US20110265470A1 - Energy recovery system for an internal combustion engine - Google Patents

Energy recovery system for an internal combustion engine Download PDF

Info

Publication number
US20110265470A1
US20110265470A1 US13/142,483 US200813142483A US2011265470A1 US 20110265470 A1 US20110265470 A1 US 20110265470A1 US 200813142483 A US200813142483 A US 200813142483A US 2011265470 A1 US2011265470 A1 US 2011265470A1
Authority
US
United States
Prior art keywords
particulate filter
energy recovery
filtering part
exhaust
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/142,483
Inventor
Marc Lejeune
Eduard Iojoiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault Trucks SAS
Original Assignee
Renault Trucks SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault Trucks SAS filed Critical Renault Trucks SAS
Assigned to RENAULT TRUCKS reassignment RENAULT TRUCKS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IOJOIU, EDUARD, LEJEUNE, MARC
Publication of US20110265470A1 publication Critical patent/US20110265470A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/22Metal foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an energy recovery system for an internal combustion engine, for example for an industrial vehicle.
  • the invention also relates to an internal combustion engine comprising such an energy recovery system.
  • Some systems have been designed to recover at least part of this energy.
  • Some systems of the prior art provide a heat exchanger with the exhaust gases, designed to recover part of the exhaust gases heat and to use it, generally as work or electricity, for the operation of various elements of the vehicle.
  • such an energy recovery system comprises an exhaust line capable of collecting exhaust gases from an exhaust manifold of the engine, said exhaust line being equipped with a particulate filter.
  • Said system further comprises a secondary line which is thermally linked with, but distinct from, the exhaust line, and which carries a fluid, in use.
  • Said particulate filter has a filtering part in which exhaust gases can flow and a heat exchanging part in which said fluid can flow, the filtering part and heat exchanging part being arranged to transfer heat by conduction from the exhaust gases to said fluid, said secondary line being connected to energy recovery means which are capable of recovering energy from said heat.
  • a single part serves both as a particulate filter and as a heat exchanger.
  • the system is less bulky than prior art systems in which there is provided a filter and a heat exchanger as two separate parts.
  • the invention makes it possible to make the system lighter and to reduce costs. Moreover, since no separate heat exchanger is provided, there is no added back pressure, contrary to prior art systems.
  • an aspect of the invention improves energy recovery with respect to prior art systems, because the exhaust gas passes through filtering walls, which enhances thermal exchange.
  • the energy is continuously recovered by the filtering means and then transferred to the heat exchanging means, i.e. to the energy recovery means via the heated fluid flowing in the secondary line.
  • an aspect of the invention improves energy release and therefore protects the particulate filter. Indeed, because heat is transferred to the fluid flowing in the secondary line, the risk to harm the filtering means—or possible additional after-treatment devices located downstream from the particulate filter—due to too high temperature is significantly lowered. The heat released during an active regeneration of the particulate filter could be better managed and evacuated. Part of the energy produced during soot combustion by oxygen is transferred to the fluid of the secondary line.
  • the secondary line can be a closed loop forming a Rankine thermodynamic cycle, the energy recovery means including:
  • the secondary line can be an open loop forming a Brayton thermodynamic cycle
  • the energy recovery means including:
  • the compressor can be driven by the turbine.
  • the energy recovery means may also comprise heating means (such as an electric heater or a fuel injector) and/or an fuel burning heater located downstream from said particulate filter and upstream from the turbine.
  • This optional additional device is designed to further heat the fluid flowing in said secondary line, thanks to an external energy, to be able to retrieve more energy from the system (thanks to the gas expansion in the turbine).
  • the energy recovery means may comprise a thermoelectric generator and/or an endothermic reformer.
  • the particulate filter can comprise a central filtering part and a heat exchanging area which surrounds at least partially said central filtering part and in which said fluid can flow.
  • the central filtering part can comprise a silicon carbide (SiC) and/or a metallic foam.
  • the central filtering part and the heat exchanging area are housed in a canning, said canning being covered with an outer thermally insulating layer.
  • the two functions of the particulate filter are integrated in a single part.
  • the invention also concerns, according to an aspect thereof, an internal combustion engine equipped with a system as previously described.
  • FIG. 1 is a schematic drawing of a particulate filter, showing the flow of exhaust gas and the flow of fluid in the secondary line;
  • FIG. 2 is a schematic cross section of the particulate filter of FIG. 1 ;
  • FIG. 3 is a schematic perspective view of the central filtering part of the particulate filter of FIG. 1 ;
  • FIG. 4 is a schematic drawing of a first embodiment of an energy recovery system according to the invention.
  • FIG. 5 is a schematic drawing of a second embodiment of an energy recovery system according to the invention.
  • An internal combustion engine comprises an exhaust line 1 capable of collecting exhaust gas from an exhaust manifold of the engine (not shown) towards the atmosphere.
  • the engine is for example a diesel engine.
  • the invention may concern any type of internal combustion engine needing a particle filter to meet ongoing or future legislation limits.
  • Exhaust line 1 is equipped with a particulate filter 2 which performs a mechanical filtering of particles contained in the exhaust gas, resulting from an incomplete combustion process in the engine.
  • the particulate filter 2 is more particularly illustrated on FIGS. 2 and 3 .
  • Said particulate filter 2 comprises a canning 3 of generally cylindrical shape in which is housed a central filtering part 4 and a heat exchanging area 5 surrounding said central filtering part 4 (at least along the cylinder axis).
  • the central filtering part 4 comprise a network of longitudinally extending channels 6 , each channel 6 having an inlet 7 and an outlet 8 for the exhaust gas.
  • the inlets and outlets are alternately closed by a closing wall 9 .
  • the closing wall 9 as well as longitudinal walls 10 of the filtering part 4 are made of an appropriate filtering material which is able to retain the particles contained in the flowing exhaust gas (see arrows in FIG. 3 ).
  • Such a kind of particle filter is often called “wall flow”, because the exhaust gases have to go through the walls separating one channel open on one side (upstream or downstream from the filter) from another channel open on the other side (respectively downstream or upstream from the fitter) to go through the filter.
  • This is opposed to “flow-through” kind of filter having channels which are each open at their both ends upstream and downstream of the filter.
  • the material forming the central filtering part 4 is preferably of high thermal conductivity and can comprise for example silicon carbide (SiC) and/or metallic foam.
  • the central filtering part 4 is unitary, composed of one piece of material. Therefore, the exhaust gases, which have to go through the walls of the filtering part, do indeed have the possibility to transfer a good proportion of the heat they contain to the said walls, i.e. to said filtering part.
  • the heat exchanging area 5 has for example the shape of an annular cylinder arranged around the filtering part 4 , and comprises a cavity having an inlet 23 and an outlet 24 for the fluid carried by a secondary line 13 (as will be described later).
  • the cavity can be formed between an inner wall 25 which surrounds the central filtering part 4 , and an outer wall 26 .
  • the inner wall could be formed integral with the central filtering part 4 , it can also be formed as a separate envelope surrounding said part.
  • such envelope should be in close contact with the central filtering part 4 so as to allow a good transfer of heat by conduction between the central filtering part 4 and the envelope.
  • this envelope should be made of material having good thermal conductivity, such as a metal.
  • the envelope is preferably gas tight, so as to allow no transfer of fluid from the exhaust line 1 towards the cavity or reversely.
  • the canning 3 of the particulate filter 2 can advantageously form the outer wall of the cavity. It can be advantageously covered, on its external surface, by an outer layer 11 of a thermally insulating material.
  • the inner wall, the casing and the cavity should be constructed so as to provide a good heat transfer to the fluid, according to the techniques known to the skilled man in the art of heat exchangers.
  • a heat exchanger is integrated in the particulate filter canning 3 .
  • the exhaust line 1 and the particulate filter 2 are part of an energy recovery system 12 according to the invention, which also comprise a secondary line 13 carrying a fluid.
  • Said secondary line 13 is distinct from the exhaust line 1 , but thermally linked with it, since the fluid flowing in the secondary line 13 enters the heat exchanging area 5 of the particulate filter 2 , i.e. around filtering part 4 , where it gets heat from the exhaust gas, and then goes out of the particulate filter 2 .
  • the secondary line 13 is connected to energy recovery means which are capable to make use of the energy from the heat transferred to the fluid flowing in the secondary line 13 , said energy being used for various purposes in the vehicle.
  • FIG. 4 A first embodiment is illustrated in FIG. 4 .
  • the secondary line is a closed loop forming a Rankine thermodynamic cycle.
  • Water (or another liquid, such as an organic fluid) is moved by means of a pump 14 in said secondary line 13 , and enters the particulate filter 2 , in which said water is evaporated into steam (or another corresponding gas), thanks to the heat received from the exhaust gas. Said particulate filter 2 therefore works as an evaporator.
  • the steam going out of said particulate filter 2 is then expanded in a turbine 15 located downstream from said particulate filter 2 .
  • the expanded steam is then condensed into water in a condenser 16 located downstream from said turbine 15 , said water being again directed towards the particulate filter 2 by means of the pump 14 .
  • FIG. 5 A second embodiment is illustrated in FIG. 5 .
  • the secondary line is an open loop forming a Brayton thermodynamic cycle.
  • a gas for example ambient air
  • a compressor 18 located upstream from said particulate filter 2 , then passes through the heat exchanging area 5 of the particulate filter 2 acting as a heat exchanger, where said air is heated by the hot exhaust gases. Downstream from said particulate filter 2 , heated air reaches a turbine 19 where it is expanded, thereby transforming the energy conveyed by the air into mechanical energy.
  • Turbine 19 is mechanically connected to compressor 18 by means of a shaft 20 .
  • the energy produced by the warm air expansion is recovered into mechanical energy on said shaft 20 .
  • Said energy is partially used to operate compressor 18 .
  • the system may further comprise an alternator 21 designed to produce electricity from the mechanical energy generated by the turbine 19 .
  • Electricity can be used in a hybrid vehicle (i.e. a vehicle powered by an internal combustion engine and an electric motor) or in a conventional vehicle to charge a battery, to power auxiliaries, etc.
  • An optional heating device 22 such as a fuel burner or an electric heater, can be provided between particulate filter 2 and turbine 19 to bring additional heat to the gas entering the turbine 19 .
  • the heat which is collected by the fluid in the secondary line 13 can be transferred to other types of energy recovery means, such as a thermoelectric generator, where heat is transformed into electricity, or such as a chemical reformer, such as a fuel reformer to produce fuel for a fuel cell.
  • energy recovery means such as a thermoelectric generator, where heat is transformed into electricity, or such as a chemical reformer, such as a fuel reformer to produce fuel for a fuel cell.
  • the invention takes advantage of the thermal energy contained in the exhaust gases to transform it into mechanical, electrical or chemical energy which can be used for the operation of various elements of the vehicle.
  • the particulate filter also works as a heat exchanger, the filtering and heating functions being operated in a single part, which is a great advantage of the invention.
  • Another significant advantage of the invention is that it also makes it possible to evacuate energy from the particulate filter, thereby protecting it.

Abstract

An energy recovery system includes an exhaust line which is capable of collecting exhaust gas from an exhaust manifold of the engine and which is equipped with a particulate filter, a secondary line which is thermally linked with, but distinct from, the exhaust line, and which carries a fluid. The particulate filter has a filtering part in which exhaust gases can flow and a heat exchanging part in which the fluid can flow, the filtering part and heat exchanging part being arranged to transfer heat by conduction from the exhaust gases to said fluid. The secondary line is connected to energy recovery means capable of recovering energy from the heat.

Description

    BACKGROUND AND SUMMARY
  • The present invention relates to an energy recovery system for an internal combustion engine, for example for an industrial vehicle. The invention also relates to an internal combustion engine comprising such an energy recovery system.
  • For many years, attempts have been made to improve vehicle efficiency, and more particularly the engine arrangement efficiency, which has a direct impact on fuel consumption.
  • A significant amount of energy is included in the exhaust gases which have a high temperature.
  • Several systems have been designed to recover at least part of this energy. Some systems of the prior art provide a heat exchanger with the exhaust gases, designed to recover part of the exhaust gases heat and to use it, generally as work or electricity, for the operation of various elements of the vehicle.
  • Such known systems have several drawbacks. First of all, the heat exchanger arranged in the exhaust gas line requires space, brings weight and cost, in addition to the generally already existing exhaust gas after-treatment systems (such as particulate filters, selective catalytic reduction devices, etc.). Moreover, this heat exchanger can generate undesirable side-effects, such as increased backpressure in the exhaust line, which is prejudicial to the global engine efficiency and therefore reduces the benefits of the system. It therefore appears that, from several standpoints, there is room for improvement in engine arrangements.
  • It is desirable to provide an improved engine arrangement, which can overcome the drawbacks encountered in conventional engine arrangements.
  • It is also desirable to provide an energy recovery system for an engine arrangement comprising an internal combustion engine which better uses the energy contained in the exhaust gases.
  • According to an aspect of the invention, such an energy recovery system comprises an exhaust line capable of collecting exhaust gases from an exhaust manifold of the engine, said exhaust line being equipped with a particulate filter.
  • Said system further comprises a secondary line which is thermally linked with, but distinct from, the exhaust line, and which carries a fluid, in use. Said particulate filter has a filtering part in which exhaust gases can flow and a heat exchanging part in which said fluid can flow, the filtering part and heat exchanging part being arranged to transfer heat by conduction from the exhaust gases to said fluid, said secondary line being connected to energy recovery means which are capable of recovering energy from said heat.
  • In other words, according to an aspect of the invention, a single part serves both as a particulate filter and as a heat exchanger. As a consequence, the system is less bulky than prior art systems in which there is provided a filter and a heat exchanger as two separate parts. Furthermore, the invention makes it possible to make the system lighter and to reduce costs. Moreover, since no separate heat exchanger is provided, there is no added back pressure, contrary to prior art systems.
  • The invention, according to an aspect thereof makes it possible to achieve two goals. On the one hand, an aspect of the invention improves energy recovery with respect to prior art systems, because the exhaust gas passes through filtering walls, which enhances thermal exchange. The energy is continuously recovered by the filtering means and then transferred to the heat exchanging means, i.e. to the energy recovery means via the heated fluid flowing in the secondary line.
  • On the other hand, an aspect of the invention improves energy release and therefore protects the particulate filter. Indeed, because heat is transferred to the fluid flowing in the secondary line, the risk to harm the filtering means—or possible additional after-treatment devices located downstream from the particulate filter—due to too high temperature is significantly lowered. The heat released during an active regeneration of the particulate filter could be better managed and evacuated. Part of the energy produced during soot combustion by oxygen is transferred to the fluid of the secondary line. According to an embodiment of the invention, the secondary line can be a closed loop forming a Rankine thermodynamic cycle, the energy recovery means including:
      • displacement means for moving a liquid towards the particulate filter, in which said liquid is evaporated into a gas;
      • a turbine located downstream from said particulate filter, capable of expanding the gas going out of said particulate filter;
      • a condenser located downstream from said turbine, capable of condensing the expanded gas into a liquid which is carried towards said displacement means. In concrete terms, the liquid can be water, which is evaporated into steam and moved thanks to a pump. Other organic fluids can also be used.
  • According to another embodiment of the invention, the secondary line can be an open loop forming a Brayton thermodynamic cycle, the energy recovery means including:
      • a compressor located upstream from said particulate filter, capable of compressing a gas;
      • a turbine located downstream from said particulate filter, capable of expanding the gas going out of said particulate filter.
  • In an advantageous way, the compressor can be driven by the turbine. The energy recovery means may also comprise heating means (such as an electric heater or a fuel injector) and/or an fuel burning heater located downstream from said particulate filter and upstream from the turbine. This optional additional device is designed to further heat the fluid flowing in said secondary line, thanks to an external energy, to be able to retrieve more energy from the system (thanks to the gas expansion in the turbine).
  • In yet another embodiment of an aspect of the invention, the energy recovery means may comprise a thermoelectric generator and/or an endothermic reformer.
  • For example, the particulate filter can comprise a central filtering part and a heat exchanging area which surrounds at least partially said central filtering part and in which said fluid can flow.
  • The central filtering part can comprise a silicon carbide (SiC) and/or a metallic foam.
  • Preferably, the central filtering part and the heat exchanging area are housed in a canning, said canning being covered with an outer thermally insulating layer. Thus, the two functions of the particulate filter are integrated in a single part.
  • The invention also concerns, according to an aspect thereof, an internal combustion engine equipped with a system as previously described.
  • These and other advantages will become apparent upon reading the following description in view of the drawing attached hereto representing, as non-limiting examples, embodiments of a vehicle according to an aspect of the invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The following detailed description of several embodiments of the invention is better understood when read in conjunction with the appended drawing being understood, however, that the invention is not limited to the specific embodiments disclosed. In the drawing,
  • FIG. 1 is a schematic drawing of a particulate filter, showing the flow of exhaust gas and the flow of fluid in the secondary line;
  • FIG. 2 is a schematic cross section of the particulate filter of FIG. 1;
  • FIG. 3 is a schematic perspective view of the central filtering part of the particulate filter of FIG. 1;
  • FIG. 4 is a schematic drawing of a first embodiment of an energy recovery system according to the invention;
  • FIG. 5 is a schematic drawing of a second embodiment of an energy recovery system according to the invention.
  • DETAILED DESCRIPTION
  • An internal combustion engine comprises an exhaust line 1 capable of collecting exhaust gas from an exhaust manifold of the engine (not shown) towards the atmosphere. The engine is for example a diesel engine. However the invention may concern any type of internal combustion engine needing a particle filter to meet ongoing or future legislation limits.
  • Exhaust line 1 is equipped with a particulate filter 2 which performs a mechanical filtering of particles contained in the exhaust gas, resulting from an incomplete combustion process in the engine.
  • The particulate filter 2 is more particularly illustrated on FIGS. 2 and 3. Said particulate filter 2 comprises a canning 3 of generally cylindrical shape in which is housed a central filtering part 4 and a heat exchanging area 5 surrounding said central filtering part 4 (at least along the cylinder axis).
  • As illustrated in FIG. 3, the central filtering part 4 comprise a network of longitudinally extending channels 6, each channel 6 having an inlet 7 and an outlet 8 for the exhaust gas. The inlets and outlets are alternately closed by a closing wall 9. The closing wall 9 as well as longitudinal walls 10 of the filtering part 4 are made of an appropriate filtering material which is able to retain the particles contained in the flowing exhaust gas (see arrows in FIG. 3). Such a kind of particle filter is often called “wall flow”, because the exhaust gases have to go through the walls separating one channel open on one side (upstream or downstream from the filter) from another channel open on the other side (respectively downstream or upstream from the fitter) to go through the filter. This is opposed to “flow-through” kind of filter having channels which are each open at their both ends upstream and downstream of the filter.
  • The material forming the central filtering part 4 is preferably of high thermal conductivity and can comprise for example silicon carbide (SiC) and/or metallic foam. Preferably, the central filtering part 4 is unitary, composed of one piece of material. Therefore, the exhaust gases, which have to go through the walls of the filtering part, do indeed have the possibility to transfer a good proportion of the heat they contain to the said walls, i.e. to said filtering part.
  • The heat exchanging area 5 has for example the shape of an annular cylinder arranged around the filtering part 4, and comprises a cavity having an inlet 23 and an outlet 24 for the fluid carried by a secondary line 13 (as will be described later). The cavity can be formed between an inner wall 25 which surrounds the central filtering part 4, and an outer wall 26. Although the inner wall could be formed integral with the central filtering part 4, it can also be formed as a separate envelope surrounding said part. Preferably, such envelope should be in close contact with the central filtering part 4 so as to allow a good transfer of heat by conduction between the central filtering part 4 and the envelope. Of course, this envelope should be made of material having good thermal conductivity, such as a metal. Therefore, the heat which has been collected by the filtering part 4 is efficiently transferred to the inner envelope, which in turn can transfer the heat to the fluid flowing in the cavity. The envelope is preferably gas tight, so as to allow no transfer of fluid from the exhaust line 1 towards the cavity or reversely.
  • The canning 3 of the particulate filter 2 can advantageously form the outer wall of the cavity. It can be advantageously covered, on its external surface, by an outer layer 11 of a thermally insulating material.
  • The inner wall, the casing and the cavity should be constructed so as to provide a good heat transfer to the fluid, according to the techniques known to the skilled man in the art of heat exchangers.
  • Thus, a heat exchanger is integrated in the particulate filter canning 3.
  • The exhaust line 1 and the particulate filter 2 are part of an energy recovery system 12 according to the invention, which also comprise a secondary line 13 carrying a fluid. Said secondary line 13 is distinct from the exhaust line 1, but thermally linked with it, since the fluid flowing in the secondary line 13 enters the heat exchanging area 5 of the particulate filter 2, i.e. around filtering part 4, where it gets heat from the exhaust gas, and then goes out of the particulate filter 2.
  • An important aspect of the invention is that the secondary line 13 is connected to energy recovery means which are capable to make use of the energy from the heat transferred to the fluid flowing in the secondary line 13, said energy being used for various purposes in the vehicle. Two particular embodiments of the invention will now be described.
  • A first embodiment is illustrated in FIG. 4.
  • In this embodiment, the secondary line is a closed loop forming a Rankine thermodynamic cycle.
  • Water (or another liquid, such as an organic fluid) is moved by means of a pump 14 in said secondary line 13, and enters the particulate filter 2, in which said water is evaporated into steam (or another corresponding gas), thanks to the heat received from the exhaust gas. Said particulate filter 2 therefore works as an evaporator. The steam going out of said particulate filter 2 is then expanded in a turbine 15 located downstream from said particulate filter 2. The expanded steam is then condensed into water in a condenser 16 located downstream from said turbine 15, said water being again directed towards the particulate filter 2 by means of the pump 14.
  • In this embodiment, the heat of exhaust gases is recovered into work on the turbine shaft 17. A second embodiment is illustrated in FIG. 5.
  • In this embodiment, the secondary line is an open loop forming a Brayton thermodynamic cycle. A gas, for example ambient air, is first compressed in a compressor 18 located upstream from said particulate filter 2, then passes through the heat exchanging area 5 of the particulate filter 2 acting as a heat exchanger, where said air is heated by the hot exhaust gases. Downstream from said particulate filter 2, heated air reaches a turbine 19 where it is expanded, thereby transforming the energy conveyed by the air into mechanical energy.
  • Turbine 19 is mechanically connected to compressor 18 by means of a shaft 20. The energy produced by the warm air expansion is recovered into mechanical energy on said shaft 20. Said energy is partially used to operate compressor 18.
  • The system may further comprise an alternator 21 designed to produce electricity from the mechanical energy generated by the turbine 19. Electricity can be used in a hybrid vehicle (i.e. a vehicle powered by an internal combustion engine and an electric motor) or in a conventional vehicle to charge a battery, to power auxiliaries, etc.
  • An optional heating device 22, such as a fuel burner or an electric heater, can be provided between particulate filter 2 and turbine 19 to bring additional heat to the gas entering the turbine 19.
  • In further embodiments, the heat which is collected by the fluid in the secondary line 13 can be transferred to other types of energy recovery means, such as a thermoelectric generator, where heat is transformed into electricity, or such as a chemical reformer, such as a fuel reformer to produce fuel for a fuel cell.
  • Therefore, the invention takes advantage of the thermal energy contained in the exhaust gases to transform it into mechanical, electrical or chemical energy which can be used for the operation of various elements of the vehicle.
  • The particulate filter also works as a heat exchanger, the filtering and heating functions being operated in a single part, which is a great advantage of the invention.
  • Another significant advantage of the invention is that it also makes it possible to evacuate energy from the particulate filter, thereby protecting it.
  • Of course, the invention is not restricted to the embodiment described above by way of non-limiting example, but on the contrary it encompasses all embodiments thereof.

Claims (8)

1. An energy recovery system for an internal combustion engine, the system comprising an exhaust line capable of collecting exhaust gases from an exhaust manifold of the engine, the exhaust line being equipped with a particulate filter, the system further comprises a secondary line which is thermally linked with, but distinct from, the exhaust line and which carries a fluid, in use, and in that the particulate filter has a filtering part in which exhaust gases can flow and a heat exchanging part in which the fluid can flow, the filtering part and heat exchanging part being arranged to transfer heat by conduction from the exhaust gases to the fluid, the secondary line being connected to energy recovery means which are capable of recovering energy from the heat.
2. The system according to claim 1, the secondary line is a closed loop forming a Rankine thermodynamic cycle, the energy recovery means including:
displacement means for moving a liquid towards the particulate filter, in which the liquid is evaporated into a gas;
a turbine located downstream from the particulate filter, capable of expanding the gas going out of the particulate filter;
a condenser located downstream from the turbine, capable of condensing the expanded gas into a liquid which is carried towards the displacement means.
3. The system according to claim 1, the secondary line is an open loop forming a Brayton thermodynamic cycle, the energy recovery means including:
a compressor located upstream from the particulate filter, capable of compressing a gas;
a turbine located downstream from the particulate filter, capable of expanding the gas going out of the particulate filter.
4. The system according to claim 1, the energy recovery means comprise a thermoelectric generator and/or an endothermic reformer.
5. The system according to claim 1, the particulate filter comprises a central filtering part and a heat exchanging area which surrounds at least partially the central filtering part and in which the fluid can flow.
6. The system according to claim 5, the central filtering part comprises a silicon carbide (SiC) and/or a metallic foam.
7. The system according to claim 5, the central filtering part and the heat exchanging area are housed in a canning, the canning being covered with an outer thermally insulating layer (11).
8. An internal combustion engine, comprises a system according to claim 1.
US13/142,483 2008-12-30 2008-12-30 Energy recovery system for an internal combustion engine Abandoned US20110265470A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2008/003803 WO2010076588A1 (en) 2008-12-30 2008-12-30 Energy recovery system for an internal combustion engine

Publications (1)

Publication Number Publication Date
US20110265470A1 true US20110265470A1 (en) 2011-11-03

Family

ID=41019450

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/142,483 Abandoned US20110265470A1 (en) 2008-12-30 2008-12-30 Energy recovery system for an internal combustion engine

Country Status (3)

Country Link
US (1) US20110265470A1 (en)
EP (1) EP2384395B1 (en)
WO (1) WO2010076588A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110239643A1 (en) * 2008-09-26 2011-10-06 Renault Trucks Power assembly, especially for an automotive vehicle
US20130139766A1 (en) * 2010-08-27 2013-06-06 Renault Trucks Engine arrangement comprising a heat recovery circuit and an exhaust gases after-treatment system
CN114151170A (en) * 2021-12-22 2022-03-08 天津大学合肥创新发展研究院 Particle trapping-heat exchange integrated core structure with low flow resistance
CN114165318A (en) * 2021-12-09 2022-03-11 天津大学合肥创新发展研究院 Integrated device inner core for recovering waste heat of tail gas of internal combustion engine and post-processing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241211B1 (en) * 2010-12-09 2013-03-13 현대자동차주식회사 Heat exchanger for exhaust heat withdrawal of vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040128975A1 (en) * 2002-11-15 2004-07-08 Fermin Viteri Low pollution power generation system with ion transfer membrane air separation
FR2884556A1 (en) * 2005-04-13 2006-10-20 Peugeot Citroen Automobiles Sa Vehicle IC engine energy recuperator has Rankine cycle system with single loop containing compressor and evaporators connected to exhaust pipe
US20080202101A1 (en) * 2007-02-23 2008-08-28 Driscoll James J Exhaust treatment system
US20090288392A1 (en) * 2008-05-20 2009-11-26 Caterpillar Inc. Engine system having particulate reduction device and method
US20100263356A1 (en) * 2007-12-21 2010-10-21 Renault Trucks Arrangement for an exhaust line of an internal combustion engine
US20110167809A1 (en) * 2008-09-26 2011-07-14 Renault Trucks Energy recovering system for an internal combustion engine
US20110203270A1 (en) * 2008-11-06 2011-08-25 Renault Trucks Internal combustion engine system and particulate filter unit for such an internal combustion engine system
US8206470B1 (en) * 2005-08-03 2012-06-26 Jacobson William O Combustion emission-reducing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477676A (en) * 1988-04-15 1995-12-26 Midwest Research Institute Method and apparatus for thermal management of vehicle exhaust systems
DE19960762A1 (en) * 1999-12-16 2001-06-28 Daimler Chrysler Ag Energy recovery system of turbine and compressor links these by power line with compressor downstream of included heat exchanger and turbine downstream plus fresh air input to compressor.
JP4229559B2 (en) * 2000-01-21 2009-02-25 本田技研工業株式会社 Heat exchange device for multi-cylinder internal combustion engine
EP1479883A1 (en) * 2003-05-10 2004-11-24 Universität Stuttgart Method and device for exhaust gas purification
FR2868809B1 (en) * 2004-04-09 2008-07-04 Armines Ass Pour La Rech Et Le SYSTEM FOR RECOVERING THE THERMAL ENERGY OF A THERMAL MOTOR VEHICLE BY IMPLEMENTING A RANKINE CYCLE PRODUCING MECHANICAL AND / OR ELECTRICAL ENERGY BY MEANS OF A TURBINE
DE102007052117A1 (en) * 2007-10-30 2009-05-07 Voith Patent Gmbh Powertrain, especially for trucks and rail vehicles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040128975A1 (en) * 2002-11-15 2004-07-08 Fermin Viteri Low pollution power generation system with ion transfer membrane air separation
FR2884556A1 (en) * 2005-04-13 2006-10-20 Peugeot Citroen Automobiles Sa Vehicle IC engine energy recuperator has Rankine cycle system with single loop containing compressor and evaporators connected to exhaust pipe
US8206470B1 (en) * 2005-08-03 2012-06-26 Jacobson William O Combustion emission-reducing method
US20080202101A1 (en) * 2007-02-23 2008-08-28 Driscoll James J Exhaust treatment system
US20100263356A1 (en) * 2007-12-21 2010-10-21 Renault Trucks Arrangement for an exhaust line of an internal combustion engine
US20090288392A1 (en) * 2008-05-20 2009-11-26 Caterpillar Inc. Engine system having particulate reduction device and method
US20110167809A1 (en) * 2008-09-26 2011-07-14 Renault Trucks Energy recovering system for an internal combustion engine
US20110203270A1 (en) * 2008-11-06 2011-08-25 Renault Trucks Internal combustion engine system and particulate filter unit for such an internal combustion engine system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110239643A1 (en) * 2008-09-26 2011-10-06 Renault Trucks Power assembly, especially for an automotive vehicle
US8726656B2 (en) * 2008-09-26 2014-05-20 Renault Trucks Power assembly, especially for an automotive vehicle
US20130139766A1 (en) * 2010-08-27 2013-06-06 Renault Trucks Engine arrangement comprising a heat recovery circuit and an exhaust gases after-treatment system
CN114165318A (en) * 2021-12-09 2022-03-11 天津大学合肥创新发展研究院 Integrated device inner core for recovering waste heat of tail gas of internal combustion engine and post-processing
CN114151170A (en) * 2021-12-22 2022-03-08 天津大学合肥创新发展研究院 Particle trapping-heat exchange integrated core structure with low flow resistance

Also Published As

Publication number Publication date
WO2010076588A1 (en) 2010-07-08
EP2384395A1 (en) 2011-11-09
EP2384395B1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
EP3064734B1 (en) Engine cooling system
JP5976644B2 (en) Waste heat recovery system with partial recuperation
EP2522828B1 (en) Organic rankine cycle systems using waste heat from charge air cooling
JP5070290B2 (en) Heat exchanger array
US20050229595A1 (en) Thermodynamic engine
EP2384395B1 (en) Energy recovery system for an internal combustion engine
EP1201906A2 (en) Exhaust heat energy recovery system for internal combustion engine
JP2014504345A (en) Thermoelectric recovery of engine fluid and Peltier heating
MX2012000059A (en) System and method for managing thermal issues in one or more industrial processes.
US8650879B2 (en) Integration of waste heat from charge air cooling into a cascaded organic rankine cycle system
CN101603473A (en) The waste heat recovery plant of utilization Stirling engine
US20110185726A1 (en) Energy separation and recovery system for mobile application
JP2014001734A (en) Internal combustion engine with combination of rankine cycle closed loop and water infusion circulation path into engine intake device
US10294891B2 (en) Energy collector system applicable to combustion engines
US20110167809A1 (en) Energy recovering system for an internal combustion engine
WO2014096895A1 (en) Engine arrangement comprising a waste heat recovery system with a downstream heat storage device
US7059130B2 (en) Heat exchanger applicable to fuel-reforming system and turbo-generator system
WO2014096892A1 (en) Engine arrangement comprising a separate heat storage device
JP2007154792A (en) Energy recovery device of internal combustion engine
JPS622127B2 (en)
CN111527297B (en) Device for converting thermal energy from heat lost from an internal combustion engine
CN108643994B (en) Multistage combined recovery device for exhaust energy of vehicle-mounted engine
JPS58220945A (en) Heat energy recovery device in engine
US9874130B2 (en) Vehicle internal combustion engine arrangement comprising a waste heat recovery system for compressing exhaust gases
CN108644021B (en) Multi-stage combined recovery control method for exhaust energy of vehicle-mounted engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENAULT TRUCKS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEJEUNE, MARC;IOJOIU, EDUARD;SIGNING DATES FROM 20110627 TO 20110628;REEL/FRAME:026512/0695

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION