US20120022091A1 - Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof - Google Patents
Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof Download PDFInfo
- Publication number
- US20120022091A1 US20120022091A1 US13/145,783 US201013145783A US2012022091A1 US 20120022091 A1 US20120022091 A1 US 20120022091A1 US 201013145783 A US201013145783 A US 201013145783A US 2012022091 A1 US2012022091 A1 US 2012022091A1
- Authority
- US
- United States
- Prior art keywords
- compound
- formula
- rosuvastatin
- process according
- pharmaceutically acceptable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229960000672 rosuvastatin Drugs 0.000 title claims abstract description 62
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 title claims abstract description 62
- 150000003839 salts Chemical class 0.000 title claims description 37
- 230000015572 biosynthetic process Effects 0.000 title claims description 21
- 238000003786 synthesis reaction Methods 0.000 title claims description 21
- 239000000543 intermediate Substances 0.000 title abstract description 13
- 238000002360 preparation method Methods 0.000 claims abstract description 34
- 150000001875 compounds Chemical class 0.000 claims description 127
- 238000000034 method Methods 0.000 claims description 81
- 238000006243 chemical reaction Methods 0.000 claims description 38
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 37
- 238000005893 bromination reaction Methods 0.000 claims description 30
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 20
- 230000031709 bromination Effects 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 16
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000000047 product Substances 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 9
- 238000006460 hydrolysis reaction Methods 0.000 claims description 9
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 9
- 230000007062 hydrolysis Effects 0.000 claims description 8
- 150000007529 inorganic bases Chemical class 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- FNXLCIKXHOPCKH-UHFFFAOYSA-N bromamine Chemical compound BrN FNXLCIKXHOPCKH-UHFFFAOYSA-N 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 125000006239 protecting group Chemical group 0.000 claims description 7
- 229910020667 PBr3 Inorganic materials 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 claims description 6
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 5
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 5
- 239000004480 active ingredient Substances 0.000 claims description 5
- 125000003342 alkenyl group Chemical group 0.000 claims description 5
- 150000001450 anions Chemical class 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 238000005580 one pot reaction Methods 0.000 claims description 4
- ZJEQUGWMBSKCCM-UHFFFAOYSA-N 1-bromopiperidine-2,6-dione Chemical compound BrN1C(=O)CCCC1=O ZJEQUGWMBSKCCM-UHFFFAOYSA-N 0.000 claims description 3
- MARXMDRWROUXMD-UHFFFAOYSA-N 2-bromoisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(Br)C(=O)C2=C1 MARXMDRWROUXMD-UHFFFAOYSA-N 0.000 claims description 3
- CTZSJHSBNAIBKP-UHFFFAOYSA-N 3-bromoimidazolidine-2,4-dione Chemical compound BrN1C(=O)CNC1=O CTZSJHSBNAIBKP-UHFFFAOYSA-N 0.000 claims description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- VRLDVERQJMEPIF-UHFFFAOYSA-N dbdmh Chemical compound CC1(C)N(Br)C(=O)N(Br)C1=O VRLDVERQJMEPIF-UHFFFAOYSA-N 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- OTVPURYEWXIAKH-UHFFFAOYSA-N n,n-dibromobenzenesulfonamide Chemical class BrN(Br)S(=O)(=O)C1=CC=CC=C1 OTVPURYEWXIAKH-UHFFFAOYSA-N 0.000 claims description 3
- VBTQNRFWXBXZQR-UHFFFAOYSA-N n-bromoacetamide Chemical compound CC(=O)NBr VBTQNRFWXBXZQR-UHFFFAOYSA-N 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- MSDYDUNHTAYBHV-UHFFFAOYSA-N n-[4-(4-fluorophenyl)-5-(hydroxymethyl)-6-propan-2-ylpyrimidin-2-yl]-n-methylmethanesulfonamide Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1CO MSDYDUNHTAYBHV-UHFFFAOYSA-N 0.000 abstract description 27
- VZTXNOOWMMDDLR-UHFFFAOYSA-N n-[4-(4-fluorophenyl)-5-methyl-6-propan-2-ylpyrimidin-2-yl]-n-methylmethanesulfonamide Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1C VZTXNOOWMMDDLR-UHFFFAOYSA-N 0.000 abstract description 22
- PHEVHIWIKJRWDB-UHFFFAOYSA-N n-[5-(bromomethyl)-4-(4-fluorophenyl)-6-propan-2-ylpyrimidin-2-yl]-n-methylmethanesulfonamide Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1CBr PHEVHIWIKJRWDB-UHFFFAOYSA-N 0.000 abstract description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 48
- 0 *OC(=O)C[C@@H](C[C@@H](OC)OP)OPP.CO[C@@H]1C[C@@H](OP)CC(=O)O1 Chemical compound *OC(=O)C[C@@H](C[C@@H](OC)OP)OPP.CO[C@@H]1C[C@@H](OP)CC(=O)O1 0.000 description 15
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 14
- 238000002425 crystallisation Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- 239000006227 byproduct Substances 0.000 description 9
- 150000004714 phosphonium salts Chemical class 0.000 description 9
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 8
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 8
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 238000007239 Wittig reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- -1 azo compound Chemical class 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- SIPUZPBQZHNSDW-UHFFFAOYSA-N diisobutylaluminium hydride Substances CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 6
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- JWBCOVSQKNGAIH-UHFFFAOYSA-N CC(C)(C)[P+](C)(C)C.CC(C)(C)[PH](C)(C)(C)=O.CC(C)(C)[PH](C)(C)(C)=O.[CH3-] Chemical compound CC(C)(C)[P+](C)(C)C.CC(C)(C)[PH](C)(C)(C)=O.CC(C)(C)[PH](C)(C)(C)=O.[CH3-] JWBCOVSQKNGAIH-UHFFFAOYSA-N 0.000 description 5
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 5
- 229910052794 bromium Inorganic materials 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 4
- OCBZJMKCXQXFQJ-UHFFFAOYSA-N CCC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.C[CH-]C1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1 Chemical compound CCC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.C[CH-]C1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1 OCBZJMKCXQXFQJ-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000007348 radical reaction Methods 0.000 description 3
- LALFOYNTGMUKGG-BGRFNVSISA-L rosuvastatin calcium Chemical compound [Ca+2].CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O.CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O LALFOYNTGMUKGG-BGRFNVSISA-L 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 description 2
- SDTORDSXCYSNTD-UHFFFAOYSA-N 1-methoxy-4-[(4-methoxyphenyl)methoxymethyl]benzene Chemical compound C1=CC(OC)=CC=C1COCC1=CC=C(OC)C=C1 SDTORDSXCYSNTD-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical group C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- YFLOINUCULQINF-UHFFFAOYSA-N CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(CO)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.II.I[IH]I Chemical compound CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(CO)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.II.I[IH]I YFLOINUCULQINF-UHFFFAOYSA-N 0.000 description 2
- OGPUQIIMSBSPCY-UHFFFAOYSA-N CCC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1 Chemical compound CCC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1 OGPUQIIMSBSPCY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 150000002432 hydroperoxides Chemical class 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- NSPJNIDYTSSIIY-UHFFFAOYSA-N methoxy(methoxymethoxy)methane Chemical compound COCOCOC NSPJNIDYTSSIIY-UHFFFAOYSA-N 0.000 description 2
- WBSFJYIYABHYRN-UHFFFAOYSA-N n-[5-(diethoxyphosphorylmethyl)-4-(4-fluorophenyl)-6-propan-2-ylpyrimidin-2-yl]-n-methylmethanesulfonamide Chemical class CCOP(=O)(OCC)CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1 WBSFJYIYABHYRN-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 150000004967 organic peroxy acids Chemical class 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 239000003586 protic polar solvent Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229960004796 rosuvastatin calcium Drugs 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- GYNVOHNBBFGIDM-ZJUUUORDSA-N (2s,4r)-4-[tert-butyl(dimethyl)silyl]oxy-6-oxooxane-2-carbaldehyde Chemical compound CC(C)(C)[Si](C)(C)O[C@@H]1C[C@@H](C=O)OC(=O)C1 GYNVOHNBBFGIDM-ZJUUUORDSA-N 0.000 description 1
- GPAAEZIXSQCCES-UHFFFAOYSA-N 1-methoxy-2-(2-methoxyethoxymethoxymethoxy)ethane Chemical compound COCCOCOCOCCOC GPAAEZIXSQCCES-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- ZVKKJEIJLXETQC-JJABNCBASA-N C1CCOC1.CC(C)(C)[Si](C)(C)O[C@H]1CC(=O)O[C@H](C(O)O)C1.CC(C)C1=C(/C=C/[C@@H]2C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O2)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(C=P(C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(C[P+](C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.CO[C@@H]1C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O1.I.O.[Br-] Chemical compound C1CCOC1.CC(C)(C)[Si](C)(C)O[C@H]1CC(=O)O[C@H](C(O)O)C1.CC(C)C1=C(/C=C/[C@@H]2C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O2)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(C=P(C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(C[P+](C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.CO[C@@H]1C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O1.I.O.[Br-] ZVKKJEIJLXETQC-JJABNCBASA-N 0.000 description 1
- BTQDZSDIYDEJAD-UHFFFAOYSA-N CC#N.CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.II Chemical compound CC#N.CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.II BTQDZSDIYDEJAD-UHFFFAOYSA-N 0.000 description 1
- WVCVWMJPLRWSBO-UHFFFAOYSA-N CC#N.CC(C)C1=C(CO)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.I[IH]I Chemical compound CC#N.CC(C)C1=C(CO)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.I[IH]I WVCVWMJPLRWSBO-UHFFFAOYSA-N 0.000 description 1
- VMWNJGJIWLXKEW-UHFFFAOYSA-N CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(CO)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.II.I[IH]I Chemical compound CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC(C)C1=C(CO)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.II.I[IH]I VMWNJGJIWLXKEW-UHFFFAOYSA-N 0.000 description 1
- RZAUHEZFXRJKRI-UHFFFAOYSA-N CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.II Chemical compound CC(C)C1=C(CBr)C(C2=CC=C(F)C=C2)=NC(N(C)S(C)(=O)=O)=N1.CC1=C(C(C)C)N=C(N(C)S(C)(=O)=O)N=C1C1=CC=C(F)C=C1.I.II RZAUHEZFXRJKRI-UHFFFAOYSA-N 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- SPAQZVGKOIWBPD-QPCPCNQSSA-N CI.CO[C@@H]1C[C@@H](OP)CC(=O)O1.O.O=C1C[C@H](OP)C[C@@H](C(O)O)O1 Chemical compound CI.CO[C@@H]1C[C@@H](OP)CC(=O)O1.O.O=C1C[C@H](OP)C[C@@H](C(O)O)O1 SPAQZVGKOIWBPD-QPCPCNQSSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000032928 Dyslipidaemia Diseases 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000017170 Lipid metabolism disease Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Chemical class 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GGEHQGAHLWFTET-UHFFFAOYSA-M [4-(4-fluorophenyl)-2-[methyl(methylsulfonyl)amino]-6-propan-2-ylpyrimidin-5-yl]methyl-triphenylphosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)CC=1C(C(C)C)=NC(N(C)S(C)(=O)=O)=NC=1C1=CC=C(F)C=C1 GGEHQGAHLWFTET-UHFFFAOYSA-M 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000003524 antilipemic agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- KFVUXNKQQOUCAH-UHFFFAOYSA-N butan-1-ol;propan-2-ol Chemical compound CC(C)O.CCCCO KFVUXNKQQOUCAH-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001913 cellulose Chemical class 0.000 description 1
- 229920002678 cellulose Chemical class 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- CPZBTYRIGVOOMI-UHFFFAOYSA-N methylsulfanyl(methylsulfanylmethoxy)methane Chemical compound CSCOCSC CPZBTYRIGVOOMI-UHFFFAOYSA-N 0.000 description 1
- 239000008108 microcrystalline cellulose Chemical class 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- VBQCHPIMZGQLAZ-UHFFFAOYSA-N phosphorane Chemical group [PH5] VBQCHPIMZGQLAZ-UHFFFAOYSA-N 0.000 description 1
- 229940096701 plain lipid modifying drug hmg coa reductase inhibitors Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/32—One oxygen, sulfur or nitrogen atom
- C07D239/42—One nitrogen atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/535—Organo-phosphoranes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
Definitions
- the present invention relates to a process for the preparation of N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide, N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide, useful as key intermediates for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof.
- the present invention further relates to a process wherein the above mentioned compounds are used as intermediates.
- HMG-CoA reductase inhibitors are commonly referred to as “statins.”
- Statins are therapeutically effective drugs used for reducing low density lipoprotein (LDL) particle concentration in the blood stream of patients at risk for cardiovascular disease. Therefore, Rosuvastatin calcium is used in the treatment of hypercholesterolemia and mixed dyslipidemia.
- LDL low density lipoprotein
- the EP 521471 A1 discloses Rosuvastatin and a process for its preparation, among others by a process comprising a step of preparing N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide by reduction of a suitable ester derivative thereof with diisobutylaluminium hydride (DIBAL-H) as a reduction reagent.
- DIBAL-H diisobutylaluminium hydride
- the object of the present invention is to provide an improved process for preparing N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide, N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide, so as to provide valuable intermediates for the preparation of Rosuvastatin and pharmaceutically acceptable salts thereof.
- N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide respectively can be carried out by selecting suitable starting materials which can be converted to the desired product without the necessity of aggressive, difficult to handle and/or expensive reagents.
- DIBAL-H diisobutylaluminium hydride
- the reduction must be carried out at temperatures around or below 0° C. (preferably up to ⁇ 70° C.) under dry/anhydrous conditions.
- DIBAL-His an expensive and hazardous reagent.
- the reduction is carried out with KBH 4 /ZnCl 2 as the reducing agent, which also requires dry/anhydrous conditions.
- KBH 4 /ZnCl 2 as the reducing agent, which also requires dry/anhydrous conditions.
- there is the problem of unreacted starting material and generation of byproducts which are hardly removed in the subsequent Rosuvastatin synthesis steps if dry/anhydrous conditions are not employed and reaction does't go to completion.
- Said nucleophilic substitution reaction has significant drawbacks, inter alia since HBr is a very corrosive and aggressive reagent, and the alternative reactant PBr 3 is toxic, evolves corrosive HBr, and reacts violently with water and alcohols which makes it difficult to handle.
- nucleophilic substitution reaction for introduction of bromine with HBr or PBr 3 is not used but the compound of formula II is prepared by converting a compound of formula I by bromination into the compound of formula II as presented on the following scheme:
- compound II N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide
- the reaction can be carried out most efficiently by radical bromination reaction, optionally assisted by UV irridation and/or use of radical formers.
- bromination notably when proceeding with radical reaction, significantly differs from the introduction of bromine by means of a nucleophilic substitution reaction (e.g. wherein compound of the formula III is converted into compound of the formula II).
- a nucleophilic substitution reaction requires a leaving group such as for example —OH of the compound of the formula III.
- the compound of the formula I does not require such a leaving group.
- N-bromoamides provide for a constant, low concentration of bromine in the reaction mixture during reaction.
- said N-bromoamides are selected from the group consisting of N-bromoacetamide, N,N-dibromobenzene sulfonamides; the N-bromoimides, such as N-bromosuccinimide, N-bromophthalimide, N-bromoglutarimide, 3-bromo-hydantoin, and 1,3-dibromo-5,5-dimethylhydantoin.
- N-bromosuccinimide is the most preferred brominating agent, since it is readily commercially availably and economically priced.
- the aforementioned bromination agents provide for mild reaction conditions resulting in less byproducts. HBr and PBr 3 , which are aggressive and difficult to handle reactants which would negatively affect purity and yield of the compound of formula II, can be avoided.
- the initial amount of said brominating agents is from about 0.1 to about 3 times the molar stoichiometric amount based on compound I, preferably about 0.9 to about 2.5 times, more preferably about 1.4 to about 2.2 times, and in particular about 2 times. In this way, efficient bromination resulting in high yields of compound II is provided, while economical amounts of brominating agent are used.
- the above mentioned bromination reaction is suitably performed in organic solvent, preferably selected from the group consisting of acetone, ethyl acetate, hydrocarbons, aromatic hydrocarbons and acetonitrile. Most preferably, acetonitrile is used as organic solvent.
- organic solvent preferably selected from the group consisting of acetone, ethyl acetate, hydrocarbons, aromatic hydrocarbons and acetonitrile. Most preferably, acetonitrile is used as organic solvent.
- organic solvents provide for suitable solubilisation of the reactants and advantageous reaction rates. Furthermore, these organic solvents are largely less toxic than carbon tetrachloride or chlorobenzene, which have been typically used in radical bromination of hydrocarbon side chains of aromatic substrates.
- the step of reacting a compound of formula I with brominating agent to give the compound of formula II is performed under a treatment of ultraviolet radiation, wherein said ultraviolet radiation has preferably a wavelength of about 200 to 400 nm, more preferably about 310 nm. Said ultraviolet radiation is preferably performed for 2 to 10 hours, more preferably for about 4 hours.
- the bromination reaction is carried out at suitable temperature, preferably at a temperature between 0 to 90° C., more preferably between 10 to 65° C., even more preferably between 15 to 35° C. and in particular at an ambient temperature between 19 to 25° C.
- suitable temperature preferably at a temperature between 0 to 90° C., more preferably between 10 to 65° C., even more preferably between 15 to 35° C. and in particular at an ambient temperature between 19 to 25° C.
- radical bromination proceeds within relatively short reaction times and high yields, even if no radical former is applied.
- the absence of a radical former is advantageous, since the reaction becomes more safe in view of operational safety, because radical formers are quite reactive and therefore dangerous to handle compounds. Furthermore, the costs for a radical former can be saved. Therefore, it is preferred to perform the bromination without a radical former. In addition, significantly less impurities are formed during the reaction if no radical former is used.
- a radical former may be applied.
- the radical former is preferably an organic peroxide, an organic peracid, an organic hydroperoxide or an organic azo compound. These radical performers are suitable for accelerating/supporting radical reactions. More preferably, the radical former is selected from benzoyl peroxide or azoisobutyronitrile, since these radical performers are readily commercially available and inexpensive.
- the initial amount of radical former is between about 0 to 0.5 molar stoichiometric amount based on compound I, preferably about 0 to 0.07 molar stoichiometric amount based on compound I, and more preferably no radical former is applied.
- the aforementioned amounts of radical former provide for an advantageous acceleration of the reaction, while still providing a stable and safe reaction.
- the compound of formula II is isolated and purified, preferably by crystallization.
- a simple and effective purification method is applied, compared to labor, time and material intensive column chromatography. Since the bromination reaction is performed under mild conditions, there are less byproducts, and therefore, crystallisation will be sufficient in order to provide an advantageously pure product. Furthermore, it was found by that crystallisation performed with an MTBE/hexane mixture, and in particular with an MTBE/hexane mixture wherein the volume ratio of MTBE to hexane is 2 to 1, preferably 1 to 1 and more preferably 2 to 3 is particularly advantageous.
- the compound of formula I can be obtained by a targeted synthesis. Or, according to a preferred embodiment, the compound of formula I is obtained as a side product in the preparation of rosuvastatin intermediates where the compound of formula I is formed in a Wittig reaction between a phosphonium salt, phosphine oxide or phosphonate (compound of formula X) of a corresponding rosuvastatin heterocycle—or their converted reagents in the corresponding ylide or phosphorane form (for phosphonium salt) or corresponding carbanion (for phosphine oxide or phosphonate) (compound of formula X′)—and a chiral statin side chain.
- Z in the compound of formula X and X′ is selected from the group consisting of phosphonium salt moiety, phosphine oxide moiety or phosphonate moiety:
- Rx, Ry, Rz are the same or different and are selected from optionally substituted C 1 -C 8 alkyl or C 3 -C 6 cycloalkyl or C 1 -C 8 alkenyl or C 5 -C 6 cycloalkenyl or aryl, preferably phenyl, and X ⁇ is an anion, preferably a halogen or carboxylate anion, more preferably chloride, bromide or trifluoroacetate;
- P 1 and P 2 independently denote conventional hydroxyl protecting groups.
- the protecting group P 1 and P 2 may be any conventionally used protecting group for hydroxyl groups, for example selected independently from the group consisting of alkyl, branched alkyl, acyl, silyl or similar group, more particularly selected from acetonide, acetyl (Ac), pivaloyl (Piv), p-toluenesulfonyl (TOS), ⁇ -methoxyethoxymethyl ether (MEM), methoxymethyl ether (MOM), p-methoxybenzyl ether (PMB), methylthiomethyl ether, t-butyl, tetrahydropyranyl (THP), benzyl (Bn), diphenylmethyl or triphenylmethyl group, preferably silyl protecting group which can be represented by a formula SiR 1 ′R 2 ′R 3 ′ in which R 1 ′, R 2 ′, R 3 ′ are
- the protected final rosuvastatin intermediate can be used to proceed with the final synthesis steps for obtaining rosuvastatin or its salts, while alternatively or in addition the compound of formula I can be utilized by being recycled into another (same or different) rosuvastatin synthesis route.
- reaction products obtained in the Wittig reaction can be respectively separated by appropriate and known methods into the compound of formula I and the compound selected from formulas XI or XI′.
- the compound of formula I is more substantially formed when the Wittig reaction is performed with excess of the phosphonium salt (or its ylide or phosphorane), phosphine oxide (or its carbanion) or phosphonate (or its carbanion) Wittig reagent (e.g. a molar excess of compound X or X′ over compound IX or IX′ of suitably 5% or more, preferably 10% or more, and particularly 15% or more), more effectively after quenching with protic solvent, and/or when the Wittig reaction is performed in the presence of water or other protic molecules such as alcohols (e.g.
- the starting compound of formula IX can obtained from its hydrate form in an appropriate solvent but without removal of the released water molecules, as shown in the following reaction scheme,
- THF tetrahydrofuran
- the compound of formula II can be directly transformed to phosphonium salt derivative, phosphine oxide or phosphonate (see e.g. US2005/0124639).
- the compound of formula I can be transformed to the compound of formula III, which can be converted to phosphonium salt derivative, phosphine oxide or phosphonate (see e.g. WO2007/017117).
- the compound of formula II can be prepared by prior art processes (see e.g. WO2007/017117), this process cannot be applied for the recovery of compound I to phosphonium salt derivative, phosphine oxide or phosphonate.
- prior-art processes for the preparation of compound III as disclosed in the EP521471 cannot be used for recovery of the compound of formula I to phosphonium salt derivative, phosphine oxide or phosphonate.
- a compound of formula III is prepared by a process comprising the step of converting a compound of formula II by hydrolysis into the compound of formula III, as depicted in the following scheme:
- the above mentioned conversion is performed in the presence of an inorganic base, preferably an alkaline or alkaline earth carbonate or hydrogencarbonate, more preferably NaHCO 3 is used as the inorganic base.
- an inorganic base preferably an alkaline or alkaline earth carbonate or hydrogencarbonate, more preferably NaHCO 3 is used as the inorganic base.
- the initial amount of inorganic base is between about 1 to 10 times the molar stoichiometric amount based on compound II, preferably about 3 to 7 times and more preferably 5 to 6 times.
- the compound of formula III is prepared by a one-pot synthesis converting compound of formula I via non-isolated compound of formula II into the compound of formula ill as depicted in the following scheme.
- the aforementioned one-pot synthesis is carried out by converting compound of formula I into compound of formula II by the above described bromination according to the present invention, or/and converting compound of formula II into compound of formula III by the above described hydrolysis according to the invention.
- a solvent to the resulting reaction batch after conversion of compound of formula I into compound of formula II is performed, in order to dilute the reaction batch. Conversion of compound of formula I into compound of formula II may e.g. be monitored by thin layer chromatography or high pressure liquid chromatography (HPLC).
- said solvent for dilution is selected from the group of solvents described for the above mentioned bromination reaction, and more preferably it is the same solvent as used in the bromination reaction.
- an advantageous degree of dissolution of the compound of the formula II is obtained, which in turn provides for a smooth hydrolysis giving rise to high yields.
- the process for preparing the compound of the formula III further comprises the step of purifying compound of formula III, preferably by crystallization.
- a simple and effective purification method is applied, compared to labor, time and material intensive column chromatography. Since the hydrolysis reaction provides for a full conversion of compound of the formula II into compound of the formula III, crystallisation will be sufficient in order to provide an advantageously pure product. Furthermore, it was found by that crystallisation performed with an MTBE/hexane mixture, and in particular with an MTBE/hexane mixture wherein the volume ratio of MTBE to hexane is 2 to 1, preferably 1 to 1 and more preferably 2 to 3 is particularly advantageous.
- first Rosuvastatin or pharmaceutically acceptable salts thereof is provided by the process as described above.
- Rosuvastatin or pharmaceutically acceptable salts thereof is suitably admixed with at least one suitable pharmaceutically acceptable excipient.
- Pharmaceutically acceptable excipients may be selected from the group consisting of binders, diluents, disintegrating agents, stabilizing agents, preservatives, lubricants, fragrances, flavoring agents, sweeteners and other excipients known in the field of the pharmaceutical technology.
- excipients may be selected from the group consisting of lactose, microcrystalline cellulose, cellulose derivatives, e.g. hydroxypropylcellulose, polyacrylates, calcium carbonate, starch, colloidal silicone dioxide, sodium starch glycolate, talc, magnesium stearate, polyvinylpyrrolidone, polyethylene glycol and other excipients known in the field of the pharmaceutical technology.
- reaction mixture is stirred for 45 min at ⁇ 42° C., cooled to ⁇ 82° C., and treated with a solution of (2S,4R)-4-(tert-butyldimethylsilyloxy)-6-oxo-tetrahydro-2H-pyran-2-carbaldehyde (266 mg, 1.03 mmol) obtained by dissolution of its hydrate (284 mg, 1.03 mmol) in 15 mL of tetrahydrofurane without removal of released water. After 30 min of stirring, the solution is warmed to ⁇ 53 to ⁇ 58° C. and stirred further for 6 hours. Then, the mixture is allowed to warm to ambient temperature in 100 min and treated with saturated ammonium chloride solution (40 mL).
- N-(4-(4-fluorophenyl)-5-methyl-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide 112.5 mg, 0.33 mmol, 1 equiv.
- N-bromosuccinimide 126 mg, 0.72 mmol, 2.1 equiv.
- N-(4-(4-fluorophenyl)-5-methyl-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide 112.5 mg, 0.33 mmol, 1 equiv.
- N-bromosuccinimide N-bromosuccinimide (NBS) (118.7 mg, 0.66 mmol, 2 equiv.) were dissolved in 2 mL of acetonitrile.
- the obtained yellow solution was diluted with 1 mL of acetonitrile.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Obesity (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention relates in general to the field of organic chemistry and in particular to the preparation of N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide (I), N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (II) and N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (III), key intermediates in preparation of Rosuvastatin.
Description
- The present invention relates to a process for the preparation of N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide, N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide, useful as key intermediates for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof. The present invention further relates to a process wherein the above mentioned compounds are used as intermediates.
- (N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide), (N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide) and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide are possible intermediates in the synthesis of Rosuvastatin and its pharmaceutically acceptable salts. Rosuvastatin calcium, chemically described as bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] calcium salt, is a synthetic lipid-lowering agent that acts as an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMG-CoA Reductase inhibitor). HMG-CoA reductase inhibitors are commonly referred to as “statins.” Statins are therapeutically effective drugs used for reducing low density lipoprotein (LDL) particle concentration in the blood stream of patients at risk for cardiovascular disease. Therefore, Rosuvastatin calcium is used in the treatment of hypercholesterolemia and mixed dyslipidemia.
- The EP 521471 A1 discloses Rosuvastatin and a process for its preparation, among others by a process comprising a step of preparing N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide by reduction of a suitable ester derivative thereof with diisobutylaluminium hydride (DIBAL-H) as a reduction reagent. Furthermore, WO2008/059519 A2 also describes the preparation of Rosuvastatin via N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide as intermediate obtained by reduction of a suitable ester thereof by means of DIBAL-H.
- International patent application WO2007/017117 A1 describes the preparation of Rosuvastatin via N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide as the intermediate. This intermediate is prepared by nucleophilic substitution of N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide by means of HBr as the source of nucleophile.
- The object of the present invention is to provide an improved process for preparing N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide, N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide, so as to provide valuable intermediates for the preparation of Rosuvastatin and pharmaceutically acceptable salts thereof.
- The object is solved by processes for the preparation of N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide, N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide according to claims 1, 9, 13 and 15, a process for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof according to claims 11 and 17, a preparation of a pharmaceutical composition according to claims 18 and 19 and a use of N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide, N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof according to claim 20 respectively. Preferred embodiments are set forth below and in the subclaims.
- According to the present invention, it has been surprisingly found that a more efficient and easier to handle synthesis of N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide and N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide respectively can be carried out by selecting suitable starting materials which can be converted to the desired product without the necessity of aggressive, difficult to handle and/or expensive reagents. Moreover, the process for the preparation is more efficient as it allows beneficial reaction conditions providing for less by products and thus higher purity of the products and higher yields, and/or less necessary reaction steps. Furthermore, the process according to the present invention enables to use mild reactants, further contributing to an easier handling in terms of less necessary precautions concerning application and storage, and less precautions concerning the requirement of special reaction conditions such as protective gas atmosphere and/or anhydrous solvent. Furthermore an efficient process for recovering of N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide is disclosed that has an favorable impact on the efficiency of the overall process of the rosuvastatin synthesis.
- As a result, desirable key intermediates for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof are provided by a significantly improved process.
- Various aspects, advantageous features and preferred embodiments of the present invention, which respectively alone and in combination particularly contribute to solving the object of the invention are summarized in the following items:
- (1) A process for preparing the compound of formula II
-
- comprising the steps of:
- providing a compound of formula I:
-
- and converting the compound of formula I by bromination into the compound of formula II.
- (2) The process according to item (1), wherein bromination proceeds by radical reaction
- (3) The process according to item (1) or (2), wherein said bromination is performed with an N-bromoamide as a brominating agent, preferably an N-bromoamide selected from the group consisting of N-bromoacetamide, N,N-dibromobenzene sulfonamides, N-bromosuccinimide, N-bromophthalimide, N-bromoglutarimide, 3-bromo-hydantoin and 1,3-dibromo-5,5-dimethylhydantoin, more preferably N-bromosuccinimide.
- (4) The process according to item (3), wherein the initial amount of brominating agent is from about 1 to about 3 times the molar stoichiometric amount based on compound I, preferably about 1.2 to about 2.5 times, more preferably about 1.4 to about 2.2 times, and in particular about 2 times.
- (5) The process according to any one of items (1) to (4) avoiding use of HBr and PBr3.
- (6) The process according to any one of the preceding items, wherein the bromination reaction is performed in an organic solvent selected from the group consisting of acetone, ethyl acetate, hydrocarbons, aromatic hydrocarbons and acetonitrile or a mixture thereof, preferably the organic solvent is acetonitrile.
- (7) The process according to items (1) to (6), wherein the bromination is performed under a treatment of ultraviolet radiation.
- (8) The process according to item (7), wherein said ultraviolet radiation has a wavelength of about 200-400 nm, preferably about 310 nm.
- (9) The process according to item (7) or (8), wherein said ultraviolet radiation is performed for 2 to 10 hours, preferably for about 4 hours.
- (10) The process according to any one of items (1) to (9), wherein the bromination is carried out at a temperature between 0 to 90° C., preferably between 10 to 65° C., more preferably between 15 to 35° C. and in particular between 19 to 25° C.
- (11) The process according to any one of the preceding items, wherein no radical former is applied.
- (12) The process according to any one of items (1) to (10), wherein a radical former is applied, wherein the radical former is preferably an organic peroxide, an organic peracid, an organic hydroperoxide or an organic azo compound, more preferably the radical former is benzoyl peroxide or azoisobutyronitrile.
- (13) The process according to item (12), wherein the initial amount of radical former is between about 0 to 0.5 molar stoichiometric amount based on compound I, preferably about 0 to 0.07 molar stoichiometric amount based on compound I, and more preferably no radical former is applied.
- (14) The process according to any one of the preceding items, further comprising a step of purifying of the compound of formula II, preferably by crystallization.
- (15) The process according to item (14), wherein crystallisation is performed with an MTBE/hexane mixture, preferably with an MTBE/hexane mixture, wherein the volume ratio of MTBE to hexane is 2 to 1, preferably 1 to 1 and more preferably 2 to 3.
- (16) A process for preparing a compound of formula I
-
- comprising a step of reacting a compound of formula IX or IX′
-
- wherein P1 and P2 respectively denote same or different hydroxy protecting groups and R is selected from alkyl or aryl;
- with a compound of formula X or X′
-
- wherein Z is selected from the group consisting of:
-
- and wherein Rx, Ry, and Rz, are the same or different and are selected from optionally substituted C1-C8 alkyl or C3-C6 cycloalkyl or C1-C8 alkenyl or C5-C6 cycloalkenyl or aryl, preferably phenyl, and Xθ is an anion, preferably a halogen or carboxylate anion, more preferably chloride, bromide or trifluoroacetate;
- wherein in said reaction the compound of formula X or X′ is used in molar excess over the compound of formula IX or IX′, and/or wherein the reaction takes place in the presence of water or other protic molecules,
- to obtain the compound of formula I.
- (17) The process according to item (16), wherein the compound of formula I is obtained as a product besides a compound selected from formulas XI or XI′
-
- wherein P1 and P2 are as defined above;
- wherein said compound selected from formulas XI and XI′ is subsequently used for conversion into Rosuvastatin or its salt, and wherein the compound of formula I is used to provide said compound in a process according to claim 1.
- In this way, the compound of formula I can be efficiently recycled to perform a further synthesis route for the preparation of Rosuvastatin or its salt.
- (18) A process for preparing rosuvastatin, comprising:
- (a) reacting a compound of formula IX or IX′
-
- wherein P1 and P2 respectively denote same or different hydroxy protecting groups and R is selected from alkyl or aryl;
- with a compound of formula X or X′
-
- wherein Z is selected from the group consisting of:
-
- and wherein Rx, Ry, and Rz, are the same or different and are selected from optionally substituted C1-C8 alkyl or C3-C6 cycloalkyl or C1-C8 alkenyl or C5-C6 cycloalkenyl or aryl, preferably phenyl, and Xθ is an anion, preferably a halogen or carboxylate anion, more preferably chloride, bromide or trifluoroacetate;
- (b) obtaining reaction products of
- a compound of formula I
-
- and
- a compound selected from formulas XI or XI′
-
- wherein P1 and P2 are as defined above;
- (c) using the obtained compound selected from formulas XI and XI′ for conversion into Rosuvastatin or its salt; and
- (d) using the obtained compound of formula I for providing said compound in a process according to item (1) in a recycling process for producing rosuvastatin.
- (19) The process according to item (18), wherein in step (b) the obtained reaction products are respectively separated into the compound of formula I and the compound selected from formulas XI or XI′, prior to the respective use in step (d).
- In the manner defined by items (18) and (19), an advantageous and generally applicable recycling process is provided for improving the overall yield of Rosuvastatin or its salt.
- (20) A process for preparing a compound of formula III
-
- comprising the step of converting the compound of formula II
-
- by hydrolysis into the compound of formula III.
- (21) The process according to item (20), wherein hydrolysis is performed in the presence of an inorganic base, preferably an alkaline or alkaline earth carbonate or hydrogencarbonate, more preferably NaHCO3.
- (22) The process according to item (21), wherein the inorganic base is added to the reaction mixture in the form of a saturated aqueous solution.
- (23) The process according to any one of items (21)-(22), wherein the initial amount of inorganic base is between about 1 to 10 times the molar stoichiometric amount based on compound II, preferably about 3 to 7 and more preferably 5 to 6 times.
- (24) A one-pot process for preparing the compound of formula III
-
- comprising converting compound of formula I
-
- by reaction via non-isolated compound of formula II
-
- into the compound of formula III.
- (25) The process according to item (24), wherein conversion of the compound of formula I into the compound of formula II is carried out by the process of any one of items (1) to (13).
- (26) The process according to item (24) or (25), wherein conversion of the compound of formula II into the compound of formula III is carried out by the process of any one of items (20) to (23)
- (27) The process according to any one of items (24) to (26), wherein a reaction batch after converting compound of formula I into compound of formula II is diluted with a solvent as defined under item (6).
- (28) The process according to any one of items (20) to (27), further comprising the step of purifying compound of formula III, preferably by crystallization.
- (29) The process according to item (28), wherein crystallisation is performed with an MTBE/hexane mixture, preferably with an MTBE/hexane mixture wherein the volume ratio of MTBE to hexane is 2 to 1, preferably 1 to 1 and more preferably 2 to 3.
- (30) A process for the preparation of Rosuvastatin or pharmaceutically acceptable salt of Rosuvastatin, comprising the steps of:
- a) carrying out a process for preparing the compound of formula I according to item (16), and
- b) subjecting the compound of formula I to further synthesis steps to yield Rosuvastatin or pharmaceutically acceptable salts thereof.
- (31) A process for the preparation of Rosuvastatin or pharmaceutically acceptable salt of Rosuvastatin, comprising the steps of:
- a) carrying out a process for preparing the compound of formula II according to any one of items (1) to (15), and
- b) subjecting the compound of formula II to further synthesis steps to yield Rosuvastatin or pharmaceutically acceptable salts thereof.
- (32) A process for the preparation of Rosuvastatin or pharmaceutically acceptable salt of Rosuvastatin, comprising the steps of:
- a) carrying out a process for preparing the compound of formula III according to any one of items (20) to (29), and
- b) subjecting the compound of formula III to further synthesis steps to yield Rosuvastatin or pharmaceutically acceptable salts thereof.
- (33) A process for the preparation of a pharmaceutical composition comprising Rosuvastatin as active ingredient, comprising the steps of:
- a) preparing Rosuvastatin or pharmaceutically acceptable salts thereof according to the process according to item (31) or (32), and
- b) admixing the thus prepared Rosuvastatin or pharmaceutically acceptable salt thereof with at least one pharmaceutically acceptable excipient.
- (34) A process for the preparation of a pharmaceutical composition comprising Rosuvastatin as active ingredient, comprising the steps of:
- a) preparing Rosuvastatin or pharmaceutically acceptable salts thereof according to the process according to any one of items (17) to (19),
- b) admixing the thus prepared Rosuvastatin or pharmaceutically acceptable salt thereof with at least one pharmaceutically acceptable excipient.
- (35) Use of compound of formula II prepared according to the process of any one of items (1) to (15) for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof.
- (36) Use of compound of formula III prepared according to the process of any one of items (20) to (29) for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof.
- (37) Use of the compound of formula I prepared according to any one of the processes of items (16) to (19) for the preparation of Rosuvastatin or pharmaceutically acceptable salts thereof.
- The present invention is now described in more detail by referring to further preferred and further advantageous embodiments and examples, which are however presented for illustrative purposes only and shall not be understood as limiting the scope of the present invention.
- In order to improve a process for the preparation of a compound of formula II (N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide) and a compound of formula III (N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide), extensive test series were carried out by the inventors to find critical factors that are particularly suited to increase the product yields and to decrease byproducts, while significantly simplifying preparation due to beneficial reaction conditions and/or less necessary reaction steps.
- Conventionally, the compound of formula III was prepared by reduction of a suitable ester derivative of the formula IV (wherein R preferably denotes a methyl or ethyl residue) by means of a suitable reducing agent in a late or last step of a multi step synthesis procedure, as illustrated on the following scheme:
- However, this type of reduction has significant procedural drawbacks. Most commonly, reduction is carried out by diisobutylaluminium hydride (DIBAL-H) as the reducing agent, and therefore the reduction must be carried out at temperatures around or below 0° C. (preferably up to −70° C.) under dry/anhydrous conditions. A further drawback of the reduction with DIBAL-H is that the complex hydride DIBAL-His an expensive and hazardous reagent. Less common, the reduction is carried out with KBH4/ZnCl2 as the reducing agent, which also requires dry/anhydrous conditions. Moreover, there is the problem of unreacted starting material and generation of byproducts which are hardly removed in the subsequent Rosuvastatin synthesis steps if dry/anhydrous conditions are not employed and reaction does't go to completion.
- As shown on the following scheme, conventionally, the compound of formula III was then converted into the compound of formula II by a nucleophilic substitution reaction using HBr or PBr3 in order to introduce bromine:
- Said nucleophilic substitution reaction has significant drawbacks, inter alia since HBr is a very corrosive and aggressive reagent, and the alternative reactant PBr3 is toxic, evolves corrosive HBr, and reacts violently with water and alcohols which makes it difficult to handle.
- In conclusion, it can be said that the above described conventional preparation of the compound of formula III, or the conventional preparation of the compound of formula II via the compound of formula IV requires reactants which are difficult to handle, dangerous and/or expensive. Furthermore, several reaction steps are necessary in order to obtain the compound of formula II, and the conventional processes suffer from drawbacks of critical generation of byproducts which affects further synthesis of Rosuvastatin.
- According to one aspect of the present invention, nucleophilic substitution reaction for introduction of bromine with HBr or PBr3 is not used but the compound of formula II is prepared by converting a compound of formula I by bromination into the compound of formula II as presented on the following scheme:
- Since the compound of the formula I (N-(4-(4-fluorophenyl)-5-methyl-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide) is used as the starting material, compound II (N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide) can be obtained in only one step by bromination. The reaction can be carried out most efficiently by radical bromination reaction, optionally assisted by UV irridation and/or use of radical formers.
- The above described bromination, notably when proceeding with radical reaction, significantly differs from the introduction of bromine by means of a nucleophilic substitution reaction (e.g. wherein compound of the formula III is converted into compound of the formula II). A nucleophilic substitution reaction requires a leaving group such as for example —OH of the compound of the formula III. In contrast to that, the compound of the formula I does not require such a leaving group.
- In the above described bromination reaction of the present invention bromination agents such as N-bromoamides are preferably used. Advantageously, N-bromoamides provide for a constant, low concentration of bromine in the reaction mixture during reaction. More preferably, said N-bromoamides are selected from the group consisting of N-bromoacetamide, N,N-dibromobenzene sulfonamides; the N-bromoimides, such as N-bromosuccinimide, N-bromophthalimide, N-bromoglutarimide, 3-bromo-hydantoin, and 1,3-dibromo-5,5-dimethylhydantoin. N-bromosuccinimide is the most preferred brominating agent, since it is readily commercially availably and economically priced. Advantageously, the aforementioned bromination agents provide for mild reaction conditions resulting in less byproducts. HBr and PBr3, which are aggressive and difficult to handle reactants which would negatively affect purity and yield of the compound of formula II, can be avoided.
- The initial amount of said brominating agents is from about 0.1 to about 3 times the molar stoichiometric amount based on compound I, preferably about 0.9 to about 2.5 times, more preferably about 1.4 to about 2.2 times, and in particular about 2 times. In this way, efficient bromination resulting in high yields of compound II is provided, while economical amounts of brominating agent are used.
- The above mentioned bromination reaction is suitably performed in organic solvent, preferably selected from the group consisting of acetone, ethyl acetate, hydrocarbons, aromatic hydrocarbons and acetonitrile. Most preferably, acetonitrile is used as organic solvent. The aforementioned organic solvents provide for suitable solubilisation of the reactants and advantageous reaction rates. Furthermore, these organic solvents are largely less toxic than carbon tetrachloride or chlorobenzene, which have been typically used in radical bromination of hydrocarbon side chains of aromatic substrates.
- Preferably, the step of reacting a compound of formula I with brominating agent to give the compound of formula II is performed under a treatment of ultraviolet radiation, wherein said ultraviolet radiation has preferably a wavelength of about 200 to 400 nm, more preferably about 310 nm. Said ultraviolet radiation is preferably performed for 2 to 10 hours, more preferably for about 4 hours.
- In a particular preferred embodiment of the invention, the bromination reaction is carried out at suitable temperature, preferably at a temperature between 0 to 90° C., more preferably between 10 to 65° C., even more preferably between 15 to 35° C. and in particular at an ambient temperature between 19 to 25° C. In this way, beneficial mild reaction conditions can be set, which further contributes to form less byproducts compared to a nuclephilic substitution reaction for introducing bromine wherein elevated reaction temperatures are used. Higher yields are obtained, purification will be facilitated, and further synthesis steps to obtain Rosuvastatin are less affected by critical byproducts.
- Surprisingly, when using compound of formula I as starting compound, the above described radical bromination proceeds within relatively short reaction times and high yields, even if no radical former is applied. The absence of a radical former is advantageous, since the reaction becomes more safe in view of operational safety, because radical formers are quite reactive and therefore dangerous to handle compounds. Furthermore, the costs for a radical former can be saved. Therefore, it is preferred to perform the bromination without a radical former. In addition, significantly less impurities are formed during the reaction if no radical former is used.
- Nevertheless, if one wishes to further accelerate the bromination reaction, a radical former may be applied. If used, the radical former is preferably an organic peroxide, an organic peracid, an organic hydroperoxide or an organic azo compound. These radical performers are suitable for accelerating/supporting radical reactions. More preferably, the radical former is selected from benzoyl peroxide or azoisobutyronitrile, since these radical performers are readily commercially available and inexpensive.
- If a radical former is applied in the bromination reaction, the initial amount of radical former is between about 0 to 0.5 molar stoichiometric amount based on compound I, preferably about 0 to 0.07 molar stoichiometric amount based on compound I, and more preferably no radical former is applied. The aforementioned amounts of radical former provide for an advantageous acceleration of the reaction, while still providing a stable and safe reaction.
- According to one embodiment, the compound of formula II is isolated and purified, preferably by crystallization. In this way, a simple and effective purification method is applied, compared to labor, time and material intensive column chromatography. Since the bromination reaction is performed under mild conditions, there are less byproducts, and therefore, crystallisation will be sufficient in order to provide an advantageously pure product. Furthermore, it was found by that crystallisation performed with an MTBE/hexane mixture, and in particular with an MTBE/hexane mixture wherein the volume ratio of MTBE to hexane is 2 to 1, preferably 1 to 1 and more preferably 2 to 3 is particularly advantageous.
- The compound of formula I can be obtained by a targeted synthesis. Or, according to a preferred embodiment, the compound of formula I is obtained as a side product in the preparation of rosuvastatin intermediates where the compound of formula I is formed in a Wittig reaction between a phosphonium salt, phosphine oxide or phosphonate (compound of formula X) of a corresponding rosuvastatin heterocycle—or their converted reagents in the corresponding ylide or phosphorane form (for phosphonium salt) or corresponding carbanion (for phosphine oxide or phosphonate) (compound of formula X′)—and a chiral statin side chain. An illustrative reaction system can be depicted from Scheme 1 below.
- In Scheme 1, Z in the compound of formula X and X′ is selected from the group consisting of phosphonium salt moiety, phosphine oxide moiety or phosphonate moiety:
- wherein Rx, Ry, Rz are the same or different and are selected from optionally substituted C1-C8 alkyl or C3-C6 cycloalkyl or C1-C8 alkenyl or C5-C6 cycloalkenyl or aryl, preferably phenyl, and Xθ is an anion, preferably a halogen or carboxylate anion, more preferably chloride, bromide or trifluoroacetate;
- Further in Scheme 1, P1 and P2 independently denote conventional hydroxyl protecting groups. The protecting group P1 and P2 may be any conventionally used protecting group for hydroxyl groups, for example selected independently from the group consisting of alkyl, branched alkyl, acyl, silyl or similar group, more particularly selected from acetonide, acetyl (Ac), pivaloyl (Piv), p-toluenesulfonyl (TOS), β-methoxyethoxymethyl ether (MEM), methoxymethyl ether (MOM), p-methoxybenzyl ether (PMB), methylthiomethyl ether, t-butyl, tetrahydropyranyl (THP), benzyl (Bn), diphenylmethyl or triphenylmethyl group, preferably silyl protecting group which can be represented by a formula SiR1′R2′R3′ in which R1′, R2′, R3′ are independently selected from alkyl (preferably C1-C6) or aryl (preferably C5-C10), such as SiMe3 (TMS), SiMe2 tBu (TBDMS), Si(i-Pr)3 (TIPS), SiPh2 tBu, SiMe2Ph.
- Hence, as illustrated in Scheme 1, the protected final rosuvastatin intermediate can be used to proceed with the final synthesis steps for obtaining rosuvastatin or its salts, while alternatively or in addition the compound of formula I can be utilized by being recycled into another (same or different) rosuvastatin synthesis route.
- Prior to the respective further use, the reaction products obtained in the Wittig reaction can be respectively separated by appropriate and known methods into the compound of formula I and the compound selected from formulas XI or XI′.
- Advantageously and surprisingly, the compound of formula I is more substantially formed when the Wittig reaction is performed with excess of the phosphonium salt (or its ylide or phosphorane), phosphine oxide (or its carbanion) or phosphonate (or its carbanion) Wittig reagent (e.g. a molar excess of compound X or X′ over compound IX or IX′ of suitably 5% or more, preferably 10% or more, and particularly 15% or more), more effectively after quenching with protic solvent, and/or when the Wittig reaction is performed in the presence of water or other protic molecules such as alcohols (e.g. methanol, ethanol, propanol, isopropanol butanol and phenols), etc. The presence of water or other protic molecules may be accomplished by addition of water or typically known protic solvent types such as alcohols, but alternatively it is preferred and sufficient if e.g. undried or wet, or insufficiently dried solvent(s) introduced into the Wittig reaction is (are) used. According to another efficient embodiment, the starting compound of formula IX can obtained from its hydrate form in an appropriate solvent but without removal of the released water molecules, as shown in the following reaction scheme,
- and is then directly (i.e. without removal of water) introduced into the Wittig reaction. An appropriate solvent for the following reaction is tetrahydrofuran (THF), for example.
- The provision and the utilization of the compound of formula I has a significant favorable impact on the efficiency of the overall process of the rosuvastatin synthesis. Since the heterocyclic part of the molecule is prepared in many laborious synthetic steps as disclosed e.g. in EP 521471, it is highly advantageous to recover the valuable compound of formula I and render it utilizable by specifically converting it into compounds of formula II or III, which in turn are capable of being beneficially used further, for example by converting them again into a phosphonium salt, phosphine oxide or phosphonate representing a further starting material for the preparation of rosuvastatin intermediates via Wittig reaction (as exemplified for example in Scheme 1 above). The compound of formula II can be directly transformed to phosphonium salt derivative, phosphine oxide or phosphonate (see e.g. US2005/0124639). Alternatively, the compound of formula I can be transformed to the compound of formula III, which can be converted to phosphonium salt derivative, phosphine oxide or phosphonate (see e.g. WO2007/017117). Although the compound of formula II can be prepared by prior art processes (see e.g. WO2007/017117), this process cannot be applied for the recovery of compound I to phosphonium salt derivative, phosphine oxide or phosphonate. Similarly, prior-art processes for the preparation of compound III as disclosed in the EP521471 cannot be used for recovery of the compound of formula I to phosphonium salt derivative, phosphine oxide or phosphonate.
- Therefore, the provision of compound of formula I, besides being useful of its own, can contribute to a markedly improved overall yield of a rosuvastatin synthesis.
- According to another aspect of the invention, a compound of formula III is prepared by a process comprising the step of converting a compound of formula II by hydrolysis into the compound of formula III, as depicted in the following scheme:
- According to a preferred embodiment, the above mentioned conversion is performed in the presence of an inorganic base, preferably an alkaline or alkaline earth carbonate or hydrogencarbonate, more preferably NaHCO3 is used as the inorganic base. Besides, it is preferred to add said inorganic base to the reaction mixture in the form of a saturated aqueous solution.
- Preferably, the initial amount of inorganic base is between about 1 to 10 times the molar stoichiometric amount based on compound II, preferably about 3 to 7 times and more preferably 5 to 6 times.
- According to another aspect of the present invention, the compound of formula III is prepared by a one-pot synthesis converting compound of formula I via non-isolated compound of formula II into the compound of formula ill as depicted in the following scheme.
- It was found feasible to yield compound of formula III without isolating and purifying the intermediate compound of formula II. Therefore, the number of process steps can be reduced, which makes the whole synthesis route substantially more efficient.
- Preferably, the aforementioned one-pot synthesis is carried out by converting compound of formula I into compound of formula II by the above described bromination according to the present invention, or/and converting compound of formula II into compound of formula III by the above described hydrolysis according to the invention.
- Furthermore, it is preferred to add a solvent to the resulting reaction batch after conversion of compound of formula I into compound of formula II is performed, in order to dilute the reaction batch. Conversion of compound of formula I into compound of formula II may e.g. be monitored by thin layer chromatography or high pressure liquid chromatography (HPLC). Preferably, said solvent for dilution is selected from the group of solvents described for the above mentioned bromination reaction, and more preferably it is the same solvent as used in the bromination reaction. Thereby, an advantageous degree of dissolution of the compound of the formula II is obtained, which in turn provides for a smooth hydrolysis giving rise to high yields.
- According to a further embodiment, the process for preparing the compound of the formula III further comprises the step of purifying compound of formula III, preferably by crystallization. In this way, a simple and effective purification method is applied, compared to labor, time and material intensive column chromatography. Since the hydrolysis reaction provides for a full conversion of compound of the formula II into compound of the formula III, crystallisation will be sufficient in order to provide an advantageously pure product. Furthermore, it was found by that crystallisation performed with an MTBE/hexane mixture, and in particular with an MTBE/hexane mixture wherein the volume ratio of MTBE to hexane is 2 to 1, preferably 1 to 1 and more preferably 2 to 3 is particularly advantageous.
- The key intermediate compounds of formula II and III can then be subjected to further synthesis steps in order to yield Rosuvastatin or pharmaceutically acceptable salts thereof by synthesis routes known to or readily devisable by a person skilled in the art. As shown in the scheme below, following synthesis routes may be applied:
- For preparing a pharmaceutical composition comprising Rosuvastatin or pharmaceutically acceptable salts thereof as active ingredient, first Rosuvastatin or pharmaceutically acceptable salts thereof is provided by the process as described above.
- Then, the thus prepared Rosuvastatin or pharmaceutically acceptable salts thereof is suitably admixed with at least one suitable pharmaceutically acceptable excipient. Pharmaceutically acceptable excipients may be selected from the group consisting of binders, diluents, disintegrating agents, stabilizing agents, preservatives, lubricants, fragrances, flavoring agents, sweeteners and other excipients known in the field of the pharmaceutical technology.
- Preferably, excipients may be selected from the group consisting of lactose, microcrystalline cellulose, cellulose derivatives, e.g. hydroxypropylcellulose, polyacrylates, calcium carbonate, starch, colloidal silicone dioxide, sodium starch glycolate, talc, magnesium stearate, polyvinylpyrrolidone, polyethylene glycol and other excipients known in the field of the pharmaceutical technology.
-
- To a cold (−42° C.), stirred suspension of ((4-(4-fluorophenyl)-6-isopropyl-2-(N-methylmethylsulfonamido)pyrimidin-5-yl)methyl)triphenylphosphonium bromide (814 mg, 1.20 mmol) in tetrahydrofuran (25 mL) is added sodium hexamethyldisilazane in THE (1.2 mL of 1.0 M, 1.20 mmol). The reaction mixture is stirred for 45 min at −42° C., cooled to −82° C., and treated with a solution of (2S,4R)-4-(tert-butyldimethylsilyloxy)-6-oxo-tetrahydro-2H-pyran-2-carbaldehyde (266 mg, 1.03 mmol) obtained by dissolution of its hydrate (284 mg, 1.03 mmol) in 15 mL of tetrahydrofurane without removal of released water. After 30 min of stirring, the solution is warmed to −53 to −58° C. and stirred further for 6 hours. Then, the mixture is allowed to warm to ambient temperature in 100 min and treated with saturated ammonium chloride solution (40 mL). After stirring for 10 min at 10° C. the aqueous phase is treated with 20 mL of water and 40 mL of saturated solution of brine. The product is extracted with t-BuMeO (50 mL+4×30 mL). The combined organic layers dried (MgSO4) and concentrated under reduced pressure (11 mbar) at 40° C. to give white solid. The residue is purified by silica gel chromatography (elution with hexane/AcOEt=3:1 mixture) to give 170 mg (42%) of N-(4-(4-fluorophenyl)-6-isopropyl-5-methylpyrimidin-2-yl)-N-methylmethanesulfonamide (I). Rf (hexane/AcOEt=3:1)=0.42. White solid m.p. 113-114° C. 1H NMR (300 MHz, CDCl3, 25° C.): δ=7.56 (m, 2H), 7.14 (m, 2H), 3.55 (s, 3H), 3.51 (s, 3H), 3.31 (sept, 3J=6.7 Hz, 1H), 2.28 (s, 3H), 1.30 (d, 3J=6.7 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3, 25° C.): δ=175.3, 164.6, 163.8 (d, JC-F=249 Hz), 156.7, 134.7 (d, JC-F=3.4 Hz), 131.1 (d, JC-F=8.3 Hz), 118.6, 115.1 (d, JC-F=21.5 Hz), 42.2, 33.0, 31.8, 21.2, 14.1 ppm. MS (ESI+) m/z (%): 338 (MH+, 100). Anal. Calcd for C16H20FN3C2S: C, 56.95; H, 5.97; N, 12.45. Found: C, 56.95; H, 5.85; N, 12.45.
-
- N-(4-(4-fluorophenyl)-5-methyl-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (112.5 mg, 0.33 mmol, 1 equiv.) and N-bromosuccinimide (NBS) (126 mg, 0.72 mmol, 2.1 equiv.) were dissolved in 2 mL of acetonitrile. The mixture was irradiated with light of a wavelength λ=310 nm for 4 hours at ambient temperature (about 20° C.). Then, water (10 mL) was added and the mixture was extracted with CH2Cl2 (3×10 mL). The combined organic phases were washed with 10 mL of brine, and the obtained solution was dried with Na2SO4. Solvent was removed under the reduced pressure to give 138.6 mg of crude N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (II), which contained 93% of N-(4-(4-fluorophenyl)-5-(bromomethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (II) as determined by 1H-NMR integral. This product can be further purified by crystallization from MTBE/hexane mixture to afford pure material.
-
- N-(4-(4-fluorophenyl)-5-methyl-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (112.5 mg, 0.33 mmol, 1 equiv.) and N-bromosuccinimide (NBS) (118.7 mg, 0.66 mmol, 2 equiv.) were dissolved in 2 mL of acetonitrile. The mixture was irradiated with light of a wavelength λ=310 nm for 4 hours at ambient temperature (about 20° C.). The obtained yellow solution was diluted with 1 mL of acetonitrile. After 2 mL of saturated NaHCO3 solution was added, the obtained mixture was further stirred under reflux for 4 hours. Then the mixture was cooled to room temperature, water (10 mL) was added and the mixture was extracted with CH2Cl2 (3×10 mL). The combined organic phases were washed with 10 mL of brine, and the obtained solution was dried with Na2SO4. Solvent was removed under the reduced pressure to give 110.8 mg (95%) of crude N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (III) which contained 77% of N-(4-(4-fluorophenyl)-5-(hydroxymethyl)-6-isopropylpyrimidin-2-yl)-N-methylmethanesulfonamide (III) as determined by 1H-NMR integral. This product can be further purified by crystallization from MTBE/hexane mixture to afford pure material (HPLC area %=99.6) with Tm=140-141° C.
Claims (20)
2. The process according to claim 1 , wherein said bromination is performed with an N-bromoamide as a brominating agent, wherein said N-bromoamide is selected from the group consisting of N-bromoacetamide, N,N-dibromobenzene sulfonamides, N-bromosuccinimide, N-bromophthalimide, N-bromoglutarimide, 3-bromo-hydantoin and 1,3-dibromo-5,5-dimethylhydantoin.
3. The process according to claim 2 , wherein the initial amount of brominating agent is from about 1 to about 3 times the molar stoichiometric amount based on compound I.
4. The process according to claim 1 , wherein the bromination reaction is performed in an organic solvent selected from the group consisting of acetone, ethyl acetate, hydrocarbons, aromatic hydrocarbons, acetonitrile and a mixture thereof.
5. The process according to claim 1 avoiding use of HBr and PBr3.
6. The process according to claim 1 , which is performed under treatment of ultraviolet radiation, wherein said ultraviolet radiation has a wavelength of about 200 to 400 nm.
7. The process according to claim 1 , wherein the bromination is carried out at a temperature between 0 to 90° C.
8. The process according to claim 1 , further comprising a step of purifying of the compound of formula II.
9. A process for preparing a compound of formula I
wherein P1 and P2 respectively denote same or different hydroxy protecting groups and R is selected from alkyl or aryl;
with a compound of formula X or X′
and wherein Rx, Ry, and Rz, are the same or different and are selected from optionally substituted C1-C8 alkyl or C3-C6 cycloalkyl or C1-C8 alkenyl or C5-C6 cycloalkenyl or aryl, and Xθ is an anion;
wherein in said reaction the compound of formula X or X′ is used in molar excess over the compound of formula IX or IX′, and/or wherein the reaction takes place in the presence of water or other protic molecules,
to obtain the compound of formula I.
10. The process according to claim 9 , wherein the compound of formula I is obtained as a product besides a compound selected from formulas XI or XI′
11. A process for preparing rosuvastatin, comprising:
(a) reacting a compound of formula IX or IX′
wherein P1 and P2 respectively denote same or different hydroxy protecting groups and R is selected from alkyl or aryl;
with a compound of formula X or X′
and wherein Rx, Ry, and Rz, are the same or different and are selected from optionally substituted C1-C8 alkyl or C3-C6 cycloalkyl or C1-C8 alkenyl or C5-C6 cycloalkenyl or aryl and Xθ is an anion;
(b) obtaining reaction products of
a compound of formula I
wherein P1 and P2 are as defined above;
(c) using the obtained compound selected from formulas XI and XI′ for conversion into Rosuvastatin or its salt; and
(d) using the obtained compound of formula I for providing said compound in a process according to claim 1 in a recycling process for producing rosuvastatin.
12. The process according to claim 11 , wherein in step (b) the obtained reaction products are respectively separated into the compound of formula I and the compound selected from formulas XI or XI′, prior to the respective use in step (d).
14. The process according to claim 13 , wherein hydrolysis is performed in the presence of an inorganic base.
16. The process according to claim 13 , further comprising the step of purifying compound of formula III.
17. A process for the preparation of Rosuvastatin or pharmaceutically acceptable salt of Rosuvastatin, comprising the steps of:
a) carrying out a process for preparing the compound of formula I according to claim 9 , carrying out a process for preparing the compound of formula II by converting the compound of formula I by bromination into the compound of formula II
or carrying out a process for preparing the compound of formula III by converting the compound of formula II by hydrolysis into the compound of formula III, and
b) subjecting the compound of formula I, II or III respectively to further synthesis steps to yield Rosuvastatin or pharmaceutically acceptable salts thereof.
18. A process for the preparation of a pharmaceutical composition comprising Rosuvastatin as active ingredient, comprising the steps of:
a) preparing Rosuvastatin or pharmaceutically acceptable salts thereof according to the process according to claim 17 , and
b) admixing the thus prepared Rosuvastatin or pharmaceutically acceptable salt thereof with at least one pharmaceutically acceptable excipient.
19. A process for the preparation of a pharmaceutical composition comprising Rosuvastatin as active ingredient, comprising the steps of:
a) preparing Rosuvastatin or pharmaceutically acceptable salts thereof according to the process according claim 10 ,
b) admixing the thus prepared Rosuvastatin or pharmaceutically acceptable salt thereof with at least one pharmaceutically acceptable excipient.
20. (canceled)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP091518811 | 2009-02-02 | ||
EP09151881A EP2264015A1 (en) | 2009-02-02 | 2009-02-02 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
PCT/EP2010/051163 WO2010086438A1 (en) | 2009-02-02 | 2010-02-01 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/051163 A-371-Of-International WO2010086438A1 (en) | 2009-02-02 | 2010-02-01 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/609,248 Division US9376397B2 (en) | 2009-02-02 | 2015-01-29 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120022091A1 true US20120022091A1 (en) | 2012-01-26 |
Family
ID=40589996
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/145,783 Abandoned US20120022091A1 (en) | 2009-02-02 | 2010-02-01 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
US14/609,248 Expired - Fee Related US9376397B2 (en) | 2009-02-02 | 2015-01-29 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/609,248 Expired - Fee Related US9376397B2 (en) | 2009-02-02 | 2015-01-29 | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof |
Country Status (10)
Country | Link |
---|---|
US (2) | US20120022091A1 (en) |
EP (2) | EP2264015A1 (en) |
JP (1) | JP5558492B2 (en) |
CN (1) | CN102365272B (en) |
AU (1) | AU2010209650B2 (en) |
BR (1) | BRPI1007151A2 (en) |
CA (1) | CA2750801C (en) |
EA (1) | EA021733B1 (en) |
MX (1) | MX343273B (en) |
WO (1) | WO2010086438A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2423195A1 (en) * | 2010-07-26 | 2012-02-29 | LEK Pharmaceuticals d.d. | Process for the preparation of key intermediates for the synthesis of statins or pharmaceutically acceptable salts thereof |
PL2665722T3 (en) | 2011-01-18 | 2017-03-31 | Dsm Sinochem Pharmaceuticals Netherlands B.V. | Process for the preparation of diol sulfones |
CN102311457B (en) * | 2011-09-16 | 2014-04-16 | 苏州莱克施德药业有限公司 | Preparation method of rosuvastatin |
CN102936225A (en) * | 2012-11-15 | 2013-02-20 | 江苏阿尔法药业有限公司 | Method for preparing rosuvastatin calcium intermediate containing brooethyl, hydroxymethyl or formyl |
CN103420919B (en) * | 2013-08-22 | 2015-07-08 | 南京欧信医药技术有限公司 | Synthetic method for pyrimidine derivatives |
CN105175346B (en) * | 2015-05-19 | 2018-02-06 | 上海弈柯莱生物医药科技有限公司 | A kind of method of synthesizing rosuvastatin spit of fland calcium intermediate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1775299A1 (en) * | 2005-10-05 | 2007-04-18 | LEK Pharmaceuticals D.D. | Process for the synthesis of HMG-CoA reductase inhibitors |
US8183397B2 (en) * | 2007-04-03 | 2012-05-22 | Lek Pharmaceuticals D.D. | Synthesis of statins |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2648897B2 (en) | 1991-07-01 | 1997-09-03 | 塩野義製薬株式会社 | Pyrimidine derivatives |
WO2005054207A1 (en) * | 2003-12-04 | 2005-06-16 | Glenmark Pharmaceuticals Limited | Process for the preparation of pyrimidine derivatives |
EP1912953B1 (en) | 2005-07-28 | 2016-08-17 | LEK Pharmaceuticals d.d. | Process for the synthesis of rosuvastatin calcium |
WO2008059519A2 (en) | 2006-09-25 | 2008-05-22 | Glenmark Pharmaceuticals Limited | A process for the preparation of intermediates of rosuvastatin |
-
2009
- 2009-02-02 EP EP09151881A patent/EP2264015A1/en not_active Ceased
-
2010
- 2010-02-01 JP JP2011546865A patent/JP5558492B2/en not_active Expired - Fee Related
- 2010-02-01 BR BRPI1007151A patent/BRPI1007151A2/en not_active IP Right Cessation
- 2010-02-01 CA CA2750801A patent/CA2750801C/en not_active Expired - Fee Related
- 2010-02-01 WO PCT/EP2010/051163 patent/WO2010086438A1/en active Application Filing
- 2010-02-01 MX MX2011007990A patent/MX343273B/en active IP Right Grant
- 2010-02-01 EP EP10703830.9A patent/EP2391609B1/en not_active Not-in-force
- 2010-02-01 CN CN201080014893.5A patent/CN102365272B/en not_active Expired - Fee Related
- 2010-02-01 US US13/145,783 patent/US20120022091A1/en not_active Abandoned
- 2010-02-01 AU AU2010209650A patent/AU2010209650B2/en not_active Ceased
- 2010-02-01 EA EA201101150A patent/EA021733B1/en not_active IP Right Cessation
-
2015
- 2015-01-29 US US14/609,248 patent/US9376397B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1775299A1 (en) * | 2005-10-05 | 2007-04-18 | LEK Pharmaceuticals D.D. | Process for the synthesis of HMG-CoA reductase inhibitors |
US8269001B2 (en) * | 2005-10-05 | 2012-09-18 | Lek Pharmaceuticals D.D. | Process for the synthesis of HMG-CoA reductase inhibitors |
US8183397B2 (en) * | 2007-04-03 | 2012-05-22 | Lek Pharmaceuticals D.D. | Synthesis of statins |
Also Published As
Publication number | Publication date |
---|---|
CN102365272B (en) | 2014-07-16 |
US9376397B2 (en) | 2016-06-28 |
EP2391609B1 (en) | 2015-01-28 |
AU2010209650B2 (en) | 2015-09-17 |
MX2011007990A (en) | 2011-09-06 |
US20150141449A1 (en) | 2015-05-21 |
CA2750801C (en) | 2017-08-29 |
AU2010209650A1 (en) | 2011-08-25 |
BRPI1007151A2 (en) | 2016-02-23 |
CA2750801A1 (en) | 2010-08-05 |
JP5558492B2 (en) | 2014-07-23 |
EP2264015A1 (en) | 2010-12-22 |
EP2391609A1 (en) | 2011-12-07 |
MX343273B (en) | 2016-10-31 |
WO2010086438A1 (en) | 2010-08-05 |
EA021733B1 (en) | 2015-08-31 |
CN102365272A (en) | 2012-02-29 |
EA201101150A1 (en) | 2012-03-30 |
JP2012516839A (en) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9376397B2 (en) | Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof | |
US8063213B2 (en) | Production of rosuvastatin calcium salt | |
CA2594017C (en) | Preparation of rosuvastatin | |
US7304156B2 (en) | Preparation of aminopyrimidine compounds | |
US8354530B2 (en) | Process for the synthesis of rosuvastatin calcium | |
US20070037979A1 (en) | Preparation of rosuvastatin | |
US8318933B2 (en) | Process for preparing rosuvastatin calcium | |
US8212034B2 (en) | Process for preparing rosuvastatin calcium | |
CA3030555A1 (en) | Intermediates in processes for the preparation of 4-alkoxy-3-(acyl or alkyl)oxypicolinamides_____________ | |
WO2015037018A1 (en) | Process for the preparation of rosuvastatin via novel intermediates | |
Martinez-Solorio et al. | Chemoselective TBS deprotection of primary alcohols by means of pyridinium tribromide (Py· Br3) in MeOH | |
US20130072688A1 (en) | Method for preparing an intermediate of pitavastatin or of the salt thereof | |
KR20140065036A (en) | Improved process for preparation of highly pure bosentan | |
KR101292743B1 (en) | Novel statins intermediates and method for synthesizing pitavastain, rosuvastatin, cerivastatin and fluvastatin by using statins intermediates | |
CN108137457B (en) | Method for producing phenoxyethanol derivative | |
KR20160126700A (en) | New Statin intermediate, the preparation of the same and the preparation of Rosuvastatin using the same | |
WO2007086559A1 (en) | Method for producing tetrahydropyran compound | |
JP4556057B2 (en) | Novel biphenyloxyacetic acid derivatives and methods for producing and using the same | |
TWI668220B (en) | Synthetic method of entecavir and intermediate compounds thereof | |
CZ2011491A3 (en) | Process for preparing chlorocarbonates | |
JPH08225572A (en) | Improved method of massproducing bms180048 and analogue | |
JP2002316972A (en) | Method for producing optically active 3-cyano-2- methylpropanol derivative | |
JPH10330356A (en) | Production of dihydroretinol derivative | |
JP2004315445A (en) | Method for producing cyclic carbonates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LEK PHARMACEUTICALS D.D., SLOVENIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASAR, ZDENKO;KOSMRLJ, JANEZ;REEL/FRAME:027007/0725 Effective date: 20110901 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |