US20120311794A1 - Washing appliance and methods of operating - Google Patents

Washing appliance and methods of operating Download PDF

Info

Publication number
US20120311794A1
US20120311794A1 US13/154,575 US201113154575A US2012311794A1 US 20120311794 A1 US20120311794 A1 US 20120311794A1 US 201113154575 A US201113154575 A US 201113154575A US 2012311794 A1 US2012311794 A1 US 2012311794A1
Authority
US
United States
Prior art keywords
fluid
wash
temperature
mixture
wash zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/154,575
Inventor
Stephen Edward Hettinger
Mark Anthony DIDAT
David Scott Dunn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haier US Appliance Solutions Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US13/154,575 priority Critical patent/US20120311794A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HETTINGER, STEPHEN EDWARD, DIDAT, MARK ANTHONY, DUNN, DAVID SCOTT
Publication of US20120311794A1 publication Critical patent/US20120311794A1/en
Assigned to HAIER US APPLIANCE SOLUTIONS, INC. reassignment HAIER US APPLIANCE SOLUTIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F13/00Washing machines having receptacles, stationary for washing purposes, with agitators therein contacting the articles being washed 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/18Washing liquid level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof

Definitions

  • the subject matter disclosed herein relates generally to appliances and to methods of operating the appliances with particular emphasis on wash cycles in which washing fluid is dispensed into a wash zone in which objects are positioned to be washed.
  • Some appliances such as household washing machines typically include a cabinet that houses an outer tub for containing wash and rinse water, a perforated wash basket within the tub, and an agitator within the basket.
  • a drive and motor assembly is mounted underneath the stationary outer tub to rotate the basket and the agitator relative to one another, and a pump assembly is configured to pump water from the tub to a drain to execute a wash cycle.
  • These appliances are equipped with various settings, some of which provide selections for the temperature of the washing fluid that is used for washing the objects therein.
  • these temperature settings include hot, warm, and cold.
  • the washing fluid is often drawn directly from a hot water heater or related fluid heating device (the “hot supply”) into the wash zone.
  • the hot supply a hot water heater or related fluid heating device
  • cold settings the washing fluid is often drawn directly from a municipal, well, or related supply (the “cold supply”).
  • Warm settings utilize a mixture of fluids from both the hot supply and the cold supply to achieve the temperature of the washing fluid that is dispensed into the wash zone.
  • Hot washing fluid such as is dispensed by the hot setting is ideal to treat many stains, dirt, and other soils.
  • the amount of hot washing fluid that can be utilized during the wash cycle is often limited by energy standards.
  • many appliances are not equipped to use washing fluid entirely from the hot supply, but rather use a mixture of fluids from the hot supply and the cold supply to meter the temperature of the resultant washing fluid. While this final mixture may be hotter than the washing fluid under the warm setting, the temperature is still less than the ideal treatment conditions provide by “purely” hot washing fluid.
  • a method implemented on an appliance comprising a wash zone in which objects are positioned to be washed.
  • the method comprises a step for forming a fluid mixture in the wash zone, the fluid mixture comprising a first fluid and a second fluid dispensed during an operational cycle so that the fluid mixture reaches a fill level in the wash zone.
  • the first fluid is dispensed to a first level that is less than the fill level and has a temperature that is greater than a mixture temperature for the fluid mixture and a secondary operation is initiated in response to the first fluid reaching the first level.
  • a method implemented on the washing machine that comprises a step for dispensing a first fluid from the fluid inlet into the wash zone and a step for dispensing a second fluid from the fluid inlet into the wash zone.
  • the first fluid and the second fluid form a fluid mixture with a mixture temperature and that reaches a fill level in the wash zone, the first fluid is dispensed to at least a first level that is less than the fill level and has a temperature that is greater than the mixture temperature, and a secondary operation is initiated in response to the first fluid reaching the first level.
  • an appliance that comprises a wash zone in which objects are positioned to be washed, a flow regulator in communication with the wash zone, and a controller coupled to the flow regulator.
  • the controller is operatively configured to execute an operational cycle during which a fluid mixture is formed in the wash zone.
  • the fluid mixture comprises a first fluid and a second fluid dispensed from the flow regulator during the operational cycle, the first fluid is dispensed to at least a first level that is less than a fill level for the fluid mixture and has a temperature that is greater than a mixture temperature for the fluid mixture, and a secondary operation is initiated in response to the first fluid reaching the first level.
  • FIG. 1 is a perspective view of an exemplary embodiment of an appliance.
  • FIG. 2 is a side, schematic view of another exemplary embodiment of an appliance.
  • FIG. 3 is a side, cross-sectional view of another exemplary embodiment of an appliance.
  • FIG. 4 is a flow diagram of an example of an operational cycle for an appliance such as the appliances of FIGS. 1-3 .
  • FIG. 5 is a flow diagram of an example of a wash method, which can be implemented as part of an operational cycle such as the operational cycle of FIG. 4 .
  • FIG. 6 is a flow diagram of an example of a wash method, which can be implemented as part of an operational cycle such as the operational cycle of FIG. 4 .
  • FIG. 7 is a schematic diagram of an example of a control scheme for use with an appliance such as the appliances of FIGS. 1-3 .
  • FIG. 1 a perspective view of an exemplary embodiment of an appliance 100 , and more particularly a vertical-axis washing machine 102 that is made in accordance with the concepts of the present invention. It is contemplated, however, that at least some of the benefits of the concepts recited herein can be realized in other types of appliances, such as horizontal-axis washing machines. These concepts are therefore not intended to be limited to any particular type or configuration of the appliance 100 , such as the configuration and features of the vertical-axis washing machine 102 .
  • the vertical-axis washing machine 102 includes a cabinet 104 and a cover 106 .
  • a backsplash 108 extends from the cover 106 and a variety of control input selectors 110 are coupled to the backsplash 108 .
  • the control input selectors 110 form a user interface input 112 for operator selection of machine cycles and features.
  • Located within the cabinet 104 is a wash zone 114 that is formed inside of a wash tub 116 and more particularly is defined by a wash basket 118 , which is movably disposed and rotatably mounted in the wash tub 116 in a spaced apart relationship from wash tub 116 .
  • the wash basket 118 has a plurality of perforations 120 to facilitate communication of a washing fluid (not shown) out of the wash basket 118 .
  • An agitation device 122 (or impeller or oscillatory basket mechanism) is rotatably positioned in the wash basket 118 on a vertical axis 124 , which is substantially aligned and coincident with a center axis (not shown) of the wash basket 118 .
  • the agitation device 122 is configured to impart oscillatory motion to objects (e.g., articles of clothing) and liquid (e.g., the washing fluid) in the wash basket 118 .
  • the appliance 100 also includes a spray device 126 , which is mounted within the cabinet 104 and through which the washing fluid is dispensed into the wash zone 114 .
  • Embodiments of the appliance 100 are configured to execute an operational cycle by which is formed in the wash zone 114 a fluid mixture that comprises a first fluid and a second fluid.
  • the operational cycle includes a first wash phase in which the first fluid is dispensed to a saturation or first level in the wash zone 114 .
  • the first level is sufficient to wet and in some implementations to submerge the objects disposed therein, but is less than a level for the fluid mixture that is reached by way of a second wash phase in which the second fluid is mixed with the first fluid in the wash zone 114 .
  • the first fluid is provided at an elevated temperature that is higher than the temperature of the fluid mixture.
  • the elevated temperature is consistent with washing fluid that is provided by a hot water heater (also called, “hot tap fluid”) that is present in the location (e.g., house, apartment, office) in which the appliance is positioned.
  • hot tap fluid also called, “hot tap fluid”
  • certain standards may preclude the use of hot tap fluid such as to fill the wash zone 114 to the fill level
  • implementation of the first wash phase and the second wash phase and formation of the fluid mixture as discussed below is preferred because the objects are subjected to the elevated temperature of the hot tap fluid during the first wash phase, rather than only to the lower temperature of the fluid mixture during the operational cycle.
  • the appliance 200 includes, for example, a wash zone 214 that is defined by a wash basket 218 , an agitation device 222 disposed in the wash basket 218 , and a spray device 226 .
  • Other components illustrated and discussed in connection with the appliance 100 ( FIG. 1 ) and other appliance contemplated herein are likewise applicable to the appliance 200 , but only discussed where necessary to convey and clarify one or more concepts of the present disclosure.
  • the appliance 200 includes a flow regulator 228 , which is coupled to the spray device 226 , and through which flows a washing fluid 230 that is dispensed by the spray device 226 into the wash zone 214 .
  • Fluids for the washing fluid 230 are provided by way of a hot or first fluid inlet 232 and a cold or second fluid inlet 234 , each of which is coupled to, respectively, a hot or first fluid supply 236 and a cold or second fluid supply 238 .
  • the appliance 200 also includes a controller 240 that is coupled to the flow regulator 228 .
  • the controller 240 is configured to operate the flow regulator 228 .
  • the controller 240 selectively activates portions of the flow regulator 228 such as a hot fluid portion 242 and a cold fluid portion 244 .
  • the activated portion permits a first washing fluid 246 or a second washing fluid 248 or a mixture of both to flow to the spray device 226 and into the wash zone 214 as the washing fluid 230 .
  • the operational washing cycle is performed in two phases.
  • flow of the washing fluid 230 fills the wash zone 214 to a first or saturation level 260 with a first fluid 252 having a first relatively high temperature, T PP, such as is preferably drawn directly from hot water supply 236 via hot fluid portion 242 of regulator 228 .
  • this first fluid could comprise a mixture of fluid from 236 and 238 , as long as the resultant temperature of the first fluid is sufficiently high to efficiently clean the objects in need of a high temperature fluid.
  • the first or saturation level 260 is set at level sufficient to saturate if not totally immerse the objects, but is less than the fill level 258 for the second phase of the operational washing cycle, so as to reduce the amount of hot fluid utilized for the operational washing cycle.
  • a first wash cycle comprising a secondary operation, such as a agitation cycle and/or other operational cycles as necessary to complete the first phase of the wash cycle intended perform a cleaning operation on the objects while exposed to the relatively high temperature first fluid is performed.
  • the second phase is initiated by supplying a second fluid 254 having a second temperature, T SP , which is less than the first fluid temperature to the wash zone 214 , to raise the level of the fluid mixture in the wash zone to the desired fill level 258 and achieve the desired mixture temperature for the ensuing second phase of the wash cycle.
  • This second fluid may be drawn directly from the cold water supply 236 or comprise a mixture of water from drawn from cold supply 238 and hot supply 236 .
  • the resulting fluid mixture 250 exhibits a mixture temperature T FM , which is greater than the second fluid temperature and less than the first fluid temperature and which is the desired temperature for the washing fluid for the second phase of the wash cycle. While illustrated in stratified or layered format in FIG.
  • first fluid 252 and the second fluid 254 will effectively mix together in a manner that forms the fluid mixture 250 .
  • Each of the fluid levels 258 and 260 can used to dispense a volume of the washing fluid that is pre-set or pre-determined such as by selection via a user input interface (e.g., the user input interface 112 ( FIG. 1 )).
  • the volume or amount of the washing fluid is determined during the operational cycle such as by way of a sensor or other feedback implementations, some of which are discussed in connection with embodiments below.
  • each of the first fluid 252 and the second fluid 254 can include one or more of the first washing fluid 246 and the second washing fluid 248 . That is, in one embodiment, operation of the flow regulator 228 such as by the controller 240 is used to regulate the amount of one or more of the first washing fluid 246 and the second washing fluid 248 . Regulating these amounts can, in turn, effectuate the first part temperature T FP , the second part temperature T SP , and ultimately the mixture temperature T FM .
  • the second fluid comprises a first percentage of the first washing fluid and a second percentage of the second washing fluid, wherein the value of each of the first percentage and the second percentage is selected in response to the mixture temperature T FM .
  • the first fluid supply 236 comprises a hot water heater or related device that provides water at certain temperatures such as from about 32° C. to about 71° C.
  • the second fluid supply 238 comprises a household supply (e.g., a municipal and/or a well-water supply), which provides water that is typically at temperatures of less than about 29° C.
  • the controller 240 activates the hot fluid portion 242 , thereby permitting water from the hot water heater to enter the wash zone 214 as the first part 252 .
  • the controller 240 deactivates the hot fluid portion 242 .
  • the controller 240 is operatively configured to activate other portions of the appliance 200 such as motors, pumps, dispensers (e.g., for additives like liquid detergents), and the like.
  • the controller 240 is also operatively configured to activate the cold fluid portion 244 such as subsequent to either deactivation of the hot fluid portion 242 or the other operations of the appliance 200 .
  • This activation permits water from the household supply to enter the wash zone 214 as the second part 254 , which mixes with the first part 252 to form the fluid mixture 250 at the fill level 258 .
  • Embodiments of the appliance 200 are contemplated in which the cold fluid portion 244 and the hot fluid portion 242 are activated simultaneously, thereby causing to be mixed the water from the hot water heater and the household supply before entering the wash zone 214 .
  • Such mixing is effective to regulate one or more of, e.g., the first part temperature T FP , the second part temperature T SP , and the mixture temperature T FM .
  • FIG. 3 is a front elevational schematic view of yet another embodiment of an appliance 300 such as a vertical-axis axis washing machine 302 .
  • the vertical-axis washing machine 302 comprises a wash zone 314 , a wash tub 316 , a wash basket 318 , an agitation device 322 , a spray device 326 , a flow regulator 328 , and a controller 340 .
  • a fluid mixture 350 which comprises a first part 352 and a second part 354 , and fluid levels 356 including a fill level 358 and a saturation or first level 360 .
  • the appliance 300 also comprises a pump assembly 362 that is located beneath the wash tub 316 and the wash basket 318 for gravity assisted flow when draining the wash tub 316 .
  • the pump assembly 362 includes a pump/motor 364 and in an exemplary embodiment a motor fan (not shown).
  • a pump inlet hose 366 extends from the wash tub 316 to the pump/motor 364 and a pump outlet hose 368 extends from the pump/motor 364 to a drain outlet 370 and ultimately to a building plumbing system discharge line (not shown) in flow communication with the drain outlet 370 .
  • pump assembly 362 can be selectively activated to remove liquid from the wash tub 316 and the wash basket 318 through drain outlet 370 during appropriate points in washing cycles as appliance 300 is used.
  • the wash basket 318 and the agitation device 322 are driven by a motor 372 through a transmission clutch system 374 .
  • a transmission belt 376 is coupled to the motor 372 and the transmission clutch system 374 such as through respective pulleys and shafts.
  • Transmission clutch system 374 facilitates driving engagement of the wash basket 318 and the agitation device 322 through a shaft 378 for rotatable movement within the wash tub 316
  • transmission clutch system 374 facilitates relative rotation of the wash basket 318 and the agitation device 322 for selected portions of wash cycles.
  • Motor 372 , transmission clutch system 374 , and transmission belt 376 can collectively be referred to as a machine drive system, the machine drive system being drivingly connected to the wash basket 318 and the agitation device 322 for rotating the wash basket 318 and/or the agitation device 322 .
  • the flow regulator 328 includes a hot liquid valve 380 and a cold liquid valve 382 , which deliver fluid, such as water, to the spray device 326 through a respective hot liquid hose 384 and a cold liquid hose 386 .
  • Liquid valves 380 , 382 and liquid hoses 384 , 386 together form a liquid supply connection for the appliance 300 and, when connected to a building plumbing system (not shown), provide a water supply for use in the appliance 300 .
  • Liquid valves 380 , 382 and liquid hoses 384 , 386 are connected to a basket inlet tube 388 , which is coupled to the flow regulator 328 , and fluid is dispersed from the basket inlet tube 388 through the spray device 326 as described herein.
  • the appliance 300 also includes an additive dispenser 390 , a fluid pressure sensing device 392 , and a fluid temperature sensing device 394 , which measures the temperature of washing fluid (not shown).
  • the fluid pressure sensing device 392 is configured to monitor the fluid levels 356 of the fluid mixture 350 .
  • the fluid pressure sensing device 392 includes a reservoir/tube assembly 396 and a pressure sensor 398 . As fluid such as the washing fluid 330 rises in the wash zone 314 , air is trapped in reservoir/tube assembly 396 creating a pressure that is monitored by the pressure sensor 398 .
  • Changes in the fluid levels 356 such as the fill level 358 and the first level 360 may therefore be sensed, for example, to facilitate associated control decisions such as the control of hot liquid valve 380 and cold liquid valve 382 during phases of the operational cycle (e.g., the first wash phase and the second wash phase mentioned above).
  • the fluid temperature sensing device 394 can comprise one or more known devices and/or device configurations that are responsive to, and can provide a signal indicative of, the temperature of fluids such as the fluids discussed herein.
  • Exemplary devices include thermisters, thermocouples, and related devices, which can be coupled via electrical circuitry to, e.g., the controller 340 . As depicted in FIG. 3 , these devices can be arranged in the appliance 300 to measure the temperature of the washing fluid that enters the wash zone 314 . However, in other embodiments, the devices can be positioned in other locations such as to monitor the temperature of the fluid mixture 350 , the first part 352 , and the second part 354 . Likewise a plurality of devices (e.g., the fluid temperature sensing devices 394 ) may be incorporated into the appliance 300 so as to enhance the monitoring and measuring capabilities of the appliance 300 as desired.
  • the additive dispenser 390 is useful to retain and dispense laundry additives for use during the operation of the appliance 300 . Dispensing can occur by way of direct injection of the additive into the wash zone 314 and/or injection of the additive into the flow of the washing fluid before, during, and/or after flowing through the spray device 326 .
  • Treating chemistry for the additives may be any type of aid for treating fabric. Examples may include, but are not limited to, washing aids, such as detergents and oxidizers (e.g., bleach), and additives such as fabric softeners, sanitizers, de-wrinklers, and chemicals for imparting desired properties to the fabric. These properties include stain resistance, fragrance (e.g., perfumes), insect repellency, and ultra-violet (UV) protection.
  • washing aids such as detergents and oxidizers (e.g., bleach)
  • additives such as fabric softeners, sanitizers, de-wrinklers, and chemicals for imparting desired properties to the fabric.
  • Operation of the appliance 300 can be controlled by the controller 340 , which is operatively configured to execute an operational cycle and or other instructions (e.g., software and firmware) that instruct the activation and operation of the appliance 300 .
  • the controller 340 can be operatively connected to the user interface input (e.g., the user interface input 112 ( FIG. 1 )) located on the backsplash (e.g., the backsplash 108 ( FIG. 1 )) for user manipulation to select washing machine cycles and features.
  • the controller 340 operates the various components of the appliance 300 to execute selective machine cycles and features.
  • the controller 340 is operatively coupled to the additive dispenser 390 , the fluid pressure sensing device 392 , and the fluid temperature sensing device 394 .
  • the controller 340 can also be operatively coupled to the flow regulator 328 including in one example the inlet valves (e.g., the hot liquid valve 384 and the cold liquid valve 386 ) and machine drive system (e.g., the motor 372 and the transmission clutch system 374 ).
  • an operational cycle 400 is provided that can be implemented on the appliances (e.g., the appliances 100 , 200 , and 300 ) discussed above.
  • the operational cycle 400 comprises a series of phases or cycles that can be used, alone or in combination, and also in various configurations to facilitate cleaning of the objects in the appliances.
  • These phases can further comprise various internal steps, such as dispensing steps in which additive (e.g., liquid detergent) is permitted to flow or otherwise is introduced into the wash zone (e.g., the wash zone 114 , 214 , and 314 ).
  • additive e.g., liquid detergent
  • the operational cycle 400 includes, at block 402 , initiating a wash cycle and, at block 404 , determining whether the wash cycle is complete.
  • the operational cycle 400 also comprises, at block 406 , initiating a spin cycle and, at block 408 , determining whether the spin cycle is complete.
  • the operational cycle 400 further includes, at block 410 , initiating a rinse cycle and, at block 412 , completing the operational cycle such as by indicating to the end user that the operational cycle 400 is complete.
  • the appliance can be configured to operate in a manner that forms the fluid mixture as discussed in connection with FIGS. 1-3 above.
  • a process flow diagram is illustrated for a wash method (or cycle or phase) 500 that is used to operate the appliance.
  • the wash method 500 includes, at block 502 , forming a fluid mixture in the wash zone, and more particularly, at block 504 , dispensing a first part of the fluid mixture to a saturation or first level in the wash zone and, at block 506 , mixing a second part with the first part until the fluid mixture reaches a fill level in the wash zone.
  • the method 500 also comprises, at block 508 , determining whether the wash cycle is complete and, if not, repeating one or more of the dispensing and mixing steps at blocks 504 and 506 . On the other hand, if the wash cycle is complete, then the method 500 continues such as, at block 510 , entering another part of the operational cycle (e.g., the operational cycle 400 at 406 ).
  • the method 500 also includes intermediary steps such as, at block 512 , executing one or more secondary operations.
  • these secondary operations can occur between the step for dispensing of the first part (e.g., at block 504 and the step for mixing the second part (e.g., at block 506 ).
  • the secondary operations can occur during one of the dispensing steps such as during the step for mixing the second part (e.g., at block 506 ).
  • Suitable and exemplary secondary operations may include, but are not limited to, soaking objects in the first part of the fluid mixture, agitating the objects and/or the first part of the fluid mixture, and rotating the wash zone and/or the first part of the fluid mixture.
  • Each of the secondary operations may occur in response to a user selected option, which may be part of and/or incorporated in the user interface input.
  • the first part of the fluid mixture is the result of a hot water fill. That is, the wash zone is filled predominantly with hot water such as from the hot water supply and/or the hot water heater discussed above.
  • the hot liquid valve e.g., the hot liquid valve 380
  • the cold liquid valve e.g., the cold liquid valve 382
  • the hot liquid valve is closed and further operation of the appliance can continue.
  • implementation of one of the secondary operations occurs when the wash zone is only partially-filled with hot water, thereby reducing hot water usage while also leveraging the benefits of higher temperature of the hot water fill.
  • the second part of the fluid mixture can result from one or more of the hot water fill, a cold water fill, and a warm water fill, as desired.
  • the hot liquid valve e.g., the hot liquid valve 380
  • the cold liquid valve e.g., the cold liquid valve 382
  • each of the hot liquid valve e.g., the hot liquid valve 380
  • the cold liquid valve e.g., the cold liquid valve 382
  • the hot liquid valve and the cold liquid valve are opened simultaneously so that the cold water mixes with the hot water before entering the wash zone.
  • the valves are opened and closed in accordance with an algorithm, such as an algorithm that is responsive to signals from the fluid temperature sensing device 394 . While examples of this algorithm are not provided herein, it will be recognized by those artisans skilled in control circuitry and related control structures for appliances that the operation of the valves (as between the open state and the closed state) can be used to modify the temperature of the washing fluid that is dispersed by the spray device. Details of such algorithms are therefore not necessary.
  • the wash method 600 comprises, at block 602 , dispensing a first fluid and, at block 604 , dispensing a second fluid.
  • the method 600 also includes, at block 606 , opening the hot liquid valve, at block 608 , receiving an input indicative of the first level and, at block 610 , determining whether the first fluid has reached the first level. In one example, if the first level is not reached, then the method 600 continues to maintain as open the hot fluid valve.
  • the method 600 continues in one example, at block 612 , closing the hot inlet valve, at block 614 , determining whether to implement a secondary operation and, at block 616 , receiving an input indicative of one or more secondary operations.
  • the method 600 includes, at block 618 , performing one or more secondary operations, which can include, at block 620 , agitating, at block 622 , spinning, and at block 624 , soaking Each of these secondary operations can be performed for a pre-set or pre-determined period of time, which can be independent of and/or based upon various factors and characteristics (e.g., fabric and material type, size of load, number of objects, etc). of the objects to be washed.
  • factors and characteristics e.g., fabric and material type, size of load, number of objects, etc.
  • the method 600 continues with block 604 , dispensing the second fluid.
  • the method 600 comprises, at block 628 , receiving an input indicative of the temperature of the second fluid and, at block 630 , opening and closing one or more of the hot inlet valve and the cold inlet valve in response to the input to adjust the temperature of the second fluid.
  • the method 600 also comprises, at block 632 , receiving an input indicative of the fill level and, at block 634 , determining whether the fluid mixture has reached the fill level.
  • the method 600 continues to dispense the first fluid such as by way of activating one or more of the hot inlet valve and the cold inlet valve (e.g., at block 630 ).
  • the method 600 continues to block 636 , determining whether the wash cycle is complete and, if not, repeating one or more of the dispensing steps such as at block 602 and/or block 604 .
  • the wash cycle is complete, then the method 600 continues such as, at block 638 , entering another part of the operational cycle (e.g., the operational cycle 400 ).
  • the method 600 also includes, at block 640 , dispensing an additive, which is shown to occur variously as throughout the method 600 .
  • additive can be dispensed at different times during the operational cycle, thereby subjecting the objects to be washed at one or more additive concentrations.
  • additive is provided so as to mix with the first part. This mixing creates a high concentration or additive-to-fluid ratio, which is contemplated on the order of 2:1 (e.g., of the normal wash level concentration) and in one example from at least about 2:1 to about 4:3.
  • additive is also dispensed into the fluid mixture, a step which can occur contemporaneously with and/or subsequently to block 604 .
  • the additive can be dispensed as one or more of the secondary operations discussed above and contemplated herein.
  • FIG. 7 provides a schematic diagram of one configuration of an exemplary control scheme 700 for use in, e.g., the appliances 100 , 200 , and 300 , and related embodiments (“the appliances”).
  • the control scheme 700 includes a controller 702 , which includes a processor 704 , a memory 706 , and control circuitry 708 configured for general operation of the appliances.
  • the control circuitry 708 comprises a motor control circuit 710 , a pump control circuit 712 , a valve control circuit 714 , and a sensor circuit 716 .
  • a timing circuit 718 is included such as for measuring pre-determined time periods that are used to indicate actuation of valves and other component related to dispensing of the fluids described above. All of these components are coupled together and communicate to one another when applicable via one or more busses 720 .
  • the control scheme 700 further includes valves 722 , illustrated in the present example as liquid valve 724 (e.g., the hot liquid valve 380 ) and liquid valve 726 (e.g., the cold liquid valve 382 ).
  • the control scheme 700 also includes a motor 728 , a pump 730 , and an additive dispenser 732 .
  • the control scheme 700 also includes one or more sensors 734 such as a fluid pressure sensing device 736 and a fluid temperature sensing device 738 .
  • the controller 702 is coupled to a control panel 740 that includes one or more wash cycle controls 742 .
  • the controller 702 When implemented in the appliances, the controller 702 effectuates operation of various elements of the appliances such as in response to inputs from the sensors 734 and the control panel 740 .
  • the timing circuit 718 of which various configurations are contemplated, is provided to indicate times and time periods to, e.g., open and close one or more of the valves 722 . These time periods may be selected so as to facilitate the cleanliness of the objects in the appliance as contemplated herein.
  • control scheme 700 and its constructive components are configured to communicate amongst themselves and/or with other circuits (and/or devices), which execute high-level logic functions, algorithms, as well as firmware and software instructions.
  • Exemplary circuits of this type include, but are not limited to, discrete elements such as resistors, transistors, diodes, switches, and capacitors, as well as microprocessors and other logic devices such as field programmable gate arrays (“FPGAs”) and application specific integrated circuits (“ASICs”). While all of the discrete elements, circuits, and devices function individually in a manner that is generally understood by those artisans that have ordinary skill in the electrical arts, it is their combination and integration into functional electrical groups and circuits that generally provide for the concepts that are disclosed and described herein.
  • the electrical circuits of the controller 702 are sometimes implemented in a manner that can physically manifest logical operations, which are useful to facilitate the timing of the various cycles of the appliance. These electrical circuits can replicate in physical form an algorithm, a comparative analysis, and/or a decisional logic tree, each of which operates to assign an output and/or a value to the output such as to actuate the valves 722 , to activate the motor 728 , to activate the pump 730 , and/or to activate the additive dispenser 732 .
  • the processor 704 is a central processing unit (CPU) such as an ASIC and/or an FPGA.
  • the processor 704 can also include state machine circuitry or other suitable components capable of receiving inputs from, e.g. the control panel 740 .
  • the memory 706 includes volatile and non-volatile memory and can be used for storage of software (or firmware) instructions and configuration settings.
  • Each of the motor control circuit 710 , the pump control circuit 712 , the valve control circuit 714 , the sensor circuit 716 , and the timing circuit 718 can be embodied as stand-alone devices such as solid-state devices. These devices can be mounted to substrates such as printed-circuit boards, which can accommodate various components including the processor 704 , the memory 706 , and other related circuitry to facilitate operation of the controller 702 in connection with its implementation in the fluid dispensing appliances.
  • FIG. 7 shows the processor 704 , the memory 706 , the motor control circuit 710 , the pump control circuit 712 , the valve control circuit 714 , the sensor circuit 716 , and the timing circuit 718 as discrete circuitry and combinations of discrete components, this need not be the case.
  • one or more of these components can be contained in a single integrated circuit (IC) or other component.
  • the processor 704 can include internal program memory such as RAM and/or ROM.
  • any one or more of functions of these components can be distributed across additional components (e.g., multiple processors or other components).
  • the above described appliances, methods, and control scheme facilitates reducing hot water usage in appliances such as household washing machines.
  • the reduction in hot water facilitates further reductions in energy consumption by the appliance during wash operation.
  • the amount of hot water that is used during the wash cycle may be reduced and/or limited to, e.g., the first level, subjecting the objects to be washed to the hot water (and, in some examples, in combination with high concentrations of laundry additive) can improve cleanliness of the objects realized by the appliance.

Abstract

An appliance for washing objects is configured to dispense a first fluid, or hot wash fluid, into a wash zone to at least a first level. The appliance is further configured to dispense a second fluid into the wash zone, wherein the first fluid and the second fluid form a fluid mixture that reaches a fill level and has a mixture temperature that is less than the temperature of the first fluid. In one embodiment, the first level is less than the fill level and the appliance, in response to the first level being reached, implements a secondary operation that facilitates cleaning of objects that are positioned in the wash zone.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The subject matter disclosed herein relates generally to appliances and to methods of operating the appliances with particular emphasis on wash cycles in which washing fluid is dispensed into a wash zone in which objects are positioned to be washed.
  • 2. Description of Related Art
  • Some appliances such as household washing machines typically include a cabinet that houses an outer tub for containing wash and rinse water, a perforated wash basket within the tub, and an agitator within the basket. A drive and motor assembly is mounted underneath the stationary outer tub to rotate the basket and the agitator relative to one another, and a pump assembly is configured to pump water from the tub to a drain to execute a wash cycle.
  • These appliances are equipped with various settings, some of which provide selections for the temperature of the washing fluid that is used for washing the objects therein. Typically these temperature settings include hot, warm, and cold. For the hot setting, the washing fluid is often drawn directly from a hot water heater or related fluid heating device (the “hot supply”) into the wash zone. On the other hand, when cold settings are selected, the washing fluid is often drawn directly from a municipal, well, or related supply (the “cold supply”). Warm settings utilize a mixture of fluids from both the hot supply and the cold supply to achieve the temperature of the washing fluid that is dispensed into the wash zone.
  • Hot washing fluid such as is dispensed by the hot setting is ideal to treat many stains, dirt, and other soils. However, the amount of hot washing fluid that can be utilized during the wash cycle is often limited by energy standards. To address this issue and to facilitate compliance with such standards, many appliances are not equipped to use washing fluid entirely from the hot supply, but rather use a mixture of fluids from the hot supply and the cold supply to meter the temperature of the resultant washing fluid. While this final mixture may be hotter than the washing fluid under the warm setting, the temperature is still less than the ideal treatment conditions provide by “purely” hot washing fluid.
  • There is therefore a need for an appliance that is configured to provide effective treatment of objects using hot washing fluid, but that meets energy standards without sacrificing quality and effectiveness of treatment of the objects that are washed therein.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one embodiment, there is described a method implemented on an appliance comprising a wash zone in which objects are positioned to be washed. The method comprises a step for forming a fluid mixture in the wash zone, the fluid mixture comprising a first fluid and a second fluid dispensed during an operational cycle so that the fluid mixture reaches a fill level in the wash zone. In one example, the first fluid is dispensed to a first level that is less than the fill level and has a temperature that is greater than a mixture temperature for the fluid mixture and a secondary operation is initiated in response to the first fluid reaching the first level.
  • In another embodiment, in a washing machine having a fluid inlet and a wash tub forming a wash zone in which objects are positioned to be washed, there is provided a method implemented on the washing machine that comprises a step for dispensing a first fluid from the fluid inlet into the wash zone and a step for dispensing a second fluid from the fluid inlet into the wash zone. In one example, the first fluid and the second fluid form a fluid mixture with a mixture temperature and that reaches a fill level in the wash zone, the first fluid is dispensed to at least a first level that is less than the fill level and has a temperature that is greater than the mixture temperature, and a secondary operation is initiated in response to the first fluid reaching the first level.
  • In yet another embodiment, there is described an appliance that comprises a wash zone in which objects are positioned to be washed, a flow regulator in communication with the wash zone, and a controller coupled to the flow regulator. In one example, the controller is operatively configured to execute an operational cycle during which a fluid mixture is formed in the wash zone. The fluid mixture comprises a first fluid and a second fluid dispensed from the flow regulator during the operational cycle, the first fluid is dispensed to at least a first level that is less than a fill level for the fluid mixture and has a temperature that is greater than a mixture temperature for the fluid mixture, and a secondary operation is initiated in response to the first fluid reaching the first level.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference is now made briefly to the accompanying drawings, in which:
  • FIG. 1 is a perspective view of an exemplary embodiment of an appliance.
  • FIG. 2 is a side, schematic view of another exemplary embodiment of an appliance.
  • FIG. 3 is a side, cross-sectional view of another exemplary embodiment of an appliance.
  • FIG. 4 is a flow diagram of an example of an operational cycle for an appliance such as the appliances of FIGS. 1-3.
  • FIG. 5 is a flow diagram of an example of a wash method, which can be implemented as part of an operational cycle such as the operational cycle of FIG. 4.
  • FIG. 6 is a flow diagram of an example of a wash method, which can be implemented as part of an operational cycle such as the operational cycle of FIG. 4.
  • FIG. 7 is a schematic diagram of an example of a control scheme for use with an appliance such as the appliances of FIGS. 1-3.
  • Where applicable like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated.
  • DETAILED DESCRIPTION OF THE INVENTION
  • For context and to begin the discussion, reference can be had to FIG. 1 in which there is depicted a perspective view of an exemplary embodiment of an appliance 100, and more particularly a vertical-axis washing machine 102 that is made in accordance with the concepts of the present invention. It is contemplated, however, that at least some of the benefits of the concepts recited herein can be realized in other types of appliances, such as horizontal-axis washing machines. These concepts are therefore not intended to be limited to any particular type or configuration of the appliance 100, such as the configuration and features of the vertical-axis washing machine 102.
  • In the exemplary embodiment, the vertical-axis washing machine 102 includes a cabinet 104 and a cover 106. A backsplash 108 extends from the cover 106 and a variety of control input selectors 110 are coupled to the backsplash 108. The control input selectors 110 form a user interface input 112 for operator selection of machine cycles and features. Located within the cabinet 104 is a wash zone 114 that is formed inside of a wash tub 116 and more particularly is defined by a wash basket 118, which is movably disposed and rotatably mounted in the wash tub 116 in a spaced apart relationship from wash tub 116. The wash basket 118 has a plurality of perforations 120 to facilitate communication of a washing fluid (not shown) out of the wash basket 118. An agitation device 122 (or impeller or oscillatory basket mechanism) is rotatably positioned in the wash basket 118 on a vertical axis 124, which is substantially aligned and coincident with a center axis (not shown) of the wash basket 118. In one example, the agitation device 122 is configured to impart oscillatory motion to objects (e.g., articles of clothing) and liquid (e.g., the washing fluid) in the wash basket 118. The appliance 100 also includes a spray device 126, which is mounted within the cabinet 104 and through which the washing fluid is dispensed into the wash zone 114.
  • At a relatively high level, more details being provided in the discussion that follows, the inventors propose concepts that are useful to more effectively leverage the cleaning properties of the washing fluid, while providing configurations for the appliance 100 that meet energy and efficiency standards for, e.g., household washing machines. Embodiments of the appliance 100, for example, are configured to execute an operational cycle by which is formed in the wash zone 114 a fluid mixture that comprises a first fluid and a second fluid. The operational cycle includes a first wash phase in which the first fluid is dispensed to a saturation or first level in the wash zone 114. In one embodiment, the first level is sufficient to wet and in some implementations to submerge the objects disposed therein, but is less than a level for the fluid mixture that is reached by way of a second wash phase in which the second fluid is mixed with the first fluid in the wash zone 114.
  • To effectuate cleaning of the objects, the first fluid is provided at an elevated temperature that is higher than the temperature of the fluid mixture. In one example, the elevated temperature is consistent with washing fluid that is provided by a hot water heater (also called, “hot tap fluid”) that is present in the location (e.g., house, apartment, office) in which the appliance is positioned. However, whereas certain standards may preclude the use of hot tap fluid such as to fill the wash zone 114 to the fill level, implementation of the first wash phase and the second wash phase and formation of the fluid mixture as discussed below is preferred because the objects are subjected to the elevated temperature of the hot tap fluid during the first wash phase, rather than only to the lower temperature of the fluid mixture during the operational cycle.
  • These concepts are further illustrated in the discussion of the exemplary embodiment of an appliance 200 that is depicted in schematic form in FIG. 2. While like numerals are used to identify like components as between the FIG. 1 and FIG. 2, except that the numerals are increased by 100 (e.g., 100 in FIG. 1 is 200 in FIG. 2), some pieces of the appliance 100 have been removed for clarity. The appliance 200 includes, for example, a wash zone 214 that is defined by a wash basket 218, an agitation device 222 disposed in the wash basket 218, and a spray device 226. Other components illustrated and discussed in connection with the appliance 100 (FIG. 1) and other appliance contemplated herein are likewise applicable to the appliance 200, but only discussed where necessary to convey and clarify one or more concepts of the present disclosure.
  • In the embodiment of FIG. 2, the appliance 200 includes a flow regulator 228, which is coupled to the spray device 226, and through which flows a washing fluid 230 that is dispensed by the spray device 226 into the wash zone 214. Fluids for the washing fluid 230 are provided by way of a hot or first fluid inlet 232 and a cold or second fluid inlet 234, each of which is coupled to, respectively, a hot or first fluid supply 236 and a cold or second fluid supply 238. The appliance 200 also includes a controller 240 that is coupled to the flow regulator 228. The controller 240 is configured to operate the flow regulator 228. In this embodiment the controller 240 selectively activates portions of the flow regulator 228 such as a hot fluid portion 242 and a cold fluid portion 244. The activated portion permits a first washing fluid 246 or a second washing fluid 248 or a mixture of both to flow to the spray device 226 and into the wash zone 214 as the washing fluid 230.
  • To effectuate cleaning of objects which are optimally cleaned by a high temperature fluid, the operational washing cycle is performed in two phases. In the first phase, flow of the washing fluid 230 fills the wash zone 214 to a first or saturation level 260 with a first fluid 252 having a first relatively high temperature, TPP, such as is preferably drawn directly from hot water supply 236 via hot fluid portion 242 of regulator 228. However, this first fluid could comprise a mixture of fluid from 236 and 238, as long as the resultant temperature of the first fluid is sufficiently high to efficiently clean the objects in need of a high temperature fluid. The first or saturation level 260 is set at level sufficient to saturate if not totally immerse the objects, but is less than the fill level 258 for the second phase of the operational washing cycle, so as to reduce the amount of hot fluid utilized for the operational washing cycle. On the first fluid reaching the first level, a first wash cycle comprising a secondary operation, such as a agitation cycle and/or other operational cycles as necessary to complete the first phase of the wash cycle intended perform a cleaning operation on the objects while exposed to the relatively high temperature first fluid is performed. On completion of this first phase, the second phase is initiated by supplying a second fluid 254 having a second temperature, TSP, which is less than the first fluid temperature to the wash zone 214, to raise the level of the fluid mixture in the wash zone to the desired fill level 258 and achieve the desired mixture temperature for the ensuing second phase of the wash cycle. This second fluid may be drawn directly from the cold water supply 236 or comprise a mixture of water from drawn from cold supply 238 and hot supply 236. The resulting fluid mixture 250, exhibits a mixture temperature TFM, which is greater than the second fluid temperature and less than the first fluid temperature and which is the desired temperature for the washing fluid for the second phase of the wash cycle. While illustrated in stratified or layered format in FIG. 2, it is contemplated that the first fluid 252 and the second fluid 254 will effectively mix together in a manner that forms the fluid mixture 250. Each of the fluid levels 258 and 260 can used to dispense a volume of the washing fluid that is pre-set or pre-determined such as by selection via a user input interface (e.g., the user input interface 112 (FIG. 1)). In other embodiments, the volume or amount of the washing fluid is determined during the operational cycle such as by way of a sensor or other feedback implementations, some of which are discussed in connection with embodiments below.
  • As briefly described above, each of the first fluid 252 and the second fluid 254 can include one or more of the first washing fluid 246 and the second washing fluid 248. That is, in one embodiment, operation of the flow regulator 228 such as by the controller 240 is used to regulate the amount of one or more of the first washing fluid 246 and the second washing fluid 248. Regulating these amounts can, in turn, effectuate the first part temperature TFP, the second part temperature TSP, and ultimately the mixture temperature TFM. In one example, the second fluid comprises a first percentage of the first washing fluid and a second percentage of the second washing fluid, wherein the value of each of the first percentage and the second percentage is selected in response to the mixture temperature TFM.
  • To further elaborate and to illustrate these concepts, consider in one example that the first fluid supply 236 comprises a hot water heater or related device that provides water at certain temperatures such as from about 32° C. to about 71° C. The second fluid supply 238 comprises a household supply (e.g., a municipal and/or a well-water supply), which provides water that is typically at temperatures of less than about 29° C. In one implementation, the controller 240 activates the hot fluid portion 242, thereby permitting water from the hot water heater to enter the wash zone 214 as the first part 252. Upon expiration of a fill time and/or in response to an indication that the first level 260 is reached, the controller 240 deactivates the hot fluid portion 242. In one embodiment, the controller 240 is operatively configured to activate other portions of the appliance 200 such as motors, pumps, dispensers (e.g., for additives like liquid detergents), and the like.
  • The controller 240 is also operatively configured to activate the cold fluid portion 244 such as subsequent to either deactivation of the hot fluid portion 242 or the other operations of the appliance 200. This activation permits water from the household supply to enter the wash zone 214 as the second part 254, which mixes with the first part 252 to form the fluid mixture 250 at the fill level 258. Embodiments of the appliance 200 are contemplated in which the cold fluid portion 244 and the hot fluid portion 242 are activated simultaneously, thereby causing to be mixed the water from the hot water heater and the household supply before entering the wash zone 214. Such mixing is effective to regulate one or more of, e.g., the first part temperature TFP, the second part temperature TSP, and the mixture temperature TFM.
  • FIG. 3 is a front elevational schematic view of yet another embodiment of an appliance 300 such as a vertical-axis axis washing machine 302. Again, as with the FIGS. 1 and 2, like numerals are used to identify like components, except that the numerals are increased by 100. For example, the vertical-axis washing machine 302 comprises a wash zone 314, a wash tub 316, a wash basket 318, an agitation device 322, a spray device 326, a flow regulator 328, and a controller 340. Also depicted in FIG. 3 is a fluid mixture 350, which comprises a first part 352 and a second part 354, and fluid levels 356 including a fill level 358 and a saturation or first level 360.
  • The appliance 300 also comprises a pump assembly 362 that is located beneath the wash tub 316 and the wash basket 318 for gravity assisted flow when draining the wash tub 316. The pump assembly 362 includes a pump/motor 364 and in an exemplary embodiment a motor fan (not shown). A pump inlet hose 366 extends from the wash tub 316 to the pump/motor 364 and a pump outlet hose 368 extends from the pump/motor 364 to a drain outlet 370 and ultimately to a building plumbing system discharge line (not shown) in flow communication with the drain outlet 370. In operation, pump assembly 362 can be selectively activated to remove liquid from the wash tub 316 and the wash basket 318 through drain outlet 370 during appropriate points in washing cycles as appliance 300 is used.
  • The wash basket 318 and the agitation device 322 are driven by a motor 372 through a transmission clutch system 374. A transmission belt 376 is coupled to the motor 372 and the transmission clutch system 374 such as through respective pulleys and shafts. Transmission clutch system 374 facilitates driving engagement of the wash basket 318 and the agitation device 322 through a shaft 378 for rotatable movement within the wash tub 316, and transmission clutch system 374 facilitates relative rotation of the wash basket 318 and the agitation device 322 for selected portions of wash cycles. Motor 372, transmission clutch system 374, and transmission belt 376 can collectively be referred to as a machine drive system, the machine drive system being drivingly connected to the wash basket 318 and the agitation device 322 for rotating the wash basket 318 and/or the agitation device 322.
  • The flow regulator 328 includes a hot liquid valve 380 and a cold liquid valve 382, which deliver fluid, such as water, to the spray device 326 through a respective hot liquid hose 384 and a cold liquid hose 386. Liquid valves 380, 382 and liquid hoses 384, 386 together form a liquid supply connection for the appliance 300 and, when connected to a building plumbing system (not shown), provide a water supply for use in the appliance 300. Liquid valves 380, 382 and liquid hoses 384, 386 are connected to a basket inlet tube 388, which is coupled to the flow regulator 328, and fluid is dispersed from the basket inlet tube 388 through the spray device 326 as described herein.
  • In an exemplary embodiment, the appliance 300 also includes an additive dispenser 390, a fluid pressure sensing device 392, and a fluid temperature sensing device 394, which measures the temperature of washing fluid (not shown). The fluid pressure sensing device 392 is configured to monitor the fluid levels 356 of the fluid mixture 350. In one example, the fluid pressure sensing device 392 includes a reservoir/tube assembly 396 and a pressure sensor 398. As fluid such as the washing fluid 330 rises in the wash zone 314, air is trapped in reservoir/tube assembly 396 creating a pressure that is monitored by the pressure sensor 398. Changes in the fluid levels 356 such as the fill level 358 and the first level 360 may therefore be sensed, for example, to facilitate associated control decisions such as the control of hot liquid valve 380 and cold liquid valve 382 during phases of the operational cycle (e.g., the first wash phase and the second wash phase mentioned above).
  • The fluid temperature sensing device 394 can comprise one or more known devices and/or device configurations that are responsive to, and can provide a signal indicative of, the temperature of fluids such as the fluids discussed herein. Exemplary devices include thermisters, thermocouples, and related devices, which can be coupled via electrical circuitry to, e.g., the controller 340. As depicted in FIG. 3, these devices can be arranged in the appliance 300 to measure the temperature of the washing fluid that enters the wash zone 314. However, in other embodiments, the devices can be positioned in other locations such as to monitor the temperature of the fluid mixture 350, the first part 352, and the second part 354. Likewise a plurality of devices (e.g., the fluid temperature sensing devices 394) may be incorporated into the appliance 300 so as to enhance the monitoring and measuring capabilities of the appliance 300 as desired.
  • The additive dispenser 390 is useful to retain and dispense laundry additives for use during the operation of the appliance 300. Dispensing can occur by way of direct injection of the additive into the wash zone 314 and/or injection of the additive into the flow of the washing fluid before, during, and/or after flowing through the spray device 326. Treating chemistry for the additives may be any type of aid for treating fabric. Examples may include, but are not limited to, washing aids, such as detergents and oxidizers (e.g., bleach), and additives such as fabric softeners, sanitizers, de-wrinklers, and chemicals for imparting desired properties to the fabric. These properties include stain resistance, fragrance (e.g., perfumes), insect repellency, and ultra-violet (UV) protection.
  • Operation of the appliance 300 can be controlled by the controller 340, which is operatively configured to execute an operational cycle and or other instructions (e.g., software and firmware) that instruct the activation and operation of the appliance 300. For example, the controller 340 can be operatively connected to the user interface input (e.g., the user interface input 112 (FIG. 1)) located on the backsplash (e.g., the backsplash 108 (FIG. 1)) for user manipulation to select washing machine cycles and features. In response to user manipulation of the user interface input, the controller 340 operates the various components of the appliance 300 to execute selective machine cycles and features. In one embodiment, the controller 340 is operatively coupled to the additive dispenser 390, the fluid pressure sensing device 392, and the fluid temperature sensing device 394. The controller 340 can also be operatively coupled to the flow regulator 328 including in one example the inlet valves (e.g., the hot liquid valve 384 and the cold liquid valve 386) and machine drive system (e.g., the motor 372 and the transmission clutch system 374).
  • Referring next to FIG. 4, an operational cycle 400 is provided that can be implemented on the appliances (e.g., the appliances 100, 200, and 300) discussed above. At a high level, the operational cycle 400 comprises a series of phases or cycles that can be used, alone or in combination, and also in various configurations to facilitate cleaning of the objects in the appliances. These phases can further comprise various internal steps, such as dispensing steps in which additive (e.g., liquid detergent) is permitted to flow or otherwise is introduced into the wash zone (e.g., the wash zone 114, 214, and 314). Although not necessarily discussed or illustrated herein, such internal steps and those steps related to the operation of appliances such as washing machines, and in particular vertical-axis washing machines, are contemplated within the scope and spirit of the present disclosure.
  • It is also depicted in FIG. 4 that the operational cycle 400 includes, at block 402, initiating a wash cycle and, at block 404, determining whether the wash cycle is complete. The operational cycle 400 also comprises, at block 406, initiating a spin cycle and, at block 408, determining whether the spin cycle is complete. The operational cycle 400 further includes, at block 410, initiating a rinse cycle and, at block 412, completing the operational cycle such as by indicating to the end user that the operational cycle 400 is complete.
  • Focusing on the wash cycle at block 402, it is contemplated that the appliance can be configured to operate in a manner that forms the fluid mixture as discussed in connection with FIGS. 1-3 above. In one embodiment, and with reference to FIG. 5, a process flow diagram is illustrated for a wash method (or cycle or phase) 500 that is used to operate the appliance. The wash method 500 includes, at block 502, forming a fluid mixture in the wash zone, and more particularly, at block 504, dispensing a first part of the fluid mixture to a saturation or first level in the wash zone and, at block 506, mixing a second part with the first part until the fluid mixture reaches a fill level in the wash zone. The method 500 also comprises, at block 508, determining whether the wash cycle is complete and, if not, repeating one or more of the dispensing and mixing steps at blocks 504 and 506. On the other hand, if the wash cycle is complete, then the method 500 continues such as, at block 510, entering another part of the operational cycle (e.g., the operational cycle 400 at 406).
