2017066324A1 (en) * 2015-10-12 2017-04-20 Hawkins Samuel P Iii Pilot inside a ball suitable for wellbore operations
US20180010424A1 (en) * 2015-10-12 2018-01-11 Samuel P. Hawkins, III Pilot and stopper inside a ball suitable for wellbore drilling operations
US10077632B2 (en) * 2015-10-12 2018-09-18 Drilling Innovative Solutions, Llc Pilot inside a ball suitable for wellbore drilling operations
US10077630B2 (en) * 2015-10-12 2018-09-18 Drilling Innovative Solutions, Llc Pilot inside a ball suitable for wellbore operations
US10900322B2 (en) * 2015-10-12 2021-01-26 Drilling Innovative Solutions, Llc Pilot and stopper inside a ball suitable for wellbore drilling operations
CN112302574A (en) * 2020-12-04 2021-02-02 西南石油大学 Large-drift-diameter blowout-preventing back-pressure valve in hinge type drill column

Similar Documents

Publication Publication Date Title
US9309979B2 (en) Self piloted check valve
US20110266472A1 (en) Self piloted check valve
US20130025711A1 (en) Self Piloted Check Valve
US6662886B2 (en) Mudsaver valve with dual snap action
US7350765B2 (en) Double-stop floating ball valve
US9328585B2 (en) Large bore auto-fill float equipment
US20160356399A1 (en) Trunnion control gate valve for severe service
US4834183A (en) Surface controlled subsurface safety valve
US8668015B2 (en) Dual check valve
CA2510632C (en) Connection apparatus and method
US5687792A (en) Drill pipe float valve and method of manufacture
US20110240300A1 (en) mud saver valve and method of operation of same
RU2456432C2 (en) Deformation compensation of channel for piston in well cutout valves
US9657850B2 (en) High performance subsea pressure regulator
CA2792718A1 (en) Self piloted check valve
EP3066293B1 (en) Shear seal check valve for use in wellbore fluid
US20220221064A1 (en) Seat pocket insert
AU2012388242B2 (en) Stress reactive valve
US10900322B2 (en) Pilot and stopper inside a ball suitable for wellbore drilling operations
US20150308211A1 (en) Systems and Methods for Catastrophe Mitigation for Deep Water Oil Drilling during Blowout Preventer Failure
US8973663B2 (en) Pump through circulating and or safety circulating valve
US20230075775A1 (en) Automatic choking hydraulic shock reduction valve
US11549327B2 (en) Blowout preventer and method
CA3001914A1 (en) Pilot inside a ball suitable for wellbore operations
US20140069655A1 (en) Downhole shutoff tool

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION