US20120209419A1 - System and Method for Surgical Planning - Google Patents

System and Method for Surgical Planning Download PDF

Info

Publication number
US20120209419A1
US20120209419A1 US13178148 US201113178148A US2012209419A1 US 20120209419 A1 US20120209419 A1 US 20120209419A1 US 13178148 US13178148 US 13178148 US 201113178148 A US201113178148 A US 201113178148A US 2012209419 A1 US2012209419 A1 US 2012209419A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
acetabular cup
landmarks
method
based
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13178148
Inventor
Hyosig Kang
Daniel Odermatt
Alon Mozes
Chunyan Wu
Miranda Jamieson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAKO Surgical Corp
Original Assignee
MAKO Surgical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2209/00Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K2209/05Recognition of patterns in medical or anatomical images
    • G06K2209/055Recognition of patterns in medical or anatomical images of skeletal patterns

Abstract

A system and method for determining inclination and version of a prosthetic acetabular cup relative to a coronal radiographic plane is provided. The system and method include the identification of a coronal radiographic plane in a three dimensional medical image. The system and method further include the identification of two symmetric landmarks on the pelvis to determine a mediolateral axis. The version and inclination can then be calculated based on the relationship between the axis of the acetabular cup, the coronal radiographic plan, and the mediolateral axis.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a non-provisional patent application claiming priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Serial No. 61/503,606, filed on Jun. 30, 2011 and U.S. Provisional Patent Application Serial No. 61/442,503, filed on Feb. 14, 2011.
  • TECHNICAL FIELD
  • The present disclosure relates generally to computer-assisted surgical procedures, and more particularly, to systems and methods for planning an orientation of a prosthetic device.
  • BACKGROUND
  • Computer-assisted surgery (CAS) systems may be used for various surgical applications including hip replacement surgery. For instance, a CAS system may be used in determining the appropriate version and inclination angle of a prosthetic acetabular cup to be implanted into a patient during a surgical procedure on a hip joint. Version and inclination of an acetabular cup can be calculated relative to various anatomic planes and axes. Evidence suggests that it may be advantageous to calculate version and inclination relative to a coronal radiographic plane. Existing CAS methods for calculating version and inclination relative to a coronal radiographic plane often involve intraopertative identification of landmarks on the pelvis which increase patient post-surgical discomfort and/or increase the time required to perform the surgical procedure
  • Accordingly, there is a need for a simplified system and method to plan and perform a surgical procedure to implant an acetabular cup according to a defined version and inclination relative to a coronal radiographic plane. Moreover, there is a need to enable more accurate calculations of version and inclination with minimal intraoperative manipulations to the patient. Furthermore, there is a need to reduce the overall time that is spent on anesthetizing and performing surgical procedures on the patient.
  • SUMMARY OF THE DISCLOSURE
  • In one aspect of the present disclosure, a method of planning and performing a surgical procedure is provided. The method may determine a coronal radiographic plane of a patient based on a medical image of the patient's pelvis, identify two landmarks within the medical image, and determine a version and inclination of a virtual model of an acetabular cup based on a relationship between the virtual model of the acetabular cup, the coronal radiographic plane, and the two landmarks.
  • In another aspect of the disclosure, a method of planning and performing a surgical procedure is provided. The method may receive a medical image of a patient's pelvis, determine a coronal radiographic plane of the patient based on the medical image, identify two landmarks within the medical image, determine a longitudinal axis based on the two landmarks and the coronal radiographic plane, and determine a version and an inclination of a virtual model of an acetabular cup based on a relationship between the virtual model of the acetabular cup, the coronal radiographic plane, and the longitudinal axis.
  • In yet another aspect of the disclosure, a system for planning and performing a surgical procedure is provided. The system may include an input device, an output device, and a controller in communication with each of the input device and output device. The controller may be configured to access a medical image of a patient's pelvis, determine a coronal radiographic plane of the patient based on the medical image, identify two landmarks within the medical image, and determine a version and inclination of a virtual model of an acetabular cup based on a relationship between the virtual model of the acetabular cup, the coronal radiographic plane, and the two landmarks.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graphical view of a pelvis;