  • The method 500 also includes intermediary steps such as, at block 512, executing one or more secondary operations. In one example, these secondary operations can occur between the step for dispensing of the first part (e.g., at block 504 and the step for mixing the second part (e.g., at block 506). In another example, the secondary operations can occur during one of the dispensing steps such as during the step for mixing the second part (e.g., at block 506). Suitable and exemplary secondary operations may include, but are not limited to, soaking objects in the first part of the fluid mixture, agitating the objects and/or the first part of the fluid mixture, and rotating the wash zone and/or the first part of the fluid mixture. Each of the secondary operations may occur in response to a user selected option, which may be part of and/or incorporated in the user interface input.
  • Noted in the present example is that the first part of the fluid mixture is the result of a hot water fill. That is, the wash zone is filled predominantly with hot water such as from the hot water supply and/or the hot water heater discussed above. In one example, the hot liquid valve (e.g., the hot liquid valve 380) is opened and the cold liquid valve (e.g., the cold liquid valve 382) is closed, thereby causing only hot water to enter the wash zone via the spray device. When the first level is reached, as indicated in one example by a signal from the fluid pressure sensing device 392, then the hot liquid valve is closed and further operation of the appliance can continue. Thus, in one embodiment of the method 500, implementation of one of the secondary operations occurs when the wash zone is only partially-filled with hot water, thereby reducing hot water usage while also leveraging the benefits of higher temperature of the hot water fill.
  • The second part of the fluid mixture can result from one or more of the hot water fill, a cold water fill, and a warm water fill, as desired. In a cold water fill, the hot liquid valve (e.g., the hot liquid valve 380) is closed and the cold liquid valve (e.g., the cold liquid valve 382) is open, thereby causing only cold water to enter the wash zone via the spray device. When a warm water fill is implemented, each of the hot liquid valve (e.g., the hot liquid valve 380) and the cold liquid valve (e.g., the cold liquid valve 382) is utilized, thereby causing hot water and cold water to enter the wash zone via the spray device. In one example, the hot liquid valve and the cold liquid valve are opened simultaneously so that the cold water mixes with the hot water before entering the wash zone. In another example, the valves are opened and closed in accordance with an algorithm, such as an algorithm that is responsive to signals from the fluid temperature sensing device 394. While examples of this algorithm are not provided herein, it will be recognized by those artisans skilled in control circuitry and related control structures for appliances that the operation of the valves (as between the open state and the closed state) can be used to modify the temperature of the washing fluid that is dispersed by the spray device. Details of such algorithms are therefore not necessary.
  • Turning next to FIG. 6, another process flow diagram is illustrated for a wash method (or cycle or phase) 600 that is used to operate the appliance. The wash method 600 comprises, at block 602, dispensing a first fluid and, at block 604, dispensing a second fluid. The method 600 also includes, at block 606, opening the hot liquid valve, at block 608, receiving an input indicative of the first level and, at block 610, determining whether the first fluid has reached the first level. In one example, if the first level is not reached, then the method 600 continues to maintain as open the hot fluid valve. On the other hand, if the first level is reached then the method 600 continues in one example, at block 612, closing the hot inlet valve, at block 614, determining whether to implement a secondary operation and, at block 616, receiving an input indicative of one or more secondary operations. In one embodiment, the method 600 includes, at block 618, performing one or more secondary operations, which can include, at block 620, agitating, at block 622, spinning, and at block 624, soaking Each of these secondary operations can be performed for a pre-set or pre-determined period of time, which can be independent of and/or based upon various factors and characteristics (e.g., fabric and material type, size of load, number of objects, etc). of the objects to be washed.
  • Following implementation of the secondary operation at block 618, and in one example as indicated, at block 626, determining whether the secondary operations are complete, the method 600 continues with block 604, dispensing the second fluid. In one embodiment, the method 600 comprises, at block 628, receiving an input indicative of the temperature of the second fluid and, at block 630, opening and closing one or more of the hot inlet valve and the cold inlet valve in response to the input to adjust the temperature of the second fluid. The method 600 also comprises, at block 632, receiving an input indicative of the fill level and, at block 634, determining whether the fluid mixture has reached the fill level. In one example, if the fill level is not reached, then the method 600 continues to dispense the first fluid such as by way of activating one or more of the hot inlet valve and the cold inlet valve (e.g., at block 630). When the fluid mixture reaches the fill level, the method 600 continues to block 636, determining whether the wash cycle is complete and, if not, repeating one or more of the dispensing steps such as at block 602 and/or block 604. On the other hand, if the wash cycle is complete, then the method 600 continues such as, at block 638, entering another part of the operational cycle (e.g., the operational cycle 400).
  • The method 600 also includes, at block 640, dispensing an additive, which is shown to occur variously as throughout the method 600. The inventors propose, for example, that additive can be dispensed at different times during the operational cycle, thereby subjecting the objects to be washed at one or more additive concentrations. In one embodiment, additive is provided so as to mix with the first part. This mixing creates a high concentration or additive-to-fluid ratio, which is contemplated on the order of 2:1 (e.g., of the normal wash level concentration) and in one example from at least about 2:1 to about 4:3. In another embodiment, additive is also dispensed into the fluid mixture, a step which can occur contemporaneously with and/or subsequently to block 604. In yet another embodiment, the additive can be dispensed as one or more of the secondary operations discussed above and contemplated herein.
  • A variety of control configurations and schemes can be used to implement the operational cycles, e.g., the operational cycles 400, the wash methods, e.g., the wash methods 500 and 600, and generally the concepts of the present disclosure. The example of FIG. 7 provides a schematic diagram of one configuration of an exemplary control scheme 700 for use in, e.g., the appliances 100, 200, and 300, and related embodiments (“the appliances”). The control scheme 700 includes a controller 702, which includes a processor 704, a memory 706, and control circuitry 708 configured for general operation of the appliances. The control circuitry 708 comprises a motor control circuit 710, a pump control circuit 712, a valve control circuit 714, and a sensor circuit 716. In one embodiment, a timing circuit 718 is included such as for measuring pre-determined time periods that are used to indicate actuation of valves and other component related to dispensing of the fluids described above. All of these components are coupled together and communicate to one another when applicable via one or more busses 720.
  • The control scheme 700 further includes valves 722, illustrated in the present example as liquid valve 724 (e.g., the hot liquid valve 380) and liquid valve 726 (e.g., the cold liquid valve 382). The control scheme 700 also includes a motor 728, a pump 730, and an additive dispenser 732. The control scheme 700 also includes one or more sensors 734 such as a fluid pressure sensing device 736 and a fluid temperature sensing device 738.
  • In one embodiment, the controller 702 is coupled to a control panel 740 that includes one or more wash cycle controls 742. When implemented in the appliances, the controller 702 effectuates operation of various elements of the appliances such as in response to inputs from the sensors 734 and the control panel 740. The timing circuit 718, of which various configurations are contemplated, is provided to indicate times and time periods to, e.g., open and close one or more of the valves 722. These time periods may be selected so as to facilitate the cleanliness of the objects in the appliance as contemplated herein.
  • At a high level, the control scheme 700 and its constructive components are configured to communicate amongst themselves and/or with other circuits (and/or devices), which execute high-level logic functions, algorithms, as well as firmware and software instructions. Exemplary circuits of this type include, but are not limited to, discrete elements such as resistors, transistors, diodes, switches, and capacitors, as well as microprocessors and other logic devices such as field programmable gate arrays (“FPGAs”) and application specific integrated circuits (“ASICs”). While all of the discrete elements, circuits, and devices function individually in a manner that is generally understood by those artisans that have ordinary skill in the electrical arts, it is their combination and integration into functional electrical groups and circuits that generally provide for the concepts that are disclosed and described herein.
  • The electrical circuits of the controller 702 are sometimes implemented in a manner that can physically manifest logical operations, which are useful to facilitate the timing of the various cycles of the appliance. These electrical circuits can replicate in physical form an algorithm, a comparative analysis, and/or a decisional logic tree, each of which operates to assign an output and/or a value to the output such as to actuate the valves 722, to activate the motor 728, to activate the pump 730, and/or to activate the additive dispenser 732.
  • In one embodiment, the processor 704 is a central processing unit (CPU) such as an ASIC and/or an FPGA. The processor 704 can also include state machine circuitry or other suitable components capable of receiving inputs from, e.g. the control panel 740. The memory 706 includes volatile and non-volatile memory and can be used for storage of software (or firmware) instructions and configuration settings. Each of the motor control circuit 710, the pump control circuit 712, the valve control circuit 714, the sensor circuit 716, and the timing circuit 718 can be embodied as stand-alone devices such as solid-state devices. These devices can be mounted to substrates such as printed-circuit boards, which can accommodate various components including the processor 704, the memory 706, and other related circuitry to facilitate operation of the controller 702 in connection with its implementation in the fluid dispensing appliances.
  • However, although FIG. 7 shows the processor 704, the memory 706, the motor control circuit 710, the pump control circuit 712, the valve control circuit 714, the sensor circuit 716, and the timing circuit 718 as discrete circuitry and combinations of discrete components, this need not be the case. For example, one or more of these components can be contained in a single integrated circuit (IC) or other component. As another example, the processor 704 can include internal program memory such as RAM and/or ROM. Similarly, any one or more of functions of these components can be distributed across additional components (e.g., multiple processors or other components).
  • In view of the foregoing, the above described appliances, methods, and control scheme facilitates reducing hot water usage in appliances such as household washing machines. The reduction in hot water, in turn, facilitates further reductions in energy consumption by the appliance during wash operation. However, although the amount of hot water that is used during the wash cycle may be reduced and/or limited to, e.g., the first level, subjecting the objects to be washed to the hot water (and, in some examples, in combination with high concentrations of laundry additive) can improve cleanliness of the objects realized by the appliance.
  • Furthermore, it is contemplated that, where applicable in the present disclosure, numerical values, as well as other values that are recited herein are modified by the term “about”, whether expressly stated or inherently derived by the discussion of the present disclosure. As used herein, the term “about” defines the numerical boundaries of the modified values so as to include, but not be limited to, tolerances and values up to, and including the numerical value so modified. That is, numerical values can include the actual value that is expressly stated, as well as other values that are, or can be, the decimal, fractional, or other multiple of the actual value indicated, and/or described in the disclosure.
  • This written description uses examples to disclose embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defied by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims (25)

