US20120079818A1 - Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine - Google Patents

Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine Download PDF

Info

Publication number
US20120079818A1
US20120079818A1 US13173569 US201113173569A US2012079818A1 US 20120079818 A1 US20120079818 A1 US 20120079818A1 US 13173569 US13173569 US 13173569 US 201113173569 A US201113173569 A US 201113173569A US 2012079818 A1 US2012079818 A1 US 2012079818A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
system
exhaust
filter
engine
locomotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13173569
Inventor
Gary R. Svihla
Original Assignee
Svihla Gary R
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • Y02T10/47Exhaust feedback

Abstract

A diesel locomotive filter arrangement for maintaining elements used to filter particulate matter generated by diesel engines. Servicing the filters is accomplished in a modular fashion through either the complete aftertreatment system and/or the individual elements in-situ. As to the in-situ arrangement, modularity is accomplished without structural liability to the system and with minimum system joint breakage. As to the complete system arrangement, modularity is accomplished via residing the entirety of the aftertreatment system on a support tray which is removable with minimum connection separation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/388,443, entitled “Exhaust Aftertreatment System for a Locomotive,” filed Sep. 30, 2010, the complete disclosure thereof being incorporated herein by reference.
  • TECHNICAL FIELD
  • This application relates to a locomotive diesel engine and, more particularly, to a filtration arrangement for a two-stroke locomotive diesel engine having an exhaust aftertreatment system.
  • BACKGROUND OF THE DISCLOSURE
  • The present disclosure generally relates to a locomotive diesel engine and, more specifically, to a filtration arrangement for optimizing an exhaust aftertreatment system. The present disclosure exhaust aftertreatment systems may be implemented with a locomotive two-stroke uniflow scavenged diesel engine. This filtration arrangement allows for ease of maintenance of the filtration system of the aftertreatment system within the two-stroke diesel locomotive engine. controls the temperature of exhaust at the exhaust aftertreatment system to control oxidation of soot on the filter thereof. As a result, the burner arrangement reduces NOX emissions.
  • FIG. 1 a illustrates a locomotive 100 including a conventional uniflow two-stroke diesel engine system 101. As shown in FIGS. 1 b and 1 c, the locomotive diesel engine system 101 of FIG. 1 a includes a conventional air system. Referring concurrently to both FIGS. 1 b and 1 c, the locomotive diesel engine system 101 generally comprises a turbocharger 100 having a compressor 102 and a turbine 104, which provides compressed air to an engine 106 having an airbox 108, power assemblies 110, an exhaust manifold 112, and a crankcase 114. In a typical locomotive diesel engine system 101, the turbocharger 100 increases the power density of the engine 106 by compressing and increasing the amount of air transferred to the engine 106.
  • More specifically, the turbocharger 100 draws air from the atmosphere 116, which is filtered using a conventional air filter 118. The filtered air is compressed by a compressor 102. The compressor 102 is powered by a turbine 104, as will be discussed in further detail below. A larger portion of the compressed air (or charge air) is transferred to an aftercooler (or otherwise referred to as a heat exchanger, charge air cooler, or intercooler) 120 where the charge air is cooled to a select temperature. Another smaller portion of the compressed air is transferred to a crankcase ventilation oil separator 122, which evacuates the crankcase 114 in the engine; entrains crankcase gas; and filters entrained crankcase oil before releasing the mixture of crankcase gas and compressed air into the atmosphere 116.
  • The cooled charge air from the aftercooler 120 enters the engine 106 via an airbox 108. The decrease in charge air intake temperature provides a denser intake charge to the engine, which reduces NOX emissions while improving fuel economy. The airbox 108 is a single enclosure, which distributes the cooled air to a plurality of cylinders. The combustion cycle of a diesel engine includes, what is referred to as, scavenging and mixing processes. During the scavenging and mixing processes, a positive pressure gradient is maintained from the intake port of the airbox 108 to the exhaust manifold 112 such that the cooled charge air from the airbox 108 charges the cylinders and scavenges most of the combusted gas from the previous combustion cycle.
  • More specifically, during the scavenging process in the power assembly 110, the cooled charge air enters one end of a cylinder controlled by an associated piston and intake ports. The cooled charge air mixes with a small amount of combusted gas remaining from the previous cycle. At the same time, the larger amount of combusted gas exits the other end of the cylinder via four exhaust valves and enters the exhaust manifold 112 as exhaust gas. The control of these scavenging and mixing processes is instrumental in emissions reduction as well as in achieving desired levels of fuel economy.
  • Exhaust gases from the combustion cycle exit the engine 106 via an exhaust manifold 112. The exhaust gas flow from the engine 106 is used to power the turbine 104 of the turbocharger 100, and thereby power the compressor 102 of the turbocharger 100. After powering the turbine 104, the exhaust gases are released into the atmosphere 116 via an exhaust stack 124 or silencer.
  • The exhaust gases released into the atmosphere by a locomotive diesel engine include particulates, nitrogen oxides (NOX) and other pollutants. Legislation has been passed to reduce the amount of pollutants that may be released into the atmosphere. Traditional systems have been implemented which reduce these pollutants, but at the expense of fuel efficiency.
  • The various embodiments of the present disclosure aftertreatment system are able to exceed, what is referred in the industry as, the Environmental Protection Agency's (EPA) Tier II (40 CFR 92), Tier III (40 CFR 1033), and Tier IV (40 CFR 1033) emission requirements, as well as the European Commission (EURO) Tier IIIb emission requirements. These various emission requirements are cited by reference herein and made a part of this patent application.
  • In accordance with an embodiment of the disclosure, an exhaust aftertreatment system for a locomotive is described for reducing pollutants. This system generally includes a manifold adapted to receive exhaust from the locomotive engine and stabilize the exhaust from the locomotive engine; a filtration system coupled to the manifold including a catalyst and filter adapted to filter particulate matter, hydrocarbons and carbon monoxide from the exhaust; and a NOX reduction system situated inline with the filtration system adapted to reduce NOX from the exhaust.
  • According to various aspects of the present disclosure, the exhaust aftertreatment system may include various additional features. In one embodiment, the exhaust aftertreatment system includes a filtration injection system adapted to add fuel to the exhaust in the manifold, where the manifold is sized and shaped to promote mixing of the exhaust and fuel contained therein. Specifically, the fuel in this mixture reacts with oxygen in the presence of the catalyst, increasing the temperature of the exhaust, and thereby promoting oxidation of soot on the filter in the filtration system. The filtration system may be comprised of a diesel oxidation catalyst (DOC) or a diesel particulate filter (DPF). A filtration control system is also described for monitoring and controlling particulate buildup on the filter.
  • In another embodiment, the NOX reduction system may include a selective catalytic reduction (SCR) catalyst and an ammonia slip catalyst (ASC). A NOX reduction control system is also described for monitoring and controlling the NOX reduction system. A NOX reduction system injection system may further be provided to add a NOX reduction reagent to the exhaust. The NOX reduction system injection system is preferably situated upstream of the NOX reduction system.
  • In yet another embodiment, the exhaust aftertreatment system may further include a heating device, such as a burner, situated with respect to the manifold for heating the exhaust and a control system for the heating device. Specifically, this burner arrangement controls the temperature of exhaust at the exhaust aftertreatment system to control oxidation of soot on the filter thereof. As a result, the burner arrangement reduces NOX emissions.
  • Various embodiments of an exhaust aftertreatment system are shown and described which may operate within a locomotive operating environment and be placed within the limited size constraints of the locomotive. In one embodiment, an exhaust aftertreatment system is shown and described having a filtration system situated inline with a NOX reduction system. In another embodiment, an exhaust aftertreatment system is shown having an integral housing having a filtration system and a NOX reduction system. Because exhaust from a locomotive engine is generally not uniform, the manifold may be sized and shaped to uniformly distribute the exhaust to the filtration system. For example, the manifold may be sized and shaped such that the exhaust enters a volume greater than the volume at which exhaust is expelled from the engine.
  • According to another aspect of the present disclosure, an exhaust aftertreatment system is provided for a locomotive, which includes a support system and a connection system to the locomotive engine and structure. The exhaust aftertreatment system includes a manifold coupled to an exhaust outlet of the locomotive engine and an emissions reduction system flexibly coupled to the manifold to isolate operational loads of the engine from the locomotive. In one example, a support structure is provided such that the mass load of the exhaust aftertreatment system is supported by the locomotive via the support structure. In another example, a connection system is provided to permit the exhaust aftertreatment system to move relative to its loads and account for thermal expansion.
  • These exhaust aftertreatment systems may be used in conjunction with various exhaust gas recirculation systems (including those described herein) to further reduce exhaust emissions from the engine.
  • It will be noted that many diesel engine manufacturers continue to employ varying aftertreatment strategies for the purpose of meeting regulations for exhaust emissions set forth by the U.S. Environmental Protection Agency and other international equivalents. Particulate matter generated by diesel engines typically requires filtering to adhere to the regulations. Typically, diesel particulate filters that trap soot and other particles deemed hazardous by the governing environmental authorities eventually require removal from the engine system for cleaning of the particulate through specialized processes. These filters require cleaning at regular intervals so as to prevent undue pressure resistance on the engine system. Unfortunately, removal of the filters involves breaking the connecting joints to the aftertreatment system either at the engine or after removal of the entire aftertreatment system. A complex locomotive aftertreatment application can possess many filter elements due to the large quantity of exhaust gas generated. Due to the high relative temperature at which these filters operate, many applications (locomotive and automotive alike) utilize particulate filters in welded assemblies. Accordingly, removal of the particular elements remain difficult since the resultant joints consist of a complex arrangement of numerous bolts and band clamps with covers that need to be removed for service. Specifically, the conventional diesel engine aftertreatment systems utilize filter elements arranged with discrete joints or complex assemblies requiring special tools to remove and service the individual filter elements. In other words, the entire portion of the aftertreatment system may require disassembly in order to remove a filter.
  • Accordingly, it is a general object of the present disclosure to provide an exhaust aftertreatment system which reduces the amount of pollutants (e.g. particulates, nitrogen oxides (NOX) and other pollutants) released by the diesel engine while achieving desired fuel efficiency.
  • It is a more specific object of the present disclosure to provide a filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine.
  • It is yet another object of the present disclosure to provide a filtration arrangement to adhere to the regulations set forth by the U.S. Environmental Protection Agency and other international equivalents to filter particulate matter generated by diesel engines.
  • Still another object of the present disclosure is to provide a filtration arrangement that facilitates filter removal for service, exchange or cleaning.
  • Yet still, another object of the present disclosure is to provide a modular filtration arrangement for improved maintainability of locomotives.
  • Further still, another object of the present disclosure is to provide a modular filtration arrangement for reducing operating costs.
  • These and other objects, features and advantages of this disclosure will be clearly understood through a consideration of the following detailed description.
  • The following description is presented to enable one of ordinary skill in the art to make and use the disclosure and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
  • SUMMARY OF THE DISCLOSURE
  • According to one embodiment of the present disclosure, there is provided a filter assembly for servicing filters within a locomotive exhaust aftertreatment system. One or more filters are positioned within the system for filtering particulate matter generated by a diesel locomotive engine with each of the filters having an exhaust gas inlet and an outlet. Each filter is incorporated within the system by a connector that is adapted to be in the sealed and actively filtering position or in the open position to enable filter removal for servicing.
  • There is also provided an assembly for servicing filter within a locomotive exhaust aftertreatment system. A structural support holds the aftertreatment system on the locomotive and is adaptable to be removed from the locomotive. One or more filters are positioned within the system for filtering particulate matter generated by a diesel locomotive engine with each of the filters having an exhaust gas inlet and an outlet. Each filter is incorporated within the system by a connector that is adapted to be in the sealed and actively filtering position or in the open position to enable filter removal for servicing.
  • There is further provided an assembly for servicing filters within a locomotive exhaust aftertreatment system. The assembly includes an aftertreatment system support module adapted to be removably coupled to the diesel locomotive engine, and further includes one or more filter modules for filtering particulate matter generated by the engine wherein the modules are adapted to be removably coupled to the aftertreatment system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a is a perspective view of a locomotive including a two-stroke diesel engine system.
  • FIG. 1 b is a partial cross-sectional perspective view of the two-stroke diesel engine system of FIG. 1 a.
  • FIG. 1 c is a system diagram of the two-stroke diesel engine of FIG. 1 b having a conventional air system.
  • FIG. 2 a is a system diagram of a two-stroke diesel engine having an exhaust aftertreatment system.
  • FIG. 2 b is a system diagram of a two-stroke diesel engine having an exhaust aftertreatment system including a selective catalytic reduction catalyst and ammonia slip catalyst.
  • FIG. 3 is a system diagram of the two-stroke diesel engine system having an EGR system in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a system diagram of the two-stroke diesel engine system having an EGR system in accordance with another embodiment of the present disclosure.
  • FIG. 5 is a system diagram of the two-stroke diesel engine system having an EGR system in accordance with another embodiment of the present disclosure.
  • FIG. 6 is a system diagram of the two-stroke diesel engine system having an EGR system in accordance with another embodiment of the present disclosure.
  • FIG. 7 is a system diagram of the two-stroke diesel engine system having an EGR system in accordance with another embodiment of the present disclosure.
  • FIG. 8 is a system diagram of a control system for an EGR system for a two-stroke diesel engine in accordance with an embodiment of the present disclosure.
  • FIG. 9 a is a perspective view of a locomotive including a two-stroke diesel engine system with an EGR system in accordance with an embodiment of the present disclosure.
  • FIG. 9 b is a partial cross-sectional perspective view of the two-stroke diesel engine system with an EGR system of FIG. 9 a.
  • FIG. 9 c is a top view of the two-stroke diesel engine system with an EGR system of FIG. 9 a.
  • FIG. 9 d is a side view of the two-stroke diesel engine system with an EGR system of FIG. 9 a, showing ducts for introducing the recirculated exhaust gas into the engine.
  • FIG. 9 e is a perspective view of an embodiment of an EGR module for use with the EGR system of FIG. 9 a.
  • FIG. 9 f is a side view of the EGR module of FIG. 9 e.
  • FIG. 9 g is a front side view of the EGR module of FIG. 9 e.
  • FIG. 9 h is a cross sectional view of the EGR module of FIG. 9 e.
  • FIG. 10 is a system diagram of a two-stroke diesel engine having an exhaust aftertreatment system and an EGR system.
  • FIG. 11 is a system diagram of a two-stroke diesel engine having an EGR system and an exhaust aftertreatment system including a selective catalytic reduction catalyst and ammonia slip catalyst.
  • FIG. 12 a is an exploded perspective view of an embodiment of an exhaust aftertreatment system in accordance with the present system.
  • FIG. 12 b is another perspective view of the embodiment of the exhaust aftertreatment system of FIG. 12 a.
  • FIG. 12 c is a bottom perspective view of the embodiment of the exhaust aftertreatment system of FIG. 12 a.
  • FIG. 12 d is a top view of the embodiment of the exhaust aftertreatment system of FIG. 12 a.
  • FIG. 12 e is a top perspective view of the embodiment of the exhaust aftertreatment system of FIG. 12 a.
  • FIG. 12 f is a side view of the embodiment of the exhaust aftertreatment system of FIG. 12 a, showing the discrete aftertreatment line assemblies thereof.
  • FIG. 12 g is an exploded perspective view of an embodiment of the exhaust aftertreatment system of FIG. 12 a including a connection system.
  • FIG. 12 h is a detailed side view of the embodiment of the exhaust aftertreatment system of FIG. 12 a including a connection system.
  • FIG. 12 i is a perspective view of the embodiment of the exhaust aftertreatment system of FIG. 12 a including a support structure.
  • FIG. 12 j is a side perspective view of the embodiment of the exhaust aftertreatment system of FIG. 12 a including a support structure and connection system.
  • FIG. 12 k is a detailed perspective view of the embodiment of the exhaust aftertreatment system of FIG. 12 a showing a burner.
  • FIG. 12 l is a partial cross-sectional perspective view of a locomotive including the exhaust aftertreatment system of FIG. 12 a.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The present disclosure is directed to an exhaust aftertreatment system for a locomotive diesel engine to reduce pollutants, namely particulate matter and NOX emissions released from the engine. The present disclosure exhaust aftertreatment system may be further implemented in conjunction with an exhaust gas recirculation (EGR) system which enhances the unique scavenging and mixing processes of a locomotive uniflow two-stroke diesel engine in order to further reduce NOX emissions while achieving desired fuel economy. Further provided are embodiments that include various exhaust aftertreatment system components, which may be placed within the limited size constraints of the locomotive of FIG. 1 a and which are designed for ease of maintainability. The various exhaust aftertreatment system embodiments described herein may be used in conjunction with an EGR system, which may also be placed within the limited size constraints of the locomotive of FIG. 1 a for ease of maintainability.
  • The present disclosure may further be enhanced by adapting the various engine parameters, the EGR system parameters, and the exhaust aftertreatment system parameters. For example, as discussed above, emissions reduction and achievement of desired fuel efficiency may be accomplished by maintaining or enhancing the scavenging and mixing processes in a uniflow two-stroke diesel engine (e.g., by adjusting the intake port timing, intake port design, exhaust valve design, exhaust valve timing, EGR system design, engine component design and turbocharger design).
  • The various embodiments of the present disclosure may be applied to locomotive two-stroke diesel engines having various numbers of cylinders (e.g., 8 cylinders, 12 cylinders, 16 cylinders, 18 cylinders, 20 cylinders, etc.). The various embodiments may further be applied to other two-stroke uniflow scavenged diesel engine applications other than for locomotive applications (e.g., marine applications). The various embodiments may also be applied to other types of diesel engines (e.g., four-stroke diesel engines).
  • As shown in FIG. 2 a, the present disclosure may include an exhaust aftertreatment system 251 for reducing particulate matter (PM), hydrocarbons and/or carbon monoxide emissions from the exhaust manifold 212 of the engine 206. In this system, the engine 206 may be adapted to have reduced NOX emissions (e.g., less than 13 g/bhp-hr). In order to reduce further emissions from the exhaust, the exhaust aftertreatment system 251 generally includes a filtration system 255/257 to filter other emissions including particulate matter from the exhaust. More specifically, the exhaust aftertreatment system 251 may include a diesel oxidation catalyst (DOC) 255 and a diesel particulate filter (DPF) 257. The DOC 255 uses an oxidation process to reduce the particulate matter (PM), hydrocarbons and/or carbon monoxide emissions in the exhaust gases. The DPF 257 includes a filter to reduce PM and/or soot from the exhaust gases. The DOC/DPF 255/257 arrangement may be adapted to passively regenerate and oxidize soot. Although a DOC 255 and DPF 257 are shown, other comparable filters may be used.
  • A filtration control system 280 may be provided, which monitors and maintains the cleanliness of the DPF 257. In another embodiment, a control system 280 determines and monitors the pressure differential across the DPF 257 using pressure sensors. As discussed above, the DOC/DPF arrangement 255/257 may be adapted to passively regenerate and oxidize soot within the DPF 257. However, the DPF 257 will accumulate ash and some soot, which must be removed in order to maintain the DPF efficiency. As ash and soot accumulate, the pressure differential across the DPF 257 increases. Accordingly, the control system 280 monitors and determines whether the DPF 257 has reached a select pressure differential at which the DPF 257 requires cleaning or replacement. In response thereto, the control system 280 may signal an indication that the DPF 257 requires cleaning or replacement.
  • Alternatively, a control system 280 is shown to be coupled to a DOC/DPF doser 261 (e.g., a hydrocarbon injector), which adds fuel onto the catalyst for the DOC/DPF arrangement 255/257 for active regeneration of the filter. The fuel reacts with oxygen in the presence of the catalyst, which increases the temperature of the exhaust gas to promote oxidation of soot on the filter. In yet another embodiment, the control system 280 may be coupled to a heating device 293, which may be in the form of an optional burner or other heating element, for controlling the temperature of the exhaust gas to control oxidation of soot on the filter.
  • As shown in FIG. 2 b, the present system may include an exhaust aftertreatment system 251 for reducing NOX emissions and the particulate matter (PM), hydrocarbons and/or carbon monoxide emissions released to the atmosphere 216. In this particular arrangement, the exhaust aftertreatment system 251 further includes a selective catalytic reduction (SCR) catalyst 265 and ammonia slip catalyst (ASC) 267 in addition to a filtration system 255/257 similar to that shown and described with respect to FIG. 2 a. More specifically, the exhaust aftertreatment system 251 includes a diesel oxidation catalyst (DOC) 255, a diesel particulate filter (DPF) 257, a control system (for filtration) 280 and DOC/DPF doser 261 similar to that shown and described with respect to FIG. 2 a. In yet another embodiment, the exhaust aftertreatment system 251 may further include a heating element in the form of an optional burner or other heating element for controlling the temperature of the exhaust gas to control oxidation of soot on the filter.
  • Additionally, the exhaust aftertreatment system 251 of FIG. 2 b further includes a selective catalytic reduction (SCR) catalyst 265 and ammonia slip catalyst (ASC) 267 adapted to lower NOX emissions of the engine 206. The SCR 265 and ASC 267 are further coupled to an SCR doser 263 for dosing an SCR reductant fluid or SCR reagent (e.g., urea-based, diesel exhaust fluid (DEF). Upon injection of the SCR reductant fluid or SCR reagent, the NOX from the exhaust reacts with the reductant fluid over the catalyst in the SCR 265 and ASC 267 to form nitrogen and water. In another embodiment, although a urea-based SCR 265 is shown, other SCRs known in the art may also be used (e.g., hydrocarbon based SCRs, solid SCRs, De-NOX systems, etc.). In yet another embodiment, the system may be adapted to lower NOX emissions prior to lowering the particulate matter (PM), hydrocarbons and/or carbon monoxide emissions. In such an arrangement, the SCR system 265/267 is located upstream of the filtration system 255/257.
  • As shown in the FIG. 2 b, the present disclosure may include a control system 280 for controlling the cleanliness of the DPF 257 similar to that shown and described with respect to FIG. 2 a. Additionally, the control system 280 of FIG. 2 b may be further adapted to monitor the SCR 265 and ASC 267 arrangement, and to control NOX reduction by administering the SCR reductant fluid or SCR reagent injection based on the monitored values. More specifically, the control system 280 may be adapted to signal to the SCR doser to increase injection of SCR reductant fluid or SCR reagent if NOX levels are more than a select threshold. In contrast, the control system 280 may be adapted to signal to the SCR doser to decrease injection of SCR reductant fluid or SCR reagent when NOX levels are less than a select threshold.
  • The control system 280 may further be adapted to control injection of SCR reductant fluid or SCR reagent based on temperature. For example, the SCR 265 and ASC 267 may have select temperature operability ranges, wherein the SCR 265 and ASC 267 may only reduce NOx at certain temperatures. In this arrangement, the control system 265 may be adapted to signal the injector 263 to only operate over that temperature range. In yet another embodiment (not shown), the exhaust aftertreatment system 251 may further include an optional burner which controls the exhaust temperature. As such, the control system 280 may be further adapted to signal the burner to maintain the temperature of the exhaust gas to a temperature within the operability ranges of the SCR 265 and ASC 267.
  • As illustrated in FIGS. 3-9, an EGR system may be used to reduce exhaust emissions. These EGR systems may be used in conjunction with the exhaust aftertreatment systems of FIGS. 2 a and 2 b to further reduce exhaust emissions. Such emissions systems for a diesel locomotive engine which include both an EGR system and an exhaust aftertreatment system are described in detail with respect to FIGS. 10-11.
  • As shown in FIG. 3, an EGR system 350 is illustrated which recirculates exhaust gases from the exhaust manifold 312 of the engine 306, mixes the exhaust gases with the cooled charge air of the aftercooler 320, and delivers such to the airbox 308. In this EGR system 350, only a select percentage of the exhaust gases is recirculated and mixed with the intake charge air in order to selectively reduce pollutant emissions (including NOX) while achieving desired fuel efficiency. The percentage of exhaust gases to be recirculated is also dependent on the amount of exhaust gas flow needed for powering the compressor 302 of the turbocharger 300. It is desired that enough exhaust gas powers the turbine 304 of the turbocharger 300 such that an optimal amount of fresh air is transferred to the engine 306 for combustion purposes. For locomotive diesel engine applications, it is desired that less than about 35% of the total gas (including compressed fresh air from the turbocharger and recirculated exhaust gas) delivered to the airbox 308 be recirculated. This arrangement provides for pollutant emissions (including NOX) to be reduced, while achieving desired fuel efficiency.
  • A flow regulating device may be provided for regulating the amount of exhaust gases to be recirculated. In one embodiment, the flow regulating device is a valve 352 as illustrated in FIG. 3. Alternatively, the flow regulating device may be a positive flow device 360, wherein there is no valve (not shown) or the valve 352 may function as an on/off valve as will be discussed in greater detail below.
  • The select percentage of exhaust gases to be recirculated may be optionally filtered. Filtration is used to reduce the particulates that will be introduced into engine 306 during recirculation. The introduction of particulates into the engine 306 causes accelerated wear especially in uniflow two-stroke diesel engine applications. If the exhaust gases are not filtered and recirculated into the engine, the unfiltered particulates from the combustion cycle would accelerate wear of the piston rings and cylinder liner. For example, uniflow two-stroke diesel engines are especially sensitive to cylinder liner wall scuffing as hard particulates are dragged along by the piston rings the cylinder liner walls after passing through the intake ports. Oxidation and filtration may also be used to prevent fouling and wear of other EGR system components (e.g., cooler 358 and positive flow device 360) or engine system components. In FIG. 3, a diesel oxidation catalyst (DOC) 354 and a diesel particulate filter (DPF) 356 are provided for filtration purposes. The DOC uses an oxidation process to reduce the particulate matter (PM), hydrocarbons and/or carbon monoxide emissions in the exhaust gases. The DPF includes a filter to reduce PM and/or soot from the exhaust gases. The DOC/DPF arrangement may be adapted to passively regenerate and oxidize soot. Although a DOC 354 and DPF 356 are shown, other comparable filters may be used.
  • The filtered air is optionally cooled using cooler 358. The cooler 358 serves to decrease the recirculated exhaust gas temperature, thereby providing a denser intake charge to the engine. The decrease in recirculated exhaust gas intake temperature reduces NOX emissions and improves fuel economy. It is preferable to have cooled exhaust gas as compared to hotter exhaust gas at this point in the EGR system due to ease of deliverability and compatibility with downstream EGR system and engine components.
  • The cooled exhaust gas flows to a positive flow device 360 which provides for the necessary pressure increase to overcome the pressure loss within the EGR system 350 itself and overcome the adverse pressure gradient between the exhaust manifold 312 and the introduction location of the recirculated exhaust gas. Specifically, the positive flow device 360 increases the static pressure of the recirculated exhaust gas sufficient to introduce the exhaust gas upstream of the power assembly. Alternatively, the positive flow device 360 decreases the static pressure upstream of the power assembly at the introduction location sufficient to force a positive static pressure gradient between the exhaust manifold 312 and the introduction location upstream of the power assembly 310. The positive flow device 360 may be in the form of a roots blower, a venturi, centrifugal compressor, propeller, turbocharger, pump or the like. The positive flow device 360 may be internally sealed such that oil does not contaminate the exhaust gas to be recirculated.
  • As shown in FIG. 3, there is a positive pressure gradient between the airbox 308 (e.g., about 94.39 in Hga) to the exhaust manifold 312 (e.g., about 85.46 in Hga) necessary to attain the necessary levels of cylinder scavenging and mixing. In order to recirculate exhaust gas, the recirculated exhaust gas pressure is increased to at least match the aftercooler discharge pressure as well as overcome additional pressure drops through the EGR system 350. Accordingly, the exhaust gas is compressed by the positive flow device 360 and mixed with fresh air from the aftercooler 320 in order to reduce NOX emissions while achieving desired fuel economy. It is preferable that the introduction of the exhaust gas is performed in a manner which promotes mixing of recirculated exhaust gas and fresh air.
  • As an alternative to the valve 352 regulating the amount of exhaust gas to be recirculated as discussed above, a positive flow device 360 may instead be used to regulate the amount of exhaust gas to be recirculated. For example, the positive flow device 360 may be adapted to control the recirculation flow rate of exhaust gas air from the engine 306, through the EGR system 350, and back into the engine 306. In another example, the valve 352 may function as an on/off type valve, wherein the positive flow device 360 regulates the recirculation flow rate by adapting the circulation speed of the device. In this arrangement, by varying the speed of the positive flow device 360, a varying amount of exhaust gas may be recirculated. In yet another example, the positive flow device 360 is a positive displacement pump (e.g., a roots blower) which regulates the recirculation flow rate by adjusting its speed.
  • A new turbocharger 300 is provided having a higher pressure ratio than that of the prior art uniflow two-stroke diesel engine turbochargers. The new turbocharger provides for a higher compressed charge of fresh air, which is mixed with the recirculated exhaust gas from the positive flow device 360. The high pressure mixture of fresh air and exhaust gas delivered to the engine 306 provides the desired trapped mass of oxygen necessary for combustion given the low oxygen concentration of the trapped mixture of fresh air and cooled exhaust gas.
  • As shown in an EGR system 450 embodiment of FIG. 4, recirculated exhaust gas may be alternatively introduced upstream of the aftercooler 420 and cooled thereby before being directed to the airbox 408 of the engine 406. In this embodiment, the aftercooler 420 (in addition to the cooler 458) cools the fresh charge air from the turbocharger 400 and the recirculated exhaust gas to decrease the overall charge air intake temperature of the engine 406, thereby providing a denser intake charge air to the engine 406. In another embodiment (not shown), an optional oil filter may be situated downstream of the positive flow device 460 to filter any residual oil therefrom. This arrangement prevents oil contamination in the aftercooler 420 and in the recirculated exhaust gas.
  • As shown in an EGR system 550 embodiment of FIG. 5, the filtered air may optionally be directed to the aftercooler 520 for the same purposes without the addition of the cooler 358, 458 in FIGS. 3 and 4. In this arrangement, the cooling of the exhaust gas to be recirculated is performed solely by the aftercooler 520. The aftercooler 520 would serve to cool the fresh charge air from the turbocharger and the recirculated exhaust gas, thereby providing a denser overall intake charge air to the engine.
  • As shown in FIG. 6, an EGR system 650 is illustrated which does not include the DOC/DPF filtration system of the previous embodiments.
  • As shown in FIG. 7, an EGR system 750 is illustrated, which is implemented in an engine 706 having a positive or negative crankcase ventilation, whereby the oil separator outlet is directed to the low pressure region upstream of the compressor inlet. Accordingly, the compressed air from the turbocharger 700 is not directed to an oil separator as shown in the previous embodiments.
  • A control system may further be provided which monitors and controls select components of any of the EGR systems of the previous embodiments, or other similar EGR systems. Specifically, the control system may be adapted to control select components of an EGR system to adaptively regulate exhaust gas recirculation based on various operating conditions of the locomotive. The control system may be in the form of a locomotive control computer, another onboard control computer or other similar control device. Various embodiments of control systems are illustrated in FIG. 8.
  • In one embodiment of FIG. 8, a control system 880 monitors the temperature of the exhaust gas at the exhaust manifold using exhaust manifold temperature sensors 882 a, 882 b. If the exhaust gas temperature at the exhaust manifold 812 is within the normal operational temperature range of the EGR system, the control system signals the flow regulating device (e.g., valve 852 a and 852 b and/or positive flow device 860) to recirculate a select amount of exhaust gas through the engine. If the exhaust gas temperature falls outside of the normal operational temperature range of the EGR system, the control system 880 signals the flow regulating device (e.g., valve 852 a, 852 b and/or positive flow device 860) to recirculate another select amount of exhaust gas through the engine. It is preferable that if the exhaust gas temperature falls outside of the normal operational temperature range of the EGR system, the control system 880 signals the flow regulating device to lower the amount of exhaust to be recirculated through the engine. In one example, the normal operational temperature range of the EGR system is based in part on the operating temperature limits of the diesel engine. In another example, the normal operational temperature range of the EGR system is based in part on the temperatures at which the DPF 856 a, 856 b will passively regenerate. The control system may further be adapted to signal the flow regulating device to recirculate a select amount of exhaust gas through the engine system based in part on the operational condition of the diesel engine system within a tunnel. In one example, the normal operational temperature range of the EGR system is based in part on the operation of the locomotive in a tunnel.
  • In another embodiment, a control system 880 monitors the oxygen concentration in the airbox or, alternatively, the exhaust gas oxygen concentration at the exhaust manifold 812 using oxygen concentration sensors 884 a, 884 b. The control system 880 signals the flow regulating device (e.g., valve 852 a, 852 b and/or positive flow device 860) to recirculate a select amount of exhaust gas through the engine based on levels of oxygen concentration. In one example, if there is a high oxygen concentration, the control system 880 may be adapted to signal the flow regulating device to increase the amount of exhaust gas to be recirculated through the engine.
  • In yet another embodiment, a control system 880 monitors ambient temperature using an ambient temperature sensor 886. The control system 880 signals the flow regulating device (e.g., valve 852 a, 852 b and/or positive flow device 860) to recirculate a select amount of exhaust gas through the engine based on ambient temperature. In one example, if the ambient temperature is lower than a select temperature, the control system 880 may be adapted to signal the flow regulating device to increase the amount of exhaust gas to be recirculated through the engine to at least offset the higher levels of oxygen concentration in the recirculated exhaust gas at lower ambient temperatures.
  • In yet another embodiment, a control system 880 monitors ambient barometric pressure or altitude using an ambient barometric pressure sensor 888 or an altitude measurement device 890. The control system 880 signals the flow regulating device (e.g., valve 852 a, 852 b and/or positive flow device 860) to recirculate a select amount of exhaust gas through the engine based on ambient barometric pressure or altitude. In one example, if the barometric pressure is lower than a select value, the control system 880 may be adapted to signal the flow regulating device to decrease the amount of exhaust gas to be recirculated through the engine because there are lower levels of oxygen concentration in the recirculated exhaust gas at lower barometric pressures. Alternatively, if the altitude is lower than a select value, the control system 880 may be adapted to signal the flow regulating device to increase the amount of exhaust gas to be recirculated through the engine because there are higher levels of oxygen concentration in the recirculated exhaust gas at lower altitudes.
  • In another embodiment, a control system 880 determines and monitors the pressure differential across the DOC/DPF arrangement 854 a, 856 a, 854 b, 856 b using pressure sensors 892 a, 892 b, 894 a, 894 b. As discussed above, the DOC/DPF arrangement 854 a, 856 a, 854 b, 856 b may be adapted to passively regenerate and oxidize soot within the DPF 856 a, 856 b. However, the DPF 856 a, 856 b will accumulate ash and some soot, which must be removed in order to maintain the DPF efficiency. As ash and soot accumulate, the pressure differential across the DOC/DPF arrangement 854 a, 856 a, 854 b, 856 b increases. Accordingly, the control system 880 monitors and determines whether the DOC/DPF arrangement 854 a, 856 a, 854 b, 856 b has reached a select pressure differential at which the DPF 856 a, 856 b requires cleaning or replacement. In response thereto, the control system 880 may signal an indication that the DPF 856 a, 856 b requires cleaning or replacement. Alternatively, the control system 880 may signal the flow regulating device to lower recirculation of exhaust gas through the engine. In another embodiment, a control system 880 is shown to be coupled to a DOC/DPF doser 896 a, 896 b, which adds fuel onto the catalyst for the DOC/DPF arrangement 854 a, 856 a, 854 b, 856 b for active regeneration of the filter. The fuel reacts with oxygen in the presence of the catalyst which increases the temperature of the recirculated exhaust gas to promote oxidation of soot on the filter. In another embodiment (not shown), the control system may be coupled to a burner, heating element or other heating device for controlling the temperature of the recirculated exhaust gas to control oxidation of soot on the filter.
  • In yet another embodiment, a control system 880 measures the temperature of the exhaust gas downstream of the cooler 858 or the temperature of the coolant in the cooler 858. As shown in FIG. 8, temperature sensors 898 a, 898 b are provided for measuring exhaust gas temperature downstream of the cooler 858. If the exhaust gas temperature downstream of the cooler 858 or the coolant temperature is within a select temperature range, the control system 880 signals the flow regulating device (e.g., valve 852 a, 852 b and/or positive flow device 860) to recirculate a select amount of exhaust gas through the engine. If the exhaust gas temperature downstream of the cooler 858 or the coolant temperature falls outside of a select temperature range, the control system 880 signals the flow regulating device to recirculate another select amount of exhaust gas through the engine. In one example, the control system 880 may be adapted to monitor the coolant temperature to determine whether the conditions for condensation of the recirculated exhaust gas are present. If condensation forms, acid condensate may be introduced into the engine system. Accordingly, the control system 880 may be adapted to signal the flow regulating device to lower recirculation of exhaust gas through the engine until the conditions for condensation are no longer present.
  • In another embodiment, a control system 880 may be adapted to adaptively regulate flow based on the various discrete throttle positions of the locomotive in order to maximize fuel economy, reduce NOX emissions even further and maintain durability of the EGR system and engine components. For example, the control system 880 may signal the flow regulating device (e.g., valve 852 a, 852 b and/or positive flow device 860) to lower recirculation of exhaust gas through the engine at low idle, high idle, throttle position 1, throttle position 2 or upon application of dynamic brake. The control system 880 may be adapted to signal the flow regulating device to recirculate exhaust gas through the engine at or above throttle position 3. In one example, the control system 880 may be adapted to increase the amount of exhaust gas to be recirculated through the engine with an increase of throttle position. In yet another embodiment, the control system 880 may be adapted to increase the amount of exhaust gas to be recirculated with additional engine load. Likewise, the control system 880 may be adapted to decrease the amount of exhaust gas to be recirculated with a decreased engine load.
  • FIGS. 9 a-h illustrate an embodiment of an EGR system 950 in accordance with the system outlined in FIG. 4 for use with a two-stroke, 12-cylinder diesel engine system 101 in a locomotive 100. The EGR system 950 is sized and shaped to fit within limited length, width, and height constraints of a locomotive 100. As shown herein, the EGR system 950 is installed within the same general framework of traditional modern diesel engine locomotives. Specifically, the EGR system 950 is generally located in the limited space available between the exhaust manifold 912 of a locomotive engine and the locomotive radiators 980. In this embodiment, the EGR system 950 is shown located generally above the general location of the equipment rack 982. Also, a 12-cylinder locomotive diesel engine may be used instead of a 16-cylinder locomotive diesel engine in order to provide for more space. In an alternative embodiment (not shown), the EGR system 950 may be housed in the locomotive body near the inertial filter.
  • Generally, the EGR system 950 includes a DOC, DPF and cooler, which are packaged in an integrated EGR module 945. The EGR system 950 further includes a positive flow device 960 interconnected with the EGR module 945. The EGR system 950 receives exhaust gases from the exhaust manifold 912 of the engine 906. A valve 952 is provided between the exhaust manifold 912 and the integrated EGR module 945. The EGR module 945 processes the exhaust gases therein. The positive flow device 960 compresses the processed exhaust gas to be recirculated and introduces such upstream of the aftercooler 920 by mixing the recirculated exhaust gases with the fresh charge air from the turbocharger 900, and delivers the mixture of fresh charge air and recirculated exhaust gas to the airbox 908, as fully discussed with respect to the embodiment of FIG. 4. In this system, only a select percentage of the exhaust gases is recirculated and mixed with the intake charge air in order to selectively reduce pollutant emissions (including NOX) while achieving desired fuel efficiency. Although the EGR system 950 is an implementation of the system embodiment of FIG. 4, it may be adapted to be an implementation of any of the other previous EGR system embodiments discussed herein. For example, instead of introducing the recirculated exhaust gas upstream of the aftercooler, as described with respect to the embodiments of FIGS. 4 and 9, the recirculated exhaust gas may be introduced downstream of the aftercooler as discussed with respect to FIG. 3.
  • The integrated EGR module 945 includes a section 962 having an inlet 964 for receiving exhaust gases from the exhaust manifold 912. Specifically, the inlet section 962 of the EGR module 945 is interconnected with the exhaust manifold 912 of the engine 906. A valve 952 is provided between the exhaust manifold 912 and the inlet section 962 of the EGR module 945. In one example, the valve 952 is adaptable for determining the amount of exhaust gases to be recirculated through the engine 906. In another example, the valve 953 may act as an on/off valve for determining whether gases are to be recirculated through the engine 906.
  • Having received exhaust gas, the inlet section 962 of the EGR module 945 directs exhaust gases into a section which houses at least one diesel oxidation catalyst/diesel particulate filter (DOC/DPF) arrangement 953. Each DOC 954 uses an oxidation process to reduce the particulate matter, hydrocarbons and carbon monoxide emissions in the exhaust gases. Each DPF 956 includes a filter to reduce diesel particulate matter (PM) or soot from the exhaust gases. Oxidation and filtration is specifically used in this embodiment to reduce the particulate matter that will be introduced into engine 906 during recirculation. The introduction of particulates into the engine 906 causes accelerated wear especially in uniflow two-stroke diesel engine applications. Oxidation and filtration may also be used to prevent fouling and wear of other EGR system components (e.g., cooler 958 and positive flow device 960) or engine system components.
  • The DOC/DPF arrangement 953 is designed, sized and shaped such that they effectively reduce particulate matter under the operating parameters of the EGR system 950, fit within the limited size constraints of the locomotive 100, have a reasonable pressure drop across their substrates, and have a manageable service interval.
  • It is desirable that the DOC/DPF arrangement 953 reduces the PM in the exhaust gas by over 90% under the operating parameters of the EGR system 950. Specifically, the composition of the substrates and coatings thereon are chosen of the DOC/DPF arrangement 953 to efficiently reduce particulate matter. In one example of a 12-cylinder uniflow scavenged two-stroke diesel engine at about 3200 bhp with less than 20% exhaust gas being recirculated at full load, the DOC/DPF arrangement 953 is selected to manage and operate a mass flow of exhaust gas of from about 1.5 to about 2.5 lbm/s, having an intake temperature ranging from about 600° F. to about 1050° F., and an intake pressure of about 80 in Hga to about 110 in Hga. It is further preferable that the DOC/DPF arrangement 953 can handle a volumetric flow rate across both the DOC/DPF from about 1000 CFM to about 1300 CFM. Furthermore, the DOC/DPF arrangement 953 is further designed to endure an ambient temperature range of about −40° C. to about 125° C.
  • The DOC/DPF arrangement 953 is generally packaged such that it fits within the size constraints of the locomotive 100. As shown in this embodiment, each DOC 954 and DPF 956 is packaged in a cylindrical housing similar to those commonly used in the trucking industry. Each DOC 954 and DPF 956 has a diameter of about 12 inches. The length of each DOC 954 is about 6 inches, whereas the length of each DPF 956 is about 13 inches. The DOC 954 and DPF 946 are integrated within the EGR module 945 such that they are able to fit within the size constraints of the locomotive.
  • It is further desirable that the DOC/DPF arrangement 953 is selected to have a reasonable pressure drop across their substrates. As discussed above, it is preferable that the exhaust gas is introduced into a region of higher pressure. Accordingly, it is desirable to minimize the pressure drop across the DOC/DPF arrangement 953. In one embodiment, it is desirable for the pressure drop across both substrates to be less than about 20 in H2O.
  • Finally, it is desirable that the DOC/DPF arrangement 953 has a manageable service life. The DOC/DPF arrangement 953 accumulates ash and some soot, which is preferably discarded in order to maintain the efficiency of the DOC 954 and the DPF 956. In one example, the service interval for cleaning of the DOC/DPF arrangement 953 may be selected at about 6 months. As shown in the embodiments, each DOC 954 and DPF 956 are housed in separate but adjoining sections of the EGR module 945 such that they are removable for cleaning and replacement. For maintenance, the DOC/DPF arrangement 953 includes a flange 966 for mounting the DOC/DPF arrangement 953 together with the inlet section 962 of the EGR module 945 to the cooler 958. The fasteners associated with the mounting flange 966 of the DOC/DPF arrangement 953 may be removed such that the DOC/DPF arrangement 953 together with the inlet section 962 of the EGR module 945 may be removed from the cooler 958 and the locomotive. Thereafter, the inlet section 962, the DOC 954, and the DPF 956 may be selectively disassembled for service via flanges 968, 970. In order to facilitate serviceability, the fasteners for flanges 968, 970 are offset from the DOC/DPF arrangement 953 mounting flange 966. Accordingly, the DOC/DPF arrangement 953 together with the inlet section 962 may be removed via its mounting flange 966 without first disassembling each individual section.
  • In order to meet the operational and maintainability requirements of the EGR system 950, a plurality of DOCs and DPFs are paired in parallel paths. For example, as shown, two DOC/DPC arrangement pairs are shown in parallel in this embodiment in order to accommodate the flow and pressure drop requirements of the EGR system 950. Moreover, the DOC/DPF arrangement pairs in parallel provide for reasonable room for accumulation of ash and soot therein. Nevertheless, more or less DOC/DPF arrangement pairs may be placed in a similar parallel arrangement in order to meet the operational and maintainability requirements of the EGR system 950.
  • The integrated EGR module 945 further includes a cooler 958 interconnected to the DOC/DPF arrangement 953. The cooler 958 decreases the filtered exhaust gas temperature, thereby providing a denser intake charge to the engine 906. In one example of a cooler 958 for a 12-cylinder uniflow scavenged two-stroke diesel engine at about 3200 bhp with less than 20% exhaust gas being recirculated at full load, each DPF 956 extends into the cooler 958 and provides filtered exhaust gas at a mass flow of about 1.5 lbm/s to about 2.5 lbm/s; a pressure of about 82 in Hga to about 110 in Hga; and a density of about 0.075 lbm/ft3 to about 0.15 lbm/ft3. It is desirable that the cooler 958 reduces the temperature of the filtered exhaust gas from a range of about 600° F.-1250° F. to a range of about 200° F.-250° F. at an inlet volumetric flow rate of about 1050 CFM to about 1300 CFM. The source of the coolant for the cooler 958 may be the water jacket loop of the engine, having a coolant flow rate of about 160 gpm to about 190 gpm via coolant inlet 972. It is further desirable that the cooler 958 maintains a reasonable pressure drop therein. As discussed above, the exhaust gas is introduced into a region of higher pressure. Accordingly, it is desirable to minimize the pressure drop within the cooler 958. In one embodiment, it is desirable for the pressure drop across the cooler to be from about 3 in H2O to about 6 in H2O.
  • The cooler 958 is generally packaged such that it fits within the size constraints of the locomotive 100. As shown in this embodiment, the cooler 958 is integrated with the DOC/DPF arrangement 953. The cooler 958 has a frontal area of about 25 inches by 16 inches, and a depth of about 16 inches.
  • The EGR module 945 is connected to a positive flow device 960 via the outlet 974 from the cooler 958. The positive flow device 960 regulates the amount of cooled, filtered exhaust gas to be recirculated and introduced into the engine 906 at the aftercooler 920 upstream of its core via ducts 976. Specifically, the positive flow device 960 is illustrated as a variable speed roots style blower, which regulates the recirculation flow rate by adapting the circulation speed of the device through its inverter drive system. Specifically, by varying the speed of the positive flow device 960, a varying amount of exhaust gas may be recirculated. Other suitable positive flow devices may be implemented in order to similarly regulate the amount of exhaust gases to be recirculated.
  • As shown in FIG. 10, an exhaust aftertreatment system 1051 similar to that shown and described with respect to FIG. 2 a may be used in conjunction with an EGR system to reduce exhaust emissions. The EGR system 1050 may be similar to those shown and described with respect to any of FIGS. 3-9. Specifically, the exhaust aftertreatment system 1051 may be adapted to reduce particulate matter (PM), hydrocarbons and/or carbon monoxide emissions. In this particular arrangement, the exhaust aftertreatment system 1051 further includes a generally includes a filtration system 1055/1057 similar to that shown and described with respect to FIG. 2 a. More specifically, the exhaust aftertreatment system 1051 includes a diesel oxidation catalyst (DOC) 1055, a diesel particulate filter (DPF) 1057, a control system (for filtration monitoring and/or control) 1080 and DOC/DPF doser 1061 similar to that shown and described with respect to FIG. 2 a.
  • As shown in FIG. 11, an exhaust aftertreatment system 1151 similar to that shown and described with respect to FIG. 2 b may be used in conjunction with an EGR system to reduce exhaust emissions. The EGR system 1150 may be similar to those shown and described with respect to any of FIGS. 3-9. Specifically, the exhaust aftertreatment system 1151 may be adapted to reduce NOX in addition to particulate matter (PM), hydrocarbons and/or carbon monoxide emissions. In this particular arrangement, the exhaust aftertreatment system 1151 generally includes a filtration system and SCR system similar to that shown and described with respect to FIG. 2 b. More specifically, the exhaust aftertreatment system 1151 includes a diesel oxidation catalyst (DOC) 1155, a diesel particulate filter (DPF) 1157, a control system (for filtration and SCR monitoring and/or control) 1180 and DOC/DPF doser 1161 similar to that shown and described with respect to FIG. 2 a. Additionally, the exhaust aftertreatment system 1151 of FIG. 11 further includes a selective catalytic reduction (SCR) catalyst 1165, ammonia slip catalyst (ASC) 1167, and an SCR doser 1163 adapted to lower NOX emissions of the engine 1106.
  • FIGS. 12 a-12 l illustrate an embodiment of an exhaust aftertreatment system 1251 in accordance with the system outlined in FIG. 2B and FIG. 11 for use with a locomotive 103. The exhaust aftertreatment system 1251 is adapted to reduce NOX in addition to particulate matter (PM), hydrocarbons and/or carbon monoxide emissions. In this particular arrangement, the exhaust aftertreatment system 1251 generally includes a plurality of inline filtration systems 1255/1257, each being situated inline with a NOX reduction system 1265/1267.
  • The exhaust aftertreatment system 1251 includes a turbocharger mixing manifold 1211 for receiving exhaust gas expelled from the engine 1206 and, specifically, the turbocharger 1200.
  • Multiple discrete aftertreatment line assemblies 1268-1271 are provided in order to accommodate and treat the exhaust gas from the engine 1206. Specifically, the exhaust gas from the engine 1206 is separated based on specific operating parameters of each of the inline filtration systems 1255/1257 and NOX reduction systems 1265/1267. As shown herein, and further explained below, the turbocharger mixing manifold 1211 separates and guides the exhaust gas into a plurality of discrete exhaust aftertreatment line assemblies 1268-1271 to promote uniform distribution of exhaust gas into the subsequent inline filtration system 1255/1257 and NOX reduction system 1265/1267 of the exhaust aftertreatment system 1251. The arrangement of discrete aftertreatment line assemblies 1268-1271 further promotes thermal isolation and distribution of mass loading of the exhaust aftertreatment system 1251.
  • DOC/DPF dosers (e.g., hydrocarbon injectors) may be provided to add a select amount of fuel into the exhaust stream at the turbocharger mixing manifold 1211. The DOC/DPF dosers may be arranged with respect to the turbocharger mixing manifold 1211 to facilitate delivery of fuel to the exhaust contained within the turbocharger mixing manifold 1211 and promote mixing therein. The DOC/DPF dosers may be situated in a common rail or single line system. The operation of the DOC/DPF doser may be controlled by a control system as described with respect to the embodiment described in FIG. 2 b. The fuel reacts with oxygen in the presence of the catalyst, which increases the temperature of the exhaust gas to promote oxidation of soot on the filter of the DOC/DPF arrangement 1255/1257. The turbocharger mixing manifold 1211 may further be sized and shaped to serve as a mixing chamber, promote mixing of fuel and exhaust, and uniformly distribute this mixture to the remainder of the exhaust aftertreatment system 1251. In yet another embodiment (not shown), mixing elements may be included to promote mixing in the turbocharger mixing manifold 1211 or elsewhere upstream of the DOC/DPF arrangement 1255/1257.
  • In yet another embodiment, a burner, heating element or other heating device may be to control the temperature of the exhaust at the exhaust aftertreatment system 1251 turbocharger mixing manifold 1211 to control oxidation of soot on the filter of the DOC/DPF arrangement 1255/1257. For example, as shown in FIGS. 12 b-12 e, exhaust burner lines 1259 from the engine upstream of the turbocharger (e.g., from the engine exhaust manifold 1212) are shown in communication with the exhaust aftertreatment system 1251 via the turbocharger mixing manifold 1211 to direct a select amount of exhaust directly from the engine (e.g., from the engine exhaust manifold 1212) to a burner 1293, heating element or other heating device, and then to the turbocharger mixing manifold 1211. The select amount of exhaust is heated to a select temperature and introduced into the exhaust stream at the turbocharger mixing manifold 1211. The select amount of exhaust is preferably introduced upstream of the location of the DOC/DPF doser. The heated exhaust is mixed with the exhaust in the turbocharger mixing manifold 1211 to achieve a temperature at which oxidation of soot on the filter of the DOC/DPF arrangement 1255/1257 is promoted. The operation of the burner, heating element or other heating device may be controlled by a control system as described with respect to the embodiment described in FIG. 2 b.
  • The pressure and mass flow of exhaust exiting the turbocharger stack is generally non-uniform and varies based on throttle position of the locomotive. However, it is preferable that the pressure and mass flow of exhaust to each inline filtration 1255/1257 and NOX reduction system 1265/1267 be uniform. Accordingly, the turbocharger mixing manifold 1211 may further be sized and shaped to stabilize the exhaust airflow and promote a uniform exhaust airflow to each inline filtration 1255/1257 and NOX reduction system 1265/1267. Accordingly, as shown in FIG. 12 g, the turbocharger mixing manifold 1211 is sized and shaped such that the exhaust generally enters a volume (or static box), which is greater than the turbocharger exit. This larger volume stabilizes (or slows) the exhaust airflow and allows it to homogenize such that it may then uniformly enter into to the various discrete aftertreatment line assemblies 1268-1271 to the filtration system 1255/1257 and NOX reduction system 1265/1267.
  • The filtration system described herein for a locomotive exhaust aftertreatment system provides for a simplified strategy to service the filters. Two methodologies allow an engine operator to choose between in-situ filter removal or the removal of multiple filter elements at the system level. More specifically, this locomotive exhaust aftertreatment system allows servicing of one or more diesel particulate filters while the entire aftertreatment system resides on the locomotive or, alternatively, the entire aftertreatment system allows for complete removal. Whether removal of filters while in-situ or after decoupling of the entire aftertreatment system, it is the modularity that provides for the ease in maintenance and lower operation costs. In particular, integrated testing and servicing and assembly of the aftertreatment modules can take place away from the locomotive to ensure system functionality before installation. Moreover, the modular approach to particulate filtration will improve maintainability for locomotive operators and minimize time spent in the maintenance facility.
  • Turning first to the modular in-situ arrangement, and referring to FIG. 12 h, it will be understood that servicing individual filter elements does not require disassembly of the primary exhaust gas distribution mechanisms. A unified assembly of open or closed configuration, as required, holds one or more filter elements 1257 in place, for example, through a system connector, band, ring, truss, other coupler, or bands 1402. When tightly clamped and in the closed sealed position, these bands 1402 form the necessary seal for both gas inlet and outlet. These bands 1402 can then be loosened through joint clamps 1404 and thereby open the seal. Once the clamps 1404 are loose, the bands 1402 may be slid to the outside of the filter 1257 to free the element from the structure. As such elements are typically heavy and/or burdensome, a catch 1406 or other such handle may be provided on the surface of the filter 1257. An example of a suitable catch 1406 includes the formation of an aperture 1408 between welded sections 1410 of the catch for receiving a tool (not shown) to enable removal of the element. As it is the supporting filter structure (infra) that transfers loads from one side of the aftertreatment system to the other, and not the filter itself, there is no structural liability. As such, the present configuration ensures in-situ maintenance with a minimum of joints to break for filter removal and subsequent securing during reassembly.
  • The second modular arrangement to filter servicing exists in the overall supporting structure configuration. In particular, the aftertreatment system rests on a modular structural element or tray 1277. All elements of the aftertreatment system reside together on the tray from the turbocharger adapter to the exhaust outlet of each aftertreatment system assembly. The tray 1277 creates a removable module around which only bolted and electric and fluid connections require separation. Upon separation of the connections, which can be accomplished with simple hand tools, the removal of the entire aftertreatment module can proceed via a crane, lift or otherwise. Once the module rests away from the locomotive in an appropriate service facility, filter removal and cleaning can take place as per the in-situ method.
  • Each inline filtration system 1255/1257 includes a DOC/DPF arrangement to reduce particulate matter (PM), hydrocarbons and/or carbon monoxide emissions exhaust gas. As shown herein, and specifically illustrated in FIG. 12 h, the housing section associated with the DPF 1257 facilitates the removal of the DPF 1257 filters for cleaning and maintainability. Thereafter, the filtered exhaust gas is then mixed with an SCR reductant fluid or SCR reagent (e.g., urea-based, diesel exhaust fluid, ammonia or hydrocarbon) in a line leading to a NOX reduction system 1265/1267. For example, the SCR reductant fluid or SCR reagent may be introduced by an SCR doser upstream of the SCR 1265. The SCR reductant fluid or SCR reagent is preferably introduced to each of the exhaust aftertreatment line assemblies 1268-1271 using a common rail or single line system. The operation of the SCR doser may be controlled by a control system as described with respect to the embodiment described in FIG. 2 b. Upon injection of the SCR reductant fluid or SCR reagent, the NOX from the filtered exhaust reacts with the SCR reductant fluid or SCR reagent over the catalyst in the SCR 1265 and ASC 1267 to form nitrogen and water. Although a urea-based SCR 1265 is shown, other SCR's known in the art may also be used (e.g., hydrocarbon based SCR's, De-NOX systems, etc.). The exhaust is then released into the atmosphere via a plurality of exhaust stacks 1224-1227.
  • The exhaust aftertreatment system 1251 is sized and shaped to fit within limited length, width, and height constraints of a locomotive 103. As shown herein, the exhaust aftertreatment system 1251 is installed within the same general framework of traditional modern diesel engine locomotives. In the embodiment shown (see e.g., FIGS. 12 a, 12 b and 12 l), the exhaust aftertreatment system 1251 is generally located in the limited space available above the locomotive engine 1206 and within the width of the locomotive body frame 1275. In addition, a hood 1291 is provided having a ventilation system for releasing heat created by the exhaust aftertreatment system 1251.
  • The exhaust aftertreatment system 1251 is constructed to withstand the operational loading environment of the locomotive 103. Specifically, it is required that the exhaust aftertreatment system 1251 be connected to the engine 1206 (and specifically the turbocharger stack) to receive exhaust therefrom. However, the engine 1206 cannot support the mass load of the exhaust aftertreatment system 1251. It is therefore preferable that the mass load of the exhaust aftertreatment system 1251 be supported by the locomotive structure, rather than the engine 1206. At the same time, as illustrated in FIGS. 12 i and 12 j, it is preferable that the operational loads associated with the engine 1206 are isolated from the operational loads associated with the locomotive structure. In this embodiment, a support structure 1277 and connection system 1283 (e.g., linkage system) is provided to mount the exhaust aftertreatment system 1251 onto the structure of the locomotive. Specifically, support structure 1277 includes support beams 1279 mounted to the locomotive structure (e.g., locomotive car body frame 1275) above the engine 1206. In order to isolate the operational loads between the engine 1206 and locomotive structure, the turbocharger mixing manifold 1211 is generally flexibly connected to the discrete aftertreatment line assemblies 1268-1271 of the exhaust aftertreatment system 1251 (e.g., via a double gimble flex coupling arrangement 1294-1297) to accommodate the motions relative to one another.
  • The support system 1277 and connection system 1283 may be used to thermally isolate the heat load from the exhaust aftertreatment system 1251 from the remainder of the locomotive. A hood 1291 is also provided having a ventilation system for releasing heat created by the exhaust aftertreatment system 1251.
  • While this disclosure has been described with reference to certain illustrative aspects, it will be understood that this description shall not be construed in a limiting sense. Rather, various changes and modifications can be made to the illustrative embodiments without departing from the true spirit, central characteristics and scope of the disclosure, including those combinations of features that are individually disclosed or claimed herein. Furthermore, it will be appreciated that any such changes and modifications will be recognized by those skilled in the art as an equivalent to one or more elements of the following claims, and shall be covered by such claims to the fullest extent permitted by law. For example, the various operating parameters or values described herein exemplify representative values for the present disclosure system operating under certain conditions. Accordingly, it is expected that these values will change according to different locomotive operating parameters or conditions. In another example, although a urea-based SCR is shown, other SCR's known in the art may also be used (e.g., hydrocarbon based SCR's, De-NOX systems, etc.).

Claims (13)

  1. 1. A filter assembly for servicing filters within a locomotive exhaust aftertreatment system, the filter assembly comprising:
    one or more filters positioned within the aftertreatment system for filtering particular matter generated by a diesel locomotive engine;
    each of said filters having an exhaust gas inlet end and an exhaust gas outlet end;
    each of said ends of said filter are incorporated within said aftertreatment system by a connector; and
    each of said connectors are adapted to be in the sealed position for filtering of exhaust gas or in the open position to enable filter removal for servicing.
  2. 2. A filter assembly of claim 1 wherein said connector is a band with cooperating joint clamps whereby the clamps position the band in the sealed or open position.
  3. 3. A filter assembly of claim 1 furthering including a handle on the filter.
  4. 4. A filter assembly of claim 3 wherein said handle includes an aperture for receiving a tool.
  5. 5. An assembly for servicing filters within a locomotive exhaust aftertreatment system, the assembly comprising:
    a structural support for supporting said aftertreatment system on a locomotive, said support adapted to be removable from said locomotive;
    one or more filters positioned within the aftertreatment system for filtering particular matter generated by a diesel locomotive engine;
    each of said filters having an exhaust gas inlet end and an exhaust gas outlet end;
    each of said ends of said filter are incorporated within said aftertreatment system by a connector; and
    each of said connectors are adapted to be in the sealed position for filtering of exhaust gas or in the open position to enable filter removal for servicing.
  6. 6. An assembly of claim 5 wherein said connector is a band with cooperating joint clamps whereby the clamps position the band in the sealed or open position.
  7. 7. An assembly of claim 5 furthering including a handle on the filter.
  8. 8. An assembly of claim 7 wherein said handle includes an aperture for receiving a tool.
  9. 9. An assembly for servicing filters within a locomotive exhaust aftertreatment system, the assembly comprising:
    an aftertreatment system support module adapted to be removably coupled to a diesel locomotive engine; and
    one or more filter modules for filtering particulate matter generated by said engine, said modules adapted to be removably coupled to said aftertreatment system.
  10. 10. An assembly of claim 9 wherein each of said filter modules are incorporated within said aftertreatment system by a connector and each of said connectors are adapted to be in the sealed position for filtering of exhaust gas or in the open position to enable filter removal for servicing.
  11. 11. An assembly of claim 10 wherein said connector is a band with cooperating joint clamps whereby the clamps position the band in the sealed or open position.
  12. 12. An assembly of claim 10 furthering including a handle on the filter.
  13. 13. An assembly of claim 12 wherein said handle includes an aperture for receiving a tool.
US13173569 2010-09-30 2011-06-30 Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine Abandoned US20120079818A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US38844310 true 2010-09-30 2010-09-30
US13173569 US20120079818A1 (en) 2010-09-30 2011-06-30 Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13173569 US20120079818A1 (en) 2010-09-30 2011-06-30 Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine
PCT/US2011/053840 WO2012044740A3 (en) 2010-09-30 2011-09-29 Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine

Publications (1)

Publication Number Publication Date
US20120079818A1 true true US20120079818A1 (en) 2012-04-05

Family

ID=45888635

Family Applications (4)

Application Number Title Priority Date Filing Date
US13173569 Abandoned US20120079818A1 (en) 2010-09-30 2011-06-30 Filtration arrangement for an exhaust aftertreatment system for a locomotive two-stroke diesel engine
US13173990 Active 2033-02-26 US8793982B2 (en) 2010-09-30 2011-06-30 Control system for a two-stroke locomotive diesel engine having an exhaust aftertreatment system
US13173250 Active 2033-05-26 US9003783B2 (en) 2010-09-30 2011-06-30 Burner arrangement for a two-stroke locomotive diesel engine having an exhaust aftertreatment system
US13174284 Active 2033-06-28 US8938950B2 (en) 2010-09-30 2011-06-30 Turbocharger mixing manifold for an exhaust aftertreatment system for a locomotive having a two-stroke locomotive diesel engine

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13173990 Active 2033-02-26 US8793982B2 (en) 2010-09-30 2011-06-30 Control system for a two-stroke locomotive diesel engine having an exhaust aftertreatment system
US13173250 Active 2033-05-26 US9003783B2 (en) 2010-09-30 2011-06-30 Burner arrangement for a two-stroke locomotive diesel engine having an exhaust aftertreatment system
US13174284 Active 2033-06-28 US8938950B2 (en) 2010-09-30 2011-06-30 Turbocharger mixing manifold for an exhaust aftertreatment system for a locomotive having a two-stroke locomotive diesel engine

Country Status (2)

Country Link
US (4) US20120079818A1 (en)
WO (4) WO2012044649A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297286B2 (en) 2011-11-01 2016-03-29 Cummins Emission Solutions Inc. Aftertreatment system for an engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057316B2 (en) 2012-12-03 2015-06-16 Tenneco Automotive Operating Company Inc. Exhaust component mounting structure
US9222388B2 (en) 2013-02-28 2015-12-29 Tenneco Automotive Operating Company Inc. Urea common rail
US9845722B2 (en) * 2014-09-29 2017-12-19 Electro-Motive Diesel, Inc. Engine system for emissions compliance
US9598091B2 (en) 2014-09-29 2017-03-21 Electro-Motive Diesel, Inc. Air intake system for an engine
US9849958B2 (en) * 2015-08-24 2017-12-26 Electro-Motive Diesel, Inc. Packaging aftertreatment system of engine of a marine vessel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348084B1 (en) * 1999-11-05 2002-02-19 Donaldson Company, Inc. Filter element, air cleaner, and methods
US6589308B1 (en) * 1997-02-28 2003-07-08 Angelo Gianelo Cabinet for housing a computer workstation
US6877780B2 (en) * 2000-06-23 2005-04-12 Breeze-Torca Products, Llc Clamp for joining tubular bodies
US6902603B2 (en) * 2003-01-27 2005-06-07 Engineering Dynamics Ltd. Integrated air filtration unit
US6966935B1 (en) * 2003-08-11 2005-11-22 Neighbors Thomas J Filter cleaner for wet/dry vacuum
US7550024B2 (en) * 2006-09-07 2009-06-23 Cummins Filtration Ip, Inc. Serviceable exhaust aftertreatment assembly and method
US7655074B2 (en) * 2003-11-12 2010-02-02 Donaldson Company, Inc. Filter arrangements; side-entry housings; and methods

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603498C2 (en) * 1986-02-05 1992-04-30 Audi Ag, 8070 Ingolstadt, De
JPH02196120A (en) * 1989-01-24 1990-08-02 Nissan Motor Co Ltd Exhaust particulate processing equipment for internal combustion engine
US5320523A (en) 1992-08-28 1994-06-14 General Motors Corporation Burner for heating gas stream
DE19504183A1 (en) 1995-02-09 1996-08-14 Eberspaecher J Diesel engine particle filter regenerating burner
DE19514020A1 (en) * 1995-04-13 1996-10-17 Daimler Benz Ag An exhaust manifold, particularly for an internal combustion engine in a motor vehicle, and process for its preparation
US5771683A (en) 1995-08-30 1998-06-30 Southwest Research Institute Active porous medium aftertreatment control system
US6696389B1 (en) * 1996-02-23 2004-02-24 Daimlerchrysler Ag Process and apparatus for cleaning a gas flow
DE19738859A1 (en) * 1997-09-05 1999-03-11 Bosch Gmbh Robert Mix dispenser
DE19855384A1 (en) * 1998-12-01 2000-06-08 Bosch Gmbh Robert Device for the aftertreatment of exhaust gases of an internal combustion engine
DE10005490A1 (en) * 2000-02-08 2001-08-16 Bosch Gmbh Robert Heating system for motor vehicle driven by IC engine which has heater with combustion chamber and fuel injection system also ignition unit and air blower and is controlled depending on operating parameters
JP3599012B2 (en) * 2001-10-01 2004-12-08 トヨタ自動車株式会社 Exhaust gas purification system for an internal combustion engine
US6415603B1 (en) * 2001-10-04 2002-07-09 Ford Global Technologies, Inc. Flexible connector assembly
US6921112B2 (en) 2002-11-26 2005-07-26 Josif Atansoski Exhaust vibration decoupling connector
US20040112046A1 (en) * 2002-12-13 2004-06-17 Prasad Tumati Thermal management of integrated emission reduction system
DE20303759U1 (en) * 2003-03-10 2004-07-22 Friedrich Boysen Gmbh & Co. Kg Exhaust system of an internal combustion engine
US7571602B2 (en) 2005-05-19 2009-08-11 Gm Global Technology Operations, Inc. Exhaust aftertreatment system and method of use for lean burn internal combustion engines
US7320504B2 (en) * 2005-08-18 2008-01-22 Mobile Heat Exchange, Llc Vehicle heater using engine exhaust
JP2007064073A (en) * 2005-08-30 2007-03-15 Toyota Industries Corp Exhaust pipe and exhaust emission control device
JP2007255256A (en) * 2006-03-22 2007-10-04 Daihatsu Motor Co Ltd Exhaust emission control device in internal combustion engine
JP4687548B2 (en) * 2006-04-19 2011-05-25 株式会社デンソー Exhaust emission control device for an internal combustion engine
US20080141662A1 (en) 2006-12-14 2008-06-19 Markus Schuster Fluid injecting and mixing systems for exhaust after-treatment devices
US8069655B2 (en) * 2007-08-13 2011-12-06 Cummins Filtration Ip, Inc. Apparatus, system, and method for using a fraction of engine exhaust to deliver a dosant
JP4884332B2 (en) * 2007-08-21 2012-02-29 トヨタ自動車株式会社 Exhaust system of an internal combustion engine
US20100263356A1 (en) * 2007-12-21 2010-10-21 Renault Trucks Arrangement for an exhaust line of an internal combustion engine
WO2009111223A3 (en) * 2008-02-29 2009-12-03 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
US7980061B2 (en) * 2008-03-04 2011-07-19 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
US20100031643A1 (en) * 2008-08-11 2010-02-11 Caterpillar Inc. Air system including a variable geometry turbocharger for supplying air to a regeneration system
JP5047903B2 (en) 2008-08-11 2012-10-10 日野自動車株式会社 Control method for an exhaust gas purification apparatus
US20120010188A1 (en) * 2008-12-04 2012-01-12 Promimagen Ltd. Imidazopyridine Compounds
US20100186394A1 (en) * 2009-01-26 2010-07-29 Caterpillar Inc. Exhaust gas after treatment assembly
EP2415985B1 (en) * 2009-04-02 2015-03-11 Toyota Jidosha Kabushiki Kaisha Temperature raising system for an exhaust gas purification catalyst
US8307630B2 (en) * 2009-12-02 2012-11-13 International Engine Intellectual Property Company, Llc Engine exhaust system having a plurality of diesel particulate filters
JP5118265B2 (en) * 2010-03-01 2013-01-16 株式会社小松製作所 Air supply control device and the air supply control method for an internal combustion engine
CN103502592A (en) * 2010-03-02 2014-01-08 丰田自动车株式会社 Exhaust purifying apparatus for internal combustion engine
EP2546502A1 (en) * 2010-03-11 2013-01-16 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
JP5115656B2 (en) * 2010-08-23 2013-01-09 トヨタ自動車株式会社 Exhaust treatment method and device for an internal combustion engine
US20120067331A1 (en) * 2010-09-16 2012-03-22 Caterpillar Inc. Controlling engine braking loads using cat regeneration system (CRS)
US20120073270A1 (en) * 2010-09-27 2012-03-29 Cox Glenn B Exhaust system and retrofitting method
US8813494B2 (en) * 2011-09-07 2014-08-26 General Electric Company Method and system for a turbocharged engine
US20130343959A1 (en) * 2012-06-21 2013-12-26 Tenneco Automotive Operating Company Inc. Common rail reductant injection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589308B1 (en) * 1997-02-28 2003-07-08 Angelo Gianelo Cabinet for housing a computer workstation
US6348084B1 (en) * 1999-11-05 2002-02-19 Donaldson Company, Inc. Filter element, air cleaner, and methods
US6877780B2 (en) * 2000-06-23 2005-04-12 Breeze-Torca Products, Llc Clamp for joining tubular bodies
US6902603B2 (en) * 2003-01-27 2005-06-07 Engineering Dynamics Ltd. Integrated air filtration unit
US6966935B1 (en) * 2003-08-11 2005-11-22 Neighbors Thomas J Filter cleaner for wet/dry vacuum
US7655074B2 (en) * 2003-11-12 2010-02-02 Donaldson Company, Inc. Filter arrangements; side-entry housings; and methods
US7550024B2 (en) * 2006-09-07 2009-06-23 Cummins Filtration Ip, Inc. Serviceable exhaust aftertreatment assembly and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297286B2 (en) 2011-11-01 2016-03-29 Cummins Emission Solutions Inc. Aftertreatment system for an engine

Also Published As

Publication number Publication date Type
US20120079811A1 (en) 2012-04-05 application
WO2012044740A2 (en) 2012-04-05 application
WO2012044740A3 (en) 2012-06-07 application
US8938950B2 (en) 2015-01-27 grant
WO2012044649A3 (en) 2012-06-21 application
US20120079816A1 (en) 2012-04-05 application
US20120079819A1 (en) 2012-04-05 application
US9003783B2 (en) 2015-04-14 grant
WO2012044647A2 (en) 2012-04-05 application
WO2012044731A3 (en) 2012-06-07 application
US8793982B2 (en) 2014-08-05 grant
WO2012044731A2 (en) 2012-04-05 application
WO2012044647A3 (en) 2012-06-07 application
WO2012044649A2 (en) 2012-04-05 application

Similar Documents

Publication Publication Date Title
US5753188A (en) Apparatus for purifying the exhaust gas of diesel engines
US7490462B2 (en) Turbocharged exhaust gas recirculation system
US5802846A (en) Exhaust gas recirculation system for an internal combustion engine
US6324847B1 (en) Dual flow turbine housing for a turbocharger in a divided manifold exhaust system having E.G.R. flow
US5771868A (en) Turbocharging systems for internal combustion engines
US20070144170A1 (en) Compressor having integral EGR valve and mixer
US20080223038A1 (en) Arrangement for Recirculating and Cooling Exhaust Gas of an Internal Combustion Engine
US7299793B1 (en) EGR metallic high load diesel oxidation catalyst
US6526753B1 (en) Exhaust gas regenerator/particulate trap for an internal combustion engine
US6484500B1 (en) Two turbocharger engine emission control system
US20060021335A1 (en) Exhaust treatment system having particulate filters
US6625978B1 (en) Filter for EGR system heated by an enclosing catalyst
US20060266019A1 (en) Low-pressure EGR system and method
US20110041495A1 (en) Systems and methods for exhaust gas recirculation
US6981375B2 (en) Turbocharged internal combustion engine with EGR flow
US5785030A (en) Exhaust gas recirculation in internal combustion engines
US7043914B2 (en) EGR system for internal combustion engine provided with a turbo-charger
US20090013977A1 (en) Intake condensation removal for internal combustion engine
DE4007516A1 (en) Reduction of exhaust pollution of diesel engine - by fitting particle filter and oxidising catalyser
US5671600A (en) Method of reducing the NOx emission of a supercharged piston-type internal combustion engine
US20080041051A1 (en) Internal combustion engine having a low-pressure exhaust-gas recirculation
US6691687B1 (en) Crankcase blow-by filtration system
US8167067B2 (en) Agricultural vehicle emission aftertreatment device utilizing heat exchanger ventilation
US6964158B2 (en) Method and apparatus for particle-free exhaust gas recirculation for internal combustion engines
WO1999009307A1 (en) Improvements in emissions control