  • FIG. 2 is a schematic view of an exemplary computer-assisted system for determining pelvic tilt;
  • FIG. 3 is a diagrammatic view of an exemplary method for determining pelvic tilt;
  • FIG. 4 is a graphical view of an exemplary medical imaging device;
  • FIG. 5 is a diagrammatic view of a preoperative orientation of an acetabulum; and
  • FIG. 6 is a diagrammatic view of a planned pose of an acetabular cup.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to specific embodiments or features, examples of which are illustrated in the accompanying drawings. Generally, corresponding reference numbers will be used throughout the drawings to refer to the same or corresponding parts. Although the following disclosure may make certain references to orthopedic procedures involving hip joints, it should be understood that the subject matter described herein may be applicable to other joints in the body, such as, for example, shoulders, elbows, wrists, spines, knees, ankles, and the like.
  • Referring to FIG. 2, one exemplary embodiment of a computer-assisted surgical (CAS) system 100 which may be used to plan a surgical procedure is provided. As shown, the CAS system 100 may be in direct or indirect communication with one or more medical imaging devices 102 and configured to receive one or more medical images of a patient's anatomy that have been captured by the medical imaging devices 102. More specifically, the CAS system 100 may be configured to receive medical images from a medical imaging device 102 over wired and/or wireless connections, over a network, such as a local area network (LAN), a wide area network (WAN), and the like. The CAS system 100 may also be configured to retrieve medical images that have been captured by a medical imaging device 102 and stored within a database that is either locally or remotely stationed relative to the CAS system 100. The medical imaging devices 102 may include any one or more of a computed tomography (CT) device, a magnetic resonance imaging (MRI) device, an X-ray device, a fluoroscopic imaging device, an ultrasound device, any other device commonly used for medical imaging. The medical image may include a three-dimensional image output from a medical imaging device 102 or a three-dimensional model based on an image or series of images output from a medical imaging device 102.
  • Still referring to FIG. 2, the CAS system 100 may generally include an input device 105, an output device 106, a memory 108 and a controller 110. The input device 105 may include any one or more of a keyboard, a mouse, a trackball, a touch screen, a touch pad, a microphone, a dial, a switch, a button, a camera, and any other device suited to receive information from a user, such as a surgeon, or the like. The output device 106 may include any one or more of a liquid crystal display (LCD), a cathode ray tube (CRT) display, a plasma screen, a touch screen, and any other device suited to output information to the user. For example, using the input device 105, the user may be able to manipulate orientations and/or views of medical images as well as input parameters that may be required by the CAS system 100. Additionally, using the output device 106, the user may be able to access or view the results of the manipulations as well as any calculations that are performed by the CAS system 100. Furthermore, the memory 108 of the CAS system 100 may be used to locally and at least temporarily store one or more medical images as well as any other data that may be relevant to a particular patient and required by the controller 110. The memory 108 may also be configured to store one or more algorithms or software by which the controller 110 may be operated. In turn, the controller 110 may be configured to electrically communicate with each of the input device 105, output device 106 and the memory 108 and execute tasks according to the algorithms provided.
  • Turning to FIG. 3, one exemplary algorithm or method 200 by which the controller 110 may operate to plan the version and inclination of a prosthetic acetabular cup 22 is provided. Initially, in step 201, the controller 110 of the CAS system 100 may be configured to receive one or more medical images provided by, for instance, a medical imaging device 102. More specifically, the controller 110 may be configured to access or receive, for instance, a medical image of a patient's pelvis 10, captured while the patient is in the supine position.
  • In step 202, the controller 110 may be configured to define a coronal radiographic plane 18 based on a plane associated with the medical image. As illustrated in FIG. 4, the medical imaging device 102 may be associated with a device coordinate system 101, and the medical image produced by the medical imaging device 102 may include information relating the image of the anatomy to the device coordinate system 101. In certain embodiments, the device coordinate system 101 may relate directly to the coordinate system of the medical image. In the embodiment illustrated in FIG. 4, the x-y plane of the device coordinate system 101 is substantially parallel to a surface plane 103, which is defined by the surface of a table 104, or other patient supporting structure, on which a patient lies in a supine position while the medical imaging device 102 captures the medical image of a portion of the patient's anatomy. More particularly, the x-axis may run substantially along the width of the table 104 and may be similar in orientation to a mediolateral axis 16 of the patient, and the y-axis may run substantially along the length of the table 104 and may be similar in orientation to a longitudinal axis 17 of the patient. Thus, according to the embodiment illustrated in FIG. 4, the controller 110 may be able to identify the surface plane 103 as the x-y plane of the medical image, which relates directly to the x-y plane of the device coordinate system 101. In another embodiment, known information regarding the physical structure of the medical imaging device 102, as it relates to the structure and content of the data in the medical image, may be used to transform a plane represented in the medical image that is not substantially parallel to the surface of the table 104 into a plane that is substantially parallel to the surface of the table 104. In yet another embodiment, the medical images provided to the controller 110 may include information from which the controller 110 can determine the surface plane 103 or other plane substantially parallel with the surface of the table 104, or other patient supporting structure, on which a patient lies in a supine position while the medical imaging device 102 captures the medical image of a portion of the patient's anatomy. Such information could include, for example, image data that is captured in the medical image and is representative of the surface of the table 104. In yet another embodiment, the controller 110 may be configured to manually receive information pertaining to the surface plane 103 from a user through the input device 105, such as, for example, a user manually selecting multiple points representing the surface of the table 104 in the medical image. The controller 110 may then designate the surface plane 103, or a plane parallel thereto, as the coronal radiographic plane 18. Thus, in at least one embodiment, the coronal radiographic plane 18 is defined as the x-y plane of the device coordinate system 101.
  • In step 203, the controller 110 may be configured to identify a plurality of landmarks within the medical image of the pelvis 10. For instance, the controller 110 may be configured to identify two anterior-superior iliac spines 12 of the pelvis 10, as shown in FIG. 1. The controller 110 may be configured to receive information pertaining to the respective locations of the anterior-superior iliac spines 12 from a user. For example, a user viewing the medical images of the pelvis 10 at the output device 106 may visually locate and manually input the locations of one or both of the anterior-superior iliac spines 12 into the controller 110 via the input device 105. In another embodiment, the controller 110 may be configured to automatically detect and extract information pertaining to the locations of the anterior-superior iliac spines 12 of the pelvis 10 using image detection and/or other related schemes on the medical images. While the embodiments described herein discuss the use of the two iliac spines 12 of the pelvis 10, various pairs of landmarks within the patient's anatomy that are generally known to be substantially symmetrical about a median plane of the patient's anatomy may be alternatively used, such as the two ischial spines of the pelvis 10.
  • In step 204 of the algorithm 200 of FIG. 3, the controller 110 may be configured to determine a mediolateral axis 16 of the pelvis 10 based on the positions within the medical image of the landmarks determined in step 203. More specifically, the controller 110 may generate a line that intersects each of the landmarks, such as the two anterior-superior iliac spines 12, and designate the resulting line as the mediolateral axis 16, as illustrated in FIG. 1. In one embodiment, the mediolateral axis 16 may be manually identified to the controller 110 by the user. For example, while viewing the medical images of the pelvis at the output device 106, the user may manually identify the line that intersects each of the anterior-superior iliac spines 12 using the input device 105. Once identified, the controller 110 may designate the line as the mediolateral axis 16. In an alternative embodiment, the controller 110 may be configured to automatically detect the mediolateral axis 16 by calculating the line of intersection between each of the identified landmarks of the pelvis 10. In still further alternatives, the controller 110 may be configured to determine at least one vector based on the anterior-superior iliac spines 12 determined in step 203. For instance, once the anterior-superior iliac spines 12 of the pelvis 10 have been identified, the controller 110 may form a three-dimensional vector extending between or intersecting both of the anterior-superior iliac spines 12 to form the mediolateral axis 16.
  • Once the mediolateral axis 16 has been determined, the controller 110 in step 205 may be configured to determine a longitudinal axis 17 relative to the medical image of the pelvis 10, as illustrated in FIG. 1. The controller 110 may determine the longitudinal axis 17 as a line that is substantially transverse to the mediolateral axis 16 and substantially parallel with, or contained in, the coronal radiographic plane 18. The longitudinal axis 17 may also be constrained to intersect with the mediolateral axis 16 at a midpoint between the two landmarks, for example the two iliac spines 12. In another embodiment, step 205 may include applying a correction to the radiographic coronal plane 18 based on the determined mediolateral axis 16. In particular, with reference to the embodiment in which the coronal radiographic plane is defined as the x-y plane of the device coordinate system 101, as discussed in association with FIG. 4, a unit vector having the orientation of the x-axis in the device coordinate system 101 may be crossed with a unit vector having the same orientation as the mediolateral axis 16 to produce a rotation vector. In this embodiment, the radiographic coronal plane 18 may be rotated about the rotation vector until the x-axis of the coronal radiographic plane is parallel to, or collinear with, the mediolateral axis 16.
  • In step 206, the controller 110 may be configured to determine a preoperative acetabular version (αpre). The controller 110 may determine a patient's acetabular axis 21 based on the patient's acetabulum 20, as illustrated in FIG. 1, according to various methods that are known in the art. The patient's preoperative version (αpre) may then be determined as the angle between the acetabular axis 21 and the coronal radiographic plane 18, as illustrated in FIG. 5.
  • In step 207 the controller 110 may be configured to determine a preoperative acetabular inclination (θpre). The preoperative acetabular inclination (θpre) may be determined as the angle between the longitudinal axis 17 and the projection of acetabular axis 21 onto the coronal radiographic plane 18, as illustrated in FIG. 5.
  • With reference to FIG. 6, in step 208 the controller 110 may be configured to plan a pose to implant the acetabular cup 22 into a patient's pelvis 10. As used herein, “pose” means position and orientation. The acetabular cup 22 may have an acetabular cup axis 23 associated with it. The acetabular cup axis 23 may be pass through the center of the acetabular cup 23, and may be substantially normal to the center of the acetabular cup 23 and/or the rim of the acetabular cup 23. The acetabular cup axis 23 may also be determined based on other methods that may be known in the art. In this step a user may position a virtual model of the acetabular cup 22 relative to the medical image of the patient's pelvis 10 by way of the input device 105. Based on the orientation of the virtual model of the acetabular cup 22, the controller 110 may then determine a planned version (αplan) and inclination (θplan) for the acetabular cup 22, and the planned version (αplan) and inclination (θplan) may be provided to a user by way of the output device 106. As illustrated in FIG. 6, the planned version (αplan) may be determined as the angle between acetabular cup axis 23 and coronal radiographic plan 18. The planned inclination (αplan) may be determined as the angle between longitudinal axis 17 and the projection of the acetabular cup axis 23 onto the coronal radiographic plane 18.
  • Alternatively, the controller 110 may be configured to receive the planned version (αplan) and inclination (θplan) and constrain the virtual model of the acetabular cup 22 accordingly. According to this alternative embodiment, a user may input a desired planned version (αplan) and inclination (θplan ) by way of the input device 105, and the controller 110 would use these values to constrain the orientation of the virtual model of the acetabular cup 22, while allowing the user to adjust the position of the virtual model of the acetabular cup 22 relative to medical image of the pelvis 10.
  • In step 209, the controller 110 may be configured to guide a reamer to prepare the acetabulum 20 such that the implanted acetabular cup 22 is substantially oriented according to the planned version (αplan) and inclination (θplan) of the acetabular cup 22. This may be accomplished, for example, by providing surgical navigation and haptic feedback to a user manipulating the reamer, as described in U.S. Patent Application Publication US 2011/0082468, which is hereby incorporated by reference.
  • In step 210, the controller 110 may be configured to guide a user during placement and impaction of the acetabular cup 22 to substantially achieve the planned version (αplan) and inclination (θplan) of the acetabular cup 22. This may be accomplished, for example, by providing surgical navigation and haptic feedback to a user manipulating an impactor tool, as further described in U.S. Patent Application Publication US 2011/0082468.
  • In step 211, the controller 110 may be configured to determine the pose of the acetabular cup 22 after impaction into the pelvis 10 as described in U.S. Patent Application Publication US 2011/0082468. The controller may then use the post-impaction pose of the acetabular cup 22 relative to the pelvis 10 to determine a post-impaction version (αpost) and inclination (θpost) of the acetabular cup in a manner similar to that discussed in step 208. The post-impaction version (αpost) and inclination (θpost) may then be displayed to a user by way of the output device 106.
  • While only certain embodiments have been set forth for the purposes of illustration, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the scope of this disclosure and the appended claims.

Claims (20)

  1. 1. A method of planning and performing a surgical procedure, comprising the steps of:
    determining a coronal radiographic plane of a patient based on a medical image of the patient's pelvis;
    identifying two landmarks within the medical image; and
    determining a version and inclination of a virtual model of an acetabular cup based on a relationship between the virtual model of the acetabular cup, the coronal radiographic plane, and the two landmarks.
  2. 2. The method of claim 1, wherein the two landmarks are substantially symmetrical with each other about a median plane of the patient.
  3. 3. The method of claim 2, wherein the two landmarks are located on the pelvis.
  4. 4. The method of claim 1, further comprising the step of determining a mediolateral axis based on the positions of the two landmarks.
  5. 5. The method of claim 4, further comprising the step of determining a longitudinal axis based on the mediolateral axis and the coronal radiographic plane.
  6. 6. The method of claim 1, wherein the version is calculated as the angle between an axis of the virtual model of the acetabular cup and the coronal radiographic plane.
  7. 7. The method of claim 5, wherein the inclination is calculated as the angle between a projection of an axis of the virtual model of the acetabular cup onto the coronal radiographic plane and the longitudinal axis.
  8. 8. The method of claim 1, further comprising the step of guiding a reamer to prepare an acetabulum of the pelvis to receive the acetabular cup at a predetermined version and inclination.
  9. 9. The method of claim 1, further comprising the step of determining a preoperative version and inclination of an acetabulum of the pelvis based on a relationship between the acetabulum, the coronal radiographic plane, and the two landmarks.
  10. 10. The method of claim 1, further comprising the step of guiding a user during impaction of the acetabular cup.
  11. 11. The method of claim 1, further comprising the step of determining a post-impaction version and inclination of the acetabular cup based on a relationship between the post-impaction orientation of the acetabular cup, the coronal radiographic plane, and the two landmarks.
  12. 12. The method of claim 1, further comprising the step of adjusting the orientation of the coronal radiographic plane based on the position of the two landmarks.
  13. 13. A method of planning and performing a surgical procedure, comprising the steps of:
    receiving a medical image of a patient's pelvis;
    determining a coronal radiographic plane of the patient based on the medical image;
    identifying two landmarks within the medical image;
    determining a longitudinal axis based on the two landmarks and the coronal radiographic plane; and
    determining a version and an inclination of a virtual model of an acetabular cup based on a relationship between the virtual model of the acetabular cup, the coronal radiographic plane, and the longitudinal axis.
  14. 14. The method of claim 13, further comprising the steps of determining a mediolateral axis based on the positions of the two landmarks, and determining the longitudinal axis based on the mediolateral axis and the coronal radiographic plane.
  15. 15. The method of claim 13, wherein the version is calculated as the angle between an axis of the virtual model of the acetabular cup and the coronal radiographic plane, and the inclination is calculated as the angle between a projection of an axis of the virtual model of the acetabular cup onto the coronal radiographic plane and the longitudinal axis.
  16. 16. The method of claim 13, further comprising the step of adjusting the orientation of the coronal radiographic plane based on the positions of the two landmarks.
  17. 17. A system for planning and performing a surgical procedure, comprising:
    an input device;
    an output device; and
    a controller in communication with each of the input device and output device, the controller being configured to access a medical image of a patient's pelvis, determine a coronal radiographic plane of the patient based on the medical image, identify two landmarks within the medical image, and determine a version and inclination of a virtual model of an acetabular cup based on a relationship between the virtual model of the acetabular cup, the coronal radiographic plane, and the two landmarks.
  18. 18. The system of claim 17, wherein the controller is configured to guide a reamer to prepare an acetabulum of the pelvis to receive the acetabular cup at a predetermined version and inclination.
  19. 19. The system of claim 17, wherein the controller is configured to determine a preoperative version and inclination of an acetabulum of the pelvis based on a relationship between the acetabulum, the coronal radiographic plane, and the two landmarks.
  20. 20. The system of claim 17, wherein the controller is configured to guide a user during impaction of the acetabular cup, and determine a post-impaction version and inclination of the acetabular cup based on a relationship between the post-impaction orientation of the acetabular cup, the coronal radiographic plane, and the two landmarks.
US13178148 2011-02-14 2011-07-07 System and Method for Surgical Planning Abandoned US20120209419A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201161442503 true 2011-02-14 2011-02-14
US201161503606 true 2011-06-30 2011-06-30
US13178148 US20120209419A1 (en) 2011-02-14 2011-07-07 System and Method for Surgical Planning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13178148 US20120209419A1 (en) 2011-02-14 2011-07-07 System and Method for Surgical Planning
US15667306 US20170348059A1 (en) 2011-02-14 2017-08-02 System and Method for Surgical Planning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15667306 Continuation US20170348059A1 (en) 2011-02-14 2017-08-02 System and Method for Surgical Planning

Publications (1)

Publication Number Publication Date
US20120209419A1 true true US20120209419A1 (en) 2012-08-16

Family

ID=46637514

Family Applications (2)

Application Number Title Priority Date Filing Date
US13178148 Abandoned US20120209419A1 (en) 2011-02-14 2011-07-07 System and Method for Surgical Planning
US15667306 Pending US20170348059A1 (en) 2011-02-14 2017-08-02 System and Method for Surgical Planning

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15667306 Pending US20170348059A1 (en) 2011-02-14 2017-08-02 System and Method for Surgical Planning

Country Status (1)

Country Link
US (2) US20120209419A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014159191A1 (en) * 2013-03-14 2014-10-02 The Cleveland Clinic Foundation A method of producing a patient-specific three dimensional model having hard tissue and soft tissue portions
GB2536405A (en) * 2015-01-15 2016-09-21 Corin Ltd Pre-operative joint diagnostics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087852A1 (en) * 2001-02-06 2004-05-06 Edward Chen Computer-assisted surgical positioning method and system
US20060264731A1 (en) * 2003-06-02 2006-11-23 Murphy Stephen B Virtual trial reduction system for hip arthroplasty and coordinate systems therefor
US20100249796A1 (en) * 2009-03-24 2010-09-30 Biomet Manufacturing Corp. Method and Apparatus for Aligning and Securing an Implant Relative to a Patient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087852A1 (en) * 2001-02-06 2004-05-06 Edward Chen Computer-assisted surgical positioning method and system
US20060264731A1 (en) * 2003-06-02 2006-11-23 Murphy Stephen B Virtual trial reduction system for hip arthroplasty and coordinate systems therefor
US20100249796A1 (en) * 2009-03-24 2010-09-30 Biomet Manufacturing Corp. Method and Apparatus for Aligning and Securing an Implant Relative to a Patient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014159191A1 (en) * 2013-03-14 2014-10-02 The Cleveland Clinic Foundation A method of producing a patient-specific three dimensional model having hard tissue and soft tissue portions
GB2536405A (en) * 2015-01-15 2016-09-21 Corin Ltd Pre-operative joint diagnostics

Also Published As

Publication number Publication date Type
US20170348059A1 (en) 2017-12-07 application

Similar Documents

Publication Publication Date Title
Nolte et al. Computer-aided fixation of spinal implants
US7636595B2 (en) Method and apparatus for calibrating non-linear instruments
US6567681B1 (en) Method and arrangement for determining where to position fixation means
US7840256B2 (en) Image guided tracking array and method
US8257360B2 (en) Determining femoral cuts in knee surgery
US20030225415A1 (en) Method and apparatus for reconstructing bone surfaces during surgery
US20050203384A1 (en) Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement
US20140107654A1 (en) Methods For Patient-Specific Shoulder Arthroplasty
US6917827B2 (en) Enhanced graphic features for computer assisted surgery system
US20110071532A1 (en) Systems Using Imaging Data to Facilitate Surgical Procedures
US7010095B2 (en) Apparatus for determining a coordinate transformation
US20090209884A1 (en) Implant planning using corrected captured joint motion information
US6249713B1 (en) Apparatus and method for automatically positioning a biopsy needle
US20090164024A1 (en) Joint placement methods and apparatuses
US8010180B2 (en) Haptic guidance system and method
US7643862B2 (en) Virtual mouse for use in surgical navigation
US20030011624A1 (en) Deformable transformations for interventional guidance
US7194295B2 (en) Medical navigation and/or pre-operative treatment planning with the assistance of generic patient data
US7010080B2 (en) Method for marker-free automatic fusion of 2-D fluoroscopic C-arm images with preoperative 3D images using an intraoperatively obtained 3D data record
US7835778B2 (en) Method and apparatus for surgical navigation of a multiple piece construct for implantation
US6415171B1 (en) System and method for fusing three-dimensional shape data on distorted images without correcting for distortion
Joskowicz et al. FRACAS: A system for computer‐aided image‐guided long bone fracture surgery
US20060293614A1 (en) Leg alignment for surgical parameter measurement in hip replacement surgery
US7787932B2 (en) Planning and navigation assistance using two-dimensionally adapted generic and detected patient data
US20050109855A1 (en) Methods and apparatuses for providing a navigational array

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAKO SURGICAL CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANG, HYOSIG;ODERMATT, DANIEL;MOZES, ALON;AND OTHERS;SIGNING DATES FROM 20111006 TO 20111019;REEL/FRAME:027115/0589