1. A method implemented on an appliance comprising a wash zone in which objects are positioned to be washed, said method comprising:
forming a fluid mixture in the wash zone, the fluid mixture comprising a first fluid and a second fluid dispensed during an operational cycle so that the fluid mixture reaches a fill level in the wash zone,
wherein the first fluid is dispensed to a first level that is less than the fill level and has a temperature that is greater than a mixture temperature for the fluid mixture, and
wherein a secondary operation is initiated in response to the first fluid reaching the first level.
2. A method according to claim 1, wherein the first fluid comprises a first washing fluid and an additive mixed with the first washing fluid.
3. A method according to claim 2, wherein the first washing fluid is dispensed from a hot fluid inlet.
4. A method according to claim 2, wherein the second fluid comprises a second washing fluid that is dispensed from a cold fluid inlet.
5. A method according to claim 4, wherein the second fluid further comprises a first percentage of the first washing fluid and a second percentage of the second washing fluid, and wherein a value for each of the first percentage and the second percentage is selected in response to the mixture temperature.
6. A method according to claim 1, wherein the fluid mixture is formed during a wash cycle of the operational cycle.
7. A method according to claim 6, further comprising activating an agitation device during the wash cycle, wherein the agitation device is configured to agitate the first fluid.
8. A method according to claim 6, further comprising rotating a wash basket in which the wash zone is formed during the wash cycle, wherein the second fluid is dispensed into the wash zone after initiating rotation
9. A method according to claim 1, wherein the secondary operation occurs before the second fluid is dispensed into the wash zone.
10. A method according to claim 1, further comprising dispensing an additive into the fluid mixture in the wash zone.
11. A method according to claim 1, wherein the first fluid and the second fluid are dispensed at different time of the operational cycle.
12. In a washing machine having a fluid inlet and a wash tub forming a wash zone in which objects are positioned to be washed, a method implemented on the washing machine comprising:
dispensing a first fluid from the fluid inlet into the wash zone;
dispensing a second fluid from the fluid inlet into the wash zone;
wherein the first fluid and the second fluid form a fluid mixture with a mixture temperature and that reaches a fill level in the wash zone,
wherein the first fluid is dispensed to at least a first level that is less than the fill level and has a temperature that is greater than the mixture temperature, and
wherein a secondary operation is initiated in response to the first fluid reaching the first level.
13. A method according to claim 12, wherein the second fluid comprises a first washing fluid from a hot fluid inlet and a second washing fluid from a cold fluid inlet.
14. A method according to claim 12, further comprising agitating the first fluid.
15. A method according to claim 12, wherein the first fluid and the second fluid are dispensed at different times during an operational cycle.
16. A method according to claim 12, further comprising dispensing an additive into the wash zone, wherein the additive mixes with the first fluid in the wash zone.
17. An appliance, comprising:
a wash zone in which objects are positioned to be washed;
a flow regulator in communication with the wash zone; and
a controller coupled to the flow regulator,
wherein the controller is operatively configured to execute an operational cycle during which a fluid mixture is formed in the wash zone,
wherein the fluid mixture comprises a first fluid and a second fluid dispensed from the flow regulator during the operational cycle,
wherein the first fluid is dispensed to at least a first level that is less than a fill level for the fluid mixture and has a temperature that is greater than a mixture temperature for the fluid mixture, and
wherein a secondary operation is initiated in response to the first fluid reaching the first level.
18. An appliance according to claim 17, further comprising a hot fluid inlet and a cold fluid inlet, each coupled to the flow regulator, wherein the first fluid comprises a first washing fluid dispensed from the hot fluid inlet.
19. An appliance according to claim 18, wherein the second fluid comprises a second washing fluid dispensed from the cold fluid inlet.
20. An appliance according to claim 17, further comprising a wash basket and an agitation device disposed in the wash basket, wherein the controller is configured to activate the agitation device before the second fluid is dispensed into the wash zone.
21. A method implemented on an appliance comprising a wash zone in which objects are positioned to be washed, said method comprising:
dispensing a first fluid having a first temperature into the wash zone to a first level that is less than a fill level;
initiating a first operation in response to the first fluid reaching the first level;
dispensing a second fluid into the wash zone to mix with said first fluid following said first operation, the second fluid bringing the resultant fluid mixture to the fill level, said second fluid having a second temperature less than said first temperature, whereby the fluid mixture has a third temperature which is less than said first temperature and greater than said second temperature; and
initiating a second operation in response to the fluid mixture reaching the fill level.
22. An appliance, comprising:
a wash basket forming a wash zone into which objects can be positioned to be washed;
a flow regulator; and
a controller connectable to the flow regulator,
wherein the controller is operatively configured to execute an operational cycle comprising steps for,
dispensing a first fluid having a first temperature into the wash zone to a first level that is less than a fill level;
initiating a first operation in response to the first fluid reaching the first level;
dispensing a second fluid into the wash zone to mix with said first fluid following said first operation, the second fluid bringing the resultant fluid mixture to the fill level, said second fluid having a second temperature less than said first temperature, whereby the fluid mixture has a third temperature which is less than said first temperature and greater than said second temperature; and
initiating a second operation in response to the fluid mixture reaching the fill level.
23. An appliance according to claim 22, further comprising a wash basket and an agitation device disposed in the wash basket, wherein the controller operatively configured to activate the agitation device during the first operation.
24. An appliance according to claim 22, wherein the controller is further operatively configured to dispense an additive into the wash zone.
25. An appliance according to claim 24, wherein the additive mixes with the first fluid during the first operation.
US13/154,575 2011-06-07 2011-06-07 Washing appliance and methods of operating Abandoned US20120311794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/154,575 US20120311794A1 (en) 2011-06-07 2011-06-07 Washing appliance and methods of operating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/154,575 US20120311794A1 (en) 2011-06-07 2011-06-07 Washing appliance and methods of operating

Publications (1)

Publication Number Publication Date
US20120311794A1 true US20120311794A1 (en) 2012-12-13

Family

ID=47291884

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/154,575 Abandoned US20120311794A1 (en) 2011-06-07 2011-06-07 Washing appliance and methods of operating

Country Status (1)

Country Link
US (1) US20120311794A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160060800A1 (en) * 2014-08-26 2016-03-03 Whirlpool Corporation Laundry treating appliance and method of control
US20160201247A1 (en) * 2015-01-09 2016-07-14 General Electric Company Washing machine appliance
US9410280B2 (en) 2014-01-20 2016-08-09 Haier Us Appliance Solutions, Inc. Washing machine appliances and methods for operating the same
US20170058449A1 (en) * 2011-10-06 2017-03-02 Whirlpool Corporation Dispensing treating chemistry in a laundry treating appliance
USD863237S1 (en) 2017-09-22 2019-10-15 Whirlpool Corporation Push button knob with illumination capabilities for a laundry treating appliance
US10988881B2 (en) 2017-07-06 2021-04-27 Whirlpool Corporation Fabric cleaning appliance with performance enhancement selector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327730B1 (en) * 1999-12-08 2001-12-11 Maytag Corporation Adjustable liquid temperature control system for a washing machine
US20040255392A1 (en) * 2003-06-20 2004-12-23 Johnson Ronald Miles Clothes washer temperature control apparatus and method
US20060000030A1 (en) * 2004-06-30 2006-01-05 Shaffer Timothy S Clothes washer recirculation systems and methods
US20070157396A1 (en) * 2006-01-08 2007-07-12 Samsung Electronics Co., Ltd. Washing machine and washing control method thereof
US20070283508A1 (en) * 2006-06-09 2007-12-13 Nyik Siong Wong Method of operating a washing machine using steam
US20110047713A1 (en) * 2009-07-31 2011-03-03 Lg Electronics Inc. Method of treating laundry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327730B1 (en) * 1999-12-08 2001-12-11 Maytag Corporation Adjustable liquid temperature control system for a washing machine
US20040255392A1 (en) * 2003-06-20 2004-12-23 Johnson Ronald Miles Clothes washer temperature control apparatus and method
US20060000030A1 (en) * 2004-06-30 2006-01-05 Shaffer Timothy S Clothes washer recirculation systems and methods
US20070157396A1 (en) * 2006-01-08 2007-07-12 Samsung Electronics Co., Ltd. Washing machine and washing control method thereof
US20070283508A1 (en) * 2006-06-09 2007-12-13 Nyik Siong Wong Method of operating a washing machine using steam
US20110047713A1 (en) * 2009-07-31 2011-03-03 Lg Electronics Inc. Method of treating laundry

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058449A1 (en) * 2011-10-06 2017-03-02 Whirlpool Corporation Dispensing treating chemistry in a laundry treating appliance
US9890493B2 (en) * 2011-10-06 2018-02-13 Whirlpool Corporation Dispensing treating chemistry in a laundry treating appliance
US10385499B2 (en) 2011-10-06 2019-08-20 Whirlpool Corporation Dispensing treating chemistry in a laundry treating appliance
US11560666B2 (en) 2011-10-06 2023-01-24 Whirlpool Corporation Dispensing treating chemistry in a laundry treating appliance
US10837135B2 (en) 2011-10-06 2020-11-17 Whirlpool Corporation Dispensing treating chemistry in a laundry treating appliance
US9410280B2 (en) 2014-01-20 2016-08-09 Haier Us Appliance Solutions, Inc. Washing machine appliances and methods for operating the same
US20160060800A1 (en) * 2014-08-26 2016-03-03 Whirlpool Corporation Laundry treating appliance and method of control
US20160201247A1 (en) * 2015-01-09 2016-07-14 General Electric Company Washing machine appliance
US10988881B2 (en) 2017-07-06 2021-04-27 Whirlpool Corporation Fabric cleaning appliance with performance enhancement selector
US11725326B2 (en) 2017-07-06 2023-08-15 Whirlpool Corporation Fabric cleaning appliance with performance enhancement selector
USD909316S1 (en) 2017-09-22 2021-02-02 Whirlpool Corporation Push button knob with illumination capabilities for a laundry treating appliance
USD863237S1 (en) 2017-09-22 2019-10-15 Whirlpool Corporation Push button knob with illumination capabilities for a laundry treating appliance
USD980809S1 (en) 2017-09-22 2023-03-14 Whirlpool Corporation Push button knob with illumination capabilities for a laundry treating appliance

Similar Documents

Publication Publication Date Title
US20100287709A1 (en) Appliance with water hardness determination
US10240274B2 (en) Method and apparatus for using gravity to precisely dose detergent in a washing machine
US20120311794A1 (en) Washing appliance and methods of operating
US20050144737A1 (en) Clothes washer additive dispenser apparatus and method
US20160326681A1 (en) Laundry Washing Machine with Water Softening System and Method for Controlling a Laundry Washing Machine
US10435833B2 (en) Laundry washing machine and method for controlling a laundry washing machine
US7650766B2 (en) Apparatus and methods for rinsing washing machines
US9109321B2 (en) Device and method for rinsing objects in an appliance
US20150211166A1 (en) Washing Machine Appliances and Methods for Washing Articles Therein
US8839647B2 (en) Vertical axis washing machine having steam features
US9127391B2 (en) Device for dispensing an additive in an appliance
US20120023679A1 (en) Method and apparatus for reducing water usage during a washing cycle
US7434424B2 (en) Clothes washer agitation time and speed control apparatus
US9410280B2 (en) Washing machine appliances and methods for operating the same
US20140325766A1 (en) Method for regulating ozone within a washing machine appliance
US20120144878A1 (en) Device for dispensing an additive in an appliance
US20160201247A1 (en) Washing machine appliance
US11913156B2 (en) Laundry washing machine for use with unit dose detergent packages
US20130104318A1 (en) Vertical axis washing machine having steam features
US6978554B2 (en) Apparatus and methods for controlling operation of washing machines
US7370495B2 (en) Clothes washer temperature control apparatus and method
US11280039B2 (en) Cold temperature sanitizing rinse in a washing machine appliance
US11280043B2 (en) Additive dispensing for washing machine appliances
US9228282B2 (en) Vertical axis washing machine having steam features
US11591738B2 (en) Optimizing soak time in a washing machine appliance

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HETTINGER, STEPHEN EDWARD;DIDAT, MARK ANTHONY;DUNN, DAVID SCOTT;SIGNING DATES FROM 20110531 TO 20110606;REEL/FRAME:026474/0029

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HAIER US APPLIANCE SOLUTIONS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:038952/0638

Effective date: 20160606