US20120179654A1 - Resolving conflicts in content management systems - Google Patents

Resolving conflicts in content management systems Download PDF

Info

Publication number
US20120179654A1
US20120179654A1 US13/307,024 US201113307024A US2012179654A1 US 20120179654 A1 US20120179654 A1 US 20120179654A1 US 201113307024 A US201113307024 A US 201113307024A US 2012179654 A1 US2012179654 A1 US 2012179654A1
Authority
US
United States
Prior art keywords
document
client
server
version
system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/307,024
Inventor
Maxim Lukiyanov
Arulseelan Thiruppathi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/146,467 priority Critical patent/US8090681B2/en
Application filed by Microsoft Corp filed Critical Microsoft Corp
Priority to US13/307,024 priority patent/US20120179654A1/en
Publication of US20120179654A1 publication Critical patent/US20120179654A1/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/48Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually

Abstract

A conflict resolution system is described for reducing false conflicts among entities synchronized within a content management system. A typical content management system maintains a version for an entity that is incremented each time an endpoint modifies the entity, including changes that affect the metadata rather than the content of the entity. The conflict resolution system adds a new content version that is updated when the content of the entity changes. By comparing content version information, endpoints can automatically resolve false conflicts that occur when an endpoint has modified the metadata of the entity.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional application of U.S. patent application Ser. No. 12/146,467 (Attorney Docket No. 323871.01) entitled “RESOLVING CONFLICTS IN CONTENT MANAGEMENT SYSTEMS,” and filed on Jun. 26, 2008, which is hereby incorporated by reference.
  • BACKGROUND
  • Enterprise content management (ECM) refers to the technologies used to capture, store, preserve and deliver content and documents and content related to organizational processes. ECM tools and strategies allow the management of an organization's unstructured information, wherever that information exists. A subset of ECM is a content management system (CMS), which is computer software used to create, edit, manage, and publish content in a consistently organized fashion. CMSs are frequently used for storing, controlling, versioning, and publishing industry-specific documentation such as news articles, operators' manuals, technical manuals, sales guides, and marketing brochures. The content managed may include computer files, image media, audio files, electronic documents, and Web content. Another type of ECM is a document management system (DMS), which is a computer system (or set of computer programs) used to track and store electronic documents and/or images of paper documents. The term has some overlap with the concepts of Content Management Systems and is often viewed as a component of Enterprise Content Management Systems and related to Digital Asset Management, Document imaging, Workflow systems, and Records Management systems.
  • Current ECM systems are implemented as either client/server or peer-to-peer (P2P) applications. An example of a client/server ECM system is Microsoft SharePoint, a web-based collaboration and document management platform from Microsoft. Microsoft SharePoint can be used to host web sites that access shared workspaces and documents, as well as specialized applications like wikis and blogs from a browser. Microsoft SharePoint offers base collaborative infrastructure supporting HTTP- and HTTPS-based editing of documents, as well as document organization in document libraries, version control capabilities, wikis, and blogs. It also includes end-user functionality such as workflows, to-do lists, alerts and discussion boards, which are exposed as web parts to be embedded into SharePoint pages. Clients access a client/server ECM system using simple client software such as a browser. The server tracks documents checked out by each client and changes made to documents using versioning.
  • P2P ECM systems do not use a server, but instead exchange changes to documents between client peers. An example is Microsoft Office Groove, an application targeted at teams with members who are usually off-line or who do not share the same network security clearance. Groove is desktop software designed for the collaboration and communication of the members of small groups. A set of files to be shared plus some aids for group collaboration are placed in a shared workspace that a user can invite other users to join. By responding to an invitation, the invitee becomes an active member of the workspace and is sent a copy of the workspace that is installed on their hard disk drive. Data is encrypted both on disk as well as over the network, with each workspace having a unique set of cryptographic keys. Members interact and collaborate in the workspace, which is a private virtual location. Changes being made are tracked by Groove and all the copies are synchronized via the network in a P2P manner. When conflicts occur, users designated as editors inspect the conflicting changes and make an official change to the workspace that is distributed to members.
  • As various ECM systems gain popularity, documents can be simultaneously managed by more than one system. For example, a document shared using a client/server system such as Microsoft SharePoint may also be part of a P2P system such as Microsoft Office Groove. When a user makes a change, each of the systems synchronizes the changes to other users of the system. This can lead to unnecessary synchronization where one system appears to another system to have modified a document, even though no change occurs to the document content. For example, User A may make a change to the document, and then synchronize the change to the server of a client/server system. User A may then synchronize the change to User B using a P2P system. If User B is also a member of the client/server system, User B then attempts to synchronize the change to the server. The final change submitted by User B is redundant because User A has already sent the change to the server. However, the server typically has no way of knowing that the change is not new. The final change also appears to the server to conflict with User A's change, since the change is to the same document. Thus, extra synchronization can occur and the server or P2P system may invoke conflict resolution procedures for false conflicts that waste an editor's time.
  • SUMMARY
  • A conflict resolution system is described for reducing false conflicts among documents or other entities synchronized within an ECM or other type of CMS. A typical ECM maintains a single endpoint version that is incremented each time an endpoint modifies a document, including changes that affect the metadata rather than the content of the document. The conflict resolution system adds a new content version to the information tracked by each endpoint. The content version is updated when the content of a document changes. By comparing content versions, endpoints can automatically resolve false conflicts that occur when an endpoint has modified the metadata of the document.
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram that illustrates components of the conflict resolution system, in one embodiment.
  • FIG. 2 is a block diagram that illustrates a typical operating environment of the conflict resolution system, in one embodiment.
  • FIG. 3 is a flow diagram that illustrates the processing of the sync component to synchronize changes between a server and client, in one embodiment.
  • FIG. 4 is a flow diagram that illustrates the processing of the conflict resolution component to resolve changes at the server, in one embodiment.
  • FIG. 5 is a flow diagram that illustrates the processing of the conflict resolution component to resolve changes at the client, in one embodiment.
  • FIG. 6 is a data flow diagram that illustrates an example of the conflict resolution system automatically resolving a conflict, in one embodiment.
  • DETAILED DESCRIPTION
  • A conflict resolution system is described for reducing false conflicts among documents or other entities synchronized within an ECM or other type of CMS. A typical ECM maintains a single server version that is incremented each time a change is made. The server tracks the most recent server version that a client receives when the client synchronizes with the server. If the client makes a change and again synchronizes with the server after another client has made a change, the ECM reports a conflict and prompts the user to manually resolve the conflict. The conflict resolution system adds a new content version to the information tracked by the server and clients. The content version is updated when the content changes with information about the client that made the change. In the scenario above, if the client synchronizing with the server reports a content version that is the same as the content version provided with the change from the other client (e.g., if the two clients previously synced using a P2P system), then there is a false conflict and the conflict resolution system automatically resolves the conflict without prompting the user. The server and clients may also track a chain of change history that can be used to determine the path taken by each document at any location within the system. The change history provides knowledge that allows any endpoint to potentially resolve false conflicts as described further herein. For example, if the synchronizing client in the example above reports a content version that is covered by the server or other client's knowledge (e.g., it is contained in the change history), then the system can treat the conflict as a false conflict. Thus, the conflict resolution system reduces false conflicts and saves the user time for doing tasks that are more productive.
  • Whenever an item on the server is updated, the server changes certain metadata of the item. For example, the server increments the server item version, records who updated the item, and records when the item was updated. The server may also trigger custom business logic that may result in further changes of the item metadata. The result is that the item is changed every time it is uploaded to the server, even though the content of the item does not change. Thus, the server version is not a reliable indicator of whether the item content has been changed.
  • In a P2P synchronization topology, clients synchronize data between each other without server interaction. In this scenario, more than one client may have updated the item since it was last synchronized with the server. Connectivity with the server may be lost temporarily (such as for a mobile device) even when connectivity with other clients is still available. For example, client A may change an item and synchronize it with client B. Client B may also change the item. When a connection to the server becomes available, both clients will try to upload the item to the server. The server modifies metadata of the item when the first client uploads its changes. The second client sees this as a new change that it does not know about and prompts the user to resolve the conflict. The conflict resolution system solves this problem by adding additional metadata to items in the server's data store that indicates when the content of an item was last modified. A client-server protocol is defined that uses this metadata to automatically resolve conflicts without data loss.
  • Every item in the data store is logically divided into two parts: content change unit and server change unit. For every part, a separate version property is used. The version of the server change unit, or server version, is updated when a limited, well-known subset of item metadata is changed. The version of the content change unit, or content version, is updated when any other part of the item is changed. If a client or server detects a conflict, they can resolve this conflict automatically as long as this conflict was created due to direct P2P synchronizations between clients and the item content was not actually modified by multiple users.
  • In the conflict situation, one synchronization end point (client or server) called “A” is trying to update an item stored on another synchronization end point called “B” while A has no information about the version of the item stored by “B”. The conflict resolution system allows endpoint A to automatically resolve the conflict and successfully replace B's item when the content version of B's item is known to endpoint A. The server version can be ignored, although it may still be used by older clients.
  • FIG. 1 is a block diagram that illustrates components of the conflict resolution system, in one embodiment. The conflict resolution system 100 contains a sync component 110, an edit component 120, a document store component 130, a versioning component 140, a change history component 150, and a conflict resolution component 160. Each component may have subcomponents on both the client and the server to perform the functions described. Each of these components is described in further detail herein.
  • The sync component 110 handles sync requests between a client and server or between peers. The sync component 110 may track the identity of each client, the documents managed by the system 100, the latest version held by each client and so forth. For example, the sync component 110 may store the last time a client synchronized and the server and content versions received by the client during the synchronization. When a client requests to synchronize the latest information, the sync component 110 determines the changes that a client has not yet seen and sends the changes to the client so that the client is up to date.
  • The edit component 120 receives modifications to a document or other entity (e.g., spreadsheet, presentation, data file, to do item, announcement, wiki, and so forth) from a user. The edit component 120 may be external to the system 100 or integrated (as shown). The edit component 120 tracks modification made by the client and provides a new client version number for changes that a user makes. The edit component 120 also updates a client's local change history when a user makes a change.
  • The document store component 130 provides storage for the latest version of documents at a particular endpoint, including the server or individual clients. The document store component 130 may be a database, file system, flat file, or other suitable structure for storing documents and related metadata (e.g., change information).
  • The versioning component 140 manages the content version of each document that an endpoint stores. For example, the server tracks the identity of the last client that modified a document as well as the content version that the client assigned to the document. When other clients synchronize with the server, they use the content version number to determine whether their own content version differs and a conflict exists.
  • The change history component 150 manages a history of version information, sometimes referred to as knowledge. When a client or the server is determining whether a conflict has occurred, they can compare their own knowledge with the knowledge of an endpoint synchronizing a change to determine whether their own knowledge covers the knowledge of the endpoint that is performing the sync operation. For example, suppose Client A and B modify a document, and then Client C uploads a version of the document. If Client C's knowledge covers (or includes) the changes made by Clients A and B, then Client C's version of the document is the newest and there is no conflict. If on the other hand Client C is missing information about either the change from Client A or Client B, then there is a conflict and a user manually resolves the differences between Client C's change and the other client's change.
  • The conflict resolution component 160 handles the automatic and manual resolution of conflicts. The conflict resolution component 160 uses the information tracked by the versioning component 140 and the change history component 150 to determine whether a conflict really exists. For conflicts that do not affect the content, the conflict resolution component 160 can automatically resolve what is really a false conflict. The conflict resolution process is described further herein.
  • The computing device on which the system is implemented may include a central processing unit, memory, input devices (e.g., keyboard and pointing devices), output devices (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage devices are computer-readable media that may be encoded with computer-executable instructions that implement the system, which means a computer-readable medium that contains the instructions. In addition, the data structures and message structures may be stored or transmitted via a data transmission medium, such as a signal on a communication link. Various communication links may be used, such as the Internet, a local area network, a wide area network, a point-to-point dial-up connection, a cell phone network, and so on.
  • Embodiments of the system may be implemented in various operating environments that include personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, digital cameras, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and so on. The computer systems may be cell phones, personal digital assistants, smart phones, personal computers, programmable consumer electronics, digital cameras, and so on.
  • The system may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, and so on that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
  • FIG. 2 is a block diagram that illustrates a typical operating environment of the conflict resolution system, in one embodiment. A server 200 is connected via a network 220 to one or more clients, such as client 225 and client 250. The network 220 may be a network such as the Internet, a corporate local area network (LAN), mobile network, and so forth. Although each of the server 200 and clients 225 and 250 are shown attached to the same network, clients 225 and 250 may also be attached to a private network (not shown) that the server is not connected to, over which the clients 225 and 250 perform P2P synchronization.
  • The server 20 includes a server workspace 205, document store 210, and conflict resolution system 215. The server workspace 205 and document store 210 are typical of ECM systems and include the documents and state information for sharing documents among clients. The conflict resolution system 215 allows at least some conflicts that would previous prompt user intervention to be resolved automatically without user intervention.
  • The client 225 includes a client workspace 230, P2P workspace 235, document store 240, and conflict resolution system 245. The client workspace 230 includes client state information for synchronizing with server 200. For example, the client workspace 230 may include a Microsoft Office SharePoint Services workspace. The P2P workspace 235 includes state information for synchronizing with client 250. For example, the P2P workspace 235 may include a Microsoft Groove workspace. The document store 240 stores the version of documents held by the client 225. The document store 240 may be a file system or other suitable storage system on the client. A user of client 225 may modify the documents in the document store 240 and the client later synchronizes those changes to the server 200 and other clients (e.g., client 250).
  • The client 250 illustrates an older version client (e.g., a web browser or other client) that is not updated with the conflict resolution system. The client 250 includes a client workspace 255, P2P workspace 260, and document store 265, similar to those already described. The client 250 is still able to synchronize with the server 200 and client 225 using previously existing methods. However, the client 250 may have to resolve false conflicts that would be detected and handled automatically on newer clients by the conflict resolution system.
  • FIG. 3 is a flow diagram that illustrates the processing of the sync component to synchronize changes between a server and client, in one embodiment. These steps are invoked when a client requests updated information from the server and the client does not have any changes of its own to upload. In block 310, the component receives a sync request from the client. For example, a user may have requested a sync operation through a user interface at the client, and the client may send a sync request to the server. In block 320, the component identifies the client and determines the last time the client synchronized with the server. For example, the component may access a database of client information to determine the last change that the client received. In block 330, the component sends the latest changes to the client. The changes may only include those changes that have occurred since the client last synchronized based on the client information (e.g., to save bandwidth). In block 340, the component updates the client information with the current version synchronized to the client and/or the current time so that the component will know what information the client does not have when the next sync request is received.
  • FIGS. 4 and 5 are flow diagrams that illustrate two alternative methods of conflict resolution, one where conflict resolution is performed by the server, and another where conflict resolution is performed by the client. The conflict resolution may use either or both of the illustrated methods based on factors such as available resources at the server, trustworthiness of the client, and so forth.
  • FIG. 4 is a flow diagram that illustrates the processing of the conflict resolution component to resolve changes at the server, in one embodiment. In block 410, the component receives an upload request that includes information about at least one document. For example, the client may request to synchronize changes to a document with the server. In block 420, the component identifies the client and accesses client-specific state information. For example, the server may use the information to determine when the identified client last synchronized with the server and whether the document has been changed by other clients since the identified client last synchronized. In decision block 430, if the document has changed since the identified client last synchronized, then the component continues at block 440, else no conflict exists and the component continues at block 460. For example, other clients may have uploaded changes to the same document while the identified client was modifying the document. In block 440, the component compares the content version uploaded by the client with the change history of content versions synchronized with the server. Alternatively or additionally, the component may compare a latest content version of the server with the content version or a history of changes provided by the identified client. In decision block 450, if the server's knowledge covers the knowledge of the identified client (or the content versions match), then the component continues at block 460, else a real conflict exists the component continues at block 470. In block 460, either there was no conflict or the component automatically resolves what was a false conflict and accepts the change uploaded by the client. In block 470, the component denies changes related to real conflicts and may prompt the user to manually resolve the conflict. After blocks 460 and 470, these steps conclude.
  • FIG. 5 is a flow diagram that illustrates the processing of the conflict resolution component to resolve changes at the client, in one embodiment. In block 510, the component sends an upload request with an updated document. For example, a client may send an updated document to a server in a client/server CMS. In block 520, the component receives a conflict response indicating that the uploaded document conflicts with changes uploaded by another client. For example, a user may modify the same document as another user, creating a conflict. In block 530, the component sends a request to retrieve change history about the document. For example, the client may use a web service method to request change history information from the server. In block 540, the component receives the change history response that enumerates the changes made to the document by various clients. In block 550, the component compares a local history of changes to the document with the received change history information. In decision block 560, if the local change information includes the change information provided by the server, then the component continues at block 570, else the component continues at block 580. In block 570, after determining that the conflict is a false conflict, the component uploads the document again and indicates that the uploaded instance overrides the server's instance of the document. In block 580, after determining that the conflict is a true conflict, the component prompts the user to manually resolve the conflict. If the user is able to resolve the conflict, then the component may continue at block 570 and upload the document again. After block 570, these steps conclude.
  • As illustrated in FIG. 4 and FIG. 5 the conflict resolution system can operate using several alternatives. In one embodiment, the server tracks a latest content version and each client tracks a change history. When the client uploads a document, the client checks to determine whether the server's latest content version is included in the client's change history. If it is, then the client's version of the document can be uploaded and any conflict is a false conflict. In another embodiment, the client receives a change history from the server that identifies whether changes are to the content or metadata of the document. If the client's change history or knowledge includes the changes in the server's change history that affect the content of the document, then the client can upload the document without a real conflict.
  • FIG. 6 is a data flow diagram that illustrates an example of the conflict resolution system automatically resolving a conflict, in one embodiment. In the diagram, each actor (Client A, Client B, and Server) maintains a content version number that increases with each change and is preceded by the identity of the actor. The Server also maintains a server version number that is updated with each synchronization with the Server. For example, the version A10 indicates the tenth version of a document according to Client A. The numbers in the upper right of each box indicate the endpoints knowledge (e.g., as a change history list) at the end of a phase. At the start, Client A synchronizes with the Server and obtains Server version S100 of a document. Client A modifies 610 the document, giving it content version A15, and then synchronizes 620 the document with Client B. Client B then has Server version S100, content version A15, and knowledge that includes the list: A15, S100. Then, Client A synchronizes 630 the document with the Server. The Server gives the document server version S110 and stores the content version A15 from Client A. Client A also updates 640 its server version to S110 as part of the synchronization.
  • Next, Client B modifies 650 the document, giving it content version B22. At point 660, Client B attempts to synchronize with the Server, and a conflict occurs because the version of the document at the server has been updated by another client (Client A) since Client B last synchronized with the Server. The Server is unaware the Client B actually obtained the changed version of the document from Client A. Using the conflict resolution process described herein, either the Server or Client B can determine that there is no conflict by comparing the content version of the server and Client B's content version information (e.g., a content version, change history, or other knowledge). Because Client B's knowledge encompasses Client A's change, there is no real conflict and the conflict resolution system resolves the conflict automatically. The Server accepts 670 Client B's change, assigns it server version S133, and updates the Server's content version to B22. Client B also updates 680 its server version to S133 as part of the synchronization.
  • In some embodiments, the conflict resolution system maintains backwards compatibility for proper operation with older clients. Clients that do not incorporate the system, such as a web client or Microsoft Outlook or other personal information manager (PIM), may connect to the server. The conflict resolution system adds new version fields rather than modifying existing fields. Older clients use the existing fields as they did before, while the server benefits from newer clients that provide the extended fields for avoiding false conflicts. Thus, both new and old clients can interact with the server and the server can still save resources and editors' time when new clients are used for synchronization. If an old client updates a document, the server clears the new fields so that new clients that connect can determine that the document has been updated since they last synchronized.
  • In some embodiments, the conflict resolution system receives content changes from the server as well as clients. For example, the server may perform actions that modify the content of a document, such as performing an anti-virus check and removing a detected virus from the document. In such cases, it is desirable for clients to synchronize the new version containing the server modification. Thus, the server updates the content version in such cases so that connecting clients will pick up the new version during a synchronization operation.
  • From the foregoing, it will be appreciated that specific embodiments of the conflict resolution system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, although the system has been described as applied to content management, the system can be used equally well for any system where multiple parties make modifications to content. Likewise, although documents have been used for examples, other types of modifiable content can also be used with the system, such as audio, video, web pages, records in a database, and so forth. Accordingly, the invention is not limited except as by the appended claims.

Claims (8)

1-10. (canceled)
11. A computer system for automatically resolving false conflicts in versions of a document, the system comprising:
a processor and memory configured to execute software instructions embodied within the following components;
a sync component configured to handle sync requests between endpoints for synchronizing versions of the document stored at each endpoint;
a document store component configured to provide storage for the latest version of the document at a particular endpoint;
a versioning component configured to manage a content version of the document at each endpoint, wherein a document content version is a separate version indicator from a typical document version and changes only when the document content changes but not when document metadata changes; and
a conflict resolution component configured to automatically resolve false conflicts that occur when an endpoint receives two versions of a document from different clients that have synchronized with one another.
12. The system of claim 11 wherein the conflict resolution component is further configured to determine that a false conflict has occurred by comparing the content version of the two versions of the document.
13. The system of claim 11 wherein the sync component is further configured to store changes most recently synchronized with each endpoint, and when a request to synchronize is received from an endpoint, send changes that have been received after the stored changes.
14. The system of claim 11 further comprising an edit component configured to receive modifications to the document from a user.
15. The system of claim 11 wherein the document is selected from the group consisting of a word processing document, a spreadsheet, a presentation, a data file, and a web page.
16. The system of claim 11 further comprising a change history component configured to manage a history of versions stored at each endpoint and wherein the conflict resolution component uses the history of versions to determine whether a potential conflict can be automatically resolved.
17-20. (canceled)
US13/307,024 2008-06-26 2011-11-30 Resolving conflicts in content management systems Abandoned US20120179654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/146,467 US8090681B2 (en) 2008-06-26 2008-06-26 Resolving conflicts in content management systems
US13/307,024 US20120179654A1 (en) 2008-06-26 2011-11-30 Resolving conflicts in content management systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/307,024 US20120179654A1 (en) 2008-06-26 2011-11-30 Resolving conflicts in content management systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/146,467 Continuation US8090681B2 (en) 2008-06-26 2008-06-26 Resolving conflicts in content management systems

Publications (1)

Publication Number Publication Date
US20120179654A1 true US20120179654A1 (en) 2012-07-12

Family

ID=41448774

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/146,467 Active 2030-01-06 US8090681B2 (en) 2008-06-26 2008-06-26 Resolving conflicts in content management systems
US13/307,024 Abandoned US20120179654A1 (en) 2008-06-26 2011-11-30 Resolving conflicts in content management systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/146,467 Active 2030-01-06 US8090681B2 (en) 2008-06-26 2008-06-26 Resolving conflicts in content management systems

Country Status (1)

Country Link
US (2) US8090681B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110078658A1 (en) * 2009-09-30 2011-03-31 Sap Ag Operation support in versioning systems
US8635373B1 (en) * 2012-09-22 2014-01-21 Nest Labs, Inc. Subscription-Notification mechanisms for synchronization of distributed states
US20140025645A1 (en) * 2012-07-23 2014-01-23 International Business Machines Corporation Resolving Database Integration Conflicts Using Data Provenance

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8762327B2 (en) * 2007-02-28 2014-06-24 Red Hat, Inc. Synchronizing disributed online collaboration content
US8683342B2 (en) 2007-02-28 2014-03-25 Red Hat, Inc. Automatic selection of online content for sharing
US8326814B2 (en) 2007-12-05 2012-12-04 Box, Inc. Web-based file management system and service
US8010487B2 (en) * 2008-06-27 2011-08-30 Microsoft Corporation Synchronization and collaboration within peer-to-peer and client/server environments
EP2433200A4 (en) * 2009-05-21 2013-04-24 Salesforce Com Inc System, method and computer program product for versioning components of an application
US8612380B2 (en) * 2009-05-26 2013-12-17 Adobe Systems Incorporated Web-based collaboration for editing electronic documents
US9298834B2 (en) 2009-05-26 2016-03-29 Adobe Systems Incorporated User presence data for web-based document collaboration
US8301722B2 (en) * 2009-07-29 2012-10-30 Hewlett-Packard Development Company, L.P. Associating version information with a component document of a modular document
US8732247B2 (en) * 2009-09-28 2014-05-20 Bjorn Michael Dittmer-Roche System and method of simultaneous collaboration
US8341224B2 (en) * 2010-02-24 2012-12-25 Microsoft Corporation Multi-master text synchronization using deltas
US8572022B2 (en) * 2010-03-02 2013-10-29 Microsoft Corporation Automatic synchronization conflict resolution
CN102314411B (en) * 2010-06-30 2015-02-18 百度在线网络技术(北京)有限公司 Method for processing vocabulary entry editing and creating conflict and system
KR101697979B1 (en) * 2010-11-23 2017-01-19 삼성전자주식회사 Method and apparatus for syncronizing data in connected devices
US9015601B2 (en) 2011-06-21 2015-04-21 Box, Inc. Batch uploading of content to a web-based collaboration environment
US8850516B1 (en) 2011-06-22 2014-09-30 Emc Corporation Virtual private cloud that provides enterprise grade functionality and compliance
US9063912B2 (en) 2011-06-22 2015-06-23 Box, Inc. Multimedia content preview rendering in a cloud content management system
US9213718B1 (en) * 2011-06-22 2015-12-15 Emc Corporation Synchronized file management across multiple disparate endpoints
US8533165B2 (en) 2011-07-03 2013-09-10 Microsoft Corporation Conflict resolution via metadata examination
EP2729877A4 (en) 2011-07-08 2015-06-17 Box Inc Desktop application for access and interaction with workspaces in a cloud-based content management system and synchronization mechanisms thereof
US9978040B2 (en) 2011-07-08 2018-05-22 Box, Inc. Collaboration sessions in a workspace on a cloud-based content management system
US9197718B2 (en) 2011-09-23 2015-11-24 Box, Inc. Central management and control of user-contributed content in a web-based collaboration environment and management console thereof
US8515902B2 (en) 2011-10-14 2013-08-20 Box, Inc. Automatic and semi-automatic tagging features of work items in a shared workspace for metadata tracking in a cloud-based content management system with selective or optional user contribution
US9098474B2 (en) 2011-10-26 2015-08-04 Box, Inc. Preview pre-generation based on heuristics and algorithmic prediction/assessment of predicted user behavior for enhancement of user experience
US8990307B2 (en) 2011-11-16 2015-03-24 Box, Inc. Resource effective incremental updating of a remote client with events which occurred via a cloud-enabled platform
GB2500152A (en) 2011-11-29 2013-09-11 Box Inc Mobile platform file and folder selection functionalities for offline access and synchronization
US9019123B2 (en) 2011-12-22 2015-04-28 Box, Inc. Health check services for web-based collaboration environments
US9904435B2 (en) 2012-01-06 2018-02-27 Box, Inc. System and method for actionable event generation for task delegation and management via a discussion forum in a web-based collaboration environment
US9965745B2 (en) 2012-02-24 2018-05-08 Box, Inc. System and method for promoting enterprise adoption of a web-based collaboration environment
US9195636B2 (en) 2012-03-07 2015-11-24 Box, Inc. Universal file type preview for mobile devices
JP5853819B2 (en) * 2012-03-29 2016-02-09 富士通株式会社 Control program, a control method, a storage control device and an information processing system
US9286597B2 (en) * 2012-03-30 2016-03-15 Microsoft Technology Licensing, Llc Tracking co-authoring conflicts using document comments
US9054919B2 (en) 2012-04-05 2015-06-09 Box, Inc. Device pinning capability for enterprise cloud service and storage accounts
US9575981B2 (en) 2012-04-11 2017-02-21 Box, Inc. Cloud service enabled to handle a set of files depicted to a user as a single file in a native operating system
GB2514947B (en) 2012-05-04 2015-06-17 Box Inc Repository redundancy implementation of a system which incrementally updates clients with events that occured via a cloud-enabled platform
US9691051B2 (en) 2012-05-21 2017-06-27 Box, Inc. Security enhancement through application access control
US8914900B2 (en) 2012-05-23 2014-12-16 Box, Inc. Methods, architectures and security mechanisms for a third-party application to access content in a cloud-based platform
US9027108B2 (en) 2012-05-23 2015-05-05 Box, Inc. Systems and methods for secure file portability between mobile applications on a mobile device
US9924002B1 (en) 2012-06-21 2018-03-20 EMC IP Holding Company LLC Managing stateless processes
US9021099B2 (en) 2012-07-03 2015-04-28 Box, Inc. Load balancing secure FTP connections among multiple FTP servers
US9792320B2 (en) 2012-07-06 2017-10-17 Box, Inc. System and method for performing shard migration to support functions of a cloud-based service
US9712510B2 (en) 2012-07-06 2017-07-18 Box, Inc. Systems and methods for securely submitting comments among users via external messaging applications in a cloud-based platform
US9237170B2 (en) 2012-07-19 2016-01-12 Box, Inc. Data loss prevention (DLP) methods and architectures by a cloud service
US9794256B2 (en) 2012-07-30 2017-10-17 Box, Inc. System and method for advanced control tools for administrators in a cloud-based service
US8868574B2 (en) 2012-07-30 2014-10-21 Box, Inc. System and method for advanced search and filtering mechanisms for enterprise administrators in a cloud-based environment
US9369520B2 (en) 2012-08-19 2016-06-14 Box, Inc. Enhancement of upload and/or download performance based on client and/or server feedback information
US8745267B2 (en) 2012-08-19 2014-06-03 Box, Inc. Enhancement of upload and/or download performance based on client and/or server feedback information
GB2513671A (en) 2012-08-27 2014-11-05 Box Inc Server side techniques for reducing database workload in implementing selective subfolder synchronization in a cloud-based environment
US9135462B2 (en) 2012-08-29 2015-09-15 Box, Inc. Upload and download streaming encryption to/from a cloud-based platform
US9195519B2 (en) 2012-09-06 2015-11-24 Box, Inc. Disabling the self-referential appearance of a mobile application in an intent via a background registration
US9311071B2 (en) 2012-09-06 2016-04-12 Box, Inc. Force upgrade of a mobile application via a server side configuration file
US9117087B2 (en) 2012-09-06 2015-08-25 Box, Inc. System and method for creating a secure channel for inter-application communication based on intents
US9292833B2 (en) 2012-09-14 2016-03-22 Box, Inc. Batching notifications of activities that occur in a web-based collaboration environment
US10200256B2 (en) 2012-09-17 2019-02-05 Box, Inc. System and method of a manipulative handle in an interactive mobile user interface
US9553758B2 (en) 2012-09-18 2017-01-24 Box, Inc. Sandboxing individual applications to specific user folders in a cloud-based service
US9959420B2 (en) 2012-10-02 2018-05-01 Box, Inc. System and method for enhanced security and management mechanisms for enterprise administrators in a cloud-based environment
US9705967B2 (en) 2012-10-04 2017-07-11 Box, Inc. Corporate user discovery and identification of recommended collaborators in a cloud platform
US9495364B2 (en) 2012-10-04 2016-11-15 Box, Inc. Enhanced quick search features, low-barrier commenting/interactive features in a collaboration platform
US9665349B2 (en) 2012-10-05 2017-05-30 Box, Inc. System and method for generating embeddable widgets which enable access to a cloud-based collaboration platform
GB2507191B (en) 2012-10-17 2015-03-04 Box Inc Remote key management in a cloud-based environment
US9286315B2 (en) * 2012-10-17 2016-03-15 Apollo Education Group, Inc. Resolving synchronization conflicts based on state information
US10235383B2 (en) 2012-12-19 2019-03-19 Box, Inc. Method and apparatus for synchronization of items with read-only permissions in a cloud-based environment
US9325709B2 (en) * 2012-12-21 2016-04-26 Dropbox, Inc. System and method for importing and merging content items from different sources
US9396245B2 (en) 2013-01-02 2016-07-19 Box, Inc. Race condition handling in a system which incrementally updates clients with events that occurred in a cloud-based collaboration platform
US9953036B2 (en) 2013-01-09 2018-04-24 Box, Inc. File system monitoring in a system which incrementally updates clients with events that occurred in a cloud-based collaboration platform
EP2755151A3 (en) 2013-01-11 2014-09-24 Box, Inc. Functionalities, features and user interface of a synchronization client to a cloud-based environment
EP2757491A1 (en) * 2013-01-17 2014-07-23 Box, Inc. Conflict resolution, retry condition management, and handling of problem files for the synchronization client to a cloud-based platform
CN103118122A (en) 2013-02-21 2013-05-22 腾讯科技(深圳)有限公司 Method, device and system for processing user generated content (UGC)
US9336234B2 (en) * 2013-02-22 2016-05-10 Adobe Systems Incorporated Online content management system with undo and redo operations
US9575764B1 (en) * 2013-03-15 2017-02-21 Atlassian Pty Ltd Synchronizing branches of computer program source code
US9135267B2 (en) * 2013-03-15 2015-09-15 Google Inc. Method for adding real time collaboration to existing data structure
GB2515192B (en) 2013-06-13 2016-12-14 Box Inc Systems and methods for synchronization event building and/or collapsing by a synchronization component of a cloud-based platform
US20140372369A1 (en) * 2013-06-14 2014-12-18 Microsoft Corporation Managing Changes to Shared Electronic Documents Using Change History
US9805050B2 (en) 2013-06-21 2017-10-31 Box, Inc. Maintaining and updating file system shadows on a local device by a synchronization client of a cloud-based platform
US10229134B2 (en) 2013-06-25 2019-03-12 Box, Inc. Systems and methods for managing upgrades, migration of user data and improving performance of a cloud-based platform
US10110656B2 (en) 2013-06-25 2018-10-23 Box, Inc. Systems and methods for providing shell communication in a cloud-based platform
US9053165B2 (en) * 2013-07-08 2015-06-09 Dropbox, Inc. Structured content item synchronization
US9535924B2 (en) 2013-07-30 2017-01-03 Box, Inc. Scalability improvement in a system which incrementally updates clients with events that occurred in a cloud-based collaboration platform
JP6151365B2 (en) * 2013-09-03 2017-06-21 株式会社東芝 Information processing system, information processing method and program
US8892679B1 (en) 2013-09-13 2014-11-18 Box, Inc. Mobile device, methods and user interfaces thereof in a mobile device platform featuring multifunctional access and engagement in a collaborative environment provided by a cloud-based platform
US9704137B2 (en) 2013-09-13 2017-07-11 Box, Inc. Simultaneous editing/accessing of content by collaborator invitation through a web-based or mobile application to a cloud-based collaboration platform
GB2518298A (en) 2013-09-13 2015-03-18 Box Inc High-availability architecture for a cloud-based concurrent-access collaboration platform
US9535909B2 (en) 2013-09-13 2017-01-03 Box, Inc. Configurable event-based automation architecture for cloud-based collaboration platforms
US9213684B2 (en) 2013-09-13 2015-12-15 Box, Inc. System and method for rendering document in web browser or mobile device regardless of third-party plug-in software
US20150215390A1 (en) * 2014-01-30 2015-07-30 Crytek Gmbh Apparatus and Method for Multi-User Editing of Computer-Generated Content
US9602514B2 (en) 2014-06-16 2017-03-21 Box, Inc. Enterprise mobility management and verification of a managed application by a content provider
US9779073B2 (en) * 2014-07-29 2017-10-03 Microsoft Technology Licensing, Llc Digital document change conflict resolution
US10038731B2 (en) 2014-08-29 2018-07-31 Box, Inc. Managing flow-based interactions with cloud-based shared content
US9894119B2 (en) 2014-08-29 2018-02-13 Box, Inc. Configurable metadata-based automation and content classification architecture for cloud-based collaboration platforms
US9756022B2 (en) 2014-08-29 2017-09-05 Box, Inc. Enhanced remote key management for an enterprise in a cloud-based environment
US10331775B2 (en) 2014-10-15 2019-06-25 Microsoft Technology Licensing, Llc Collaborative document editing using state-based revision
US9846528B2 (en) 2015-03-02 2017-12-19 Dropbox, Inc. Native application collaboration
US10289741B2 (en) 2016-03-30 2019-05-14 Microsoft Technology Licensing, Llc Using relevant objects to add content to a collaborative repository

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060288053A1 (en) * 2005-06-21 2006-12-21 Apple Computer, Inc. Apparatus and method for peer-to-peer N-way synchronization in a decentralized environment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317754B1 (en) * 1998-07-03 2001-11-13 Mitsubishi Electric Research Laboratories, Inc System for user control of version /Synchronization in mobile computing
US6898642B2 (en) * 2000-04-17 2005-05-24 International Business Machines Corporation Synchronous collaboration based on peer-to-peer communication
US7743022B2 (en) * 2003-02-28 2010-06-22 Microsoft Corporation Method and system for synchronizing data shared among peer computing devices
US7512638B2 (en) * 2003-08-21 2009-03-31 Microsoft Corporation Systems and methods for providing conflict handling for peer-to-peer synchronization of units of information manageable by a hardware/software interface system
CA2569714A1 (en) * 2004-06-08 2005-12-22 Dartdevices Corporation Architecture, apparatus and method for device team recruitment and content renditioning for universal device interoperability platform
US20060242206A1 (en) * 2005-04-22 2006-10-26 Microsoft Corporation System and method for peer to peer synchronization of files
US7970017B2 (en) * 2005-07-13 2011-06-28 At&T Intellectual Property I, L.P. Peer-to-peer synchronization of data between devices
US7930346B2 (en) * 2005-08-24 2011-04-19 Microsoft Corporation Security in peer to peer synchronization applications
US7970743B1 (en) * 2005-09-15 2011-06-28 Emc Corporation Retention and disposition of stored content associated with multiple stored objects
US7860825B2 (en) * 2006-05-08 2010-12-28 Palm, Inc. Method for synchronizing software application and user data for asynchronous client-server and peer to peer computer networks
US20080005195A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Versioning synchronization for mass p2p file sharing
US7860826B2 (en) * 2006-08-04 2010-12-28 Apple Inc. Method and system for using global equivalency sets to identify data during peer-to-peer synchronization
US7933952B2 (en) * 2007-06-29 2011-04-26 Microsoft Corporation Collaborative document authoring
US7818293B2 (en) * 2008-01-02 2010-10-19 International Business Machines Corporation Method and system to synchronize updated versions of a document edited on a collaborative site that are under document management control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060288053A1 (en) * 2005-06-21 2006-12-21 Apple Computer, Inc. Apparatus and method for peer-to-peer N-way synchronization in a decentralized environment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110078658A1 (en) * 2009-09-30 2011-03-31 Sap Ag Operation support in versioning systems
US8352919B2 (en) * 2009-09-30 2013-01-08 Sap Ag Operation support in versioning systems
US20140025645A1 (en) * 2012-07-23 2014-01-23 International Business Machines Corporation Resolving Database Integration Conflicts Using Data Provenance
US9195725B2 (en) * 2012-07-23 2015-11-24 International Business Machines Corporation Resolving database integration conflicts using data provenance
US8635373B1 (en) * 2012-09-22 2014-01-21 Nest Labs, Inc. Subscription-Notification mechanisms for synchronization of distributed states
US20140222899A1 (en) * 2012-09-22 2014-08-07 Nest Labs, Inc. Subscription-Notification Mechanisms For Synchronization Of Distributed States
US10356218B2 (en) * 2012-09-22 2019-07-16 Google Llc Subscription-notification mechanisms for synchronization of distributed states

Also Published As

Publication number Publication date
US20090327358A1 (en) 2009-12-31
US8090681B2 (en) 2012-01-03

Similar Documents

Publication Publication Date Title
US7437421B2 (en) Collaborative email with delegable authorities
KR101114010B1 (en) File sharing in peer-to-peer group shared spaces
KR100343823B1 (en) Method, Apparatus and Program Storage Device for a Client and Adaptive Synchronization and Transformation Server
JP5612068B2 (en) Integration of the meeting before the experience and the meeting after the experience to meeting life cycle
US9348802B2 (en) System and method for synchronizing bi-directional document management
Edwards et al. Using speakeasy for ad hoc peer-to-peer collaboration
US6952717B1 (en) Document and message exchange system for ASP model
US7756836B2 (en) Peer-to-peer file sharing
US6990513B2 (en) Distributed computing services platform
KR101319767B1 (en) Synchronization peer participant model
US9418070B2 (en) Revision control system and method
US10146810B2 (en) Method and system for collecting and organizing data corresponding to an event
US20100257457A1 (en) Real-time content collaboration
US8812565B2 (en) Optimizing browser caching through deterministic marking of files
KR101213923B1 (en) A method and system for caching and synchronizing project data
US7937387B2 (en) System and method for data preservation and retrieval
US20080071912A1 (en) Multiple Redundant Services with Reputation
US7451163B2 (en) Data synchronization
CA2479612C (en) Method and apparatus for providing attributes of a collaboration system in an operating system folder-based file system
US7240091B1 (en) Method and system for supporting off-line mode of operation and synchronization
US9106630B2 (en) Method and system for collaboration during an event
CN101322116B (en) Resource freshness and replication
US7818298B2 (en) System and method for tracking documents in an on-demand service
JP4688813B2 (en) Synchronization and merge engine
US6804674B2 (en) Scalable Content management system and method of using the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034544/0001

Effective date: 20141014