US20120016487A1 - Implant components and methods - Google Patents

Implant components and methods Download PDF

Info

Publication number
US20120016487A1
US20120016487A1 US13/156,242 US201113156242A US2012016487A1 US 20120016487 A1 US20120016487 A1 US 20120016487A1 US 201113156242 A US201113156242 A US 201113156242A US 2012016487 A1 US2012016487 A1 US 2012016487A1
Authority
US
United States
Prior art keywords
augment
shell
mounting member
cage
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/156,242
Inventor
Justin Steve Conway
David C. Kelman
Jeffrey A. Sharp
Jeffrey Joel Shea
Brian Ronald Yokoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smith and Nephew Inc
Tabula Inc
Original Assignee
Smith and Nephew Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45098648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20120016487(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Smith and Nephew Inc filed Critical Smith and Nephew Inc
Priority to US13/156,242 priority Critical patent/US20120016487A1/en
Assigned to SMITH & NEPHEW, INC. reassignment SMITH & NEPHEW, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONWAY, JUSTIN STEVE, KELMAN, DAVID C., SHEA, JEFFREY JOEL, YOKOO, BRIAN RONALD, SHARP, JEFFREY A.
Publication of US20120016487A1 publication Critical patent/US20120016487A1/en
Assigned to TABULA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC reassignment TABULA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TABULA, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • A61B17/8066Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones for pelvic reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30734Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30749Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4609Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of acetabular cups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/82Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin for bone cerclage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8685Pins or screws or threaded wires; nuts therefor comprising multiple separate parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30169Pi-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30182Other shapes
    • A61F2002/30189E-shaped or epsilon-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30317The prosthesis having different structural features at different locations within the same prosthesis
    • A61F2002/30326The prosthesis having different structural features at different locations within the same prosthesis differing in height or in length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • A61F2002/30449Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives the adhesive being cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30462Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30471Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30474Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using an intermediate sleeve interposed between both prosthetic parts to be coupled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30507Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30538Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30579Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30617Visible markings for adjusting, locating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30734Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
    • A61F2002/30736Augments or augmentation pieces, e.g. wedges or blocks for bridging a bone defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30891Plurality of protrusions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/3096Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques trimmed or cut to a customised size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30985Designing or manufacturing processes using three dimensional printing [3DP]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/3412Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/3429Acetabular cups with an integral peripheral collar or flange, e.g. oriented away from the shell centre line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/3441Acetabular cups the outer shell having an outer surface and an inner insert receiving cavity being angularly inclined with respect to the longitudinal axis of the outer surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/3445Acetabular cups having a number of shells different from two
    • A61F2002/3448Multiple cups made of three or more concentric shells fitted or nested into one another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/348Additional features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/348Additional features
    • A61F2002/3487Partial acetabular cups, e.g. strips replacing only partially the natural acetabular cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4615Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4619Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof for extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • Hip joints often undergo degenerative changes due to a variety of reasons. When joint degeneration becomes advanced or irreversible, it may become necessary to replace the natural joint with a prosthetic joint. Artificial implants, including hip joints, shoulder joints, and knee joints are widely used in orthopedic surgery. Specifically, hip joint prostheses are common.
  • the human hip joint acts mechanically as a ball and socket joint, wherein the ball-shaped head of the femur is positioned within the socket-shaped acetabulum of the pelvis.
  • Various degenerative diseases and injuries may require replacement of all or a portion of a hip using synthetic materials, typically metals, ceramics, or plastics.
  • the hip often undergo degenerative changes, requiring replacement of the hip joint with a prosthetic joint.
  • the hip is replaced with two bearing surfaces between the femoral head and the acetabulum.
  • the first bearing surface is typically a prosthesis shell or acetabular cup, which may be formed of metal, ceramic material, or as otherwise desired.
  • a liner (conventionally formed of polyethylene material such as ultra high molecular weight polyethylene, a ceramic material, or in some cases, even a metal liner) is then fit tightly within the shell to provide an inner bearing surface that receives and cooperates with an artificial femoral head in an articulating relationship to track and accommodate the relative movement between the femur and the acetabulum.
  • the cup (or a cup and liner assembly) is typically fixed either by placing screws through apertures in the cup or by securing the cup with cement.
  • a cup and liner assembly is typically fixed either by placing screws through apertures in the cup or by securing the cup with cement.
  • only a liner is cemented in a patient due to poor bone stock.
  • a cup having a porous surface may be press fit into the reamed acetabular surface.
  • an acetabular prosthesis In acetabular revision surgery, an acetabular prosthesis generally includes additional mounting elements, such as augments, flanges, hooks, plates, or any other attachment or mounting points or members that provide additional support and/or stability for the replacement prosthesis once positioned. These additional mounting or attachment members are often required due to bone degeneration, bone loss, or bone defects in the affected area (in this instance, the hip joint).
  • mounting members which term is intended to include but not be limited to flanges, blades, plates and/or hooks
  • a prosthesis system in order to help the surgeon achieve optimal fixation, non-limiting examples of which include iliac flanges (providing securement and fixation in and against the ilium region of the pelvis), ischial blades (providing securement and fixation in and against the ischium), and obturator hooks (providing securement and inferior fixation by engaging the obturator foramen).
  • the acetabulum may have a bone defect or void that the surgeon must fill with bone grafts before inserting a new shell. This can be time consuming and expensive, and may subject the patient to additional health risks.
  • Some techniques use an augment in connection with the acetabular shell, which can be coupled to or otherwise attached to the outer surface of the shell.
  • the implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, any other suitable orthopedic attachment, or any combinations thereof.
  • Mounting members include, for example, flanges, blades, hooks, and plates.
  • the orthopedic attachments may be adjustably positionable about the base member or other attachments thereby providing modularity for assembling and implanting the device.
  • Various securing and/or locking mechanisms may be used between the components of the implant.
  • the orthopedic attachments are removably coupled to the base member or other components.
  • the orthopedic attachments are integrally provided on the base member or other components, yet may still be adjustably positionable thereabout.
  • expandable augments, base members, or other bone filling devices are provided.
  • surface features are provided that create friction and allow for surrounding bone ingrowth at the interface of the implants and a patient's bone.
  • an orthopedic implant includes an acetabular implant having a track that includes a plurality of slots and an exterior surface, an augment having a protrusion that moves within the plurality of slots, the augment having a first cam surface that forms an interface with the exterior surface, where the protrusion has an adjustable fastener that, upon adjusting, fixes the augment with respect to the implant to impede further movement.
  • the augment may rotate about the exterior surface.
  • the adjustable fastener may be a tightening screw that extends through a through-hole in the augment and, upon tightening, expands the protrusion (which may be flared outwardly) and thereby tightens the augment within the track.
  • the tightening screw has a head that fits within a slot and faces an interior portion of the implant, where the slot has an interior opening that aligns with the head, and where the interior opening receives a tightening rod to tighten the screw.
  • the track includes a dovetail joint that receives the protrusion.
  • the track includes a straight portion and a curved portion.
  • the track can include two straight slots and a curved portion.
  • the track includes a J-shaped slot with a wall of the implant.
  • the protrusion may be part of an intermediate locking member that is integral to the augment.
  • the first cam surface of the augment includes at least one trough that receives cement to bind the augment to the shell.
  • the augment includes a plurality of projections that form a gap and may further include a flange attached to the augment.
  • a method of preparing an orthopedic implant includes the steps of providing an implant having a curved external surface and an opening in the surface, the opening having at least two portions that join at a common region but are separated by an angle of less than 180°, providing an augment having a first surface that interfaces with the curved external surface, coupling the augment and implant by an intermediate locking member, and tightening the intermediate locking member.
  • the method may further include the step of securing the augment to the implant by disposing cement within a trough located on the first surface.
  • the method may further include the step of rotating the augment with respect to the implant about the curved external surface prior to tightening the intermediate locking member, and moving the intermediate locking member within the opening prior to tightening.
  • the method may further include the steps of applying a fastener to the implant, so that the fastener extends outwardly from the external surface, and positioning the augment about the external surface so that the extended fastener fits between two protrusions of the augment, where the intermediate locking member is tightened with respect to the augment by a screw.
  • FIG. 1 shows an illustrative augment configured to attach to acetabular shells or cages, mounting members, or other augments;
  • FIGS. 2 and 3 show an illustrative acetabular shell or cage that includes a track
  • FIG. 4 shows an illustrative augment that includes a through hole
  • FIG. 5 shows an illustrative fastener having an expanding portion configured to be inserted through a track on an acetabular shell and into an augment;
  • FIGS. 6 and 7 show illustrative augments configured to secure to an acetabular shell or cage, mounting member, or other augment prior to insertion into a prepared bone void;
  • FIG. 8 shows an augment having an illustrative intermediate adapter member
  • FIG. 9 shows an illustrative insertion opening in a shell adapted to receive features of the intermediate adapter system of FIG. 8 ;
  • FIG. 10 shows an illustrative expansion member inserted into an intermediate adapter member to secure the adapter in a desired location
  • FIGS. 11 and 12 show examples of a prior mounting member or augment adapted for securement to a shell
  • FIGS. 13-15 show an illustrative mounting member or augment provided with an opening having multiple fixed directional threaded screw holes
  • FIG. 16 shows an illustrative mounting member or augment having an expandable or deformable spherical ball member
  • FIG. 17 shows an illustrative mounting member or augment having a rotatable inner cylinder insert member
  • FIG. 18 shows an illustrative mounting member or augment similar to FIG. 17 that is configured for use with a polyaxial fastener
  • FIG. 19 shows an illustrative mounting member and an illustrative augment member provided with a dovetail feature
  • FIGS. 20 and 21 show an illustrative dovetail feature configured to receive a fastener
  • FIGS. 22 and 23 show an illustrative chock distally-connected to a surgical cable and positioned within a portion of an augment
  • FIGS. 24 and 25 show an illustrative chock having an angled or inclined surface configured to receive an expansion member
  • FIG. 26 shows an illustrative cable tensioning device provided on a mounting member or augment
  • FIGS. 27-29 show an illustrative mounting member or augment that may be attached to an acetabular shell, cage or other augment using a separate expandable chock member and an intermediate connecting member;
  • FIG. 30 shows an illustrative expanding element that may be provided in an aperture of a mounting member or augment
  • FIG. 31 shows an illustrative ferrule on a cable that may be positioned against an augment
  • FIGS. 32 and 33 show illustrative geometries for a receiving portion of a shell, cage, or augment
  • FIG. 34 shows illustrative indicia for indicating a positional relationship between the mounting member or augment and the implant to which it is to be attached;
  • FIG. 35 shows illustrative spikes that may be provided on mounting members or augments for improving fixation
  • FIG. 36 shows an illustrative bi-lobe cup or shell
  • FIG. 37 shows two augments attached together via an illustrative fastening device
  • FIG. 38 shows an illustrative augment with integral spikes
  • FIG. 39 shows an illustrative augment with built-in securement features
  • FIG. 40-42 show various illustrative augments or porous coating portions having one or more cross-sectional areas of reduced material
  • FIG. 43 shows an illustrative rotary tool
  • FIGS. 44-47 shows various connection devices for securing a mounting member or an augment to an acetabular shell or cage
  • FIGS. 48-50 show illustrative augments provided with an elongated undercut groove configured to receive a cam locking pin
  • FIG. 51-54 show illustrative cleats provided proximate to a rim of an acetabular shell or cage, mounting member, or augment;
  • FIG. 55 shows illustrative cleat portions configured for securing soft tissues
  • FIGS. 56 and 57 show an illustrative augment attached peripherally to an acetabular shell or cage via a recess
  • FIGS. 58 and 59 show an illustrative mounting member attached peripherally to an acetabular shell or cage via a recess;
  • FIG. 60 shows an acetabular shell or cage having an illustrative annular protrusion
  • FIG. 61 shows a mounting member having an illustrative orthopedic mesh
  • FIG. 62 shows an illustrative mesh portion placed on an outer portion of a shell
  • FIG. 63 shows an illustrative mesh that includes a plurality of trim lines that may be cut to separate the mounting members attached thereto;
  • FIG. 64 shows illustrative separated mounting members from the mesh of FIG. 63 placed into a patient's hip region
  • FIGS. 65 and 66 show an illustrative honeycomb design that may be provided on a mounting member or augment.
  • any appropriate reinforcement material non-limiting examples of which include bone cement, appropriate polymers, resorbable polyurethane, and/or any materials provided by PolyNovo Biomaterials Limited, or any suitable combinations thereof.
  • any appropriate reinforcement material non-limiting examples of which include bone cement, appropriate polymers, resorbable polyurethane, and/or any materials provided by PolyNovo Biomaterials Limited, or any suitable combinations thereof.
  • Further non-limiting examples of potential materials that may be used are described in the following references: U.S. Patent Application Publication No. 2006/0051394, entitled “Biodegradable Polyurethane and Polyurethane Ureas,” U.S. Patent Application Publication No. 2005/0197422, entitled “Biocompatible Polymer Compositions for Dual or Multi Staged Curing,” U.S. Patent Application Publication No.
  • FIGS. 1-15 provide augments that may be configured to attach to acetabular shells or cages, mounting members, or other augments without cement, and are also configured to allow fine positional adjustments for best bone fit, coverage, and stability. It will be understood that the features and components described in connection with the augments of FIGS. 1-15 may also be applied to mounting members, such as hooks, flanges blades, or any other suitable mounting members, that may be configured to attach to acetabular shells or cages, augments, or other mounting members.
  • FIG. 1 illustrates certain embodiments wherein an augment 450 may be placed on a periphery of a hemispherical acetabular shell, cage, or other augment. As shown in FIGS.
  • a shell or cage 460 may comprise a track 462 that is undercut so as to form a dovetail joint 461 with a mounting member or an augment.
  • the track 462 may be provided as a J-shaped slot (as shown), T-shaped slot, H-shaped slot, or any other shape involving combinations of straight and/or curved segments.
  • the track 462 preferably includes at least two portions or slots, at least one of which can receive a complementary connector or protrusion from the augment or mounting member. As shown in FIG. 2 , for example, the first portion or slot 464 and second portion or slot 466 join about common region 468 but are separated out at distal ends 465 and 467 by angle ⁇ , which is less than 180° in the example.
  • the at least two portions thereby permit the augment or mounting member to be adjustably positioned along the surface of the shell, cage, or other augment by sliding the augment (and its connector) along the track and securing it at the desired location.
  • the augment could be secured in one of the at least two portions (such as slot 464 ), or the other of the at least two portions (such as slot 466 ), or in between.
  • the mounting member or augment may have a protrusion that is flared outwardly, and may be generally frustoconical, bulbous, or otherwise forms a portion of a male portion of a dovetail joint.
  • augment 450 includes protrusion 452 that is flared outwardly.
  • the flared protrusion 452 may be expandable when used with a central mandrel or expanding fastener. Additionally or alternatively, it may be made from a deformable material and/or may be provided as a bifurcated member having one or more leg portions to facilitate expansion of the protrusion.
  • the outer peripheral surface portions 453 of the protrusion 452 may be rounded (e.g., a frustoconical shape), and the augment 450 (or, in some embodiments, mounting member) may not only be translated within and along the track 462 on the shell 460 , but also rotated within the track 462 on the shell 460 .
  • a fastener 456 such as a screw, setscrew, mandrel, shank, rivet, or any other fastener having a low profile head which is accessible from the inside dome portion of the shell or cage 460 (or another augment) is configured to engage an inner bore or opening 458 located in the flared protrusion 452 , thereby expanding the protrusion 452 .
  • expansion member is used herein to refer to any appropriate member, including but not limited to the fasteners listed above, that can be used to engage and/or otherwise expand another feature.
  • an expansion member that may be used in connection with this embodiment comprises a setscrew/mandrel/fastener that has a tapered outer portion or a surface having an outer diameter that is greater than the receiving portion of the protrusion, such that when the expansion member is threaded into the protrusion, the protrusion expands.
  • the expansion of the flared protrusion causes the protrusion to frictionally engage the track in the shell/cage/augment, thereby forming a locked dovetail connection which secures the mounting member or augment to the shell.
  • augment 450 can be attached to the track 462 by the protrusion 452 .
  • the augment 450 can be rotated with respect to the shell 460 , such that the augment interior surface 454 and the shell exterior surface 469 remain generally interfaced while the augment 450 rotates about the shell 460 like a cam, until the augment 450 is in the desired position.
  • the protrusion 452 is then tightened to secure the augment 450 in that position.
  • One advantage of such a mechanism is that the assembly of the shell/cage/augment and the mounting member or augment may be loosely assembled, then placed into a bone void such as an irregularly shaped bone void. Once generally positioned, the assembly components may be adjusted with respect to each other to best fit an existing or prepared bone void. The assembly components may then be tightened together such that the assembly closely approximates the size, shape, and orientation of the existing or prepared bone void.
  • an augment may alternatively or additionally comprise a through hole such as through hole 478 of augment 470 in FIG. 4 , configured to receive an expansion or tightening member 476 , for example a long bone screw, long fastener, or other long expansion member (such a tightening configuration will be referred to throughout as a “long bone screw,” but it will be understood that any appropriate fastener that can secure two components together, while also potentially gain purchase into bone is considered appropriate for use in connection with the described embodiment).
  • the tightening member 476 may be configured to gain purchase in the augment 470 and/or surrounding bone as illustrated in FIG. 4 .
  • the opening 487 in the flared protrusion 472 that receives the bone screw 476 may generally continue through the augment 470 and out a hole 479 in a side of the augment 470 opposite the protrusion 472 .
  • the bone screw 476 enters the augment 470 through an opening in the track 462 on the inside surface 463 of the shell/cage 460 (or, in some embodiments, another augment), and protrudes through the entire augment 470 , including the flared protrusion 472 which, during insertion of the bone screw 476 , will expand into the undercut track 461 on the shell/cage 460 .
  • the bone screw 476 locks the augment 470 to the shell/cage 460 and secures the entire assembly to surrounding bone, thereby stabilizing the assembly with respect to hip anatomy. In this sense, not only does the bone screw 476 serve to rigidly secure the augment 470 to the shell/cage 460 before necessarily securing purchase of the bone screw 476 into surrounding bone, the bone screw 476 further provides secondary fixation of the assembly to surrounding bone by then subsequently securing purchase with surrounding bone.
  • the embodiment shown in FIG. 4 allows a surgeon to lock the augment 470 to a second component from an inside portion (e.g., an inside portion 463 of a shell 460 ), after the loose assembly is placed into the prepared bone void.
  • the augment 470 may be loosely coupled to the shell 460 or other second component in the patient's bone void, and a fastener is used to secure the augment to the second component (not shown, but which may be the shell, cage, or a second augment) and to the patient's bone.
  • the head is arranged within the slot of track 462 so that it is aligned with the interior opening 478 of the augment 470 and extends radially within the shell 460 .
  • the surgeon can then insert a tightening rod through the interior opening 478 , from inside the shell 460 , to access and tighten the screw 476 .
  • FIG. 5 illustrates some embodiments related to those shown in FIG. 4 .
  • a bone screw 681 or other fastener having both an expanding portion 694 and a bone engaging portion is inserted through an undercut recess, groove, or track 682 provided on an acetabular shell or cage 680 (or, in some embodiments, provided on an augment).
  • the bone screw 681 or other fastener may be inserted from an accessible inside portion 683 of said shell/cage 680 .
  • the bone screw 681 or other fastener protrudes into and through an opening 684 within an adjacent augment 686 (or, in some embodiments, a mounting member) having a male connection member 688 .
  • the male connection member 688 may be generally cylindrical or flared (e.g., frustoconical) and is configured to be inserted into and move within (translate, rotate, etc.) the undercut recess, groove, or track 682 .
  • the expanding portion 694 of the bone screw 681 engages a complementary expanding portion 692 of the augment 686 adjacent the male connection member 688 , thereby expanding a portion of the male connection member 688 inside the undercut recess, groove, or track 682 and locking the augment 686 to the shell/cage 680 (or other augment).
  • one or more of the expanding portions of the bone screw and mounting member or augment may not be threaded.
  • the expanding portion 694 of the bone screw 681 may be threaded, and the expanding portion 692 of augment 686 may be a smooth tapered recess.
  • the expanding portion 694 of the bone screw 681 may be a smooth tapered surface that seats within and wedges against a smooth tapered expanding portion bore 684 in the augment 686 .
  • the taper angle of the bone screw 681 expanding portion 694 may differ from the taper angle of the expanding portion bore 684 .
  • the expanding portion 694 of the bone screw 681 may be an enlarged threaded section that engages with a smooth undersized bore 684 in expanding portion 692 of the augment 686 .
  • the expansion member used to expand the protrusion may be made relatively shorter, so as to be partially or completely encased by the mounting member or augment.
  • expansion member 486 of augment 480 and expansion member 496 of augment 490 may be relatively shorter than bone screw 476 of augment 470 .
  • the insertion direction of the expansion member may be reversed with respect to the aforementioned embodiments, and move in a securing direction which is towards the acetabular shell/cage or other augment. In this way, the mounting member or augment may be attached to the shell/cage or other augment in a predetermined configuration, prior to insertion of the assembly into the prepared bone cavity.
  • FIG. 6 allows a surgeon to lock the augment 480 to the shell 460 prior to insertion into the prepared bone void, outside of the body cavity.
  • the attachment prior to insertion may be a tight securement or a loose coupling. If a loose coupling is desired, such that complete securement can be completed once the assembly has been fully positioned, an opening 499 on an upper surface 494 of the augment 490 , as shown in FIG. 7 allows tightening once the completed assembly is positioned in the bone cavity.
  • this embodiment allows a surgeon to lock the augment 490 to the shell 460 from an outside portion on exterior surface 469 of the shell 460 , after the loose assembly is placed into the prepared bone void.
  • the surgeon may place a frustoconical or otherwise flared protrusion of the mounting member or augment into an insertion clearance opening in the shell/cage or other augment, and then may move the augment within a track extending from and connected to the opening (as shown in FIG. 8 ) to a desired rotational angle and/or location along the track.
  • the surgeon may rotate, translate, or otherwise position or move the mounting member or augment as desired within the track.
  • the expansion member can be inserted into and through the augment, and tightened within a threaded bore located in the protrusion.
  • the expansion member may be internally threaded and engageable with a male thread located within an opening in the protrusion. It will also be appreciated that, while not shown, the expansion member may only threadingly engage the bulk body of the mounting member or augment and may have a distal wedge portion provided thereon which engages a smooth tapered opening in the protrusion. In this embodiment, when the expansion member moves toward the protrusion in threaded engagement with the bulk body of the mounting member or augment, its distal wedge portion wedges open the flared projection via inclined surfaces without actually “threadably” engaging in inner surface of the protrusion. It should also be noted that the use of other fasteners such as the rivet-type, or any other suitable fastener, or combinations thereof, is envisioned.
  • the arms of the bifurcated protrusion When the expansion member is tightened or otherwise adjusted, the arms of the bifurcated protrusion expand and move away from each other, and therefore, the outer flared portions of the protrusion engage the undercut walls of the track provided on the shell/cage/augment.
  • the arms of protrusion 452 may expand and engage the undercut walls 461 of the track 462 provided on shell 460 of FIG. 2 .
  • the arms of protrusions 472 , 482 , and 492 may similarly be expanded when an expansion member is tightened or otherwise adjusted. Friction between the walls of the track and the expanded bifurcated protrusion maintain the mounting member or augment in fixed relationship relative to the shell/cage/augment, and the assembly may be inserted into the prepared bony site.
  • an intermediate adapter member may be used to secure a mounting member or augment to an acetabular shell, cage, or other augment.
  • adapter 502 comprises a portion that is received in an opening (e.g., tapered hole or undercut track) in the shell/cage/augment, and sits flush or recessed with respect to an inner surface of the shell/cage/augment, so as to not protrude into the inside portion of the shell/cage/augment where a liner might be seated.
  • the adapter 502 may have an expanding tapered or flared head 504 (e.g., frustoconical) that protrudes outwardly from the shell and engages an undercut slot, blind or through-slot, or a tapered aperture in the mounting member or augment.
  • adapter 502 includes an expanding tapered or flared head 504 that engages undercut slot 508 of augment 500 .
  • the adapter 502 may be entirely or partially cannulated and may be non-threaded, threaded partially, or threaded all the way through its length.
  • the expanding tapered or flared head 504 of the adapter 502 may be made bifurcated so as to have two or more arm portions 505 and 506 that are configured to move away from each other to expand the head 504 and create a locking interference between the expanding head 504 and the undercut slot or tapered aperture 508 .
  • a small expansion member 510 , a long bone screw (not shown), or any other suitable fastening member may be threadably received in the adapter 502 such that when the expansion member 510 , long bone screw, or other fastening member threads into the bifurcated head portion 504 , the arms 505 and 506 of the head portion 504 expand and frictionally engage the walls of the slot or aperture 508 to lock augment 500 to the shell/cage 600 or other augment.
  • a mounting member may similarly locked to an acetabular shell or cage 600 or an augment.
  • the head 512 of the expansion member 510 , long bone screw, or other fastening member may lie flush with, or slightly recessed from the inside (e.g., concave) surfaces of the shell/cage/augment, so that a liner may be properly seated.
  • FIG. 9 shows an insertion opening 516 in a shell 518 adapted to receive features of the adapter system of FIG. 8 according to some embodiments.
  • FIG. 10 shows a side cross-sectional view of an adapter 520 in place within the shell 518 and an augment 522 , used to secure the two components to one another.
  • the adapter 520 may have a frustoconical head 524 , and specifically, may have a head 524 that is bifurcated and expandable.
  • the head 524 of the adapter 520 may be received in an augment 522 or any other first component (e.g., a mounting member) that is desired to be coupled or otherwise secured to a second component (e.g., an acetabular shell or cage).
  • the augment 522 may have a J-slot (e.g., as shown in more detail in FIG. 8 ), a dovetail configuration, or may have any other appropriate shape, such as an undercut design, or any other appropriate track-type slot or groove.
  • This feature may extend to the upper edge of augment 522 or first component (e.g., as shown in FIG. 8 where slot 508 extends to upper surface 514 of augment 500 ) or it may be positioned in the side wall only of the augment 522 or first component (e.g., as shown in FIG. 2 where track 462 is provided through surfaces 463 and 469 of shell 460 ).
  • the adapter head 524 slides into or is otherwise positioned in the slot/track/undercut.
  • the adapter tail end 526 may extend slightly from the augment 522 or first component and extend toward and slightly into an insertion opening in the shell 518 or second component. As discussed above and shown clearly in FIG. 10 , it is preferable that the adapter tail 526 not extend completely into the internal cavity of the shell 518 or second component so that a liner 528 may be used without having the liner 528 directly abut or otherwise contact the adapter 520 .
  • an expansion member 530 is inserted into the adapter 520 to cause the bifurcated head 524 to expand and lock, plug, or otherwise securely lodge the adapter 520 in the desired location.
  • FIGS. 11 and 12 illustrate an example of a prior mounting member or augment 531 adapted for securement to a shell 533 as disclosed in U.S. Patent Application Publication No. 2007/0093133, entitled “Fixing Assembly,” which is incorporated by reference herein in its entirety.
  • FIGS. 13-15 illustrate various embodiments of an improvement of the devices shown in FIGS. 11 and 12 .
  • a mounting member or augment may be provided with an opening having multiple fixed directional threaded screw holes.
  • mounting member or augment 540 of FIG. 13 includes an opening 542 having a plurality of fixed directional threaded screw holes 544 .
  • there are three fixed directional threaded screw holes e.g., screw holes 544 ), but it will be understood that more or fewer holes may be provided.
  • the holes may be fixed in various orientations in space with respect to each other.
  • the holes may be spaced apart from each other as shown by holes 546 in FIG. 15 .
  • the holes may intersect radially as shown by holes 544 in FIG. 13 .
  • the holes may be positioned linearly as shown by holes 548 in FIG. 14 .
  • a protrusion member that extends from a mounting member or augment is received in rotating engagement by a round blind undercut recess on an acetabular shell, cage, or augment as shown in FIG. 11 .
  • the protrusion member may be received in an undercut track (e.g., as shown in FIGS. 2 and 3 ) provided on an acetabular shell, cage, or augment.
  • the projection may be bi-forked in configuration to facilitate its expansion when one or more screws or other fastening members are inserted through one or more of the threaded screw holes in the mounting member or augment.
  • the protrusion on the mounting member or augment is generally configured to expand upon partial screw insertion and is also generally configured to secure and lock the mounting member or augment to the shell/cage/augment in a desired relative spatial orientation, regardless of whether or not the screw secures purchase within the bone.
  • FIG. 16 illustrates a mounting member or augment 550 according to certain embodiments that may be used for coupling to an acetabular shell, cage, or other augment having a round blind undercut on the shell, one example of which is shown in FIG. 11 .
  • the protrusion member 552 may be received in an undercut track (e.g., as shown in FIGS. 2 and 3 ) provided on an acetabular shell, cage, or augment.
  • an expandable or deformable spherical ball member 554 is adapted to be positioned within, located inside, or otherwise captured within an opening 558 in a split or bifurcated mounting member or augment 550 and captured therewithin.
  • the ball member 554 may be undersized so as to expand when an expansion member (e.g., screw 556 ) or other fastener is inserted therein.
  • the ball member 554 may be formed of a deformable material to allow the ball 554 to expand upon insertion of an expansion member (e.g., screw 556 ) or other fastener.
  • the ball member 554 may be split to facilitate expansion of the ball member 554 .
  • the ball member 554 is generally captured within, secured to, or otherwise operable with the mounting member or augment 550 so as to form a ball joint.
  • the ball member 554 may have a deformable smooth bore which is ultimately deformed to be threaded by the screw fastener during insertion.
  • the ball member 554 may comprise a threaded bore which is slightly undersized in inner diameter with respect to the inserted screw.
  • the bore in the ball member 554 may be smooth and the ball member 554 expanded when engaged by an expansion member or other fastener.
  • a screw 556 or other fastener may be provisionally positioned adjacent an aperture of the cannulated ball member 554 , and then oriented to a desired spatial location and angulation with respect to a patient's anatomy for insertion into adjacent pelvic or other bone.
  • the expansion member e.g., screw 556
  • long bone screw, or other fastener may be used as a lever to move the ball 554 at any angle relative to the mounting member or augment 550 and then inserted to secure bone purchase.
  • the ball 554 spreads open or deforms via the aforementioned undersized, deformable, or expandable means.
  • the ball 554 expands, and in turn, also further expands the mounting member or augment 550 , which may be bifurcated, one example of which is described above.
  • the protrusion member 552 shown here as a generally flared and bifurcated frustoconical projection, expands within and may lock into a round, blind undercut recess or undercut groove in the shell/cage/augment in the desired angular spatial orientation.
  • the mounting member or augment 550 is generally configured to allow fixing of itself to the shell/cage/other augment regardless of whether or not the screw 556 secures purchase within the bone. Moreover, the ball member 554 captured within the mounting member or augment 550 also allows the screw 556 to be inserted in any orientation relative to both the mounting member or augment 550 and the shell/cage/other augment.
  • an optional rotatable inner cylinder insert member may be used.
  • the cylinder may be split along its length and may have one or more threaded bores extending along its length at one or more various angles, offsets, and eccentricities for engagement with a long bone screw or other fastener.
  • a single bore 566 may be provided in a cylindrical insert 564 , the bore 566 having a smooth outer bearing surface 568 that is angled and offset.
  • the insert 564 shown is captured within the mounting member or augment 564 by a knurl, step, flange, or lip 567 so as to be rotatable with respect to the mounting member or augment 560 , but not axially displaceable from the mounting member or augment 560 .
  • the insert 564 expands, and in turn, expands a projection member 562 on the mounting member or augment 560 or alternatively or additionally expands the entire mounting member or augment 560 .
  • the projection member 562 may expand within the round blind undercut on the shell, cage, or other augment shown in FIG. 11 , or alternatively may expand within an undercut groove within said shell, cage, or other augment as shown in FIGS. 2 and 3 .
  • FIG. 18 depicts a mounting member or augment 570 that is similar to the embodiment shown in FIG. 17 , but instead, is configured for use with a polyaxial screw or fastener 576 having a smooth rounded head 577 .
  • the inner cylindrical insert 574 is not split, but is instead provided as a larger diameter, externally-threaded body configured to be received in a smaller diameter threaded bore 571 in the mounting member or augment 570 .
  • the inside of the cylindrical insert 574 has one or more “hourglass”-shaped bores 578 , for instance, those that can be used with polyaxial screw heads having rounded or spherical screw heads.
  • Various examples of polyaxial locking systems and methods are shown and described in U.S. Patent Application Publication No.
  • the bore 578 may comprise portions engageable with threads of the polyaxial screw 576 , or may contain deformable tabs in regions proximate the head 577 for use with threaded heads.
  • the angle of the screw or fastener 576 can be varied within the bore 578 of the cylindrical insert 574 .
  • the mounting member or augment 570 is positively secured and locked to the shell/cage/augment in a desired spatial orientation and angulation due to the expansion of the projection member 572 or the mounting member or augment 570 as a whole. This occurs, for example, after inserting and threadably engaging the cylindrical insert 574 with an undersized threaded recess (e.g., bore 571 ) provided in the mounting member or augment 570 .
  • FIGS. 19-35 show certain embodiments for attaching mounting members or augments to an acetabular shell, acetabular cage, or other augment.
  • an apparatus and method for attaching the acetabular mounting members or augments to shells, cages, and other augments with an amount of adjustability may be provided for use with the same acetabular shell, cage, or augment.
  • Relative spatial adjustments between the mounting member or augment position and the shell/cage/augment may be made with multiple degrees of freedom.
  • the mounting members and/or augments may be attached and subsequently permanently and irremovably secured and locked to the shell/cage/augment prior to or after its insertion into a prepared acetabulum and/or surrounding bone voids.
  • a mounting member 580 or augment member 582 is provided with a dovetail feature 581 and 583 (that may be male or female), respectively, to connect it to an acetabular shell or cage 584 (or, in some embodiments another augment) having the other complementary mating female or male dovetail feature 586 .
  • the complementary feature 586 on the shell 584 is a J-shaped track or J-slot, but it will be understood that any mating features or configurations may be used.
  • the dovetail feature 586 is configured to allow the mounting member 580 or augment member 582 to rotate and/or translate with respect to the shell 584 in a semi-locked state.
  • the semi-locked state generally allows some independence of movement between the two pieces, which can be desirable to allow a surgeon to toggle between relative positions or otherwise continue to position and adjust the members. Such a semi-locked or loose connection can be particularly useful for revision surgeries.
  • the mounting member 580 or augment member 582 may be provided in a number of various shapes, sizes, textures, and configurations configured to fill bone defects and voids of varying degrees and locations with respect to a patient's anatomy.
  • an implant may comprise a flange member that does not necessarily serve to fill a bone void/defect, but is instead configured to couple with a bone surface.
  • Dovetail features according to FIGS. 19-35 generally mate by providing a flared male member (e.g., member 581 or 583 ) that is configured to slidingly engage one or more complementary female members such as one or more separated or intersecting undercut grooves or recesses (e.g., member 586 ).
  • the undercut grooves or recesses may be provided on either component or vise versa, without limitation.
  • a third member for example an expansion member (e.g., setscrew, fastener, rivet, wedge, pin, cam, long bone screw, or any other fastener), may further be provided and used to securely lock the two pieces together to form a locked assembly.
  • the third member will engage one or more portions of the dovetail features to cause the male member to expand in the female member.
  • a fastener such as a setscrew may be inserted through a male portion 588 of the dovetail features to move the male member 588 away from a blind portion of the female member 589 , thereby spreading the two pieces such that tapered surfaces of the dovetail features frictionally engage each other.
  • FIGS. 22-26 illustrate some embodiments wherein one or more locking chocks are distally-connected to a surgical cable and are configured to be received and/or captured within a portion of a mounting member or augment.
  • FIGS. 22 and 23 show a locking chock 590 distally-connected to a surgical cable 592 and positioned within a portion of augment 594 .
  • the cable 592 may be introduced through a through-bore in a mounting member or augment (e.g., bore 596 of augment 594 ) and tightened via a clamping device.
  • the chock 590 is shaped to complement a tapered hole or an undercut groove or recess provided in an acetabular shell, cage, or other augment (e.g., undercut recess or groove 602 of FIG. 24 ).
  • an expansion member 598 for example, by a ball crimped to a distal portion of the surgical cable or any of the other expansion members described herein.
  • the chock 590 may engage the undercut groove or recess.
  • an internal portion of a chock 604 may have an angled or inclined surface 600 , which is adapted to receive an expansion member 606 .
  • the chock rides along the cable and once positioning is desired, the wings of the chock may be forced apart for securement.
  • wings 595 and 597 of chock 590 shown in FIG. 23 may be forced apart for securement.
  • this can (a) pull the augment towards the shell/cage/other augment and (b) pull the ball or other expansion member at the end of the cable inside the chock so that the wings will expand and the chock will be secured in place.
  • cable 601 of FIG. 24 is pulled in the direction of arrow 608 , this can pull expansion member 606 inside the chock 604 so that the wings 605 and 607 of chock 604 expand, thereby securing the chock 604 in place.
  • the chocks may be separate pieces attached to the surgical cable at different portions and provided with inclined surfaces that ride together to facilitate expansion and frictional engagement with the tapered hole or undercut groove/recess.
  • the one or more locking chocks may be oblong for easy insertion into the undercut groove or recess. Once the cable is pulled tight, it may be used as cerclage cable or K-wire and tightened around bone or other anatomical structures, keeping the mounting member or augment attached to the shell, cage, or other augment.
  • the cable 610 may be tensioned using a cable tensioning device provided on the mounting member or augment 614 .
  • a tensioning screw member 612 may threadingly engage a female thread 616 located in the mounting member or augment 614 .
  • an expansion member e.g., a crimped ball
  • the tensioning screw member may be turned further to spread the chocks apart and lock the mounting member or augment to the shell, cage, or other augment via a tightened dovetail joint.
  • FIGS. 27-29 illustrate some embodiments wherein a mounting member or augment 628 may be attached to an acetabular shell, cage, or other augment 629 using a separate expandable chock member 620 and an intermediate connecting member 622 .
  • the intermediate connecting member 622 serves to temporarily loosely couple the mounting member or augment 628 to the shell/cage/augment 629 , and also serves to expand the separate chock member 620 and lock the two components together.
  • the separate expandable chock member 620 is provided as a generally frustoconical portion or a male portion of a dovetail connection.
  • the separate expandable chock member 620 may be inserted into and captured within an undercut recess, groove, or track (e.g., undercut recess, groove, or track 624 ) in an acetabular shell, cage, or other augment 629 .
  • the separate expandable chock member 620 is movably captured and may be positioned at various locations and orientations within said undercut recess, groove, or track.
  • the mounting member or augment 628 is then placed adjacent to the shell/cage/other augment 629 , and the intermediate connecting member 622 inserted through an aperture, opening, or recess 626 in the mounting member or augment 628 to engage an undersized or tapered female thread 627 in the separate expandable chock member 620 .
  • the mounting member or augment 628 may be moved to a desired position relative to the shell/cage/augment 629 by virtue of the loose connection and undercut recess, groove, or track, and then locked in a desired relative spatial orientation by engaging the intermediate connecting member.
  • the intermediate member 622 is provided as a headed bolt that threadingly engages the separate expandable chock member 620 to expand the separate expandable chock member 620 .
  • a frictional dovetail locking connection is achieved, which locks the mounting member or augment 628 to the shell/cage/other augment 629 in the desired relative spatial orientation.
  • FIG. 30 illustrates an alternative embodiment to FIGS. 27-29 , which is similar to the embodiment shown in FIGS. 6 and 7 .
  • a small expanding element 630 is provided within an aperture, opening, or recess 632 in a mounting member or augment 634 configured to be loosely attached and locked to an acetabular shell, cage, or other augment 636 .
  • the mounting member or augment 634 includes a male portion of a dovetail.
  • the male portion of a dovetail may be formed by a deformable or expandable protrusion 638 which may be bifurcated and/or initially flared outwardly in an un-deformed/unstressed state.
  • the expandable protrusion 638 may be provided as a generally cylindrical member which can be first introduced into an undercut recess, groove, or track, and then expanded within said undercut recess, groove, or track by the expanding element in order to provide a locking function between the mounting member or augment and the shell/cage/augment.
  • the expanding element 630 may be provided as a small tapered setscrew which engages a complementary tapered or otherwise undersized thread 640 inside the male portion of a dovetail.
  • a flexible driver 642 may be used to access the small expanding element 630 .
  • a dovetail locking connection is formed, thereby securing the mounting member or augment 634 to the acetabular shell, cage, or other augment 638 in a desired configuration and relative spatial orientation.
  • FIG. 31 shows an alternate and additional feature relating to the cable and chock embodiments of FIGS. 22-30 .
  • FIG. 31 shows a ferrule 700 on a cable 702 that may be positioned against an augment 704 .
  • a tensioning tool 706 may be used to hold the cable 702 tight and the ferrule 700 can be crimped onto the cable 702 .
  • the chock e.g., chock 590 of FIG. 22
  • FIG. 32 shows one potential geometry for a receiving portion 650 (such as an undercut recess, groove, or track) in a shell, cage, or augment according to some embodiments.
  • the receiving portion is a double J-slot formed by slots 652 , 654 , and 656 .
  • FIG. 33 shows a further optional geometry, where J-slots are provided in opposing directions formed by slots 662 , 664 , and 667 .
  • any of the mounting members or augments shown and described herein may comprise tick marks or other indicia for indicating a positional relationship between itself and the implant to which it is to be attached.
  • an augment 670 may comprise a plurality of peripheral markings 672 or central markings (not shown) for alignment with markings 661 provided in an acetabular shell or cage 660 (or, in some embodiments, another augment).
  • a surgeon may loosely insert the mounting member or augment (e.g., augment 670 ) and the shell/cage/augment (e.g., shell 660 ) into a patient's bone void, prior to assembling the two.
  • the surgeon may then position both components and possibly other components to determine the best relative spatial orientation to best fill a volume of the void.
  • the surgeon may then observe, compare, and note the relative positions of the markings or indicia between the bodies, thereby receiving repeatable and reproducible information about the desired spatial orientation.
  • the surgeon may then remove both bodies from the surgical environment, realign them in the desired spatial orientations (facilitated by the markings or indicia), and then cement or otherwise secure the two bodies together in said desired spatial orientation. Subsequently, the assembled implant may be introduced into the void and the surgery completed in a normal fashion.
  • mounting members or augments shown and described in the figures contained herein may comprise tacks, spikes, coatings, or textured surfaces 674 so as to improve initial fixation.
  • the geographic locations of said tack, spike, coatings, or textured surface structures 674 may be strategically placed on select portions so as to evenly load the implant assembly and obtain the best biologic response initially, and over an extended period of time.
  • FIG. 36 shows a bi-lobe cup or shell 710 , which is a shell 710 having a lobe 712 extending therefrom.
  • Typical bi-lobe shells are made of solid material, but this embodiment shows a bi-lobe shell 710 having a lobe 712 of porous material.
  • the lobe 712 may have some solid portions for receiving screws other fastening members.
  • additional augment members 714 may be attached to the lobe 712 of porous material or to the solid shell 710 .
  • Areas of the porous lobe 712 may be provided with areas of solid, non-porous material having apertures or other structures for receiving and locking to screws, such as polyaxial bone screws.
  • the porous lobe 712 may comprise holes 716 extending through fully porous sections for insertion of bone screws.
  • FIG. 37 shows two augments 720 and 722 attached together via a fastening device 724 such as a screw or a shape-memory polymer peg according to some embodiments.
  • a fastening device 724 such as a screw or a shape-memory polymer peg
  • a peg of shape memory material may extend from one or more augments and into a prepared hole in bony anatomy. The shape memory peg may then be activated (via thermal changes or an applied electric current) and expanded within the prepared hole to fix an augment or mounting member to the patient's bone.
  • Non-limiting examples of further features for such shape memory plugs are that they may comprise outer textured surfaces, may be porous, and may comprise barbs, flutes, ridges, grooves, spines, any other suitable features, or combinations thereof.
  • FIG. 38 shows an augment 726 with integral spikes 728 according to some embodiments.
  • the spikes 728 may allow the augment 726 to be positioned initially in bone, without the augment 726 having to be first secured to a shell, cage, mounting member, or other augment or without the use of bone cement.
  • the augment 726 may be positioned and then impacted or otherwise pressed into a bone void to achieve instant fixation.
  • FIG. 39 shows other embodiments of an augment 730 having built-in securement features.
  • Embodiments of this augment may have one or more integral spikes, barbs, screws, or other fasteners pre-positioned therein.
  • augment 730 includes integral fastener 732 which may be a spike having barbs 734 .
  • the surgeon may screw, impact or tack the augment 730 in place, causing the integral fastener 732 to extend and secure bone purchase.
  • One advantage of this embodiment is that is can prevent the surgeon from having to locate and insert separate fasteners.
  • a breakable or frangible connector 736 that is sheared once the fastener 732 has been impacted, twisted, or otherwise activated by a force or moment.
  • the augment 730 is a one-piece component that can be positioned without additional fasteners or other components attached thereto, simplifying some aspects of insertion. Moreover, the surgeon may desire to place the augment 730 first, and then quickly secure it to the other implant portions to be used. Integral fasteners which are not utilized may be removed by a pulling out force, and breaking the connector. Fasteners such as integral fastener 732 may be configured to connect the augment to bone or to other implant devices such as other augments, acetabular shells, acetabular cages, and/or bone plates.
  • FIGS. 40-42 illustrate various augments or porous coating portions comprising one or more cross-sectional areas 740 , 742 , and 744 of reduced material which are “designed” for easy drilling, shaping, and screw insertion.
  • a bulk porous structure is provided with waffle patterns of recesses defined therein.
  • the recesses may be externally provided, internally provided, or combinations thereof.
  • External recesses may be created using rapid manufacturing, wire EDM, milling, or other processes.
  • Internal recesses may be created using rapid manufacturing (e.g., selective laser sintering with an EOS machine or EBM process using an Arcam machine), cross-drilling processes, any other suitable processes, or any combinations thereof.
  • the areas of reduced cross-section 740 , 742 , and 744 make it easier for a surgeon to drill through the augments or porous coating portions, orient screws, and burr, mill, cut, break, bend, or otherwise shape with a rotary tool 746 such as the one shown in FIG. 43 .
  • Other modification tools such as reciprocating saws or oscillating saws may be utilized to shape the augments or porous coating portions.
  • Recesses may extend in various patterns in two-dimensional or three-dimensional space, and may vary in width, depth, aperture, thickness, density, and length.
  • FIGS. 44-47 illustrate some embodiments of a connection device for securing a mounting member or an augment to an acetabular shell or acetabular cage.
  • Certain embodiments of the connection device comprise an intermediate locking member 750 that may be placed between an acetabular shell or cage and a mounting member or augment, the intermediate locking member 750 configured to provide initial loose and adjustable attachment of the mounting member or augment to the acetabular shell or cage.
  • the mounting member or augment position relative to the shell or cage may be adjusted and then fixed with respect to the shell or cage by engaging a portion of the intermediate locking member 750 .
  • a liner may be inserted into the shell or cage.
  • the intermediate locking member 750 may either be a separate portion or integral to one of the shell, cage, mounting member or augment.
  • Portions of the intermediate locking member 750 may be low profile and configured to be received in and locked within an acetabular shell (e.g., via a threaded, smooth, or tapered screw hole).
  • the intermediate locking member 750 is provided within an acetabular shell as disclosed in the '705 application.
  • Intermediate locking member 750 may comprise, as shown, a cam locking pin 752 and a locking head screw 754 .
  • the mounting member or augment may comprise an undercut recess 759 which has an opening of any appropriate shape, such as oblong, scalloped, triangular, dovetail, or any other option.
  • a distal end 756 of the cam locking pin 752 has a complementary shape (oblong, scalloped, triangular, dovetail, or any other appropriate complementary shape) and is flared or tapered radially outwardly to engage one or more undercut surfaces forming the undercut recess 759 .
  • a proximal end 757 of the cam locking pin 752 may have a shaft 758 with engageable threads axially-disposed therein.
  • a locking head screw (shown for example, as locking head screw 754 of FIG. 47 ) is configured to engage the threads on the shaft 758 of the cam locking pin 752 .
  • the threads of the locking head screw may be female or male, and the threads of the cam locking pin 752 may be the other of male or female. Locking screws prevent the cam locking pin 752 from backing out once properly positioned.
  • the cam locking pin 752 is positioned within a receiving groove or recess and rotated to lock the cam locking pin 752 in place.
  • cam locking pin 752 The complementary shapes of the distal end 756 of cam locking pin 752 and a receiving groove or recess allow the cam locking pin 752 to be inserted into the groove or recess in a first orientation and then rotated to a second orientation in which it cannot be removed from the groove or recess.
  • the shaft portion 758 of the cam locking pin 752 may be provided with one or more flats on the outside (e.g., a hexagonal outer cross section for the shaft) to allow turning of the cam.
  • a cruciform recess or hexagonal recess or other driving structure may be provided on the cam locking pin 752 .
  • the female thread in the cam locking pin 752 may be substituted for threads on the outside of the shaft 758 of the cam locking pin 752 which engage a partially cannulated locking screw having an internally-threaded aperture extending axially through the shaft of the locking screw.
  • outer portions of the locking screw may be smooth.
  • the head 755 of the locking head screw 752 may alternatively be rounded for polyaxial movement (exemplary polyaxial locking options are provided in more detail below) within the hole in the acetabular shell or cage. It will be understood by those of ordinary skill in the art that the connection shown in the figures may also be used to connect augments or mounting members together, without limitation.
  • FIGS. 48-50 illustrate some embodiments wherein a mounting member or augment, for example, as disclosed in FIGS. 44-47 , is provided with an elongated undercut groove which is configured to receive a cam locking pin.
  • the elongated undercut groove allows the mounting member or augment to be radially adjusted in space and locked in an orbital position around a corresponding acetabular shell or cage.
  • portions of the mounting member or augment proximate the elongated groove may be made solid, rather than porous for strength, and outer regions of the mounting member or augment may be smooth, textured, coated (e.g., hydroxyapatite), porous, or combinations thereof in order to encourage biologic fixation and ingrowth in select regions.
  • FIG. 49 illustrates a cross-sectional view of an augment 764 and a cam locking pin 752 being inserted into an elongated undercut groove 768 of the augment 764 in an insertion position.
  • the cam locking pin 752 is positioned into the groove 768 by rotating the cam locking pin 752 along its axis such that the insert width 762 of the distal end 756 of the cam locking pin 752 (as shown in FIGS. 44-46 ) fits through the insert width 770 of the elongated undercut groove 768 .
  • FIG. 50 illustrates a cross-sectional view of the augment 764 with the cam locking pin 752 locked into the elongated undercut groove 768 of the augment 764 in a locking position.
  • cam locking pin 752 may generally be rotated along its axis between 50 and 130 degrees, preferably around 90 degrees (i.e., a “quarter-turn”).
  • the locking width 760 prevents the distal end 756 of the cam locking pin 752 from fitting through the insert width 770 of the elongated undercut groove 768 .
  • cam locking pin 752 may be symmetrical and may have a flared end (e.g., distal end 756 ) comprising a generally frustoconical surface, and the undercut groove 768 in the augment 764 (or, in some embodiments, an undercut groove in a mounting member) may have one or more enlarged openings to receive the flared end of the cam locking pin 752 .
  • a locking screw (e.g., locking head screw 754 of FIG. 47 ) may threadingly engage the cam locking pin 752 to apply a tensile force to the cam locking pin 752 against another implant such as a mounting member, augment, shell, or cage.
  • cleats may be provided proximate to a rim of an acetabular shell, cage, mounting member, or augment.
  • one or more cleats 780 and 781 may extend or project from a superior aspect of a rim portion 782 of an acetabular shell 784 as shown.
  • Cleats 780 and 781 may be used to secure soft tissues to the acetabular shell 784 or may serve as a means to attach secondary augments or any type of mounting member 786 to the acetabular shell 784 .
  • a “quarter-turn” fastener connector arrangement is utilized.
  • the quarter-turn fastener arrangement may comprise, for instance, a generally T-shaped male member 790 located on one or more regions of an acetabular shell, cage, or augment, and one or more complementary female members 792 located on more secondary augments or mounting members.
  • the one or more secondary augments or mounting members engage the one or more male members 790 on the acetabular shell, cage, or augment in one degree of rotation, and then are rotated by a specified or variable number of degrees (e.g., 90 degrees) to lock the one or more secondary augments or mounting members to the one or more male members 790 .
  • a specified or variable number of degrees e.g. 90 degrees
  • FIG. 55 further depicts one or more cleat portions 794 located at various portions of an acetabular shell or cage 796 (or, in some embodiments, an augment) configured for securing soft tissues.
  • the one or more cleat portions 794 can be arranged in any particular fashion around the acetabular shell 796 ; however, it is preferred that the cleats 794 extend proximally from a rim portion or otherwise away from the acetabular shell 796 in order to provide clearance from liner-mating surfaces, cement mantle surfaces, bone contacting surfaces, and bony anatomy, for example.
  • Cleat portions 794 may comprise suturing holes, roughened surfaces, clamps, hooks, or biologic coatings, or any other appropriate protrusions, or combinations thereof, to encourage fixation of the soft tissues to the implant (e.g., acetabular shell 796 ).
  • the implant e.g., acetabular shell 796
  • sutures may be wrapped around cleat portion 794 and then secured to surrounding soft tissues.
  • FIGS. 56-60 illustrate embodiments wherein a mounting member 802 or an augment 804 may be attached peripherally to an acetabular shell or cage 806 via a recess 800 provided proximate a rim portion 808 of the acetabular shell or cage 806 .
  • the recess 800 is sized to accept a protruding insertion portion 810 of the mounting member 802 or a protruding insertion portion 812 of the augment 804 , and the recess 800 may extend annularly circumferentially around the rim portion 808 to allow orbital placement of the mounting member 802 or augment 804 around a periphery of the shell or cage 806 .
  • the mounting member 802 or augment 804 may be inserted into the acetabular shell or cage 806 before or after shell/cage impaction or cementing into a prepared acetabulum.
  • One or more screw holes in the mounting member e.g., screw holes 814
  • augment e.g., screw holes 816
  • Screw holes 814 and 816 may include conventional holes, locking holes, or slots. The holes may be threaded, unthreaded, or partially threaded, and may be fixed or polyaxial.
  • screw holes 814 and 816 may include variable low-profile holes that allow for locking at a variety of angles.
  • FIGS. 56 and 57 show an augment 804 being positioned with respect to an acetabular shell or cage 806 .
  • FIGS. 58 and 59 illustrate a mounting member 802 being positioned with respect to an acetabular shell or cage 806 .
  • the mounting member 802 is shown as having multiple securing holes 814 for use with fasteners. Securing holes 814 may be smooth, tapered, or threaded and may be used with any appropriate fastener, including but not limited to polyaxial screws.
  • the securing holes 814 through the mounting member 802 (or securing holes 816 through the augment 804 ) may be positioned at any appropriate angle, as shown, such as parallel to the member, oblique through the member, or otherwise as desired.
  • a honeycomb feature may be placed on outer portions of the mounting member 802 or augment 804 to provide spacing for a cement mantle between the mounting member 802 or augment 804 and surrounding bone.
  • porous structures, textured surfaces, biologic coatings, or orthopedic meshes may be integrally provided on, or incorporated between outer surfaces of the mounting members 802 or augments 804 and surrounding bone.
  • a recess 800 in the shell or cage 806 is defined by a proximally-extending lip 818 such that the mounting member 802 will sit on bone surrounding the acetabulum. In this way, the mounting members 802 will not interfere with the press-fit area between the shell 806 and prepared acetabulum adjacent the acetabular rim 808 . Moreover, because the connection is configured to allow mounting members 802 to sit on surrounding bone, the surrounding bone does not need to be countersunk or otherwise prepared to receive mounting members 802 .
  • FIG. 60 depicts an acetabular shell or cage 820 comprising an annular protrusion 822 along a rim portion 824 of the acetabular shell 820 .
  • the annular protrusion 822 may extend partially around (as shown) or entirely around the circumference of the acetabular shell 820 , or one or more protrusions may be provided in any fashion around the acetabular shell 820 .
  • the annular protrusion 822 may comprise an annular lip 826 defining an annular undercut groove 828 running circumferentially around the acetabular shell 820 proximate the rim portion 824 .
  • the annular protrusion 822 may comprise one or more openings 830 for receiving sutures (e.g., for soft tissue or capsule re-attachment) or fasteners 832 such as set screws for contacting and frictionally engaging surfaces (e.g., divots) provided on protruding insertion portions 834 and 836 of mounting members 840 or augments 838 alike.
  • sutures e.g., for soft tissue or capsule re-attachment
  • fasteners 832 such as set screws for contacting and frictionally engaging surfaces (e.g., divots) provided on protruding insertion portions 834 and 836 of mounting members 840 or augments 838 alike.
  • Fasteners 832 may be inserted into openings 830 located circumferentially laterally of the insertion portions 834 and 836 to serve as stops for preventing or limiting rotational movement of the attached mounting members 840 or augments 838 .
  • the mounting members 840 or augments 838 may be secured down to surrounding bone after being inserted into the annular undercut groove 828 via long bone screws, thereby providing a hold-down force to the acetabular shell or cage 820 .
  • the hold-down forces provided may complement the press fit, threaded fit, or cemented fixation between the acetabular shell or cage and surrounding prepared acetabular bone.
  • shell 820 is provided as a “hooded” shell similar to a cage, and may act as a buttress for a cemented or pressed-in liner to support various liner inclinations in varying degrees of acetabular or pelvic degradation, although it will be understood that these features may be provided on any other type of shell or cage.
  • FIGS. 61-64 one or more mounting members and/or augments may be integrally provided with orthopedic mesh to define one or more mesh mounts or void fillers.
  • FIG. 61 shows a mounting member 380 having an orthopedic mesh 382 .
  • the orthopedic mesh portion 382 may be placed on an outer portion 384 of the shell 386 between bone, and a cement mantle can fill between the mesh 382 .
  • the cement mantle rigidly connects the mounting member 380 (or, in some embodiments, an augment) to the shell 386 via the surgical mesh 382 . Rapid manufacturing techniques may be used to simultaneously create the mounting members or augments integrally with the orthopedic mesh portion.
  • the mesh 382 may be honeycomb, diamond, or other weave pattern, or any combination thereof, and may come in multiple thicknesses.
  • Mesh portion 382 may be oversized, customized for an individual patient, and/or standardized and trimmed by the surgeon to fit a particular patient's needs.
  • Fasteners of all types may be inserted through one or more cells of the mesh 382 , as well as through the one or more mounting members or augments to further secure the implant to bony anatomy.
  • a first screw 388 may be inserted through cell 390
  • a second screw 394 may be inserted through one of the plurality of screw holes 392 of mounting member 380 .
  • Screw holes 392 may include conventional holes, locking holes, or slots.
  • the holes may be threaded, unthreaded, or partially threaded, and may be fixed or polyaxial.
  • screw holes 392 may include variable low-profile holes that allow for locking at a variety of angles.
  • Soft tissues may be reattached using the porosities of the mesh 382 as suture anchors, or simply as a bioscaffold.
  • preformed trim lines may be provided by forming predetermined frangible portions in various areas of the mesh, in order to help configuration of the device for a particular patient.
  • mesh 400 includes a plurality of trim lines 402 that may be cut to separate the mounting members attached thereto, such as mounting members 404 . The separated mounting members 404 and the mesh 400 may then be placed into a patient's hip region 406 as shown in FIG. 64 .
  • FIGS. 65 and 66 illustrate some embodiments of a honeycomb design that may be provided on a mounting member or augment in order to control cement mantle thickness and spacing between said mounting member or augment and an adjacent acetabular shell, augment, bone, or other implant.
  • mounting member 410 of FIG. 65 includes honeycomb portion 412 provided on an attachment surface portion 414 of the mounting member 410 .
  • the honeycomb feature 412 may be provided as any desired geometric shape.
  • the mounting member 410 (or, in some embodiments, the augment) may comprise one or more securing holes 416 for receiving a surgical fastener 418 such as a polyaxial screw, cancellous screw, peg, or other securing device.
  • the securing holes 416 may include conventional holes, locking holes, or slots.
  • the holes may be threaded, unthreaded, or partially threaded, and may be fixed or polyaxial.
  • securing holes 416 may include variable low-profile holes that allow for locking at a variety of angles.
  • the attachment portion 414 of the mounting member 410 may extend generally perpendicularly from another portion 415 of the mounting member 410 , and may comprise one or more concave curved surfaces 417 configured to abut an outer portion 422 of an acetabular shell 420 , or one or more convex surfaces (not shown) configured to abut an inner portion of a prepared acetabulum.

Abstract

Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. An augment provided for an acetabular implant may be adjustably positionable around the implant. An implant may have one or more slots that mate with connections on the augment and allow the augment to move within the slot. An augment may be translated, rotated, or moved in any other way to achieve a desired orientation prior to locking the augment in place relative to the implant. The augment may be locked by a screw or other locking mechanism that holds the augment in place. The locking mechanism may be releasable to allow for repositioning of the augment.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application No. 61/352,705, filed Jun. 8, 2010, U.S. Provisional Application No. 61/352,722, filed Jun. 8, 2010, U.S. Provisional Application No. 61/422,903, filed Dec. 14, 2010, and U.S. Provisional Application No. 61/466,817, filed Mar. 23, 2011, which are hereby incorporated by reference herein in their entireties.
  • BACKGROUND
  • Joints often undergo degenerative changes due to a variety of reasons. When joint degeneration becomes advanced or irreversible, it may become necessary to replace the natural joint with a prosthetic joint. Artificial implants, including hip joints, shoulder joints, and knee joints are widely used in orthopedic surgery. Specifically, hip joint prostheses are common. The human hip joint acts mechanically as a ball and socket joint, wherein the ball-shaped head of the femur is positioned within the socket-shaped acetabulum of the pelvis. Various degenerative diseases and injuries may require replacement of all or a portion of a hip using synthetic materials, typically metals, ceramics, or plastics.
  • More particularly, natural hips often undergo degenerative changes, requiring replacement of the hip joint with a prosthetic joint. Often, the hip is replaced with two bearing surfaces between the femoral head and the acetabulum. The first bearing surface is typically a prosthesis shell or acetabular cup, which may be formed of metal, ceramic material, or as otherwise desired. A liner (conventionally formed of polyethylene material such as ultra high molecular weight polyethylene, a ceramic material, or in some cases, even a metal liner) is then fit tightly within the shell to provide an inner bearing surface that receives and cooperates with an artificial femoral head in an articulating relationship to track and accommodate the relative movement between the femur and the acetabulum.
  • The cup (or a cup and liner assembly) is typically fixed either by placing screws through apertures in the cup or by securing the cup with cement. In some cases, only a liner is cemented in a patient due to poor bone stock. In other cases, a cup having a porous surface may be press fit into the reamed acetabular surface.
  • It may become necessary to conduct a second or subsequent surgery in order to replace a prosthetic joint with a (often larger) replacement joint. Such surgeries often become necessary due to further degeneration of bone or advancement of a degenerative disease, requiring removal of further bone and replacement of the removed, diseased bone with a larger or enhanced prosthetic joint, often referred to as a revision prosthesis. For example, bone is often lost around the rim of the acetabulum, and this may provide less rim coverage to securely place a press-fit cup. Such surgeries may thus be referred to as revision surgeries.
  • In acetabular revision surgery, an acetabular prosthesis generally includes additional mounting elements, such as augments, flanges, hooks, plates, or any other attachment or mounting points or members that provide additional support and/or stability for the replacement prosthesis once positioned. These additional mounting or attachment members are often required due to bone degeneration, bone loss, or bone defects in the affected area (in this instance, the hip joint).
  • Various types of these mounting members (which term is intended to include but not be limited to flanges, blades, plates and/or hooks) may be provided in conjunction with a prosthesis system in order to help the surgeon achieve optimal fixation, non-limiting examples of which include iliac flanges (providing securement and fixation in and against the ilium region of the pelvis), ischial blades (providing securement and fixation in and against the ischium), and obturator hooks (providing securement and inferior fixation by engaging the obturator foramen). Although there have been attempts to provide such mounting attachments with modularity, the solutions to date have generally fallen short of providing true modularity. Instead, they typically provide a few discrete positions at which the mounting members may be positioned, without providing the surgeon a fuller range of decision options.
  • Additionally, in some primary surgeries and more often in revision surgeries, the acetabulum may have a bone defect or void that the surgeon must fill with bone grafts before inserting a new shell. This can be time consuming and expensive, and may subject the patient to additional health risks. Some techniques use an augment in connection with the acetabular shell, which can be coupled to or otherwise attached to the outer surface of the shell.
  • With current augments, the surgeon can attach the augment to the bone and then implant the cup. However, many acetabular shells rely on bone screws to achieve proper fixation and the augment often gets in the way of a screw. In short, surgeons need the freedom to place screws in the best location, but this compromises their ability to use augments. With current systems, it also takes an increased amount of time surgical time to trial the component orientation and then try to find good bone fixation for the cup. The surgeon will often have to free-hand the amount of bone removed while estimating the size of augment needed. In the cases where bone is often deficient, surgeons are hesitant to take away any more bone than necessary.
  • Various additional features and improved features intended for use and application with various types of joint implants are also described herein, such as improved bone screws, improved coatings, and various augment removal and insertion options.
  • SUMMARY
  • Disclosed herein are systems, devices, and methods for providing modular orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, any other suitable orthopedic attachment, or any combinations thereof. Mounting members include, for example, flanges, blades, hooks, and plates. In some embodiments, the orthopedic attachments may be adjustably positionable about the base member or other attachments thereby providing modularity for assembling and implanting the device. Various securing and/or locking mechanisms may be used between the components of the implant. In certain embodiments, the orthopedic attachments are removably coupled to the base member or other components. In certain embodiments, the orthopedic attachments are integrally provided on the base member or other components, yet may still be adjustably positionable thereabout. In some embodiments, expandable augments, base members, or other bone filling devices are provided. In some embodiments, surface features are provided that create friction and allow for surrounding bone ingrowth at the interface of the implants and a patient's bone.
  • Systems, devices, and methods described herein provide implants having augments configured to attach to acetabular shells or cages, mounting members, or other augments with or without cement and configured to allow fine positional adjustments for best bone fit, coverage, and stability. In certain embodiments, an orthopedic implant includes an acetabular implant having a track that includes a plurality of slots and an exterior surface, an augment having a protrusion that moves within the plurality of slots, the augment having a first cam surface that forms an interface with the exterior surface, where the protrusion has an adjustable fastener that, upon adjusting, fixes the augment with respect to the implant to impede further movement. In some embodiment, the augment may rotate about the exterior surface. The adjustable fastener may be a tightening screw that extends through a through-hole in the augment and, upon tightening, expands the protrusion (which may be flared outwardly) and thereby tightens the augment within the track. In some embodiments, the tightening screw has a head that fits within a slot and faces an interior portion of the implant, where the slot has an interior opening that aligns with the head, and where the interior opening receives a tightening rod to tighten the screw. In some embodiments, the track includes a dovetail joint that receives the protrusion. In some embodiments, the track includes a straight portion and a curved portion. For example, the track can include two straight slots and a curved portion. In some embodiments, the track includes a J-shaped slot with a wall of the implant. The protrusion may be part of an intermediate locking member that is integral to the augment. In some embodiments, the first cam surface of the augment includes at least one trough that receives cement to bind the augment to the shell. In some embodiments, the augment includes a plurality of projections that form a gap and may further include a flange attached to the augment.
  • In certain embodiments, a method of preparing an orthopedic implant includes the steps of providing an implant having a curved external surface and an opening in the surface, the opening having at least two portions that join at a common region but are separated by an angle of less than 180°, providing an augment having a first surface that interfaces with the curved external surface, coupling the augment and implant by an intermediate locking member, and tightening the intermediate locking member. In some embodiments, the method may further include the step of securing the augment to the implant by disposing cement within a trough located on the first surface. In some embodiments, the method may further include the step of rotating the augment with respect to the implant about the curved external surface prior to tightening the intermediate locking member, and moving the intermediate locking member within the opening prior to tightening. In some embodiments, the method may further include the steps of applying a fastener to the implant, so that the fastener extends outwardly from the external surface, and positioning the augment about the external surface so that the extended fastener fits between two protrusions of the augment, where the intermediate locking member is tightened with respect to the augment by a screw.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects and advantages will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
  • FIG. 1 shows an illustrative augment configured to attach to acetabular shells or cages, mounting members, or other augments;
  • FIGS. 2 and 3 show an illustrative acetabular shell or cage that includes a track;
  • FIG. 4 shows an illustrative augment that includes a through hole;
  • FIG. 5 shows an illustrative fastener having an expanding portion configured to be inserted through a track on an acetabular shell and into an augment;
  • FIGS. 6 and 7 show illustrative augments configured to secure to an acetabular shell or cage, mounting member, or other augment prior to insertion into a prepared bone void;
  • FIG. 8 shows an augment having an illustrative intermediate adapter member;
  • FIG. 9 shows an illustrative insertion opening in a shell adapted to receive features of the intermediate adapter system of FIG. 8;
  • FIG. 10 shows an illustrative expansion member inserted into an intermediate adapter member to secure the adapter in a desired location;
  • FIGS. 11 and 12 show examples of a prior mounting member or augment adapted for securement to a shell;
  • FIGS. 13-15 show an illustrative mounting member or augment provided with an opening having multiple fixed directional threaded screw holes;
  • FIG. 16 shows an illustrative mounting member or augment having an expandable or deformable spherical ball member;
  • FIG. 17 shows an illustrative mounting member or augment having a rotatable inner cylinder insert member;
  • FIG. 18 shows an illustrative mounting member or augment similar to FIG. 17 that is configured for use with a polyaxial fastener;
  • FIG. 19 shows an illustrative mounting member and an illustrative augment member provided with a dovetail feature;
  • FIGS. 20 and 21 show an illustrative dovetail feature configured to receive a fastener;
  • FIGS. 22 and 23 show an illustrative chock distally-connected to a surgical cable and positioned within a portion of an augment;
  • FIGS. 24 and 25 show an illustrative chock having an angled or inclined surface configured to receive an expansion member;
  • FIG. 26 shows an illustrative cable tensioning device provided on a mounting member or augment;
  • FIGS. 27-29 show an illustrative mounting member or augment that may be attached to an acetabular shell, cage or other augment using a separate expandable chock member and an intermediate connecting member;
  • FIG. 30 shows an illustrative expanding element that may be provided in an aperture of a mounting member or augment;
  • FIG. 31 shows an illustrative ferrule on a cable that may be positioned against an augment;
  • FIGS. 32 and 33 show illustrative geometries for a receiving portion of a shell, cage, or augment;
  • FIG. 34 shows illustrative indicia for indicating a positional relationship between the mounting member or augment and the implant to which it is to be attached;
  • FIG. 35 shows illustrative spikes that may be provided on mounting members or augments for improving fixation;
  • FIG. 36 shows an illustrative bi-lobe cup or shell;
  • FIG. 37 shows two augments attached together via an illustrative fastening device;
  • FIG. 38 shows an illustrative augment with integral spikes;
  • FIG. 39 shows an illustrative augment with built-in securement features;
  • FIG. 40-42 show various illustrative augments or porous coating portions having one or more cross-sectional areas of reduced material;
  • FIG. 43 shows an illustrative rotary tool;
  • FIGS. 44-47 shows various connection devices for securing a mounting member or an augment to an acetabular shell or cage;
  • FIGS. 48-50 show illustrative augments provided with an elongated undercut groove configured to receive a cam locking pin;
  • FIG. 51-54 show illustrative cleats provided proximate to a rim of an acetabular shell or cage, mounting member, or augment;
  • FIG. 55 shows illustrative cleat portions configured for securing soft tissues;
  • FIGS. 56 and 57 show an illustrative augment attached peripherally to an acetabular shell or cage via a recess;
  • FIGS. 58 and 59 show an illustrative mounting member attached peripherally to an acetabular shell or cage via a recess;
  • FIG. 60 shows an acetabular shell or cage having an illustrative annular protrusion;
  • FIG. 61 shows a mounting member having an illustrative orthopedic mesh;
  • FIG. 62 shows an illustrative mesh portion placed on an outer portion of a shell;
  • FIG. 63 shows an illustrative mesh that includes a plurality of trim lines that may be cut to separate the mounting members attached thereto;
  • FIG. 64 shows illustrative separated mounting members from the mesh of FIG. 63 placed into a patient's hip region; and
  • FIGS. 65 and 66 show an illustrative honeycomb design that may be provided on a mounting member or augment.
  • DETAILED DESCRIPTION
  • To provide an overall understanding of the systems, devices, and methods described herein, certain illustrative embodiments will be described. Although the embodiments and features described herein are specifically described for use in connection with acetabular systems, it will be understood that all the components, connection mechanisms, adjustable systems, fixation methods, manufacturing methods, coatings, and other features outlined below may be combined with one another in any suitable manner and may be adapted and applied to medical devices and implants to be used in other surgical procedures, including, but not limited to: spine arthroplasty, cranio-maxillofacial surgical procedures, knee arthroplasty, shoulder arthroplasty, as well as foot, ankle, hand, and other extremity procedures.
  • Various implants and other devices described herein in their various embodiments may be used in conjunction with any appropriate reinforcement material, non-limiting examples of which include bone cement, appropriate polymers, resorbable polyurethane, and/or any materials provided by PolyNovo Biomaterials Limited, or any suitable combinations thereof. Further non-limiting examples of potential materials that may be used are described in the following references: U.S. Patent Application Publication No. 2006/0051394, entitled “Biodegradable Polyurethane and Polyurethane Ureas,” U.S. Patent Application Publication No. 2005/0197422, entitled “Biocompatible Polymer Compositions for Dual or Multi Staged Curing,” U.S. Patent Application Publication No. 2005/0238683, entitled “Biodegradable Polyurethane/Urea Compositions,” U.S. Patent Application Publication No. 2007/0225387, entitled “Polymer Compositions for Dual or Multi Staged Curing,” U.S. Patent Application Publication No. 2009/0324675, entitled “Biocompatible Polymer Compositions,” U.S. Patent Application Publication No. 2009/0175921, entitled “Chain Extenders,” and U.S. Patent Application Publication No. 2009/0099600, entitled “High Modulus Polyurethane and Polyurethane/Urea Compositions.” Each of the prior references is incorporated by reference herein in its entirety.
  • The embodiments shown in FIGS. 1-15 provide augments that may be configured to attach to acetabular shells or cages, mounting members, or other augments without cement, and are also configured to allow fine positional adjustments for best bone fit, coverage, and stability. It will be understood that the features and components described in connection with the augments of FIGS. 1-15 may also be applied to mounting members, such as hooks, flanges blades, or any other suitable mounting members, that may be configured to attach to acetabular shells or cages, augments, or other mounting members. FIG. 1 illustrates certain embodiments wherein an augment 450 may be placed on a periphery of a hemispherical acetabular shell, cage, or other augment. As shown in FIGS. 2 and 3, a shell or cage 460 may comprise a track 462 that is undercut so as to form a dovetail joint 461 with a mounting member or an augment. The track 462 may be provided as a J-shaped slot (as shown), T-shaped slot, H-shaped slot, or any other shape involving combinations of straight and/or curved segments. The track 462 preferably includes at least two portions or slots, at least one of which can receive a complementary connector or protrusion from the augment or mounting member. As shown in FIG. 2, for example, the first portion or slot 464 and second portion or slot 466 join about common region 468 but are separated out at distal ends 465 and 467 by angle Ø, which is less than 180° in the example. The at least two portions thereby permit the augment or mounting member to be adjustably positioned along the surface of the shell, cage, or other augment by sliding the augment (and its connector) along the track and securing it at the desired location. For example, the augment could be secured in one of the at least two portions (such as slot 464), or the other of the at least two portions (such as slot 466), or in between.
  • The mounting member or augment may have a protrusion that is flared outwardly, and may be generally frustoconical, bulbous, or otherwise forms a portion of a male portion of a dovetail joint. For example, as shown in FIG. 1, augment 450 includes protrusion 452 that is flared outwardly. The flared protrusion 452 may be expandable when used with a central mandrel or expanding fastener. Additionally or alternatively, it may be made from a deformable material and/or may be provided as a bifurcated member having one or more leg portions to facilitate expansion of the protrusion.
  • The outer peripheral surface portions 453 of the protrusion 452 may be rounded (e.g., a frustoconical shape), and the augment 450 (or, in some embodiments, mounting member) may not only be translated within and along the track 462 on the shell 460, but also rotated within the track 462 on the shell 460. A fastener 456 such as a screw, setscrew, mandrel, shank, rivet, or any other fastener having a low profile head which is accessible from the inside dome portion of the shell or cage 460 (or another augment) is configured to engage an inner bore or opening 458 located in the flared protrusion 452, thereby expanding the protrusion 452. The term “expansion member” is used herein to refer to any appropriate member, including but not limited to the fasteners listed above, that can be used to engage and/or otherwise expand another feature. One example of an expansion member that may be used in connection with this embodiment comprises a setscrew/mandrel/fastener that has a tapered outer portion or a surface having an outer diameter that is greater than the receiving portion of the protrusion, such that when the expansion member is threaded into the protrusion, the protrusion expands. The expansion of the flared protrusion causes the protrusion to frictionally engage the track in the shell/cage/augment, thereby forming a locked dovetail connection which secures the mounting member or augment to the shell. Once the expansion member is completely tightened, the mounting member or augment is locked to the shell/cage/augment in both translation and rotation with a strong dovetail locking joint. For example, augment 450 can be attached to the track 462 by the protrusion 452. Before tightening the protrusion 452, the augment 450 can be rotated with respect to the shell 460, such that the augment interior surface 454 and the shell exterior surface 469 remain generally interfaced while the augment 450 rotates about the shell 460 like a cam, until the augment 450 is in the desired position. The protrusion 452 is then tightened to secure the augment 450 in that position.
  • One advantage of such a mechanism is that the assembly of the shell/cage/augment and the mounting member or augment may be loosely assembled, then placed into a bone void such as an irregularly shaped bone void. Once generally positioned, the assembly components may be adjusted with respect to each other to best fit an existing or prepared bone void. The assembly components may then be tightened together such that the assembly closely approximates the size, shape, and orientation of the existing or prepared bone void.
  • While the particular embodiment shown in FIG. 1 illustrates an expansion member 456 seated in a “blind” interior opening or bore 458 in augment 450, an augment may alternatively or additionally comprise a through hole such as through hole 478 of augment 470 in FIG. 4, configured to receive an expansion or tightening member 476, for example a long bone screw, long fastener, or other long expansion member (such a tightening configuration will be referred to throughout as a “long bone screw,” but it will be understood that any appropriate fastener that can secure two components together, while also potentially gain purchase into bone is considered appropriate for use in connection with the described embodiment). The tightening member 476 may be configured to gain purchase in the augment 470 and/or surrounding bone as illustrated in FIG. 4. The opening 487 in the flared protrusion 472 that receives the bone screw 476 may generally continue through the augment 470 and out a hole 479 in a side of the augment 470 opposite the protrusion 472. In such embodiments, the bone screw 476 enters the augment 470 through an opening in the track 462 on the inside surface 463 of the shell/cage 460 (or, in some embodiments, another augment), and protrudes through the entire augment 470, including the flared protrusion 472 which, during insertion of the bone screw 476, will expand into the undercut track 461 on the shell/cage 460. Essentially, the bone screw 476 locks the augment 470 to the shell/cage 460 and secures the entire assembly to surrounding bone, thereby stabilizing the assembly with respect to hip anatomy. In this sense, not only does the bone screw 476 serve to rigidly secure the augment 470 to the shell/cage 460 before necessarily securing purchase of the bone screw 476 into surrounding bone, the bone screw 476 further provides secondary fixation of the assembly to surrounding bone by then subsequently securing purchase with surrounding bone.
  • The embodiment shown in FIG. 4 allows a surgeon to lock the augment 470 to a second component from an inside portion (e.g., an inside portion 463 of a shell 460), after the loose assembly is placed into the prepared bone void. In other words, the augment 470 may be loosely coupled to the shell 460 or other second component in the patient's bone void, and a fastener is used to secure the augment to the second component (not shown, but which may be the shell, cage, or a second augment) and to the patient's bone. The head is arranged within the slot of track 462 so that it is aligned with the interior opening 478 of the augment 470 and extends radially within the shell 460. The surgeon can then insert a tightening rod through the interior opening 478, from inside the shell 460, to access and tighten the screw 476.
  • FIG. 5 illustrates some embodiments related to those shown in FIG. 4. A bone screw 681 or other fastener having both an expanding portion 694 and a bone engaging portion is inserted through an undercut recess, groove, or track 682 provided on an acetabular shell or cage 680 (or, in some embodiments, provided on an augment). The bone screw 681 or other fastener may be inserted from an accessible inside portion 683 of said shell/cage 680. The bone screw 681 or other fastener protrudes into and through an opening 684 within an adjacent augment 686 (or, in some embodiments, a mounting member) having a male connection member 688. The male connection member 688 may be generally cylindrical or flared (e.g., frustoconical) and is configured to be inserted into and move within (translate, rotate, etc.) the undercut recess, groove, or track 682.
  • In use, as the bone screw 681 begins to make purchase with bone, the expanding portion 694 of the bone screw 681 engages a complementary expanding portion 692 of the augment 686 adjacent the male connection member 688, thereby expanding a portion of the male connection member 688 inside the undercut recess, groove, or track 682 and locking the augment 686 to the shell/cage 680 (or other augment). In some embodiments, one or more of the expanding portions of the bone screw and mounting member or augment may not be threaded. For example, the expanding portion 694 of the bone screw 681 may be threaded, and the expanding portion 692 of augment 686 may be a smooth tapered recess. Alternatively, the expanding portion 694 of the bone screw 681 may be a smooth tapered surface that seats within and wedges against a smooth tapered expanding portion bore 684 in the augment 686. The taper angle of the bone screw 681 expanding portion 694 may differ from the taper angle of the expanding portion bore 684. Furthermore, the expanding portion 694 of the bone screw 681 may be an enlarged threaded section that engages with a smooth undersized bore 684 in expanding portion 692 of the augment 686.
  • In further embodiments, as shown in FIGS. 6 and 7, it may be desirable to secure a mounting member or augment to an acetabular shell or cage, or other augment or mounting member prior to insertion into a prepared acetabular bone void. In such instances, the expansion member used to expand the protrusion may be made relatively shorter, so as to be partially or completely encased by the mounting member or augment. For example, expansion member 486 of augment 480 and expansion member 496 of augment 490 may be relatively shorter than bone screw 476 of augment 470. The insertion direction of the expansion member may be reversed with respect to the aforementioned embodiments, and move in a securing direction which is towards the acetabular shell/cage or other augment. In this way, the mounting member or augment may be attached to the shell/cage or other augment in a predetermined configuration, prior to insertion of the assembly into the prepared bone cavity.
  • The embodiment shown in FIG. 6 allows a surgeon to lock the augment 480 to the shell 460 prior to insertion into the prepared bone void, outside of the body cavity. The attachment prior to insertion may be a tight securement or a loose coupling. If a loose coupling is desired, such that complete securement can be completed once the assembly has been fully positioned, an opening 499 on an upper surface 494 of the augment 490, as shown in FIG. 7 allows tightening once the completed assembly is positioned in the bone cavity. In other words, this embodiment allows a surgeon to lock the augment 490 to the shell 460 from an outside portion on exterior surface 469 of the shell 460, after the loose assembly is placed into the prepared bone void.
  • In use, the surgeon may place a frustoconical or otherwise flared protrusion of the mounting member or augment into an insertion clearance opening in the shell/cage or other augment, and then may move the augment within a track extending from and connected to the opening (as shown in FIG. 8) to a desired rotational angle and/or location along the track. The surgeon may rotate, translate, or otherwise position or move the mounting member or augment as desired within the track. When the augment is positioned and located in a desired spatial orientation relative to the shell/cage or other augment, the expansion member can be inserted into and through the augment, and tightened within a threaded bore located in the protrusion.
  • It will be appreciated by one having ordinary skill in the art that, while not shown, the expansion member may be internally threaded and engageable with a male thread located within an opening in the protrusion. It will also be appreciated that, while not shown, the expansion member may only threadingly engage the bulk body of the mounting member or augment and may have a distal wedge portion provided thereon which engages a smooth tapered opening in the protrusion. In this embodiment, when the expansion member moves toward the protrusion in threaded engagement with the bulk body of the mounting member or augment, its distal wedge portion wedges open the flared projection via inclined surfaces without actually “threadably” engaging in inner surface of the protrusion. It should also be noted that the use of other fasteners such as the rivet-type, or any other suitable fastener, or combinations thereof, is envisioned.
  • When the expansion member is tightened or otherwise adjusted, the arms of the bifurcated protrusion expand and move away from each other, and therefore, the outer flared portions of the protrusion engage the undercut walls of the track provided on the shell/cage/augment. For example, when expansion member 456 of FIG. 1 is tightened or otherwise adjusted, the arms of protrusion 452 may expand and engage the undercut walls 461 of the track 462 provided on shell 460 of FIG. 2. The arms of protrusions 472, 482, and 492 may similarly be expanded when an expansion member is tightened or otherwise adjusted. Friction between the walls of the track and the expanded bifurcated protrusion maintain the mounting member or augment in fixed relationship relative to the shell/cage/augment, and the assembly may be inserted into the prepared bony site.
  • As shown in FIG. 8 and for potential use in connection with or interchangeably with the embodiments shown in FIGS. 44-47, an intermediate adapter member may be used to secure a mounting member or augment to an acetabular shell, cage, or other augment. For example, adapter 502 comprises a portion that is received in an opening (e.g., tapered hole or undercut track) in the shell/cage/augment, and sits flush or recessed with respect to an inner surface of the shell/cage/augment, so as to not protrude into the inside portion of the shell/cage/augment where a liner might be seated. The adapter 502 may have an expanding tapered or flared head 504 (e.g., frustoconical) that protrudes outwardly from the shell and engages an undercut slot, blind or through-slot, or a tapered aperture in the mounting member or augment. For example, adapter 502 includes an expanding tapered or flared head 504 that engages undercut slot 508 of augment 500. The adapter 502 may be entirely or partially cannulated and may be non-threaded, threaded partially, or threaded all the way through its length. The expanding tapered or flared head 504 of the adapter 502 may be made bifurcated so as to have two or more arm portions 505 and 506 that are configured to move away from each other to expand the head 504 and create a locking interference between the expanding head 504 and the undercut slot or tapered aperture 508. A small expansion member 510, a long bone screw (not shown), or any other suitable fastening member may be threadably received in the adapter 502 such that when the expansion member 510, long bone screw, or other fastening member threads into the bifurcated head portion 504, the arms 505 and 506 of the head portion 504 expand and frictionally engage the walls of the slot or aperture 508 to lock augment 500 to the shell/cage 600 or other augment. A mounting member may similarly locked to an acetabular shell or cage 600 or an augment. The head 512 of the expansion member 510, long bone screw, or other fastening member may lie flush with, or slightly recessed from the inside (e.g., concave) surfaces of the shell/cage/augment, so that a liner may be properly seated.
  • FIG. 9 shows an insertion opening 516 in a shell 518 adapted to receive features of the adapter system of FIG. 8 according to some embodiments. FIG. 10 shows a side cross-sectional view of an adapter 520 in place within the shell 518 and an augment 522, used to secure the two components to one another. As shown, the adapter 520 may have a frustoconical head 524, and specifically, may have a head 524 that is bifurcated and expandable. The head 524 of the adapter 520 may be received in an augment 522 or any other first component (e.g., a mounting member) that is desired to be coupled or otherwise secured to a second component (e.g., an acetabular shell or cage). The augment 522 may have a J-slot (e.g., as shown in more detail in FIG. 8), a dovetail configuration, or may have any other appropriate shape, such as an undercut design, or any other appropriate track-type slot or groove. This feature may extend to the upper edge of augment 522 or first component (e.g., as shown in FIG. 8 where slot 508 extends to upper surface 514 of augment 500) or it may be positioned in the side wall only of the augment 522 or first component (e.g., as shown in FIG. 2 where track 462 is provided through surfaces 463 and 469 of shell 460).
  • In use, the adapter head 524 slides into or is otherwise positioned in the slot/track/undercut. The adapter tail end 526 may extend slightly from the augment 522 or first component and extend toward and slightly into an insertion opening in the shell 518 or second component. As discussed above and shown clearly in FIG. 10, it is preferable that the adapter tail 526 not extend completely into the internal cavity of the shell 518 or second component so that a liner 528 may be used without having the liner 528 directly abut or otherwise contact the adapter 520. Once positioned, an expansion member 530 is inserted into the adapter 520 to cause the bifurcated head 524 to expand and lock, plug, or otherwise securely lodge the adapter 520 in the desired location.
  • FIGS. 11 and 12 illustrate an example of a prior mounting member or augment 531 adapted for securement to a shell 533 as disclosed in U.S. Patent Application Publication No. 2007/0093133, entitled “Fixing Assembly,” which is incorporated by reference herein in its entirety.
  • FIGS. 13-15 illustrate various embodiments of an improvement of the devices shown in FIGS. 11 and 12. A mounting member or augment may be provided with an opening having multiple fixed directional threaded screw holes. For example, mounting member or augment 540 of FIG. 13 includes an opening 542 having a plurality of fixed directional threaded screw holes 544. In the specific embodiments shown, there are three fixed directional threaded screw holes (e.g., screw holes 544), but it will be understood that more or fewer holes may be provided. The holes may be fixed in various orientations in space with respect to each other. The holes may be spaced apart from each other as shown by holes 546 in FIG. 15. The holes may intersect radially as shown by holes 544 in FIG. 13. The holes may be positioned linearly as shown by holes 548 in FIG. 14. In use, a protrusion member that extends from a mounting member or augment is received in rotating engagement by a round blind undercut recess on an acetabular shell, cage, or augment as shown in FIG. 11. Alternatively, the protrusion member may be received in an undercut track (e.g., as shown in FIGS. 2 and 3) provided on an acetabular shell, cage, or augment. As shown, the projection may be bi-forked in configuration to facilitate its expansion when one or more screws or other fastening members are inserted through one or more of the threaded screw holes in the mounting member or augment. The protrusion on the mounting member or augment is generally configured to expand upon partial screw insertion and is also generally configured to secure and lock the mounting member or augment to the shell/cage/augment in a desired relative spatial orientation, regardless of whether or not the screw secures purchase within the bone.
  • FIG. 16 illustrates a mounting member or augment 550 according to certain embodiments that may be used for coupling to an acetabular shell, cage, or other augment having a round blind undercut on the shell, one example of which is shown in FIG. 11. Alternatively, as previously mentioned, the protrusion member 552 may be received in an undercut track (e.g., as shown in FIGS. 2 and 3) provided on an acetabular shell, cage, or augment. As shown in FIG. 16, an expandable or deformable spherical ball member 554 is adapted to be positioned within, located inside, or otherwise captured within an opening 558 in a split or bifurcated mounting member or augment 550 and captured therewithin. The ball member 554 may be undersized so as to expand when an expansion member (e.g., screw 556) or other fastener is inserted therein. Alternatively, the ball member 554 may be formed of a deformable material to allow the ball 554 to expand upon insertion of an expansion member (e.g., screw 556) or other fastener. Moreover, the ball member 554 may be split to facilitate expansion of the ball member 554. The ball member 554 is generally captured within, secured to, or otherwise operable with the mounting member or augment 550 so as to form a ball joint.
  • The ball member 554 may have a deformable smooth bore which is ultimately deformed to be threaded by the screw fastener during insertion. Alternatively, the ball member 554 may comprise a threaded bore which is slightly undersized in inner diameter with respect to the inserted screw. Alternatively, the bore in the ball member 554 may be smooth and the ball member 554 expanded when engaged by an expansion member or other fastener. In some instances, as shown, a screw 556 or other fastener may be provisionally positioned adjacent an aperture of the cannulated ball member 554, and then oriented to a desired spatial location and angulation with respect to a patient's anatomy for insertion into adjacent pelvic or other bone. The expansion member (e.g., screw 556), long bone screw, or other fastener may be used as a lever to move the ball 554 at any angle relative to the mounting member or augment 550 and then inserted to secure bone purchase.
  • When the screw or fastener 556 passes through the aperture in the ball 554, the ball 554 spreads open or deforms via the aforementioned undersized, deformable, or expandable means. In this instance, the ball 554 expands, and in turn, also further expands the mounting member or augment 550, which may be bifurcated, one example of which is described above. When the mounting member or augment 550 is expanded, the protrusion member 552, shown here as a generally flared and bifurcated frustoconical projection, expands within and may lock into a round, blind undercut recess or undercut groove in the shell/cage/augment in the desired angular spatial orientation. The mounting member or augment 550 is generally configured to allow fixing of itself to the shell/cage/other augment regardless of whether or not the screw 556 secures purchase within the bone. Moreover, the ball member 554 captured within the mounting member or augment 550 also allows the screw 556 to be inserted in any orientation relative to both the mounting member or augment 550 and the shell/cage/other augment.
  • In some embodiments, such as those shown in FIGS. 17 and 18, an optional rotatable inner cylinder insert member may be used. The cylinder may be split along its length and may have one or more threaded bores extending along its length at one or more various angles, offsets, and eccentricities for engagement with a long bone screw or other fastener. For example, as shown in FIG. 17, a single bore 566 may be provided in a cylindrical insert 564, the bore 566 having a smooth outer bearing surface 568 that is angled and offset. The insert 564 shown is captured within the mounting member or augment 564 by a knurl, step, flange, or lip 567 so as to be rotatable with respect to the mounting member or augment 560, but not axially displaceable from the mounting member or augment 560. When the screw or fastener 569 is inserted into the bore 566, the insert 564 expands, and in turn, expands a projection member 562 on the mounting member or augment 560 or alternatively or additionally expands the entire mounting member or augment 560. The projection member 562 may expand within the round blind undercut on the shell, cage, or other augment shown in FIG. 11, or alternatively may expand within an undercut groove within said shell, cage, or other augment as shown in FIGS. 2 and 3.
  • FIG. 18 depicts a mounting member or augment 570 that is similar to the embodiment shown in FIG. 17, but instead, is configured for use with a polyaxial screw or fastener 576 having a smooth rounded head 577. In this exemplary embodiment, the inner cylindrical insert 574 is not split, but is instead provided as a larger diameter, externally-threaded body configured to be received in a smaller diameter threaded bore 571 in the mounting member or augment 570. The inside of the cylindrical insert 574 has one or more “hourglass”-shaped bores 578, for instance, those that can be used with polyaxial screw heads having rounded or spherical screw heads. Various examples of polyaxial locking systems and methods are shown and described in U.S. Patent Application Publication No. 2002/0147499, entitled “Locking Systems for Implants,” U.S. Patent Application Publication No. 2008/0300637, entitled “Systems and Methods for Using Polyaxial Plates,” and U.S. Provisional Patent Application No. 61/178,633, entitled “Polyaxial Fastener Systems and Methods,” all of which are intended for potential use in connection with the described systems and are incorporated by reference herein in their entireties.
  • The bore 578 may comprise portions engageable with threads of the polyaxial screw 576, or may contain deformable tabs in regions proximate the head 577 for use with threaded heads. The angle of the screw or fastener 576 can be varied within the bore 578 of the cylindrical insert 574. Regardless of whether or not the polyaxial screw 576 is inserted into the bore 578, the mounting member or augment 570 is positively secured and locked to the shell/cage/augment in a desired spatial orientation and angulation due to the expansion of the projection member 572 or the mounting member or augment 570 as a whole. This occurs, for example, after inserting and threadably engaging the cylindrical insert 574 with an undersized threaded recess (e.g., bore 571) provided in the mounting member or augment 570.
  • FIGS. 19-35 show certain embodiments for attaching mounting members or augments to an acetabular shell, acetabular cage, or other augment. Disclosed is an apparatus and method for attaching the acetabular mounting members or augments to shells, cages, and other augments with an amount of adjustability. A kit of different augments may be provided for use with the same acetabular shell, cage, or augment. Relative spatial adjustments between the mounting member or augment position and the shell/cage/augment may be made with multiple degrees of freedom. The mounting members and/or augments may be attached and subsequently permanently and irremovably secured and locked to the shell/cage/augment prior to or after its insertion into a prepared acetabulum and/or surrounding bone voids.
  • In certain embodiments shown in FIG. 19, a mounting member 580 or augment member 582 is provided with a dovetail feature 581 and 583 (that may be male or female), respectively, to connect it to an acetabular shell or cage 584 (or, in some embodiments another augment) having the other complementary mating female or male dovetail feature 586. In the embodiment shown, the complementary feature 586 on the shell 584 is a J-shaped track or J-slot, but it will be understood that any mating features or configurations may be used. In the specific embodiment described, the dovetail feature 586 is configured to allow the mounting member 580 or augment member 582 to rotate and/or translate with respect to the shell 584 in a semi-locked state. The semi-locked state generally allows some independence of movement between the two pieces, which can be desirable to allow a surgeon to toggle between relative positions or otherwise continue to position and adjust the members. Such a semi-locked or loose connection can be particularly useful for revision surgeries.
  • The mounting member 580 or augment member 582 may be provided in a number of various shapes, sizes, textures, and configurations configured to fill bone defects and voids of varying degrees and locations with respect to a patient's anatomy. For instance, an implant may comprise a flange member that does not necessarily serve to fill a bone void/defect, but is instead configured to couple with a bone surface. Dovetail features according to FIGS. 19-35 generally mate by providing a flared male member (e.g., member 581 or 583) that is configured to slidingly engage one or more complementary female members such as one or more separated or intersecting undercut grooves or recesses (e.g., member 586). The undercut grooves or recesses may be provided on either component or vise versa, without limitation. A third member, for example an expansion member (e.g., setscrew, fastener, rivet, wedge, pin, cam, long bone screw, or any other fastener), may further be provided and used to securely lock the two pieces together to form a locked assembly. In some instances, the third member will engage one or more portions of the dovetail features to cause the male member to expand in the female member.
  • In other instances, for example, as shown in FIGS. 20 and 21, a fastener such as a setscrew may be inserted through a male portion 588 of the dovetail features to move the male member 588 away from a blind portion of the female member 589, thereby spreading the two pieces such that tapered surfaces of the dovetail features frictionally engage each other.
  • FIGS. 22-26 illustrate some embodiments wherein one or more locking chocks are distally-connected to a surgical cable and are configured to be received and/or captured within a portion of a mounting member or augment. For example, FIGS. 22 and 23 show a locking chock 590 distally-connected to a surgical cable 592 and positioned within a portion of augment 594. The cable 592 may be introduced through a through-bore in a mounting member or augment (e.g., bore 596 of augment 594) and tightened via a clamping device. The chock 590 is shaped to complement a tapered hole or an undercut groove or recess provided in an acetabular shell, cage, or other augment (e.g., undercut recess or groove 602 of FIG. 24). When the surgical cable 592 is tightened around the mounting member or augment adjacent bone or to any other plating structures, the chock 592 is pulled toward the undercut surfaces of the tapered hole undercut groove/recess and is expanded by an expansion member 598, for example, by a ball crimped to a distal portion of the surgical cable or any of the other expansion members described herein. The chock 590 may engage the undercut groove or recess. As shown in FIGS. 24 and 25, an internal portion of a chock 604 may have an angled or inclined surface 600, which is adapted to receive an expansion member 606.
  • In use, the chock rides along the cable and once positioning is desired, the wings of the chock may be forced apart for securement. For example, wings 595 and 597 of chock 590 shown in FIG. 23 may be forced apart for securement. When the cable is tightened, this can (a) pull the augment towards the shell/cage/other augment and (b) pull the ball or other expansion member at the end of the cable inside the chock so that the wings will expand and the chock will be secured in place. For example, when cable 601 of FIG. 24 is pulled in the direction of arrow 608, this can pull expansion member 606 inside the chock 604 so that the wings 605 and 607 of chock 604 expand, thereby securing the chock 604 in place.
  • Alternatively, while not shown, the chocks may be separate pieces attached to the surgical cable at different portions and provided with inclined surfaces that ride together to facilitate expansion and frictional engagement with the tapered hole or undercut groove/recess. The one or more locking chocks may be oblong for easy insertion into the undercut groove or recess. Once the cable is pulled tight, it may be used as cerclage cable or K-wire and tightened around bone or other anatomical structures, keeping the mounting member or augment attached to the shell, cage, or other augment.
  • Alternatively, as shown in FIG. 26, the cable 610 may be tensioned using a cable tensioning device provided on the mounting member or augment 614. For instance, as shown, a tensioning screw member 612 may threadingly engage a female thread 616 located in the mounting member or augment 614. As the tensioning screw member 612 is turned, the cable 610 is pulled into tension, thereby moving an expansion member (e.g., a crimped ball) against inner inclined surfaces located on the one or more locking chocks such as inclined surface 600 of chock 604. When the expansion member (e.g., expansion member 606) reaches a point of interference with the one or more locking chocks, the tensioning screw member may be turned further to spread the chocks apart and lock the mounting member or augment to the shell, cage, or other augment via a tightened dovetail joint.
  • FIGS. 27-29 illustrate some embodiments wherein a mounting member or augment 628 may be attached to an acetabular shell, cage, or other augment 629 using a separate expandable chock member 620 and an intermediate connecting member 622. The intermediate connecting member 622 serves to temporarily loosely couple the mounting member or augment 628 to the shell/cage/augment 629, and also serves to expand the separate chock member 620 and lock the two components together. In some embodiments, it is preferred that the separate expandable chock member 620 is provided as a generally frustoconical portion or a male portion of a dovetail connection. The separate expandable chock member 620 may be inserted into and captured within an undercut recess, groove, or track (e.g., undercut recess, groove, or track 624) in an acetabular shell, cage, or other augment 629. In some embodiments, the separate expandable chock member 620 is movably captured and may be positioned at various locations and orientations within said undercut recess, groove, or track.
  • The mounting member or augment 628 is then placed adjacent to the shell/cage/other augment 629, and the intermediate connecting member 622 inserted through an aperture, opening, or recess 626 in the mounting member or augment 628 to engage an undersized or tapered female thread 627 in the separate expandable chock member 620. The mounting member or augment 628 may be moved to a desired position relative to the shell/cage/augment 629 by virtue of the loose connection and undercut recess, groove, or track, and then locked in a desired relative spatial orientation by engaging the intermediate connecting member.
  • In the embodiment shown, the intermediate member 622 is provided as a headed bolt that threadingly engages the separate expandable chock member 620 to expand the separate expandable chock member 620. When the separate expandable chock member 620 is fully expanded, a frictional dovetail locking connection is achieved, which locks the mounting member or augment 628 to the shell/cage/other augment 629 in the desired relative spatial orientation.
  • FIG. 30 illustrates an alternative embodiment to FIGS. 27-29, which is similar to the embodiment shown in FIGS. 6 and 7. A small expanding element 630 is provided within an aperture, opening, or recess 632 in a mounting member or augment 634 configured to be loosely attached and locked to an acetabular shell, cage, or other augment 636. The mounting member or augment 634 includes a male portion of a dovetail. The male portion of a dovetail may be formed by a deformable or expandable protrusion 638 which may be bifurcated and/or initially flared outwardly in an un-deformed/unstressed state. Alternatively, while not shown, in some embodiments, the expandable protrusion 638 may be provided as a generally cylindrical member which can be first introduced into an undercut recess, groove, or track, and then expanded within said undercut recess, groove, or track by the expanding element in order to provide a locking function between the mounting member or augment and the shell/cage/augment. As shown in FIG. 30, the expanding element 630 may be provided as a small tapered setscrew which engages a complementary tapered or otherwise undersized thread 640 inside the male portion of a dovetail. A flexible driver 642 may be used to access the small expanding element 630. Upon torsional engagement with the expanding element 630, a dovetail locking connection is formed, thereby securing the mounting member or augment 634 to the acetabular shell, cage, or other augment 638 in a desired configuration and relative spatial orientation.
  • FIG. 31 shows an alternate and additional feature relating to the cable and chock embodiments of FIGS. 22-30. FIG. 31 shows a ferrule 700 on a cable 702 that may be positioned against an augment 704. A tensioning tool 706 may be used to hold the cable 702 tight and the ferrule 700 can be crimped onto the cable 702. When the cable 702 is pulled tight, the chock (e.g., chock 590 of FIG. 22) engages the dovetail slot and the tension pushes the chock towards or into the augment 704, held in place by the ferrule 700.
  • FIG. 32 shows one potential geometry for a receiving portion 650 (such as an undercut recess, groove, or track) in a shell, cage, or augment according to some embodiments. In this example, the receiving portion is a double J-slot formed by slots 652, 654, and 656. FIG. 33 shows a further optional geometry, where J-slots are provided in opposing directions formed by slots 662, 664, and 667.
  • As shown in FIGS. 33 and 34, any of the mounting members or augments shown and described herein may comprise tick marks or other indicia for indicating a positional relationship between itself and the implant to which it is to be attached. For example, an augment 670 may comprise a plurality of peripheral markings 672 or central markings (not shown) for alignment with markings 661 provided in an acetabular shell or cage 660 (or, in some embodiments, another augment). In use, a surgeon may loosely insert the mounting member or augment (e.g., augment 670) and the shell/cage/augment (e.g., shell 660) into a patient's bone void, prior to assembling the two. The surgeon may then position both components and possibly other components to determine the best relative spatial orientation to best fill a volume of the void. The surgeon may then observe, compare, and note the relative positions of the markings or indicia between the bodies, thereby receiving repeatable and reproducible information about the desired spatial orientation. The surgeon may then remove both bodies from the surgical environment, realign them in the desired spatial orientations (facilitated by the markings or indicia), and then cement or otherwise secure the two bodies together in said desired spatial orientation. Subsequently, the assembled implant may be introduced into the void and the surgery completed in a normal fashion.
  • Moreover, as shown in FIG. 35, mounting members or augments shown and described in the figures contained herein may comprise tacks, spikes, coatings, or textured surfaces 674 so as to improve initial fixation. The geographic locations of said tack, spike, coatings, or textured surface structures 674 may be strategically placed on select portions so as to evenly load the implant assembly and obtain the best biologic response initially, and over an extended period of time.
  • FIG. 36 shows a bi-lobe cup or shell 710, which is a shell 710 having a lobe 712 extending therefrom. Typical bi-lobe shells are made of solid material, but this embodiment shows a bi-lobe shell 710 having a lobe 712 of porous material. The lobe 712 may have some solid portions for receiving screws other fastening members. As shown, additional augment members 714 may be attached to the lobe 712 of porous material or to the solid shell 710. Areas of the porous lobe 712 may be provided with areas of solid, non-porous material having apertures or other structures for receiving and locking to screws, such as polyaxial bone screws. Moreover, the porous lobe 712 may comprise holes 716 extending through fully porous sections for insertion of bone screws.
  • FIG. 37 shows two augments 720 and 722 attached together via a fastening device 724 such as a screw or a shape-memory polymer peg according to some embodiments. It will be understood that although augments are shown, the securement mechanisms described herein may also be used with any type of mounting member, shell, or cage as well. In some embodiments, a peg of shape memory material may extend from one or more augments and into a prepared hole in bony anatomy. The shape memory peg may then be activated (via thermal changes or an applied electric current) and expanded within the prepared hole to fix an augment or mounting member to the patient's bone. Non-limiting examples of further features for such shape memory plugs are that they may comprise outer textured surfaces, may be porous, and may comprise barbs, flutes, ridges, grooves, spines, any other suitable features, or combinations thereof.
  • FIG. 38 shows an augment 726 with integral spikes 728 according to some embodiments. The spikes 728 may allow the augment 726 to be positioned initially in bone, without the augment 726 having to be first secured to a shell, cage, mounting member, or other augment or without the use of bone cement. The augment 726 may be positioned and then impacted or otherwise pressed into a bone void to achieve instant fixation.
  • FIG. 39 shows other embodiments of an augment 730 having built-in securement features. Embodiments of this augment may have one or more integral spikes, barbs, screws, or other fasteners pre-positioned therein. For example, augment 730 includes integral fastener 732 which may be a spike having barbs 734. When the augment 730 is positioned as desired, the surgeon may screw, impact or tack the augment 730 in place, causing the integral fastener 732 to extend and secure bone purchase. One advantage of this embodiment is that is can prevent the surgeon from having to locate and insert separate fasteners. In some embodiments, there is provided a breakable or frangible connector 736 that is sheared once the fastener 732 has been impacted, twisted, or otherwise activated by a force or moment. A further advantage of the described embodiments is that the augment 730 is a one-piece component that can be positioned without additional fasteners or other components attached thereto, simplifying some aspects of insertion. Moreover, the surgeon may desire to place the augment 730 first, and then quickly secure it to the other implant portions to be used. Integral fasteners which are not utilized may be removed by a pulling out force, and breaking the connector. Fasteners such as integral fastener 732 may be configured to connect the augment to bone or to other implant devices such as other augments, acetabular shells, acetabular cages, and/or bone plates.
  • FIGS. 40-42 illustrate various augments or porous coating portions comprising one or more cross-sectional areas 740, 742, and 744 of reduced material which are “designed” for easy drilling, shaping, and screw insertion. In some embodiments, a bulk porous structure is provided with waffle patterns of recesses defined therein. The recesses may be externally provided, internally provided, or combinations thereof. External recesses may be created using rapid manufacturing, wire EDM, milling, or other processes. Internal recesses may be created using rapid manufacturing (e.g., selective laser sintering with an EOS machine or EBM process using an Arcam machine), cross-drilling processes, any other suitable processes, or any combinations thereof. The areas of reduced cross-section 740, 742, and 744 make it easier for a surgeon to drill through the augments or porous coating portions, orient screws, and burr, mill, cut, break, bend, or otherwise shape with a rotary tool 746 such as the one shown in FIG. 43. Other modification tools such as reciprocating saws or oscillating saws may be utilized to shape the augments or porous coating portions. Recesses may extend in various patterns in two-dimensional or three-dimensional space, and may vary in width, depth, aperture, thickness, density, and length.
  • FIGS. 44-47 illustrate some embodiments of a connection device for securing a mounting member or an augment to an acetabular shell or acetabular cage. Certain embodiments of the connection device comprise an intermediate locking member 750 that may be placed between an acetabular shell or cage and a mounting member or augment, the intermediate locking member 750 configured to provide initial loose and adjustable attachment of the mounting member or augment to the acetabular shell or cage. After or before impaction, the mounting member or augment position relative to the shell or cage may be adjusted and then fixed with respect to the shell or cage by engaging a portion of the intermediate locking member 750. After the intermediate locking member 750 is engaged to lock the adjacent components together against relative movement, a liner may be inserted into the shell or cage. The intermediate locking member 750 may either be a separate portion or integral to one of the shell, cage, mounting member or augment.
  • Portions of the intermediate locking member 750 may be low profile and configured to be received in and locked within an acetabular shell (e.g., via a threaded, smooth, or tapered screw hole). In the embodiment shown, the intermediate locking member 750 is provided within an acetabular shell as disclosed in the '705 application. Intermediate locking member 750 may comprise, as shown, a cam locking pin 752 and a locking head screw 754. The mounting member or augment may comprise an undercut recess 759 which has an opening of any appropriate shape, such as oblong, scalloped, triangular, dovetail, or any other option. A distal end 756 of the cam locking pin 752 has a complementary shape (oblong, scalloped, triangular, dovetail, or any other appropriate complementary shape) and is flared or tapered radially outwardly to engage one or more undercut surfaces forming the undercut recess 759.
  • As shown in FIGS. 45 and 46, a proximal end 757 of the cam locking pin 752 may have a shaft 758 with engageable threads axially-disposed therein. A locking head screw (shown for example, as locking head screw 754 of FIG. 47) is configured to engage the threads on the shaft 758 of the cam locking pin 752. The threads of the locking head screw may be female or male, and the threads of the cam locking pin 752 may be the other of male or female. Locking screws prevent the cam locking pin 752 from backing out once properly positioned. During use, the cam locking pin 752 is positioned within a receiving groove or recess and rotated to lock the cam locking pin 752 in place. The complementary shapes of the distal end 756 of cam locking pin 752 and a receiving groove or recess allow the cam locking pin 752 to be inserted into the groove or recess in a first orientation and then rotated to a second orientation in which it cannot be removed from the groove or recess.
  • The shaft portion 758 of the cam locking pin 752 may be provided with one or more flats on the outside (e.g., a hexagonal outer cross section for the shaft) to allow turning of the cam. Alternatively, a cruciform recess or hexagonal recess or other driving structure may be provided on the cam locking pin 752. In some embodiments, the female thread in the cam locking pin 752 may be substituted for threads on the outside of the shaft 758 of the cam locking pin 752 which engage a partially cannulated locking screw having an internally-threaded aperture extending axially through the shaft of the locking screw. In such latter embodiments, outer portions of the locking screw may be smooth. The head 755 of the locking head screw 752 may alternatively be rounded for polyaxial movement (exemplary polyaxial locking options are provided in more detail below) within the hole in the acetabular shell or cage. It will be understood by those of ordinary skill in the art that the connection shown in the figures may also be used to connect augments or mounting members together, without limitation.
  • FIGS. 48-50 illustrate some embodiments wherein a mounting member or augment, for example, as disclosed in FIGS. 44-47, is provided with an elongated undercut groove which is configured to receive a cam locking pin. The elongated undercut groove allows the mounting member or augment to be radially adjusted in space and locked in an orbital position around a corresponding acetabular shell or cage. In some embodiments, portions of the mounting member or augment proximate the elongated groove may be made solid, rather than porous for strength, and outer regions of the mounting member or augment may be smooth, textured, coated (e.g., hydroxyapatite), porous, or combinations thereof in order to encourage biologic fixation and ingrowth in select regions.
  • FIG. 49 illustrates a cross-sectional view of an augment 764 and a cam locking pin 752 being inserted into an elongated undercut groove 768 of the augment 764 in an insertion position. The cam locking pin 752 is positioned into the groove 768 by rotating the cam locking pin 752 along its axis such that the insert width 762 of the distal end 756 of the cam locking pin 752 (as shown in FIGS. 44-46) fits through the insert width 770 of the elongated undercut groove 768. FIG. 50 illustrates a cross-sectional view of the augment 764 with the cam locking pin 752 locked into the elongated undercut groove 768 of the augment 764 in a locking position. In the locking position, the cam locking pin 752 may generally be rotated along its axis between 50 and 130 degrees, preferably around 90 degrees (i.e., a “quarter-turn”). The locking width 760 prevents the distal end 756 of the cam locking pin 752 from fitting through the insert width 770 of the elongated undercut groove 768. In some embodiments, cam locking pin 752 may be symmetrical and may have a flared end (e.g., distal end 756) comprising a generally frustoconical surface, and the undercut groove 768 in the augment 764 (or, in some embodiments, an undercut groove in a mounting member) may have one or more enlarged openings to receive the flared end of the cam locking pin 752. In such alternative embodiments, a locking screw (e.g., locking head screw 754 of FIG. 47) may threadingly engage the cam locking pin 752 to apply a tensile force to the cam locking pin 752 against another implant such as a mounting member, augment, shell, or cage.
  • In the embodiments shown in FIGS. 51-54, cleats may be provided proximate to a rim of an acetabular shell, cage, mounting member, or augment. For example, in some embodiments, one or more cleats 780 and 781 may extend or project from a superior aspect of a rim portion 782 of an acetabular shell 784 as shown. Cleats 780 and 781 may be used to secure soft tissues to the acetabular shell 784 or may serve as a means to attach secondary augments or any type of mounting member 786 to the acetabular shell 784. In the particular instance shown in FIGS. 53 and 54, a “quarter-turn” fastener connector arrangement is utilized. The quarter-turn fastener arrangement may comprise, for instance, a generally T-shaped male member 790 located on one or more regions of an acetabular shell, cage, or augment, and one or more complementary female members 792 located on more secondary augments or mounting members. The one or more secondary augments or mounting members engage the one or more male members 790 on the acetabular shell, cage, or augment in one degree of rotation, and then are rotated by a specified or variable number of degrees (e.g., 90 degrees) to lock the one or more secondary augments or mounting members to the one or more male members 790. Of course, one of ordinary skill in the art would appreciate that the male and female members could be reversed to provide the same function. It should also be understood that other locking mechanisms may be used.
  • FIG. 55 further depicts one or more cleat portions 794 located at various portions of an acetabular shell or cage 796 (or, in some embodiments, an augment) configured for securing soft tissues. The one or more cleat portions 794 can be arranged in any particular fashion around the acetabular shell 796; however, it is preferred that the cleats 794 extend proximally from a rim portion or otherwise away from the acetabular shell 796 in order to provide clearance from liner-mating surfaces, cement mantle surfaces, bone contacting surfaces, and bony anatomy, for example. Cleat portions 794 may comprise suturing holes, roughened surfaces, clamps, hooks, or biologic coatings, or any other appropriate protrusions, or combinations thereof, to encourage fixation of the soft tissues to the implant (e.g., acetabular shell 796). For example, as shown in the inset of FIG. 55, sutures may be wrapped around cleat portion 794 and then secured to surrounding soft tissues.
  • FIGS. 56-60 illustrate embodiments wherein a mounting member 802 or an augment 804 may be attached peripherally to an acetabular shell or cage 806 via a recess 800 provided proximate a rim portion 808 of the acetabular shell or cage 806. The recess 800 is sized to accept a protruding insertion portion 810 of the mounting member 802 or a protruding insertion portion 812 of the augment 804, and the recess 800 may extend annularly circumferentially around the rim portion 808 to allow orbital placement of the mounting member 802 or augment 804 around a periphery of the shell or cage 806. The mounting member 802 or augment 804 may be inserted into the acetabular shell or cage 806 before or after shell/cage impaction or cementing into a prepared acetabulum. One or more screw holes in the mounting member (e.g., screw holes 814) or augment (e.g., screw holes 816) rigidly secure the mounting member 802 or augment 804 to the bone and prevent orbital movement of the mounting member 802 or augment 804 around the shell or cage 806. Screw holes 814 and 816 may include conventional holes, locking holes, or slots. The holes may be threaded, unthreaded, or partially threaded, and may be fixed or polyaxial. In some embodiments, screw holes 814 and 816 may include variable low-profile holes that allow for locking at a variety of angles. Once the mounting member 802 or augment 804 is positioned, the cantilever force pushes the rim 808 of the shell or cage 806 toward bone. The protruding insertion portion of the mounting member (e.g., portion 810) or augment (e.g., portion 812) provides a hold-down force to the shell or cage 806 after a screw is inserted through the mounting member 802 or augment 804 and into surrounding pelvic bone.
  • FIGS. 56 and 57 show an augment 804 being positioned with respect to an acetabular shell or cage 806. FIGS. 58 and 59 illustrate a mounting member 802 being positioned with respect to an acetabular shell or cage 806. The mounting member 802 is shown as having multiple securing holes 814 for use with fasteners. Securing holes 814 may be smooth, tapered, or threaded and may be used with any appropriate fastener, including but not limited to polyaxial screws. The securing holes 814 through the mounting member 802 (or securing holes 816 through the augment 804) may be positioned at any appropriate angle, as shown, such as parallel to the member, oblique through the member, or otherwise as desired. While not shown, a honeycomb feature may be placed on outer portions of the mounting member 802 or augment 804 to provide spacing for a cement mantle between the mounting member 802 or augment 804 and surrounding bone. Moreover, porous structures, textured surfaces, biologic coatings, or orthopedic meshes may be integrally provided on, or incorporated between outer surfaces of the mounting members 802 or augments 804 and surrounding bone.
  • In the embodiments of FIGS. 58 and 59, a recess 800 in the shell or cage 806 is defined by a proximally-extending lip 818 such that the mounting member 802 will sit on bone surrounding the acetabulum. In this way, the mounting members 802 will not interfere with the press-fit area between the shell 806 and prepared acetabulum adjacent the acetabular rim 808. Moreover, because the connection is configured to allow mounting members 802 to sit on surrounding bone, the surrounding bone does not need to be countersunk or otherwise prepared to receive mounting members 802.
  • FIG. 60 depicts an acetabular shell or cage 820 comprising an annular protrusion 822 along a rim portion 824 of the acetabular shell 820. The annular protrusion 822 may extend partially around (as shown) or entirely around the circumference of the acetabular shell 820, or one or more protrusions may be provided in any fashion around the acetabular shell 820. The annular protrusion 822 may comprise an annular lip 826 defining an annular undercut groove 828 running circumferentially around the acetabular shell 820 proximate the rim portion 824. The annular protrusion 822 may comprise one or more openings 830 for receiving sutures (e.g., for soft tissue or capsule re-attachment) or fasteners 832 such as set screws for contacting and frictionally engaging surfaces (e.g., divots) provided on protruding insertion portions 834 and 836 of mounting members 840 or augments 838 alike.
  • Fasteners 832 may be inserted into openings 830 located circumferentially laterally of the insertion portions 834 and 836 to serve as stops for preventing or limiting rotational movement of the attached mounting members 840 or augments 838. The mounting members 840 or augments 838 may be secured down to surrounding bone after being inserted into the annular undercut groove 828 via long bone screws, thereby providing a hold-down force to the acetabular shell or cage 820. The hold-down forces provided may complement the press fit, threaded fit, or cemented fixation between the acetabular shell or cage and surrounding prepared acetabular bone. In the instance shown, shell 820 is provided as a “hooded” shell similar to a cage, and may act as a buttress for a cemented or pressed-in liner to support various liner inclinations in varying degrees of acetabular or pelvic degradation, although it will be understood that these features may be provided on any other type of shell or cage.
  • In the embodiments shown in FIGS. 61-64, one or more mounting members and/or augments may be integrally provided with orthopedic mesh to define one or more mesh mounts or void fillers. FIG. 61 shows a mounting member 380 having an orthopedic mesh 382. In FIG. 62, the orthopedic mesh portion 382 may be placed on an outer portion 384 of the shell 386 between bone, and a cement mantle can fill between the mesh 382. The cement mantle rigidly connects the mounting member 380 (or, in some embodiments, an augment) to the shell 386 via the surgical mesh 382. Rapid manufacturing techniques may be used to simultaneously create the mounting members or augments integrally with the orthopedic mesh portion. The mesh 382 may be honeycomb, diamond, or other weave pattern, or any combination thereof, and may come in multiple thicknesses. Mesh portion 382 may be oversized, customized for an individual patient, and/or standardized and trimmed by the surgeon to fit a particular patient's needs. Fasteners of all types may be inserted through one or more cells of the mesh 382, as well as through the one or more mounting members or augments to further secure the implant to bony anatomy. For example, as shown in FIG. 61, a first screw 388 may be inserted through cell 390, and a second screw 394 may be inserted through one of the plurality of screw holes 392 of mounting member 380. Screw holes 392 may include conventional holes, locking holes, or slots. The holes may be threaded, unthreaded, or partially threaded, and may be fixed or polyaxial. In some embodiments, screw holes 392 may include variable low-profile holes that allow for locking at a variety of angles. Soft tissues may be reattached using the porosities of the mesh 382 as suture anchors, or simply as a bioscaffold. If desired, preformed trim lines may be provided by forming predetermined frangible portions in various areas of the mesh, in order to help configuration of the device for a particular patient. For example, as shown in FIG. 63, mesh 400 includes a plurality of trim lines 402 that may be cut to separate the mounting members attached thereto, such as mounting members 404. The separated mounting members 404 and the mesh 400 may then be placed into a patient's hip region 406 as shown in FIG. 64.
  • FIGS. 65 and 66 illustrate some embodiments of a honeycomb design that may be provided on a mounting member or augment in order to control cement mantle thickness and spacing between said mounting member or augment and an adjacent acetabular shell, augment, bone, or other implant. For example, mounting member 410 of FIG. 65 includes honeycomb portion 412 provided on an attachment surface portion 414 of the mounting member 410. The honeycomb feature 412 may be provided as any desired geometric shape. The mounting member 410 (or, in some embodiments, the augment) may comprise one or more securing holes 416 for receiving a surgical fastener 418 such as a polyaxial screw, cancellous screw, peg, or other securing device. The securing holes 416 may include conventional holes, locking holes, or slots. The holes may be threaded, unthreaded, or partially threaded, and may be fixed or polyaxial. In some embodiments, securing holes 416 may include variable low-profile holes that allow for locking at a variety of angles. The attachment portion 414 of the mounting member 410 may extend generally perpendicularly from another portion 415 of the mounting member 410, and may comprise one or more concave curved surfaces 417 configured to abut an outer portion 422 of an acetabular shell 420, or one or more convex surfaces (not shown) configured to abut an inner portion of a prepared acetabulum.
  • The foregoing is merely illustrative of the principles of the disclosure, and the systems, devices, and methods can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation. It is to be understood that the systems, devices, and methods disclosed herein, while shown for use in acetabular systems, may be applied to medical devices to be used in other surgical procedures including, but not limited to, spine arthroplasty, cranio-maxillofacial surgical procedures, knee arthroplasty, shoulder arthroplasty, as well as foot, ankle, hand, and extremities procedures.
  • Variations and modifications will occur to those of skill in the art after reviewing this disclosure. The disclosed features may be implemented, in any combination and subcombinations (including multiple dependent combinations and subcombinations), with one or more other features described herein. The various features described or illustrated above, including any components thereof, may be combined or integrated in other systems. Moreover, certain features may be omitted or not implemented.
  • Examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the scope of the information disclosed herein. All references cited herein are incorporated by reference in their entirety and made part of this application.

Claims (22)

1. An orthopedic implant system comprising:
an acetabular implant having a track that includes a plurality of slots and an exterior surface;
an augment having a protrusion that moves within the plurality of slots, the augment having a first cam surface that forms an interface with the exterior surface; and
wherein the protrusion has an adjustable fastener that, upon adjusting, fixes the augment with respect to the implant to impede further movement.
2. The orthopedic implant system of claim 1, wherein the augment rotates about the exterior surface.
3. The orthopedic implant system of claim 1, wherein the adjustable fastener is a tightening screw that extends through a through-hole in the augment.
4. The orthopedic implant system of claim 3, wherein the tightening screw, upon tightening, expands the protrusion and thereby tightens the augment within the track.
5. The orthopedic implant system of claim 4, wherein the protrusion is flared outwardly.
6. The orthopedic implant system of claim 3, wherein the tightening screw has a head that fits within a slot and faces an interior portion of the implant.
7. The orthopedic implant system of claim 6, wherein the slot has an interior opening that aligns with the head.
8. The orthopedic implant system of claim 7, wherein the interior opening receives a tightening rod to tighten the screw.
9. The orthopedic implant system of claim 1, wherein the track includes a dovetail joint that receives the protrusion.
10. The orthopedic implant system of claim 1, wherein the track includes a straight portion and a curved portion.
11. The orthopedic implant system of claim 10, wherein the track includes two straight slots and a curved portion.
12. The orthopedic implant system of claim 1, wherein the track includes a J-shaped slot with a wall of the implant.
13. The orthopedic implant system of claim 1, wherein the protrusion is part of an intermediate locking member that is integral to the augment.
14. The orthopedic implant system of claim 1, wherein the first cam surface of the augment includes at least one trough that receives cement to bind the augment to the shell.
15. The orthopedic implant system of claim 14, wherein the augment includes a plurality of projections that form a gap.
16. The orthopedic implant system of claim 15, further comprising a flange attached to the augment.
17. A method of preparing an orthopedic implant, comprising the step of:
providing an implant having a curved external surface and an opening in the surface, the opening having at least two portions that join at a common region but are separated by an angle of less than 180°;
providing an augment having a first surface that interfaces with the curved external surface;
coupling the augment and implant by an intermediate locking member; and
tightening the intermediate locking member.
18. The method of claim 17, including the step of securing the augment to the implant by disposing cement within a trough located on the first surface.
19. The method of claim 17, further comprising the step of rotating the augment with respect to the implant about the curved external surface prior to tightening the intermediate locking member.
20. The method of claim 19, further comprising the step of moving the intermediate locking member within the opening prior to tightening.
21. The method of claim 17, further comprising the steps of applying a fastener to the implant, so that the fastener extends outwardly from the external surface, and positioning the augment about the external surface so that the extended fastener fits between two protrusions of the augment.
22. The method of claim 21, wherein the intermediate locking member is tightened with respect to the augment by a screw.
US13/156,242 2010-06-08 2011-06-08 Implant components and methods Abandoned US20120016487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/156,242 US20120016487A1 (en) 2010-06-08 2011-06-08 Implant components and methods

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US35272210P 2010-06-08 2010-06-08
US35270510P 2010-06-08 2010-06-08
US42290310P 2010-12-14 2010-12-14
US201161466817P 2011-03-23 2011-03-23
US13/156,242 US20120016487A1 (en) 2010-06-08 2011-06-08 Implant components and methods

Publications (1)

Publication Number Publication Date
US20120016487A1 true US20120016487A1 (en) 2012-01-19

Family

ID=45098648

Family Applications (16)

Application Number Title Priority Date Filing Date
US13/156,242 Abandoned US20120016487A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,241 Abandoned US20120016486A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,240 Abandoned US20120083895A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,238 Abandoned US20120089235A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,246 Abandoned US20120016485A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,248 Active US8979926B2 (en) 2010-06-08 2011-06-08 Implant components
US13/156,245 Active US8700198B2 (en) 2010-06-08 2011-06-08 Implant components and methods
US14/189,210 Active 2031-11-11 US9901451B2 (en) 2010-06-08 2014-02-25 Implant components and methods
US14/191,600 Active 2032-12-07 US9707083B2 (en) 2010-06-08 2014-02-27 Implant components and methods
US14/616,525 Active US9468530B2 (en) 2010-06-08 2015-02-06 Methods of implanting orthopedic devices
US14/639,508 Active 2031-06-13 US9949836B2 (en) 2010-06-08 2015-03-05 Orthopedic augment with cement trough containing projections
US15/472,844 Active US10265177B2 (en) 2010-06-08 2017-03-29 Method of implanting an acetabular shell and an augment
US15/596,482 Active 2031-06-19 US10568741B2 (en) 2010-06-08 2017-05-16 Implant components and methods
US15/872,599 Abandoned US20180140427A1 (en) 2010-06-08 2018-01-16 Implant components and methods
US17/509,174 Abandoned US20220039961A1 (en) 2010-06-08 2021-10-25 Implant components and methods
US17/712,906 Pending US20220226122A1 (en) 2010-06-08 2022-04-04 Implant components and methods

Family Applications After (15)

Application Number Title Priority Date Filing Date
US13/156,241 Abandoned US20120016486A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,240 Abandoned US20120083895A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,238 Abandoned US20120089235A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,246 Abandoned US20120016485A1 (en) 2010-06-08 2011-06-08 Implant components and methods
US13/156,248 Active US8979926B2 (en) 2010-06-08 2011-06-08 Implant components
US13/156,245 Active US8700198B2 (en) 2010-06-08 2011-06-08 Implant components and methods
US14/189,210 Active 2031-11-11 US9901451B2 (en) 2010-06-08 2014-02-25 Implant components and methods
US14/191,600 Active 2032-12-07 US9707083B2 (en) 2010-06-08 2014-02-27 Implant components and methods
US14/616,525 Active US9468530B2 (en) 2010-06-08 2015-02-06 Methods of implanting orthopedic devices
US14/639,508 Active 2031-06-13 US9949836B2 (en) 2010-06-08 2015-03-05 Orthopedic augment with cement trough containing projections
US15/472,844 Active US10265177B2 (en) 2010-06-08 2017-03-29 Method of implanting an acetabular shell and an augment
US15/596,482 Active 2031-06-19 US10568741B2 (en) 2010-06-08 2017-05-16 Implant components and methods
US15/872,599 Abandoned US20180140427A1 (en) 2010-06-08 2018-01-16 Implant components and methods
US17/509,174 Abandoned US20220039961A1 (en) 2010-06-08 2021-10-25 Implant components and methods
US17/712,906 Pending US20220226122A1 (en) 2010-06-08 2022-04-04 Implant components and methods

Country Status (10)

Country Link
US (16) US20120016487A1 (en)
EP (5) EP2579819A4 (en)
JP (3) JP5885355B2 (en)
KR (2) KR20140019764A (en)
CN (4) CN103096841A (en)
AU (6) AU2011264850B2 (en)
BR (3) BR112012031296A2 (en)
CA (3) CA2802099A1 (en)
RU (4) RU2012158095A (en)
WO (7) WO2011156511A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110130845A1 (en) * 2008-03-18 2011-06-02 Depuy (Ireland) Cup component of an orthopaedic joint prosthesis
US20180064541A1 (en) * 2011-12-07 2018-03-08 Smith & Nephew, Inc. Orthopedic augments having recessed pockets
US10456262B2 (en) 2016-08-02 2019-10-29 Howmedica Osteonics Corp. Patient-specific implant flanges with bone side porous ridges
US10751186B2 (en) 2017-09-12 2020-08-25 Zimmer, Inc. Methods for attaching acetabular augments together or to acetabular shells
WO2021204620A1 (en) * 2020-04-07 2021-10-14 Aesculap Ag Hip joint endoprosthesis and revision hip joint endoprosthesis
US20210361297A1 (en) * 2012-12-27 2021-11-25 Wright Medical Technology, Inc. Ankle replacement system and method

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
DE60300277T2 (en) 2002-11-08 2006-01-12 Howmedica Osteonics Corp. Laser generated porous surface
US8728387B2 (en) * 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US9308300B2 (en) * 2007-04-19 2016-04-12 Smith & Nephew, Inc. Prosthetic implants
GB0809721D0 (en) * 2008-05-28 2008-07-02 Univ Bath Improvements in or relating to joints and/or implants
US8383187B2 (en) * 2009-02-19 2013-02-26 Depuy Products, Inc. Rough porous constructs
JP5882743B2 (en) * 2009-02-25 2016-03-09 ジンマー,インコーポレイティド Customized orthopedic implants and related methods and intelligent cartilage systems
FR2950525B1 (en) * 2009-09-28 2013-05-10 Thomas Gradel HIP PROTHETIC COTYL WITH EXTERNAL FASTENING
IT1398443B1 (en) * 2010-02-26 2013-02-22 Lima Lto S P A Ora Limacorporate Spa INTEGRATED PROSTHETIC ELEMENT
BR112012031296A2 (en) * 2010-06-08 2016-11-08 Smith & Nephew Inc "implant components and methods"
CN103096842B (en) * 2010-07-29 2016-07-06 梅奥医学教育和研究基金会 Acetabular cup prosthesis
SE535187C2 (en) * 2010-09-10 2012-05-15 Fumex Ab Joint construction, ventilation arm and ventilation system
US9034048B2 (en) * 2011-01-26 2015-05-19 John A. Choren Orthopaedic implants and methods of forming implant structures
GB201114059D0 (en) * 2011-08-16 2011-09-28 Depuy Ireland Attachment mechanism
US9132021B2 (en) 2011-10-07 2015-09-15 Pioneer Surgical Technology, Inc. Intervertebral implant
US8771354B2 (en) 2011-10-26 2014-07-08 George J. Picha Hard-tissue implant
US10039556B2 (en) * 2011-11-10 2018-08-07 David Michael Burt Arthroscopic total shoulder arthroplasty
EP2779928B1 (en) 2011-11-14 2018-01-03 The University of British Columbia Intramedullary fixation system for management of pelvic and acetabular fractures
WO2013086172A1 (en) 2011-12-07 2013-06-13 Smith & Nephew, Inc. Orthopedic implant augments
GB201121529D0 (en) * 2011-12-15 2012-01-25 Springer Thorwald A prosthetic acetabular cup
US9005304B2 (en) 2012-01-18 2015-04-14 George J. Haidukewych Acetabular prosthetic device
US8906108B2 (en) * 2012-06-18 2014-12-09 DePuy Synthes Products, LLC Dual modulus hip stem and method of making the same
US9271839B2 (en) 2013-03-14 2016-03-01 DePuy Synthes Products, Inc. Femoral component for an implantable hip prosthesis
EP2815726B1 (en) * 2013-06-19 2015-08-12 Arthrex, Inc. Humerus implant
JP6267341B2 (en) * 2013-08-15 2018-01-24 ハイドゥケウィッチ・ジョージ・ジェイ. Acetabular prosthesis
AU2014317989A1 (en) * 2013-09-05 2016-03-17 Smith & Nephew, Inc. Patient-matched acetabular augment with alignment guide
US10688726B2 (en) * 2014-03-04 2020-06-23 Royal Melbourne Institute Of Technology Method for producing a customised orthopaedic implant
WO2015134750A1 (en) 2014-03-06 2015-09-11 University Of British Columbia Shape adaptable intramedullary fixation device
AU2015269000A1 (en) * 2014-06-05 2016-12-22 Ossis Limited Improvements to implant surfaces
EP4245233A3 (en) 2014-10-14 2023-12-06 The University of British Columbia Systems for intramedullary bone fixation
US10420597B2 (en) 2014-12-16 2019-09-24 Arthrex, Inc. Surgical implant with porous region
EP3232990A1 (en) * 2014-12-16 2017-10-25 CeramTec GmbH Spinal cages and instruments for inserting same
CN107405201B (en) * 2015-01-09 2020-10-27 孚美公司 Rigid segmented flexible anchor
US10098746B1 (en) 2015-02-13 2018-10-16 Nextstep Arthropedix, LLC Medical implants having desired surface features and methods of manufacturing
US10363145B2 (en) * 2015-02-23 2019-07-30 Amendia, Inc. Lateral plate and spinal implant system and method
US10449051B2 (en) 2015-04-29 2019-10-22 Institute for Musculoskeletal Science and Education, Ltd. Implant with curved bone contacting elements
EP3760166A1 (en) 2015-04-29 2021-01-06 Institute For Musculoskeletal Science And Education, Ltd. Coiled implants and systems
CN107979994B (en) * 2015-04-29 2020-05-26 拜欧米特制造有限责任公司 Screw-threaded addible acetabular shell with an augmentation part
CN104887361B (en) * 2015-05-14 2017-02-22 青岛大学附属医院 Fabrication template system for custom individual artificial total hip replacement operation acetabulum
CN104840278B (en) * 2015-05-25 2017-06-06 北京爱康宜诚医疗器材股份有限公司 Acetabular cup and artificial hip joint
EP3111892B1 (en) * 2015-06-30 2018-09-12 Jossi Holding AG Implant and method for coating an implant base body
KR102104182B1 (en) 2015-07-09 2020-04-23 발데마르 링크 게엠베하 운트 코.카게 Hollow sleeve reinforcement device and tools
EP4245267A3 (en) * 2015-07-09 2023-11-29 Waldemar Link GmbH & Co. KG Sleeve augment device for an articulated joint
EP3328319B1 (en) * 2015-07-27 2020-10-14 HIP Innovation Technology, LLC Drill guide for acetabular cup fasteners
CN105078620A (en) * 2015-08-04 2015-11-25 江苏奥康尼医疗科技发展有限公司 Artificial shoulder joint prosthesis made from organic polymer materials
GB2536520A (en) * 2015-10-21 2016-09-21 Jri Orthopaedics Ltd Clamping device
US9901002B2 (en) 2016-02-24 2018-02-20 Microsoft Technology Licensing, Llc Structures having a molded liner attached to a substrate
WO2017192632A1 (en) 2016-05-03 2017-11-09 Additive Orthopaedics, LLC Bone fixation device and method of use
TWI576033B (en) * 2016-05-06 2017-03-21 旭德科技股份有限公司 Circuit substrate and manufacturing method thereof
CN109475404B (en) 2016-05-11 2022-08-30 制定实验室公司 Medical implant and method for producing the same
NL2016867B1 (en) 2016-05-31 2017-12-11 Umc Utrecht Holding Bv Implant, fitting plate and method for manufacturing an implant and fitting plate
WO2017210695A1 (en) 2016-06-03 2017-12-07 Additive Orthopaedics, LLC Bone fixation devices
US20200000595A1 (en) 2016-06-07 2020-01-02 HD LifeSciences LLC High X-Ray Lucency Lattice Structures
WO2018006431A1 (en) * 2016-07-08 2018-01-11 北京爱康宜诚医疗器材有限公司 Prosthesis for acetabular defect reconstruction
US11589994B2 (en) 2016-07-08 2023-02-28 Biomet Manufacturing, Llc Augments, systems and methods for acetabular implants
KR102445938B1 (en) 2016-07-15 2022-09-21 디제이오 글로벌, 인크. Condyle with flange for reinforced fixation and method related thereto
WO2018023131A1 (en) 2016-07-29 2018-02-01 Additive Orthopaedics, LLC Bone fixation device and method of use
US11419645B2 (en) 2016-10-05 2022-08-23 University Of British Columbia Intramedullary fixation device with shape locking interface
CN106510904B (en) * 2016-12-12 2018-06-01 吴栋 A kind of femoral stem component of artificial hip joint and preparation method thereof
CN107252342A (en) * 2017-01-17 2017-10-17 吴栋 A kind of acetabular bone screw and preparation method thereof
US11000378B2 (en) * 2017-02-14 2021-05-11 Surgical Device Innovations, LLC Acetabular surgical implant for segmental pelvic defect and methods of use and manufacture
EP3634302A4 (en) 2017-02-14 2021-06-02 HD Lifesciences LLC High x-ray lucency lattice structures and variably x-ray licent markers
WO2018165405A1 (en) 2017-03-10 2018-09-13 Applied Medical Research, Inc. Spinal interbody cage comprising a bulk interbody cage, a top face, a bottom face, pillars, and slots
WO2018165403A1 (en) * 2017-03-10 2018-09-13 Applied Medical Research, Inc. Hard-tissue stem implant comprising a bulk stem implant, a face, pillars for contacting a cancellous portion of a hard tissue, and slots, wherein the pillars are prearranged to match an underlying structure of the cancellous portion
US11213398B2 (en) 2017-03-10 2022-01-04 Gary A. Zwick Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member
US10512549B2 (en) 2017-03-13 2019-12-24 Institute for Musculoskeletal Science and Education, Ltd. Implant with structural members arranged around a ring
WO2018183809A1 (en) 2017-04-01 2018-10-04 HD LifeSciences LLC Fluid interface system for implants
JP2020515345A (en) 2017-04-01 2020-05-28 エイチディー ライフサイエンシズ エルエルシーHd Lifesciences Llc 3D lattice structure for implants
US20180318110A1 (en) * 2017-05-08 2018-11-08 Depuy Ireland Unlimited Company Trial acetabular liners
EP3403617B1 (en) * 2017-05-19 2020-03-18 Tornier Augment insert, shoulder prosthesis and kit comprising the augment insert
EP3415108A1 (en) * 2017-05-25 2018-12-19 Stryker European Holdings I, LLC Fusion cage with integrated fixation and insertion features
US20180344465A1 (en) * 2017-05-31 2018-12-06 Zimmer, Inc. Customizable augments and methods for acetabular implants
US11006981B2 (en) 2017-07-07 2021-05-18 K2M, Inc. Surgical implant and methods of additive manufacturing
JP2020533070A (en) 2017-09-08 2020-11-19 パイオニア サージカル テクノロジー インコーポレイテッド Intervertebral implants, instruments, and methods
CN107550603B (en) * 2017-09-29 2024-01-23 辽宁禾润新材料科技有限公司 Artificial rib
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US10744001B2 (en) 2017-11-21 2020-08-18 Institute for Musculoskeletal Science and Education, Ltd. Implant with improved bone contact
JP2021512767A (en) * 2018-02-01 2021-05-20 リビジョン テクノロジーズ リミテッド ライアビリティ カンパニー Acetabular artificial joint
US10667917B2 (en) 2018-02-01 2020-06-02 OrbisMV LLC Acetabular joint prosthesis
US11147679B2 (en) 2018-02-05 2021-10-19 Paragon Advanced Technologies, Inc. Bone fixation device
WO2019153010A1 (en) 2018-02-05 2019-08-08 OrbisMV LLC Medical implant surface treatment and method
RU2692531C1 (en) * 2018-02-06 2019-06-25 Александр Иванович Колесник Reposition-fixation support ring for operative treatment of displaced fractures of cotyloid cavity
GB201802109D0 (en) * 2018-02-09 2018-03-28 Depuy Ireland Ultd Co Medical implants comprising anti-infective surfaces
US11926091B2 (en) 2018-03-27 2024-03-12 UNITED STATES OF AMERICA has certain rights in the invention from DOE Grant No. DE-SC0008581 In situ partially degradable separation interface for fabrication of complex near net shape objects by pressure assisted sintering
WO2019199850A1 (en) 2018-04-10 2019-10-17 Gary A. Zwick, Trustee Of The Everest Trust Uta April 20, 2017 Spinal interbody cage comprising top and bottom faces with mesh structures, pillars and slots
KR102115225B1 (en) * 2018-06-20 2020-05-27 한국생산기술연구원 One-step manufacturing method of laminated molding porous component
CN112399837A (en) 2018-07-11 2021-02-23 史密夫和内修有限公司 Flexible acetabular implant
US11291558B2 (en) 2018-07-26 2022-04-05 Nanohive Medical Llc Dynamic implant fixation plate
CN108969151A (en) * 2018-07-26 2018-12-11 肖建林 Bias acetabular bone mortar cup prosthesis winged
RU187804U1 (en) * 2018-07-31 2019-03-19 Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна" Министерства здравоохранения Российской Федерации (ФГБУ "ННИИТО им. Я.Л. Цивьяна" Минздрава России) Device for replacing a bone defect in the acetabulum
RU2713519C1 (en) * 2018-07-31 2020-02-05 Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна" Министерства здравоохранения Российской Федерации (ФГБУ "ННИИТО им. Я.Л. Цивьяна" Минздрава России) Device for cotyloid defect replacement in cotyloid cavity
RU2692526C1 (en) * 2018-09-25 2019-06-26 Александр Иванович Колесник Universal reposition-fixation ring with dynamic compression for surgical treatment of displaced fractures of acetabulum
EP3866713A4 (en) 2018-10-17 2022-06-29 The University of British Columbia Bone-fixation device and system
CN113453872A (en) 2018-11-12 2021-09-28 奥索冰岛有限公司 Additive manufacturing system, method and corresponding component for elastomeric materials
US20200188134A1 (en) * 2018-12-14 2020-06-18 Howmedica Osteonics Corp. Augmented, Just-in-Time, Patient-Specific Implant Manufacture
US11376128B2 (en) 2018-12-31 2022-07-05 Depuy Ireland Unlimited Company Acetabular orthopaedic prosthesis and method
US11497617B2 (en) 2019-01-16 2022-11-15 Nanohive Medical Llc Variable depth implants
CN113507903A (en) * 2019-03-25 2021-10-15 史密夫和内修有限公司 Acetabular device for hip revision surgery
US11083585B2 (en) 2019-05-09 2021-08-10 Howmedica Osteonics Corp. Spring retained femoral augment
US10974667B2 (en) 2019-08-04 2021-04-13 Michael McKinney Apparatus, device and method enabling repeated coupling and decoupling of physical objects
WO2021050903A1 (en) 2019-09-11 2021-03-18 Gary A. Zwick, Trustee Of The Everest Trust Uta April 20, 2017 Implant comprising first and second sets of pillars for attaching a tendon or ligament to a hard tissue
US11517441B2 (en) * 2019-09-13 2022-12-06 Smith & Nephew, Inc. Acetabular apparatus with dual mobility for hip revision surgery
RU2721285C1 (en) * 2019-10-30 2020-05-18 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТО им. Н.Н. Приорова" Минздрава России) Method of open reduction and fixation of shifted fractures of cotyloid cavity in experiment
WO2021097042A1 (en) 2019-11-12 2021-05-20 Ossur Iceland Ehf Ventilated prosthetic liner
US11628066B2 (en) 2019-12-11 2023-04-18 Depuy Ireland Unlimited Company Ceramic acetabular shell liner with a metal ring having a lead-in surface
US11291549B2 (en) 2019-12-11 2022-04-05 Depuy Ireland Unlimited Company Ceramic acetabular shell liners with augments
RU2723765C1 (en) * 2019-12-25 2020-06-17 Колесник Александр Иванович Universal reposition-fixation ring with dynamic compression for surgical treatment of comminuted fractures of cotyloid cavity
RU2738139C1 (en) * 2019-12-25 2020-12-08 Александр Иванович Колесник Universal reposition-fixation ring with dynamic compression for surgical treatment of complex shifted fractures of cotyloid cavity
EP4104771A4 (en) * 2020-02-10 2023-11-01 Ames Medical Prosthetic Solutions, S.A.U. Prosthesis
EP4125732A1 (en) * 2020-04-01 2023-02-08 Arthrex, Inc. Systems and methods of forming orthopaedic implants including printed augments
TWI751612B (en) * 2020-07-17 2022-01-01 台灣創新材料股份有限公司 Method for producing porous microstructure
US11236184B1 (en) 2020-07-17 2022-02-01 Tantti Laboratory Inc. Method for producing porous microstructure
RU2752032C1 (en) * 2020-07-22 2021-07-22 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТО им. Приорова" Минздрава России) Device for open, sparing reduction of columns and acetabular fragments
KR102472323B1 (en) 2020-08-21 2022-12-01 주식회사 코렌텍 Augment Implant
RU2756429C1 (en) * 2020-09-10 2021-09-30 Антон Васильевич Овчаренко Apparatus for open low-traumatic reposition of acetabular columns and fragments
AU2021106303A4 (en) * 2020-09-24 2021-11-04 Signature Orthopaedics Europe Ltd Modular acetabular cup augment apparatus
RU2751520C1 (en) * 2020-10-20 2021-07-14 Александр Иванович Колесник Method for open low-traumatic reposition of pillars and fragments of acetabulum in the experiment
KR102413389B1 (en) * 2020-11-10 2022-06-29 주식회사 코렌텍 Modular Augment
US20220152715A1 (en) 2020-11-19 2022-05-19 Rtg Scientific, Llc Fastening devices, systems, and methods
KR102269037B1 (en) * 2020-12-17 2021-06-25 주식회사 건바이오 Mutifunctional medical polyurethane film having improved permeability by controlling fine porosity and method of manufacturing the same
US11918475B2 (en) 2021-03-31 2024-03-05 DePuy Synthes Products, Inc. Modular acetabular surgical implant assembly
US11819415B2 (en) * 2021-04-02 2023-11-21 Arthrex, Inc. Orthopaedic implant systems including internal networks and methods of repair
KR102568192B1 (en) 2021-04-07 2023-08-22 주식회사 코렌텍 Augment Implant With Heterogeneous Porous Structure
US11944544B2 (en) 2021-11-19 2024-04-02 Arthrology Consulting, Llc Expandable augment system for acetabular cup
US20230329763A1 (en) * 2022-04-13 2023-10-19 Rtg Scientific, Llc Bone implants, systems, and methods
CN116807694B (en) * 2023-08-25 2023-12-19 北京爱康宜诚医疗器材有限公司 Femoral head prosthetic prosthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896504A (en) * 1972-10-14 1975-07-29 Artur Fischer Hip joint prosthesis
US7291177B2 (en) * 2001-02-23 2007-11-06 Biomet Manufacturing Corp. Method and apparatus for acetabular reconstruction

Family Cites Families (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH552383A (en) 1972-04-06 1974-08-15 Oscobal Ag Femoral head prosthesis.
CH555672A (en) 1972-09-06 1974-11-15 Oscobal Ag PAN FOR HIP PROSTHESIS.
US3840904A (en) * 1973-04-30 1974-10-15 R Tronzo Acetabular cup prosthesis
CH568753A5 (en) 1973-08-31 1975-11-14 Oscobal Ag
US4141088A (en) 1977-02-14 1979-02-27 Richards Manufacturing Company, Inc. Hip joint prosthesis
US4274163A (en) * 1979-07-16 1981-06-23 The Regents Of The University Of California Prosthetic fixation technique
US4260383A (en) * 1979-08-27 1981-04-07 Ipco Hospital Supply Corporation Dental retaining splint
US4491987A (en) * 1979-09-24 1985-01-08 Clemson University Method of orthopedic implantation and implant product
GB2068734B (en) * 1980-02-06 1983-11-23 Saratov Nii Travmatol I Ortope Hip endoprosthesis
DE3119130A1 (en) * 1981-05-14 1983-03-24 Rotthäuser, Roswitha, 5609 Hückeswagen Acetabulum for hip endoprostheses
DE3130732A1 (en) * 1981-08-03 1983-05-26 Rotthäuser, Roswitha, 5609 Hückeswagen Endoprosthesis part, e.g. hip socket or anchoring stem of an articular head
US4883490A (en) 1982-01-18 1989-11-28 Indong Oh Acetabular cup
US4475549A (en) 1982-01-18 1984-10-09 Indong Oh Acetabular cup positioner and method
US4473068A (en) 1982-01-18 1984-09-25 Indong Oh Trochanteric basket
US4437193A (en) 1982-01-18 1984-03-20 Indong Oh Protrusio cup
US4623352A (en) 1982-01-18 1986-11-18 Indong Oh Protrusio cup
US4547390A (en) 1982-03-12 1985-10-15 Medical Biological Sciences, Inc. Process of making implantable prosthesis material of modified polymeric acrylic (PMMA) beads coated with PHEMA and barium sulfate
US4542539A (en) * 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
FR2537868B3 (en) 1982-12-20 1985-10-11 Richards France Sarl PROSTHESIS FOR REPLACING THE HIP JOINT
US4589883A (en) * 1983-06-06 1986-05-20 Pfizer Hospital Products Group, Inc. Femoral hip prosthesis
US4673409A (en) 1984-04-25 1987-06-16 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4718908A (en) 1984-06-04 1988-01-12 Richards Medical Company High-strength, cold-forged type 316L stainless steel for orthopedic implant
US4632111A (en) 1985-03-21 1986-12-30 Minnesota Mining And Manufacturing Company Acetabular cup positioning apparatus
CA1290099C (en) * 1986-01-21 1991-10-08 Thomas H. Mallory Porous-coated artificial joints
US4695282A (en) * 1986-01-23 1987-09-22 Osteonics Corp. Acetabular cup assembly with selective bearing face orientation
US4795469A (en) 1986-07-23 1989-01-03 Indong Oh Threaded acetabular cup and method
US4820159A (en) * 1987-07-23 1989-04-11 Ipco Corporation Dental post and core assembly
FR2620022A1 (en) 1987-09-08 1989-03-10 Teinturier Pierre TOTAL JOINT PROSTHESIS, ESPECIALLY HIP
GB8819588D0 (en) 1988-08-17 1988-09-21 Minnesota Mining & Mfg Screw-threaded acetabular component of hip joint prosthesis
US5217499A (en) 1988-08-17 1993-06-08 Minnesota Mining And Manufacturing Company Rim-bearing acetabular component of hip joint prosthesis
GB8819589D0 (en) 1988-08-17 1988-09-21 Minnesota Mining & Mfg Acetabular component of hip joint prosthesis
US4904265A (en) 1988-09-09 1990-02-27 Boehringer Mannheim Corporation Cementless acetabular implant
US4990149A (en) 1989-01-24 1991-02-05 Richards Medical Company Releasable orthopedic broach handle apparatus
US5078746A (en) 1989-01-25 1992-01-07 Richards Medical Company Femoral stem distal centralizer
US5047033A (en) 1989-02-08 1991-09-10 Smith & Nephew Richards Inc. Mill and guide apparatus for preparation of a hip prosthesis
USRE38058E1 (en) 1989-02-08 2003-04-01 Smith & Nephew, Inc. Mill and guide apparatus for preparation of a hip prosthesis
US4995883A (en) 1989-02-08 1991-02-26 Smith & Nephew Richards Inc. Modular hip prosthesis
US5108452A (en) 1989-02-08 1992-04-28 Smith & Nephew Richards Inc. Modular hip prosthesis
DE3918970A1 (en) * 1989-06-12 1990-12-13 Eska Medical Gmbh & Co IMPLANTATION KIT
US5246530A (en) * 1990-04-20 1993-09-21 Dynamet Incorporated Method of producing porous metal surface
US5226917A (en) 1991-02-14 1993-07-13 Smith & Nephew Richards Inc. Acetabular prosthesis with anchoring pegs
US5314487A (en) 1991-02-14 1994-05-24 Smith & Nephew Richards Inc. Acetabular prosthesis with anchoring pegs
US5176711A (en) * 1991-03-06 1993-01-05 Grimes James B Acetabular revision system
US5236462A (en) * 1991-04-23 1993-08-17 Mikhail Michael W E Metal-backed patellar prosthesis
US5193679A (en) 1991-07-10 1993-03-16 Smith & Nephew Richards Inc. Package for hip prosthesis
DE4133433C1 (en) 1991-10-09 1993-05-19 S + G Implants Gmbh, 2400 Luebeck, De Hip region pelvic joint prosthesis - has through bores in metal outer shell and coacting intermediate member for anchoring
JP3100735B2 (en) * 1992-01-27 2000-10-23 哲也 加藤 Acetabular surgery spacer
EP0561068B1 (en) * 1992-02-20 1999-03-03 Neomedics, Inc. Implantable bone growth stimulator
US5236457A (en) 1992-02-27 1993-08-17 Zimmer, Inc. Method of making an implant having a metallic porous surface
US5370698A (en) * 1992-04-16 1994-12-06 Clemson University Isoelastic implants with improved anchorage means
US5405392A (en) 1992-06-10 1995-04-11 Deckner; Andre G. Articular prosthetic device
US5358532A (en) 1992-06-16 1994-10-25 Smith & Nephew Richards Inc. Cementless acetabular cup
GB9217639D0 (en) 1992-08-19 1992-09-30 Zimmer Limited Acetabular prosthetic techniques
US5326368A (en) 1992-09-22 1994-07-05 Howmedica, Inc. Modular acetabular cup
US5370693A (en) 1992-09-28 1994-12-06 Depuy Inc. Orthopedic implant augmentation and stabilization device
DE59208435D1 (en) 1992-10-07 1997-06-05 Osteo Ag Acetabular cup support ring
US5702485A (en) * 1992-11-20 1997-12-30 Burke; Dennis W. Collared prosthetic device with centering fins
EP0601223B1 (en) 1992-12-07 1997-11-12 Plus Endoprothetik Ag Shaft for femoral hip joint endoprosthesis
US5324291A (en) 1992-12-21 1994-06-28 Smith & Nephew Richards, Inc. Bone section reattachment apparatus and method
US5350381A (en) 1993-03-11 1994-09-27 Smith & Nephew Richards Inc. Orthopedic broach handle apparatus
US6162234A (en) * 1993-03-23 2000-12-19 Freedland; Yosef Adjustable button cinch anchor orthopedic fastener
ES2109708T3 (en) 1993-07-06 1998-01-16 Ferdinand Gundolf DEVICE FOR OSTEOSYNTHESIS OF BONE FRAGMENTS, ESPECIALLY FOR THE FIXATION OF BONE FRACTURES.
US5458641A (en) * 1993-09-08 1995-10-17 Ramirez Jimenez; Juan J. Vertebral body prosthesis
US20010039454A1 (en) * 1993-11-02 2001-11-08 John Ricci Orthopedic implants having ordered microgeometric surface patterns
US5607480A (en) * 1993-11-10 1997-03-04 Implant Innovations, Inc. Surgically implantable prosthetic devices
NL9302200A (en) 1993-12-16 1995-07-17 Endocare Ag Elliptical acetabulum component for a hip prosthesis.
US5549685A (en) 1994-02-23 1996-08-27 Zimmer, Inc. Augmentation for an orthopaedic implant
US5658347A (en) 1994-04-25 1997-08-19 Sarkisian; James S. Acetabular cup with keel
FR2725616B1 (en) * 1994-10-12 1997-03-14 Prost Didier COTYLOIDIAN CUP AND PROSTHESIS
US5549702A (en) 1994-10-25 1996-08-27 Smith & Nephew Richards Inc. Flexible orthopaedic stem apparatus
DE59510681D1 (en) 1994-11-09 2003-06-18 Intraplant Ag Cham Anchoring shaft for a joint endoprosthesis
US5458637A (en) 1994-11-21 1995-10-17 Zimmer, Inc. Orthopaedic base component with modular augmentation block
EP0728448B1 (en) * 1994-12-13 2000-06-14 Piero Garosi Cup for a hip joint prosthesis
US6209621B1 (en) * 1995-07-07 2001-04-03 Depuy Orthopaedics, Inc. Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same
DE29513694U1 (en) * 1995-08-25 1997-01-02 Link Waldemar Gmbh Co Joint socket for an endoprosthesis
US5658338A (en) 1995-09-29 1997-08-19 Tullos; Hugh S. Prosthetic modular bone fixation mantle and implant system
US5676704A (en) 1995-11-27 1997-10-14 Smith & Nephew, Inc. Acetabular cup body prosthesis
US5782928A (en) 1995-11-27 1998-07-21 Smith & Nephew, Inc. Acetabular cup body prosthesis
US5879405A (en) 1995-11-27 1999-03-09 Smith & Nephew, Inc. Acetabular cup body prosthesis
US5725587A (en) 1995-12-14 1998-03-10 Zimmer, Inc. Acetabular cup assembly
US6087553A (en) * 1996-02-26 2000-07-11 Implex Corporation Implantable metallic open-celled lattice/polyethylene composite material and devices
ES2187778T3 (en) * 1996-05-14 2003-06-16 Bruno Balay IMPLANT COTILOID FIXED WITHOUT CEMENT.
DE19634484C1 (en) 1996-08-26 1998-04-02 Plus Endoprothetik Ag Bone cutter
EP0827726A3 (en) * 1996-09-04 1999-03-03 Implantech Medizintechnik Ges.m.b.H. Implant, especially prosthetic joint implant
US5658348A (en) * 1996-09-09 1997-08-19 Bristol-Myers Squibb Company Acetabular implant with threaded liner and locking ring
US5931870A (en) 1996-10-09 1999-08-03 Smith & Nephew, Inc. Acetabular ring prosthesis with reinforcement buttress
US5906234A (en) * 1996-10-22 1999-05-25 Johnson & Johnson Professional, Inc. Investment casting
US5871548A (en) * 1996-12-07 1999-02-16 Johnson & Johnson Professional, Inc. Modular acetabular reinforcement system
US7468075B2 (en) * 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
DE19703987C1 (en) 1997-02-03 1998-07-30 Endocare Ag Target device for an implant to treat trochanteric and subtrochanteric fractures
GB2323036B (en) 1997-03-14 2001-04-11 Finsbury Prosthetic implant and surgical tool
AU6946198A (en) * 1997-04-01 1998-10-22 Cap Biotechnology, Inc. Calcium phosphate microcarriers and microspheres
DE19731442A1 (en) 1997-07-22 1999-02-11 Plus Endoprothetik Ag Cup for a joint endoprosthesis
US6004353A (en) 1997-07-30 1999-12-21 Medidea, Llc Modular acetabular reconstruction plate
WO1999022672A2 (en) 1997-10-31 1999-05-14 Midwest Orthopaedic Research Foundation Acetabular cup prosthesis with extension for deficient acetabulum
ATE190212T1 (en) 1998-02-11 2000-03-15 Plus Endoprothetik Ag FEMORAL HIP JOINT PROSTHESIS
FR2775586B1 (en) * 1998-03-03 2000-06-30 Tornier Sa MODULAR ACETABULAR OR COTYLOID IMPLANT
US5989293A (en) * 1998-07-17 1999-11-23 Bristol-Myers Squibb Co. Acetabular cup kit for use during hip replacement surgery
EP1157678B1 (en) 1998-09-10 2003-10-01 PLUS Endoprothetik AG Endoprosthetic shaft and proximal centering and/or sealing element
US6500208B1 (en) 1998-10-16 2002-12-31 Biomet, Inc. Nonmodular joint prosthesis convertible in vivo to a modular prosthesis
US6280476B1 (en) 1998-10-16 2001-08-28 Biomet Inc. Hip joint prosthesis convertible in vivo to a modular prosthesis
US6270502B1 (en) 1998-12-11 2001-08-07 Smith & Nephew, Inc. Methods and instruments for performing radial impacting
US6626913B1 (en) 1999-03-03 2003-09-30 Smith & Nephew, Inc. Methods, systems, and instruments for inserting prosthetic implants
US6340370B1 (en) 1999-03-10 2002-01-22 Sulzer Orthopedics Ltd. Modular set of an outer shell for an artificial hip joint cup
US6416553B1 (en) * 1999-03-31 2002-07-09 Biomet, Inc. Method and apparatus for providing a modular acetabular prosthesis
ES2320722T3 (en) 1999-04-07 2009-05-28 SMITH & NEPHEW ORTHOPAEDICS AG SHEET SHAPE OF A HIP PROTESIS FOR ANCHORAGE IN THE FEMUR.
DE19916630A1 (en) 1999-04-13 2000-11-30 Plus Endoprothetik Ag Rotkreuz Profile shaft for anchoring a hip prosthesis in the femur
DE19928791A1 (en) 1999-04-13 2000-11-02 Plus Endoprothetik Ag Rotkreuz Blade-like shaft of a hip joint prosthesis for anchoring in the femur
WO2000074604A1 (en) * 1999-06-02 2000-12-14 Australian Surgical Design And Manufacture Pty Limited Acetabular component of total hip replacement assembly
DE19928709B4 (en) 1999-06-23 2005-02-03 Plus-Endoprothetik Ag Hip endoprosthesis
US6991643B2 (en) * 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
CN2383493Y (en) * 1999-07-22 2000-06-21 周袭明 Bone cement type Jitan series hip joint prosthesis
US6368354B2 (en) 1999-10-07 2002-04-09 Exactech, Inc. Acetabular bearing assembly for total hip joints
FR2801193B1 (en) 1999-11-19 2002-02-15 Proconcept DOUBLE MOBILITY EXPANDABLE COTYLOIDAL PROSTHESIS
US20040199260A1 (en) 2000-01-30 2004-10-07 Pope Bill J. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US7014633B2 (en) * 2000-02-16 2006-03-21 Trans1, Inc. Methods of performing procedures in the spine
AU2001243663B2 (en) 2000-03-14 2004-05-27 Smith & Nephew, Inc. Variable geometry rim surface acetabular shell liner
US7682398B2 (en) 2000-03-14 2010-03-23 Smith & Nephew, Inc. Variable geometry rim surface acetabular shell liner
AU2001249368A1 (en) 2000-03-22 2001-10-03 Boyer Ii, Michael L. Plugs for filling bony defects
US8114163B2 (en) 2000-04-10 2012-02-14 Biomet Manufacturing Corp. Method and apparatus for adjusting height and angle for a radial head
US7494510B2 (en) 2000-04-13 2009-02-24 Smith And Nephew Orthopaedics Ag Leaflike shaft of a hip-joint prosthesis for anchoring in the femur
US6589195B1 (en) 2000-05-26 2003-07-08 Orthomerica Products, Inc. Modular adjustable prophylactic hip orthosis and adduction/abduction joint
EP1228774B1 (en) * 2000-08-07 2005-04-20 Matsushita Electric Works, Ltd. Artificial joint made from zirconia-alumina composite ceramic
US6355045B1 (en) * 2000-12-28 2002-03-12 Depuy Orthopaedics, Inc. Method and apparatus for surgically preparing a tibia for implantation of a prosthetic implant component which has an offset stem
ES2301618T3 (en) 2001-01-25 2008-07-01 SMITH & NEPHEW, INC. CONTAINMENT SYSTEM TO RESTRICT A PROTESTIC COMPONENT.
US7713306B2 (en) * 2001-02-23 2010-05-11 Biomet Manufacturing Corp. Method and apparatus for acetabular reconstruction
US6458161B1 (en) 2001-02-23 2002-10-01 Biomet, Inc. Method and apparatus for acetabular reconstruction
US7597715B2 (en) 2005-04-21 2009-10-06 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8123814B2 (en) * 2001-02-23 2012-02-28 Biomet Manufacturing Corp. Method and appartus for acetabular reconstruction
US6488713B1 (en) 2001-04-25 2002-12-03 Biomet, Inc. Hip joint prosthesis with integral bearing extraction member
US6840959B2 (en) 2001-07-05 2005-01-11 Howmedica Ostenics Corp. Pelvic prosthesis plus methods and tools for implantation
US6364910B1 (en) * 2001-07-11 2002-04-02 Biomet, Inc. Method and apparatus for use of a glenoid component
FR2827503B1 (en) 2001-07-23 2003-10-24 Macara Frederique MODULAR RECONSTRUCTION COTYLE
EP1411868A4 (en) 2001-07-31 2006-04-12 Biomet Inc Method and apparatus for use of a metal-metal constrained liner
US20030065397A1 (en) 2001-08-27 2003-04-03 Hanssen Arlen D. Prosthetic implant support structure
US20040162619A1 (en) * 2001-08-27 2004-08-19 Zimmer Technology, Inc. Tibial augments for use with knee joint prostheses, method of implanting the tibial augment, and associated tools
US6679890B2 (en) * 2001-08-28 2004-01-20 Joseph Y. Margulies Method and apparatus for augmentation of the femoral neck
JP3993855B2 (en) 2001-11-01 2007-10-17 スパイン・ウェイブ・インコーポレーテッド Device for spinal disc recovery
EP1455692B1 (en) 2001-12-04 2010-02-17 Active Implants Corporation Cushion bearing implants for load bearing applications
US6660040B2 (en) * 2001-12-19 2003-12-09 Depuy Orthopaedics, Inc. Prosthetic joints having reduced area bearing surfaces and application thereof to a range of sizes of prosthetic joints
DE10200690B4 (en) 2002-01-10 2005-03-03 Intraplant Ag Aid for implantation of a hip joint endoprosthesis
US6908486B2 (en) * 2002-01-25 2005-06-21 Mayo Foundation For Medical Education And Research Modular acetabular anti-protrusio cage and porous ingrowth cup combination
AU2003202796B2 (en) 2002-01-29 2008-09-11 Plus Orthopedics Ag Sintering ultrahigh molecular weight polyethylene
US20030163202A1 (en) 2002-02-06 2003-08-28 Lakin Ryan C. Modular resurfacing prosthetic
ES2391148T3 (en) 2002-02-14 2012-11-22 Biomet Spain Orthopaedics S.L. Femororrotulian arthroplasty
GB0207170D0 (en) 2002-03-26 2002-05-08 Mcminn Derek J W Hip joint prosthesis
US6916342B2 (en) 2002-04-01 2005-07-12 Smith & Nephew, Inc. Liner assembly for prosthetic components
US6923833B2 (en) * 2002-04-09 2005-08-02 Ray C. Wasielewski Biologically reabsorbable acetabular constraining components and materials for use with a hip replacement prosthesis and bioreabsorbable materials to augment hip replacement stability and function
US7651501B2 (en) 2004-03-05 2010-01-26 Wright Medical Technology, Inc. Instrument for use in minimally invasive hip surgery
US6981991B2 (en) * 2002-06-27 2006-01-03 Ferree Bret A Arthroplasty devices configured to reduce shear stress
US7599731B2 (en) 2002-07-16 2009-10-06 Xenogen Corporation Fluorescent light tomography
AU2002950340A0 (en) 2002-07-23 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Biodegradable polyurethane/urea compositions
CA2400955A1 (en) * 2002-08-22 2004-02-22 Roger Bacon Expandable prosthetic cotyle
US7250054B2 (en) 2002-08-28 2007-07-31 Smith & Nephew, Inc. Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable
US7175665B2 (en) * 2002-09-09 2007-02-13 Depuy Products, Inc. Universal tibial augment
US6986792B2 (en) 2002-09-13 2006-01-17 Smith & Nephew, Inc. Prostheses
US7179297B2 (en) 2002-09-17 2007-02-20 Smith & Nephew, Inc. Combined bipolar and unipolar trials
JP2006505307A (en) * 2002-09-26 2006-02-16 アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド Implantable material with designed surface and method of making the material
CN1728976A (en) * 2002-10-07 2006-02-01 康复米斯公司 Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
EP1555962B1 (en) 2002-10-07 2011-02-09 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US20040083004A1 (en) * 2002-10-23 2004-04-29 Wasielewski Ray C. Use of snap-on semiannular augments to inhibit multi-directional instability after total hip arthroplasty
US6926740B2 (en) * 2002-12-13 2005-08-09 Depuy Products, Inc. Modular orthopaedic implant apparatus and method
US20050043585A1 (en) 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
FR2850010B1 (en) 2003-01-17 2005-12-02 Tornier Sa ANCILLARY FOR THE INSTALLATION OF A PROTHETIC COTYL FOR A HIP PROSTHESIS
WO2004071310A1 (en) 2003-02-10 2004-08-26 Smith & Nephew, Inc. Acetabular reamer
US7160307B2 (en) 2003-02-10 2007-01-09 Smith & Nephew, Inc. Hip replacement incision locator
CN100418493C (en) * 2003-03-13 2008-09-17 钱本文 Natural innominatum devices
DE10323079A1 (en) * 2003-05-22 2004-12-09 Gerber, Thomas, Prof., Dr. Hydroxyapatite granulate for production of e.g. bone substitutes and bone- growth materials comprises calcium phosphate crystallites embedded in a silicon dioxide xerogel matrix
GB0313444D0 (en) * 2003-06-11 2003-07-16 Midland Medical Technologies L Modular dysplasia cup
US7306629B2 (en) * 2003-07-03 2007-12-11 Zimmer, Inc. Femoral head assembly with variable offset
MXPA06000874A (en) * 2003-07-24 2006-04-19 Tecomet Inc Assembled non-random foams.
US7044974B2 (en) 2003-08-27 2006-05-16 Zimmer Technology, Inc. Hip prosthesis with a modular acetabular cup assembly
US7780667B2 (en) 2003-09-08 2010-08-24 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US7547327B2 (en) 2003-10-03 2009-06-16 Howmedica Osteonics Corp. Expandable augment trial
TWI260196B (en) 2003-11-14 2006-08-11 Qnx Cooling Systems Inc Liquid cooling system
DE602004023422D1 (en) 2003-11-18 2009-11-12 Smith & Nephew Inc OPERATIVE TECHNIQUE AND INSTRUMENTS FOR MINIMAL INCISION HIP ARTHOPLASTY SURGERY
US7288115B2 (en) 2004-01-02 2007-10-30 Zimmer Technology, Inc. Multipart component for an orthopaedic implant
US7534271B2 (en) 2004-01-22 2009-05-19 Smith + Nephew Femoral hip prosthesis and method of implantation
US7901411B2 (en) 2004-02-10 2011-03-08 Smith & Nephew, Inc. Hip replacement incision locator
TW200538525A (en) 2004-03-03 2005-12-01 Commw Scient Ind Res Org Polymer compositions for dual or multi staged curing
TW200533385A (en) 2004-03-03 2005-10-16 Commw Scient Ind Res Org Biocompatible polymer compositions for dual or multi staged curing
US7955395B2 (en) 2004-03-11 2011-06-07 Smith & Nephew, Inc. Universal liner
CN1950098B (en) 2004-03-24 2013-02-27 宝利诺沃生物材料有限公司 Biodegradable polyurethane and polyurethane ureas
US7776097B2 (en) * 2004-03-31 2010-08-17 Scyon Orthopaedics Ag Double shell implant for cementless anchorage of joint prostheses
US20050234561A1 (en) * 2004-04-20 2005-10-20 Michael Nutt Surface treatment for implants
US7406775B2 (en) * 2004-04-22 2008-08-05 Archus Orthopedics, Inc. Implantable orthopedic device component selection instrument and methods
US7547328B2 (en) 2004-05-26 2009-06-16 Sidebotham Christopher G Canine femoral stem system
US7892290B2 (en) 2004-05-28 2011-02-22 Smith & Nephew, Inc. Fluted sleeve hip prosthesis for modular stem
WO2005117763A2 (en) 2004-05-28 2005-12-15 Smith & Nephew, Inc. Fluted intramedullary stem
US20050288793A1 (en) * 2004-06-28 2005-12-29 Howmedica Osteonics Corp. Internal fixation element for hip acetabular shell
US7918896B2 (en) * 2004-09-15 2011-04-05 Wright Medical Technology, Inc. Unitary acetabular cup prosthesis with extension for deficient acetabulum
US7922769B2 (en) 2004-09-27 2011-04-12 Depuy Products, Inc. Modular glenoid prosthesis and associated method
WO2006084239A2 (en) * 2005-02-04 2006-08-10 Intellistem Orthopaedic Innovations, Inc. Implanted prosthetic device
JP2006230722A (en) 2005-02-25 2006-09-07 Takiron Co Ltd Biomaterial for artificial cartilage
US8021432B2 (en) 2005-12-05 2011-09-20 Biomet Manufacturing Corp. Apparatus for use of porous implants
US8292967B2 (en) 2005-04-21 2012-10-23 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8066778B2 (en) * 2005-04-21 2011-11-29 Biomet Manufacturing Corp. Porous metal cup with cobalt bearing surface
AU2006201835B2 (en) 2005-05-09 2012-08-30 Smith & Nephew, Inc. Orthopaedic implants and methods for making the same
US7179298B2 (en) 2005-05-27 2007-02-20 Greenlee Wilfred E Hip prosthesis and the use thereof
US20060282166A1 (en) 2005-06-09 2006-12-14 Sdgi Holdings, Inc. Compliant porous coating
WO2007033418A1 (en) 2005-09-20 2007-03-29 Polynovo Biomaterials Pty Limited Chain extenders
CN2863017Y (en) * 2005-10-14 2007-01-31 温大维 Composition type multi-function artificial acetabulum cup
US7766969B2 (en) 2005-12-05 2010-08-03 Zimmer, Inc. Modular progressive implant for a joint articulation surface
US9241800B2 (en) 2005-12-21 2016-01-26 Orthopaedic International Inc. Tibial component with a conversion module for a knee implant
US20070142921A1 (en) 2005-12-21 2007-06-21 Lewis Paul Peter P Acetabular cup with rigid fasteners
US7578851B2 (en) * 2005-12-23 2009-08-25 Howmedica Osteonics Corp. Gradient porous implant
AU2006335005B2 (en) 2006-01-09 2009-09-24 Silesco Pty Ltd Implantable joint prosthesis
US7662183B2 (en) 2006-01-24 2010-02-16 Timothy Haines Dynamic spinal implants incorporating cartilage bearing graft material
US20070179629A1 (en) 2006-01-31 2007-08-02 Murphy Stephen B Acetabular cup assembly and cup revising method
WO2007092841A2 (en) 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9327056B2 (en) * 2006-02-14 2016-05-03 Washington State University Bone replacement materials
US7635447B2 (en) 2006-02-17 2009-12-22 Biomet Manufacturing Corp. Method and apparatus for forming porous metal implants
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8900321B2 (en) 2006-03-20 2014-12-02 Zimmer, Inc. Implant anchoring device
US8679187B2 (en) 2006-03-20 2014-03-25 Smith & Nephew, Inc. Acetabular cup assembly for multiple bearing materials
CN101050053B (en) * 2006-04-07 2011-04-06 同济大学 Method for preparing engineering material of bone tissue and application
WO2007123861A2 (en) 2006-04-18 2007-11-01 University Of Florida Prosthetic device
JP5408783B2 (en) 2006-04-19 2014-02-05 ブレーム ペーター Modular lumbar implant
US8348978B2 (en) * 2006-04-28 2013-01-08 Warsaw Orthopedic, Inc. Interosteotic implant
US8163027B2 (en) * 2006-06-22 2012-04-24 Depuy Products, Inc. Tibial insert having a reinforced keel
US20080021568A1 (en) * 2006-07-07 2008-01-24 Howmedica Osteonics Corp. Acetabular cup augment system
EP2049591A4 (en) 2006-08-02 2009-08-19 Polynovo Biomaterials Pty Ltd Biocompatible polymer compositions
TWI317895B (en) 2006-08-14 2009-12-01 Lee Chia Hoang A device for controlling a software object and the method for the same
US20080065154A1 (en) * 2006-09-08 2008-03-13 Warsaw Orthopedic, Inc Surgical staple
US7923020B2 (en) 2006-09-29 2011-04-12 Depuy Products, Inc. Composite for implantation in the body of an animal and method for making the same
KR100770096B1 (en) * 2006-10-13 2007-10-24 삼성에스디아이 주식회사 Plasma display device
US20080161927A1 (en) * 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Intervertebral Implant with Porous Portions
US8275594B2 (en) * 2006-10-30 2012-09-25 The Regents Of The University Of Michigan Engineered scaffolds for intervertebral disc repair and regeneration and for articulating joint repair and regeneration
US8562616B2 (en) * 2007-10-10 2013-10-22 Biomet Manufacturing, Llc Knee joint prosthesis system and method for implantation
US8043382B2 (en) * 2007-02-28 2011-10-25 Biomet Manufacturing Corp. Reinforced medical implants
US20080221680A1 (en) * 2007-03-09 2008-09-11 Zimmer Technology, Inc. Optimized articular geometry
US8231656B2 (en) * 2007-04-10 2012-07-31 Life Spine, Inc. Adjustable spine distraction implant
US8177849B2 (en) 2007-05-07 2012-05-15 Zimmer, Inc. Methods and apparatuses for attaching tissue to orthopaedic implants
ITUD20070092A1 (en) 2007-05-29 2008-11-30 Lima Lto S P A PROSTHETIC ELEMENT AND RELATIVE PROCEDURE FOR IMPLEMENTATION
US7682399B2 (en) * 2007-06-06 2010-03-23 Howmedica Osteonics Corp. Acetabular shell
WO2009022911A2 (en) * 2007-08-16 2009-02-19 Cam Implants B.V. Prosthesis comprising an anti-micromotion bone-interfacing surface and method for the manufacture thereof
JP5600062B2 (en) 2007-10-03 2014-10-01 ポリィノボ バイオマテリアルズ ピーティワイ リミテッド High modulus polyurethane and polyurethane / urea compositions
CN100577218C (en) * 2007-11-27 2010-01-06 李鸿宾 Manufacturing method of artificial sclerite shaping implant made of polyvinyl plastics
US7993408B2 (en) * 2008-02-12 2011-08-09 Biomet Manufacturing Corp. Acetabular cup having an adjustable modular augment
US8864838B2 (en) * 2008-03-14 2014-10-21 The Cleveland Clinic Foundation Acetabular cup buttress
US20090240256A1 (en) 2008-03-19 2009-09-24 Biomet Manufacturing Corp. Method And Apparatus For Implanting an Augment
US8871142B2 (en) * 2008-05-22 2014-10-28 DePuy Synthes Products, LLC Implants with roughened surfaces
US7985260B2 (en) * 2008-06-30 2011-07-26 Depuy Products, Inc. Acetabular prosthesis system
FR2935263B1 (en) * 2008-09-01 2012-02-24 Denis Pichon JOINT PROTHETIC COTYLE.
US8007539B2 (en) 2008-12-08 2011-08-30 Biomet Manufacturing Corp. Metal-on-metal modular hybrid liner
US8383187B2 (en) * 2009-02-19 2013-02-26 Depuy Products, Inc. Rough porous constructs
PL2253291T3 (en) 2009-05-19 2016-09-30 A bone implant with a surface anchoring structure
GB2472973B (en) * 2009-07-28 2014-07-09 Biomet Uk Ltd A revision acetabular for resurfacing system
US20110054628A1 (en) 2009-08-26 2011-03-03 Banks Stephen A Reflex fixation geometry revision and reconstruction system reverse articulation
FR2949688B1 (en) * 2009-09-04 2012-08-24 Sofradim Production FABRIC WITH PICOTS COATED WITH A BIORESORBABLE MICROPOROUS LAYER
US20110215930A1 (en) * 2010-03-05 2011-09-08 Lee Cooper G Method and system for interpreting medical image data
BR112012031296A2 (en) * 2010-06-08 2016-11-08 Smith & Nephew Inc "implant components and methods"
WO2012021764A2 (en) * 2010-08-13 2012-02-16 Smith & Nephew, Inc. Orthopaedic implants and methods
US8709452B2 (en) * 2011-07-15 2014-04-29 The Regents Of The University Of California Synthetic bone grafts
EP2782524B1 (en) * 2011-11-21 2017-12-20 Biomimedica, Inc Systems for anchoring orthopaedic implants to bone
JP6258226B2 (en) * 2012-02-10 2018-01-10 シンセス・ゲーエムベーハーSynthes GmbH Porous implant materials and related methods
FR2986962B1 (en) * 2012-02-20 2014-02-14 Pierre-Etienne Moreau ORTHOPEDIC IMPLANT CUP, ORTHOPEDIC IMPLANT COMPRISING SUCH A CUPULE AND METHOD FOR PRODUCING SUCH A CUPULE
DE102013004573A1 (en) * 2013-03-11 2014-09-11 Johnson & Johnson Medical Gmbh Surgical implant
US10111753B2 (en) * 2014-05-23 2018-10-30 Titan Spine, Inc. Additive and subtractive manufacturing process for producing implants with homogeneous body substantially free of pores and inclusions
DE102015105100A1 (en) * 2015-04-01 2016-10-06 Aesculap Ag Joint implant part, joint endoprosthesis and method for producing a joint implant part and a joint endoprosthesis
US20170056190A1 (en) * 2015-08-27 2017-03-02 Wright Medical Technology, Inc. Subtalar biofoam wedge
EP3402442A4 (en) * 2016-01-12 2019-09-11 SMed - TA/TD LLC Orthopaedic implants with textured porous surfaces
US20190117827A1 (en) * 2017-10-25 2019-04-25 Mirus Llc Medical Devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896504A (en) * 1972-10-14 1975-07-29 Artur Fischer Hip joint prosthesis
US7291177B2 (en) * 2001-02-23 2007-11-06 Biomet Manufacturing Corp. Method and apparatus for acetabular reconstruction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110130845A1 (en) * 2008-03-18 2011-06-02 Depuy (Ireland) Cup component of an orthopaedic joint prosthesis
US8409294B2 (en) * 2008-03-18 2013-04-02 Depuy (Ireland) Cup component of an orthopaedic joint prosthesis
US20180064541A1 (en) * 2011-12-07 2018-03-08 Smith & Nephew, Inc. Orthopedic augments having recessed pockets
US11135067B2 (en) * 2011-12-07 2021-10-05 Smith & Nephew, Inc. Orthopedic augments having recessed pockets
US20210361297A1 (en) * 2012-12-27 2021-11-25 Wright Medical Technology, Inc. Ankle replacement system and method
US11759215B2 (en) * 2012-12-27 2023-09-19 Wright Medical Technology, Inc. Ankle replacement system and method
US10456262B2 (en) 2016-08-02 2019-10-29 Howmedica Osteonics Corp. Patient-specific implant flanges with bone side porous ridges
US10751186B2 (en) 2017-09-12 2020-08-25 Zimmer, Inc. Methods for attaching acetabular augments together or to acetabular shells
US11806239B2 (en) 2017-09-12 2023-11-07 Zimmer, Inc. Methods for attaching acetabular augments together or to acetabular shells
WO2021204620A1 (en) * 2020-04-07 2021-10-14 Aesculap Ag Hip joint endoprosthesis and revision hip joint endoprosthesis

Also Published As

Publication number Publication date
RU2012157129A (en) 2014-07-20
EP4111991A3 (en) 2023-03-29
US20140180432A1 (en) 2014-06-26
CA2802099A1 (en) 2011-12-15
EP2579817B1 (en) 2022-08-31
WO2011156509A3 (en) 2012-05-18
KR101904030B1 (en) 2018-10-05
US9901451B2 (en) 2018-02-27
US8700198B2 (en) 2014-04-15
JP2013528110A (en) 2013-07-08
KR20140019764A (en) 2014-02-17
US20170246001A1 (en) 2017-08-31
JP5885355B2 (en) 2016-03-15
WO2011156509A2 (en) 2011-12-15
US20120022663A1 (en) 2012-01-26
EP2579821A2 (en) 2013-04-17
CN103037809A (en) 2013-04-10
EP2579817A2 (en) 2013-04-17
WO2011156508A3 (en) 2012-05-18
US8979926B2 (en) 2015-03-17
AU2018200989B2 (en) 2019-10-24
RU2012158095A (en) 2014-07-20
AU2011264850B2 (en) 2016-03-03
EP2579816A2 (en) 2013-04-17
RU2012157130A (en) 2014-07-20
BR112012031446A2 (en) 2019-09-24
RU2012157648A (en) 2014-07-20
CN103037812A (en) 2013-04-10
WO2011156506A2 (en) 2011-12-15
KR20140031828A (en) 2014-03-13
AU2016231485B2 (en) 2018-12-13
EP2579817A4 (en) 2013-12-04
US20140180431A1 (en) 2014-06-26
WO2011156506A3 (en) 2012-04-26
CN103096841A (en) 2013-05-08
EP2579816B1 (en) 2021-04-07
AU2018200989A1 (en) 2018-03-01
US9707083B2 (en) 2017-07-18
CN103037809B (en) 2016-11-16
WO2011156510A2 (en) 2011-12-15
US9949836B2 (en) 2018-04-24
JP2013528111A (en) 2013-07-08
US20220039961A1 (en) 2022-02-10
US20120083895A1 (en) 2012-04-05
US9468530B2 (en) 2016-10-18
US20120022662A1 (en) 2012-01-26
AU2011264852A1 (en) 2013-01-10
WO2011156508A2 (en) 2011-12-15
AU2011264850A1 (en) 2013-01-10
BR112012031154A2 (en) 2017-05-09
US20120016485A1 (en) 2012-01-19
WO2011156504A2 (en) 2011-12-15
US20120089235A1 (en) 2012-04-12
CA2801739A1 (en) 2011-12-15
WO2011156512A3 (en) 2012-04-05
AU2011264852B2 (en) 2016-09-01
EP2579819A4 (en) 2013-12-11
US20150150686A1 (en) 2015-06-04
US20150173907A1 (en) 2015-06-25
US10568741B2 (en) 2020-02-25
BR112012031296A2 (en) 2016-11-08
US20120016486A1 (en) 2012-01-19
EP2579819A2 (en) 2013-04-17
EP2579821A4 (en) 2014-04-02
US20180140427A1 (en) 2018-05-24
WO2011156512A2 (en) 2011-12-15
WO2011156510A3 (en) 2012-04-19
EP2579821B1 (en) 2020-02-12
WO2011156511A3 (en) 2012-04-19
JP5885354B2 (en) 2016-03-15
US10265177B2 (en) 2019-04-23
US20220226122A1 (en) 2022-07-21
WO2011156504A3 (en) 2012-06-07
EP2579816A4 (en) 2014-04-02
EP4111991A2 (en) 2023-01-04
AU2016231485A1 (en) 2016-10-06
JP2013531524A (en) 2013-08-08
US20170196694A1 (en) 2017-07-13
CA2802101A1 (en) 2011-12-15
AU2011264848A1 (en) 2013-01-10
CN103037811A (en) 2013-04-10
AU2016202986A1 (en) 2016-07-14
WO2011156511A2 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US20120016487A1 (en) Implant components and methods
KR101709357B1 (en) Anchor-in-anchor system for use in bone fixation
US10357373B2 (en) Reverse shoulder systems and methods
EP1762191B1 (en) Modular humeral head resurfacing system
US10166032B2 (en) Modular humeral head resurfacing system
US7141073B2 (en) Compliant fixation of external prosthesis
JP3497865B2 (en) Multi-axis lock screw collar and plate assembly
EP1800626A2 (en) Modular hip cup assembly
US20170265915A1 (en) Proximal humeral stabilization system
WO1991007932A1 (en) Artificial hip-joint
US20140324183A1 (en) Prosthetic acetabular cup
EP3338738B1 (en) Orthopaedic implant with fixation feature
US20220087825A1 (en) Hip joint device and method
CN106963520B (en) Acetabulum outer cup
JP2024509613A (en) Orthopedic assemblies, bone fixators, heads, and packages comprising such assemblies, screws, and/or heads, as well as methods for assembling orthopedic assemblies.
WO2013086174A1 (en) Bone-conserving orthopedic augments

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMITH & NEPHEW, INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CONWAY, JUSTIN STEVE;KELMAN, DAVID C.;SHARP, JEFFREY A.;AND OTHERS;SIGNING DATES FROM 20110915 TO 20110926;REEL/FRAME:026996/0413

AS Assignment

Owner name: TABULA (ASSIGNMENT FOR THE BENEFIT OF CREDITORS),

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TABULA, INC.;REEL/FRAME:035783/0055

Effective date: 20150427

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION