US20110307276A1 - Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications - Google Patents

Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications Download PDF

Info

Publication number
US20110307276A1
US20110307276A1 US13/216,279 US201113216279A US2011307276A1 US 20110307276 A1 US20110307276 A1 US 20110307276A1 US 201113216279 A US201113216279 A US 201113216279A US 2011307276 A1 US2011307276 A1 US 2011307276A1
Authority
US
United States
Prior art keywords
data
application
handheld
computer
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/216,279
Inventor
Glenn M. Bernston
Chao Young Lee
George A. Madrid
Maulin P. Shah
Sanjay S. Vakil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PatientKeeper Inc
Original Assignee
PatientKeeper Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PatientKeeper Inc filed Critical PatientKeeper Inc
Priority to US13/216,279 priority Critical patent/US20110307276A1/en
Assigned to PATIENTKEEPER, INC. reassignment PATIENTKEEPER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHAH, MAULIN P., LEE, CHAO YOUNG, BERNSTON, GLENN M., MADRID, GEORGE A., VAKIL, SANJAY S.
Publication of US20110307276A1 publication Critical patent/US20110307276A1/en
Assigned to TRIPLEPOINT CAPITAL LLC reassignment TRIPLEPOINT CAPITAL LLC SECURITY AGREEMENT Assignors: PATIENTKEEPER, INC.
Assigned to PATIENTKEEPER, INC. reassignment PATIENTKEEPER, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TRIPLEPOINT CAPITAL LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/80Information retrieval; Database structures therefor; File system structures therefor of semi-structured data, e.g. markup language structured data such as SGML, XML or HTML
    • G06F16/84Mapping; Conversion
    • G06F16/86Mapping to a database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/20ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation

Definitions

  • This application relates generally to handheld computer devices and more specifically to a framework for handheld computer devices used in the health care industry.
  • CCOW Clinical Context Object Workgroup
  • the CCOW standard now the ANSI approved Health Level 7 Context Management Standard version 1.4, establishes the basis for ensuring secure and consistent access to patient information from heterogeneous sources through synchronizing and coordinating applications—such as those used for patient registration, order entry and results reporting—so that they instinctively follow a specific context, including the identity of a user, a patient or a specific clinical observation.
  • CCOW-compliant applications coordinate with each other via a behind-the-scenes context manager that enables them to work together in ways that behave like a single system from the health care provider's perspective.
  • a hospital for example, doctors will carry a handheld device with them as they treat patients. As tests are performed, diagnoses made, and treatment administered, a doctor can note all of the activity in the handheld device. After seeing several patients, the doctor then synchronizes the handheld device with a server which is connected to the hospital's main computer network. All patient data collected in the handheld is then uploaded to the hospital's main information system and at the same time, any patient data in the main system which has been updated since the last synchronization can be downloaded to the handheld device.
  • a computer-readable medium stores computer-executable instructions for: (1) controlling the selection of a plurality of application programs to present user interfaces on a display of a handheld computing device storing the application programs, each of the application programs being adapted to process medical data; (2) controlling a patient context of each of the application programs; (3) controlling data sharing between the application programs; and (4) in response to the handheld device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, switching from: (A) a display, on the handheld computing device, of first data for a given patient in the first application program, to (B) a display, on the handheld computing device, of second data for the given patient in the second application program.
  • a handheld computer application comprises: (1) a user interface operable to display a plurality of application programs, wherein the user interface comprises a window for displaying, on a handheld computing device, an active application program selected from the plurality of application programs, an application selector, and a patient selector; (2) a messaging conduit operable to send and receive messages between and among the plurality of application programs; (3) a framework program operable to control a patient context of each of the application programs, such that, in response to the handheld computing device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, the user interface switches from displaying: (A) first data for a given patient in the first application program, to (B) second data for the given patient in the second application program.
  • a user interface for operating health care applications on a handheld computing device comprises: (1) a window displaying a user interface of an active application program; (2) an application selector that is adapted to allow a user to switch between a user interface of a first application program, and a user interface of a second application program; and (3) a patient selector that is adapted to control a patient context of the first and second application programs.
  • the user interface is adapted so that, in response to the handheld device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, the user interface switches from: (A) displaying first data for a given patient in the first application program; to (B) displaying second data for the given patient in the second application program.
  • FIG. 1 shows a handheld device displaying the User Interface.
  • FIG. 2 is an example of metadata.
  • FIG. 3 shows an example of a sequence for sub-launching a second program module.
  • FIG. 4 shows an example of metadata for a server application.
  • FIG. 5 shows a diagrammatic representation of how a program module retrieves data by way of the handheld framework.
  • the present invention is a framework for a handheld device.
  • This handheld framework serves to integrate a plurality of program modules on the handheld device.
  • Each program module administers its own database, but publishes the necessary information needed by the handheld framework to access those portions of the database which it is intended to access. Similarly, program modules can use this information to access data from other program modules' databases.
  • the framework provides a User Interface, an Application Programming Interface, Metadata XML data description, Module Integration (messaging between modules), Centralized Administration and Turnkey Synchronization.
  • the framework is platform-independent and can utilize single-threaded (Palm) or multiple-threaded (Windows CE) operating systems.
  • FIG. 1 shows a handheld device 1 displaying the User Interface 3 .
  • a tab bar 5 At the bottom of the screen is a tab bar 5 .
  • the tab bar contains an icon for each of the available program modules on the handheld device. As program modules are added to the handheld device, their icons are added to the tab bar. The user can select a program module by tapping on the desired module's tab.
  • the program modules can be provided with the handheld framework or developed by third party developers as well.
  • the active program module is displayed in the application space 7 .
  • the newly selected program module is launched in the application space 7 .
  • the application space 7 may also have a scroll bar if one is needed to display information that cannot fit in a single screen.
  • the User Interface also has a drop-down Patient List 9 . This list of patients allows the user to select any of the patients whose data currently resides on the handheld device. Doctors can select which patients they intend to attend to on a given rotation (or it can be done automatically for them) and then download those patients into the handheld device. The doctor then only need select from the Patient List 9 as he moves from one patient to the next.
  • the Patient List is common across all of the program modules and selecting a particular patient in one program module will result in all of the other program modules changing to that patient's context as well. This synchronization of all the program modules to the same patient happens automatically when a doctor selects a patient from the Patient List.
  • a goal of the User Interface 3 is to present all of the available program modules to a user as if they were all one application. Thus, whether a doctor is using program modules provided with the handheld framework or program modules written by a third party, they will all look like a single application.
  • the User Interface is also platform independent, meaning it will appear and function the same on the various handheld device operating systems, such as the Palm OS or Pocket PC/Windows CE platform. This facilitates more efficient programming for third-party developers writing their own custom program modules.
  • the handheld framework provides rules for writing custom program modules such that they will automatically interoperate with the handheld framework and other program modules on the handheld device.
  • the Application Programming Interface is a set of functions for use by any developer wishing to create an application to run with the handheld framework. These functions remove much of the overhead work otherwise borne by software developers. With work already done for such difficult matters as memory and database management, the technical knowledge needed by the developer is reduced, whether it is a third-party developer or an employee of the provider of the handheld framework. Furthermore, a program module written according to the API will have operational consistency, exchangeability of data with other program modules also running on the handheld framework, and context management.
  • the API has libraries of functions available to a programmer as well as the necessary documentation describing the way data is stored in a handheld device running the handheld framework.
  • the API includes a methodology for describing data.
  • the method sets forth how data is described in the databases residing on the handheld device as well as on a server.
  • the preferred method for describing data is using industry-standard extensible markup language, or XML.
  • XML is used to put the data in an efficient format. This assists programmers in specifying how data is shared between program modules on the handheld device as well as how data is transferred between the handheld device and the server during synchronization operations.
  • the use of XML also reduces the actual amount of data which needs to be transferred.
  • An application programmer uses the XML standards of the handheld framework when developing their own proprietary program modules. The programmer selects which data entities a program module will use and then creates the program module using the necessary XML descriptions of the data. The handheld framework will then be able to fully communicate with the databases which accompany the program module and any transfer of data to or from the program module to the handheld framework, server, or other program module will be transparent to the user.
  • the handheld framework provides the rules necessary for describing data. Since it is preferred that each program module owns its own databases, how the data is described in those databases must be shared with the handheld framework and other program modules with which data is to be shared. This is accomplished with a metadata description of all the data needed by a program module on the handheld device. In the preferred embodiment, the metadata is described in XML.
  • a developer writing a program module to work with the handheld framework must create a Data Store according to the rules provided with the handheld framework.
  • the Data Store is separate from the main software code and describes the tables of data that the program module may use as well as the XML metadata describing how the data is stored. By allowing the handheld framework to see the metadata, the handheld framework, server or other program modules will know how to interact with the program module and exchange data with it.
  • the Data Store metadata is used in the same way on any platform.
  • the metadata 20 may have a value 21 , a definition of an integer field 23 and a definition of a character field 25 .
  • the metadata is defining the fields “pID” and “foo” for a particular record. If the code for a particular program module asks for “foo,” the handheld framework looks to the metadata to see how to obtain “foo.” The metadata instructs the handheld framework as to where “foo” can be located. The handheld framework then retrieves the data and returns it to the program module requesting it. This method is used for communication between the handheld framework and program modules, between one program module and another, and between the handheld device and a server.
  • the handheld framework also provides for methods of packaging, sending, receiving and unpacking data. The use of the metadata in packaging data allows for efficient compression and transmission of the data.
  • Module integration allows any program module to access any open feature in any other program module on the handheld device.
  • a module that knows about a drug reference can provide a service to other modules that need to know about drugs, i.e. a prescription module wants to know about hazardous drug-drug interactions.
  • Any program module can publish any features or functionality that it wants to provide as a service to other modules.
  • a Diagnosis module may wish to run inside a Charge/Billing module since billing charges must be associated with a diagnosis.
  • messages are sent between program modules to request data, services or alter context.
  • FIG. 5 shows a diagram representation 80 of how the software code 82 of a particular program module interacts with the handheld framework 102 to retrieve data from a database 90 .
  • the diagram 80 is composed of the main program code 82 , handheld framework 102 , and a data store 86 , which is comprised of the metadata table description and data 88 .
  • the data store may also comprise a schema describing how all of the codes and tables fit together.
  • the diagram 80 shows the process by which a data object is retrieved at the request of the software code 82 .
  • the code 82 When the code 82 requires data from a particular database, it sends a request 92 to get data to the handheld framework 102 .
  • a portion of the framework's code is statically linked into the software code to enable it to communicate with the handheld framework 102 .
  • the handheld framework 102 checks at 94 with the metadata tables 88 how the data is stored.
  • the metadata tables 88 inform the handheld framework 102 how the data is stored by revealing the metadata information as shown in FIG. 2 .
  • the handheld framework 102 retrieves the data at 98 from the database 90 .
  • the handheld framework 102 returns the data at 100 to the program module's main code 82 .
  • Handheld devices currently come with either single- or multiple-threaded operating systems. This refers to the number of applications that can run on the handheld device at a given time.
  • the Pocket PC/Windows CE platform is an example of a multiple-threaded operating system.
  • the Palm OS platform is currently single-threaded, but will likely move to multiple-threaded in the near future.
  • Multiple-threaded environments provide the advantage of being able to execute certain functions in multiple program modules at the same time. For example, a message regarding laboratory test results can be sent to both a Diagnosis module and a Billing module at the same time.
  • the handheld framework provides for the closing of the first and opening of the second program modules such that the transition is transparent to the user.
  • the handheld framework provides a solution to this problem by executing a message transfer sequence whereby messages between program modules travel through the handheld framework, thus simulating a multiple-threaded environment on a single-threaded handheld device.
  • FIG. 3 shows an example of a sequence for handling messaging (on Palm OS devices, this is accomplished via a sub-launch mechanism). Dotted lines are shown where the program module or handheld framework is not active in a single-threaded environment, but are active in a multiple-threaded environment.
  • Program Module 1 (PM 1 ) 33 requires the help of Program Module 2 (PM 2 ) 37 to process some data in a way that only PM 2 can do.
  • PM 1 first determines at 39 that it must send a message to PM 2 37 .
  • PM 1 then prepares at 41 the data for PM 2 and sends it at 42 to the Handheld Framework 35 .
  • the Handheld Framework then packages the data at 43 for PM 2 using the published metadata of PM 2 to know how PM 2 expects to receive data.
  • the Handheld Framework 35 finds PM 2 at 45 and activates it at 47 .
  • the first action PM 2 takes is to inquire at 49 whether or not there are any messages waiting for it on the Handheld Framework 35 .
  • the Handheld Framework 35 then sends the data at 52 and message at 51 from PM 1 to PM 2 .
  • PM 2 then processes the data at 53 and returns it at 55 to the Handheld Framework 35 .
  • the Handheld Framework 35 then packages the data at 57 for PM 1 and returns it to PM 1 at 59 .
  • PM 1 is able to have data processed by the code of PM 2 and returned to it in the format designated by its metadata. This process works mostly the same way for a multiple-threaded environment.
  • the main difference would be that the step 45 of finding PM 2 could involve searching for an open application.
  • Communication between the program modules on the handheld device and the server works very similarly to communication between program modules and other program modules.
  • the server publishes metadata teaching the types of fields available on the server and the handheld framework provides for a proper mapping of those fields to the corresponding fields in the program modules on the handheld device.
  • FIG. 4 shows an example of metadata for a server application.
  • This metadata 70 is similar to that of the metadata 20 in FIG. 2 .
  • fname a field in the handheld framework
  • sname a corresponding “sname” 73 referring to the equivalent field on the server.
  • the handheld framework would refer to this field as “foo”
  • the server would refer to it as “foobar.”
  • Synchronization with the server also allows for centralized administration of a plurality of handheld devices at the server end. Management of all levels of the handheld devices is possible. For example, individual program modules can be automatically updated, new program modules can be added, and old program modules can be deleted. The handheld framework itself could also be updated using this process.

Abstract

A framework for a handheld computing device comprising a user interface that: (1) controls the display, selection and launching of program modules; (2) controls patient context within the program modules; and (3) provides for messaging and sharing of databases between and among program modules. In various embodiments, databases are shared between the program modules by the publishing of XML and metadata identifying the structure of the databases.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/335,545, entitled “Context Managing Mobile Computing Framework For Enterprise Application,” filed Dec. 31, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 10/238,841, filed Sep. 9, 2002, which is a continuation of U.S. patent application Ser. No. 10/118,592, filed Apr. 8, 2002, which claims the benefit of U.S. Provisional Application No. 60/282,249, filed Apr. 6, 2001, and U.S. Provisional Application No. 60/282,131, filed Apr. 6, 2001. The above applications are hereby incorporated herein by reference in their entirety.
  • BACKGROUND
  • This application relates generally to handheld computer devices and more specifically to a framework for handheld computer devices used in the health care industry.
  • In the health care industry, health care providers have become increasingly dependent on the use of computer systems and software to keep track of all aspects of patient data, including clinical, administrative and billing information. In the mid-1990's, CCOW (Clinical Context Object Workgroup) was developed to help aid health care providers manage patient data. The CCOW standard, now the ANSI approved Health Level 7 Context Management Standard version 1.4, establishes the basis for ensuring secure and consistent access to patient information from heterogeneous sources through synchronizing and coordinating applications—such as those used for patient registration, order entry and results reporting—so that they instinctively follow a specific context, including the identity of a user, a patient or a specific clinical observation. CCOW-compliant applications coordinate with each other via a behind-the-scenes context manager that enables them to work together in ways that behave like a single system from the health care provider's perspective.
  • In more recent years, health care providers have begun to use handheld computing devices and software, such as that offered by PatientKeeper, Inc., to keep track of patient data. The PatientKeeper systems are described in U.S. patent application Ser. No. 09/356,543, titled “Device for Automating Billing Reimbursement,” by inventors Matthew D. Barnhart, Stephen S. Hau, Yuri Ostrovsky and MinPont Chien, filed on Jul. 19, 1999 and U.S. patent application Ser. No. 09/356,751, titled “System for Automating Billing Reimbursement,” by inventors Matthew D. Barnhart, Stephen S. Hau, Patrick McCormick, George A. Madrid, Craig A. Fields and Sanjay S. Vakil, filed on Jul. 19, 1999, the teachings of which are incorporated herein by reference.
  • In a typical health care environment, a hospital, for example, doctors will carry a handheld device with them as they treat patients. As tests are performed, diagnoses made, and treatment administered, a doctor can note all of the activity in the handheld device. After seeing several patients, the doctor then synchronizes the handheld device with a server which is connected to the hospital's main computer network. All patient data collected in the handheld is then uploaded to the hospital's main information system and at the same time, any patient data in the main system which has been updated since the last synchronization can be downloaded to the handheld device.
  • SUMMARY
  • A computer-readable medium, according to various embodiments, stores computer-executable instructions for: (1) controlling the selection of a plurality of application programs to present user interfaces on a display of a handheld computing device storing the application programs, each of the application programs being adapted to process medical data; (2) controlling a patient context of each of the application programs; (3) controlling data sharing between the application programs; and (4) in response to the handheld device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, switching from: (A) a display, on the handheld computing device, of first data for a given patient in the first application program, to (B) a display, on the handheld computing device, of second data for the given patient in the second application program.
  • A handheld computer application, according to particular embodiments, comprises: (1) a user interface operable to display a plurality of application programs, wherein the user interface comprises a window for displaying, on a handheld computing device, an active application program selected from the plurality of application programs, an application selector, and a patient selector; (2) a messaging conduit operable to send and receive messages between and among the plurality of application programs; (3) a framework program operable to control a patient context of each of the application programs, such that, in response to the handheld computing device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, the user interface switches from displaying: (A) first data for a given patient in the first application program, to (B) second data for the given patient in the second application program.
  • In various embodiments, a user interface for operating health care applications on a handheld computing device comprises: (1) a window displaying a user interface of an active application program; (2) an application selector that is adapted to allow a user to switch between a user interface of a first application program, and a user interface of a second application program; and (3) a patient selector that is adapted to control a patient context of the first and second application programs. In particular embodiments, the user interface is adapted so that, in response to the handheld device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, the user interface switches from: (A) displaying first data for a given patient in the first application program; to (B) displaying second data for the given patient in the second application program.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • FIG. 1 shows a handheld device displaying the User Interface.
  • FIG. 2 is an example of metadata.
  • FIG. 3 shows an example of a sequence for sub-launching a second program module.
  • FIG. 4 shows an example of metadata for a server application.
  • FIG. 5 shows a diagrammatic representation of how a program module retrieves data by way of the handheld framework.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A description of various embodiments follows. While the following description mainly pertains to use of the present invention in the health care industry, much of the methods and software described herein are broad enough for general application to a variety of fields.
  • The present invention is a framework for a handheld device. This handheld framework serves to integrate a plurality of program modules on the handheld device. Each program module administers its own database, but publishes the necessary information needed by the handheld framework to access those portions of the database which it is intended to access. Similarly, program modules can use this information to access data from other program modules' databases. The framework provides a User Interface, an Application Programming Interface, Metadata XML data description, Module Integration (messaging between modules), Centralized Administration and Turnkey Synchronization. The framework is platform-independent and can utilize single-threaded (Palm) or multiple-threaded (Windows CE) operating systems.
  • User Interface
  • The first feature of the handheld framework that a user will notice is the User Interface. FIG. 1 shows a handheld device 1 displaying the User Interface 3. At the bottom of the screen is a tab bar 5. The tab bar contains an icon for each of the available program modules on the handheld device. As program modules are added to the handheld device, their icons are added to the tab bar. The user can select a program module by tapping on the desired module's tab. The program modules can be provided with the handheld framework or developed by third party developers as well.
  • In the middle of the screen is the main application space 7. The active program module is displayed in the application space 7. When a user selects a different program module by tapping on its tab, the newly selected program module is launched in the application space 7. The application space 7 may also have a scroll bar if one is needed to display information that cannot fit in a single screen. The User Interface also has a drop-down Patient List 9. This list of patients allows the user to select any of the patients whose data currently resides on the handheld device. Doctors can select which patients they intend to attend to on a given rotation (or it can be done automatically for them) and then download those patients into the handheld device. The doctor then only need select from the Patient List 9 as he moves from one patient to the next. The Patient List is common across all of the program modules and selecting a particular patient in one program module will result in all of the other program modules changing to that patient's context as well. This synchronization of all the program modules to the same patient happens automatically when a doctor selects a patient from the Patient List.
  • A goal of the User Interface 3 is to present all of the available program modules to a user as if they were all one application. Thus, whether a doctor is using program modules provided with the handheld framework or program modules written by a third party, they will all look like a single application. The User Interface is also platform independent, meaning it will appear and function the same on the various handheld device operating systems, such as the Palm OS or Pocket PC/Windows CE platform. This facilitates more efficient programming for third-party developers writing their own custom program modules. The handheld framework provides rules for writing custom program modules such that they will automatically interoperate with the handheld framework and other program modules on the handheld device.
  • Application Programming Interface
  • The Application Programming Interface (API) is a set of functions for use by any developer wishing to create an application to run with the handheld framework. These functions remove much of the overhead work otherwise borne by software developers. With work already done for such difficult matters as memory and database management, the technical knowledge needed by the developer is reduced, whether it is a third-party developer or an employee of the provider of the handheld framework. Furthermore, a program module written according to the API will have operational consistency, exchangeability of data with other program modules also running on the handheld framework, and context management. The API has libraries of functions available to a programmer as well as the necessary documentation describing the way data is stored in a handheld device running the handheld framework.
  • Included in the API is a methodology for describing data. The method sets forth how data is described in the databases residing on the handheld device as well as on a server. The preferred method for describing data is using industry-standard extensible markup language, or XML. XML is used to put the data in an efficient format. This assists programmers in specifying how data is shared between program modules on the handheld device as well as how data is transferred between the handheld device and the server during synchronization operations. The use of XML also reduces the actual amount of data which needs to be transferred.
  • An application programmer uses the XML standards of the handheld framework when developing their own proprietary program modules. The programmer selects which data entities a program module will use and then creates the program module using the necessary XML descriptions of the data. The handheld framework will then be able to fully communicate with the databases which accompany the program module and any transfer of data to or from the program module to the handheld framework, server, or other program module will be transparent to the user.
  • Rules for Describing Data
  • The handheld framework provides the rules necessary for describing data. Since it is preferred that each program module owns its own databases, how the data is described in those databases must be shared with the handheld framework and other program modules with which data is to be shared. This is accomplished with a metadata description of all the data needed by a program module on the handheld device. In the preferred embodiment, the metadata is described in XML.
  • A developer writing a program module to work with the handheld framework must create a Data Store according to the rules provided with the handheld framework. The Data Store is separate from the main software code and describes the tables of data that the program module may use as well as the XML metadata describing how the data is stored. By allowing the handheld framework to see the metadata, the handheld framework, server or other program modules will know how to interact with the program module and exchange data with it. The Data Store metadata is used in the same way on any platform.
  • An example of metadata is shown in FIG. 2. The metadata 20 may have a value 21, a definition of an integer field 23 and a definition of a character field 25. In this example, the metadata is defining the fields “pID” and “foo” for a particular record. If the code for a particular program module asks for “foo,” the handheld framework looks to the metadata to see how to obtain “foo.” The metadata instructs the handheld framework as to where “foo” can be located. The handheld framework then retrieves the data and returns it to the program module requesting it. This method is used for communication between the handheld framework and program modules, between one program module and another, and between the handheld device and a server. The handheld framework also provides for methods of packaging, sending, receiving and unpacking data. The use of the metadata in packaging data allows for efficient compression and transmission of the data.
  • Module Integration in Single- or Multiple-Threaded Operating Systems
  • Module integration allows any program module to access any open feature in any other program module on the handheld device. For example, a module that knows about a drug reference can provide a service to other modules that need to know about drugs, i.e. a prescription module wants to know about hazardous drug-drug interactions. Any program module can publish any features or functionality that it wants to provide as a service to other modules. For example, a Diagnosis module may wish to run inside a Charge/Billing module since billing charges must be associated with a diagnosis. In general, messages are sent between program modules to request data, services or alter context.
  • FIG. 5 shows a diagram representation 80 of how the software code 82 of a particular program module interacts with the handheld framework 102 to retrieve data from a database 90. The diagram 80 is composed of the main program code 82, handheld framework 102, and a data store 86, which is comprised of the metadata table description and data 88. The data store may also comprise a schema describing how all of the codes and tables fit together. The diagram 80 shows the process by which a data object is retrieved at the request of the software code 82.
  • When the code 82 requires data from a particular database, it sends a request 92 to get data to the handheld framework 102. In a single-threaded OS, a portion of the framework's code is statically linked into the software code to enable it to communicate with the handheld framework 102. The handheld framework 102 then checks at 94 with the metadata tables 88 how the data is stored. At 96, the metadata tables 88 inform the handheld framework 102 how the data is stored by revealing the metadata information as shown in FIG. 2. The handheld framework 102 then retrieves the data at 98 from the database 90. Finally, the handheld framework 102 returns the data at 100 to the program module's main code 82.
  • Handheld devices currently come with either single- or multiple-threaded operating systems. This refers to the number of applications that can run on the handheld device at a given time. The Pocket PC/Windows CE platform is an example of a multiple-threaded operating system. The Palm OS platform is currently single-threaded, but will likely move to multiple-threaded in the near future. Multiple-threaded environments provide the advantage of being able to execute certain functions in multiple program modules at the same time. For example, a message regarding laboratory test results can be sent to both a Diagnosis module and a Billing module at the same time.
  • When one program module is active and displayed in the application space and the user then selects another program module via the tab bar, the newly selected program module is then displayed in the application space. In a multiple-threaded environment, the first program module can actually remain open while the second program module is being used. However, in a single-threaded environment, the first application is closed and then the second application opened. Nevertheless, the handheld framework provides for the closing of the first and opening of the second program modules such that the transition is transparent to the user. Thus, one can see that it is easier for program modules to communicate with each other in a multiple-threaded environment where they can both run simultaneously, than in a single-threaded environment where only one program module is active at a given time. The handheld framework provides a solution to this problem by executing a message transfer sequence whereby messages between program modules travel through the handheld framework, thus simulating a multiple-threaded environment on a single-threaded handheld device.
  • FIG. 3 shows an example of a sequence for handling messaging (on Palm OS devices, this is accomplished via a sub-launch mechanism). Dotted lines are shown where the program module or handheld framework is not active in a single-threaded environment, but are active in a multiple-threaded environment. In this example, Program Module 1 (PM1) 33 requires the help of Program Module 2 (PM2) 37 to process some data in a way that only PM2 can do. Thus, PM1 first determines at 39 that it must send a message to PM2 37. PM1 then prepares at 41 the data for PM2 and sends it at 42 to the Handheld Framework 35. The Handheld Framework then packages the data at 43 for PM2 using the published metadata of PM2 to know how PM2 expects to receive data. The Handheld Framework 35 then finds PM2 at 45 and activates it at 47. The first action PM2 takes is to inquire at 49 whether or not there are any messages waiting for it on the Handheld Framework 35. The Handheld Framework 35 then sends the data at 52 and message at 51 from PM1 to PM2. PM2 then processes the data at 53 and returns it at 55 to the Handheld Framework 35. The Handheld Framework 35 then packages the data at 57 for PM1 and returns it to PM1 at 59. The result is that PM1 is able to have data processed by the code of PM2 and returned to it in the format designated by its metadata. This process works mostly the same way for a multiple-threaded environment. The main difference would be that the step 45 of finding PM2 could involve searching for an open application.
  • Turnkey Synchronization
  • Communication between the program modules on the handheld device and the server works very similarly to communication between program modules and other program modules. Essentially, the server publishes metadata teaching the types of fields available on the server and the handheld framework provides for a proper mapping of those fields to the corresponding fields in the program modules on the handheld device.
  • FIG. 4 shows an example of metadata for a server application. This metadata 70 is similar to that of the metadata 20 in FIG. 2. However, in addition to the definition of an “fname” 71 for a field in the handheld framework, there is a corresponding “sname” 73 referring to the equivalent field on the server. Thus, in this example, whereas the handheld framework would refer to this field as “foo,” the server would refer to it as “foobar.”
  • This effective mapping of fields on the handheld framework to the fields on the server allows for efficient packaging of data and requests for data. As a result, all data requests and fulfillments of those requests can occur rapidly in a single transaction between the handheld device and the server. This is referred to as Turnkey Synchronization.
  • Centralized Administration
  • Synchronization with the server also allows for centralized administration of a plurality of handheld devices at the server end. Management of all levels of the handheld devices is possible. For example, individual program modules can be automatically updated, new program modules can be added, and old program modules can be deleted. The handheld framework itself could also be updated using this process.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims (16)

1. A computer-readable medium storing computer-executable instructions for:
controlling the selection of a plurality of application programs to present user interfaces on a display of a handheld computing device storing the application programs, each of the application programs being adapted to process medical data;
controlling a patient context of each of the application programs;
controlling data sharing between the application programs; and
in response to the handheld device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, switching from:
(A) a display, on the handheld computing device, of first data for a given patient in the first application program; to
(B) a display, on the handheld computing device, of second data for the given patient in the second application program.
2. The computer-readable medium of claim 1, wherein each particular one of the application programs comprises a metadata description of how data is stored for the particular application program.
3. The computer-readable medium of claim 1, wherein the computer-readable medium further stores computer-executable instructions for controlling the synchronization of data between the handheld computing device and a server.
4. The computer-readable medium of claim 3, wherein:
the computer-executable instructions comprise a framework program; and
the synchronization is effected in a single transaction in which the framework program communicates to the server the type of data the framework program requires and the server supplies the requested data.
5. The computer-readable medium of claim 4, wherein the computer-executable instructions comprise a messaging conduit for accepting messages from the application program and for delivering messages to the application programs.
6. The computer-readable medium of claim 1, wherein the computer-readable medium further stores computer-executable instructions for allowing a user to select between the first and second application programs.
7. The computer-readable medium of claim 1, wherein the computer-readable medium further stores computer-executable instructions for:
allowing a user to select between a plurality of different patients; and
in response to a user switching from a first particular patient to a second particular patient while the handheld device is displaying the first application program, switching from:
(A) a display, on the handheld device, of data for the first patient in the first application program; to
(B) a display, on the handheld device, of data for the second patient in the first application program.
8. A handheld computer application comprising:
a user interface operable to display a plurality of application programs, wherein the user interface comprises a window for displaying, on a handheld computing device, an active application program selected from the plurality of application programs, an application selector, and a patient selector;
a messaging conduit operable to send and receive messages between and among the plurality of application programs;
a framework program operable to control a patient context of each of the application programs, such that, in response to the handheld computing device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, the user interface switches from displaying:
(A) first data for a given patient in the first application program, to
(B) second data for the given patient in the second application program.
9. The handheld computer application of claim 8, wherein the handheld computer application comprises one or more tabs operable to allow a user to switch from displaying a first of the plurality of application programs to displaying a second of the application programs.
10. The handheld computer application of claim 8, wherein the framework program is further operable to retrieve the second data for the given patient via the messaging conduit.
11. The handheld computer application of claim 8, wherein one or more of the plurality of application programs comprises a library of databases and a metadata description of how data is stored in the library.
12. The handheld computer application of claim 8, wherein the framework program is further operable to control a synchronization of data between the handheld computing device and a server.
13. The handheld computer application of claim 12, wherein the framework program is further operable to control the synchronization of data in a single transaction by communicating to the server a requested data format and by receiving the data from the server in the requested data format.
14. The handheld computer application of claim 8, wherein the messages comprise one or more of the data for the given patient, clinical data, billing information, and medical notes.
15. A user interface for operating health care applications on a handheld computing device, the user interface comprising:
a window displaying a user interface of an active application program;
an application selector that is adapted to allow a user to switch between a first application program, and a second application program; and
a patient selector that is adapted to control a patient context of the first and second application programs,
wherein said user interface is adapted so that, in response to the handheld device switching from displaying a first of the plurality of application programs to displaying a second of the application programs, said user interface switches from:
(A) displaying first data for a given patient in the first application program; to
(B) displaying second data for the given patient in the second application program.
16. The user interface of claim 15, wherein the user interface is adapted for:
allowing a user to select between a plurality of different patients; and
in response to a user switching from a first particular patient to a second particular patient while the user interface is displaying the first application program, switching from:
(A) a display of data for the first patient in the first application program; to
(B) a display of data for the second patient in the first application program.
US13/216,279 2001-04-06 2011-08-24 Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications Abandoned US20110307276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/216,279 US20110307276A1 (en) 2001-04-06 2011-08-24 Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US28224901P 2001-04-06 2001-04-06
US28213101P 2001-04-06 2001-04-06
US11859202A 2002-04-08 2002-04-08
US23884102A 2002-09-09 2002-09-09
US10/335,545 US8027848B2 (en) 2001-04-06 2002-12-31 Context managing mobile computing framework for enterprise application
US13/216,279 US20110307276A1 (en) 2001-04-06 2011-08-24 Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/335,545 Continuation US8027848B2 (en) 2001-04-06 2002-12-31 Context managing mobile computing framework for enterprise application

Publications (1)

Publication Number Publication Date
US20110307276A1 true US20110307276A1 (en) 2011-12-15

Family

ID=46281793

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/335,545 Active 2027-12-03 US8027848B2 (en) 2001-04-06 2002-12-31 Context managing mobile computing framework for enterprise application
US13/216,279 Abandoned US20110307276A1 (en) 2001-04-06 2011-08-24 Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/335,545 Active 2027-12-03 US8027848B2 (en) 2001-04-06 2002-12-31 Context managing mobile computing framework for enterprise application

Country Status (1)

Country Link
US (2) US8027848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140289872A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Data sharing control method and data sharing control terminal

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7831449B2 (en) * 2001-02-02 2010-11-09 Thompson Reuters (Healthcare) Inc. Method and system for extracting medical information for presentation to medical providers on mobile terminals
US7523505B2 (en) * 2002-08-16 2009-04-21 Hx Technologies, Inc. Methods and systems for managing distributed digital medical data
US20050034124A1 (en) * 2003-03-27 2005-02-10 House Eric Edward Mechanism for simultaneously operating multiple applications on a personal digital assistant implementing a palm operating system
CA2429762A1 (en) * 2003-05-23 2004-11-23 Ibm Canada Limited - Ibm Canada Limitee Business to business event communications
US7216133B2 (en) 2003-07-29 2007-05-08 Microsoft Corporation Synchronizing logical views independent of physical storage representations
US7685134B2 (en) * 2003-12-31 2010-03-23 Nokia Corporation Media file sharing, correlation of metadata related to shared media files and assembling shared media file collections
WO2005077096A2 (en) * 2004-02-09 2005-08-25 Intuitive Control System, Llc Foldable electronic display
US20050233295A1 (en) * 2004-04-20 2005-10-20 Zeech, Incorporated Performance assessment system
US20050268213A1 (en) 2004-05-06 2005-12-01 Peiya Liu System and method for automating job management in mobile data collection
US20060031184A1 (en) * 2004-08-04 2006-02-09 Periyaswamy Senthil K Service request module
US20060136473A1 (en) * 2004-12-20 2006-06-22 Lamb James A Service data organization
CA2578390A1 (en) 2007-01-12 2008-07-12 Truecontext Corporation Method and system for managing mobile applications
US20090217340A1 (en) * 2008-02-21 2009-08-27 General Electric Company Methods and systems for clinical context management via context injection into components and data
US20090327292A1 (en) * 2008-06-27 2009-12-31 Motorola, Inc. Ensuring consistency among shared copies of a data element
US9275365B2 (en) * 2011-12-14 2016-03-01 Sap Se Integrated productivity services
US9619496B2 (en) * 2011-12-16 2017-04-11 Siemens Aktiengesellschaft Method, computer readable medium and system for using large data sets in virtual applications
US9569105B2 (en) * 2014-06-18 2017-02-14 Mediatek Inc. Method for managing virtual control interface of an electronic device, and associated apparatus and associated computer program product

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335664A (en) * 1991-09-17 1994-08-09 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
US5359509A (en) * 1991-10-31 1994-10-25 United Healthcare Corporation Health care payment adjudication and review system
GB9123638D0 (en) * 1991-11-07 1992-01-02 Magill Alan R Apparel & fabric & devices suitable for health monitoring applications
US5392390A (en) * 1992-04-10 1995-02-21 Intellilink Corp. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5394879A (en) * 1993-03-19 1995-03-07 Gorman; Peter G. Biomedical response monitor-exercise equipment and technique using error correction
US5429119A (en) * 1993-09-03 1995-07-04 Welch Allyn, Inc. Hand-held compact diagnostic device
US5550734A (en) * 1993-12-23 1996-08-27 The Pharmacy Fund, Inc. Computerized healthcare accounts receivable purchasing collections securitization and management system
US5832447A (en) * 1994-05-24 1998-11-03 Envoy Corporation Automated system and method for providing real-time verification of health insurance eligibility
US5557514A (en) * 1994-06-23 1996-09-17 Medicode, Inc. Method and system for generating statistically-based medical provider utilization profiles
US5781442A (en) * 1995-05-15 1998-07-14 Alaris Medical Systems, Inc. System and method for collecting data and managing patient care
US5664109A (en) * 1995-06-07 1997-09-02 E-Systems, Inc. Method for extracting pre-defined data items from medical service records generated by health care providers
US5835897C1 (en) * 1995-06-22 2002-02-19 Symmetry Health Data Systems Computer-implemented method for profiling medical claims
US5884323A (en) * 1995-10-13 1999-03-16 3Com Corporation Extendible method and apparatus for synchronizing files on two different computer systems
US5819228A (en) * 1995-10-31 1998-10-06 Utilimed, Inc. Health care payment system utilizing an intensity adjustment factor applied to provider episodes of care
US5748365A (en) * 1996-03-26 1998-05-05 Hughes Electronics Catadioptric one-to-one telecentric image combining system
US5857201A (en) * 1996-06-18 1999-01-05 Wright Strategies, Inc. Enterprise connectivity to handheld devices
US6057758A (en) * 1998-05-20 2000-05-02 Hewlett-Packard Company Handheld clinical terminal
US6167412A (en) * 1998-07-14 2000-12-26 Agilent Technologies, Inc. Handheld medical calculator and medical reference device
US7110955B1 (en) * 1998-07-20 2006-09-19 Patientkeeper, Inc. Device for automating billing reimbursement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140289872A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Data sharing control method and data sharing control terminal
US9454674B2 (en) * 2013-03-25 2016-09-27 Samsung Electronics Co., Ltd. Data sharing control method and data sharing control terminal

Also Published As

Publication number Publication date
US20030158753A1 (en) 2003-08-21
US8027848B2 (en) 2011-09-27

Similar Documents

Publication Publication Date Title
US20110307276A1 (en) Context Management Systems and Methods in a Mobile Computing Framework For Enterprise Applications
RU2536379C2 (en) Method and system for providing remote access to state of application programme
US5850221A (en) Apparatus and method for a graphic user interface in a medical protocol system
US7437302B2 (en) System for managing healthcare related information supporting operation of a healthcare enterprise
US8984017B2 (en) Method for generating and using a portable patient file
US6519601B1 (en) Relational database compiled/stored on a memory structure providing improved access through use of redundant representation of data
CA2329598C (en) Method and apparatus for the management of data files
US10540731B2 (en) Pre-fetching patient data for virtual worklists
US10181011B2 (en) Healthcare information system with clinical information exchange
US6751651B2 (en) Web-site consistency administration among inconsistent software-object libraries of remote distributed health-care providers
EP1304645A2 (en) A system for providing healthcare related information
JP2005518577A (en) Healthcare-related event information processing system used for task execution scheduling
US20130173600A1 (en) Formlets as an enabler of the clinical user experience
Van de Velde Framework for a clinical information system
AU9432401A (en) Method and system of managing the information for a hospital
EP0898753B1 (en) Relational database compiled/stored on a memory structure
Patil et al. An architecture for a health care provider's workstation
Greenes et al. Constructing workstation applications: Component integration strategies for a changing health-care system
Berbecaru et al. Secure Digital Administration in Medical Environment
Wilton et al. An Outpadent Clinic Information System Based on Distributed Database Technology
Riva et al. A knowledge-based Web server as a development environment for Web-based knowledge servers
Katehakis et al. An architecture for integrated regional health telematics networks
KR20040107896A (en) Method For Management Of Medical Information For Nurse In On-line
KR20220100753A (en) Cloud emr-based medical information exchange system and the method of thereof
Murthy et al. Multimedia Computing Environment for Telemedical Applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: PATIENTKEEPER, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERNSTON, GLENN M.;VAKIL, SANJAY S.;SHAH, MAULIN P.;AND OTHERS;SIGNING DATES FROM 20030328 TO 20030519;REEL/FRAME:026796/0449

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: TRIPLEPOINT CAPITAL LLC, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:PATIENTKEEPER, INC.;REEL/FRAME:029414/0259

Effective date: 20121203

AS Assignment

Owner name: PATIENTKEEPER, INC., TENNESSEE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRIPLEPOINT CAPITAL LLC;REEL/FRAME:034151/0083

Effective date: 20141101