Connect public, paid and private patent data with Google Patents Public Datasets

Puncturable catheter

Download PDF

Info

Publication number
US20110276011A1
US20110276011A1 US13186156 US201113186156A US2011276011A1 US 20110276011 A1 US20110276011 A1 US 20110276011A1 US 13186156 US13186156 US 13186156 US 201113186156 A US201113186156 A US 201113186156A US 2011276011 A1 US2011276011 A1 US 2011276011A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
catheter
guidewire
length
shaft
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13186156
Inventor
Joseph R. Armstrong
Edward H. Cully
Keith M. Flur
Michael J. Vonesh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gore W L and Associates Inc
Original Assignee
Armstrong Joseph R
Cully Edward H
Flur Keith M
Vonesh Michael J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0188Introducing, guiding, advancing, emplacing or holding catheters having slitted or breakaway lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1056Balloon catheters with special features or adapted for special applications having guide wire lumens outside the main shaft, i.e. the guide wire lumen is within or on the surface of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1081Balloon catheters with special features or adapted for special applications having sheaths or the like for covering the balloon but not forming a permanent part of the balloon, e.g. retractable, dissolvable or tearable sheaths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • A61M25/0052Localized reinforcement, e.g. where only a specific part of the catheter is reinforced, for rapid exchange guidewire port

Abstract

A catheter provided with a guidewire catheter lumen having a thin covering that is easily punctured by a guidewire at virtually any desired point along the catheter length. The thin covering may be integral with the catheter shaft, or may be a separate component that covers only the portion of the catheter shaft immediately adjacent the outer portion of the guidewire lumen, or may be a thin tubular construct that surrounds the entire catheter shaft. The covering is preferably relatively translucent, allowing for good visualization of the location of the end of the guidewire to enable puncturing of the covering at the desired location along the length of the catheter shaft. The covering is also preferably tear resistant at puncture sites. The catheter shaft is preferably made of a material having a color that provides good visibility against an operating field, and more preferably is phosphorescent either entirely or in part. Materials suitable for the catheter shaft are polymeric materials well known in the art; the catheter shaft may optionally be provided with metallic stiffening components such as wires or hypotubes along all or part of the catheter length.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a divisional of application Ser. No. 10/402,083, filed Mar. 28, 2003, which is a continuation-in-part of application Ser. No. 10/346,977, filed Jan. 17, 2003 (abandoned).
  • FIELD OF THE INVENTION Background of the Invention
  • [0002]
    A variety of different therapies can be delivered within the human body by catheter devices. Therapeutic devices such as dilation balloons, stents, and embolic filters, and therapeutic agents such as drugs and radiation sources, may be positioned at or near the distal end of the catheter for delivery to a desired site within the body. The proximal end of the catheter is considered to be the end that remains outside of the body, manipulated by the medical practitioner.
  • [0003]
    To aid in positioning of the distal end of the catheter within the body, typically the distal end of a guidewire is first navigated to the treatment area. After the guidewire has been positioned, the wire can then be used to guide the distal end of the catheter into place. Additionally, a guide catheter may be used to further facilitate the positioning of the guidewire and/or delivery catheter. The interaction between the guidewire and the catheter is critical, as the physician needs to easily track the distal end of the catheter along the path of the guidewire. A number of interaction issues can arise, including but not limited to, having to use more than one person, having to use a long wire, having the advancement of the catheter affect the position of the wire, having the catheter not able to track the wire through tortuous anatomy, having excessive friction between the catheter and the wire, and having a difference between the amount of axial motion applied to the proximal end of the catheter and the amount of axial movement at the distal end of the catheter.
  • [0004]
    In various attempts to address these issues, a number of catheter designs have been introduced that have defined the interaction between the guidewire and the catheter. Two of the primary applications of catheter systems are percutanous transluminal coronary angioplasty (PTCA) and coronary stent delivery. Two main types of catheter designs, over-the-wire (OTW) and rapid-exchange (RX), dominate these applications. Each of these designs has its advantages and disadvantages. OTW catheters track over their entire length on a guidewire, which allows them to follow the wire easily and allows the direct transmission of longitudinal force over the guidewire. Additionally, these catheters allow for guidewires to be exchanged once the catheter has been advanced into position, which may be desirable when different guidewire attributes (e.g., tip curvature or radiopaque markers) are needed. However, these systems require the use of a long guidewire (e.g., 300 cm in length) and cannot be effectively operated by one person.
  • [0005]
    RX catheters typically use shorter guidewires (e.g., 180 cm in length) which allow the catheter to be operated by a single physician. The physician is able to hold the guide catheter and guidewire with one hand while using his other hand to advance or retract the catheter along the guidewire. However, because the entire length of the RX catheter does not slide over the guidewire, the direct transmission of longitudinal force along the path of the guidewire may be compromised, and wire exchange can not be performed once the proximal catheter guidewire port is advanced into the patient.
  • [0006]
    Among various catheter designs intended for stent delivery is a system taught by U.S. Pat. No. 5,534,007 to St. Germain et al. This system includes a tubular exterior sleeve with an adjustable length section that, under axial compression, shortens via corrugations to cause another sleeve at the distal end of the catheter to be withdrawn in a proximal direction, releasing the stent. The overall length of the catheter remains the same during the axial compression of the exterior sleeve, and in particular, the length of the guidewire lumen is not adjustable.
  • [0007]
    U.S. Pat. Nos. 5,334,147 and 5,380,283 to Johnson teach the construction of a balloon catheter having a proximal portion that includes an aperture through the wall of the catheter into the guidewire lumen. The aperture is covered by a frangible wall (e.g., a thin-walled tube sealed to the catheter body in a position to cover the aperture portion). The frangible wall may be punctured by a guidewire, allowing the guidewire to exit the catheter guidewire lumen via the aperture.
  • [0008]
    U.S. Pat. No. 5,472,425 to Teirstein describes a catheter having a guidewire lumen covered by a rupturable membrane that extends along substantially the entire length of the catheter, whereby the membrane may be intentionally punctured at any desired location by the guidewire. The use and general construction of the catheter are related, although no materials or specific constructions for the rupturable membrane are taught.
  • SUMMARY OF THE INVENTION
  • [0009]
    The present invention relates to a catheter provided with a guidewire catheter lumen having a thin covering that is easily punctured by the back end (i.e., the proximal end) of a guidewire at virtually any desired point along the catheter length. The thin covering may be integral with the catheter shaft, or may be a separate component that covers only the portion of the catheter shaft immediately adjacent the outer portion of the guidewire lumen, or may be a thin tubular construct that surrounds the entire catheter shaft. The covering is preferably adequately translucent to allow for good visualization of the location of the back end of the guidewire in order to enable puncturing of the covering at the desired location along the length of the catheter shaft. The catheter shaft is preferably made of a material having a color that provides good visibility against an operating field, and more preferably is luminous or phosphorescent either entirely or in part. Materials suitable for the catheter shaft are polymeric materials well known in the art; the catheter shaft may optionally be provided with metallic stiffening components such as wires, wire braids or hypotubes along all or part of the catheter length.
  • [0010]
    In a preferred embodiment, the thin covering is made from a thin tape of porous expanded polytetrafluoroethylene (ePTFE) helically wrapped about the exterior of a catheter shaft. Most preferably, the wrapping is accomplished in two opposing directions parallel to the length of the catheter shaft, resulting in a bias-ply construction. This thin covering offers good transparency and is easily punctured by the end of a guidewire, and yet is resistant to tearing at the puncture site.
  • [0011]
    Other materials may be used for the puncturable thin covering, including polyethylene terephthalate (PET). These materials may also offer good translucency, but may be less tear resistant than the helically wrapped ePTFE thin coverings.
  • [0012]
    The thin covering (either integral with the catheter shaft or a separate covering) may optionally be provided with a multiplicity of small, pre-formed openings through the thickness of the covering to allow for passage of the back end of a guidewire through any of these openings. The openings would preferably be arranged in a single line extending directly above the guidewire lumen.
  • [0013]
    The thin covering may optionally be in the form of a braid or helically-wound filaments that allow the guidewire to be passed through any of the multiplicity of openings or interstices that exist between adjacent filaments of the braid or winding. The braid or winding may be of either various polymeric or metallic materials. The braid or winding may be exposed around the entire exterior of the catheter shaft or alternatively may be exposed over only the side of the guidewire lumen closest to the exterior of the catheter shaft.
  • [0014]
    For many embodiments, the guidewire lumen is in the form of a slot made into the catheter shaft, with the slot provided with the thin covering. Preferably, the slot extends for most or even all of the length of the catheter shaft. It may optionally extend through a balloon or other device located at the distal end of the catheter. The slot is covered with by a thin tubular covering that coaxially encloses the entire catheter shaft or alternatively a strip of thin tape-like covering material that covers the slot and is adhered to the surface of the catheter shaft immediately adjacent both sides of the slot. A multiplicity of pre-formed openings may be provided through the thin covering as noted above. Also as noted above, the slot covering material may take the form of a braid or winding of filaments. This braid or winding of filaments may optionally be covered with a thin polymeric tube except for the filaments immediately over the top of the slot which preferably remain exposed and allow for passage of the end of a guidewire through any interstice between adjacent filaments.
  • [0015]
    Other embodiments using the catheter shaft may be provided with a puncturable tubular form inserted into the slot. This tubular form may be made with filaments braided into the tubular form, or a tubular form made of helically wound filaments or from a thin polymeric material, with the tube having an inside diameter adequately large to accommodate a guidewire of the desired size. These tubes are fitted and secured into the slot formed into the catheter shaft, with the result that the outer surface of the braided or helically wound tube covers the exposed part of the slot and allows for the back end of a guidewire contained within the tube to be passed through any interstice between adjacent filaments of the braided or helically wound tube. When the tubular form is made from the thin polymeric material, the resulting tube inserted into the catheter shaft slot is puncturable at any desired location by the back end of a guidewire.
  • [0016]
    In addition to being puncturable by the back end of the guidewire, the guidewire catheter lumen may optionally be made to be adjustable in length. The adjustable length catheter guidewire lumen is the conduit, or catheter, or tube, or space that contains the guidewire or provides a space for the passage of a guidewire therethrough. The space may be adjustable in length, as will be further described.
  • [0017]
    By adjustable length is meant that the length of the adjustable length guidewire catheter lumen may be changed by the application of easily applied manual axial force. In its axially extended or fully lengthened state, the adjustable length guidewire catheter lumen is at least 10% longer than when in the axially compressed, fully shortened state. More preferably, the adjustable length guidewire catheter lumen is adjustable by an amount of at least about 20%, or 30%, or 40%, or 50%, or 75%, or 100%, or 200%, or 400%, or 1000%, or 2000%.
  • [0018]
    The adjustable length guidewire catheter lumen is adjustable in length by virtue of being scrunchable. This means that this tubular component is easily shortened in length under axial force, without telescoping as by the successive sliding of overlapped concentric tubular sections. Various means of providing a scrunchable tube for use as the adjustable length guidewire catheter lumen include the provision of corrugations (i.e., wrinkles, or accordion pleats or folds), or by the use of a porous tube that compresses axially by reduction in total void space. These are further described below.
  • [0019]
    Suitable materials for the adjustable length lumen include ePTFE, polyethylene terephthalate (PET), polyamide, or other thermoplastic or thermoset polymers, or other such relatively inelastic materials. Alternatively, an elastomeric material may be used for the adjustable length lumen, which materials elongate by the application of an extending axial force. The term “elastomeric” is intended to describe a condition whereby a polymer displays stretch and recovery properties similar to an elastomer, although not necessarily to the same degree of stretch and/or recovery.
  • [0020]
    The ability of the catheter to be punctured by the back end of a guidewire at any desired location along the length of the puncturable section of the catheter allows the catheter assembly to be used effectively as desired in either OTW or RX mode.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    FIG. 1A shows a longitudinal cross section of a catheter having a puncturable guidewire lumen covering.
  • [0022]
    FIG. 1B shows a longitudinal cross section of the catheter of FIG. 1A in use with the catheter, the guidewire having punctured the puncturable guidewire lumen covering.
  • [0023]
    FIGS. 1C and 1D show transverse cross sections of the catheter of FIG. 1B with the guidewire within and without the puncturable section.
  • [0024]
    FIG. 1E shows a longitudinal cross section of a catheter that is a variation of the design shown in FIGS. 1A and 1B wherein the guidewire operates in a slot provided in the exterior wall of a lumen of the catheter.
  • [0025]
    FIGS. 1F, 1G and 1H show transverse cross sections taken at three different locations along the length of the catheter shown in FIG. 1E.
  • [0026]
    FIG. 2A shows a perspective view of a preferred slotted catheter shaft.
  • [0027]
    FIG. 2B is a perspective view of the preferred slotted catheter shaft of FIG. 2A provided with a helical wrap of a polymeric tape that forms a puncturable thin cover over the slot.
  • [0028]
    FIG. 2C is a perspective view of the preferred slotted catheter shaft of FIG. 2A provided with a puncturable thin cover in the form of a thin tubular sheath.
  • [0029]
    FIG. 2D is a perspective view of the catheter shaft of FIG. 2C wherein the thin tubular sheath is formed by a cigarette wrap.
  • [0030]
    FIG. 2E is a perspective view of the preferred slotted catheter shaft of FIG. 2A provided with a puncturable thin cover in the form of a strip or tape of a polymeric material adhered over the surface of the catheter shaft immediately adjacent to both sides of the slot.
  • [0031]
    FIG. 2F is a perspective view of an alternative embodiment wherein the puncturable guidewire lumen covering is integral with the catheter shaft.
  • [0032]
    FIG. 2G is a perspective view of an alternative embodiment wherein the thin cover over the guidewire lumen is provided with a multiplicity of pre-formed openings which allow passage of the back end of a guidewire through any opening chosen by the user.
  • [0033]
    FIGS. 3A-3C are transverse cross sectional views showing variations of the embodiment described by FIG. 2E
  • [0034]
    FIG. 4A is a perspective view of the preferred slotted catheter shaft of FIG. 2A provided with a puncturable thin cover in the form of a braid.
  • [0035]
    FIG. 4B is a perspective view of the braid-covered catheter shaft of FIG. 3A further provided with a thin exterior tubular sheath over the braid.
  • [0036]
    FIG. 4C is a perspective view of the braid-and-sheath covered catheter shaft of FIG. 3B wherein the portion of the sheath covering the catheter slot has been removed.
  • [0037]
    FIG. 4D is a perspective view of catheter shaft with an alternative braid-covered slot wherein a braided tube is fitted and secured into the slot.
  • [0038]
    FIG. 4E is a variation of FIG. 4A wherein the braided tubular cover is replaced with a helically wound tubular cover.
  • [0039]
    FIG. 4F is a variation of FIG. 4D wherein the braided tube is replaced with a helically wound tube.
  • [0040]
    FIG. 4G is a variation of FIGS. 4D and 4F wherein the tubular cover is made from a thin polymeric material.
  • [0041]
    FIG. 5 shows a longitudinal cross section of a basic embodiment of the catheter of the present invention, without a y-fitting but including a hub on the proximal end of the inflation lumen, a puncturable adjustable length guidewire catheter lumen (shown in its axially compressed or shortened state) located distal to the hub and a tubular slider for controlling the proximal end of the adjustable length lumen.
  • [0042]
    FIG. 6 is a perspective view of a tool useful for bending of the catheter shaft during puncturing of the thin puncturable cover by the back end of a guidewire.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0043]
    FIGS. 1A-1H describe the catheter 10 of the present invention provided with a thin, puncturable cover 102 over the guidewire lumen 18. Typically, catheter 10 may include devices such as a catheter balloon 20 and/or stent 21 at its distal end 17 and a hub 14 at the proximal end 16. As shown by FIGS. 1A-1H, the thin, puncturable cover 102, in this instance a thin-walled a thin tubular sheath 13 (forming guidewire lumen 18) designed to be punctured by the back end of a guidewire 19, may be placed coaxially about the inflation lumen 22. The length of the thin tubular sheath 13 may extend over all or part of the length of catheter shaft.
  • [0044]
    After feeding guidewire 19 through the distal section of the guidewire lumen 18 and into the thin-walled tubular sheath 13, the physician may chose any desired location along the length of thin-walled tubular sheath 13 at which to puncture the thin, puncturable cover 102 with the guidewire 19. In this fashion the physician may select his preferred length of the guidewire lumen 18.
  • [0045]
    FIG. 1A shows a longitudinal cross section of a catheter 10 having a puncturable guidewire lumen covering 102, while FIG. 1B shows a longitudinal cross section of the catheter of FIG. 1A in use with the guidewire 19, the guidewire having punctured the puncturable covering 102. FIGS. 1C and 1D show, respectively, transverse cross sections of the catheter of FIG. 1B with the guidewire 19 within and outside of the puncturable section 102.
  • [0046]
    FIG. 1E shows a longitudinal cross section of a catheter that is a variation of the design shown in FIGS. 1A and 1B wherein the guidewire operates in a slot 104 provided in the exterior wall of a lumen of the catheter. It is apparent that the thin, puncturable cover 102 may be provided only over this slot portion and is not required to enclose the entire circumference of the inner catheter. FIGS. 1F, 1G and 1H show transverse cross sections taken at three different locations along the length of the catheter shown in FIG. 1E.
  • [0047]
    The puncturable guidewire lumen may be made in a variety of ways.
  • [0048]
    In a preferred embodiment, catheter 10 including inflation lumen 22 and guidewire lumen 18 is made using a catheter shaft 15 as shown in the perspective view of FIG. 2A wherein guidewire lumen 18 is in the form of a slot 104. The catheter shaft 15 may be made in this form by extrusion (using any known polymeric material suitable for the application), or may alternatively be extruded with fully enclosed lumens and then have the extruded material covering the guidewire lumen skived away. Preferred materials will be of a color offering good contrast with the operational field, and most preferably are fluorescent or phosphorescent.
  • [0049]
    Optionally, such a catheter shaft may be stiffened along all or part of its length as necessary by the inclusion of stiffening wires running parallel to the longitudinal axis of the catheter, or by adding a tubular metal reinforcing braid to the catheter shaft, or by inserting a length of metal hypotube, tubular braid or helically wound wire into the inflation lumen 22. These stiffening methods may be used in combination if desired. For simplicity, these well-known stiffening methods are not shown in the figures.
  • [0050]
    If it is desired to use a hypotube to stiffen only a portion of the length of the catheter shaft, it may be desirable to cut a helically-oriented slot through the wall of the end of the hypo tube that will be located within the length of the catheter shaft to reduce the abrupt stiffness transition of the stiffened section to the unstiffened section.
  • [0051]
    As shown by the perspective view of FIG. 2B, the slotted catheter shaft 15 is provided with a helically-wrapped covering of tape 24. Preferably, the wrapping is applied in two layers wherein adjacent wrappings have overlapping edges and the second layer is applied over the first with an opposite pitch, meaning that the two wrappings are applied beginning from opposite ends of the catheter shaft 15. The use of the two layers of tape 24 wrapped from opposing directions results in a strong covering that is resistant to tearing following puncture by the guidewire back end.
  • [0052]
    While a variety of thin, flexible polymer materials such as polyethylene, polypropylene, polyamide, polyethylene terephthalate, etc. may be used for the tape 24. Porous polymers, optionally provided with a thin, non-porous coating, may be advantageously used because of their excellent flexibility. Tape 24 is most preferably made from a thin porous expanded PTFE (ePTFE) film that has been provided with a porous or non-porous coating of a thermoplastic such as a thermoplastic fluoropolymer, preferably fluorinated ethylene propylene (FEP). ePTFE films are generally made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390 to Gore. Most preferred ePTFE films for the present application are taught by U.S. Pat. No. 5,476,589 to Bacino. The construction of thin, helically-wrapped tubes from ePTFE films and thermoplastic-coated ePTFE films, and the method of providing the coating onto the ePTFE films, are taught by U.S. Pat. No. 6,159,565 to Campbell et al.
  • [0053]
    An example of a helically-wrapped catheter shaft as shown by FIG. 2B was made using an FEP-coated ePTFE tape. The tape had a width of about 6 mm and a thickness of about 0.005 mm. The ePTFE had mean fibril length of about 50 microns and a bulk density of about 0.5 g/cc. The ePTFE film was provided with a non-porous coating of FEP on one side. After the coated film was cut into a narrow tape, the tape was helically wrapped onto a stainless steel mandrel of diameter larger that the outside diameter of the chosen catheter shaft. The first layer of the wrapping was applied with the FEP coated side of the tape facing away from the mandrel and the second layer was wrapped in the opposite direction from the first with the coating facing toward the mandrel and first layer. The wrapped mandrel was then heated for about 8 minutes in a convection oven set at 320° C. to melt-bond the helically-wrapped layers of the tube together. Following removal from the oven and cooling to about room temperature, the helically-wrapped tube was removed from the mandrel and fitted over a length of the desired catheter shaft 15 that was shorter than the length of the helically-wrapped tube. The opposite ends of the helically wrapped tube were gripped using pliers and tension was applied to cause the helically-wrapped tube to elongate and reduce in diameter, thereby tightly conforming to the outer surface of the catheter shaft. The ends of the helically-wrapped tube were adhered to the outer surface of the catheter shaft using a cyanoacrylate adhesive. The ends of the covered catheter shaft 15 were then transversely cut to the desired length with a sharp blade. If desired, the hub component typically fitted to the proximal end of the catheter shaft may be fitted over the helical wrap.
  • [0054]
    The thickness of the thin tubular tape covering 102 was determined to be about 0.012 mm by measuring the diameter of the catheter shaft at 90 degrees to the orientation of the slot 104 using a laser micrometer both before and after the application of the helically-wrapped covering.
  • [0055]
    The covered catheter 10 that resulted from this process retained the good flexibility of the precursor catheter shaft 15 prior to covering. When a guidewire 19 was inserted into the guidewire lumen 18, the thin cover 102 exhibited good transparency, meaning that the back end of the guidewire 19 was visible to the unaided eye as it passed through the length of the guidewire lumen 18. It was not difficult to stop the progression of the guidewire back end at a desired point along the length of the guidewire lumen, and by bending the catheter with the guidewire slot oriented to the outside of the bend, the covering 102 was readily punctured by the back end of the guidewire 19. When a large portion of the length of the guidewire was pulled through the puncture site, the puncture site exhibited no sign of tearing or of appreciable enlargement of the puncture.
  • [0056]
    FIG. 2C is a perspective view of a catheter 10 including a tubular sheath 13 for use as the thin puncturable cover 102 over slot 104. The sheath may be in the form of a thin extruded tube of, for example, PET. It may be applied similarly to the above-described helically-wrapped tube using a tubular sheath 13 of slightly larger inside diameter than the outside diameter of the catheter shaft 15 to be covered. The outer surface of the catheter shaft 15 may be provided with a thin coating of a suitable adhesive if desired, after which the thin tubular sheath 13 is fitted over the catheter shaft 15 and tensioned to cause it to elongate and reduce in diameter to conform to the outer surface of the catheter shaft 15. Sheath 13 may also be made from a shrink tubing that is heated after being fitted about the outer surface of the catheter shaft 15 to cause it to conform thereto.
  • [0057]
    FIG. 2D is a perspective view of the catheter 10 of FIG. 2C wherein the thin tubular sheath is formed by a cigarette wrap, wherein the braid-covered catheter shaft is additionally covered by an adequately long strip of thin polymeric material that has a width equal to or slightly greater than the circumference of the braid covered catheter shaft. This strip is wrapped around the catheter shaft as shown and adhered by thermal bonding or by the use of a suitable adhesive.
  • [0058]
    Another alternative for the puncturable thin cover 102 is shown in the perspective view of FIG. 2E wherein a thin tape 24 is adhered to the outer surface of the catheter shaft 15 adjacent to the edges of slot 104. In another embodiment, the guidewire lumen 18 may be extruded or otherwise formed to have an integral, thin, puncturable covering 102 as shown by the perspective view of FIG. 2F. FIG. 2G is a perspective view of the catheter 10 of FIG. 2F wherein pre-formed openings 25 are formed through the thin puncturable cover 102 to allow passage of the back end of a guidewire through any pre-formed opening 25 chosen by the user. It is apparent that these pre-formed openings 25 may be used with many of the various described embodiments.
  • [0059]
    FIGS. 3A-3C show transverse cross sectional views that represent a variation on the embodiment of FIG. 2E. As shown by FIG. 3A, tape cover 24 may be provided so as to increase the space available in the guidewire slot 104 by applying the tape so that it bridges the slot with additional tape width, resulting in the raised aspect shown by this thin puncturable cover 102. This can allow for the use of a larger guidewire if desired. When slot 104 is unoccupied by a guidewire, the thin and flexible tape 24 may take on a non-uniform appearance, giving the guidewire lumen and thin puncturable cover 102 an irregular cross section as shown by FIGS. 3B and 3C. It is apparent that the appearance of each of these three transverse cross-sections may exist at different locations along the length of the same catheter.
  • [0060]
    The puncturable cover 102 may also be made using threads, wires or other filaments. For example, threads may be wound around a slotted catheter shaft 15 in various desired patterns to form a covering over a guidewire lumen 18 that effectively contains a guidewire 19 but allows the back end of the guidewire to be passed through any of the multiplicity of spaces between adjacent threads of the wrapped covering. The threads may, for example, be provided as a helically-wrapped pattern, a braided pattern or a knit (e.g. warp knit) pattern. By orienting the threads in close proximity to one another, the guide wire will preferentially stay within a lumen of which the thread defines a portion of the wall. However, the end of the wire can be maneuvered to exit this lumen between the threads. By using a wound thread, the structure is never damaged allowing the catheter to be reused multiple times. By controlling the spacing between adjacent threads, the ease of which the end of the wire exits the lumen may be altered. Preferentially, small diameter threads can be used, for example, with diameters from 0.012 to 0.5 mm. Any variety of thread materials may be used, included common thermoplastic (e.g., polyamide, polypropylene, polyester, etc), thermosets, fluoroplastics (e.g., ePTFE) or various metal wires including stainless steels and nitinol.
  • [0061]
    As shown by the perspective view of FIG. 4A, a catheter shaft 15 is over-braided with filaments 31. The braid may have numerous configurations including, but not limited to, number of filaments, pick count and pitch angle. As well, filaments 31 may be of various cross sections such as round, square or rectangular.
  • [0062]
    FIG. 4B shows a preferred embodiment wherein catheter 10 of FIG. 4A is provided with an outer sheath 13 applied over catheter shaft 15 and braid 31 and attached by any of various methods such as heat or adhesive. Following the addition of sheath 13, an appropriately-sized mandrel is inserted into the guidewire lumen 18. The catheter is mounted in a laser (e.g., a 20 watt CO2 laser, Applied Laser Technology, Beaverton Oreg.) with the laser beam directed to slot 104. The laser is used to ablate the polymer material of sheath 13 covering slot 104 along the desired length of the catheter 10, resulting in cutaway slot 33 through sheath 13 exposing slot 104 beneath braid 31. The laser power parameters are such that the polymer material of sheath 13 is ablated yet metallic braid filaments 31 are left undamaged. The indwelling mandrel effectively blocks the laser energy from damaging the opposite side of the catheter shaft 15. The resultant catheter 10 is left with a braided underlying chassis and an outer polymer sheath 13 in which a “strip” of braid is exposed directly above slot 104, whereby guidewire lumen 18 lies immediately below the exposed strip 33 of braid 31. A clinician may then use the back end of a guide wire to part the braid filaments at any suitable user-defined position along this strip 33, thus exiting the guidewire from catheter 10 through the selected interstice of braid 31.
  • [0063]
    FIG. 4D describes an alternative embodiment whereby a braided tube 37 is procured, this tube having an outside diameter corresponding to the inside diameter of slot 104 of catheter shaft 15. The braided tube 37 is made to have a suitable inside diameter to provide adequate clearance for passage therethrough of an intended guidewire. Braided tube is fitted into slot 104 by interference, or by joining with an adhesive. In use, as with the previously described braided construct, the guidewire may be passed through any desired interstice of the braid 31 to exit catheter 10.
  • [0064]
    FIG. 4E describes a variation of FIG. 4A wherein braid 31 is replaced by helically wound filament 41, which may be of polymeric or metallic material. FIG. 4F shows an alternative to FIG. 4D wherein braided tube 37 is replaced by helically wound tube 47. Again, the helically wound tube may be of polymeric or metallic material. The embodiments of FIGS. 4E and 4F are desirable in that the space between adjacent helical windings will widen when the catheter shaft is bent with the exposed winding on the outside of the bend, making it easier to pass the back end of a guidewire through any desired space between adjacent helical windings.
  • [0065]
    FIG. 4G is a perspective view of an alternative embodiment to those shown by FIGS. 4D and 4F wherein tube 49 inserted into slot 104 is made from a thin polymeric material. This tube is preferably made by helically wrapping a thermoplastic-coated ePTFE film about a mandrel of suitable size, bonding the wrapping together to result in a cohesive tube, inserting the tube and mandrel into slot 104 and finally removing the mandrel. Alternatively if desired, the mandrel may be removed from within the tube prior to insertion of the tube 49 into slot 104.
  • [0066]
    FIG. 5 shows a longitudinal cross section of an alternative embodiment of catheter 10, including a hub 14 on the proximal end 16 of the inflation lumen 22. In this embodiment, catheter 10 is provided with a puncturable adjustable length guidewire lumen 18 that is in the form of a thin tubular sheath 13 puncturable by guidewire 19 as shown. A tubular slider 24 is used in place of a conventional y-fitting, distal to hub 14 for attachment and control of the proximal end of the adjustable length guidewire catheter lumen 18. Adjustable length guidewire catheter lumen 18 is shown in its axially compressed or shortened state. Tubular slider 24 is provided with only a small clearance between the inner diameter of slider 24 and the outer diameter of the inflation lumen 22. Adjustable length guidewire catheter lumen 18 may be made from a variety of thin, flexible polymer materials such as polyethylene, polypropylene, polyamide, polyethylene terephthalate, etc. Porous polymers, optionally provided with a thin, non-porous coating, may be advantageously used because of their excellent flexibility. Adjustable length guidewire catheter lumen 18 is preferably made from a porous expanded PTFE (ePTFE) film that has been provided with a porous or non-porous coating of a thermoplastic fluoropolymer as described previously.
  • [0067]
    The thin-walled tube is preferably made from an FEP-coated ePTFE film that has been cut into a tape (width, e.g., 12.7 mm) and helically wrapped on a mandrel with the FEP coating placed on the exterior of the wrapping. The helically wrapped tube is then placed into an oven for a suitable time (e.g., 8 minutes in an oven set at a temperature of 320° C.) to thermally bond the overlapped edges of the helical wrapping together, thereby forming a coherent tube. After removal from the oven and cooling, the resulting tube is removed from the mandrel and may be used as the adjustable length lumen component in the catheter of the present invention. The ends of this tube may be joined to the adjacent components by overlapping the tube end over the adjacent component and adhering the overlapped areas with an adhesive such as a cyanoacrylate (e.g., Loctite 401, Rocky Hill, Conn.) or an ultraviolet adhesive (e.g., Loctite 3311). Alternatively, the tube may be everted to orient the FEP-coating toward the lumen, and an adequate heat source may be used to melt-bond the FEP coating to catheter components such as metal hypotubes.
  • [0068]
    For use as the puncturable, adjustable length lumen tubular component of a catheter, the ePTFE tube may be provided with corrugations (e.g, accordion pleats or folds) with various methods such as those taught by U.S. Pat. No. 3,105,492 to Jeckel and U.S. Pat. No. 6,016,848 to Egres, Jr. Alternatively, it is not required to provide the thin-walled tube with preformed corrugations as, during axial compression from the fully extended length to the shortened, fully compressed length, the tube will wrinkle and corrugate in a non-uniform but entirely suitable manner for use as the adjustable length lumen portion 18 of catheter 10. In another alternative, an elastomer may be used for the adjustable length portion 18 that would be in its relaxed state prior to loading over the guidewire and would extend into a tensioned condition when the distal end of the catheter is advanced.
  • [0069]
    Longitudinally extruded and expanded tubes of PTFE, that is, seamless ePTFE tubes, may be used in thinwall form as the puncturable, adjustable length guidewire catheter lumen. Under axial compression, the interconnecting fibrils of the node-and-fibril microstructure of ePTFE will progressively bend and fold. This allows the tubular material to axially compress in a substantially uniform fashion, retaining the longitudinal uniformity of the tube wall (macroscopically), without corrugations. This bending of the fibrils within the microstructure of the wall of the ePTFE tube during axial compression is described in U.S. Pat. No. 4,877,661 to House et al. Longer mean fibril length tubes are preferred to maximize the compressible length, e.g., ePTFE tubes of about 50 micron or greater mean fibril length.
  • [0070]
    A catheter having a puncturable, adjustable length guidewire lumen was constructed using a very thin walled (e.g., 0.03 mm) sheath material. The sheath material is required to be thin enough to corrugate in small folds, allowing the length of the sheath to be reduced to less than 50% of its original length by compressing into the small amplitude folds. A 0.01 mm thick ePTFE film provided with a non-porous FEP coating on one side was chosen for the sheath material. This film was slit to a 6.4 mm width, thereby forming a tape.
  • [0071]
    An ePTFE tube, having an inner diameter of about 1.6 mm and a wall thickness of about 0.13 mm, was fitted over a 1.6 mm diameter stainless steel mandrel having a length of about 180 cm. The 6.4 mm wide tape was then helically wrapped about the outer surface of the ePTFE tube with a 50% overlap, resulting in a helically-wrapped tube covered with two layers of tape. The resulting assembly was then placed into an air convection oven set at 320° C. for 8 minutes, after which it was removed from the oven and allowed to cool in an ambient environment.
  • [0072]
    After cooling, the helically-wrapped tube was removed from the mandrel by withdrawing the mandrel from the tube. The end of the extruded tube that had not been helically-wrapped was clamped in a vise. The end of the helical wrapping closest to the vise was simultaneously pinched on opposite sides of the tube using the thumb and forefingers of both hands, and the helical-wrapping was stripped from the underlying ePTFE tube by everting the helically-wrapped tube while pulling it away from the vise.
  • [0073]
    This thin-walled tube had an approximate wall thickness of 0.03 mm (measured using Mitutoyo Snap Gauge, Model #1D-C112EBS) and an inner diameter of approximately 1.7 mm (measured using a certified minus pin gauge with a tolerance of 0.01 mm). When this tube was loaded on a 1.2 mm diameter mandrel, it was able to be easily compressed to about 5% of its original length using light digital pressure.
  • [0074]
    Continuing assembly of the catheter, this sheath was then coaxially mounted over a conventional Percutaneous Transluminal Coronary Angioplasty (PTCA) catheter with a maximum outer diameter proximal of the balloon of less than approximately 0.040″ (1.02 mm). The PTCA catheter used was a rapid exchange type, having a proximal guidewire exit port at a location significantly distal of its hub. Prior to mounting the sheath, a 9 Fr (3.0 mm) inner diameter hemostasis y-arm valve (P/N 80348, Qosina, Edgewood, N.Y.) was slid onto the catheter from the catheter's distal end (hemostasis valve oriented away from the back end of the catheter). Next, a female luer (P/N 65206. Qosina, Edgewood, N.Y.) was slid onto the catheter and the luer connection of these two components was engaged. A 2.0 mm inside diameter by 2.1 mm outside diameter 304 stainless steel tube (Microgroup, Medway, Mass.) was then swaged down to approximately 1.4 mm inside diameter by 1.6 mm outside diameter, and then trimmed to a length of approximately 19 mm.
  • [0075]
    This tube was slid coaxially over the catheter and bonded to the distal end of the female luer with an approximate 6 mm overlap using cyanoacrylate adhesive (Loctite 401, Loctite Corp., Rocky Hill, Conn.). Next, the helically-wrapped sheath described above was slid over the distal tip of the catheter and its proximal end attached by sliding it over the exposed end of the hypotube. These overlapped surfaces were bonded using the cyanoacrylate adhesive, after which 2.3 mm inside diameter polyolefin 2-to-1 shrink ratio shrink tubing was fitted over the junction and heated to conform to the surface of the junction. The distal end of the sheath was then trimmed to a length of approximately 135 cm, equal to the desired working length of the catheter (i.e. length from the distal tip of the catheter to the distal end of the strain relief on the catheter's hub). The distal end of the sheath was then attached at a location approximately 2 mm distal of the proximal guidewire port in the wall of the PTCA catheter. This attachment was made using the cyanoacrylate adhesive between the sheath and catheter, and then over-wrapping this attachment point with cyanoacrylate adhesive and 0.13 mm diameter ePTFE suture (CV-8, WL Gore and Associates, Flagstaff, Ariz.).
  • [0076]
    To complete the catheter a hemostasis y-fitting was slid distally on the catheter until it was just proximal of the proximal hole of the original PTCA catheter. This compressed the sheath to approximately 15% of its original approximately 135 mm length. A guidewire was then fed into the distal tip of the catheter and carefully threaded through the catheter, including the sheath component, and out from the proximal end of the catheter through the side arm of the y-fitting.
  • [0077]
    With the guidewire inserted, the user was able to hold the guidewire and hemostasis y-fitting in a fixed position while advancing the distal tip of the catheter relative to the guidewire. Compared to a standard catheter with a proximal guidewire side port fixed distally of the proximal hub, this inventive catheter significantly improved the ability of the section of the catheter, distal to the hemostasis y-fitting, to track the guidewire and allow push forces applied to the proximal portion of the catheter shaft to be transferred directly to the distal tip of the catheter.
  • [0078]
    FIG. 6 is a perspective view of catheter 10 in use with a puncturing tool 63 that enables puncturing of the cover 102 by the back end of guidewire 19. While such a tool is deemed unnecessary for many applications, for others it may prove advantageous. As shown, tool 63 is simply a short length of tubing that may be either polymeric tubing or metallic tubing. It is most easily made by bending the short length of tubing (before it is fitted about a catheter) and cutting away a portion of the wall along one side of the tube in the region of the middle of the length of the tube, resulting in opening 62. In use, tool 61 is fitted coaxially about catheter 10 and moved along the length of catheter 10 to the location at which it is desired to puncture cover 102 with the back end of guidewire 19. The tool 61 is oriented so that the opening 62 exposes cover 102 on the side of the catheter where the guidewire is or will be contained. When a guidewire 19 is inserted into the catheter 10 to the location at which it is desired to puncture the catheter, with this location exposed at opening 62 in tool 61, both the catheter 10 and tool 61 are bent as shown by FIG. 6. This bending results in puncturing of cover 102 by the back end of guidewire 19. The bending of catheter 10 is the result of force applied at three points 63, with the middle point being on the inside of the bend along the middle of the length of the bend and the two outer points being on the outside of the bend at the two opposite ends of the bend. It is apparent that the tool may take any suitable form that provides this three point contact during bending wherein the act of bending enables or results in puncturing of cover 102 at the desired location by the back end of guidewire 19. Following puncture, the tool is moved out of the way by sliding it coaxially along the length of the guidewire.
  • [0079]
    While the principles of the invention have been made clear in the illustrative embodiments set forth herein, it will be obvious to those skilled in the art to make various modifications to the structure, arrangement, proportion, elements, materials and components used in the practice of the invention. To the extent that these various modifications do not depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.

Claims (10)

1. A catheter assembly comprising a catheter shaft having a length and having at least one slot along at least a portion of the length of said catheter shaft, wherein said slot is provided with a cover comprising a multiplicity of filaments.
2. A catheter assembly according to claim 1 wherein said multiplicity of filaments comprises metallic wire.
3. A catheter assembly according to claim 2 wherein said wire is arranged in a braid.
4. A catheter assembly according to claim 3 wherein said braid extends coaxially around the catheter shaft.
5. A catheter assembly according to claim 2 wherein said wire is arranged in a helical wrap.
6. A catheter assembly according to claim 1 wherein said filaments are polymeric filaments.
7. A catheter assembly according to claim 6 wherein said polymeric filaments are porous expanded polytetrafluoroethylene filaments.
8. A catheter assembly according to claim 6 wherein said filaments are arranged in a braid.
9. A catheter assembly according to claim 8 wherein said filaments are arranged in a helical wrap.
10. A catheter assembly comprising a catheter shaft having a length and having at least one slot along at least a portion of the length of said catheter shaft, wherein said slot is provided with a puncturable cover comprising a tubular form inserted into said slot.
US13186156 2003-01-17 2011-07-19 Puncturable catheter Abandoned US20110276011A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10346977 US20040143240A1 (en) 2003-01-17 2003-01-17 Adjustable length catheter
US10402083 US8016752B2 (en) 2003-01-17 2003-03-28 Puncturable catheter
US13186156 US20110276011A1 (en) 2003-01-17 2011-07-19 Puncturable catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13186156 US20110276011A1 (en) 2003-01-17 2011-07-19 Puncturable catheter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10402083 Division US8016752B2 (en) 2003-01-17 2003-03-28 Puncturable catheter

Publications (1)

Publication Number Publication Date
US20110276011A1 true true US20110276011A1 (en) 2011-11-10

Family

ID=32775614

Family Applications (4)

Application Number Title Priority Date Filing Date
US10402083 Active US8016752B2 (en) 2003-01-17 2003-03-28 Puncturable catheter
US10895817 Abandoned US20050059957A1 (en) 2003-01-17 2004-07-21 Catheter assembly
US13186198 Active US9119937B2 (en) 2003-01-17 2011-07-19 Puncturable catheter
US13186156 Abandoned US20110276011A1 (en) 2003-01-17 2011-07-19 Puncturable catheter

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10402083 Active US8016752B2 (en) 2003-01-17 2003-03-28 Puncturable catheter
US10895817 Abandoned US20050059957A1 (en) 2003-01-17 2004-07-21 Catheter assembly
US13186198 Active US9119937B2 (en) 2003-01-17 2011-07-19 Puncturable catheter

Country Status (5)

Country Link
US (4) US8016752B2 (en)
JP (2) JP4598753B2 (en)
CA (1) CA2513305C (en)
EP (2) EP1587558B1 (en)
WO (1) WO2004064891A3 (en)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379334B1 (en) 1997-02-10 2002-04-30 Essex Technology, Inc. Rotate advance catheterization system
US8414477B2 (en) 2005-05-04 2013-04-09 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8235942B2 (en) 2005-05-04 2012-08-07 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8317678B2 (en) 2005-05-04 2012-11-27 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8574220B2 (en) 2006-02-28 2013-11-05 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8343040B2 (en) 2005-05-04 2013-01-01 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8435229B2 (en) 2006-02-28 2013-05-07 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
WO2006093976A1 (en) 2005-02-28 2006-09-08 Spirus Medical Inc. Rotate-to-advance catheterization system
US7048717B1 (en) 1999-09-27 2006-05-23 Essex Technology, Inc. Rotate-to-advance catheterization system
US7780650B2 (en) 2005-05-04 2010-08-24 Spirus Medical, Inc. Rotate-to-advance catheterization system
US9586023B2 (en) 1998-02-06 2017-03-07 Boston Scientific Limited Direct stream hydrodynamic catheter system
US7879022B2 (en) * 1998-02-06 2011-02-01 Medrad, Inc. Rapid exchange fluid jet thrombectomy device and method
US20040230212A1 (en) * 2000-04-05 2004-11-18 Pathway Medical Technologies, Inc. Medical sealed tubular structures
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
CA2675209C (en) * 2002-03-22 2013-01-08 Cordis Corporation Rapid-exchange balloon catheter shaft and method
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US9433745B2 (en) * 2003-01-17 2016-09-06 W.L. Gore & Associates, Inc. Puncturing tool for puncturing catheter shafts
US7625337B2 (en) * 2003-01-17 2009-12-01 Gore Enterprise Holdings, Inc. Catheter assembly
US8016752B2 (en) * 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter
US20040143286A1 (en) 2003-01-17 2004-07-22 Johnson Eric G. Catheter with disruptable guidewire channel
US20080033570A1 (en) * 2003-08-01 2008-02-07 Blitz Benjamin T Prostatic stent placement device
US20050171568A1 (en) * 2004-01-30 2005-08-04 Niall Duffy Catheter and guidewire exchange system with improved catheter design
US7766951B2 (en) * 2004-03-04 2010-08-03 Y Med, Inc. Vessel treatment devices
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
RU2506056C2 (en) 2008-09-18 2014-02-10 Аккларент, Инк. Methods and apparatus for treating ear, nose and throat diseases
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US9289576B2 (en) 2004-06-17 2016-03-22 W. L. Gore & Associates, Inc. Catheter assembly
US20060129091A1 (en) 2004-12-10 2006-06-15 Possis Medical, Inc. Enhanced cross stream mechanical thrombectomy catheter with backloading manifold
US9320831B2 (en) * 2005-03-04 2016-04-26 W. L. Gore & Associates, Inc. Polymer shrink tubes and novel uses therefor
US20060229657A1 (en) * 2005-03-30 2006-10-12 Wasicek Lawrence D Single operator exchange embolic protection filter
US8870755B2 (en) 2007-05-18 2014-10-28 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
GB0512319D0 (en) 2005-06-16 2005-07-27 Angiomed Ag Catheter device variable pusher
GB0512320D0 (en) * 2005-06-16 2005-07-27 Angiomed Ag Catheter device FLEXX tube
US7544201B2 (en) * 2005-07-05 2009-06-09 Futurematrix Interventional, Inc. Rapid exchange balloon dilation catheter having reinforced multi-lumen distal portion
US8221348B2 (en) * 2005-07-07 2012-07-17 St. Jude Medical, Cardiology Division, Inc. Embolic protection device and methods of use
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8070898B2 (en) * 2005-10-04 2011-12-06 Clph, Llc Catheters with lubricious linings and methods for making and using them
US7556710B2 (en) * 2005-10-04 2009-07-07 Ilh, Llc Catheters with lubricious linings and methods for making and using them
US8162878B2 (en) 2005-12-05 2012-04-24 Medrad, Inc. Exhaust-pressure-operated balloon catheter system
US20080027411A1 (en) * 2006-04-21 2008-01-31 Abbott Laboratories Guidewire placement device
US8206370B2 (en) * 2006-04-21 2012-06-26 Abbott Laboratories Dual lumen guidewire support catheter
US7766896B2 (en) * 2006-04-25 2010-08-03 Boston Scientific Scimed, Inc. Variable stiffness catheter assembly
US8152742B2 (en) * 2006-05-01 2012-04-10 Boston Scientific Scimed, Inc. Crossing guide wire with corrugated shaping ribbon
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
GB2445131B8 (en) 2006-06-05 2009-03-04 Ecoluminaire Ltd A fluid conveying conduit
US7559137B2 (en) * 2006-07-17 2009-07-14 Potomac Photonics, Inc. Method for providing electrically conductive paths in polymer tubing
US20080140173A1 (en) * 2006-08-07 2008-06-12 Sherif Eskaros Non-shortening wrapped balloon
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8012117B2 (en) * 2007-02-06 2011-09-06 Medrad, Inc. Miniature flexible thrombectomy catheter
US20080188793A1 (en) 2007-02-06 2008-08-07 Possis Medical, Inc. Miniature flexible thrombectomy catheter
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8137320B2 (en) * 2007-05-01 2012-03-20 Suros Surgical Systems, Inc. Securement for a surgical site marker and deployment device for same
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
WO2008144033A3 (en) * 2007-05-18 2009-12-23 Spirus Medical, Inc. Rotate-to-advance catheterizaton system
US8285362B2 (en) * 2007-06-28 2012-10-09 W. L. Gore & Associates, Inc. Catheter with deflectable imaging device
US8864675B2 (en) * 2007-06-28 2014-10-21 W. L. Gore & Associates, Inc. Catheter
US8852112B2 (en) 2007-06-28 2014-10-07 W. L. Gore & Associates, Inc. Catheter with deflectable imaging device and bendable electrical conductor
US8673100B2 (en) * 2007-10-19 2014-03-18 Stephen A. Leeflang Strip lined catheters and methods for constructing and processing strip lined catheters
JP5565963B2 (en) * 2007-12-11 2014-08-06 テイジン・アラミド・ビー.ブイ. Intravascular catheter, including the strengthening micro tape
US8303538B2 (en) 2007-12-17 2012-11-06 Medrad, Inc. Rheolytic thrombectomy catheter with self-inflating distal balloon
EP2227285A4 (en) 2007-12-26 2013-07-31 Medrad Inc Rheolytic thrombectomy catheter with self-inflating proximal balloon with drug infusion capabilities
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US8647294B2 (en) 2008-03-20 2014-02-11 Medrad, Inc. Direct stream hydrodynamic catheter system
US8535232B2 (en) * 2008-05-30 2013-09-17 W. L. Gore & Associates, Inc. Real time ultrasound catheter probe
US20090318757A1 (en) * 2008-06-23 2009-12-24 Percuvision, Llc Flexible visually directed medical intubation instrument and method
CA2732769A1 (en) 2008-07-30 2010-02-04 Acclarent, Inc. Paranasal ostium finder devices and methods
US8403896B2 (en) * 2008-08-29 2013-03-26 AUST Development, LLC Apparatus and methods for making coated liners and tubular devices including such liners
DE102008043541A1 (en) 2008-11-07 2010-05-12 Biotronik Vi Patent Ag catheter shaft
US9757189B2 (en) * 2008-12-03 2017-09-12 Biosense Webster, Inc. Prevention of kinks in catheter irrigation tubes
GB0822106D0 (en) * 2008-12-03 2009-01-07 Angiomed Ag Retractable catheter
US8454578B2 (en) * 2009-02-18 2013-06-04 AUST Development, LLC Apparatus and methods for making coated liners and tubular devices including such liners
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US20100318180A1 (en) * 2009-06-15 2010-12-16 Boston Scientific Scimed, Inc. Multi-layer stent assembly
US8534124B2 (en) * 2009-09-17 2013-09-17 Raytheon Company Sensor housing apparatus
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
US9144665B2 (en) 2010-08-09 2015-09-29 Boston Scientific Limited Flexible sheath assemblies and interventional catheter systems incorporating them
KR20130096724A (en) * 2010-08-12 2013-08-30 씨. 알. 바드, 인크. Trimmable catheter including distal portion stability features
CN103298517A (en) * 2010-09-17 2013-09-11 雅培心血管系统有限公司 Length and diameter adjustable balloon catheter
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US20120179097A1 (en) 2011-01-06 2012-07-12 Cully Edward H Methods and apparatus for an adjustable stiffness catheter
CN107050617A (en) * 2011-06-03 2017-08-18 费雪派克医疗保健有限公司 Medical tubes and methods of manufacture
US9370643B2 (en) * 2011-06-23 2016-06-21 W.L. Gore & Associates, Inc. High strength balloon cover
US20130253466A1 (en) * 2011-06-23 2013-09-26 Carey V. Campbell Controllable inflation profile balloon cover apparatus and methods
CA2852224A1 (en) * 2011-10-14 2013-04-18 Volcano Corporation Medical tubing and associated devices, systems, and methods
JP6039199B2 (en) * 2012-03-12 2016-12-07 株式会社グッドマン catheter
US9175558B2 (en) 2012-07-31 2015-11-03 Raytheon Company Seismic navigation
US9623216B2 (en) 2013-03-12 2017-04-18 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter for drug delivery
US9737328B2 (en) 2013-03-14 2017-08-22 Boston Scientific Limited Hydrodynamic eccentrically pivoting catheter
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
JP2016059508A (en) * 2014-09-16 2016-04-25 テルモ株式会社 catheter
JP2016187527A (en) * 2015-03-30 2016-11-04 株式会社グッドマン catheter
US20170106173A1 (en) * 2015-10-20 2017-04-20 C.R. Bard, Inc. Variable diameter medical balloon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107852A (en) * 1990-04-02 1992-04-28 W. L. Gore & Associates, Inc. Catheter guidewire device having a covering of fluoropolymer tape
US5163921A (en) * 1990-10-04 1992-11-17 Feiring Andrew J Valved perfusion cardiovascular catheters
US5752934A (en) * 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US5902290A (en) * 1994-03-14 1999-05-11 Advanced Cardiovascular Systems, Inc. Catheter providing intraluminal access
US6929635B2 (en) * 2002-08-20 2005-08-16 Scimed Life Systems, Inc. Reinforced multi-lumen medical shaft
US6945956B2 (en) * 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
US8016752B2 (en) * 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105492A (en) 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
CA962021A (en) 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
DE2734248A1 (en) 1977-07-29 1979-02-08 Fresenius Chem Pharm Ind Portable artificial kidney
JPH0142109B2 (en) * 1978-10-17 1989-09-11 Tokyo Shibaura Electric Co
DE3214447C2 (en) 1982-04-20 1994-05-11 Eilentropp Hew Kabel Unsintered winding tape of polytetrafluoroethylene
US4552554A (en) 1984-06-25 1985-11-12 Medi-Tech Incorporated Introducing catheter
US4574477A (en) 1984-08-06 1986-03-11 The O. M. Scott & Sons Company Hole cutter for plastic tubing
DE3442736C2 (en) 1984-11-23 1987-03-05 Tassilo Dr.Med. 7800 Freiburg De Bonzel
ES8705239A1 (en) 1984-12-05 1987-07-16 Medinvent Sa A device for implanting, by insertion into a hard Lugarde access, a substantially tubular radially expandable prothesis and
US4601713A (en) 1985-06-11 1986-07-22 Genus Catheter Technologies, Inc. Variable diameter catheter
US4988356A (en) 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US4877661A (en) 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5273042A (en) 1987-10-28 1993-12-28 Medical Parameters, Inc. Guidewire advancement method
US5030210A (en) 1988-02-08 1991-07-09 Becton, Dickinson And Company Catheter valve assembly
US5171222A (en) 1988-03-10 1992-12-15 Scimed Life Systems, Inc. Interlocking peel-away dilation catheter
US5061273A (en) 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5024234A (en) * 1989-10-17 1991-06-18 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter with guidewire channel
US5102403A (en) 1990-06-18 1992-04-07 Eckhard Alt Therapeutic medical instrument for insertion into body
DK32091D0 (en) 1991-02-25 1991-02-25 Mogens Thyge Corfitsen An apparatus for feed of an object through a body passageway
US5395335A (en) 1991-05-24 1995-03-07 Jang; G. David Universal mode vascular catheter system
US5205822A (en) 1991-06-10 1993-04-27 Cordis Corporation Replaceable dilatation catheter
US5135535A (en) 1991-06-11 1992-08-04 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US6107004A (en) 1991-09-05 2000-08-22 Intra Therapeutics, Inc. Method for making a tubular stent for use in medical applications
CA2117088A1 (en) * 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5389087A (en) 1991-09-19 1995-02-14 Baxter International Inc. Fully exchangeable over-the-wire catheter with rip seam and gated side port
US5324269A (en) 1991-09-19 1994-06-28 Baxter International Inc. Fully exchangeable dual lumen over-the-wire dilatation catheter with rip seam
US5195978A (en) 1991-12-11 1993-03-23 Baxter International Inc. Rapid exchange over-the-wire catheter with breakaway feature
US5380290A (en) * 1992-04-16 1995-01-10 Pfizer Hospital Products Group, Inc. Body access device
US5334169A (en) 1992-05-11 1994-08-02 American Interventional Technologies, Inc. Reinforced catheter with thin monolithic walls
JPH0665841A (en) * 1992-06-17 1994-03-08 Zellweger Ustel Ag Arrangement for checking presence of yarn and use as stop motion for the warp
US5334153A (en) 1992-10-07 1994-08-02 C. R. Bard, Inc. Catheter purge apparatus and method of use
WO1994015549A1 (en) 1992-12-30 1994-07-21 Schneider (Usa) Inc. Apparatus for deploying body implantable stents
DE9301616U1 (en) 1993-02-05 1994-06-01 Gore W L & Ass Gmbh The flexible catheter
US5334147A (en) 1993-04-28 1994-08-02 Cordis Corporation Rapid exchange type dilatation catheter
US5752932A (en) 1993-04-29 1998-05-19 Scimed Life Systems, Inc. Intravascular catheter with a recoverable guide wire lumen and method of use
US5413559A (en) 1993-07-08 1995-05-09 Sirhan; Motasim M. Rapid exchange type over-the-wire catheter
US5472425A (en) * 1993-07-15 1995-12-05 Teirstein; Paul S. Rapid exchange catheter
WO1995002430A1 (en) 1993-07-15 1995-01-26 Advanced Cardiovascular Systems, Inc. Rapid exchange type intraluminal catheter with guiding element
US5336184A (en) * 1993-07-15 1994-08-09 Teirstein Paul S Rapid exchange catheter
US6025044A (en) * 1993-08-18 2000-02-15 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US6159565A (en) 1993-08-18 2000-12-12 W. L. Gore & Associates, Inc. Thin-wall intraluminal graft
US5571135A (en) 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5425723A (en) 1993-12-30 1995-06-20 Boston Scientific Corporation Infusion catheter with uniform distribution of fluids
US5591194A (en) 1994-02-18 1997-01-07 C. R. Bard, Inc. Telescoping balloon catheter and method of use
US5489271A (en) 1994-03-29 1996-02-06 Boston Scientific Corporation Convertible catheter
US5466222A (en) 1994-03-30 1995-11-14 Scimed Life Systems, Inc. Longitudinally collapsible and exchangeable catheter
US5454795A (en) 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US5578009A (en) 1994-07-20 1996-11-26 Danforth Biomedical Incorporated Catheter system with push rod for advancement of balloon along guidewire
US5531700A (en) 1994-07-29 1996-07-02 Cardiovascular Imaging Systems, Inc. Convertible tip catheters and sheaths
US5879794A (en) 1994-08-25 1999-03-09 W. L. Gore & Associates, Inc. Adhesive-filler film composite
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US5647857A (en) 1995-03-16 1997-07-15 Endotex Interventional Systems, Inc. Protective intraluminal sheath
DE69626108T2 (en) 1995-04-14 2003-11-20 Boston Scient Ltd The stent delivery device with rolling membrane
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5788707A (en) 1995-06-07 1998-08-04 Scimed Life Systems, Inc. Pull back sleeve system with compression resistant inner shaft
US6223637B1 (en) 1995-10-16 2001-05-01 Peter T. Hansen Catheter side-wall hole cutting method and apparatus
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6016848A (en) 1996-07-16 2000-01-25 W. L. Gore & Associates, Inc. Fluoropolymer tubes and methods of making same
US5968069A (en) 1996-08-23 1999-10-19 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
DE69737208T2 (en) 1996-11-15 2007-11-08 Cook Inc., Bloomington The stent delivery device having a separable case
US5807355A (en) * 1996-12-09 1998-09-15 Advanced Cardiovascular Systems, Inc. Catheter with rapid exchange and OTW operative modes
US6093177A (en) 1997-03-07 2000-07-25 Cardiogenesis Corporation Catheter with flexible intermediate section
US5951539A (en) 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US5968012A (en) 1997-08-22 1999-10-19 Scimed Lifesystems, Inc. Balloon catheter with adjustable shaft
US6056719A (en) 1998-03-04 2000-05-02 Scimed Life Systems, Inc. Convertible catheter incorporating a collapsible lumen
US6423032B2 (en) 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US5993460A (en) 1998-03-27 1999-11-30 Advanced Cardiovascular Systems, Inc. Rapid exchange delivery system for stenting a body lumen
US6095990A (en) 1998-08-31 2000-08-01 Parodi; Juan Carlos Guiding device and method for inserting and advancing catheters and guidewires into a vessel of a patient in endovascular treatments
US6200305B1 (en) 1998-09-30 2001-03-13 Medtronic Ave, Inc. Catheter having a variable length shaft segment and method of use
US6099496A (en) 1998-09-30 2000-08-08 Medtronic Ave, Inc. Catheter having a variable length shaft segment and method of use
US6544278B1 (en) 1998-11-06 2003-04-08 Scimed Life Systems, Inc. Rolling membrane stent delivery system
US6059813A (en) 1998-11-06 2000-05-09 Scimed Life Systems, Inc. Rolling membrane stent delivery system
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
US6364904B1 (en) 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
US6299595B1 (en) 1999-12-17 2001-10-09 Advanced Cardiovascular Systems, Inc. Catheters having rapid-exchange and over-the-wire operating modes
US6589207B1 (en) 1999-12-21 2003-07-08 Advanced Cardiovascular Systems, Inc. Rapid exchange catheter having a support mandrel
US6849077B2 (en) 2000-02-11 2005-02-01 Evysio Medical Devices Ulc Stent delivery system and method of use
US6569180B1 (en) * 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US6758857B2 (en) 2000-11-13 2004-07-06 Acmi Corporation Treatment catheters with thermally insulated regions
US6929634B2 (en) 2001-08-22 2005-08-16 Gore Enterprise Holdings, Inc. Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US6783522B2 (en) 2002-09-09 2004-08-31 Angel Medical Systems, Inc. Implantable catheter having an improved check valve
US8088158B2 (en) 2002-12-20 2012-01-03 Boston Scientific Scimed, Inc. Radiopaque ePTFE medical devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107852A (en) * 1990-04-02 1992-04-28 W. L. Gore & Associates, Inc. Catheter guidewire device having a covering of fluoropolymer tape
US5163921A (en) * 1990-10-04 1992-11-17 Feiring Andrew J Valved perfusion cardiovascular catheters
US5902290A (en) * 1994-03-14 1999-05-11 Advanced Cardiovascular Systems, Inc. Catheter providing intraluminal access
US6059770A (en) * 1994-03-14 2000-05-09 Advanced Cardiovascular Systems, Inc. Catheter providing intraluminal access
US20020139785A1 (en) * 1994-03-14 2002-10-03 Peacock James C. Catheter providing intraluminal access
US6777644B2 (en) * 1994-03-14 2004-08-17 Advanced Cardiovascular Systems, Inc. Catheter providing intraluminal access
US5752934A (en) * 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US6929635B2 (en) * 2002-08-20 2005-08-16 Scimed Life Systems, Inc. Reinforced multi-lumen medical shaft
US6945956B2 (en) * 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
US8016752B2 (en) * 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter

Also Published As

Publication number Publication date Type
EP2842592B1 (en) 2016-03-30 grant
JP2006515213A (en) 2006-05-25 application
JP2010155117A (en) 2010-07-15 application
JP4598753B2 (en) 2010-12-15 grant
WO2004064891A2 (en) 2004-08-05 application
US9119937B2 (en) 2015-09-01 grant
EP2842592A1 (en) 2015-03-04 application
US20040193139A1 (en) 2004-09-30 application
US8016752B2 (en) 2011-09-13 grant
US20050059957A1 (en) 2005-03-17 application
JP5406094B2 (en) 2014-02-05 grant
US20110276012A1 (en) 2011-11-10 application
EP1587558B1 (en) 2014-10-15 grant
EP1587558A2 (en) 2005-10-26 application
WO2004064891A3 (en) 2005-06-02 application
EP1587558A4 (en) 2008-08-06 application
CA2513305A1 (en) 2004-08-05 application
CA2513305C (en) 2008-06-17 grant

Similar Documents

Publication Publication Date Title
US6186986B1 (en) Micro-catheters and methods of their manufacture
US5836926A (en) Intravascular catheter
US5120323A (en) Telescoping guide catheter system
US5603694A (en) Infusion coil apparatus and method for delivering fluid-based agents intravascularly
US6240231B1 (en) Variable stiffness fiber optic shaft
US6090072A (en) Expandable introducer sheath
US6689120B1 (en) Reduced profile delivery system
US4464176A (en) Blood vessel catheter for medicine delivery and method of manufacture
US5647846A (en) Catheter having geometrically shaped surface and method of manufacture
US6387075B1 (en) Catheter having improved proximal shaft design
US6629952B1 (en) High pressure vascular balloon catheter
US5895378A (en) Flow-directed catheter having multiple tapers and radio-opaque markers
US4976690A (en) Variable stiffness angioplasty catheter
US6669886B1 (en) Reinforced catheter and method of manufacture
US6585687B1 (en) Inflatable balloon catheter body construction
US6777644B2 (en) Catheter providing intraluminal access
US4411055A (en) Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods for making the same
US5395332A (en) Intravascualr catheter with distal tip guide wire lumen
US6152912A (en) Optimized high performance spiral-wound vascular catheter
US6090099A (en) Multi-layer distal catheter section
US4981478A (en) Composite vascular catheter
US5497785A (en) Catheter advancing guidewire and method for making same
US7279208B1 (en) Thin-wall polytetrafluoroethylene tube
US6866660B2 (en) Intravascular catheter with composite reinforcement
US5454795A (en) Kink-free spiral-wound catheter

Legal Events

Date Code Title Description
AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508

Effective date: 20120130