US20120187606A1 - Biodegradable endoprostheses and methods for their fabrication - Google Patents

Biodegradable endoprostheses and methods for their fabrication Download PDF

Info

Publication number
US20120187606A1
US20120187606A1 US13434555 US201213434555A US2012187606A1 US 20120187606 A1 US20120187606 A1 US 20120187606A1 US 13434555 US13434555 US 13434555 US 201213434555 A US201213434555 A US 201213434555A US 2012187606 A1 US2012187606 A1 US 2012187606A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
stent
preferably
material
biodegradable
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13434555
Inventor
Xiaoxia Zheng
John Yan
Vinayak Bhat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELIXIR MEDICAL Corp A CALIFORNIA CORPORATION
Original Assignee
Elixir Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Abstract

Biodegradable endoprostheses are formed from amorphous polymers having desirable biodegradation characteristics. The strength of such amorphous polymers is enhanced by annealing to increase crystallinity without substantially increasing the biodegradation time.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    This application is a divisional of U.S. application Ser. No. 12/016,085 (Attorney Docket No. 32016-706.202), filed Jan. 17, 2008, which claims the benefit of Provisional Application No. 60/885,700 (Attorney Docket No. 32016-706.101), filed on Jan. 19, 2007, the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates generally to medical devices and methods for their fabrication. In particular, the present invention relates to the fabrication of biodegradable endoprostheses, such as stents, having enhanced strength and controlled persistence after implantation.
  • [0004]
    Stents are generally tubular-shaped devices which function to hold open or reinforce a segment of a blood vessel or other body lumen, such as a coronary artery, carotid artery, saphenous vein graft, or femoral artery. They also are suitable to support and hold back a dissected arterial lining that could occlude the body lumen, to stabilize plaque, or to support bioprosthetic valves. Stents can be formed from various materials, particularly polymeric and/or metallic materials, and may be non-degradable, biodegradable, or be formed from both degradable and non-degradable components. Stents are typically delivered to the target area within the body lumen using a catheter. With balloon-expandable stents, the stent is mounted to a balloon catheter, navigated to the appropriate area, and the stent is expanded by inflating the balloon. A self-expanding stent is delivered to the target area and released, expanding to the required diameter to treat the disease. Stents may also elute various drugs and pharmacological agents.
  • [0005]
    Of particular interest to the present invention, biodegradable stents and other endoprostheses are usually formed from polymers which degrade by hydrolysis and other reaction mechanisms in the vascular or other luminal environment over time. Usually, it will be desirable to have the endoprosthesis completely degrade after it has served its needed supporting function in the body lumen. Typically, complete degradation will be desired in less than two years, often less than one year, and frequently in a matter of months after implantation. Many biodegradable endoprostheses, however, are persistent for longer than needed, often remaining in place long after the supporting or drug delivery function has ended. The extended persistence of many biodegradable endoprostheses often results from a desire to enhance their strength. The polymer construction materials are often strengthened, such as by incorporating materials having a higher crystallinity, so that they provide desired support but take longer to degrade than would otherwise be desirable.
  • [0006]
    For these reasons, it would be desirable to provide improved endoprostheses and methods for their fabrication, where the endoprostheses have a controlled strength and persistence. In particular, it would be desirable to be able to enhance the strength of certain biodegradable materials so that they have an improved strength when incorporated into stents and other endoprostheses without substantially lengthening their degradation periods. Moreover, it would be desirable to allow for control of the degradation period in the fabrication process so that an endoprosthesis can be made with different degradation periods while retaining an enhanced strength. At least some of these objectives will be met by the inventions described below.
  • [0007]
    2. Description of the Background Art
  • [0008]
    Heat annealing and other treatments of filaments and other components used in stents are described in U.S. Pat. No. 5,980,564, U.S. Pat. No. 6,245,103, and U.S. Pat. No. 6,626,939. Heat treatment of polymeric stent coatings is described in commonly owned, copending application no. PCT/US07/81996, which designates the United States.
  • BRIEF SUMMARY OF THE INVENTION
  • [0009]
    The present invention provides improved biodegradable endoprostheses and methods for their fabrication. The endoprostheses are formed from an amorphous, biodegradable polymer. The use of amorphous polymers is desirable since they provide relatively short periods of biodegradation, usually less than two years, often less than one year, frequently less than nine months, and sometimes shorter than six months, or even shorter. The present invention relies on modifying the amorphous polymers to introduce a desired degree of crystallinity. It has been found by inventors herein that introducing crystallinity into the amorphous polymer increases the strength of the polymer so that it is suitable for use as an endoprosthesis without substantially lengthening the period of biodegradation after implantation.
  • [0010]
    The crystallinity of a highly amorphous polymer as defined will be below 10% prior to modification. After modification, the crystallinity will usually be increased by at least 20% of the original crystallinity of the amorphous material, preferably by at least 100% of the original crystallinity of the amorphous material and more preferably by at least 1000% of the original crystallinity of the amorphous material. Presently preferred polymer materials will have a crystallinity in the range from 10% to 20% after modification as described herein below. As used herein, “crystallinity” refers to a degree of structural order or perfection within a polymer matrix.
  • [0011]
    Crystallinity can be measured by differential scanning calorimetry (Reading, M. et al, Measurement of crystallinity in polymers using modulated temperature differential scanning calorimetry, in Material Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, Riga, A. T. et al. Ed, (2001) pp. 17-31.
  • [0012]
    Methods according to the present invention for fabricating biodegradable prostheses comprise providing a tubular body having an initial diameter, where the tubular body is composed at least partially of a substantially amorphous, biodegradable polymer. The tubular body is heated to a temperature above its glass transition temperature and below its melting point. The tubular body is then cooled to increase the crystallinity of the polymer. Either before or after this annealing process, the tubular body may be patterned into a structure capable of radial contraction and expansion in order to provide a stent or other endoprosthesis.
  • [0013]
    Usually, the tubular body will be fabricated as part of the method. Fabrication can be by a variety of conventional processes, such as extrusion, molding, dipping, and the like. A preferred formation process comprises spraying a polymer dissolved in a solvent onto a cylindrical mandrel or other structure. Optionally, additives, such as strength-enhancing materials, drugs, or the like, may be dissolved in the solvent together with the polymer so that the materials are integrally or monolithically formed with the endoprosthesis tube. Alternatively, the methods could rely on obtaining a pre-formed polymer tube from a supplier or other outside source.
  • [0014]
    The polymeric tubular body is usually formed as a substantially continuous cylinder free from holes or other discontinuities. The tubular body typically has an outside diameter in the range from 2 mm to 10 mm, a thickness in the range from 0.01 mm to 0.5 mm, and may be cut into lengths suitable for individual endoprostheses, typically in the range from 5 mm to 40 mm.
  • [0015]
    The tubular bodies may be formed from any amorphous polymer having desired degradation characteristics where the polymer may be modified to have the desired strength characteristics in accordance with the methods of the present invention. Exemplary amorphous polymers include poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like. A particularly preferred polymer comprises a copolymer of L-lactide and glycolide, preferably with a weight ratio of 85% L-lactide to 15% glycolide.
  • [0016]
    The heating segment of the annealing process will typically be carried out for a period of from 1 minute to 3 hours, and the cooling will be typically to a temperature at or below ambient. Other suitable temperatures and times, however, are described in the Detailed Description of the Invention, below.
  • [0017]
    The tubular body will be patterned into a suitable endoprosthesis structure, typically by laser cutting or other conventional processes. The patterning will usually be performed after the annealing process, but could be performed before the annealing process. As a further alternative, it may be desirable to anneal the tubular body both before and after the patterning, and in some instances additional annealing steps may be performed so that the stent could be subjected to three, four, or even more annealing steps during the fabrication process.
  • [0018]
    The endoprosthesis pattern can be any suitable pattern of the type employed in conventional endoprostheses. A variety of exemplary patterns are set forth in commonly owned, co-pending application Ser. No. 11/______ (Attorney Docket No. 022265-000510US), filed on the same day as the present application, the full disclosure of which is incorporated herein by reference.
  • [0019]
    In addition to the fabrication methods, the present invention also provides biodegradable prostheses comprising a tubular body composed at least partially of a substantially amorphous, biodegradable polymer. The biodegradable polymer will have been treated to produce spherulite crystals in the amorphous polymer to increase crystallinity by at least 20% of the original crytallinity. Other preferred aspects of the prosthesis have been described above with respect to the methods of fabrication.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    FIG. 1 is a block diagram illustrating the principal steps of the methods of the present invention.
  • [0021]
    FIGS. 2A and 2B illustrate an exemplary stent structure which may be fabricated using the methods of the present invention.
  • [0022]
    FIG. 3 illustrates the stent of FIGS. 2A and 2B in a radially expanded configuration.
  • [0023]
    FIG. 4 illustrates a stent pattern utilized in an Example of the present application.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0024]
    Amorphous biodegradable polymers (less than 10% crystallinity) degrade faster than crystalline polymers but are weaker than crystalline polymers and hence are not typically suitable for vascular implants, such as stents, which need sufficient strength to provide support to the blood vessel. The present invention provides for the modification of amorphous polymeric materials to make them suitable for use as biodegradable stents and other endoprostheses. Amorphous materials suitable for modification according to the present invention include but are not limited to poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like. An exemplary stent is made from amorphous material of a copolymer of 85/15 Poly(L-Lactide-co-Glycolide) and processed to increase crystallinity by at least 20% of original crystallinity, preferably by at least 100% , more preferably by at least 1000% of original crystallinity In one embodiment, the biodegradable stent substantially degrades in less than 2 years, preferable less than 1 year, more preferable less than 9 months.
  • [0025]
    In accordance with the present invention, the amorphous biodegradable polymeric material is processed to increase its crystallinity, Increased crystallinity may increase the strength, storage shelf life, and hydrolytic stability of the polymer stent material. The process initiates and/or enhances crystallinity in the polymeric material by nucleating and/or growing small size spherulite crystals in the material. Since the amorphous regions of the modified polymer are preferentially broken down by hydrolysis or enzymatic degradation in biological environment, the modified amorphous biodegradable polymer has increased crystallinity and increased material strength post processing. The increase in crystallinity can be achieved by ‘Modifications’ described in present invention which include at least one of heating, cooling, pressurizing, addition of additives, crosslinking and other processes.
  • [0026]
    The polymer material can be made into a tube by spraying, extrusion, molding, dipping or other process from a selected amorphous copolymer. The amorphous polymer tubing is optionally vacuumed to at least −25 in. Hg., annealed, and quenched to increase crystallinity. In one embodiment, the tube is vacuumed at or below 1 torr at ambient temperature to remove water and solvent. It is then annealed by heating to a temperature above the glass transitional temperature but below melting temperature of the polymer material. Preferably, the annealing temperature is at least 10.degree. C. higher than the glass transitional temperature (Tg), more preferably being at least 20.degree. C. higher, and still more preferably being at least 30.degree. C. higher than the Tg. The annealing temperature is usually at least 5.degree. C. below the melting point (Tm), preferably being at least 20.degree. C. lower, and more preferably being at least 30.degree. C. lower than the Tm of the polymer material. The annealing time is between 1 minute to 10 days, preferably from 30 minutes to 3 hours, and more preferably from 1.5 hours to 2.5 hours.
  • [0027]
    In one embodiment, the annealed tube is quenched by fast cooling from the annealing temperature to a temperature at or below ambient temperature over a period from 1 second to 1 hour, preferably 1 minute to 30 minutes, and more preferably 5 minutes to 15 minutes. In another embodiment the annealed tune is quenched by slow cooling from the annealing temperature to at or below ambient temperature within 1 hour to 24 hours, preferably 4 hours to 12 hours, and more preferably 6 hours to 10 hours. In some instances the heat treated tube is cooled to a temperature below ambient temperature for a period from 1 minute to 96 hours, more preferably 24 hours to 72 hours, to stabilize the crystals and/or terminate crystallization. This annealing and quenching process initiates and promotes nucleation of crystals in the polymer and increases the mechanical strength of the material. The initial annealing temperature and the cooling rate can be controlled to optimize the size of the crystals and strength of the material. In a further embodiment, the unannealed and/or annealed tube is exposed to ebeam or gamma radiation, with single or multiple doses of radiation ranging from 5 kGy to 100 kGy, more preferably from 10 kGy to 50 kGy.
  • [0028]
    The stent or other endoprosthesis is patterned from a tube of the stent material in an “expanded” diameter and subsequently crimped to a smaller diameter and fitted onto a balloon of a delivery catheter. The stent is patterned, typically by laser cutting, with the tubing diameter about 1 to 1.3 times, preferably 1.1 to 1.5 times, more preferably 1.15 to 1.25 times, larger the intended deployed diameter. For example, a stent cut at a 3.5 mm.times.18 mm outer diameter is crimped on a 3.0 mm.times.18 mm stent delivery catheter. In a further embodiment, the unannealed and/or annealed stent is exposed to ebeam or gamma radiation, with single or multiple doses of radiation ranging from 5 kGy to 100 kGy, more preferably from 10 kGy to 50 kGy.
  • [0029]
    The stent material may lose some crystallinity during stent cutting. In such cases, the stent annealed after cutting and/or a second time to re-crystallize the polymer to a higher crystallinity. Thus, the cut stent may be annealed a second time as generally described above. Annealing followed by cooling as described above can be repeated one or more times to further increase crystallinity. In a further embodiment, the heat treated stent is cooled below ambient temperature to lock in the crystals or terminate crystallization for 1 minute to 96 hours, more preferably 24 hours to 72 hours.
  • [0030]
    The treated stent or other endoprosthesis can be crimped onto a delivery balloon using mechanical crimpers comprising of wedges such as crimpers from Machine Solutions, Fortimedix, or others. The stent can also be crimped by placing the stent in a shrink tube and stretching the shrink tube slowly at a rate of 0.1 to 2 inches/minutes, more preferably 0.2 to 0.5 inches/minutes until the stent is crimped to the desired crimped diameter. During crimping, the stent is heated to a temperature of 20.degree. C. below the Tg to 10.degree. C. above the Tg for 30 minutes, more preferably to 10.degree. C. below the Tg to Tg, and most preferably at the Tg of the stent material. This process facilitates or enables the stent to maintain the final crimped diameter. After crimping, the ability for the stent to remain the crimped diameter can further be improved by fixing the stent in the crimped diameter while exposing it to a temperature of 20.degree. C. below the Tg to 10.degree. C. above the Tg for 30 minutes, more preferably to 10.degree. C. below the Tg to Tg, and most preferably at the Tg of the stent material, for 1 minute to 24 hours, more preferably 15 minutes to 1 hour. After holding at this crimping temperature, it is preferred to fix the stent in the crimped diameter while at or below ambient temperatures until further processing (i.e., sterilization). The stent can either be crimped while it is on the balloon of the stent delivery catheter or first crimped alone and then slipped onto the balloon of the catheter. In a further embodiment, the crimped stent is cooled below ambient temperature to lock in the crystals or terminate crystallization for 1 minute to 96 hours, more preferably 24 hours to 72 hours.
  • [0031]
    In a preferred embodiment, the final crimped stent on the catheter is sterilized by 25 to 30 kGy dose of ebeam, typically with a single dose of 30 kGy or with multiple smaller doses (eg. 3.times.10 kGy). The stent system is usually kept below ambient temperature before, during and/or after multiple smaller doses of sterilization. The stent that has been packaged and sterilized can also be exposed to heat treatment like that described above. In one embodiment, the biodegradable polymer stent is heated at about the Tg of the biodegradable stent material during expansion of the stent. The temperature during expansion can range from 10.degree. C. above Tg to 10.degree. C. below Tg.
  • [0032]
    Upon deployment of such stent, the processes provide means to minimize stent recoil to less than 10% after expansion from the crimped state to an expanded state.
  • [0033]
    Additives can be added to the endoprosthesis to affect strength, recoil, or degradation rate, or combinations thereof. Additives can also affect processing of biodegradable stent material, radiopacity or surface roughness or others. Additives can be biodegradable or non-biodegradable. The additives can be incorporated in to the biodegradable stent or polymer material by blending, extrusion, injection molding, coating, surface treatment, chemical treatment, mechanical treatment, stamping, or others or combinations thereof. The additives can be chemically modified prior to incorporation in to the biodegradable stent material.
  • [0034]
    In one embodiment, the percentage in weight of the additives can range from 0.01% to 25%, preferably 0.1% to 10%, more preferably 1% to 5%.
  • [0035]
    In one embodiment, the additive includes at least nanoclay, nanotubes, nanoparticles, exfoliates, fibers, whiskers, platelets, nanopowders, fullerenes, nanosperes, zeolites, polymers or others or combination thereof.
  • [0036]
    Examples of nanoclay includes Montmorillonite, Smectites, Talc, or platelet-shaped particles, modified clay or others or combination thereof. Clays can be intercalated or exfoliated. Example of clays include Cloisite NA, 93A, 30B, 25A, 15A, 10A or others or combination thereof.
  • [0037]
    Examples of fibers include cellulose fibers such as Linen, cotton, rayon, acetate; proteins fibers such as wool or silk; plant fiber; glass fiber; carbon fiber; metallic fibers; ceramic fibers; absorbable fibers such as polyglycolic acid, polylactic acid, polyglyconate or others.
  • [0038]
    Examples of whiskers include hydroxyapetite whiskers, tricalcium phosphate whiskers or others.
  • [0039]
    In another embodiment, the additives includes at least modified starch, soybean, hyaluronic acid, hydroxyapatite, tricarbonate phosphate, anionic and cationic surfactants such as sodium docecyl sulphate, triethylene benzylammonium chloride, pro-degradant such as D2W (from Symphony Plastic Technologies), photodegradative additives such as UV-H (from Willow Ridge Plastics), oxidative additives such as PDQ (from Willow Ridge Plastics), TDPA, family of polylactic acid and its random or block copolymers or others.
  • [0040]
    In another embodiment, the additives include electroactive or electrolyte polymers, hydroscopic polymers, dessicants, or others.
  • [0041]
    In one embodiment, the additive is an oxidizer such an acids, perchlorates, nitrates, permanganates, salts or other or combination thereof.
  • [0042]
    In one embodiment, the additive is a monomer of the biodegradable polymeric stent material. For example glycolic acid is an additive to polyglycolic acid or its copolymer stent material.
  • [0043]
    In one embodiment, the additive can be water repellent monomers, oligomers or polymers such as bees wax, low MW polyethylene or others.
  • [0044]
    In another embodiment, the additive can be water attractant monomers, oligomers or polymers such as polyvinyl alcohol, polyethylene oxide, glycerol, caffeine, lidocaine or other.
  • [0045]
    In one embodiment, the additive can affect crystallinity of the biodegradable polymeric stent material. Example of additive of nanoclay to PLLA affects its crystallinity.
  • [0046]
    In another embodiment, the biodegradable polymeric stent material can have increased crystallinity by cross-linking such as exposure to radiation such as gamma or ebeam. The cumulative radiation dose can range from 1 kGray to 1000 KGray, preferably 5 to 100 KGray, more preferably 10 to 30 KGray.
  • [0047]
    In one embodiment, yield strength for the biodegradable polymeric stent material is at least 50% of ultimate strength, preferably at least 75% of ultimate strength, more preferably at least 90% of ultimate strength, in water at 37.degree. C.
  • [0048]
    In one embodiment, the elastic modulus for the biodegradable metallic stent material is at least 50 GPa, preferably at least 100 GPa, more preferably at least 150 GPa.
  • [0049]
    In another embodiment, the elastic modulus for the biodegradable polymeric stent material is at least 0.5 GPa, preferably at least 0.75 GPa, more preferably at least 1 GPa, in water at 37.degree. C.
  • [0050]
    In one embodiment, the yield strain for the biodegradable polymeric stent material is at most 10%, preferably at most 5%, more preferably at most 3%, in water at 37.degree. C.
  • [0051]
    In one embodiment, the plastic strain for the biodegradable polymeric stent material is at least 20%, preferably at least 30%, more preferably at least 40%, in water at 37.degree. C.
  • [0052]
    In one embodiment, the elastic recovery of the strained biodegradable polymeric stent material is at most 15%, preferably at most 10%, more preferably at most 5%, in water at 37.degree. C.
  • [0053]
    In one embodiment, the biodegradable stent material degrades substantially within 2 years, preferably within 1 year, more preferably within 9 months.
  • [0054]
    In one embodiment, the expanded biodegradable stent in physiological conditions at least after 1 month retains at least 25%, preferably at least 40%, more preferably at least 70% of the strength or recoil.
  • [0055]
    In one embodiment, the biodegradable polymeric stent materials degrades by at least bulk erosion, surface erosion, or combination thereof.
  • [0056]
    In one embodiment, the biodegradable polymeric stent material degrades by at least hydrolytic degradation, enzymatic degradation, oxidative degradation, photo degradation, degradation under physiological environment or combination thereof.
  • [0057]
    The biodegradable polymeric stent material can have varying molecular architecture such as linear, branched, crosslinked, hyperbranched or dendritic.
  • [0058]
    The biodegradable polymeric stent material in this invention can range from 10 KDa to 10,000 KDa in molecular weight, preferably from 100 KDa to 1000 KDa, more preferably 300 KDa to 600 KDa.
  • [0059]
    In another embodiment, the biodegradable stent material has increased crystallinity by increasing orientation of polymer chains with in the biodegradable stent material in radial and/or longitudinal direction by drawing, pressurizing and/or heating the stent material. In another embodiment, the drawing, pressurizing and/or heating the stent material occurs simultaneously or sequentially.
  • [0060]
    In one embodiment, the biodegradable stent material is placed with at least one surface against a non deformable surface and is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi. In another embodiment, the biodegradable stent material is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi.
  • [0061]
    In one embodiment, the biodegradable stent material tube is placed with in a larger diameter non deformable tube and is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi. In another embodiment, the biodegradable stent material tube is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi.
  • [0062]
    In one embodiment, the biodegradable stent material has increased crystallinity by increasing the orientation of the polymer chains by at least heating the biodegradable stent material above its glass transition temperature (Tg) and below its melting temperature.
  • [0063]
    In one embodiment, the biodegradable stent material has increased crystallinity by heating the material to a temperature at least 10.degree. C. higher than its Tg, preferably at least 20.degree. C. higher, more preferably at least 30.degree. C. higher than the Tg of the biodegradable stent material.
  • [0064]
    In one embodiment, biodegradable stent material has increased crystallinity after drawing, heat and/or pressurizing and annealing at elevated temperature with or without vacuum. In one embodiment, the annealing temperature is below the temperature used for orientation of the polymer chains of the biodegradable stent material. In another embodiment, the annealing temperature is at most 20.degree. C. below, preferably at most 15.degree. C. below, more preferably at most 10.degree. C. below the temperature for orientation of the polymer chains of the biodegradable stent material.
  • [0065]
    In one embodiment, the biodegradable stent material after annealing is quenched below Tg of the biodegradable stent material, preferably at least 25.degree. C. below Tg, more preferably at least 50.degree. C. below Tg of the biodegradable stent material.
  • [0066]
    In one embodiment, the biodegradable polymeric stent material has increased crystallinity by using a combination of solvents, with one solvent having solubility parameter with in 10% of the solubility parameter of the polymer and the second solvent having solubility parameter at least 10% different than the solubility parameter of the polymer in the solvent.
  • [0067]
    In one embodiment the biodegradable polymer stent material has a crystallinity of greater than 10%, preferably greater than 25%, more preferably greater than 50%.
  • [0068]
    The invention also provides means to improve consistency of strength, recoil or degradation rate of a biodegradable polymer stent material.
  • EXAMPLE
  • [0069]
    A tube is made by spraying an amorphous copolymer poly(L-lactide-co-glycolide) with 85% lactide and 15% glycolide. The polymer and rapamycin analog can be dissolved in a solvent and can be sprayed together to incorporate the rapamycin into the polymer stent. A mandrel is placed underneath an ultrasonic spray nozzle (Micromist System with Ultrasonic Atomizing Nozzle Sprayer, Sono-Tek, NY) which is rotating at 80 rpm and move longitudinally at a rate of 0.050 inches/minutes. A solution of 11 to 1 ratio of poly(L-lactide-co-glycolide) and rapamycin analog on the mandrel. The resulting tube has a thickness of 0.17 mm. The tube is heated at 45.degree. C. for about 60 hours, annealed at 90.degree. C. for 2 hours, and cooled to ambient or room temperature with in 10 seconds. The annealed tube is then cut with a UV laser to the design shown in FIG. 4 (shown in its crimped state). The cut stent is annealed at 90.degree. C. and slowly cooled from the annealing temperature to ambient temperature within eight hours. The stent delivery system is then packaged in a pouch and sterilized by gamma radiation.
  • [0070]
    The heat treated stent has higher radial strength than the non-treated stent (Table 1). TABLE-US-00001 TABLE 1 Comparison of Radial Strength of Treated and Non-treated Stent. No Heat Heat Type Treatment Treatment Radial Strength After Laser Cutting Stent 7 Psi 14 Psi Radial Strength After Crimping Stent 6 Psi 9 Psi Radial Strength After 30 kGy Ebeam Sterilization 3 Psi 8 Psi Radial Strength when expanded at Tg n/a 12.5 Psi.
  • [0071]
    Thus, as shown in FIG. 1, methods according to the present invention initially provide for a tubular body composed of an amorphous polymer, where the tubular body may be formed by extrusion, molding, dipping, or the like, but is preferably formed by spraying onto a mandrel. The tubular body is annealed to increased crystallinity and strength, usually by the heating and cooling processes described above. The tubular body is then patterned to form a stent or other endoprosthesis, typically by laser cutting, usually after at least one annealing treatment. Optionally, the tubular body may be treated both before and after patterning, and may be treated by annealing more than once both before and after the patterning.
  • [0072]
    Referring now to FIGS. 2A and 2B, a stent 10 suitable for modification by the present invention has base pattern including a plurality of adjacent serpentine rings 12 joined by axial links 14. As illustrated, the stent 10 includes six adjacent serpentine rings 12, where each ring includes six serpentine segments comprising a pair of axial struts 16 joined by a hinge-like crown 18 at one end. The number of rings and segments may vary widely depending on the size of the desired size of the stent. According to the present invention, a supporting feature 20 is disposed between adjacent axial struts 16 and connected so that it will expand, usually elongate, circumferentially with the struts, as shown in FIG. 3. The supporting features 20 are in a generally closed U-shaped configuration prior to expansion, as shown in FIGS. 2A and 2B, and open into a shallow V-shape along with the opening of the axial struts 16 about the crowns 18 during radial expansion of the serpentine rings 12, as shown in FIG. 3. Supporting features 20 enhance the hoop strength of the stent after radial expansion, help resist recoil after expansion is completed, and provide additional area for supporting the vascular or other luminal wall and optionally for delivering drugs into the luminal wall.
  • [0073]
    While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims (24)

  1. 1. A method of making a stent prosthesis, comprising:
    a. providing a tubular member comprising a biodegradable polymeric material;
    b. subjecting the tubular member to a treatment to control the crystallinity so the biodegradable polymeric material has a Tg greater than 37° C.; and
    c. patterning the tubular member to form the stent prosthesis;
    wherein the stent prosthesis at 37° C. is expandable to a deployed configuration and has sufficient strength to support a blood vessel in the deployed configuration.
  2. 2. The method of claim 1 wherein the patterned tubular member is crimped to a deliverable configuration.
  3. 3. The method of claim 2 wherein the patterned tubular member is expandable from a deliverable configuration to a deployed configuration at 37° C.
  4. 4. The method of claim 1 wherein the tubular member is subjected to the treatment before patterning.
  5. 5. The method of claim 1 wherein the tubular member is subjected to the treatment after patterning.
  6. 6. The method of claim 1 wherein the treatment comprises at least one of heating, cooling, pressurizing, cross-linking, exposure to radiation, drawing and addition of additives.
  7. 7. The method of claim 1 wherein the treatment includes heating the tubular member above Tg and below a melting point of the polymeric material.
  8. 8. The method of claim 7 wherein the treatment includes at least one cycle of heating and cooling the tubular member.
  9. 9. The method of claim 1 wherein the tubular member has a crystallinity below 10% prior to treatment.
  10. 10. The method of claim 1 wherein the tubular member has an initial crystallinity prior to treatment and has an increase in crystallinity of at least 20% of the initial crystallinity after treatment.
  11. 11. The method of claim 10 wherein the tubular member has an increase in crystallinity of at least 100% of the initial crystallinity.
  12. 12. The method of claim 1 wherein the tubular member is formed by a process selected from the group consisting of extruding, molding, dipping and spraying.
  13. 13. The method of claim 12 wherein the tubular member is formed by spraying the polymeric material onto a cylindrical surface.
  14. 14. The method of claim 13 wherein the polymeric material is dissolved in a solvent.
  15. 15. The method of claim 13 wherein solvent also contains an additive.
  16. 16. The method of claim 15 wherein the polymeric material is selected from at least one copolymer or blend selected from the group consisting of polylactide and polycaprolactone and polylactide and polyglycolide.
  17. 17. The method of claim 1 wherein the polymeric material after treatment has one or more properties selected from the group consisting of a yield strength of at least 50% of ultimate strength, an elastic modulus of at least 0.5 GPa, a yield strain of at most 10% and a plastic strain of at least 20%.
  18. 18. The method of claim 1 wherein the tubular member has a diameter of about 1 to 1.5 times a deployed diameter.
  19. 19. The method of claim 1 wherein the tubular member has a diameter of about 1 to 1.3 times a deployed diameter.
  20. 20. The method of claim 1 wherein the prosthesis has a recoil of less than 10% in the deployed configuration.
  21. 21. The method of claim 1 wherein the tubular member is substantially amorphous after treatment.
  22. 22. The method of claim 1 wherein the tubular member has a crystallinity of about 10-30% after treatment.
  23. 23. The method of claim 1 wherein the tubular body comprises a drug.
  24. 24. The method of claim 1 wherein the biodegradable polymeric material is amorphous prior to treatment.
US13434555 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication Abandoned US20120187606A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US88570007 true 2007-01-19 2007-01-19
US12016085 US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US13434555 US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US13434555 US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication
US13536957 US20130150943A1 (en) 2007-01-19 2012-06-28 Biodegradable endoprostheses and methods for their fabrication
US13539770 US8636792B2 (en) 2007-01-19 2012-07-02 Biodegradable endoprostheses and methods for their fabrication
US13897302 US8814930B2 (en) 2007-01-19 2013-05-17 Biodegradable endoprosthesis and methods for their fabrication
US14097087 US20140188243A1 (en) 2007-01-19 2013-12-04 Biodegradable endoprostheses and methods for their fabrication
US14450137 US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication
US14461159 US9119905B2 (en) 2007-01-19 2014-08-15 Biodegradable endoprostheses and methods for their fabrication
US14604621 US20160213499A1 (en) 2007-01-19 2015-01-23 Biodegradable endoprostheses and methods for their fabrication
US14611043 US20150374521A1 (en) 2008-01-17 2015-01-30 Biodegradable endoprostheses and methods for their fabrication
US14804415 US9566371B2 (en) 2007-01-19 2015-07-21 Biodegradable endoprostheses and methods for their fabrication
US14945253 US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication
US15178506 US20160278953A1 (en) 2007-01-19 2016-06-09 Biodegradable endoprostheses and methods for their fabrication
US15420615 US20170156899A1 (en) 2007-01-19 2017-01-31 Biodegradable endoprostheses and methods for their fabrication

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12016085 Division US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US12016085 Continuation US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US12016077 Continuation-In-Part US20080177373A1 (en) 2007-01-19 2008-01-17 Endoprosthesis structures having supporting features

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12016085 Continuation-In-Part US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US13536957 Continuation-In-Part US20130150943A1 (en) 2007-01-19 2012-06-28 Biodegradable endoprostheses and methods for their fabrication
US14450137 Continuation US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication

Publications (1)

Publication Number Publication Date
US20120187606A1 true true US20120187606A1 (en) 2012-07-26

Family

ID=39636746

Family Applications (6)

Application Number Title Priority Date Filing Date
US12016085 Active 2030-12-21 US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US12016077 Abandoned US20080177373A1 (en) 2007-01-19 2008-01-17 Endoprosthesis structures having supporting features
US13434555 Abandoned US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication
US13473354 Active US8323760B2 (en) 2007-01-19 2012-05-16 Biodegradable endoprostheses and methods for their fabrication
US14450137 Abandoned US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication
US14945253 Abandoned US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12016085 Active 2030-12-21 US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US12016077 Abandoned US20080177373A1 (en) 2007-01-19 2008-01-17 Endoprosthesis structures having supporting features

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13473354 Active US8323760B2 (en) 2007-01-19 2012-05-16 Biodegradable endoprostheses and methods for their fabrication
US14450137 Abandoned US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication
US14945253 Abandoned US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication

Country Status (6)

Country Link
US (6) US8182890B2 (en)
EP (3) EP2124816B1 (en)
JP (8) JP5489725B2 (en)
CN (7) CN104042375B (en)
ES (1) ES2605731T3 (en)
WO (2) WO2008089446A3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323760B2 (en) 2007-01-19 2012-12-04 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8636792B2 (en) 2007-01-19 2014-01-28 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8814930B2 (en) 2007-01-19 2014-08-26 Elixir Medical Corporation Biodegradable endoprosthesis and methods for their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US20160045344A1 (en) * 2014-08-15 2016-02-18 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9387282B2 (en) 2010-03-31 2016-07-12 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9908143B2 (en) 2008-06-20 2018-03-06 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US9943426B2 (en) 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140107761A1 (en) 2004-07-26 2014-04-17 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
EP1834606B1 (en) * 2006-03-16 2013-04-24 CID S.p.A. Stents
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8460362B2 (en) 2006-07-20 2013-06-11 Orbusneich Medical, Inc. Bioabsorbable polymeric medical device
EP2430068A4 (en) * 2009-05-15 2014-07-02 Orbusneich Medical Inc Bioabsorbable polymeric compositions and medical devices
EP3061791A1 (en) 2006-07-20 2016-08-31 OrbusNeich Medical, Inc. Bioabsorbable polymeric composition for a medical device
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
US8002817B2 (en) * 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
EP2190389A1 (en) * 2007-08-01 2010-06-02 Prescient Medical, Inc. Expandable prostheses for treating atherosclerotic lesions including vulnerable plaques
US8252215B2 (en) * 2008-03-31 2012-08-28 Abbott Cardiovascular Systems Inc. Method for fabricating a stent with nucleating agent
US20090269480A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Supercritical Fluid Loading of Porous Medical Devices With Bioactive Agents
US8206635B2 (en) * 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8394317B2 (en) 2008-08-11 2013-03-12 Abbott Cardiovascular Systems Inc. Method of improving fracture toughness of implantable medical devices through annealing
US8372332B2 (en) * 2008-08-11 2013-02-12 Abbott Cardiovascular Systems Inc. Fabricating an implantable medical device from an amorphous or very low crystallinity polymer construct
US8765040B2 (en) * 2008-08-11 2014-07-01 Abbott Cardiovascular Systems Inc. Medical device fabrication process including strain induced crystallization with enhanced crystallization
US8337739B2 (en) * 2008-08-12 2012-12-25 Abbott Cardiovascular Systems Inc. Improving fracture toughness of medical devices with a stereocomplex nucleating agent
US9572692B2 (en) * 2009-02-02 2017-02-21 Abbott Cardiovascular Systems Inc. Bioabsorbable stent that modulates plaque geometric morphology and chemical composition
US8968818B2 (en) * 2009-02-21 2015-03-03 Covidien Lp Medical devices having activated surfaces
US8147744B2 (en) 2009-04-10 2012-04-03 Abbott Cardiovascular Systems Inc. Method of making a stent formed from crosslinked bioabsorbable polymer
US8597716B2 (en) 2009-06-23 2013-12-03 Abbott Cardiovascular Systems Inc. Methods to increase fracture resistance of a drug-eluting medical device
US8889823B2 (en) 2009-07-21 2014-11-18 Abbott Cardiovascular Systems Inc. Method to make poly(L-lactide) stent with tunable degradation rate
US9889238B2 (en) * 2009-07-21 2018-02-13 Abbott Cardiovascular Systems Inc. Biodegradable stent with adjustable degradation rate
US8119704B2 (en) * 2009-07-21 2012-02-21 Abbott Cardiovascular Systems Inc. Implantable medical device comprising copolymer of L-lactide with improved fracture toughness
US8207240B2 (en) * 2009-09-14 2012-06-26 Abbott Cardiovascular Systems Inc Method to minimize molecular weight drop of poly(L-lactide) stent during processing
ES2541465T3 (en) * 2009-09-16 2015-07-20 Bentley Innomed Gmbh Stent expansible elements
US20110288223A1 (en) 2010-01-22 2011-11-24 Kannan Rangaramanujam M Supercritical Carbon-Dioxide Processed Biodegradable Polymer Nanocomposites
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) * 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
EP2533730A1 (en) * 2010-02-10 2012-12-19 Apertomed, L.L.C. Methods, systems and devices for treatment of cerebrospinal venous insufficiency and multiple sclerosis
US8613880B2 (en) * 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
WO2012015825A3 (en) 2010-07-27 2012-04-19 Incept, Llc Methods and apparatus for treating neurovascular venous outflow obstruction
EP2415489B1 (en) * 2010-08-03 2016-07-06 Biotronik AG Polylactide-coated implant composed of a biocorrodible magnesium alloy
US8539663B2 (en) 2010-08-23 2013-09-24 Abbott Cardiovascular Systems Inc. Reducing crimping damage to polymer scaffold
US20120059451A1 (en) 2010-09-08 2012-03-08 Qiang Zhang Method of Manufacturing a Polymeric Stent Having Reduced Recoil
US8920867B2 (en) * 2010-10-19 2014-12-30 Covidien Lp Methods of forming self-supporting films for delivery of therapeutic agents
US20120158123A1 (en) * 2010-12-15 2012-06-21 Biotronik Ag Polymer stent
US9296174B2 (en) 2011-01-12 2016-03-29 Compagnie Chomarat Composite laminated structures and methods for manufacturing and using the same
US8545546B2 (en) * 2011-05-13 2013-10-01 Abbott Cardiovascular Systems Inc. Bioabsorbable scaffolds made from composites
US8487017B2 (en) 2011-06-27 2013-07-16 Covidien Lp Biodegradable materials for orthopedic devices based on polymer stereocomplexes
JP2014526915A (en) * 2011-06-30 2014-10-09 エリクシアー メディカル コーポレイション Biodegradable endoprosthesis and a manufacturing method thereof
US20150174864A1 (en) * 2011-10-14 2015-06-25 Midsun Group Inc. Self-fusing carbon fiber silicone perforated tape
US9839537B2 (en) 2012-03-07 2017-12-12 Abbott Cardiovascular Systems Inc. Bioresorbable polymer scaffold treatment of coronary and peripheral artery disease in diabetic patients
WO2013136965A1 (en) * 2012-03-15 2013-09-19 テルモ株式会社 In vivo indwelling stent and stent delivery system
KR101231197B1 (en) * 2012-09-20 2013-02-07 썬텍 주식회사 Polymeric stent
US20140296965A1 (en) * 2013-03-14 2014-10-02 Palmaz Scientific, Inc. Monolithic medical devices, methods of making and using the same
US9364350B2 (en) 2013-07-09 2016-06-14 Abbott Cardiovascular Systems Inc. Stent with eased corner feature
US9364588B2 (en) 2014-02-04 2016-06-14 Abbott Cardiovascular Systems Inc. Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating
CN103948459B (en) * 2014-05-27 2016-05-25 辽宁生物医学材料研发中心有限公司 A low-high rebound degradable coronary stents support
US9381103B2 (en) * 2014-10-06 2016-07-05 Abbott Cardiovascular Systems Inc. Stent with elongating struts
JP2016077354A (en) 2014-10-10 2016-05-16 住友ゴム工業株式会社 Gasket for pre-filled syringe
US9931231B2 (en) 2014-12-29 2018-04-03 Cook Medical Technologies Llc Support structures for prostheses with branching portions
CN105641751A (en) * 2016-03-09 2016-06-08 山东中恒碳纤维科技发展有限公司 Three-dimensionally woven composite prosthesis and production method thereof
WO2017223526A1 (en) * 2016-06-23 2017-12-28 Poly-Med, Inc. Medical implants having managed biodegradation
WO2018039444A1 (en) * 2016-08-25 2018-03-01 Mico Innovations, Llc Neurovascular stent
CN107137168A (en) * 2017-06-21 2017-09-08 青岛容商天下网络有限公司 Degradable and withdrawable 4D printing linear organic human body stent and using method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103584A1 (en) * 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867190A (en) * 1971-10-18 1975-02-18 American Cyanamid Co Reducing capillarity of polyglycolic acid sutures
WO1991017724A1 (en) * 1990-05-17 1991-11-28 Harbor Medical Devices, Inc. Medical device polymer
NL9001984A (en) 1990-09-10 1992-04-01 Stamicarbon A method for producing an article from a copolymer of lactide and epsilon-caprolactone for medical applications.
CA2060635A1 (en) * 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5441483A (en) * 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5741329A (en) * 1994-12-21 1998-04-21 Board Of Regents, The University Of Texas System Method of controlling the pH in the vicinity of biodegradable implants
FI98136C (en) * 1995-09-27 1997-04-25 Biocon Oy Tissue conditions degradable material and a method for its preparation
US6241760B1 (en) * 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US5670161A (en) * 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5922020A (en) * 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US20030093143A1 (en) * 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US5911732A (en) * 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
DE29825178U1 (en) * 1997-04-25 2005-10-06 Boston Scientific Ltd., St. Michael Expendable stent in form of tubular body - includes several coiled elements included in stent body and being at ends of stent
US6610764B1 (en) * 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
DE19722384A1 (en) * 1997-05-28 1998-12-03 Gfe Ges Fuer Forschung Und Ent Flexible expandable stent
CA2241558A1 (en) * 1997-06-24 1998-12-24 Richard T. Allen Stent with reinforced struts and bimodal deployment
US5980564A (en) * 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US5964798A (en) * 1997-12-16 1999-10-12 Cardiovasc, Inc. Stent having high radial strength
US6626939B1 (en) * 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6293967B1 (en) * 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
EP1020166A1 (en) * 1999-01-12 2000-07-19 Orbus Medical Technologies, Inc. Expandable intraluminal endoprosthesis
US6224803B1 (en) * 1999-04-28 2001-05-01 Advanced Cardiovascular Systems, Inc. Method of forming a thin walled member by extrusion and medical device produced thereby
US6248363B1 (en) * 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US20020161168A1 (en) * 2000-10-27 2002-10-31 Shalaby Shalaby W. Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
CN1427698A (en) * 2000-03-09 2003-07-02 迪赛罗医疗发展有限公司 Stent with cover connectors
DK2298366T3 (en) * 2000-03-13 2012-11-26 Kyoto Iryo Sekkei Kk Linear material for intravascular stent and the intravascular stent with the use thereof
DE10012460A1 (en) * 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation.
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6602282B1 (en) * 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
WO2001095834A1 (en) * 2000-06-13 2001-12-20 Scimed Life Systems, Inc. Disintegrating stent and method of making same
US20030033007A1 (en) * 2000-12-22 2003-02-13 Avantec Vascular Corporation Methods and devices for delivery of therapeutic capable agents with variable release profile
US6607548B2 (en) 2001-05-17 2003-08-19 Inion Ltd. Resorbable polymer compositions
US6585755B2 (en) * 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
CN2517403Y (en) * 2001-07-27 2002-10-23 微创医疗器械(上海)有限公司 Coronary artery stand with non-homogeneous waveform structure
CN1131074C (en) 2001-08-10 2003-12-17 中国人民解放军总医院 Preparation method for quick-dissolving support for microtraumatic quick vascular anastomosis technique
US6997944B2 (en) * 2001-08-13 2006-02-14 Advanced Cardiovascular Systems, Inc. Apparatus and method for decreasing stent gap size
KR100679990B1 (en) * 2001-10-15 2007-02-08 헤모텍 게엠베하 Coating of stents for preventing restenosis
US7572287B2 (en) * 2001-10-25 2009-08-11 Boston Scientific Scimed, Inc. Balloon expandable polymer stent with reduced elastic recoil
US20030088307A1 (en) * 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
US6866805B2 (en) * 2001-12-27 2005-03-15 Advanced Cardiovascular Systems, Inc. Hybrid intravascular stent
US7029493B2 (en) * 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US7354450B2 (en) * 2002-01-30 2008-04-08 Boston Scientific Scimed, Inc. Stent with wishbone connectors and serpentine bands
CN2532867Y (en) * 2002-03-22 2003-01-29 维科医疗器械(苏州)有限公司 Curonary artery dilation supporter with zero shortening structure
EP1501424B1 (en) 2002-04-18 2018-06-06 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Biodegradable shape memory polymeric sutures
US7261734B2 (en) * 2002-04-23 2007-08-28 Boston Scientific Scimed, Inc. Resorption-controllable medical implants
JP2006500997A (en) * 2002-09-27 2006-01-12 メドロジックス デバイス コーポレイション Implantable stents modified end
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
JP3988619B2 (en) * 2002-10-31 2007-10-10 東レ株式会社 Polylactic acid-based resin composition and a molded article comprising the same
US20040098090A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Polymeric endoprosthesis and method of manufacture
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US6863757B1 (en) * 2002-12-19 2005-03-08 Advanced Cardiovascular Systems, Inc. Method of making an expandable medical device formed of a compacted porous polymeric material
US7316710B1 (en) * 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6932930B2 (en) * 2003-03-10 2005-08-23 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
GB0310300D0 (en) * 2003-05-06 2003-06-11 Univ Belfast Nanocomposite drug delivery composition
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US6979348B2 (en) * 2003-06-04 2005-12-27 Medtronic Vascular, Inc. Reflowed drug-polymer coated stent and method thereof
WO2004110515A1 (en) * 2003-06-13 2004-12-23 Mnemoscience Gmbh Biodegradable stents
WO2004110315A1 (en) * 2003-06-16 2004-12-23 Nanyang Technological University Polymeric stent and method of manufacture
CN1835723B (en) * 2003-06-16 2011-06-22 洛马林达大学医学中心 Deployable multifunctional hemostatic agent
EP1958657A1 (en) * 2003-07-18 2008-08-20 Boston Scientific Limited Medical devices
US8029755B2 (en) * 2003-08-06 2011-10-04 Angstrom Medica Tricalcium phosphates, their composites, implants incorporating them, and method for their production
US7247166B2 (en) * 2003-09-29 2007-07-24 Advanced Cardiovascular Systems, Inc. Intravascular stent with extendible end rings
US7377939B2 (en) * 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture
US8157855B2 (en) * 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
CN1242818C (en) * 2003-12-08 2006-02-22 华中科技大学 Degradable composite support frame and its preparing process
US7258697B1 (en) * 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
DE10361940A1 (en) * 2003-12-24 2005-07-28 Restate Patent Ag Degradationssteuerung biodegradable implants by coating
US20050187615A1 (en) 2004-02-23 2005-08-25 Williams Michael S. Polymeric endoprostheses with enhanced strength and flexibility and methods of manufacture
US7709570B2 (en) * 2004-04-02 2010-05-04 Alps South, LLC Surface modification of triblock copolymer elastomers
US7731740B2 (en) * 2004-04-02 2010-06-08 Arterial Remodelling Technologies, Inc. Polymer-based stent assembly
JP2005298617A (en) * 2004-04-09 2005-10-27 Mitsubishi Plastics Ind Ltd Injection molded product
US8007737B2 (en) * 2004-04-14 2011-08-30 Wyeth Use of antioxidants to prevent oxidation and reduce drug degradation in drug eluting medical devices
CN1569270B (en) 2004-04-29 2011-06-29 上海瑞邦生物材料有限公司 Method for preparing cardiovascular drug eluting stent
US20050261757A1 (en) * 2004-05-21 2005-11-24 Conor Medsystems, Inc. Stent with contoured bridging element
US7875233B2 (en) * 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
CN2768714Y (en) * 2004-11-22 2006-04-05 微创医疗器械(上海)有限公司 Flexible blood vessel stent
JP4820551B2 (en) * 2005-01-14 2011-11-24 テルモ株式会社 Vivo indwelling
JP2008528698A (en) * 2005-02-03 2008-07-31 インターシア セラピューティクス,インコーポレイティド Interferon-containing device that can be embedded
US8420113B2 (en) * 2005-02-10 2013-04-16 Cordis Corporation Biodegradable medical devices with enhanced mechanical strength and pharmacological functions
US20060193891A1 (en) * 2005-02-25 2006-08-31 Robert Richard Medical devices and therapeutic delivery devices composed of bioabsorbable polymers produced at room temperature, method of making the devices, and a system for making the devices
US7291166B2 (en) * 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7622070B2 (en) * 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US20070043427A1 (en) * 2005-08-19 2007-02-22 Medlogics Device Corporation Lumen-supporting stents
US20070132155A1 (en) 2005-12-13 2007-06-14 Robert Burgermeister Polymeric stent having modified molecular structures in selected regions of the hoops and method for increasing elongation at break
US20070200271A1 (en) 2006-02-24 2007-08-30 Vipul Dave Implantable device prepared from melt processing
US20070225798A1 (en) * 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
US20070233233A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc Tethered expansion columns for controlled stent expansion
US8747879B2 (en) * 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US7594928B2 (en) * 2006-05-17 2009-09-29 Boston Scientific Scimed, Inc. Bioabsorbable stents with reinforced filaments
US7971333B2 (en) * 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US20070290412A1 (en) * 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
WO2008002441A3 (en) * 2006-06-23 2008-05-29 Boston Scient Scimed Inc Bifurcated stent with twisted hinges
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US20080001330A1 (en) 2006-06-28 2008-01-03 Bin Huang Fabricating polymer stents with injection molding
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US9089627B2 (en) 2006-07-11 2015-07-28 Abbott Cardiovascular Systems Inc. Stent fabricated from polymer composite toughened by a dispersed phase
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US20080033540A1 (en) 2006-08-01 2008-02-07 Yunbing Wang Methods to prepare polymer blend implantable medical devices
US9265866B2 (en) 2006-08-01 2016-02-23 Abbott Cardiovascular Systems Inc. Composite polymeric and metallic stent with radiopacity
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
EP2076211A4 (en) 2006-10-20 2015-07-22 Elixir Medical Corp Luminal prostheses and methods for coating thereof
US8182890B2 (en) 2007-01-19 2012-05-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8002817B2 (en) 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
US7829008B2 (en) * 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US7824601B1 (en) * 2007-11-14 2010-11-02 Abbott Cardiovascular Systems Inc. Process of making a tubular implantable medical device
US8268228B2 (en) * 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103584A1 (en) * 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566371B2 (en) * 2007-01-19 2017-02-14 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8636792B2 (en) 2007-01-19 2014-01-28 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8814930B2 (en) 2007-01-19 2014-08-26 Elixir Medical Corporation Biodegradable endoprosthesis and methods for their fabrication
US20150025619A1 (en) * 2007-01-19 2015-01-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US9119905B2 (en) * 2007-01-19 2015-09-01 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US20150320577A1 (en) * 2007-01-19 2015-11-12 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8323760B2 (en) 2007-01-19 2012-12-04 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US9908143B2 (en) 2008-06-20 2018-03-06 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US9387282B2 (en) 2010-03-31 2016-07-12 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US20160045344A1 (en) * 2014-08-15 2016-02-18 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9730819B2 (en) * 2014-08-15 2017-08-15 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9943426B2 (en) 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent

Also Published As

Publication number Publication date Type
CN104096271A (en) 2014-10-15 application
US8182890B2 (en) 2012-05-22 grant
ES2605731T3 (en) 2017-03-16 grant
EP2109416A4 (en) 2014-06-11 application
US20080177374A1 (en) 2008-07-24 application
CN101636126B (en) 2014-06-04 grant
JP2013188588A (en) 2013-09-26 application
CN104127270A (en) 2014-11-05 application
JP2017035511A (en) 2017-02-16 application
JP2015071056A (en) 2015-04-16 application
US20140350659A1 (en) 2014-11-27 application
US20160067389A1 (en) 2016-03-10 application
CN104042375B (en) 2016-08-24 grant
CN101636126A (en) 2010-01-27 application
JP5355420B2 (en) 2013-11-27 grant
CN104042375A (en) 2014-09-17 application
JP5489725B2 (en) 2014-05-14 grant
JP5762486B2 (en) 2015-08-12 grant
CN101621971A (en) 2010-01-06 application
CN105616044A (en) 2016-06-01 application
US20080177373A1 (en) 2008-07-24 application
JP2014014698A (en) 2014-01-30 application
CN105534627A (en) 2016-05-04 application
JP2014195734A (en) 2014-10-16 application
JP2010516348A (en) 2010-05-20 application
WO2008089446A3 (en) 2008-10-09 application
US8323760B2 (en) 2012-12-04 grant
EP2124816B1 (en) 2016-09-28 grant
WO2008089446A2 (en) 2008-07-24 application
JP2016221352A (en) 2016-12-28 application
EP2109416A2 (en) 2009-10-21 application
CN104096271B (en) 2015-12-30 grant
EP2124816A4 (en) 2013-01-23 application
EP2124816A2 (en) 2009-12-02 application
WO2008089434A3 (en) 2008-10-09 application
JP5749296B2 (en) 2015-07-15 grant
US20120226345A1 (en) 2012-09-06 application
EP2783710A1 (en) 2014-10-01 application
WO2008089434A2 (en) 2008-07-24 application
JP2010516347A (en) 2010-05-20 application

Similar Documents

Publication Publication Date Title
US5061281A (en) Bioresorbable polymers and implantation devices thereof
US6500204B1 (en) Stent for vessels
US5849035A (en) Methods for intraluminal photothermoforming
US20080103584A1 (en) Temporal Intraluminal Stent, Methods of Making and Using
US5464450A (en) Biodegradable drug delivery vascular stent
US20060178727A1 (en) Hybrid amorphous metal alloy stent
US6368346B1 (en) Bioresorbable stent
US7761968B2 (en) Method of crimping a polymeric stent
US7077859B2 (en) Apparatus and methods for variably controlled substance delivery from implanted prostheses
US7618448B2 (en) Polymeric, degradable drug-eluting stents and coatings
US20080118546A1 (en) Bioabsorbable polymeric composition for a medical device
US20050033399A1 (en) Hybrid stent
US7022132B2 (en) Stents with temporary retaining bands
US20060076708A1 (en) Method of fabricating a biaxially oriented implantable medical device
US5957975A (en) Stent having a programmed pattern of in vivo degradation
US20130150943A1 (en) Biodegradable endoprostheses and methods for their fabrication
US20060018948A1 (en) Biodegradable implantable medical devices, methods and systems
US8002817B2 (en) Stents with high radial strength and methods of manufacturing same
US20060025852A1 (en) Bioabsorbable self-expanding endolumenal devices
US20080097575A1 (en) Bioabsorbable Medical Device with Coating
US5670161A (en) Biodegradable stent
US7951185B1 (en) Delivery of a stent at an elevated temperature
US20090005854A1 (en) Stent having circumferentially deformable struts
US20130331927A1 (en) Biodegradable endoprosthesis and methods for their fabrication
US20060122691A1 (en) Hybrid stent

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELIXIR MEDICAL CORPORATION, A CALIFORNIA CORPORATI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELIXIR MEDICAL CORPORATION, A DELAWARE CORPORATION;REEL/FRAME:032907/0038

Effective date: 20140502