US20120118301A1 - Artificial smoke cigarette - Google Patents

Artificial smoke cigarette Download PDF

Info

Publication number
US20120118301A1
US20120118301A1 US13/358,826 US201213358826A US2012118301A1 US 20120118301 A1 US20120118301 A1 US 20120118301A1 US 201213358826 A US201213358826 A US 201213358826A US 2012118301 A1 US2012118301 A1 US 2012118301A1
Authority
US
United States
Prior art keywords
fog
liquid
cigarette
aerosol
nebulizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/358,826
Inventor
Akbar Montaser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOLSEY RICHARD DR
Original Assignee
DOLSEY RICHARD DR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOLSEY RICHARD DR filed Critical DOLSEY RICHARD DR
Priority to US13/358,826 priority Critical patent/US20120118301A1/en
Assigned to DENAIN, PIERRE, DOLSEY, RICHARD, DR. reassignment DENAIN, PIERRE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MONTASER, AKBAR
Publication of US20120118301A1 publication Critical patent/US20120118301A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • A61M11/002Particle size control by flow deviation causing inertial separation of transported particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0013Details of inhalators; Constructional features thereof with inhalation check valves
    • A61M15/0015Details of inhalators; Constructional features thereof with inhalation check valves located upstream of the dispenser, i.e. not traversed by the product
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/009Inhalators using medicine packages with incorporated spraying means, e.g. aerosol cans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0013Details of inhalators; Constructional features thereof with inhalation check valves
    • A61M15/0016Details of inhalators; Constructional features thereof with inhalation check valves located downstream of the dispenser, i.e. traversed by the product
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8237Charging means
    • A61M2205/825Charging means using mechanical generation of electricity, e.g. hand cranked generators

Definitions

  • the invention relates generally to methods and apparatus for inhaling aerosol droplets.
  • the invention may also relate generally to methods and apparatus to simulate the appearance, taste and other characteristics of a traditional cigarette and, more particularly, to apparatus and related methods for an artificial cigarette with reduced adverse health side effects.
  • Cigarette smoking first became a mass “epidemic” in the United States, United Kingdom and other more wealthy countries in the early 20th century after the launch of inexpensive, mass produced cigarettes. As shown in FIG. 1 , this “epidemic” usually develops in four stages. Often, the uptake and ensuing adverse effects of smoking occur earlier and to a greater degree among men.
  • the four stages of a smoking “epidemic” for men are generally: (1) an initial slow rise in smoking prevalence, (2) a more rapid rise in smoking prevalence with an increase in the number of smoking related deaths, (3) a decrease in smoking prevalence with a more rapidly increasing number of smoking related deaths, and (4) a continued decline in smoking prevalence with a parallel trend in smoking related diseases. Generally, a decline in smoking prevalence is trailed approximately two to three decades later by the parallel trend in smoking related diseases.
  • Cigarette smoking is the single largest avoidable cause of death and disability in developed countries.
  • FIG. 3 shows cigarette smoking by deprivation level in the United Kingdom. Forthcoming decades will see rapid increases in tobacco-related deaths in low- and middle-income regions, even in rich countries such as the United Kingdom.
  • FIG. 4 shows the numbers and relative risk of death by cause due to smoking in the United Kingdom.
  • the data in FIG. 4 shows the strongest cause-specific links with respiratory cancers and chronic obstructive pulmonary ailments; in numeric terms, the greatest health impacts of smoking are on respiratory and cardiovascular diseases.
  • Smokers are also at greater danger of several non-fatal diseases, such as osteoporosis, periodontal disease, impotence, male childlessness, and cataracts.
  • Cigarette smoking is also likely to have toxic effects on the retina which can cause severe and irreversible vision loss with increased risk of 2-3 fold in current smokers compared with never-smokers.
  • Smoking in pregnancy is allied with enhanced rates of fetal and prenatal loss and diminished birth weight.
  • Passive smoking after birth is associated with bed death and respiratory disease in childhood and lung cancer, heart disease, and stroke in adults.
  • the toxic constituents of cigarette smoke particularly nicotine, carbon monoxide, and hydrogen cyanide
  • nicotine reduces nutritional blood flow to the skin.
  • Carbon monoxide diminishes oxygen transport and metabolism, whereas hydrogen cyanide hinders the enzyme systems necessary for oxidative metabolism and oxygen transport at the cellular level. Approximately 11 minutes of life expectancy is lost from smoking a single cigarette.
  • Alcoholism Another major disorder is alcoholism, which poses a substantial health problem, costing approximately $165 billion per year just in the United States.
  • cigarette smoking is more common in alcoholics than in the general population, with as many as 80-95% of alcoholics being smokers.
  • This high percentage of co-morbidity reflects overlapping biochemical mechanisms of nicotine and alcohol in the central nervous system, which seems to result in even greater addiction to both drugs. Needs exist for new products that offer a combination therapy for smoking and alcoholism.
  • Nicotine is the addictive agent that prevents smokers from quitting, and is possibly responsible for more undesirable health consequences than any other single compound.
  • the conversion of nicotine, the most common alkaloid found in tobacco, by the body into chemicals such as amino ketones have been shown to cause various diseases.
  • Cigarette smoke contains more than 4,000 chemical compounds including at least 60 carcinogens.
  • the carcinogenic compounds in cigarette smoke can be divided into four types: 1) nitrosamines, generally considered as the most deadly cancer-causing agents in tobacco smoke; 2) aldehydes, produced by the burning of sugars and cellulose in tobacco; 3) polycyclic aromatic hydrocarbons (PAH's), which form in the cigarette behind the burning tip; and 4) traces of heavy metals present in tobacco as a result of fertilizers used on the plant.
  • nitrosamines generally considered as the most deadly cancer-causing agents in tobacco smoke
  • aldehydes produced by the burning of sugars and cellulose in tobacco
  • PAH's polycyclic aromatic hydrocarbons
  • a new cigarette, FACT, introduced by Brown & Williamson in 1975 was withdrawn from the market after two years though it could selectively eliminate certain compounds, including cyanide, from cigarette smoke.
  • a cigarette developed in the “XA project” in the 1970's by Liggett Group, Inc. contained catalysts such as palladium blended with tobacco to destroy PAH's formed behind the cigarette's burning tip, but this project was terminated due to pressure by other cigarette makers because of a direct or implied admission that all other cigarettes were hazardous.
  • the cigarettes introduced in 1977 by British firms Imperial, Gallaher, and Rothmans were removed from the market after a few months although tobacco was replaced with less toxic substitutes, including ingredients made from wood pulp.
  • the high-tech cigarette called PREMIER introduced in 1988 by RJ Reynolds after an investment of nearly $800 million dollars in research was almost smokeless, reducing the cancer-causing compounds inhaled through heating aluminum capsules having tobacco pellets.
  • This cigarette perhaps the greatest technological innovation affecting cigarettes, was removed from the market in 1989 because it required its own instruction booklet to light it, did not taste like regular cigarettes to some smokers, consumers did not get used it, and the cigarette faced regulation by FDA as a drug.
  • the PREMIER brand eventually evolved into the ECLIPSE smokeless cigarette in 1994, which was similar to a regular cigarette, but claiming reduction in secondhand smoke by 85 to 90 percent to be more socially acceptable.
  • ECLIPSE has simpler smoke chemistry, consisting of 80% glycerol and water, it contained fewer toxic components resulting in reduced mutagenicity and cytotoxicity in in-vitro tests and fewer DNA adducts.
  • public health officials showed that ECLIPSE appears to be at least as toxic as some commercially available cigarette brands, and produces more carbon monoxide and higher levels of other carcinogenic PAH's compared to the “light” brands such as NOW and CARLTON.
  • glycerin when glycerin is burned, it is known to be carcinogenic.
  • ACCORD Another high-tech cigarette developed by Philip Morris in 1988 is ACCORD, which had to be used with a special kit having a puff-activated electronic lighter and a battery charger.
  • ACCORD a puff-activated electronic lighter and a battery charger.
  • a microchip sensed the puff to send a burst of heat to the tobacco.
  • the process gave the smoker one drag, a display offered the number of remaining puffs before recharging the batteries, typically required after using the cigarette pack.
  • the cigarette was test marketed only in Richmond, Va., and is no longer available partly because the lighter was bulky and cumbersome to use, the smoker had to learn a completely new smoking practice, and the cigarette still produced carcinogenic products.
  • the tar (3 mg) and nicotine (0.2 mg) of ACCORD were higher than some versions of MERIT.
  • nitrosamine-free cigarettes are cancer causing compounds.
  • a special tobacco curing process allowed cigarette makers such as Brown & Williamson and RJ Reynolds to drastically reduce the formation of tobacco-specific nitrosamines in the tobacco used in special brands.
  • cigarettes without nitrosamines produce other carcinogens.
  • the five major pharmacotherapies are: 1) nicotine gums; 2) nicotine patches; 3) nicotine nasal sprays; 4) nicotine inhalers; and 5) sustained-release bupropion hydrochloride, a non-nicotine medication.
  • Other examples of smoking cessation aids include: 1) nicotine nose drops; 2) nicotine lozenges; 3) compositions comprising nicotine metabolites; 4) drinkable nicotine solutions; and 5) smoke-free cigarettes.
  • U.S. Pat. No. 2,445,476 offers a mixture of volatile agents and essential oils (such as 50% menthol, 20% peppermint oil, 10% eucalyptus oil, 10% spearmint oil, and 10% wintergreen oil) as a substitute for an all-tobacco cigarette.
  • volatile agents and essential oils such as 50% menthol, 20% peppermint oil, 10% eucalyptus oil, 10% spearmint oil, and 10% wintergreen oil
  • This mixture is adsorbed on the cigarette fillers such as wool yarn and cotton rolls, but inhalation of the volatile mixture requires no cigarette lighting.
  • U.S. Pat. No. 3,365,102 shows a simulated cigarette constructed to contain and dispense through sipping a limited volume of liquid beverages such as flavored syrups or liquid, medical preparations, tobacco extracts, or other potable liquid suitable to the individual taste.
  • the industrially accepted process of micro-encapsulation is utilized to implant a simulated smoking device with the flavor and aroma of tobacco smoke for passage into the mouth of the user without lighting the cigarette to create smoke.
  • 3,789,840 illustrates a device that offers a chemical substance such as a lozenge to suppress the craving for smoking and also to satisfy the psychological requirement associated with giving up smoking through the use of simulated ash which can be luminous under the control of the smoker.
  • U.S. Pat. No. 3,200,819 describes a smokeless non-tobacco cigarette in which the burning tobacco and paper are replaced with heated, moist flavored air having perhaps medication. The device requires a battery for heating purposes.
  • U.S. Pat. No. 4,429,703 discloses a simulated cigarette which may be filled with an aromatic substance such as menthol to give a pleasant taste and smell.
  • 4,995,407 contains no tobacco and no nicotine, but utilizes beads or pellets emitting a stress-reducing vapor composed of at least one or more substances such as nutmeg oil, mace extract, neroli oil, valerian oil, myristicin, elemicin, and isoelemicin. Most of the beads are placed within the space in a tube containing a porous filler material, flavoring and aromatic substances, and two porous plugs which may include no or one or more beads. The act of oral inhalation through the tube provides a physiologically effective amount of vapor that produces a sense of satisfaction for the user.
  • US 2002/0179101A1 also proposes a tubular body of material having a variety of taste and ingredients, but with no nicotine and tobacco, for suction by the user to receive psychological and physiological satisfaction, and thus reduce smoking. Air is drawn through a passage in the tubular material into the mouth of the user, thus simulating smoking.
  • the device disclosed under U.S. Pat. No. 4,393,884 enables a user to inhale pressurized nicotine or tobacco-like formulations on demand.
  • the substance and the aerosol propellant such as nitrogen may be placed in the same or separate compartments, depending on the application.
  • the device under U.S. Pat. No. 4,284,089 offers the user vaporizable nicotine at room temperature and pressure without heating or burning tobacco.
  • the device includes a constricted passageway formed by an absorbent material impregnated with a liquid nicotine mixture. The sucking action of the mouth increases air or gas velocity in the constricted passageway, resulting in a lower pressure suitable for enhanced vaporization of liquid nicotine.
  • the absorbent materials may also include volatile liquid ingredients to adjust the flavor for final nicotine vapor mixture.
  • An improved version of this simulated smoking device described by the same inventor under U.S. Pat. No. 4,813,437, utilizes fibrous materials for one or more nicotine bearing sections.
  • a primarily unobstructed insulating section is linearly arranged with a nicotine bearing section.
  • U.S. Pat. No. 4,793,366 discloses a device using microporous filament fibers for nicotine bearing.
  • the cigarette-like device described in U.S. Pat. No. 6,041,789 is a relatively simple nicotine inhaler with air drawn in by the user. It consists of a long tube filled with porous polymeric material that has absorbed a solution of a volatile nicotinomimetic agonist in an amount effective for its released vapors to meet the physiological desires.
  • the nicotine desire is addressed in U.S. Pat. No. 5,293,883 through the use of an array of small nicotine-containing ampules located within the mouth filter of the smokeless device.
  • the simple device outlined under U.S. Pat. No. 5,284,163 also offers a smoke-free cigarette substitute that includes a tubular sleeve having a nicotine-containing carrier.
  • Patent Application Publication No. US2003/0111088A1 describes a tubular medication delivery device that supplies nicotine along with another drug in solution form. The mixture is essentially helpful for dispensing nicotine and naltrexone to manage patients who are smokers and also endure another addiction, such as alcoholism.
  • Patent Application No. 2002/0059939A1 the same inventor presented a similar device solely to deal with smoking cessation through nicotine treatment.
  • U.S. Pat. No. 5,293,883 also provides smell and sensation of a regular cigarette as air is drawn through two chambers containing unburned and pre-burned tobacco. This is also achieved in U.S. Pat. No. 4,892,109, but through an exothermic chemical reaction that heats air before its interaction with a charcoal, tobacco, or porous substrate including flavorant substances. The heated air carries tobacco flavor to the smoker's mouth without tobacco combustion.
  • Patent Application Publication No. US 2005/0236006A1 describes several similar smoking and tobacco use cessation devices requiring no ignition and burning of substances.
  • the device has two chambers, one for an exothermic reaction to heat the air before interaction in a second chamber with a source of tobacco, tobacco substitute, nicotine or nicotine substitute to cause evaporation.
  • Further options include the delivery of substances such as vitamins, neutraceuticals, energy enhancers, aspirin, diet aids, weight loss additives, caffeine, breath enhancers and the like, for any desired effect.
  • U.S. Pat. No. 4,911,181 offers several versions of a simulated smoking device through the use of mouthpiece that incorporates a plug of chewing tobacco or tobacco insert in a tube with a pumping component at its end or a tube with collapsible wall. Chewing or sucking creates a partial vacuum, resulting in the withdrawal of saliva from the user's mouth which interacts with tobacco for recirculation to the user's mouth.
  • Commercial smokeless cigarettes have been introduced based on some of the concepts discussed above.
  • Liquid nitrogen ( ⁇ 196° C.) offers a large amount of white fog cloud, good cost-efficiency, and non-toxicity as the gas is present in air in large quantities (78%), but is not suitable for use in small locations.
  • Liquid carbon dioxide ( ⁇ 78° C.) and dry ice (solid CO, or solid carbon dioxide) offer a grey-white fog, but should not be handled in confined spaces as air containing more than 10% by volume of CO, is toxic.
  • the normal concentration of CO, in air is less than a tenth of a percent.
  • these liquids in contact with skin cause cold-burning, and thus are very dangerous in a liquid state. Boiling water from 100 to 200 degrees Celsius can generate a cloud-like fog, but such a vapor cannot be introduced into the mouth.
  • a water-based solution advertised as “fog juice” is often used in a “fog machine”. All commercial fog machines require electrical power ranging from 400 to 1300 watts.
  • the fog is produced by heating the fog juice, which is a mixture of propylene glycol and triethylene glycol, mixed with 20 percent water.
  • the fluid is directed into a narrow channel inside a heated metal block and is superheated before it is allowed to travel through a very small nozzle where the vaporized fog is expelled under high pressure.
  • the nozzle and a protective cover become very hot during operation, and must not be placed near anything that may catch on fire.
  • the fog juice can decompose to harmful byproducts that may affect health.
  • a smokeless device in Patent Application Publication No. US 2005/0016553A1 offers a two-chamber arrangement, with the first chamber providing an aroma evocative of the smell of flavor of burning tobacco or other fragrances.
  • the aromatic compounds are deposited on a liner or are encapsulated in micro-cells located within the first chamber. The aroma is released after the user scratches the liner or micro cells using, for example, a brush-like insert.
  • the second chamber includes an amount of fine powder such as talc, or diatomaceous earth, which upon agitation, such as an ash flicking motion by the user, causes a small volume of the powder to flow through the device outlet aperture to simulate smoke.
  • a check valve prevents powder particles from being sucked into the first chamber, thus not allowing them to enter the mouth of the user.
  • a similar device may also have a tip that gives the appearance of glowing embers.
  • a light emitting diode may be utilized with a red or orange light-transmitting plastic for the cap end.
  • a device in U.S. Pat. No. 4,765,347 delivers flavor via an aerosol generated by mechanical dispersion of a liquid into a flowing gas stream.
  • the device consists of: 1) an outer container providing a pathway for airflow; and 2) an inner liquid container with a solution delivery tube placed at the center of a narrow aperture to cause air acceleration during puffing. This acceleration creates a region of lower pressure next to the output region of the solution delivery tube, relative to the pressure experienced by the liquid within the container, and is sufficient to draw a liquid column for dispersion as an aerosol into the mouth end region. Note that the flavor varies depending on the user.
  • the volume of a puff of aerosol varies most generally from about 25 ml to about 35 ml during a puff period ranging from 1 to nearly 2.5 seconds.
  • the flavor bed of tobacco or tobacco-derived material is often heated, without combustion of tobacco, to release tobacco flavors without producing all the normal products of tobacco combustion.
  • the heated air releases tobacco flavors (vapor, aerosol or a mixture) into the smoker's mouth.
  • the heat source temperature is dependent on how the smoker uses the article, so that the flavor release rate varies widely from user to user.
  • 5,060,671 offers a cigarette-like arrangement to electrically heat a flavor source at a controlled temperature and for the uniformly release of the desired flavor with each puff, without overheating or burning.
  • Microswitches sensitive to a change in pressure or air flow may be used to activate the device when the consumer draws the air.
  • the heater is typically energized from about 0.1 second to about 4 seconds and for a temperature ranging from 100 C to about 600 C.
  • a device in U.S. Pat. No. 4,945,929 includes nicotine and propellant storage containers linked to a nebulization nozzle to produce a nicotine spray.
  • Large droplets in the conical aerosol are removed by impaction before the remaining aerosol pass through a series of baffles to increase evaporation time of the droplets, thus creating a mixture which approximates that of tobacco smoke.
  • Nicotine inhaler devices, based on ultrasonic nebulization are found in U.S. Pat. Nos. 4,920,989 and 4,953,572.
  • droplets must possess sizes ranging from 1 micron to about 10 microns in diameter.
  • An inhaler was used in conjunction with nicotine patch as a method of aiding in the reduction of incidence of tobacco smoking.
  • An aerosol of nicotine also was produced by an electronic cigarette described in Patent Application No. WO2004080216.
  • the device was non-flammable and offers no tar.
  • An air flow sensor in the smoking-mouth of the cigarette delivered a signal to a circuit to start a high frequency vibrator receiving a nicotine solution from a container via a pipe, thus initiating aerosol formation by nebulization.
  • the end cap in the front of the cigarette included cells and light diodes to give the appearance of a lighted cigarette. This device mimicked the usual smoking pattern and effect, giving the smokers the feel of smoking aside from nicotine delivery.
  • An electronic cigar used a nebulization device.
  • the “smoking liquid” for this device was a diluted nicotine fluid ready for nebulization in the inhaler container.
  • the liquid was purified from tobacco according to the standard FDA GRAS, by biological technology, removing the harmful substances in the tobacco and keeping the safe or useful substances. As described, one ml of liquid was sufficient for about two packs of cigarettes.
  • Another electronic cigar uses “supercritical atomizing technologies”.
  • a piezoelectric inhaler has been described, which includes an array of dispensing channels and an array of dispensing nozzles, to dispense droplets as an electric field applied to the channel walls. The field reduces the volume in an associated channel, creating a pressure pulse of flowable substance that lead to droplet formation. Because droplets per unit time can also be controlled, this approach offers a known volume of the substance sprayed.
  • a cigarette company that produces a “healthy” cigarette may lead the industry by selling the “novel smoke” at a considerable premium and capture market share from rivals.
  • Embodiments of the present invention solve some of the problems and/or overcome many of the drawbacks and disadvantages of the prior art by providing an apparatus and method for producing an inhaler and/or artificial cigarette with the appearance and other characteristics of a traditional cigarette with reduced adverse health consequences.
  • Other embodiments may most easily find use as artificial cigars, pipes or water pipes.
  • a nebulizer apparatus including a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol.
  • the fog generator may be an ultrasonic nebulizer with the ultrasonic nebulizer including a piezoelectric surface on a flat transducer and a power supply for powering the ultrasonic nebulizer.
  • One or more heat sinks may dissipate heat within the nebulizer apparatus.
  • the fog generator may comprise a pneumatic nebulizer such as a glass frit with a means for creating a pressure differential across the pneumatic nebulizer, such as a venturi or a compressed air supply.
  • a pneumatic nebulizer such as a glass frit
  • a means for creating a pressure differential across the pneumatic nebulizer such as a venturi or a compressed air supply.
  • Embodiments of the present invention may include one or more air flow sensors for sensing movement of air through the air passage.
  • the embodiments may also include a liquid valve disposed between the liquid source and the fog generating chamber controlled by the one or more air flow sensors, a compressed air supply for creating a pressure differential across the fog generator, the compressed air supply controlled by the one or more air flow sensors, and/or a power supply for powering the fog generator, the power supply controlled by the one or more air flow sensors.
  • Embodiments of the present invention may include a mouthpiece, a baffle for preventing large aerosol droplets from exiting the fog generating chamber, a fog chamber valve for closing the fog generating chamber during exhalation into the nebulizer apparatus, one or more aerosol exits connected to the air passage for directing exhaled air out of the nebulizer apparatus, and/or one or more valves for closing the one or more aerosol exits during inhalation and opening the one or more aerosol exits during exhalation.
  • the liquid may be a pharmacological active agent.
  • Embodiments of the present invention may include a nebulizer method with steps including providing a nebulizer apparatus comprising a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol, fluidly contacting the air passage with a user's mouth, inhaling through the nebulizer apparatus, and wherein the inhaling activates the fog generator.
  • a nebulizer apparatus comprising a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol, fluidly contacting the air passage with a user's mouth, inhaling through the nebulizer apparatus, and wherein the inhaling activates the fog generator.
  • Certain other embodiments of the invention can also be used in conjunction with the burning of tobacco or some other substance to increase the moisture level of the resulting smoke.
  • the nebulizer may be used in conjunction with a water pipe to deliver a more hydrated form of smoke to the user.
  • FIG. 1 is a graph showing stages of a worldwide tobacco epidemic.
  • FIG. 2 is a graph showing the prevalence of smoking manufactured cigarettes in the United Kingdom.
  • FIG. 3 is a graph showing cigarette smoking by deprivation level in the United Kingdom.
  • FIG. 4 is a graph showing numbers and relative risk of death by cause due to smoking in the United Kingdom.
  • FIG. 5 is a schematic cross section of an artificial cigarette with a flat transducer for applications in fog generation for the artificial cigarette.
  • FIG. 6 is a schematic cross section of an inhaler with a flat transducer for applications in fog generation for the inhaler.
  • FIG. 7A is a schematic cross section of an artificial cigarette using a thimble frit.
  • FIG. 7B is a schematic cross section of an artificial cigarette using a flat glass frit.
  • FIG. 8 is a schematic cross section of an inhaler using a thimble frit.
  • Embodiments of the present invention may involve generation of a visible vapor or fog via the production of aerosol from a liquid.
  • Artificial cigarettes and/or inhalers with a visible vapor or fog may be generated by ultrasonically-activated flat crystals and/or pneumatic methods. Pneumatic methods may include crossflow and concentric nozzles, grid- and mesh-based approaches, and glass frit devices. Aerosols may be transported outside the artificial cigarette and/or inhalers via air, for example, by inhaling from the device, blowing into the devices and/or through exhalation.
  • the radius (R) and length (L) of the liquid capillary and the liquid viscosity ( ⁇ ) affect the liquid flow rate.
  • R should be reduced to limit the liquid requirement, and thus the device size.
  • the gas flow necessary to create the differential pressure may be provided by the user through inhalation-exhalation or through a small pressurized container within the smokeless device.
  • Equation 2 shows that the Sauter mean droplet diameter (D 3,2 in ⁇ m) is controlled by the difference between the gas and liquid velocities (V, m/s), the liquid surface tension ( ⁇ , dyn/cm), the liquid density (Q liq , g/cm 3 ) the liquid viscosity ( ⁇ liq , poises), and the volume flow rates of the liquid and gas (Q liq and Q gas , respectively, cm 3 /s).
  • V, Q liq and Q gas the volume flow rates of the liquid and gas
  • 2 CC or 2 ML the maximum volume of liquid suitable for the intended device when it is in the form of a cigarette.
  • this volume can be increased; however, most embodiments of the invention are designed to have maximal aerosol production efficiency with minimal liquid consumption.
  • ultrasonic energy may be used.
  • ultrasonic nebulization is independent of gas flow.
  • the liquid may be delivered onto or already resides on the surface of a piezoelectric transducer driven by an ultrasonic generator at a frequency of approximately 200 kHz to 10 MHz.
  • the ultrasonic waves travel vertically from the crystal surface towards the liquid-air interface.
  • the resulting oscillation may shatter the surface liquid, i.e., the liquid film, into an aerosol under certain conditions.
  • the amplitude of the wave must be adequately large to upset the liquid film on the surface of the piezoelectric crystal, leading to droplet formations.
  • the mean numerical diameter of droplets (or average droplet diameter, D) is controlled by the surface wave wavelength ( ⁇ ), and is expressed by:
  • the average droplet diameter is affected also by the surface tension ( ⁇ ) and the liquid density.
  • a key issue is the volume of liquid in a container of the smokeless device for aerosol generation.
  • certain embodiments of the present invention consider 2 CC or 2 mL as the maximum volume. Other maximum volumes are possible. It is preferred to have maximal aerosol production efficiency with minimal liquid consumption. For ultrasonic devices according to the present invention, the efficiency of aerosol production may be approximately 10 to 20 times higher than certain pneumatic methods.
  • a transducer may be bonded to a chemically-resistant plate and placed vertically in a horizontal spray chamber.
  • a transmitting bath may be used to transfer ultrasonic radiation from a transducer to a liquid to be nebulized.
  • FIG. 5 shows an artificial cigarette 11 with a flat transducer 13 for applications in fog generation for the artificial cigarette 11 .
  • the artificial cigarette 11 may be any shape or size, but is preferably shaped and sized to resemble a traditional cigarette.
  • a housing 15 may enclose the artificial cigarette 11 .
  • the housing 15 may have a first end 21 proximate to a user's mouth and a second end 23 distal to a user's mouth.
  • An aerosol passageway 17 may lead from the inside of the artificial cigarette 11 into a user's mouth.
  • One or more air flow sensors 19 may surround the aerosol passageway 17 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 19 .
  • a user may place the artificial cigarette 11 into the user's mouth and inhale through the artificial cigarette 11 in a manner similar to a traditional cigarette.
  • the one or more air flow sensors 19 may transmit a signal to a liquid valve 25 located within the housing 15 .
  • the liquid valve 25 may open to allow liquid from a storage tank 27 to pass from the storage tank 27 , through a carrier tube 29 , past the liquid valve 25 and onto a piezoelectric surface 31 .
  • the storage tank 27 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention.
  • a 2 mL storage tank 27 may be sufficiently small with a sufficient volume of liquid for applications of the artificial cigarette 11 .
  • the liquid may be water, a water-based solution, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • the detection of inhalation by the one or more air flow sensors 19 may also activate a power supply 33 .
  • Different air flow sensors 19 may control the operation of the liquid valve 25 and the power supply 33 .
  • the power supply 33 is preferably a disposable battery-based power source.
  • the power supply 33 may be connected to the flat transducer 13 by an input 35 .
  • the input is preferably a radio frequency input to the flat transducer 13 .
  • the flat transducer 13 may generate fog through ultrasonic nebulization.
  • One or more heat sinks 37 may be disposed around the flat transducer 13 for dissipating heat generated within the artificial cigarette 11 .
  • the piezoelectric surface 31 may be located at an end of the flat transducer 13 .
  • the piezoelectric surface 31 may extend or may be located within a fog generation chamber 39 . Liquid from the storage tank 27 may contact the piezoelectric surface 31 .
  • the power supply 33 powers the flat transducer 13 and causes the piezoelectric surface 31 to vibrate ultrasonically. The ultrasonic vibrations create an aerosol of the liquid within the fog generation chamber 39 . As air is drawn into a user's mouth, a vacuum is created within the artificial cigarette 11 . Air and the created aerosol are drawn out of the fog generation chamber 39 and towards the user's mouth.
  • a baffle 41 at the exit of the fog generation chamber 39 prevents larger droplets of liquid from exiting the fog generation chamber 39 and entering the user's mouth.
  • any excess liquid remaining in the fog generation chamber 39 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 27 .
  • Smaller aerosol droplets pass the baffle 41 , a fog chamber valve 43 , and the aerosol passageway 17 before entering the user's mouth.
  • the cessation of inhalation may be detected by the one or more airflow sensors 19 and signals are sent to close the liquid valve 25 and turn off the power source 33 .
  • the passage of the aerosol droplets into the user's mouth completes the inhalation stage of the operation of the artificial cigarette.
  • one or more flap valves 45 remain closed. The flap valves 45 are held closed by the negative pressure of the inhalation.
  • a user may then exhale through the artificial cigarette 11 . If a user exhales through the artificial cigarette 11 , some of the aerosol that entered the user's mouth may pass back through the artificial cigarette 11 .
  • the one or more air flow sensors 19 may detect the exhalation. The air pressure of the exhalation may close the fog chamber valve 43 to prevent the exhaled air from entering the fog generation chamber 39 .
  • the one or more flap valves 45 may open to allow exhaled air to pass through one or more aerosol exit passages 47 and out of the artificial cigarette 11 through one or more aerosol exits 49 .
  • the one or more flap valves are preferably located proximate to the aerosol passageway 17 .
  • a second set of one or more flap valves 51 may be located proximate to the one or more aerosol exits 49 .
  • the inhalation and exhalation process may be repeated until the storage tank 27 no longer contains any liquid.
  • Embodiments are also contemplated that permit the recharging of the liquid storage tank.
  • the artificial cigarette 11 may operate through inhalation and puffing, without any additional input by the user.
  • FIG. 6 shows an inhaler 53 with a flat transducer 54 for applications in fog generation for the inhaler 53 .
  • the inhaler 53 may be any shape or size, but is preferably shaped and sized for portability and to resemble a traditional inhaler.
  • a housing 55 may enclose the inhaler 53 .
  • the housing 55 may have a first end 57 proximate to a user's mouth and a second end 59 distal to a user's mouth.
  • An aerosol passageway 59 may lead from the inside of the inhaler 53 into a user's mouth.
  • a mouth piece 61 may facilitate use of the inhaler 53 and direction of the aerosols into the user's mouth.
  • One or more air flow sensors 63 may surround the aerosol passageway 59 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 63 .
  • a user may place the mouthpiece 61 into or against the user's mouth and in a manner similar to traditional inhalers.
  • the one or more air flow sensors 63 may transmit a signal to a liquid valve 65 located within the housing 55 .
  • the liquid valve 65 may open to allow liquid from a storage tank 67 to pass from the storage tank 67 , through a liquid carrier tube 69 , past the liquid valve 65 and onto a piezoelectric surface 71 .
  • the storage tank 67 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention.
  • a 2 mL storage tank 67 may be sufficiently small with a sufficient volume of liquid for applications of the inhaler 53 .
  • the liquid may be water, a water-based solution, asthma medication, other pharmaceuticals, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • the detection of inhalation by the one or more air flow sensors 63 may also activate a power supply 73 .
  • Different air flow sensors 63 may control the operation of the liquid valve 65 and the power supply 73 .
  • the power supply 73 may be a battery-based power source or a dynamo based power source.
  • the power supply 73 may be connected to the flat transducer 54 by an input 75 .
  • the input is preferably a radio frequency input to the flat transducer 54 .
  • the flat transducer 54 may generate fog through ultrasonic nebulization.
  • One or more heat sinks 77 may be disposed around the flat transducer 54 for dissipating heat generated within the inhaler 53 .
  • the piezoelectric surface 71 may be located at an end of the flat transducer 54 .
  • the piezoelectric surface 71 may extend or may be located within a fog generation chamber 79 . Liquid from the storage tank 67 may contact the piezoelectric surface 71 .
  • the power supply 73 powers the flat transducer 54 and causes the piezoelectric surface 71 to vibrate ultrasonically. The ultrasonic vibrations create an aerosol of the liquid within the fog generation chamber 79 . As air is drawn into a user's mouth, a vacuum is created within the inhaler 53 . Air and the created aerosol are drawn out of the fog generation chamber 79 and towards the user's mouth.
  • a baffle 81 at the exit of the fog generation chamber 79 prevents larger droplets of liquid from exiting the fog generation chamber 79 and entering the user's mouth.
  • any excess liquid remaining in the fog generation chamber 79 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 67 .
  • Smaller aerosol droplets pass the baffle 81 , a fog chamber valve 83 , and the aerosol passageway 59 before entering the user's mouth.
  • the passage of the aerosol droplets into the user's mouth completes the delivery phase of the inhaler 53 .
  • the cessation of inhalation may be detected by the one or more airflow sensors 63 and signals are sent to close the liquid valve 65 and turn off the power source 73 .
  • the inhalation process may be repeated until the storage tank 67 no longer contains any liquid.
  • Embodiments are also contemplated that permit the recharging of the liquid storage tank.
  • the inhaler may operate through inhalation without any additional input by the user.
  • Alternative embodiments of the present invention may be based upon pneumatic production of aerosols.
  • Two basic configurations for pneumatic production of mist or white cloud may be used: concentric type and crossflow type.
  • a pressure differential may be formed across a capillary. The pressure differential may move a liquid through the capillary and may form an aerosol with no need for electrical power.
  • Concentric type pneumatic production of aerosols may allow operation at a low liquid flow rate (approximately 1-100 ⁇ L/min) and low gas flow rate (approximately 0.15 L/min) with good aerosol formation efficiency.
  • the intensity of the fog may be useful as an artificial cigarette and/or as an inhaler or delivery of medicaments.
  • Crossflow type pneumatic production of aerosols may allow water to emerge from a top of a V-type slot having a small hole.
  • the emerging water may form a thin water film.
  • Gas may be directed through the hole, rupturing the water film and producing an aerosol.
  • artificial cigarettes and/or inhalers may include two parallel grids spaced approximately 2 mm apart.
  • a first grid may be wet by the water, which is blown off the grid.
  • the second grid may be used for pulse dampening and further breakup of the water droplets.
  • a notch around a perimeter of a first grid may transfer a consistent liquid film onto the surface of the first grid.
  • a gas nozzle behind the first grid may deliver gas to the first grid, which produces aerosol upon contact with the liquid. Impaction of the aerosol on a second grid may further fragment the aerosol, generating smaller and more uniform droplets with higher efficiency.
  • a grid-based pneumatic production may offer improved aerosol production stability.
  • Alternative embodiments of the present invention may be based around three basic types of porous glass frit: (1) a flat plate, (2) a cylindrical frit pressurized externally, and (3) a thimble-shaped frit pressurized internally.
  • a flat plate device air may be directed from the back section of the frit with water introduced on a front side of the disk to create an aerosol.
  • a cylindrical glass frit device water may be directed onto the inside surface of a frit cylinder while air may be applied externally on the fritted cylinder.
  • water may be applied onto an outside surface of a thimble fit to form a thin liquid film with air introduced internally to pass through the pores of the fit and break a liquid film into the mist or fog.
  • the flat fit may use a porous glass (with pore sizes of approximately 4 to 8 micrometer) for nebulizing the water.
  • the analyte transport efficiency may approach 94% at 5 to 50 microliter/minute when the aerosol mean droplet diameter is approximately 0.1 ⁇ m.
  • air flow rate can be as low as 20 mL/min.
  • a pore size of approximately 1-1.6 micrometers may be used for the thimble glass frit to increase the velocity of gas through the pores, thereby producing a more efficient nebulizer.
  • FIG. 7A shows an artificial cigarette 85 using a thimble frit 87 .
  • FIG. 7B shows a detail of an artificial cigarette 85 using a flat glass frit 91 .
  • the artificial cigarette 85 may be any shape or size, but is preferably shaped and sized to resemble a traditional cigarette.
  • a housing 89 may enclose the artificial cigarette 85 .
  • the housing 89 may have a first end 93 proximate to a user's mouth and a second end 95 distal to a user's mouth.
  • An aerosol passageway 97 may lead from the inside of the artificial cigarette 85 into a user's mouth.
  • One or more air flow sensors 99 may surround the aerosol passageway 97 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 99 .
  • a user may place the artificial cigarette 85 into the user's mouth and inhale through the artificial cigarette 85 in a manner similar to a traditional cigarette.
  • the one or more air flow sensors 99 may transmit a signal to a liquid valve 101 located within the housing 85 .
  • the liquid valve 101 may open to allow liquid from a storage tank 103 to pass from the storage tank 103 , through a carrier tube 105 , past the liquid valve 101 and onto the thimble frit 87 or flat glass frit 91 .
  • the storage tank 103 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention.
  • a 2 mL storage tank 103 may be sufficiently small with a sufficient volume of liquid for applications of the artificial cigarette 85 .
  • the liquid may be water, a water-based solution, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • the detection of inhalation by the one or more air flow sensors 99 may also activate a compressed air supply 109 via a compressed air valve 113 .
  • Different air flow sensors 99 may control the operation of the liquid valve 101 and the compressed air valve 113 .
  • the compressed air supply 109 is preferably a canister-type device with a nozzle 111 extending from an end of the compressed air supply 109 .
  • the nozzle 111 of the compressed air supply 109 may be connected to the thimble frit 87 or the flat glass frit 91 by a compressed air passageway 115 .
  • the compressed air valve 113 may be released, allowing compressed air to pass from the compressed air supply 109 , through the nozzle, through a connector for compressed air 117 , through the compressed air valve 113 , through the compressed air passageway 115 and onto the thimble frit 87 or the flat glass frit 91 .
  • the connector for compressed air 117 may connect the nozzle 111 to the compressed air valve 113 .
  • the thimble frit 87 or the flat glass frit 91 may generate fog through pneumatic production.
  • the thimble frit 87 or the flat glass frit 91 may be located within a fog generation chamber 119 . Liquid from the storage tank 103 may contact the thimble frit 87 or the flat glass frit 91 .
  • the compressed air supply 109 creates air pressure through the thimble frit 87 or the flat glass frit 91 as described above, creating an aerosol of the liquid within the fog generation chamber 119 . As air is drawn into a user's mouth, a vacuum is created within the artificial cigarette 85 . Air and the created aerosol are drawn out of the fog generation chamber 119 and towards the user's mouth.
  • a baffle 121 at the exit of the fog generation chamber 119 prevents larger droplets of liquid from exiting the fog generation chamber 119 and entering the user's mouth. Any excess liquid remaining in the fog generation chamber 119 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 103 . Smaller aerosol droplets pass the baffle 121 , a fog chamber valve 123 , and the aerosol passageway 97 before entering the user's mouth. The cessation of inhalation may be detected by the one or more airflow sensors 99 and signals are sent to close the liquid valve 101 and turn off the compressed air source 109 .
  • a user may then exhale through the artificial cigarette 85 . If a user exhales through the artificial cigarette 85 , some of the aerosol that entered the user's mouth may pass back through the artificial cigarette 85 .
  • the one or more air flow sensors 99 may detect the exhalation. The air pressure of the exhalation may close the fog chamber valve 123 to prevent the exhaled air from entering the fog generation chamber 119 .
  • the one or more flap valves 125 may open to allow exhaled air to pass through one or more aerosol exit passages 127 and out of the artificial cigarette 85 through one or more aerosol exits 129 .
  • the one or more flap valves are preferably located proximate to the aerosol passageway 97 .
  • a second set of one or more flap valves 131 may be located proximate to the one or more aerosol exits 129 .
  • the inhalation and exhalation process may be repeated until the storage tank 103 no longer contains any liquid.
  • Embodiments permitting recharging of the storage tanks are also contemplated.
  • the artificial cigarette 85 may operate through inhalation and puffing, without any additional input by the user.
  • FIG. 8 shows an inhaler 133 using a thimble frit 134 .
  • the inhaler 133 may be any shape or size, but is preferably shaped and sized for portability and to resemble a traditional inhaler.
  • a housing 135 may enclose the inhaler 133 .
  • the housing 135 may have a first end 137 proximate to a user's mouth and a second end 139 distal to a user's mouth.
  • An aerosol passageway 139 may lead from the inside of the inhaler 133 into a user's mouth.
  • a mouth piece 141 may facilitate use of the inhaler 133 and direction of the aerosols into the user's mouth.
  • One or more air flow sensors 143 may surround the aerosol passageway 139 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 143 .
  • a user may place the mouthpiece 141 into or against the user's mouth and in a manner similar to traditional inhalers.
  • the one or more air flow sensors 143 may transmit a signal to a liquid valve 145 located within the housing 135 .
  • the liquid valve 145 may open to allow liquid from a storage tank 147 to pass from the storage tank 147 , through a liquid carrier tube 149 , past the liquid valve 145 and onto the thimble frit 134 .
  • the storage tank 147 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention.
  • a 2 mL storage tank 147 may be sufficiently small with a sufficient volume of liquid for applications of the inhaler 133 .
  • the liquid may be water, a water-based solution, asthma medication, other pharmaceuticals, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • the detection of inhalation by the one or more air flow sensors 143 may also activate a compressed air supply 153 .
  • Different air flow sensors 143 may control the operation of the liquid valve 145 and the compressed air supply 153 .
  • the compressed air supply 153 is preferably a canister-type device with a nozzle 151 extending from an end of the compressed air supply 153 .
  • the nozzle 151 of the compressed air supply 153 may be connected to the thimble frit 134 by a compressed air passageway 155 .
  • a compressed air valve 154 may be released, allowing compressed air to pass from the compressed air supply 153 , through the nozzle 151 , through a connector for compressed air 157 , through the compressed air valve 153 , through the compressed air passageway 155 and onto the thimble frit 134 .
  • the connector for compressed air 157 may connect the nozzle 151 to the compressed air valve 154 .
  • the thimble frit 134 may generate fog through pneumatic production.
  • the thimble fit 134 may be located within a fog generation chamber 159 . Liquid from the storage tank 147 may contact the thimble frit 134 .
  • the compressed air supply 153 creates air pressure through the thimble frit 134 as described above, creating an aerosol of the liquid within the fog generation chamber 159 .
  • a vacuum is created within the inhaler 133 . Air and the created aerosol are drawn out of the fog generation chamber 159 and towards the user's mouth.
  • a baffle 161 at the exit of the fog generation chamber 159 prevents larger droplets of liquid from exiting the fog generation chamber 159 and entering the user's mouth.
  • any excess liquid remaining in the fog generation chamber 159 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 103 .
  • Smaller aerosol droplets pass the baffle 161 , a fog chamber valve 163 , and the aerosol passageway 139 before entering the user's mouth.
  • the passage of the aerosol droplets into the user's mouth completes the delivery phase of the inhaler 133 .
  • the cessation of inhalation may be detected by the one or more airflow sensors 143 and signals are sent to close the liquid valve 145 and turn off the compressed air source 153 .
  • the inhalation process may be repeated until the storage tank 103 no longer contains any liquid. Embodiments permitting recharging of the storage tank could easily be engineered.
  • the inhaler 133 may operate through inhalation without any additional input by the user.
  • the artificial cigarette and inhaler devices of the present invention may provide for inhalation and/or exhalation of substances other than liquid aerosol. Additional substances may be contained within the liquid, such as fragrances, nicotine, pharmaceuticals, etc. The additional substances may enhance the use of the artificial cigarette or inhaler and provide medical treatment of assistance in the cessation of smoking.
  • An alternative artificial cigarette or inhaler may be based on piezoelectric ink-jet nozzles for dispensing and vaporizing precisely known amounts of water solution as droplets.
  • Yet another artificial cigarette or inhaler may be based on a thermospray through introduction of water into a heated capillary. In a thermospray device liquid may begin to boil near the outlet of the capillary and may be converted to an aerosol or a mist by the expanding solution vapor.
  • the artificial cigarette or inhaler may offer aerosols with fine droplets.
  • electrical devices provide a white cloud or fog and are generally powered, for example, by a small, disposable battery.

Abstract

An artificial cigarette, inhaler or other nebulizer device may include a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol. The fog generator may be an ultrasonic nebulizer and/or a pneumatic nebulizer.

Description

    CLAIM FOR PRIORITY
  • This application is a continuation of U.S. patent application Ser. No. 12/916,190, filed Oct. 29, 2010, which is a divisional of U.S. patent application Ser. No. 11/723,771, filed Mar. 22, 2007, the contents of which are herein incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The invention relates generally to methods and apparatus for inhaling aerosol droplets. The invention may also relate generally to methods and apparatus to simulate the appearance, taste and other characteristics of a traditional cigarette and, more particularly, to apparatus and related methods for an artificial cigarette with reduced adverse health side effects.
  • BACKGROUND OF THE INVENTION
  • Cigarette smoking first became a mass “epidemic” in the United States, United Kingdom and other more wealthy countries in the early 20th century after the launch of inexpensive, mass produced cigarettes. As shown in FIG. 1, this “epidemic” usually develops in four stages. Often, the uptake and ensuing adverse effects of smoking occur earlier and to a greater degree among men. The four stages of a smoking “epidemic” for men are generally: (1) an initial slow rise in smoking prevalence, (2) a more rapid rise in smoking prevalence with an increase in the number of smoking related deaths, (3) a decrease in smoking prevalence with a more rapidly increasing number of smoking related deaths, and (4) a continued decline in smoking prevalence with a parallel trend in smoking related diseases. Generally, a decline in smoking prevalence is trailed approximately two to three decades later by the parallel trend in smoking related diseases.
  • The number of smokers worldwide is gradually rising. Presently, an average of 35% of the worldwide population between ages 15 to 64 smokes. A rapid increase in smoking prevalence throughout the developing world is one of the key threats to present and future world health. For most smokers quitting smoking is the single most important act to improve their health. Encouraging smoking cessation is one of the most effective and cost effective actions that health professionals can suggest for improving health and prolonging patients' lives. Based on data from the Center for Disease Control and Prevention (CDC), 24.7% of adults in the United States were smokers in 1997. Smoking in turn has lead to nearly 430,000 preventable deaths. Cigarette smoking is the single largest avoidable cause of death and disability in developed countries. One of the national health objectives for the United States in 2000 was to reduce the prevalence of cigarette smoking among adults to less than 15%. Roughly 20.9% of adults in the United States were current cigarette smokers in 2005. This figure reveals that the 8-year decline in smoking prevalence among adults in the United States has not met the 2000 objectives. In fact, the decline in smoking prevalence may be stalling when considering increases in population. As seen in FIG. 2, the smoking movement in United Kingdom depicts a similar trend. An estimated 2.3% of adults in the United States in 2005 used smokeless tobacco. Additionally, 42.5% of current cigarette smokers did quit smoking for at least one day in the preceding 12 months in an attempt to quit smoking permanently.
  • For most countries, the situation is worse. The 1995 smoking prevalence data from studies in 139 countries show 29% of persons aged 15 years or older were regular smokers globally in 1995. Four fifths of the world's 1.1 billion smokers in 1995 resided in low- or middle-income countries, with East Asian countries constituting an excessively high percentage (38%) of the world's smokers. Males comprised four fifths of all smokers. FIG. 3 shows cigarette smoking by deprivation level in the United Kingdom. Forthcoming decades will see rapid increases in tobacco-related deaths in low- and middle-income regions, even in rich countries such as the United Kingdom.
  • Half of the smokers will die prematurely of a disease caused by their smoking, losing an average of eight years of life. These figures are based upon an estimated 4 million deaths per year from tobacco in 1999, and these figures are anticipated to climb to an estimated 10 million deaths per year from tobacco by the 2030's. On the basis of the 2002 smoking trends, tobacco-attributable disease will kill about 500 million people over the next five decades.
  • Current evidence clearly indicates that smoking cessation reduces the risk of death from tobacco-related diseases. For example, lung cancer, which is particularly deadly with 85% of the patients dying within five years of their diagnosis, is almost entirely preventable. People who quit smoking reduce their risk of dying over the next 15 years by 50% compared with those who still smoke. For example, among physicians in the United Kingdom those who stopped smoking before the inception of major disease avoided most of the excess peril of smoking. The advantages of quitting were prevalent in those who suspended early (between ages 35 and 44) but were still momentous in those who quit later (between ages 45 and 54 years). While much of this high mortality can be reduced if smokers discontinue smoking, quitting is unusual, particularly in low- and middle-income countries. For instance, the occurrence of childhood mortality, smoking, and tuberculosis in India is three times higher among the lowest income or education groups than among the highest. One simple solution to reduce the mortality rate is increasing cigarette tax to four-fifths of the retail price which would roughly double the price of cigarettes in low-income countries. This practice, along with complete bans on advertising and promotion, could quadruple smoking cessation rates to nearly 30%. Based on recent data the cited combined strategies would ultimately prevent somewhere between 60 to 120 million deaths between 2002 and 2050.
  • The impact of smoking on longevity is well documented, is dependent on the levels of exposure, and is greater among younger smokers. FIG. 4 shows the numbers and relative risk of death by cause due to smoking in the United Kingdom. The data in FIG. 4 shows the strongest cause-specific links with respiratory cancers and chronic obstructive pulmonary ailments; in numeric terms, the greatest health impacts of smoking are on respiratory and cardiovascular diseases. Smokers are also at greater danger of several non-fatal diseases, such as osteoporosis, periodontal disease, impotence, male childlessness, and cataracts.
  • Cigarette smoking is also likely to have toxic effects on the retina which can cause severe and irreversible vision loss with increased risk of 2-3 fold in current smokers compared with never-smokers. Smoking in pregnancy is allied with enhanced rates of fetal and prenatal loss and diminished birth weight. Passive smoking after birth is associated with bed death and respiratory disease in childhood and lung cancer, heart disease, and stroke in adults. It is now well established in clinical practice that the toxic constituents of cigarette smoke, particularly nicotine, carbon monoxide, and hydrogen cyanide, also undermine expeditious wound repair. This is because nicotine reduces nutritional blood flow to the skin. Carbon monoxide diminishes oxygen transport and metabolism, whereas hydrogen cyanide hinders the enzyme systems necessary for oxidative metabolism and oxygen transport at the cellular level. Approximately 11 minutes of life expectancy is lost from smoking a single cigarette.
  • Another major disorder is alcoholism, which poses a substantial health problem, costing approximately $165 billion per year just in the United States. In addition to the above health concerns, cigarette smoking is more common in alcoholics than in the general population, with as many as 80-95% of alcoholics being smokers. This high percentage of co-morbidity reflects overlapping biochemical mechanisms of nicotine and alcohol in the central nervous system, which seems to result in even greater addiction to both drugs. Needs exist for new products that offer a combination therapy for smoking and alcoholism.
  • The adverse health effects and deadly diseases caused by smoking are attributed to nicotine and cigarette smoke. Nicotine is the addictive agent that prevents smokers from quitting, and is possibly responsible for more undesirable health consequences than any other single compound. The conversion of nicotine, the most common alkaloid found in tobacco, by the body into chemicals such as amino ketones have been shown to cause various diseases. Cigarette smoke contains more than 4,000 chemical compounds including at least 60 carcinogens. The carcinogenic compounds in cigarette smoke can be divided into four types: 1) nitrosamines, generally considered as the most deadly cancer-causing agents in tobacco smoke; 2) aldehydes, produced by the burning of sugars and cellulose in tobacco; 3) polycyclic aromatic hydrocarbons (PAH's), which form in the cigarette behind the burning tip; and 4) traces of heavy metals present in tobacco as a result of fertilizers used on the plant.
  • Historically, the development of a safer cigarette has been hampered for three reasons. First, and most importantly, removal of the toxins out of smoke has been a technological challenge because the taste and smoking sensations has not been satisfactorily preserved. Second, the cigarette companies were initially reluctant, due to legal problems, to admit that their “existing” products were dangerous. Third, the profound distrust of the cigarette companies by anti-tobacco activists and health officials played an obstructionist role even when significant progress was being made in a given area. For example, the consumer demand for a safer cigarette led the cigarette makers to gradually reduce the average tar level of cigarettes from 46.1 mg of tar per cigarette to 12.0 mg from 1944 to 1994. Lower-tar cigarettes appear to reduce the lung cancer risks of smoking, but not many of the other hazards. As discussed below, this and similar shortcomings led the anti-tobacco activists, health officials, and Food and Drug Administration to focus, for example, on eliminating smoking behavior and discouraging the promotion of safer cigarettes, rather than fostering additional technological innovations to radically promote cigarette safety, similar to safety improvements in motor vehicles. Collectively, such issues dissuaded the cigarette makers to aggressively conduct more research towards the development and marketing of safer cigarette.
  • The filter cigarettes introduced in the 1950's were the first attempt by the cigarette companies to introduce a safer cigarette through reduction of the tar level. Sales of filter cigarettes surged from less than 1 percent of the market in 1950 to 87 percent in 1975, but little evidence was presented to suggest that filter cigarettes were any healthier than regular cigarettes. Based on a 2006 court ruling even the alleged light or ultra-light cigarettes used today are marketing ploys and are not better than the full-strength smokes because, for example, the smokers compensate for the lower nicotine levels from the low-tar cigarettes by puffing more often or through deeper inhalation.
  • To remove the toxins from a conventional cigarette without altering the taste or smoking experience, cigarette makers initiated extensive research in four areas during 1960s: 1) selective filtration of the most noxious substances in cigarette smoke, such as carbon monoxide; 2) the removal or lowering of nicotine and the four types of carcinogenic compounds cited above; 3) the development of synthetic tobacco and tobacco substitutes; and 4) increasing nicotine levels in low-tar cigarettes to prevent compensation by smokers for a loss of nicotine. Unfortunately, lowering the levels of one or two hazardous compounds either raised the levels of other unsafe compounds, made the cigarette “taste” unacceptable to the smokers, or raised concerns by health groups and the cigarette companies. For example, a new cigarette, FACT, introduced by Brown & Williamson in 1975, was withdrawn from the market after two years though it could selectively eliminate certain compounds, including cyanide, from cigarette smoke. Similarly, a cigarette developed in the “XA project” in the 1970's by Liggett Group, Inc. contained catalysts such as palladium blended with tobacco to destroy PAH's formed behind the cigarette's burning tip, but this project was terminated due to pressure by other cigarette makers because of a direct or implied admission that all other cigarettes were hazardous. In addition, due to opposition by health group, the cigarettes introduced in 1977 by British firms Imperial, Gallaher, and Rothmans were removed from the market after a few months although tobacco was replaced with less toxic substitutes, including ingredients made from wood pulp. These and similar situations caused other cigarette companies to begin reducing their efforts by early 1980's to develop a safer cigarette, and even hiding some of the results of prior research, as illustrated in the 1994 lawsuit by the State of Minnesota against the tobacco industry. A former Philip Morris researcher testified in 1998 that the company abandoned promising research to eliminate cadmium, a lung irritant, from tobacco to protect itself against additional liability.
  • Beginning mid-1980's, cigarette makers began to market high-tech cigarettes that were supposedly safer, or more socially acceptable with less visible side stream smoke or less odor. A recent study reveals that 28 such projects had been underway since 1970's at RJ Reynolds, Philip Morris, British American Tobacco, and Lorillard tobacco companies. Despite these efforts and heavy investment on research, almost every product developed was unacceptable in actual product tests or test markets. Smokers required complete elimination of secondhand smoke to please non-smokers, they were usually reluctant to forfeit their own smoking pleasure for the benefit of others, and favored smoke-free environments to cigarettes that generated less secondhand smoke. For example, the high-tech cigarette called PREMIER introduced in 1988 by RJ Reynolds after an investment of nearly $800 million dollars in research was almost smokeless, reducing the cancer-causing compounds inhaled through heating aluminum capsules having tobacco pellets. This cigarette, perhaps the greatest technological innovation affecting cigarettes, was removed from the market in 1989 because it required its own instruction booklet to light it, did not taste like regular cigarettes to some smokers, consumers did not get used it, and the cigarette faced regulation by FDA as a drug. The PREMIER brand eventually evolved into the ECLIPSE smokeless cigarette in 1994, which was similar to a regular cigarette, but claiming reduction in secondhand smoke by 85 to 90 percent to be more socially acceptable. It differed from a regular cigarette in that the nicotine was extracted by heating the tobacco with air passed through a burning charcoal heat source at lower temperature. Because ECLIPSE has simpler smoke chemistry, consisting of 80% glycerol and water, it contained fewer toxic components resulting in reduced mutagenicity and cytotoxicity in in-vitro tests and fewer DNA adducts. In more recent studies, however, public health officials showed that ECLIPSE appears to be at least as toxic as some commercially available cigarette brands, and produces more carbon monoxide and higher levels of other carcinogenic PAH's compared to the “light” brands such as NOW and CARLTON. Importantly, when glycerin is burned, it is known to be carcinogenic.
  • As to nicotine, which is mainly connected to the difficulty of quitting smoking, Philip Morris made an important contribution. The company had noted that older, female, low-tar cigarette smokers are generally most interested in the nicotine-free cigarette. A supercritical carbon dioxide process was used to remove nicotine from tobacco, leading to a “97% nicotine-free” cigarette under the brand names NEXT and MERIT FREE, which were test marketed in 1989. Granted, these cigarettes were actually designed to deter smokers from quitting, and tobacco critics claimed that NEXT had higher tar levels than some cigarettes. However, the products promoted further technological developments towards safer cigarettes. Anti-smoking groups petitioned the FDA to designate nicotine as a drug and to begin a broader range of regulatory actions against cigarettes. Although the idea of the reduced-nicotine products appealed to smokers, Philip Morris never launched NEXT after poor consumer reactions to the actual cigarette. Several versions of MERIT are currently available, with one version, under the packaging name ULTIMATE KING FILTER BOX, having very low levels of tar (1 mg) and nicotine (01.mg).
  • Another high-tech cigarette developed by Philip Morris in 1988 is ACCORD, which had to be used with a special kit having a puff-activated electronic lighter and a battery charger. To smoke, most of the cigarette was inserted into a tube-shaped lighter equipped with sensors that controlled the temperature of the heated tobacco for reducing carcinogenic compound production and side smoke. As the smoker sucked on the lighter, a microchip sensed the puff to send a burst of heat to the tobacco. The process gave the smoker one drag, a display offered the number of remaining puffs before recharging the batteries, typically required after using the cigarette pack. The cigarette was test marketed only in Richmond, Va., and is no longer available partly because the lighter was bulky and cumbersome to use, the smoker had to learn a completely new smoking practice, and the cigarette still produced carcinogenic products. The tar (3 mg) and nicotine (0.2 mg) of ACCORD were higher than some versions of MERIT.
  • Another promising step towards safer cigarettes involved development of nitrosamine-free cigarettes as nitrosamines are cancer causing compounds. A special tobacco curing process allowed cigarette makers such as Brown & Williamson and RJ Reynolds to drastically reduce the formation of tobacco-specific nitrosamines in the tobacco used in special brands. One must note, however, that cigarettes without nitrosamines produce other carcinogens.
  • The cigarette industry has been unable to offer a safe cigarette despite heavy investment, and as far as the consumer is concerned the safest cigarette is no cigarette at all, which is not a realist goal. Even though the public has come to recognize smoking hazards, in many cases they have been reluctant or unable to drop the habit because of addiction to nicotine or due to deriving pleasure from holding a cigarette and drawing air through the cigarette via the hand-to mouth action.
  • Various techniques have been advanced on controlled nicotine delivery to aid smoking cessation. The five major pharmacotherapies are: 1) nicotine gums; 2) nicotine patches; 3) nicotine nasal sprays; 4) nicotine inhalers; and 5) sustained-release bupropion hydrochloride, a non-nicotine medication. Other examples of smoking cessation aids include: 1) nicotine nose drops; 2) nicotine lozenges; 3) compositions comprising nicotine metabolites; 4) drinkable nicotine solutions; and 5) smoke-free cigarettes.
  • A significant effort has been underway over the development of smokeless cigarettes.
  • One focus has been based on treatment to help individuals to give up the smoking habits via physical devices. For example, U.S. Pat. No. 2,445,476 offers a mixture of volatile agents and essential oils (such as 50% menthol, 20% peppermint oil, 10% eucalyptus oil, 10% spearmint oil, and 10% wintergreen oil) as a substitute for an all-tobacco cigarette. This mixture is adsorbed on the cigarette fillers such as wool yarn and cotton rolls, but inhalation of the volatile mixture requires no cigarette lighting. Similarly, the sucking pipe in U.S. Pat. No. 2,764,154 provides enclosures suitable for atomization/vaporization of tobacco fragrance dissolved in drinking alcohol, thus allowing inhalation by the user at non-smoking places such as theatres, buses, and hospitals. U.S. Pat. No. 3,365,102 shows a simulated cigarette constructed to contain and dispense through sipping a limited volume of liquid beverages such as flavored syrups or liquid, medical preparations, tobacco extracts, or other potable liquid suitable to the individual taste. In U.S. Pat. No. 3,683,936 the industrially accepted process of micro-encapsulation is utilized to implant a simulated smoking device with the flavor and aroma of tobacco smoke for passage into the mouth of the user without lighting the cigarette to create smoke. U.S. Pat. No. 3,789,840 illustrates a device that offers a chemical substance such as a lozenge to suppress the craving for smoking and also to satisfy the psychological requirement associated with giving up smoking through the use of simulated ash which can be luminous under the control of the smoker. U.S. Pat. No. 3,200,819 describes a smokeless non-tobacco cigarette in which the burning tobacco and paper are replaced with heated, moist flavored air having perhaps medication. The device requires a battery for heating purposes. U.S. Pat. No. 4,429,703 discloses a simulated cigarette which may be filled with an aromatic substance such as menthol to give a pleasant taste and smell. Such devices, however, may fail to provide an adequate psychological and physiological lift received either by the tobacco smoker or the user of cigarette substitutes offering nicotine, as described in U.S. Pat. No. 4,774,971. Considering that oxygen is a lift-providing substitute for tobacco, U.S. Pat. No. 3,631,856 outlines a simulated cigarette having a container of oxygen under pressure to provide a mixture of oxygen and a pleasant fragrance. The simulated cigarette disclosed in U.S. Pat. No. 4,184,496 allows a user, while simulating the action of smoking a cigarette or cigar, to circulate the air surrounding his nose and mouth which may be laden with actual cigarette or cigar smoke of others in the vicinity. The smokeless artificial cigarette outlined in U.S. Pat. No. 4,995,407 contains no tobacco and no nicotine, but utilizes beads or pellets emitting a stress-reducing vapor composed of at least one or more substances such as nutmeg oil, mace extract, neroli oil, valerian oil, myristicin, elemicin, and isoelemicin. Most of the beads are placed within the space in a tube containing a porous filler material, flavoring and aromatic substances, and two porous plugs which may include no or one or more beads. The act of oral inhalation through the tube provides a physiologically effective amount of vapor that produces a sense of satisfaction for the user. Patent Application Publication No. US 2002/0179101A1 also proposes a tubular body of material having a variety of taste and ingredients, but with no nicotine and tobacco, for suction by the user to receive psychological and physiological satisfaction, and thus reduce smoking. Air is drawn through a passage in the tubular material into the mouth of the user, thus simulating smoking.
  • Several patents on smokeless cigarettes have centered on controlled nicotine delivery. For example, the device disclosed under U.S. Pat. No. 4,393,884 enables a user to inhale pressurized nicotine or tobacco-like formulations on demand. The substance and the aerosol propellant such as nitrogen may be placed in the same or separate compartments, depending on the application. In contrast, the device under U.S. Pat. No. 4,284,089 offers the user vaporizable nicotine at room temperature and pressure without heating or burning tobacco. The device includes a constricted passageway formed by an absorbent material impregnated with a liquid nicotine mixture. The sucking action of the mouth increases air or gas velocity in the constricted passageway, resulting in a lower pressure suitable for enhanced vaporization of liquid nicotine. Clearly, the absorbent materials may also include volatile liquid ingredients to adjust the flavor for final nicotine vapor mixture. An improved version of this simulated smoking device, described by the same inventor under U.S. Pat. No. 4,813,437, utilizes fibrous materials for one or more nicotine bearing sections. To create some pressure drop for improving the release of nicotine-bearing vapors as air is drawn through the device, a primarily unobstructed insulating section is linearly arranged with a nicotine bearing section. To optimize the performance of cited devices, that is, to encourage the amount of nicotine that is uniformly vaporized without formation of unvaporized nicotine droplets, U.S. Pat. No. 4,793,366 discloses a device using microporous filament fibers for nicotine bearing. The cigarette-like device described in U.S. Pat. No. 6,041,789 is a relatively simple nicotine inhaler with air drawn in by the user. It consists of a long tube filled with porous polymeric material that has absorbed a solution of a volatile nicotinomimetic agonist in an amount effective for its released vapors to meet the physiological desires. The nicotine desire is addressed in U.S. Pat. No. 5,293,883 through the use of an array of small nicotine-containing ampules located within the mouth filter of the smokeless device. The simple device outlined under U.S. Pat. No. 5,284,163 also offers a smoke-free cigarette substitute that includes a tubular sleeve having a nicotine-containing carrier. However, nicotine is drawn into the oral cavity of the user through chewing. When pressure is applied to the filter liquid nicotine is released into the mouth of the user. This feature may be a disadvantage for some users as liquid nicotine has an extremely bitter, almost caustic taste. Patent Application Publication No. US2003/0111088A1 describes a tubular medication delivery device that supplies nicotine along with another drug in solution form. The mixture is essentially helpful for dispensing nicotine and naltrexone to manage patients who are smokers and also endure another addiction, such as alcoholism. In a previous disclosure under U.S. Patent Application No. 2002/0059939A1 the same inventor presented a similar device solely to deal with smoking cessation through nicotine treatment.
  • U.S. Pat. No. 5,293,883 also provides smell and sensation of a regular cigarette as air is drawn through two chambers containing unburned and pre-burned tobacco. This is also achieved in U.S. Pat. No. 4,892,109, but through an exothermic chemical reaction that heats air before its interaction with a charcoal, tobacco, or porous substrate including flavorant substances. The heated air carries tobacco flavor to the smoker's mouth without tobacco combustion. Patent Application Publication No. US 2005/0236006A1 describes several similar smoking and tobacco use cessation devices requiring no ignition and burning of substances. In one configuration, the device has two chambers, one for an exothermic reaction to heat the air before interaction in a second chamber with a source of tobacco, tobacco substitute, nicotine or nicotine substitute to cause evaporation. Further options include the delivery of substances such as vitamins, neutraceuticals, energy enhancers, aspirin, diet aids, weight loss additives, caffeine, breath enhancers and the like, for any desired effect. U.S. Pat. No. 4,911,181 offers several versions of a simulated smoking device through the use of mouthpiece that incorporates a plug of chewing tobacco or tobacco insert in a tube with a pumping component at its end or a tube with collapsible wall. Chewing or sucking creates a partial vacuum, resulting in the withdrawal of saliva from the user's mouth which interacts with tobacco for recirculation to the user's mouth. Commercial smokeless cigarettes have been introduced based on some of the concepts discussed above.
  • Nearly all smokeless cigarettes discussed above have the shape of a regular cigarette and provided the user with either a mixture of volatile agents, liquid substances, tobacco aromas, tobacco substitutes, or nicotine/nicotine substitutes as replacements for an all tobacco cigarette. None of these devices, however, addressed a key “smoking ritual”: a constantly shifting grayish white stream that looks like or resembles cigarette smoke. Several methods, including chemical generation and aerosol formation have been attempted to reproduce cigarette smoke.
  • Several chemical-based approaches may be used to generate a white vapor, but their applications in a smokeless cigarette device are not practical due to several reasons such as size, cost, or possible heath restrictions. For example, normal liquefied gases may be used to produce fog, as in stage shows and concerts using a “fog machine”. In contact with air these liquids generate copious amount of white vapors. The visible white trails are liquid water vapor condensed by the low temperature of the vapor evaporating from the liquid. Colder gas and damper location air produce superior fog. Liquid helium is a good choice because of its temperature of −269° C., but it is very costly. Liquid nitrogen (−196° C.) offers a large amount of white fog cloud, good cost-efficiency, and non-toxicity as the gas is present in air in large quantities (78%), but is not suitable for use in small locations. Liquid carbon dioxide (−78° C.) and dry ice (solid CO, or solid carbon dioxide) offer a grey-white fog, but should not be handled in confined spaces as air containing more than 10% by volume of CO, is toxic. The normal concentration of CO, in air is less than a tenth of a percent. In addition, these liquids in contact with skin cause cold-burning, and thus are very dangerous in a liquid state. Boiling water from 100 to 200 degrees Celsius can generate a cloud-like fog, but such a vapor cannot be introduced into the mouth.
  • A water-based solution advertised as “fog juice” is often used in a “fog machine”. All commercial fog machines require electrical power ranging from 400 to 1300 watts. According to one source, the fog is produced by heating the fog juice, which is a mixture of propylene glycol and triethylene glycol, mixed with 20 percent water. The fluid is directed into a narrow channel inside a heated metal block and is superheated before it is allowed to travel through a very small nozzle where the vaporized fog is expelled under high pressure. The nozzle and a protective cover become very hot during operation, and must not be placed near anything that may catch on fire. At high temperatures, the fog juice can decompose to harmful byproducts that may affect health. Similarly, mixing fumes from hydrochloric acid and ammonia (and also ammonium carbonate), as suggested in an early U.S. Pat. No. 726,037, forms a white cloud of ammonium chloride, but the approach is neither healthy nor environmentally green Likewise, smoke generated from non-tobacco substances and other chemicals also produce health problems. A smokeless device in Patent Application Publication No. US 2005/0016553A1 offers a two-chamber arrangement, with the first chamber providing an aroma evocative of the smell of flavor of burning tobacco or other fragrances. The aromatic compounds are deposited on a liner or are encapsulated in micro-cells located within the first chamber. The aroma is released after the user scratches the liner or micro cells using, for example, a brush-like insert. The second chamber includes an amount of fine powder such as talc, or diatomaceous earth, which upon agitation, such as an ash flicking motion by the user, causes a small volume of the powder to flow through the device outlet aperture to simulate smoke. A check valve prevents powder particles from being sucked into the first chamber, thus not allowing them to enter the mouth of the user. A similar device may also have a tip that gives the appearance of glowing embers. Alternatively, a light emitting diode may be utilized with a red or orange light-transmitting plastic for the cap end.
  • Several devices have been suggested to deliver smoking flavor in the form of aerosol. A device in U.S. Pat. No. 4,765,347 delivers flavor via an aerosol generated by mechanical dispersion of a liquid into a flowing gas stream. The device consists of: 1) an outer container providing a pathway for airflow; and 2) an inner liquid container with a solution delivery tube placed at the center of a narrow aperture to cause air acceleration during puffing. This acceleration creates a region of lower pressure next to the output region of the solution delivery tube, relative to the pressure experienced by the liquid within the container, and is sufficient to draw a liquid column for dispersion as an aerosol into the mouth end region. Note that the flavor varies depending on the user. The volume of a puff of aerosol varies most generally from about 25 ml to about 35 ml during a puff period ranging from 1 to nearly 2.5 seconds. Alternatively, the flavor bed of tobacco or tobacco-derived material is often heated, without combustion of tobacco, to release tobacco flavors without producing all the normal products of tobacco combustion. As the smoker draws air through or around the heat source, the heated air releases tobacco flavors (vapor, aerosol or a mixture) into the smoker's mouth. Again, the heat source temperature is dependent on how the smoker uses the article, so that the flavor release rate varies widely from user to user. The device in U.S. Pat. No. 5,060,671 offers a cigarette-like arrangement to electrically heat a flavor source at a controlled temperature and for the uniformly release of the desired flavor with each puff, without overheating or burning. Microswitches sensitive to a change in pressure or air flow may be used to activate the device when the consumer draws the air. The heater is typically energized from about 0.1 second to about 4 seconds and for a temperature ranging from 100 C to about 600 C.
  • In addition to flavor, nicotine delivery has been achieved by means of an aerosol. A device in U.S. Pat. No. 4,945,929 includes nicotine and propellant storage containers linked to a nebulization nozzle to produce a nicotine spray. Large droplets in the conical aerosol are removed by impaction before the remaining aerosol pass through a series of baffles to increase evaporation time of the droplets, thus creating a mixture which approximates that of tobacco smoke. Nicotine inhaler devices, based on ultrasonic nebulization, are found in U.S. Pat. Nos. 4,920,989 and 4,953,572. To stimulate either the upper respiratory tract or the lower respiratory tract or both, droplets must possess sizes ranging from 1 micron to about 10 microns in diameter. An inhaler was used in conjunction with nicotine patch as a method of aiding in the reduction of incidence of tobacco smoking. An aerosol of nicotine also was produced by an electronic cigarette described in Patent Application No. WO2004080216. The device was non-flammable and offers no tar. An air flow sensor in the smoking-mouth of the cigarette delivered a signal to a circuit to start a high frequency vibrator receiving a nicotine solution from a container via a pipe, thus initiating aerosol formation by nebulization. The end cap in the front of the cigarette included cells and light diodes to give the appearance of a lighted cigarette. This device mimicked the usual smoking pattern and effect, giving the smokers the feel of smoking aside from nicotine delivery. An electronic cigar used a nebulization device. The “smoking liquid” for this device was a diluted nicotine fluid ready for nebulization in the inhaler container. The liquid was purified from tobacco according to the standard FDA GRAS, by biological technology, removing the harmful substances in the tobacco and keeping the safe or useful substances. As described, one ml of liquid was sufficient for about two packs of cigarettes. Another electronic cigar uses “supercritical atomizing technologies”. A piezoelectric inhaler has been described, which includes an array of dispensing channels and an array of dispensing nozzles, to dispense droplets as an electric field applied to the channel walls. The field reduces the volume in an associated channel, creating a pressure pulse of flowable substance that lead to droplet formation. Because droplets per unit time can also be controlled, this approach offers a known volume of the substance sprayed.
  • A cigarette company that produces a “healthy” cigarette may lead the industry by selling the “novel smoke” at a considerable premium and capture market share from rivals.
  • Generally, needs exist for improved apparatus and methods for producing a cigarette with the appearance taste and other characteristics of a traditional cigarette with reduced adverse health consequences.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention solve some of the problems and/or overcome many of the drawbacks and disadvantages of the prior art by providing an apparatus and method for producing an inhaler and/or artificial cigarette with the appearance and other characteristics of a traditional cigarette with reduced adverse health consequences. Other embodiments may most easily find use as artificial cigars, pipes or water pipes.
  • Certain embodiments of the invention accomplish this by providing a nebulizer apparatus including a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol.
  • In embodiments of the present invention, the fog generator may be an ultrasonic nebulizer with the ultrasonic nebulizer including a piezoelectric surface on a flat transducer and a power supply for powering the ultrasonic nebulizer. One or more heat sinks may dissipate heat within the nebulizer apparatus.
  • In alternative embodiments of the present invention the fog generator may comprise a pneumatic nebulizer such as a glass frit with a means for creating a pressure differential across the pneumatic nebulizer, such as a venturi or a compressed air supply.
  • Embodiments of the present invention may include one or more air flow sensors for sensing movement of air through the air passage. The embodiments may also include a liquid valve disposed between the liquid source and the fog generating chamber controlled by the one or more air flow sensors, a compressed air supply for creating a pressure differential across the fog generator, the compressed air supply controlled by the one or more air flow sensors, and/or a power supply for powering the fog generator, the power supply controlled by the one or more air flow sensors.
  • Embodiments of the present invention may include a mouthpiece, a baffle for preventing large aerosol droplets from exiting the fog generating chamber, a fog chamber valve for closing the fog generating chamber during exhalation into the nebulizer apparatus, one or more aerosol exits connected to the air passage for directing exhaled air out of the nebulizer apparatus, and/or one or more valves for closing the one or more aerosol exits during inhalation and opening the one or more aerosol exits during exhalation.
  • In embodiments of the present invention, the liquid may be a pharmacological active agent.
  • Embodiments of the present invention may include a nebulizer method with steps including providing a nebulizer apparatus comprising a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol, fluidly contacting the air passage with a user's mouth, inhaling through the nebulizer apparatus, and wherein the inhaling activates the fog generator.
  • Certain other embodiments of the invention can also be used in conjunction with the burning of tobacco or some other substance to increase the moisture level of the resulting smoke. For example, the nebulizer may be used in conjunction with a water pipe to deliver a more hydrated form of smoke to the user.
  • Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention. In the drawings:
  • FIG. 1 is a graph showing stages of a worldwide tobacco epidemic.
  • FIG. 2 is a graph showing the prevalence of smoking manufactured cigarettes in the United Kingdom.
  • FIG. 3 is a graph showing cigarette smoking by deprivation level in the United Kingdom.
  • FIG. 4 is a graph showing numbers and relative risk of death by cause due to smoking in the United Kingdom.
  • FIG. 5 is a schematic cross section of an artificial cigarette with a flat transducer for applications in fog generation for the artificial cigarette.
  • FIG. 6 is a schematic cross section of an inhaler with a flat transducer for applications in fog generation for the inhaler.
  • FIG. 7A is a schematic cross section of an artificial cigarette using a thimble frit.
  • FIG. 7B is a schematic cross section of an artificial cigarette using a flat glass frit.
  • FIG. 8 is a schematic cross section of an inhaler using a thimble frit.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Some preferred embodiments of the invention are discussed in detail below. While specific example embodiments may be discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the invention.
  • Nearly all devices discussed in the Background of the Invention section above either did not produce an adequate smoking pattern and effect, or suffered from a list of problems outlined earlier. Embodiments of the present invention may involve generation of a visible vapor or fog via the production of aerosol from a liquid. Artificial cigarettes and/or inhalers with a visible vapor or fog may be generated by ultrasonically-activated flat crystals and/or pneumatic methods. Pneumatic methods may include crossflow and concentric nozzles, grid- and mesh-based approaches, and glass frit devices. Aerosols may be transported outside the artificial cigarette and/or inhalers via air, for example, by inhaling from the device, blowing into the devices and/or through exhalation.
  • While not wishing to be constrained by any specific theory, the inventor presently believes and others have suggested that in pneumatic nebulization with a concentric device, the liquid passes through a narrow tube encircled by a high-velocity gas flow parallel to a capillary axis. The liquid and gas streams reside at a perpendicular angle in a cross-flow device. Regardless of the device type, the flow of gas creates a pressure differential (P) across the liquid capillary, drawing the liquid into it at a liquid flow rate (Q) governed by Equation 1:
  • Q = R 4 P 8 η L [ 1 ]
  • Note that the radius (R) and length (L) of the liquid capillary and the liquid viscosity (η) affect the liquid flow rate. For the formation of cloud-like smoke in the smokeless device, R should be reduced to limit the liquid requirement, and thus the device size. The gas flow necessary to create the differential pressure may be provided by the user through inhalation-exhalation or through a small pressurized container within the smokeless device.
  • Our present belief is that as the liquid, water or aqueous solution emerges from the capillary, it is shattered into an aerosol by the gas flow. The increase in relative gas velocity from approximately 5 to 50 m/s changes the liquid breakup pattern, thereby altering the size of droplets. In general, the droplet diameter is affected by liquid properties and nebulization device parameters as follows:
  • D 3 , 2 = 585 V [ σ ρ liq ] 0.5 + 597 [ η liq ( ρ liq σ ) 0.5 ] 0.45 [ 10 3 Q liq Q gas ] 1.5 [ 2 ]
  • Equation 2 shows that the Sauter mean droplet diameter (D3,2 in μm) is controlled by the difference between the gas and liquid velocities (V, m/s), the liquid surface tension (σ, dyn/cm), the liquid density (Qliq, g/cm3) the liquid viscosity (ηliq, poises), and the volume flow rates of the liquid and gas (Qliq and Qgas, respectively, cm3/s). For the smokeless device under our consideration, adjustments of three parameters (V, Qliq and Qgas) change the droplet size distribution and thus the fog density. For practical reasons, it is preferred to use 2 CC or 2 ML as the maximum volume of liquid suitable for the intended device when it is in the form of a cigarette. In a device of the form of a cigar, normal pipe or water pipe, this volume can be increased; however, most embodiments of the invention are designed to have maximal aerosol production efficiency with minimal liquid consumption.
  • To increase fog density, ultrasonic energy may be used. In contrast to pneumatic nebulization ultrasonic nebulization is independent of gas flow. In ultrasonic nebulization, the liquid may be delivered onto or already resides on the surface of a piezoelectric transducer driven by an ultrasonic generator at a frequency of approximately 200 kHz to 10 MHz. The ultrasonic waves travel vertically from the crystal surface towards the liquid-air interface. The resulting oscillation may shatter the surface liquid, i.e., the liquid film, into an aerosol under certain conditions. The amplitude of the wave must be adequately large to upset the liquid film on the surface of the piezoelectric crystal, leading to droplet formations. Importantly, the mean numerical diameter of droplets (or average droplet diameter, D) is controlled by the surface wave wavelength (λ), and is expressed by:
  • D = 0.34 λ [ 3 ] λ = ( 8 πσ ρ f 2 ) x [ 4 ]
  • where f is the ultrasonic frequency. The average droplet diameter is affected also by the surface tension (σ) and the liquid density.
  • A key issue is the volume of liquid in a container of the smokeless device for aerosol generation. For practical reasons, certain embodiments of the present invention consider 2 CC or 2 mL as the maximum volume. Other maximum volumes are possible. It is preferred to have maximal aerosol production efficiency with minimal liquid consumption. For ultrasonic devices according to the present invention, the efficiency of aerosol production may be approximately 10 to 20 times higher than certain pneumatic methods.
  • There are several forms of ultrasonic devices. In one type, a transducer may be bonded to a chemically-resistant plate and placed vertically in a horizontal spray chamber. In another type, a transmitting bath may be used to transfer ultrasonic radiation from a transducer to a liquid to be nebulized.
  • FIG. 5 shows an artificial cigarette 11 with a flat transducer 13 for applications in fog generation for the artificial cigarette 11. The artificial cigarette 11 may be any shape or size, but is preferably shaped and sized to resemble a traditional cigarette. A housing 15 may enclose the artificial cigarette 11. The housing 15 may have a first end 21 proximate to a user's mouth and a second end 23 distal to a user's mouth. An aerosol passageway 17 may lead from the inside of the artificial cigarette 11 into a user's mouth. One or more air flow sensors 19 may surround the aerosol passageway 17 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 19.
  • A user may place the artificial cigarette 11 into the user's mouth and inhale through the artificial cigarette 11 in a manner similar to a traditional cigarette. Upon detection of inhalation, the one or more air flow sensors 19 may transmit a signal to a liquid valve 25 located within the housing 15. The liquid valve 25 may open to allow liquid from a storage tank 27 to pass from the storage tank 27, through a carrier tube 29, past the liquid valve 25 and onto a piezoelectric surface 31. The storage tank 27 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention. A 2 mL storage tank 27 may be sufficiently small with a sufficient volume of liquid for applications of the artificial cigarette 11. The liquid may be water, a water-based solution, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • The detection of inhalation by the one or more air flow sensors 19 may also activate a power supply 33. Different air flow sensors 19 may control the operation of the liquid valve 25 and the power supply 33. The power supply 33 is preferably a disposable battery-based power source. The power supply 33 may be connected to the flat transducer 13 by an input 35. The input is preferably a radio frequency input to the flat transducer 13. The flat transducer 13 may generate fog through ultrasonic nebulization. One or more heat sinks 37 may be disposed around the flat transducer 13 for dissipating heat generated within the artificial cigarette 11. The piezoelectric surface 31 may be located at an end of the flat transducer 13.
  • The piezoelectric surface 31 may extend or may be located within a fog generation chamber 39. Liquid from the storage tank 27 may contact the piezoelectric surface 31. The power supply 33 powers the flat transducer 13 and causes the piezoelectric surface 31 to vibrate ultrasonically. The ultrasonic vibrations create an aerosol of the liquid within the fog generation chamber 39. As air is drawn into a user's mouth, a vacuum is created within the artificial cigarette 11. Air and the created aerosol are drawn out of the fog generation chamber 39 and towards the user's mouth. A baffle 41 at the exit of the fog generation chamber 39 prevents larger droplets of liquid from exiting the fog generation chamber 39 and entering the user's mouth. Any excess liquid remaining in the fog generation chamber 39 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 27. Smaller aerosol droplets pass the baffle 41, a fog chamber valve 43, and the aerosol passageway 17 before entering the user's mouth. The cessation of inhalation may be detected by the one or more airflow sensors 19 and signals are sent to close the liquid valve 25 and turn off the power source 33. The passage of the aerosol droplets into the user's mouth completes the inhalation stage of the operation of the artificial cigarette. During inhalation, one or more flap valves 45 remain closed. The flap valves 45 are held closed by the negative pressure of the inhalation.
  • A user may then exhale through the artificial cigarette 11. If a user exhales through the artificial cigarette 11, some of the aerosol that entered the user's mouth may pass back through the artificial cigarette 11. The one or more air flow sensors 19 may detect the exhalation. The air pressure of the exhalation may close the fog chamber valve 43 to prevent the exhaled air from entering the fog generation chamber 39. The one or more flap valves 45 may open to allow exhaled air to pass through one or more aerosol exit passages 47 and out of the artificial cigarette 11 through one or more aerosol exits 49. The one or more flap valves are preferably located proximate to the aerosol passageway 17. A second set of one or more flap valves 51 may be located proximate to the one or more aerosol exits 49.
  • The inhalation and exhalation process may be repeated until the storage tank 27 no longer contains any liquid. Embodiments are also contemplated that permit the recharging of the liquid storage tank. The artificial cigarette 11 may operate through inhalation and puffing, without any additional input by the user.
  • FIG. 6 shows an inhaler 53 with a flat transducer 54 for applications in fog generation for the inhaler 53. The inhaler 53 may be any shape or size, but is preferably shaped and sized for portability and to resemble a traditional inhaler. A housing 55 may enclose the inhaler 53. The housing 55 may have a first end 57 proximate to a user's mouth and a second end 59 distal to a user's mouth. An aerosol passageway 59 may lead from the inside of the inhaler 53 into a user's mouth. A mouth piece 61 may facilitate use of the inhaler 53 and direction of the aerosols into the user's mouth. One or more air flow sensors 63 may surround the aerosol passageway 59 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 63.
  • A user may place the mouthpiece 61 into or against the user's mouth and in a manner similar to traditional inhalers. Upon detection of inhalation, the one or more air flow sensors 63 may transmit a signal to a liquid valve 65 located within the housing 55. The liquid valve 65 may open to allow liquid from a storage tank 67 to pass from the storage tank 67, through a liquid carrier tube 69, past the liquid valve 65 and onto a piezoelectric surface 71. The storage tank 67 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention. A 2 mL storage tank 67 may be sufficiently small with a sufficient volume of liquid for applications of the inhaler 53. The liquid may be water, a water-based solution, asthma medication, other pharmaceuticals, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • The detection of inhalation by the one or more air flow sensors 63 may also activate a power supply 73. Different air flow sensors 63 may control the operation of the liquid valve 65 and the power supply 73. The power supply 73 may be a battery-based power source or a dynamo based power source. The power supply 73 may be connected to the flat transducer 54 by an input 75. The input is preferably a radio frequency input to the flat transducer 54. The flat transducer 54 may generate fog through ultrasonic nebulization. One or more heat sinks 77 may be disposed around the flat transducer 54 for dissipating heat generated within the inhaler 53. The piezoelectric surface 71 may be located at an end of the flat transducer 54.
  • The piezoelectric surface 71 may extend or may be located within a fog generation chamber 79. Liquid from the storage tank 67 may contact the piezoelectric surface 71. The power supply 73 powers the flat transducer 54 and causes the piezoelectric surface 71 to vibrate ultrasonically. The ultrasonic vibrations create an aerosol of the liquid within the fog generation chamber 79. As air is drawn into a user's mouth, a vacuum is created within the inhaler 53. Air and the created aerosol are drawn out of the fog generation chamber 79 and towards the user's mouth. A baffle 81 at the exit of the fog generation chamber 79 prevents larger droplets of liquid from exiting the fog generation chamber 79 and entering the user's mouth. Any excess liquid remaining in the fog generation chamber 79 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 67. Smaller aerosol droplets pass the baffle 81, a fog chamber valve 83, and the aerosol passageway 59 before entering the user's mouth. The passage of the aerosol droplets into the user's mouth completes the delivery phase of the inhaler 53. The cessation of inhalation may be detected by the one or more airflow sensors 63 and signals are sent to close the liquid valve 65 and turn off the power source 73.
  • The inhalation process may be repeated until the storage tank 67 no longer contains any liquid. Embodiments are also contemplated that permit the recharging of the liquid storage tank. The inhaler may operate through inhalation without any additional input by the user.
  • Alternative embodiments of the present invention may be based upon pneumatic production of aerosols. Two basic configurations for pneumatic production of mist or white cloud may be used: concentric type and crossflow type. In both arrangements, a pressure differential may be formed across a capillary. The pressure differential may move a liquid through the capillary and may form an aerosol with no need for electrical power.
  • Concentric type pneumatic production of aerosols may allow operation at a low liquid flow rate (approximately 1-100 μL/min) and low gas flow rate (approximately 0.15 L/min) with good aerosol formation efficiency. The intensity of the fog may be useful as an artificial cigarette and/or as an inhaler or delivery of medicaments.
  • Crossflow type pneumatic production of aerosols may allow water to emerge from a top of a V-type slot having a small hole. The emerging water may form a thin water film. Gas may be directed through the hole, rupturing the water film and producing an aerosol. To enhance mist production and reduce water consumption, artificial cigarettes and/or inhalers may include two parallel grids spaced approximately 2 mm apart. A first grid may be wet by the water, which is blown off the grid. The second grid may be used for pulse dampening and further breakup of the water droplets. A notch around a perimeter of a first grid may transfer a consistent liquid film onto the surface of the first grid. A gas nozzle behind the first grid may deliver gas to the first grid, which produces aerosol upon contact with the liquid. Impaction of the aerosol on a second grid may further fragment the aerosol, generating smaller and more uniform droplets with higher efficiency. A grid-based pneumatic production may offer improved aerosol production stability.
  • Alternative embodiments of the present invention may be based around three basic types of porous glass frit: (1) a flat plate, (2) a cylindrical frit pressurized externally, and (3) a thimble-shaped frit pressurized internally. For a flat plate device, air may be directed from the back section of the frit with water introduced on a front side of the disk to create an aerosol. In a cylindrical glass frit device, water may be directed onto the inside surface of a frit cylinder while air may be applied externally on the fritted cylinder. In a thimble-shaped frit device, water may be applied onto an outside surface of a thimble fit to form a thin liquid film with air introduced internally to pass through the pores of the fit and break a liquid film into the mist or fog. The flat fit may use a porous glass (with pore sizes of approximately 4 to 8 micrometer) for nebulizing the water. The analyte transport efficiency may approach 94% at 5 to 50 microliter/minute when the aerosol mean droplet diameter is approximately 0.1 μm. Depending on the frit pore size, air flow rate can be as low as 20 mL/min. A pore size of approximately 1-1.6 micrometers may be used for the thimble glass frit to increase the velocity of gas through the pores, thereby producing a more efficient nebulizer.
  • FIG. 7A shows an artificial cigarette 85 using a thimble frit 87. FIG. 7B shows a detail of an artificial cigarette 85 using a flat glass frit 91. Other types of frits are possible. The artificial cigarette 85 may be any shape or size, but is preferably shaped and sized to resemble a traditional cigarette. A housing 89 may enclose the artificial cigarette 85. The housing 89 may have a first end 93 proximate to a user's mouth and a second end 95 distal to a user's mouth. An aerosol passageway 97 may lead from the inside of the artificial cigarette 85 into a user's mouth. One or more air flow sensors 99 may surround the aerosol passageway 97 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 99.
  • A user may place the artificial cigarette 85 into the user's mouth and inhale through the artificial cigarette 85 in a manner similar to a traditional cigarette. Upon detection of inhalation, the one or more air flow sensors 99 may transmit a signal to a liquid valve 101 located within the housing 85. The liquid valve 101 may open to allow liquid from a storage tank 103 to pass from the storage tank 103, through a carrier tube 105, past the liquid valve 101 and onto the thimble frit 87 or flat glass frit 91. The storage tank 103 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention. A 2 mL storage tank 103 may be sufficiently small with a sufficient volume of liquid for applications of the artificial cigarette 85. The liquid may be water, a water-based solution, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • The detection of inhalation by the one or more air flow sensors 99 may also activate a compressed air supply 109 via a compressed air valve 113. Different air flow sensors 99 may control the operation of the liquid valve 101 and the compressed air valve 113. The compressed air supply 109 is preferably a canister-type device with a nozzle 111 extending from an end of the compressed air supply 109. The nozzle 111 of the compressed air supply 109 may be connected to the thimble frit 87 or the flat glass frit 91 by a compressed air passageway 115. Upon detection of inhalation, the compressed air valve 113 may be released, allowing compressed air to pass from the compressed air supply 109, through the nozzle, through a connector for compressed air 117, through the compressed air valve 113, through the compressed air passageway 115 and onto the thimble frit 87 or the flat glass frit 91. The connector for compressed air 117 may connect the nozzle 111 to the compressed air valve 113. The thimble frit 87 or the flat glass frit 91 may generate fog through pneumatic production.
  • The thimble frit 87 or the flat glass frit 91 may be located within a fog generation chamber 119. Liquid from the storage tank 103 may contact the thimble frit 87 or the flat glass frit 91. The compressed air supply 109 creates air pressure through the thimble frit 87 or the flat glass frit 91 as described above, creating an aerosol of the liquid within the fog generation chamber 119. As air is drawn into a user's mouth, a vacuum is created within the artificial cigarette 85. Air and the created aerosol are drawn out of the fog generation chamber 119 and towards the user's mouth. A baffle 121 at the exit of the fog generation chamber 119 prevents larger droplets of liquid from exiting the fog generation chamber 119 and entering the user's mouth. Any excess liquid remaining in the fog generation chamber 119 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 103. Smaller aerosol droplets pass the baffle 121, a fog chamber valve 123, and the aerosol passageway 97 before entering the user's mouth. The cessation of inhalation may be detected by the one or more airflow sensors 99 and signals are sent to close the liquid valve 101 and turn off the compressed air source 109. The passage of the aerosol droplets into the user's mouth completes the inhalation stage of the operation of the artificial cigarette 85. During inhalation, one or more flap valves 125 remain closed. The flap valves 125 are held closed by the negative pressure of the inhalation.
  • A user may then exhale through the artificial cigarette 85. If a user exhales through the artificial cigarette 85, some of the aerosol that entered the user's mouth may pass back through the artificial cigarette 85. The one or more air flow sensors 99 may detect the exhalation. The air pressure of the exhalation may close the fog chamber valve 123 to prevent the exhaled air from entering the fog generation chamber 119. The one or more flap valves 125 may open to allow exhaled air to pass through one or more aerosol exit passages 127 and out of the artificial cigarette 85 through one or more aerosol exits 129. The one or more flap valves are preferably located proximate to the aerosol passageway 97. A second set of one or more flap valves 131 may be located proximate to the one or more aerosol exits 129.
  • The inhalation and exhalation process may be repeated until the storage tank 103 no longer contains any liquid. Embodiments permitting recharging of the storage tanks are also contemplated. The artificial cigarette 85 may operate through inhalation and puffing, without any additional input by the user.
  • FIG. 8 shows an inhaler 133 using a thimble frit 134. Other types of frits are possible. The inhaler 133 may be any shape or size, but is preferably shaped and sized for portability and to resemble a traditional inhaler. A housing 135 may enclose the inhaler 133. The housing 135 may have a first end 137 proximate to a user's mouth and a second end 139 distal to a user's mouth. An aerosol passageway 139 may lead from the inside of the inhaler 133 into a user's mouth. A mouth piece 141 may facilitate use of the inhaler 133 and direction of the aerosols into the user's mouth. One or more air flow sensors 143 may surround the aerosol passageway 139 or may be found in a location suitable to determine the presence of airflow into and out of a user's mouth. Fog may be generated in response to the movement of air past the one or more air flow sensors 143.
  • A user may place the mouthpiece 141 into or against the user's mouth and in a manner similar to traditional inhalers. Upon detection of inhalation, the one or more air flow sensors 143 may transmit a signal to a liquid valve 145 located within the housing 135. The liquid valve 145 may open to allow liquid from a storage tank 147 to pass from the storage tank 147, through a liquid carrier tube 149, past the liquid valve 145 and onto the thimble frit 134. The storage tank 147 is preferably a 2 mL storage tank, but may be other sizes to accommodate different uses of the invention. A 2 mL storage tank 147 may be sufficiently small with a sufficient volume of liquid for applications of the inhaler 133. The liquid may be water, a water-based solution, asthma medication, other pharmaceuticals, or another chemical that produces sufficient aerosol fog per volume of liquid.
  • The detection of inhalation by the one or more air flow sensors 143 may also activate a compressed air supply 153. Different air flow sensors 143 may control the operation of the liquid valve 145 and the compressed air supply 153. The compressed air supply 153 is preferably a canister-type device with a nozzle 151 extending from an end of the compressed air supply 153. The nozzle 151 of the compressed air supply 153 may be connected to the thimble frit 134 by a compressed air passageway 155. Upon detection of inhalation, a compressed air valve 154 may be released, allowing compressed air to pass from the compressed air supply 153, through the nozzle 151, through a connector for compressed air 157, through the compressed air valve 153, through the compressed air passageway 155 and onto the thimble frit 134. The connector for compressed air 157 may connect the nozzle 151 to the compressed air valve 154. The thimble frit 134 may generate fog through pneumatic production.
  • The thimble fit 134 may be located within a fog generation chamber 159. Liquid from the storage tank 147 may contact the thimble frit 134. The compressed air supply 153 creates air pressure through the thimble frit 134 as described above, creating an aerosol of the liquid within the fog generation chamber 159. As air is drawn into a user's mouth, a vacuum is created within the inhaler 133. Air and the created aerosol are drawn out of the fog generation chamber 159 and towards the user's mouth. A baffle 161 at the exit of the fog generation chamber 159 prevents larger droplets of liquid from exiting the fog generation chamber 159 and entering the user's mouth. Any excess liquid remaining in the fog generation chamber 159 may be directed to a second container (not shown) for subsequent use through a similar scheme or may be recycled to the storage tank 103. Smaller aerosol droplets pass the baffle 161, a fog chamber valve 163, and the aerosol passageway 139 before entering the user's mouth. The passage of the aerosol droplets into the user's mouth completes the delivery phase of the inhaler 133. The cessation of inhalation may be detected by the one or more airflow sensors 143 and signals are sent to close the liquid valve 145 and turn off the compressed air source 153.
  • The inhalation process may be repeated until the storage tank 103 no longer contains any liquid. Embodiments permitting recharging of the storage tank could easily be engineered. The inhaler 133 may operate through inhalation without any additional input by the user.
  • The artificial cigarette and inhaler devices of the present invention may provide for inhalation and/or exhalation of substances other than liquid aerosol. Additional substances may be contained within the liquid, such as fragrances, nicotine, pharmaceuticals, etc. The additional substances may enhance the use of the artificial cigarette or inhaler and provide medical treatment of assistance in the cessation of smoking.
  • Alternative fog generations schemes are contemplated for embodiments of the present invention. An alternative artificial cigarette or inhaler may be based on piezoelectric ink-jet nozzles for dispensing and vaporizing precisely known amounts of water solution as droplets. Yet another artificial cigarette or inhaler may be based on a thermospray through introduction of water into a heated capillary. In a thermospray device liquid may begin to boil near the outlet of the capillary and may be converted to an aerosol or a mist by the expanding solution vapor. The artificial cigarette or inhaler may offer aerosols with fine droplets. Furthermore, electrical devices provide a white cloud or fog and are generally powered, for example, by a small, disposable battery.
  • Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.

Claims (20)

1. A nebulizer apparatus comprising:
a housing,
an air passage into the housing,
a fog generator chamber within the housing connected to the air passage,
a liquid source connected to the fog generating chamber, and
a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol.
2. The apparatus of claim 1, wherein the fog generator is an ultrasonic nebulizer.
3. The apparatus of claim 1, wherein the fog generator is a pneumatic nebulizer.
4. The apparatus of claim 1, further comprising one or more air flow sensors for sensing movement of air through the air passage.
5. The apparatus of claim 4, further comprising a liquid valve disposed between the liquid source and the fog generating chamber controlled by the one or more air flow sensors.
6. The apparatus of claim 4, further comprising a compressed air supply for creating a pressure differential across the fog generator, the compressed air supply controlled by the one or more air flow sensors.
7. The apparatus of claim 1, further comprising a mouthpiece.
8. The apparatus of claim 1, further comprising a baffle for preventing large aerosol droplets from exiting the fog generating chamber.
9. The apparatus of claim 1, further comprising a fog chamber valve for closing the fog generating chamber during exhalation into the nebulizer apparatus.
10. The apparatus of claim 1, further comprising one or more aerosol exits connected to the air passage for directing exhaled air out of the nebulizer apparatus.
11. The apparatus of claim 10, further comprising one or more valves for closing the one or more aerosol exits during inhalation and opening the one or more aerosol exits during exhalation.
12. The apparatus of claim 1, wherein the liquid comprises a pharmacological active agent.
13. A nebulizer method comprising:
providing a nebulizer apparatus comprising a housing, an air passage into the housing, a fog generator chamber within the housing connected to the air passage, a liquid source connected to the fog generating chamber, and a fog generator within the fog generating chamber for receiving liquid from the liquid source and creating an aerosol,
fluidly contacting the air passage with a user's mouth,
inhaling through the nebulizer apparatus, and
wherein the inhaling activates the fog generator.
14. The method of claim 13, wherein the fog generator is an ultrasonic nebulizer.
15. The method of claim 13, wherein the fog generator is a pneumatic nebulizer.
16. The method of claim 13, further comprising sensing movement of air through the air passage with one or more air flow sensors.
17. The method of claim 13, wherein the nebulizer apparatus further comprises a mouthpiece.
18. The method of claim 13, further comprising preventing large aerosol droplets from exiting the fog generating chamber with a baffle.
19. The method of claim 13, further comprising exhaling at least partially through the nebulizer apparatus.
20. The method of claim 13, wherein the liquid comprises a pharmacological active agent.
US13/358,826 2007-03-22 2012-01-26 Artificial smoke cigarette Abandoned US20120118301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/358,826 US20120118301A1 (en) 2007-03-22 2012-01-26 Artificial smoke cigarette

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/723,771 US7845359B2 (en) 2007-03-22 2007-03-22 Artificial smoke cigarette
US12/916,190 US8127772B2 (en) 2007-03-22 2010-10-29 Nebulizer method
US13/358,826 US20120118301A1 (en) 2007-03-22 2012-01-26 Artificial smoke cigarette

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/916,190 Continuation US8127772B2 (en) 2007-03-22 2010-10-29 Nebulizer method

Publications (1)

Publication Number Publication Date
US20120118301A1 true US20120118301A1 (en) 2012-05-17

Family

ID=39773480

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/723,771 Expired - Fee Related US7845359B2 (en) 2007-03-22 2007-03-22 Artificial smoke cigarette
US12/916,190 Expired - Fee Related US8127772B2 (en) 2007-03-22 2010-10-29 Nebulizer method
US13/358,826 Abandoned US20120118301A1 (en) 2007-03-22 2012-01-26 Artificial smoke cigarette

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/723,771 Expired - Fee Related US7845359B2 (en) 2007-03-22 2007-03-22 Artificial smoke cigarette
US12/916,190 Expired - Fee Related US8127772B2 (en) 2007-03-22 2010-10-29 Nebulizer method

Country Status (1)

Country Link
US (3) US7845359B2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD691765S1 (en) 2013-01-14 2013-10-15 Altria Client Services Inc. Electronic smoking article
USD691766S1 (en) 2013-01-14 2013-10-15 Altria Client Services Inc. Mouthpiece of a smoking article
USD695449S1 (en) 2013-01-14 2013-12-10 Altria Client Services Inc. Electronic smoking article
US20150082859A1 (en) * 2013-09-25 2015-03-26 Zhiyong Xiang Multi-sensor control circuit and method for using the same
US8997754B2 (en) 2012-01-31 2015-04-07 Altria Client Services Inc. Electronic cigarette
US9095175B2 (en) 2010-05-15 2015-08-04 R. J. Reynolds Tobacco Company Data logging personal vaporizing inhaler
WO2015184250A1 (en) * 2014-05-30 2015-12-03 Carolina Vapordom, LLC E-liquid vaporizing apparatus
CN105266206A (en) * 2015-10-23 2016-01-27 上海应用技术学院 Ultrasonic atomization electronic cigarette
US9259035B2 (en) 2010-05-15 2016-02-16 R. J. Reynolds Tobacco Company Solderless personal vaporizing inhaler
US9289014B2 (en) 2012-02-22 2016-03-22 Altria Client Services Llc Electronic smoking article and improved heater element
US9352288B2 (en) 2010-05-15 2016-05-31 Rai Strategic Holdings, Inc. Vaporizer assembly and cartridge
WO2016187115A1 (en) * 2015-05-15 2016-11-24 John Cameron Hybrid vapor delivery system utilizing nebulized and non-nebulized elements
US9532597B2 (en) 2012-02-22 2017-01-03 Altria Client Services Llc Electronic smoking article
US9743691B2 (en) 2010-05-15 2017-08-29 Rai Strategic Holdings, Inc. Vaporizer configuration, control, and reporting
WO2017161715A1 (en) * 2016-03-21 2017-09-28 湖南中烟工业有限责任公司 Ultrasonic atomizer and electronic cigarette
US9820508B2 (en) 2014-03-24 2017-11-21 Scott M. Arnel Wearable electronic simulated smoking device
US9820510B2 (en) 2014-01-03 2017-11-21 Robert P Thomas, Jr. Vapor delivery device
CN108061673A (en) * 2016-11-07 2018-05-22 湖南中烟工业有限责任公司 A kind of electronic cigarette atomizing aerosol sampling device and test device and test method
US9999250B2 (en) 2010-05-15 2018-06-19 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10092713B2 (en) 2010-05-15 2018-10-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler with translucent window
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10111467B1 (en) 2014-03-24 2018-10-30 Scott M. Arnel Wearable electronic simulated smoking device with interchangeable vaporization cartridges
US10117463B2 (en) 2014-01-03 2018-11-06 Robert P Thomas, Jr. Vapor delivery device
USD834743S1 (en) 2013-10-14 2018-11-27 Altria Client Services Llc Smoking article
US10136672B2 (en) 2010-05-15 2018-11-27 Rai Strategic Holdings, Inc. Solderless directly written heating elements
US10159278B2 (en) 2010-05-15 2018-12-25 Rai Strategic Holdings, Inc. Assembly directed airflow
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD841231S1 (en) 2013-01-14 2019-02-19 Altria Client Services, Llc Electronic vaping device mouthpiece
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD849993S1 (en) 2013-01-14 2019-05-28 Altria Client Services Electronic smoking article
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
US10357060B2 (en) 2016-03-11 2019-07-23 Altria Client Services Llc E-vaping device cartridge holder
US10368580B2 (en) 2016-03-08 2019-08-06 Altria Client Services Llc Combined cartridge for electronic vaping device
US10368581B2 (en) 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10420374B2 (en) 2009-09-18 2019-09-24 Altria Client Services Llc Electronic smoke apparatus
US10433580B2 (en) 2016-03-03 2019-10-08 Altria Client Services Llc Methods to add menthol, botanic materials, and/or non-botanic materials to a cartridge, and/or an electronic vaping device including the cartridge
US10455863B2 (en) 2016-03-03 2019-10-29 Altria Client Services Llc Cartridge for electronic vaping device
IT201800006391A1 (en) * 2018-06-18 2019-12-18 SYSTEM FOR MOLECULAR VAPORIZATION OF A LIQUID SUBSTANCE
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
US10653186B2 (en) 2013-11-12 2020-05-19 VMR Products, LLC Vaporizer, charger and methods of use
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
WO2021027707A1 (en) * 2019-08-09 2021-02-18 湖南中烟工业有限责任公司 Electronic cigarette atomizing core, assembling method thereof and atomizer
US11038360B2 (en) 2016-05-18 2021-06-15 Gsw Creative Corporation Vaporization device, method of using the device, a charging case, a kit, and a vibration assembly
EP3915408A1 (en) * 2020-05-27 2021-12-01 Joozef Device for inhaling a substance
WO2021239868A1 (en) 2020-05-27 2021-12-02 Joozef Device for inhaling a substance
KR20220002021A (en) * 2020-06-30 2022-01-06 주식회사 케이티앤지 Aerosol generating device
EP3970541A1 (en) * 2016-07-08 2022-03-23 RAI Strategic Holdings, Inc. Aerosol delivery device with condensing and non-condensing vaporization
TWI767324B (en) * 2020-09-14 2022-06-11 美商神韻藝術品公司 Dry ice machine for creating fog effect
US20220295881A1 (en) * 2020-04-14 2022-09-22 Kt&G Corporation Cartridge and aerosol generating device comprising the same

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381083C (en) 2003-04-29 2008-04-16 韩力 Electronic nonflammable spraying cigarette
CN2719043Y (en) 2004-04-14 2005-08-24 韩力 Atomized electronic cigarette
CN201067079Y (en) 2006-05-16 2008-06-04 韩力 Simulation aerosol inhaler
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
WO2009079078A1 (en) 2007-12-14 2009-06-25 Labogroup S.A.S. Delivering aerosolizable food products
EP2110034A1 (en) 2008-04-17 2009-10-21 Philip Morris Products S.A. An electrically heated smoking system
EP2113178A1 (en) * 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
GB0823491D0 (en) * 2008-12-23 2009-01-28 Kind Consumer Ltd A simulated cigarette device
US20100200008A1 (en) * 2009-02-09 2010-08-12 Eli Taieb E-Cigarette With Vitamin Infusion
CN201379072Y (en) 2009-02-11 2010-01-13 韩力 Improved atomizing electronic cigarette
EP2253233A1 (en) 2009-05-21 2010-11-24 Philip Morris Products S.A. An electrically heated smoking system
US8495998B2 (en) 2009-06-17 2013-07-30 British American Tobacco (Investments) Limited Inhaler
US8897628B2 (en) 2009-07-27 2014-11-25 Gregory D. Conley Electronic vaporizer
EP2319334A1 (en) * 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
PT2498624T (en) * 2009-11-10 2017-03-31 Philip Morris Products Sa Hydrosol based flavor delivery device
EP2327318A1 (en) 2009-11-27 2011-06-01 Philip Morris Products S.A. An electrically heated smoking system with internal or external heater
US8422869B2 (en) * 2009-12-16 2013-04-16 Disney Enterprises, Inc. Handheld low-voltage fog effects system
US11344683B2 (en) 2010-05-15 2022-05-31 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US8781307B2 (en) * 2010-08-16 2014-07-15 Michael Buzzetti Variable voltage portable vaporizer
HUE045557T2 (en) 2010-08-24 2020-01-28 Jt Int Sa Inhalation device including substance usage controls
GB201018796D0 (en) * 2010-11-08 2010-12-22 British American Tobacco Co Aerosol generator
EP2460422A1 (en) 2010-12-03 2012-06-06 Philip Morris Products S.A. An aerosol generating system with provention of condensate leakage
US8757169B2 (en) 2010-12-29 2014-06-24 David Gysland Electronic cigarette refilling apparatus
US9149586B2 (en) * 2011-02-07 2015-10-06 Seibo Ping-Cheng SHEN Herbal vaporization apparatus and method
CN103492010B (en) * 2011-02-25 2016-06-22 皇家飞利浦电子股份有限公司 Aerosol for atomized liquid generates equipment and wants the temperature-controlled process of atomized liquid
RU2612506C2 (en) * 2011-03-03 2017-03-09 Импел Ньюрофарма Инк. Nasal drug delivery device
US9399110B2 (en) 2011-03-09 2016-07-26 Chong Corporation Medicant delivery system
US8903228B2 (en) 2011-03-09 2014-12-02 Chong Corporation Vapor delivery devices and methods
EP2683431B1 (en) 2011-03-09 2017-01-18 Chong Corporation Medicant delivery system
CN105476069B (en) * 2011-08-04 2019-06-07 如烟投资(控股)有限公司 Capacitance sensor, using the device and its application method of capacitance sensor
US9078473B2 (en) 2011-08-09 2015-07-14 R.J. Reynolds Tobacco Company Smoking articles and use thereof for yielding inhalation materials
US11867342B2 (en) * 2011-08-11 2024-01-09 Aculon Inc. Fluidic channels and methods of altering the surface energy of components thereof
MX367721B (en) 2011-12-30 2019-09-03 Philip Morris Products Sa Aerosol generating device with air flow detection.
GB201215282D0 (en) * 2012-08-28 2012-10-10 Kind Consumer Ltd An inhaler
CA2886292A1 (en) * 2012-09-28 2014-04-03 Kimree Hi-Tech Inc. Electronic cigarette and electronic cigarette device thereof
US10117460B2 (en) 2012-10-08 2018-11-06 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US9210738B2 (en) 2012-12-07 2015-12-08 R.J. Reynolds Tobacco Company Apparatus and method for winding a substantially continuous heating element about a substantially continuous wick
AU2013201383B2 (en) * 2013-03-01 2015-07-02 Royal Melbourne Institute Of Technology Atomisation apparatus using surface acoustic wave generaton
US10031183B2 (en) 2013-03-07 2018-07-24 Rai Strategic Holdings, Inc. Spent cartridge detection method and system for an electronic smoking article
US9277770B2 (en) 2013-03-14 2016-03-08 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method
US9918495B2 (en) 2014-02-28 2018-03-20 Rai Strategic Holdings, Inc. Atomizer for an aerosol delivery device and related input, aerosol production assembly, cartridge, and method
US9423152B2 (en) 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US9877508B2 (en) * 2013-03-15 2018-01-30 Altria Client Services Llc Electronic cigarette
US9609893B2 (en) 2013-03-15 2017-04-04 Rai Strategic Holdings, Inc. Cartridge and control body of an aerosol delivery device including anti-rotation mechanism and related method
US9491974B2 (en) 2013-03-15 2016-11-15 Rai Strategic Holdings, Inc. Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers
US9220302B2 (en) 2013-03-15 2015-12-29 R.J. Reynolds Tobacco Company Cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US20140355969A1 (en) * 2013-05-28 2014-12-04 Sis Resources, Ltd. One-way valve for atomizer section in electronic cigarettes
US11229239B2 (en) 2013-07-19 2022-01-25 Rai Strategic Holdings, Inc. Electronic smoking article with haptic feedback
WO2015013329A1 (en) 2013-07-25 2015-01-29 Altria Client Services Inc. Electronic smoking article
CN105592731A (en) * 2013-09-25 2016-05-18 吉瑞高新科技股份有限公司 Atomization assembly and electronic cigarette
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
US10617148B2 (en) 2014-11-03 2020-04-14 Philter Labs Incorporated E-cigarette with valve allowing exhale filter
US9402422B2 (en) * 2013-11-01 2016-08-02 Yuval Shenkal Hybrid e-cigarette/vaporizer with exhale filter capability
US9839237B2 (en) 2013-11-22 2017-12-12 Rai Strategic Holdings, Inc. Reservoir housing for an electronic smoking article
US9974334B2 (en) 2014-01-17 2018-05-22 Rai Strategic Holdings, Inc. Electronic smoking article with improved storage of aerosol precursor compositions
US10575558B2 (en) 2014-02-03 2020-03-03 Rai Strategic Holdings, Inc. Aerosol delivery device comprising multiple outer bodies and related assembly method
US9451791B2 (en) 2014-02-05 2016-09-27 Rai Strategic Holdings, Inc. Aerosol delivery device with an illuminated outer surface and related method
US20150224268A1 (en) 2014-02-07 2015-08-13 R.J. Reynolds Tobacco Company Charging Accessory Device for an Aerosol Delivery Device and Related System, Method, Apparatus, and Computer Program Product for Providing Interactive Services for Aerosol Delivery Devices
US9833019B2 (en) 2014-02-13 2017-12-05 Rai Strategic Holdings, Inc. Method for assembling a cartridge for a smoking article
US9907340B2 (en) 2014-02-19 2018-03-06 Huizhou Kimree Technology Co., Ltd. Shenzhen Branch Electronic cigarette and method for assembling same
GB2542926A (en) 2014-02-28 2017-04-05 Beyond Twenty Ltd Electronic vaporiser system
US9839238B2 (en) 2014-02-28 2017-12-12 Rai Strategic Holdings, Inc. Control body for an electronic smoking article
US10136674B2 (en) 2014-02-28 2018-11-27 Beyond Twenty Ltd. Electronic vaporiser system
GB201413018D0 (en) 2014-02-28 2014-09-03 Beyond Twenty Ltd Beyond 1A
US11085550B2 (en) 2014-02-28 2021-08-10 Ayr Ltd. Electronic vaporiser system
US10202272B2 (en) 2014-02-28 2019-02-12 Beyond Twenty Ltd. Electronic vaporiser system
US10588176B2 (en) 2014-02-28 2020-03-10 Ayr Ltd. Electronic vaporiser system
US10091839B2 (en) 2014-02-28 2018-10-02 Beyond Twenty Ltd. Electronic vaporiser system
US9597466B2 (en) 2014-03-12 2017-03-21 R. J. Reynolds Tobacco Company Aerosol delivery system and related method, apparatus, and computer program product for providing control information to an aerosol delivery device via a cartridge
US11696604B2 (en) 2014-03-13 2023-07-11 Rai Strategic Holdings, Inc. Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
US9877509B2 (en) 2014-03-31 2018-01-30 Westfield Limited (Ltd.) Micro-vaporizer heating element and method of vaporization
US9642397B2 (en) 2014-03-31 2017-05-09 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
US9877510B2 (en) 2014-04-04 2018-01-30 Rai Strategic Holdings, Inc. Sensor for an aerosol delivery device
WO2015161407A1 (en) * 2014-04-21 2015-10-29 吉瑞高新科技股份有限公司 Atomiser and electronic cigarette
EP2941970B1 (en) * 2014-04-28 2021-03-10 Shenzhen First Union Technology Co., Ltd. Aerosol inhaling device
US9924741B2 (en) 2014-05-05 2018-03-27 Rai Strategic Holdings, Inc. Method of preparing an aerosol delivery device
WO2015177177A1 (en) 2014-05-21 2015-11-26 Mcneil Ab A liquid formulation comprising nicotine for aerosol administration
US9955726B2 (en) 2014-05-23 2018-05-01 Rai Strategic Holdings, Inc. Sealed cartridge for an aerosol delivery device and related assembly method
CN107072299B (en) * 2014-06-05 2020-01-10 吉瑞高新科技股份有限公司 Electronic cigarette and electronic cigarette assembling method
US10888119B2 (en) 2014-07-10 2021-01-12 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for controlling operation of a device based on a read request
US10058123B2 (en) 2014-07-11 2018-08-28 R. J. Reynolds Tobacco Company Heater for an aerosol delivery device and methods of formation thereof
JP6660370B2 (en) * 2014-07-11 2020-03-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol-forming cartridge with liquid nicotine source
US9913493B2 (en) 2014-08-21 2018-03-13 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US10765144B2 (en) 2014-08-21 2020-09-08 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US9609895B2 (en) 2014-08-21 2017-04-04 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for testing components of an aerosol delivery device
CN104223369B (en) * 2014-09-30 2017-02-15 四川中烟工业有限责任公司 Ultrasonic atomization type electronic cigarette aspirator
US11051554B2 (en) 2014-11-12 2021-07-06 Rai Strategic Holdings, Inc. MEMS-based sensor for an aerosol delivery device
US10500600B2 (en) 2014-12-09 2019-12-10 Rai Strategic Holdings, Inc. Gesture recognition user interface for an aerosol delivery device
US10321711B2 (en) 2015-01-29 2019-06-18 Rai Strategic Holdings, Inc. Proximity detection for an aerosol delivery device
US10027016B2 (en) 2015-03-04 2018-07-17 Rai Strategic Holdings Inc. Antenna for an aerosol delivery device
US9980516B2 (en) 2015-03-09 2018-05-29 Rai Strategic Holdings, Inc. Aerosol delivery device including a wave guide and related method
US10172388B2 (en) 2015-03-10 2019-01-08 Rai Strategic Holdings, Inc. Aerosol delivery device with microfluidic delivery component
US9989552B2 (en) 2015-03-25 2018-06-05 Arcus Hunting, Llc Air movement visualization device
US9585981B2 (en) 2015-04-23 2017-03-07 Fourth Arrow, LLC Device for creating and distributing vaporized scent
US9894893B2 (en) * 2015-04-23 2018-02-20 Wyndscent, Llc Breath-powered vapor distribution device
MY190560A (en) 2015-05-06 2022-04-27 Altria Client Services Llc Non-combustible smoking device and elements thereof
US9877505B2 (en) * 2015-05-13 2018-01-30 Lunatech, Llc Integration of vapor devices with smart devices
US11000069B2 (en) 2015-05-15 2021-05-11 Rai Strategic Holdings, Inc. Aerosol delivery device and methods of formation thereof
US10238145B2 (en) 2015-05-19 2019-03-26 Rai Strategic Holdings, Inc. Assembly substation for assembling a cartridge for a smoking article
US11504489B2 (en) 2015-07-17 2022-11-22 Rai Strategic Holdings, Inc. Contained liquid system for refilling aerosol delivery devices
US10966460B2 (en) 2015-07-17 2021-04-06 Rai Strategic Holdings, Inc. Load-based detection of an aerosol delivery device in an assembled arrangement
US10206429B2 (en) 2015-07-24 2019-02-19 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US10015987B2 (en) 2015-07-24 2018-07-10 Rai Strategic Holdings Inc. Trigger-based wireless broadcasting for aerosol delivery devices
US11033054B2 (en) 2015-07-24 2021-06-15 Rai Strategic Holdings, Inc. Radio-frequency identification (RFID) authentication system for aerosol delivery devices
US11134544B2 (en) 2015-07-24 2021-09-28 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
PL3344315T3 (en) 2015-09-01 2023-10-02 Ayr Ltd Electronic vaporiser system
US10034494B2 (en) 2015-09-15 2018-07-31 Rai Strategic Holdings, Inc. Reservoir for aerosol delivery devices
US10058125B2 (en) 2015-10-13 2018-08-28 Rai Strategic Holdings, Inc. Method for assembling an aerosol delivery device
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
US10582726B2 (en) 2015-10-21 2020-03-10 Rai Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US20170112194A1 (en) 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10201187B2 (en) 2015-11-02 2019-02-12 Rai Strategic Holdings, Inc. User interface for an aerosol delivery device
US10820630B2 (en) 2015-11-06 2020-11-03 Rai Strategic Holdings, Inc. Aerosol delivery device including a wirelessly-heated atomizer and related method
US10440992B2 (en) 2015-12-07 2019-10-15 Rai Strategic Holdings, Inc. Motion sensing for an aerosol delivery device
US9955733B2 (en) 2015-12-07 2018-05-01 Rai Strategic Holdings, Inc. Camera for an aerosol delivery device
US11291252B2 (en) 2015-12-18 2022-04-05 Rai Strategic Holdings, Inc. Proximity sensing for an aerosol delivery device
US10092036B2 (en) 2015-12-28 2018-10-09 Rai Strategic Holdings, Inc. Aerosol delivery device including a housing and a coupler
US10194694B2 (en) 2016-01-05 2019-02-05 Rai Strategic Holdings, Inc. Aerosol delivery device with improved fluid transport
US10051891B2 (en) 2016-01-05 2018-08-21 Rai Strategic Holdings, Inc. Capacitive sensing input device for an aerosol delivery device
US9867397B2 (en) 2016-01-11 2018-01-16 Patrick Beymer Nicotine delivery system
US10258086B2 (en) 2016-01-12 2019-04-16 Rai Strategic Holdings, Inc. Hall effect current sensor for an aerosol delivery device
US10104912B2 (en) 2016-01-20 2018-10-23 Rai Strategic Holdings, Inc. Control for an induction-based aerosol delivery device
US10015989B2 (en) 2016-01-27 2018-07-10 Rai Strategic Holdings, Inc. One-way valve for refilling an aerosol delivery device
US11412781B2 (en) 2016-02-12 2022-08-16 Rai Strategic Holdings, Inc. Adapters for refilling an aerosol delivery device
US9936733B2 (en) 2016-03-09 2018-04-10 Rai Strategic Holdings, Inc. Accessory configured to charge an aerosol delivery device and related method
US10334880B2 (en) 2016-03-25 2019-07-02 Rai Strategic Holdings, Inc. Aerosol delivery device including connector comprising extension and receptacle
US11207478B2 (en) 2016-03-25 2021-12-28 Rai Strategic Holdings, Inc. Aerosol production assembly including surface with micro-pattern
US10440996B2 (en) 2016-03-31 2019-10-15 Altria Client Services Llc Atomizing assembly for use in an aerosol-generating system
KR102435122B1 (en) * 2016-03-31 2022-08-23 필립모리스 프로덕츠 에스.에이. A vaporization assembly for an aerosol-generating system comprising a seat heating element and a liquid delivery device
MX2018011464A (en) * 2016-03-31 2019-01-10 Philip Morris Products Sa Atomizing assembly for use in an aerosol-generating system.
US10244795B2 (en) 2016-03-31 2019-04-02 Altria Client Services Llc Vaporizing assembly comprising sheet heating element and liquid delivery device for an aerosol generating system
US10333339B2 (en) 2016-04-12 2019-06-25 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10945462B2 (en) 2016-04-12 2021-03-16 Rai Strategic Holdings, Inc. Detachable power source for an aerosol delivery device
US10028534B2 (en) 2016-04-20 2018-07-24 Rai Strategic Holdings, Inc. Aerosol delivery device, and associated apparatus and method of formation thereof
US10405579B2 (en) 2016-04-29 2019-09-10 Rai Strategic Holdings, Inc. Methods for assembling a cartridge for an aerosol delivery device, and associated systems and apparatuses
US10232283B2 (en) * 2016-05-09 2019-03-19 Ying-Chieh Liao Smoke generator
JP6646167B2 (en) * 2016-06-15 2020-02-14 チャイナ タバコ フーナン インダストリアル カンパニー リミテッド Ultrasonic electronic cigarette atomizer and electronic cigarette
TWM528211U (en) * 2016-06-17 2016-09-11 Ming-Zhen Zhang Instantaneous heater for fog machine
US10959458B2 (en) 2016-06-20 2021-03-30 Rai Strategic Holdings, Inc. Aerosol delivery device including an electrical generator assembly
US10085485B2 (en) 2016-07-06 2018-10-02 Rai Strategic Holdings, Inc. Aerosol delivery device with a reservoir housing and a vaporizer assembly
US10231485B2 (en) 2016-07-08 2019-03-19 Rai Strategic Holdings, Inc. Radio frequency to direct current converter for an aerosol delivery device
US10405581B2 (en) 2016-07-08 2019-09-10 Rai Strategic Holdings, Inc. Gas sensing for an aerosol delivery device
CN105942585A (en) * 2016-07-19 2016-09-21 云南中烟工业有限责任公司 Electronic cigarette based on MEMS atomization chip
CN105962424A (en) * 2016-07-19 2016-09-28 云南中烟工业有限责任公司 MEMS atomization chip for electronic cigarette
US10617151B2 (en) 2016-07-21 2020-04-14 Rai Strategic Holdings, Inc. Aerosol delivery device with a liquid transport element comprising a porous monolith and related method
US10602775B2 (en) 2016-07-21 2020-03-31 Rai Strategic Holdings, Inc. Aerosol delivery device with a unitary reservoir and liquid transport element comprising a porous monolith and related method
EP3272236B1 (en) * 2016-07-22 2021-06-16 Fontem Holdings 1 B.V. Electronic smoking device
US11019847B2 (en) 2016-07-28 2021-06-01 Rai Strategic Holdings, Inc. Aerosol delivery devices including a selector and related methods
US10765146B2 (en) 2016-08-08 2020-09-08 Rai Strategic Holdings, Inc. Boost converter for an aerosol delivery device
US20180055090A1 (en) * 2016-08-31 2018-03-01 Altria Client Services Llc Methods and systems for cartridge identification
US11937647B2 (en) 2016-09-09 2024-03-26 Rai Strategic Holdings, Inc. Fluidic control for an aerosol delivery device
US10080387B2 (en) 2016-09-23 2018-09-25 Rai Strategic Holdings, Inc. Aerosol delivery device with replaceable wick and heater assembly
US10842193B2 (en) 2016-10-04 2020-11-24 Altria Client Services Llc Non-combustible smoking device and elements thereof
US10477896B2 (en) 2016-10-12 2019-11-19 Rai Strategic Holdings, Inc. Photodetector for measuring aerosol precursor composition in an aerosol delivery device
US10524508B2 (en) 2016-11-15 2020-01-07 Rai Strategic Holdings, Inc. Induction-based aerosol delivery device
US9864947B1 (en) 2016-11-15 2018-01-09 Rai Strategic Holdings, Inc. Near field communication for a tobacco-based article or package therefor
US10492530B2 (en) 2016-11-15 2019-12-03 Rai Strategic Holdings, Inc. Two-wire authentication system for an aerosol delivery device
US11103012B2 (en) 2016-11-17 2021-08-31 Rai Strategic Holdings, Inc. Satellite navigation for an aerosol delivery device
US10206431B2 (en) 2016-11-18 2019-02-19 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10653183B2 (en) 2016-11-18 2020-05-19 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US10524509B2 (en) 2016-11-18 2020-01-07 Rai Strategic Holdings, Inc. Pressure sensing for an aerosol delivery device
US10172392B2 (en) 2016-11-18 2019-01-08 Rai Strategic Holdings, Inc. Humidity sensing for an aerosol delivery device
US10537137B2 (en) 2016-11-22 2020-01-21 Rai Strategic Holdings, Inc. Rechargeable lithium-ion battery for an aerosol delivery device
US11013266B2 (en) 2016-12-09 2021-05-25 Rai Strategic Holdings, Inc. Aerosol delivery device sensory system including an infrared sensor and related method
US20180160727A1 (en) * 2016-12-12 2018-06-14 Rokin LLC Multi-pass cooling drip cap
US10433585B2 (en) 2016-12-28 2019-10-08 Altria Client Services Llc Non-combustible smoking systems, devices and elements thereof
CN110121275A (en) * 2016-12-30 2019-08-13 Jt国际公司 Electrically operated aerosol generates system
US10517326B2 (en) 2017-01-27 2019-12-31 Rai Strategic Holdings, Inc. Secondary battery for an aerosol delivery device
US10588344B2 (en) 2017-01-31 2020-03-17 Philter Labs, Inc. Low emissions electronic smoking device and emissions filtering device
US10470498B2 (en) 2017-01-31 2019-11-12 Philter Labs, Inc. Low emissions electronic smoking device
US10827783B2 (en) 2017-02-27 2020-11-10 Rai Strategic Holdings, Inc. Digital compass for an aerosol delivery device
EP3603426A4 (en) * 2017-03-30 2021-01-20 KT & G Coporation Aerosol generating apparatus and cradle capable of receiving same
US10314340B2 (en) 2017-04-21 2019-06-11 Rai Strategic Holdings, Inc. Refillable aerosol delivery device and related method
US11297876B2 (en) 2017-05-17 2022-04-12 Rai Strategic Holdings, Inc. Aerosol delivery device
US11589621B2 (en) 2017-05-23 2023-02-28 Rai Strategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US10517330B2 (en) 2017-05-23 2019-12-31 RAI Stategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
TWI644626B (en) 2017-06-14 2018-12-21 研能科技股份有限公司 Driving module of electronic cigarette
US10842197B2 (en) 2017-07-12 2020-11-24 Rai Strategic Holdings, Inc. Detachable container for aerosol delivery having pierceable membrane
US11337456B2 (en) 2017-07-17 2022-05-24 Rai Strategic Holdings, Inc. Video analytics camera system for an aerosol delivery device
US10349674B2 (en) 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
US20190054260A1 (en) * 2017-08-17 2019-02-21 Monzano Group LLC Nebulizer devices and methods
US11039645B2 (en) 2017-09-19 2021-06-22 Rai Strategic Holdings, Inc. Differential pressure sensor for an aerosol delivery device
US10505383B2 (en) 2017-09-19 2019-12-10 Rai Strategic Holdings, Inc. Intelligent charger for an aerosol delivery device
US10660370B2 (en) 2017-10-12 2020-05-26 Rai Strategic Holdings, Inc. Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
WO2019071568A1 (en) * 2017-10-13 2019-04-18 惠州市吉瑞科技有限公司深圳分公司 Tobacco-heating device and tobacco-heating type electronic cigarette
CA3020746C (en) 2017-10-13 2023-10-17 Wyndscent, Llc Electronic vapor dispenser for hunting
US10517332B2 (en) 2017-10-31 2019-12-31 Rai Strategic Holdings, Inc. Induction heated aerosol delivery device
JP7196172B2 (en) * 2017-11-30 2022-12-26 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム System for generating liquid aerosol
US10806181B2 (en) 2017-12-08 2020-10-20 Rai Strategic Holdings, Inc. Quasi-resonant flyback converter for an induction-based aerosol delivery device
US10555558B2 (en) 2017-12-29 2020-02-11 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
US11019850B2 (en) 2018-02-26 2021-06-01 Rai Strategic Holdings, Inc. Heat conducting substrate for electrically heated aerosol delivery device
CN108308728A (en) * 2018-05-04 2018-07-24 云南中烟工业有限责任公司 A kind of storage oil dripping type atomizer
WO2020088336A1 (en) * 2018-10-29 2020-05-07 湖南中烟工业有限责任公司 Ultrasonic atomization piece, atomizer, and electronic cigarette
JP6557393B1 (en) * 2018-10-31 2019-08-07 日本たばこ産業株式会社 Power supply unit for aerosol inhaler, its control method and control program
BE1026749B1 (en) * 2018-10-31 2020-06-04 Just A New Health Smoking device
US11464921B2 (en) 2018-11-05 2022-10-11 Juul Labs, Inc. Cartridges for vaporizer devices
JP7194265B2 (en) * 2019-04-09 2022-12-21 日本たばこ産業株式会社 Aerosol delivery device
US10653178B1 (en) 2019-04-18 2020-05-19 Realizer Technologies, LLC Method and apparatus for an aerosol generation device
US11839239B2 (en) 2020-08-12 2023-12-12 DES Products Ltd. Adjustable airflow cartridge for electronic vaporizer
EP4188489A1 (en) * 2020-09-02 2023-06-07 Aculon, Inc. Methods of altering the surface energy of components of a mesh nebulizer
DE102021202546A1 (en) * 2021-03-16 2022-09-22 Alveon GmbH inhaler
CN116998768A (en) * 2022-04-29 2023-11-07 海南摩尔兄弟科技有限公司 Electronic atomization device and liquid storage atomization assembly and nozzle thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945929A (en) * 1986-06-18 1990-08-07 British-American Tobacco Co., Ltd. Aerosol device simulating a smoking article
US4945928A (en) * 1986-03-17 1990-08-07 Rose Jed E Smoking of regenerated tobacco smoke
US20010023130A1 (en) * 1999-08-30 2001-09-20 Gilton Terry L. System and method for analyzing a semiconductor surface
US6443146B1 (en) * 1999-02-24 2002-09-03 Ponwell Enterprises Limited Piezo inhaler
US6601776B1 (en) * 1999-09-22 2003-08-05 Microcoating Technologies, Inc. Liquid atomization methods and devices
US20070283971A1 (en) * 2003-12-12 2007-12-13 Smookzz License B.V. Device and Method for Filtering Smoke

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US726037A (en) 1901-06-22 1903-04-21 Henry Ferre Tubular inhaler.
US2445476A (en) 1944-12-29 1948-07-20 Marvin L Folkman Cigarette article
US2764154A (en) 1953-01-27 1956-09-25 Murai Hirotada Oral inhaler
US3200819A (en) 1963-04-17 1965-08-17 Herbert A Gilbert Smokeless non-tobacco cigarette
US3365102A (en) 1965-12-10 1968-01-23 Willene M. Castleberry Means for holding, supporting and dispensing liquid comestibles
US3631856A (en) 1969-09-22 1972-01-04 Ruth E Taylor Substitute smoking article dispensing oxygen to provide a physiological lift
US3683936A (en) 1969-12-12 1972-08-15 H 2 O Filter Corp The Substitute for a smoking article such as a cigarette
US3789840A (en) 1971-07-27 1974-02-05 R Rosenblatt Device for assisting cigarette smokers to discontinue smoking
US4184496A (en) 1978-02-23 1980-01-22 Adair Virginia M Air moving simulated cigarette device
US4284089A (en) 1978-10-02 1981-08-18 Ray Jon P Simulated smoking device
US4393884A (en) 1981-09-25 1983-07-19 Jacobs Allen W Demand inhaler for oral administration of tobacco, tobacco-like, or other substances
US4429703A (en) 1982-02-22 1984-02-07 William Haber Cigarette substitute
US4813437A (en) 1984-01-09 1989-03-21 Ray J Philip Nicotine dispensing device and method for the manufacture thereof
US4920989A (en) 1985-04-25 1990-05-01 Regents Of The University Of California Method and apparatus for aiding in the reduction of incidence of tobacco smoking
US4953572A (en) 1985-04-25 1990-09-04 Rose Jed E Method and apparatus for aiding in the reduction of incidence of tobacco smoking
US4793366A (en) 1985-11-12 1988-12-27 Hill Ira D Nicotine dispensing device and methods of making the same
US4765347A (en) 1986-05-09 1988-08-23 R. J. Reynolds Tobacco Company Aerosol flavor delivery system
US4774971A (en) 1986-06-03 1988-10-04 Vieten Michael J Cigarette substitute
IL83826A (en) 1987-09-08 1991-03-10 Inventor S Funding Corp Ltd Plastic mouthpiece for simulated smoking
US4892109A (en) 1989-03-08 1990-01-09 Brown & Williamson Tobacco Corporation Simulated smoking article
US4995407A (en) 1989-07-25 1991-02-26 International Flavors & Fragrances, Inc. Non-combustible artificial cigarette
NO168921C (en) 1989-07-31 1992-04-22 Svein Knudsen SMOKE-FREE Cigarette replacement for use in smoking cessation OR FOR USE IN SMOKE-FREE ENVIRONMENTS
US5060671A (en) 1989-12-01 1991-10-29 Philip Morris Incorporated Flavor generating article
US5293883A (en) 1992-05-04 1994-03-15 Edwards Patrica T Non-combustible anti-smoking device with nicotine impregnated mouthpiece
US6041789A (en) 1999-01-28 2000-03-28 K&B Technologies, L.L.C. Cigarette substitute device and composition for use therein
CA2427283A1 (en) 2000-11-03 2002-05-16 Recovery Pharmaceuticals, Inc. Device and method for the cessation of smoking
US20020179101A1 (en) 2001-05-29 2002-12-05 Elaine Chavez Cigarette substitute device
US20030111088A1 (en) 2001-10-29 2003-06-19 Addiction Therapies, Inc. Device and method for treating combination dependencies
US7527059B2 (en) 2002-07-02 2009-05-05 Iannuzzi Diane M Aromatic cigarette substitute
CN100381082C (en) 2003-03-14 2008-04-16 韩力 Noncombustible electronic atomized cigarette
US20050236006A1 (en) 2004-04-24 2005-10-27 Anderson Cowan Smoking cessation devices, methods of use and methods of conducting business therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945928A (en) * 1986-03-17 1990-08-07 Rose Jed E Smoking of regenerated tobacco smoke
US4945929A (en) * 1986-06-18 1990-08-07 British-American Tobacco Co., Ltd. Aerosol device simulating a smoking article
US6443146B1 (en) * 1999-02-24 2002-09-03 Ponwell Enterprises Limited Piezo inhaler
US20010023130A1 (en) * 1999-08-30 2001-09-20 Gilton Terry L. System and method for analyzing a semiconductor surface
US6601776B1 (en) * 1999-09-22 2003-08-05 Microcoating Technologies, Inc. Liquid atomization methods and devices
US20070283971A1 (en) * 2003-12-12 2007-12-13 Smookzz License B.V. Device and Method for Filtering Smoke

Cited By (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10420374B2 (en) 2009-09-18 2019-09-24 Altria Client Services Llc Electronic smoke apparatus
US9999250B2 (en) 2010-05-15 2018-06-19 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US10159278B2 (en) 2010-05-15 2018-12-25 Rai Strategic Holdings, Inc. Assembly directed airflow
US10092713B2 (en) 2010-05-15 2018-10-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler with translucent window
US10136672B2 (en) 2010-05-15 2018-11-27 Rai Strategic Holdings, Inc. Solderless directly written heating elements
US9259035B2 (en) 2010-05-15 2016-02-16 R. J. Reynolds Tobacco Company Solderless personal vaporizing inhaler
US9861772B2 (en) 2010-05-15 2018-01-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler cartridge
US9095175B2 (en) 2010-05-15 2015-08-04 R. J. Reynolds Tobacco Company Data logging personal vaporizing inhaler
US9861773B2 (en) 2010-05-15 2018-01-09 Rai Strategic Holdings, Inc. Communication between personal vaporizing inhaler assemblies
US9743691B2 (en) 2010-05-15 2017-08-29 Rai Strategic Holdings, Inc. Vaporizer configuration, control, and reporting
US9555203B2 (en) 2010-05-15 2017-01-31 Rai Strategic Holdings, Inc. Personal vaporizing inhaler assembly
US9427711B2 (en) 2010-05-15 2016-08-30 Rai Strategic Holdings, Inc. Distal end inserted personal vaporizing inhaler cartridge
US9352288B2 (en) 2010-05-15 2016-05-31 Rai Strategic Holdings, Inc. Vaporizer assembly and cartridge
US11511058B2 (en) 2012-01-31 2022-11-29 Altria Client Services Llc Electronic cigarette
US9854839B2 (en) 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
US10123566B2 (en) 2012-01-31 2018-11-13 Altria Client Services Llc Electronic cigarette
US9282772B2 (en) 2012-01-31 2016-03-15 Altria Client Services Llc Electronic vaping device
US10098386B2 (en) 2012-01-31 2018-10-16 Altria Client Services Llc Electronic cigarette
US9326547B2 (en) 2012-01-31 2016-05-03 Altria Client Services Llc Electronic vaping article
US11730901B2 (en) 2012-01-31 2023-08-22 Altria Client Services Llc Electronic cigarette
US10092037B2 (en) 2012-01-31 2018-10-09 Altria Client Services Llc Electronic cigarette
US10405583B2 (en) 2012-01-31 2019-09-10 Altria Client Services Llc Electronic cigarette
US9456635B2 (en) 2012-01-31 2016-10-04 Altria Client Services Llc Electronic cigarette
US9474306B2 (en) 2012-01-31 2016-10-25 Altria Client Services Llc Electronic cigarette
US8997754B2 (en) 2012-01-31 2015-04-07 Altria Client Services Inc. Electronic cigarette
US11478593B2 (en) 2012-01-31 2022-10-25 Altria Client Services Llc Electronic vaping device
US9510623B2 (en) 2012-01-31 2016-12-06 Altria Client Services Llc Electronic cigarette
US10716903B2 (en) 2012-01-31 2020-07-21 Altria Client Services Llc Electronic cigarette
US8997753B2 (en) 2012-01-31 2015-04-07 Altria Client Services Inc. Electronic smoking article
US9668523B2 (en) 2012-01-31 2017-06-06 Altria Client Services Llc Electronic cigarette
US10780236B2 (en) 2012-01-31 2020-09-22 Altria Client Services Llc Electronic cigarette and method
US10980953B2 (en) 2012-01-31 2021-04-20 Altria Client Services Llc Electronic cigarette
US10881814B2 (en) 2012-01-31 2021-01-05 Altria Client Services Llc Electronic vaping device
US9004073B2 (en) 2012-01-31 2015-04-14 Altria Client Services Inc. Electronic cigarette
US9848656B2 (en) 2012-01-31 2017-12-26 Altria Client Services Llc Electronic cigarette
US9877516B2 (en) 2012-02-22 2018-01-30 Altria Client Services, Llc Electronic smoking article and improved heater element
US9532597B2 (en) 2012-02-22 2017-01-03 Altria Client Services Llc Electronic smoking article
US9289014B2 (en) 2012-02-22 2016-03-22 Altria Client Services Llc Electronic smoking article and improved heater element
US10299516B2 (en) 2012-02-22 2019-05-28 Altria Client Services Llc Electronic article
US9961941B2 (en) 2012-02-22 2018-05-08 Altria Client Services Llc Electronic smoking article
US10383371B2 (en) 2012-02-22 2019-08-20 Altria Client Services Llc Electronic smoking article and improved heater element
USD743097S1 (en) 2013-01-14 2015-11-10 Altria Client Services Llc Electronic smoking article
USD844221S1 (en) 2013-01-14 2019-03-26 Altria Client Services Llc Electronic smoking article
USD738566S1 (en) 2013-01-14 2015-09-08 Altria Client Services Llc Electronic smoking article
USD691765S1 (en) 2013-01-14 2013-10-15 Altria Client Services Inc. Electronic smoking article
USD691766S1 (en) 2013-01-14 2013-10-15 Altria Client Services Inc. Mouthpiece of a smoking article
USD873480S1 (en) 2013-01-14 2020-01-21 Altria Client Services Llc Electronic vaping device mouthpiece
USD770086S1 (en) 2013-01-14 2016-10-25 Altria Client Services Llc Electronic smoking article
USD738036S1 (en) 2013-01-14 2015-09-01 Altria Client Services Inc. Electronic smoking article
USD738567S1 (en) 2013-01-14 2015-09-08 Altria Client Services Llc Electronic smoking article
USD748323S1 (en) 2013-01-14 2016-01-26 Altria Client Services Llc Electronic smoking article
USD695449S1 (en) 2013-01-14 2013-12-10 Altria Client Services Inc. Electronic smoking article
USD841231S1 (en) 2013-01-14 2019-02-19 Altria Client Services, Llc Electronic vaping device mouthpiece
USD897594S1 (en) 2013-01-14 2020-09-29 Altria Client Services Llc Electronic smoking article
USD849993S1 (en) 2013-01-14 2019-05-28 Altria Client Services Electronic smoking article
USD821028S1 (en) 2013-01-14 2018-06-19 Altria Client Services Llc Smoking article
USD722196S1 (en) 2013-01-14 2015-02-03 Altria Client Services Inc. Electronic smoking article
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US9417107B2 (en) * 2013-09-25 2016-08-16 Huizhou Kimree Technology Co., Ltd. Shenzhen Branch Multi-sensor control circuit and method for using the same
US20150082859A1 (en) * 2013-09-25 2015-03-26 Zhiyong Xiang Multi-sensor control circuit and method for using the same
USD834743S1 (en) 2013-10-14 2018-11-27 Altria Client Services Llc Smoking article
US10653186B2 (en) 2013-11-12 2020-05-19 VMR Products, LLC Vaporizer, charger and methods of use
US11134722B2 (en) 2013-11-12 2021-10-05 Vmr Products Llc Vaporizer
US10736360B2 (en) 2013-11-12 2020-08-11 Vmr Products Llc Vaporizer, charger and methods of use
US10980273B2 (en) 2013-11-12 2021-04-20 VMR Products, LLC Vaporizer, charger and methods of use
US10070669B2 (en) 2013-12-23 2018-09-11 Juul Labs, Inc. Cartridge for use with a vaporizer device
US11752283B2 (en) 2013-12-23 2023-09-12 Juul Labs, Inc. Vaporization device systems and methods
US10201190B2 (en) 2013-12-23 2019-02-12 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10117465B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10117466B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10701975B2 (en) 2013-12-23 2020-07-07 Juul Labs, Inc. Vaporization device systems and methods
US10264823B2 (en) 2013-12-23 2019-04-23 Juul Labs, Inc. Vaporization device systems and methods
US10667560B2 (en) 2013-12-23 2020-06-02 Juul Labs, Inc. Vaporizer apparatus
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058124B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10912331B2 (en) 2013-12-23 2021-02-09 Juul Labs, Inc. Vaporization device systems and methods
US10117463B2 (en) 2014-01-03 2018-11-06 Robert P Thomas, Jr. Vapor delivery device
US9820510B2 (en) 2014-01-03 2017-11-21 Robert P Thomas, Jr. Vapor delivery device
US10111467B1 (en) 2014-03-24 2018-10-30 Scott M. Arnel Wearable electronic simulated smoking device with interchangeable vaporization cartridges
US11109620B1 (en) 2014-03-24 2021-09-07 Scott M. Arnel Wearable electronic simulated smoking device with interchangeable vaporization cartridges
US9820508B2 (en) 2014-03-24 2017-11-21 Scott M. Arnel Wearable electronic simulated smoking device
WO2015184250A1 (en) * 2014-05-30 2015-12-03 Carolina Vapordom, LLC E-liquid vaporizing apparatus
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
WO2016187115A1 (en) * 2015-05-15 2016-11-24 John Cameron Hybrid vapor delivery system utilizing nebulized and non-nebulized elements
CN105266206A (en) * 2015-10-23 2016-01-27 上海应用技术学院 Ultrasonic atomization electronic cigarette
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10455863B2 (en) 2016-03-03 2019-10-29 Altria Client Services Llc Cartridge for electronic vaping device
US10433580B2 (en) 2016-03-03 2019-10-08 Altria Client Services Llc Methods to add menthol, botanic materials, and/or non-botanic materials to a cartridge, and/or an electronic vaping device including the cartridge
US10368580B2 (en) 2016-03-08 2019-08-06 Altria Client Services Llc Combined cartridge for electronic vaping device
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10368581B2 (en) 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
US10357060B2 (en) 2016-03-11 2019-07-23 Altria Client Services Llc E-vaping device cartridge holder
JP2019500019A (en) * 2016-03-21 2019-01-10 チャイナ タバコ フーナン インダストリアル カンパニー リミテッド Ultrasonic atomizer and electronic cigarette
WO2017161715A1 (en) * 2016-03-21 2017-09-28 湖南中烟工业有限责任公司 Ultrasonic atomizer and electronic cigarette
EP3251531A4 (en) * 2016-03-21 2018-11-14 China Tobacco Hunan Industrial Co., Ltd. Ultrasonic atomizer and electronic cigarette
US10561803B2 (en) 2016-03-21 2020-02-18 China Tobacco Hunan Industrial Co., Ltd. Ultrasonic atomizer and electronic cigarette
US11038360B2 (en) 2016-05-18 2021-06-15 Gsw Creative Corporation Vaporization device, method of using the device, a charging case, a kit, and a vibration assembly
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD929036S1 (en) 2016-06-16 2021-08-24 Pax Labs, Inc. Vaporizer cartridge and device assembly
USD913583S1 (en) 2016-06-16 2021-03-16 Pax Labs, Inc. Vaporizer device
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
EP3970541A1 (en) * 2016-07-08 2022-03-23 RAI Strategic Holdings, Inc. Aerosol delivery device with condensing and non-condensing vaporization
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
CN108061673A (en) * 2016-11-07 2018-05-22 湖南中烟工业有限责任公司 A kind of electronic cigarette atomizing aerosol sampling device and test device and test method
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
USD927061S1 (en) 2017-09-14 2021-08-03 Pax Labs, Inc. Vaporizer cartridge
WO2019243987A1 (en) * 2018-06-18 2019-12-26 Nutrintech Ltd System for the molecular vaporization of a liquid substance
IT201800006391A1 (en) * 2018-06-18 2019-12-18 SYSTEM FOR MOLECULAR VAPORIZATION OF A LIQUID SUBSTANCE
WO2021027707A1 (en) * 2019-08-09 2021-02-18 湖南中烟工业有限责任公司 Electronic cigarette atomizing core, assembling method thereof and atomizer
US20220295881A1 (en) * 2020-04-14 2022-09-22 Kt&G Corporation Cartridge and aerosol generating device comprising the same
WO2021239868A1 (en) 2020-05-27 2021-12-02 Joozef Device for inhaling a substance
BE1028285B1 (en) * 2020-05-27 2022-02-11 Joozef Apparatus for inhaling a substance
BE1028285A1 (en) 2020-05-27 2021-12-03 Joozef Device for inhaling a substance
EP3915408A1 (en) * 2020-05-27 2021-12-01 Joozef Device for inhaling a substance
KR20220002021A (en) * 2020-06-30 2022-01-06 주식회사 케이티앤지 Aerosol generating device
KR102571204B1 (en) * 2020-06-30 2023-08-29 주식회사 케이티앤지 Aerosol generating device
TWI767324B (en) * 2020-09-14 2022-06-11 美商神韻藝術品公司 Dry ice machine for creating fog effect

Also Published As

Publication number Publication date
US7845359B2 (en) 2010-12-07
US20110041858A1 (en) 2011-02-24
US20080230052A1 (en) 2008-09-25
US8127772B2 (en) 2012-03-06

Similar Documents

Publication Publication Date Title
US8127772B2 (en) Nebulizer method
US10098379B2 (en) Device and method for simulating chemosensation of smoking
TWI715531B (en) Nicotine powder inhaler and method of inhaling flavoured nicotine into lungs of a user
US7726310B2 (en) Medical aerosol non-diluting holding chamber
JP4999245B2 (en) System for achieving quit smoking
US5893371A (en) Non-nicotine smoking cessation aid
US20160095355A1 (en) Simulated cigarette
US20110036365A1 (en) Vaporized tobacco product and methods of use
IL269098B (en) A mouthpiece and heater assembly for an inhalation device
RUSSELL The future of nicotine replacement
WO2014150245A1 (en) Methods for inhalation of smoke-free nicotine
JPS62278975A (en) Method for smoking by evaporating favorite food under heating and smoking instrument
US4945928A (en) Smoking of regenerated tobacco smoke
US20230248058A1 (en) Flavor elements and methods of providing nonvaporized flavor to electronic vaporizers and e-cigarettes
Dautzenberg et al. Patients with lung cancer: Are electronic cigarettes harmful or useful?
JP2022545918A (en) Dual chamber aerosol dispenser
US20170348494A1 (en) Pulmonary device, method and system for delivering a pharmaceutical product to an individual
US20120067358A1 (en) Life stick oxygen based energy supplement
WO2019068441A1 (en) Inhalation device and substrate
KR20110023949A (en) A assistance liquid matter for prohibition of smoking
Sahoo et al. Electronic Nicotine Delivery System.
Sameera et al. Journal of Chemical, Biological and Physical Sciences

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENAIN, PIERRE, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MONTASER, AKBAR;REEL/FRAME:027599/0993

Effective date: 20070319

Owner name: DOLSEY, RICHARD, DR., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MONTASER, AKBAR;REEL/FRAME:027599/0993

Effective date: 20070319

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION