US20110263682A1 - Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 - Google Patents

Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 Download PDF

Info

Publication number
US20110263682A1
US20110263682A1 US13/094,571 US201113094571A US2011263682A1 US 20110263682 A1 US20110263682 A1 US 20110263682A1 US 201113094571 A US201113094571 A US 201113094571A US 2011263682 A1 US2011263682 A1 US 2011263682A1
Authority
US
United States
Prior art keywords
seq
exon
skipping
molecule
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/094,571
Inventor
Josephus Johannes De Kimpe
Gerardus Johannes Platenburg
Judith Christina Theodora Van Deutekom
Annemieke Aartsma-Rus
Garrit-Jan Boudewijn van Ommen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leids Universitair Medisch Centrum LUMC
Biomarin Technologies BV
Original Assignee
Leids Universitair Medisch Centrum LUMC
Prosensa BV
Prosensa Tech BV
PROSENSA HOLDING BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39045623&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110263682(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/NL2009/050113 external-priority patent/WO2010050802A2/en
Application filed by Leids Universitair Medisch Centrum LUMC, Prosensa BV, Prosensa Tech BV, PROSENSA HOLDING BV filed Critical Leids Universitair Medisch Centrum LUMC
Assigned to PROSENSA TECHNOLOGIES B.V., PROSENSA HOLDING B.V., PROSENSA B.V., ACADEMISCH ZIEKENHUIS LEIDEN reassignment PROSENSA TECHNOLOGIES B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AARTSMA-RUS, ANNEMIEKE, DE KIMPE, JOSEPHUS JOHANNES, PLATENBURG, GERARDUS JOHANNES, VAN DEUTEKOM, JUDITH CHRISTINA THEODORA, VAN OMMEN, GARRIT-JAN BOUDENWIJN
Publication of US20110263682A1 publication Critical patent/US20110263682A1/en
Assigned to PROSENSA HOLDING B.V. reassignment PROSENSA HOLDING B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROSENSA B.V.
Assigned to PROSENSA TECHNOLOGIES B.V. reassignment PROSENSA TECHNOLOGIES B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROSENSA HOLDING N.V.
Assigned to PROSENSA HOLDING N.V. reassignment PROSENSA HOLDING N.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROSENSA HOLDING B.V.
Assigned to PROSENSA TECHNOLOGIES B.V. reassignment PROSENSA TECHNOLOGIES B.V. CHANGE OF ADDRESS OF ASSIGNEE Assignors: PROSENSA TECHNOLOGIES B.V.
Priority to US14/631,686 priority Critical patent/US9499818B2/en
Assigned to BIOMARIN TECHNOLOGIES B.V. reassignment BIOMARIN TECHNOLOGIES B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROSENSA TECHNOLOGIES B.V.
Priority to US15/289,053 priority patent/US20170044534A1/en
Priority to US16/024,558 priority patent/US10876114B2/en
Priority to US17/129,117 priority patent/US20210139904A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1719Muscle proteins, e.g. myosin or actin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/313Phosphorodithioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/314Phosphoramidates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3181Peptide nucleic acid, PNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3233Morpholino-type ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing

Definitions

  • Myopathies are disorders that result in functional impairment of muscles.
  • Muscular dystrophy refers to genetic diseases that are characterized by progressive weakness and degeneration of skeletal muscles.
  • Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most common childhood forms of muscular dystrophy. They are recessive disorders and because the gene responsible for DMD and BMD resides on the X-chromosome, mutations mainly affect males with an incidence of about 1 in 3500 boys.
  • DMD and BMD are caused by genetic defects in the DMD gene encoding dystrophin, a muscle protein that is required for interactions between the cytoskeleton and the extracellular matrix to maintain muscle fiber stability during contraction.
  • DMD is a severe, lethal neuromuscular disorder resulting in a dependency on wheelchair support before the age of 12 and DMD patients often die before the age of thirty due to respiratory- or heart failure. In contrast, BMD patients often remain ambulatory until later in life, and have near normal life expectancies.
  • DMD mutations in the DMD gene are characterized by frame shifting insertions or deletions or nonsense point mutations, resulting in the absence of functional dystrophin. BMD mutations in general keep the reading frame intact, allowing synthesis of a partly functional dystrophin.
  • DMD Duchenne muscular dystrophy
  • AONs antisense oligonucleotides interfering with splicing signals the skipping of specific exons can be induced in the DMD pre-mRNA, thus restoring the open reading frame and converting the severe DMD into a milder BMD phenotype (van Deutekom et al. Hum Mol. Genet. 2001; 10: 1547-54; Aartsma-Rus et al., Hum Mol Genet. 2003; 12(8):907-14.).
  • In vivo proof-of-concept was first obtained in the mdx mouse model, which is dystrophin-deficient due to a nonsense mutation in exon 23.
  • Intramuscular and intravenous injections of AONs targeting the mutated exon 23 restored dystrophin expression for at least three months (Lu et al. Nat. Med. 2003; 8: 1009-14; Lu et al., Proc Natl Acad Sci USA. 2005; 102(1):198-203). This was accompanied by restoration of dystrophin-associated proteins at the fiber membrane as well as functional improvement of the treated muscle.
  • In vivo skipping of human exons has also been achieved in the hDMD mouse model, which contains a complete copy of the human DMD gene integrated in chromosome 5 of the mouse (Bremmer-Bout et al. Molecular Therapy. 2004; 10: 232-40; 't Hoen et al. J Biol. Chem. 2008; 283: 5899-907).
  • the present invention provides a method for inducing, and/or promoting skipping of at least one of exons 43, 46, 50-53 of the DMD pre-mRNA in a patient, preferably in an isolated cell of a patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon. It is to be understood that said method encompasses an in vitro, in vivo or ex vivo method.
  • a method for inducing and/or promoting skipping of at least one of exons 43, 46, 50-53 of DMD pre-mRNA in a patient, preferably in an isolated cell of said patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon.
  • a DMD pre-mRNA preferably means the pre-mRNA of a DMD gene of a DMD or BMD patient.
  • a patient is preferably intended to mean a patient having DMD or BMD as later defined herein or a patient susceptible to develop DMD or BMD due to his or her genetic background.
  • an oligonucleotide used will preferably correct one mutation as present in the DMD gene of said patient and therefore will preferably create a DMD protein that will look like a BMD protein: said protein will preferably be a functional dystrophin as later defined herein.
  • an oligonucleotide as used will preferably correct one mutation as present in the BMD gene of said patient and therefore will preferably create a dystrophin which will be more functional than the dystrophin which was originally present in said BMD patient.
  • Exon skipping refers to the induction in a cell of a mature mRNA that does not contain a particular exon that is normally present therein. Exon skipping is performed by providing a cell expressing the pre-mRNA of said mRNA with a molecule capable of interfering with essential sequences such as for example the splice donor of splice acceptor sequence that required for splicing of said exon, or a molecule that is capable of interfering with an exon inclusion signal that is required for recognition of a stretch of nucleotides as an exon to be included in the mRNA.
  • the term pre-mRNA refers to a non-processed or partly processed precursor mRNA that is synthesized from a DNA template in the cell nucleus by transcription.
  • inducing and/or promoting skipping of an exon as indicated herein means that at least 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the DMD mRNA in one or more (muscle) cells of a treated patient will not contain said exon. This is preferably assessed by PCR as described in the examples.
  • a method of the invention by inducing and/or promoting skipping of at least one of the following exons 43, 46, 50-53 of the DMD pre-mRNA in one or more (muscle) cells of a patient, provides said patient with a functional dystrophin protein and/or decreases the production of an aberrant dystrophin protein in said patient and/or increases the production of a functional dystrophin is said patient.
  • Providing a patient with a functional dystrophin protein and/or decreasing the production of an aberrant dystrophin protein in said patient is typically applied in a DMD patient.
  • Increasing the production of a functional dystrophin is typically applied in a BMD patient.
  • a preferred method is a method, wherein a patient or one or more cells of said patient is provided with a functional dystrophin protein and/or wherein the production of an aberrant dystrophin protein in said patient is decreased and/or wherein the production of a functional dystrophin is increased in said patient, wherein the level of said aberrant or functional dystrophin is assessed by comparison to the level of said dystrophin in said patient at the onset of the method.
  • Decreasing the production of an aberrant dystrophin may be assessed at the mRNA level and preferably means that 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5% or less of the initial amount of aberrant dystrophin mRNA, is still detectable by RT PCR.
  • An aberrant dystrophin mRNA or protein is also referred to herein as a non-functional dystrophin mRNA or protein.
  • a non functional dystrophin protein is preferably a dystrophin protein which is not able to bind actin and/or members of the DGC protein complex.
  • a non-functional dystrophin protein or dystrophin mRNA does typically not have, or does not encode a dystrophin protein with an intact C-terminus of the protein.
  • Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the mRNA level (by RT-PCR analysis) and preferably means that a detectable amount of a functional dystrophin mRNA is detectable by RT PCR.
  • 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin mRNA is a functional dystrophin mRNA.
  • Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the protein level (by immuno fluorescence and western blot analyses) and preferably means that a detectable amount of a functional dystrophin protein is detectable by immunofluorescence or western blot analysis.
  • 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin protein is a functional dystrophin protein.
  • a functional dystrophin is preferably a wild type dystrophin corresponding to a protein having the amino acid sequence as identified in SEQ ID NO: 1.
  • a functional dystrophin is preferably a dystrophin, which has an actin binding domain in its N terminal part (first 240 amino acids at the N terminus), a cystein-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) each of these domains being present in a wild type dystrophin as known to the skilled person.
  • the amino acids indicated herein correspond to amino acids of the wild type dystrophin being represented by SEQ ID NO:1.
  • a functional dystrophin is a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin. “At least to some extent” preferably means at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% of a corresponding activity of a wild type functional dystrophin.
  • an activity of a functional dystrophin is preferably binding to actin and to the dystrophin-associated glycoprotein complex (DGC) (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). Binding of dystrophin to actin and to the DGC complex may be visualized by either co-immunoprecipitation using total protein extracts or immuno fluorescence analysis of cross-sections, from a muscle biopsy, as known to the skilled person.
  • DGC dystrophin-associated glycoprotein complex
  • Duchenne muscular dystrophy typically have a mutation in the gene encoding dystrophin that prevent synthesis of the complete protein, i.e of a premature stop prevents the synthesis of the C-terminus.
  • the DMD gene also comprises a mutation compared tot the wild type gene but the mutation does typically not induce a premature stop and the C-terminus is typically synthesized.
  • a functional dystrophin protein is synthesized that has at least the same activity in kind as the wild type protein, not although not necessarily the same amount of activity.
  • the genome of a BMD individual typically encodes a dystrophin protein comprising the N terminal part (first 240 amino acids at the N terminus), a cystein-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144).
  • Exon skipping for the treatment of DMD is typically directed to overcome a premature stop in the pre-mRNA by skipping an exon in the rod-shaped domain to correct the reading frame and allow synthesis of remainder of the dystrophin protein including the C-terminus, albeit that the protein is somewhat smaller as a result of a smaller rod domain.
  • an individual having DMD and being treated by a method as defined herein will be provided a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin.
  • a functional dystrophin is a dystrophin of an individual having BMD: typically said dystrophin is able to interact with both actin and the DGC, but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144).
  • the central rod-shaped domain of wild type dystrophin comprises 24 spectrin-like repeats (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144).
  • a central rod-shaped domain of a dystrophin as provided herein may comprise 5 to 23, 10 to 22 or 12 to 18 spectrin-like repeats as long as it can bind to actin and to DGC.
  • a method of the invention may alleviate one or more characteristics of a myogenic or muscle cell of a patient or alleviate one or more symptoms of a DMD patient having a deletion including but not limited to exons 44, 44-46, 44-47, 44-48, 44-49, 44-51, 44-53 (correctable by exon 43 skipping), 19-45, 21-45, 43-45, 45, 47-54, 47-56 (correctable by exon 46 skipping), 51, 51-53, 51-55, 51-57 (correctable by exon 50 skipping), 13-50, 19-50, 29-50, 43-50, 45-50, 47-50, 48-50, 49-50, 50, 52 (correctable by exon 51 skipping), exons 8-51, 51, 53, 53-55, 53-57, 53-59, 53-60, (correctable by exon 52 skipping) and exons 10-52, 42-52, 43-52, 45-52, 47-52, 48-52, 49-52, 50-52, 52 (correctable by exon 53
  • a method of the invention may improve one or more characteristics of a muscle cell of a patient or alleviate one or more symptoms of a DMD patient having small mutations in, or single exon duplications of exon 43, 46, 50-53 in the DMD gene, occurring in a total of 36% of all DMD patients with a deletion (Aartsma-Rus et al, Hum. Mut. 2009)
  • exon 46 and/or exon 50-53 is required to restore the open reading frame, including patients with specific deletions, small (point) mutations, or double or multiple exon duplications, such as (but not limited to) a deletion of exons 44-50 requiring the co-skipping of exons 43 and 51, with a deletion of exons 46-50 requiring the co-skipping of exons 45 and 51, with a deletion of exons 44-52 requiring the co-skipping of exons 43 and 53, with a deletion of exons 46-52 requiring the co-skipping of exons 45 and 53, with a deletion of exons 51-54 requiring the co-skipping of exons 50 and 55, with a deletion of exons 53-54 requiring the co-skipping of exons 52 and 55, with a deletion of exons 53-56 requiring the co-skipping of exons 52 and 57,
  • the skipping of exon 43 is induced, or the skipping of exon 46 is induced, or the skipping of exon 50 is induced or the skipping of exon 51 is induced or the skipping of exon 52 is induced or the skipping of exon 53 is induced.
  • An induction of the skipping of two of these exons is also encompassed by a method of the invention. For example, preferably skipping of exons 50 and 51, or 52 and 53, or 43 and 51, or 43 and 53, or 51 and 52.
  • the skilled person will know which combination of exons needs to be skipped in said patient.
  • one or more symptom(s) of a DMD or a BMD patient is/are alleviated and/or one or more characteristic(s) of one or more muscle cells from a DMD or a BMD patient is/are improved.
  • symptoms or characteristics may be assessed at the cellular, tissue level or on the patient self.
  • An alleviation of one or more characteristics may be assessed by any of the following assays on a myogenic cell or muscle cell from a patient: reduced calcium uptake by muscle cells, decreased collagen synthesis, altered morphology, altered lipid biosynthesis, decreased oxidative stress, and/or improved muscle fiber function, integrity, and/or survival. These parameters are usually assessed using immunofluorescence and/or histochemical analyses of cross sections of muscle biopsies.
  • the improvement of muscle fiber function, integrity and/or survival may be assessed using at least one of the following assays: a detectable decrease of creatine kinase in blood, a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic, and/or a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic.
  • a detectable decrease of creatine kinase in blood a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic
  • a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic are known to the skilled person.
  • Creatine kinase may be detected in blood as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006).
  • a detectable decrease in creatine kinase may mean a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more compared to the concentration of creatine kinase in a same DMD or BMD patient before treatment.
  • a detectable decrease of necrosis of muscle fibers is preferably assessed in a muscle biopsy, more preferably as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006) using biopsy cross-sections.
  • a detectable decrease of necrosis may be a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the area wherein necrosis has been identified using biopsy cross-sections. The decrease is measured by comparison to the necrosis as assessed in a same DMD or BMD patient before treatment.
  • a detectable increase of the homogeneity of the diameter of a muscle fiber is preferably assessed in a muscle biopsy cross-section, more preferably as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). The increase is measured by comparison to the homogeneity of the diameter of a muscle fiber in a same DMD or BMD patient before treatment
  • An alleviation of one or more symptoms may be assessed by any of the following assays on the patient self: prolongation of time to loss of walking, improvement of muscle strength, improvement of the ability to lift weight, improvement of the time taken to rise from the floor, improvement in the nine-meter walking time, improvement in the time taken for four-stairs climbing, improvement of the leg function grade, improvement of the pulmonary function, improvement of cardiac function, improvement of the quality of life.
  • assays are known to the skilled person.
  • Detectable improvement or prolongation is preferably a statistically significant improvement or prolongation as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006).
  • the alleviation of one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy may be assessed by measuring an improvement of a muscle fiber function, integrity and/or survival as later defined herein.
  • a treatment in a method according to the invention may have a duration of at least one week, at least one month, at least several months, at least one year, at least 2, 3, 4, 5, 6 years or more.
  • Each molecule or oligonucleotide or equivalent thereof as defined herein for use according to the invention may be suitable for direct administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing DMD or BMD, and may be administered directly in vivo, ex vivo or in vitro.
  • the frequency of administration of a molecule or an oligonucleotide or a composition of the invention may depend on several parameters such as the age of the patient, the mutation of the patient, the number of molecules (dose), the formulation of said molecule. The frequency may be ranged between at least once in a two weeks, or three weeks or four weeks or five weeks or a longer time period.
  • a molecule or oligonucleotide or equivalent thereof can be delivered as is to a cell.
  • a solution that is compatible with the delivery method.
  • the solution is a physiological salt solution.
  • an excipient that will further enhance delivery of said molecule, oligonucleotide or functional equivalent thereof as defined herein, to a cell and into a cell, preferably a muscle cell.
  • Preferred excipient are defined in the section entitled “pharmaceutical composition”.
  • an additional molecule is used which is able to induce and/or promote skipping of another exon of the DMD pre-mRNA of a patient.
  • the second exon is selected from: exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA of a patient.
  • Molecules which can be used are depicted in any one of Table 1 to 7. This way, inclusion of two or more exons of a DMD pre-mRNA in mRNA produced from this pre-mRNA is prevented.
  • This embodiment is further referred to as double- or multi-exon skipping (Aartsma-Rus A, Janson A A, Kaman W E, et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet. 2004; 74(1):83-92, Aartsma-Rus A, Kaman W E, Weij R, den Dunnen J T, van Ommen G J, van Deutekom J C. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14(3):401-7). In most cases double-exon skipping results in the exclusion of only the two targeted exons from the DMD pre-mRNA.
  • stretches of nucleotides complementary to at least two dystrophin exons are separated by a linking moiety.
  • the at least two stretches of nucleotides are thus linked in this embodiment so as to form a single molecule.
  • said compounds can be administered to an individual in any order.
  • said compounds are administered simultaneously (meaning that said compounds are administered within 10 hours, preferably within one hour). This is however not necessary.
  • said compounds are administered sequentially.
  • a molecule as defined herein is preferably an oligonucleotide or antisense oligonucleotide (AON).
  • any of exon 43, 46, 50-53 is specifically skipped at a high frequency using a molecule that preferably binds to a continuous stretch of at least 8 nucleotides within said exon.
  • this effect can be associated with a higher binding affinity of said molecule, compared to a molecule that binds to a continuous stretch of less than 8 nucleotides, there could be other intracellular parameters involved that favor thermodynamic, kinetic, or structural characteristics of the hybrid duplex.
  • a molecule that binds to a continuous stretch of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides within said exon is used.
  • a molecule or an oligonucleotide of the invention which comprises a sequence that is complementary to a part of any of exon 43, 46, 50-53 of DMD pre-mRNA is such that the complementary part is at least 50% of the length of the oligonucleotide of the invention, more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, even more preferably at least 90% or even more preferably at least 95%, or even more preferably 98% and most preferably up to 100%.
  • “A part of said exon” preferably means a stretch of at least 8 nucleotides.
  • an oligonucleotide of the invention consists of a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein.
  • an oligonucleotide may comprise a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein and additional flanking sequences.
  • the length of said complementary part of said oligonucleotide is of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides.
  • additional flanking sequences are used to modify the binding of a protein to said molecule or oligonucleotide, or to modify a thermodynamic property of the oligonucleotide, more preferably to modify target RNA binding affinity.
  • a preferred molecule to be used in a method of the invention binds or is complementary to a continuous stretch of at least 8 nucleotides within one of the following nucleotide sequences selected from:
  • the invention provides distinct molecules that can be used in a method for efficiently skipping of at least one of exon 43, exon 46 and/or exon 50-53.
  • skipping effect can be addressed to the relatively high density of putative SR protein binding sites within said stretches, there could be other parameters involved that favor uptake of the molecule or other, intracellular parameters such as thermodynamic, kinetic, or structural characteristics of the hybrid duplex.
  • a molecule that binds to a continuous stretch comprised within or consisting of any of SEQ ID NO 2-7 results in highly efficient skipping of exon 43, exon 46 and/or exon 50-53 respectively in a cell and/or in a patient provided with this molecule. Therefore, in a preferred embodiment, a method is provided wherein a molecule binds to a continuous stretch of at least 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, 50 nucleotides within SEQ ID NO 2-7.
  • the invention provides a molecule comprising or consisting of an antisense nucleotide sequence selected from the antisense nucleotide sequences depicted in any of Tables 1 to 6.
  • a molecule of the invention preferably comprises or consist of the antisense nucleotide sequence of SEQ ID NO 16, SEQ ID NO 65, SEQ ID NO 70, SEQ ID NO 91, SEQ ID NO 110, SEQ ID NO 117, SEQ ID NO 127, SEQ ID NO 165, SEQ ID NO 166, SEQ ID NO 167, SEQ ID NO 246, SEQ ID NO 299, SEQ ID NO:357.
  • a preferred molecule of the invention comprises a nucleotide-based or nucleotide or an antisense oligonucleotide sequence of between 8 and 50 nucleotides or bases, more preferred between 10 and 50 nucleotides, more preferred between 20 and 40 nucleotides, more preferred between 20 and 30 nucleotides, such as 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, 40 nucleotides, 41 nucleotides, 42 nucleotides, 43 nucleot
  • a most preferred molecule of the invention comprises a nucleotide-based sequence of 25 nucleotides.
  • a molecule of the invention is a compound molecule that binds to the specified sequence, or a protein such as an RNA-binding protein or a non-natural zinc-finger protein that has been modified to be able to bind to the corresponding nucleotide sequence on a DMD pre-RNA molecule.
  • Methods for screening compound molecules that bind specific nucleotide sequences are, for example, disclosed in PCT/NL01/00697 and U.S. Pat. No. 6,875,736, which are herein incorporated by reference.
  • Methods for designing RNA-binding Zinc-finger proteins that bind specific nucleotide sequences are disclosed by Friesen and Darby, Nature Structural Biology 5: 543-546 (1998) which is herein incorporated by reference.
  • a preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 2: 5′-AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAU AGCAAGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′ which is present in exon 43 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 8 to SEQ ID NO 69.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 16 and/or SEQ ID NO 65.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 65. It was found that this molecule is very efficient in modulating splicing of exon 43 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 3: 5′-UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUG AACCUGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′ which is present in exon 46 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70 to SEQ ID NO 122. In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70, SEQ ID NO 91, SEQ ID NO 110, and/or SEQ ID NO 117.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 117. It was found that this molecule is very efficient in modulating splicing of exon 46 of the DMD pre-mRNA in a muscle cell or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 4: 5′-GGCGGTAAACCGUUUACUUCAAGAGCU GAGGGCAAAGCAGCCUG ACCUAGCUCCUGGACUGACCACUAUUGG-3′ which is present in exon 50 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 123 to SEQ ID NO 167 and/or SEQ ID NO 529 to SEQ ID NO 535.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127, or SEQ ID NO 165, or SEQ ID NO 166 and/or SEQ ID NO 167.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127. It was found that this molecule is very efficient in modulating splicing of exon 50 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 5: 5′-CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACU AAGGAAACUGCCAUC UCCAAACUAGAAAUGCCAUCUUCCUUGAUG UUGGAGGUAC-3′ which is present in exon 51 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 168 to SEQ ID NO 241.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 6: 5′-AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAU UACCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′ which is present in exon 52 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 242 to SEQ ID NO 310. In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 246 and/or SEQ ID NO 299.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 299. It was found that this molecule is very efficient in modulating splicing of exon 52 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 7: 5′-AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAA GCUGAGCAGGUCUUAGGACAGGCCAGAG-3′ which is present in exon 53 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 311 to SEQ ID NO 358.
  • the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 357. It was found that this molecule is very efficient in modulating splicing of exon 53 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • a nucleotide sequence of a molecule of the invention may contain RNA residues, or one or more DNA residues, and/or one or more nucleotide analogues or equivalents, as will be further detailed herein below.
  • a molecule of the invention comprises one or more residues that are modified to increase nuclease resistance, and/or to increase the affinity of the antisense nucleotide for the target sequence. Therefore, in a preferred embodiment, the antisense nucleotide sequence comprises at least one nucleotide analogue or equivalent, wherein a nucleotide analogue or equivalent is defined as a residue having a modified base, and/or a modified backbone, and/or a non-natural internucleoside linkage, or a combination of these modifications.
  • the nucleotide analogue or equivalent comprises a modified backbone.
  • backbones are provided by morpholino backbones, carbamate backbones, siloxane backbones, sulfide, sulfoxide and sulfone backbones, formacetyl and thioformacetyl backbones, methyleneformacetyl backbones, riboacetyl backbones, alkene containing backbones, sulfamate, sulfonate and sulfonamide backbones, methyleneimino and methylenehydrazino backbones, and amide backbones.
  • Phosphorodiamidate morpholino oligomers are modified backbone oligonucleotides that have previously been investigated as antisense agents.
  • Morpholino oligonucleotides have an uncharged backbone in which the deoxyribose sugar of DNA is replaced by a six membered ring and the phosphodiester linkage is replaced by a phosphorodiamidate linkage.
  • Morpholino oligonucleotides are resistant to enzymatic degradation and appear to function as antisense agents by arresting translation or interfering with pre-mRNA splicing rather than by activating RNase H.
  • Morpholino oligonucleotides have been successfully delivered to tissue culture cells by methods that physically disrupt the cell membrane, and one study comparing several of these methods found that scrape loading was the most efficient method of delivery; however, because the morpholino backbone is uncharged, cationic lipids are not effective mediators of morpholino oligonucleotide uptake in cells. A recent report demonstrated triplex formation by a morpholino oligonucleotide and, because of the non-ionic backbone, these studies showed that the morpholino oligonucleotide was capable of triplex formation in the absence of magnesium.
  • the linkage between the residues in a backbone do not include a phosphorus atom, such as a linkage that is formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
  • a preferred nucleotide analogue or equivalent comprises a Peptide Nucleic Acid (PNA), having a modified polyamide backbone (Nielsen, et al. (1991) Science 254, 1497-1500). PNA-based molecules are true mimics of DNA molecules in terms of base-pair recognition.
  • the backbone of the PNA is composed of N-(2-aminoethyl)-glycine units linked by peptide bonds, wherein the nucleobases are linked to the backbone by methylene carbonyl bonds.
  • An alternative backbone comprises a one-carbon extended pyrrolidine PNA monomer (Govindaraju and Kumar (2005) Chem. Commun, 495-497).
  • PNA-RNA hybrids are usually more stable than RNA-RNA or RNA-DNA hybrids, respectively (Egholm et al (1993) Nature 365, 566-568).
  • a further preferred backbone comprises a morpholino nucleotide analog or equivalent, in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring.
  • a most preferred nucleotide analog or equivalent comprises a phosphorodiamidate morpholino oligomer (PMO), in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring, and the anionic phosphodiester linkage between adjacent morpholino rings is replaced by a non-ionic phosphorodiamidate linkage.
  • PMO phosphorodiamidate morpholino oligomer
  • a nucleotide analogue or equivalent of the invention comprises a substitution of one of the non-bridging oxygens in the phosphodiester linkage. This modification slightly destabilizes base-pairing but adds significant resistance to nuclease degradation.
  • a preferred nucleotide analogue or equivalent comprises phosphorothioate, chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, H-phosphonate, methyl and other alkyl phosphonate including 3′-alkylene phosphonate, 5′-alkylene phosphonate and chiral phosphonate, phosphinate, phosphoramidate including 3′-amino phosphoramidate and aminoalkylphosphoramidate, thionophosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate or boranophosphate.
  • a further preferred nucleotide analogue or equivalent of the invention comprises one or more sugar moieties that are mono- or disubstituted at the 2′, 3′ and/or 5′ position such as a —OH; —F; substituted or unsubstituted, linear or branched lower (C1-C10) alkyl, alkenyl, alkynyl, alkaryl, allyl, aryl, or aralkyl, that may be interrupted by one or more heteroatoms; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; O-, S-, or N-allyl; O-alkyl-O-alkyl, -methoxy, -aminopropoxy; -aminoxy; methoxyethoxy; -dimethylaminooxyethoxy; and -dimethylaminoethoxyethoxy.
  • the sugar moiety can be a pyranose or derivative thereof, or a deoxypyranose or derivative thereof, preferably a ribose or a derivative thereof, or a deoxyribose or a derivative thereof.
  • Such preferred derivatized sugar moieties comprise Locked Nucleic Acid (LNA), in which the 2′-carbon atom is linked to the 3′ or 4′ carbon atom of the sugar ring thereby forming a bicyclic sugar moiety.
  • LNA Locked Nucleic Acid
  • a preferred LNA comprises 2′-O,4′-C-ethylene-bridged nucleic acid (Morita et al. 2001. Nucleic Acid Res Supplement No. 1: 241-242). These substitutions render the nucleotide analogue or equivalent RNase H and nuclease resistant and increase the affinity for the target RNA.
  • an antisense oligonucleotide of the invention has at least two different types of analogues or equivalents.
  • a preferred antisense oligonucleotide according to the invention comprises a 2′-O alkyl phosphorothioate antisense oligonucleotide, such as 2′-O-methyl modified ribose (RNA), 2′-O-ethyl modified ribose, 2′-O-propyl modified ribose, and/or substituted derivatives of these modifications such as halogenated derivatives.
  • RNA 2′-O-methyl modified ribose
  • 2′-O-ethyl modified ribose 2′-O-propyl modified ribose
  • substituted derivatives of these modifications such as halogenated derivatives.
  • a most preferred antisense oligonucleotide according to the invention comprises of 2′-O-methyl phosphorothioate ribose.
  • a functional equivalent of a molecule of the invention may be defined as an oligonucleotide as defined herein wherein an activity of said functional equivalent is retained to at least some extent.
  • an activity of said functional equivalent is inducing exon 43, 46, 50, 51, 52, or 53 skipping and providing a functional dystrophin protein. Said activity of said functional equivalent is therefore preferably assessed by detection of exon 43, 46, 50, 51, 52, or 53 skipping and by quantifying the amount of functional dystrophin protein.
  • a functional dystrophin is herein preferably defined as being a dystrophin able to bind actin and members of the DGC protein complex.
  • the assessment of said activity of an oligonucleotide is preferably done by RT-PCR or by immunofluorescence or Western blot analyses. Said activity is preferably retained to at least some extent when it represents at least 50%, or at least 60%, or at least 70% or at least 80% or at least 90% or at least 95% or more of corresponding activity of said oligonucleotide the functional equivalent derives from. Throughout this application, when the word oligonucleotide is used it may be replaced by a functional equivalent thereof as defined herein.
  • distinct antisense oligonucleotides can be combined for efficiently skipping any of exon 43, exon 46, exon 50, exon 51, exon 52 and/or exon 53 of the human DMD pre-mRNA. It is encompassed by the present invention to use one, two, three, four, five or more oligonucleotides for skipping one of said exons (i.e. exon, 43, 46, 50, 51, 52, or 53). It is also encompassed to use at least two oligonucleotides for skipping at least two, of said exons. Preferably two of said exons are skipped. More preferably, these two exons are:
  • An antisense oligonucleotide can be linked to a moiety that enhances uptake of the antisense oligonucleotide in cells, preferably muscle cells.
  • moieties are cholesterols, carbohydrates, vitamins, biotin, lipids, phospholipids, cell-penetrating peptides including but not limited to antennapedia, TAT, transportan and positively charged amino acids such as oligoarginine, poly-arginine, oligolysine or polylysine, antigen-binding domains such as provided by an antibody, a Fab fragment of an antibody, or a single chain antigen binding domain such as a cameloid single domain antigen-binding domain.
  • a preferred antisense oligonucleotide comprises a peptide-linked PMO.
  • a preferred antisense oligonucleotide comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery.
  • systemic delivery of an antisense oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an antisense oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells.
  • a combination of antisense oligonucleotides comprising different nucleotide analogs or equivalents for inducing skipping of exon 43, 46, 50, 51, 52, or 53 of the human DMD pre-mRNA.
  • a cell can be provided with a molecule capable of interfering with essential sequences that result in highly efficient skipping of exon 43, exon 46, exon 50, exon 51, exon 52 or exon 53 of the human DMD pre-mRNA by plasmid-derived antisense oligonucleotide expression or viral expression provided by adenovirus- or adeno-associated virus-based vectors.
  • a viral-based expression vector comprising an expression cassette that drives expression of a molecule as identified herein. Expression is preferably driven by a polymerase III promoter, such as a U1, a U6, or a U7 RNA promoter.
  • a muscle or myogenic cell can be provided with a plasmid for antisense oligonucleotide expression by providing the plasmid in an aqueous solution.
  • a plasmid can be provided by transfection using known transfection agentia such as, for example, LipofectAMINETM 2000 (Invitrogen) or polyethyleneimine (PEI; ExGen500 (MBI Fermentas)), or derivatives thereof.
  • AAV adenovirus associated virus
  • a preferred AAV-based vector comprises an expression cassette that is driven by a polymerase III-promoter (Pol III).
  • Pol III polymerase III-promoter
  • a preferred Pol III promoter is, for example, a U1, a U6, or a U7 RNA promoter.
  • the invention therefore also provides a viral-based vector, comprising a Pol III-promoter driven expression cassette for expression of one or more antisense sequences of the invention for inducing skipping of exon 43, exon 46, exon 50, exon 51, exon 52 or exon 53 of the human DMD pre-mRNA.
  • a molecule or a vector expressing an antisense oligonucleotide of the invention can be incorporated into a pharmaceutically active mixture or composition by adding a pharmaceutically acceptable carrier.
  • the invention provides a composition, preferably a pharmaceutical composition comprising a molecule comprising an antisense oligonucleotide according to the invention, and/or a viral-based vector expressing the antisense sequence(s) according to the invention and a pharmaceutically acceptable carrier.
  • a preferred pharmaceutical composition comprises a molecule as defined herein and/or a vector as defined herein, and a pharmaceutical acceptable carrier or excipient, optionally combined with a molecule and/or a vector as defined herein which is able to induce skipping of exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA.
  • Preferred molecules able to induce skipping of any of these exon are identified in any one of Tables 1 to 7.
  • Preferred excipients include excipients capable of forming complexes, vesicles and/or liposomes that deliver such a molecule as defined herein, preferably an oligonucleotide complexed or trapped in a vesicle or liposome through a cell membrane. Many of these excipients are known in the art.
  • Suitable excipients comprise polyethylenimine and derivatives, or similar cationic polymers, including polypropyleneimine or polyethylenimine copolymers (PECs) and derivatives, ExGen 500, synthetic amphiphils (SAINT-18), LipofectinTM, DOTAP and/or viral capsid proteins that are capable of self assembly into particles that can deliver such molecule, preferably an oligonucleotide as defined herein to a cell, preferably a muscle cell.
  • excipients have been shown to efficiently deliver (oligonucleotide such as antisense) nucleic acids to a wide variety of cultured cells, including muscle cells. Their high transfection potential is combined with an excepted low to moderate toxicity in terms of overall cell survival. The ease of structural modification can be used to allow further modifications and the analysis of their further (in vivo) nucleic acid transfer characteristics and toxicity.
  • Lipofectin represents an example of a liposomal transfection agent. It consists of two lipid components, a cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) (cp. DOTAP which is the methylsulfate salt) and a neutral lipid dioleoylphosphatidylethanolamine (DOPE). The neutral component mediates the intracellular release.
  • DOTMA cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride
  • DOPE neutral lipid dioleoylphosphatidylethanolamine
  • Another group of delivery systems are polymeric nanoparticles.
  • Polycations such like diethylaminoethylaminoethyl (DEAE)-dextran, which are well known as DNA transfection reagent can be combined with butylcyanoacrylate (PBCA) and hexylcyanoacrylate (PHCA) to formulate cationic nanoparticles that can deliver a molecule or a compound as defined herein, preferably an oligonucleotide across cell membranes into cells.
  • PBCA butylcyanoacrylate
  • PHCA hexylcyanoacrylate
  • the cationic peptide protamine offers an alternative approach to formulate a compound as defined herein, preferably an oligonucleotide as colloids.
  • This colloidal nanoparticle system can form so called proticles, which can be prepared by a simple self-assembly process to package and mediate intracellular release of a compound as defined herein, preferably an oligonucleotide.
  • the skilled person may select and adapt any of the above or other commercially available alternative excipients and delivery systems to package and deliver a compound as defined herein, preferably an oligonucleotide for use in the current invention to deliver said compound for the treatment of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in humans.
  • a compound as defined herein preferably an oligonucleotide could be covalently or non-covalently linked to a targeting ligand specifically designed to facilitate the uptake in to the cell, cytoplasm and/or its nucleus.
  • a targeting ligand specifically designed to facilitate the uptake in to the cell, cytoplasm and/or its nucleus.
  • ligand could comprise (i) a compound (including but not limited to peptide(-like) structures) recognising cell, tissue or organ specific elements facilitating cellular uptake and/or (ii) a chemical compound able to facilitate the uptake in to cells and/or the intracellular release of an a compound as defined herein, preferably an oligonucleotide from vesicles, e.g. endosomes or lysosomes.
  • a compound as defined herein, preferably an oligonucleotide are formulated in a medicament which is provided with at least an excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery.
  • the invention also encompasses a pharmaceutically acceptable composition comprising a compound as defined herein, preferably an oligonucleotide and further comprising at least one excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery.
  • a molecule or compound or oligonucleotide may not be formulated in one single composition or preparation. Depending on their identity, the skilled person will know which type of formulation is the most appropriate for each compound.
  • an in vitro concentration of a molecule or an oligonucleotide as defined herein which is ranged between 0.1 nM and 1 ⁇ M is used. More preferably, the concentration used is ranged between 0.3 to 400 nM, even more preferably between 1 to 200 nM.
  • a molecule or an oligonucleotide as defined herein may be used at a dose which is ranged between 0.1 and 20 mg/kg, preferably 0.5 and 10 mg/kg. If several molecules or oligonucleotides are used, these concentrations may refer to the total concentration of oligonucleotides or the concentration of each oligonucleotide added.
  • oligonucleotide(s) as given above are preferred concentrations for in vitro or ex vivo uses.
  • concentration of oligonucleotide(s) used may further vary and may need to be optimised any further.
  • a compound preferably an oligonucleotide to be used in the invention to prevent, treat DMD or BMD are synthetically produced and administered directly to a cell, a tissue, an organ and/or patients in formulated form in a pharmaceutically acceptable composition or preparation.
  • the delivery of a pharmaceutical composition to the subject is preferably carried out by one or more parenteral injections, e.g. intravenous and/or subcutaneous and/or intramuscular and/or intrathecal and/or intraventricular administrations, preferably injections, at one or at multiple sites in the human body.
  • a preferred oligonucleotide as defined herein optionally comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery.
  • systemic delivery of an oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells.
  • oligonucleotide comprising a specific nucleotide analog or equivalent
  • an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting a different subset of muscle cells. Therefore, in this embodiment, it is preferred to use a combination of oligonucleotides comprising different nucleotide analogs or equivalents for modulating splicing of the DMD mRNA in at least one type of muscle cells.
  • a molecule or a viral-based vector for use as a medicament, preferably for modulating splicing of the DMD pre-mRNA, more preferably for promoting or inducing skipping of any of exon 43, 46, 50-53 as identified herein.
  • the invention provides the use of an antisense oligonucleotide or molecule according to the invention, and/or a viral-based vector that expresses one or more antisense sequences according to the invention and/or a pharmaceutical composition, for modulating splicing of the DMD pre-mRNA.
  • the splicing is preferably modulated in a human myogenic cell or muscle cell in vitro. More preferred is that splicing is modulated in a human muscle cell in vivo.
  • the invention further relates to the use of the molecule as defined herein and/or the vector as defined herein and/or or the pharmaceutical composition as defined herein for modulating splicing of the DMD pre-mRNA or for the preparation of a medicament for the treatment of a DMD or BMD patient.
  • the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.
  • the verb “to consist” may be replaced by “to consist essentially of” meaning that a molecule or a viral-based vector or a composition as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention.
  • reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
  • the indefinite article “a” or “an” thus usually means “at least one”.
  • AON design was based on (partly) overlapping open secondary structures of the target exon RNA as predicted by the m-fold program, on (partly) overlapping putative SR-protein binding sites as predicted by the ESE-finder software.
  • AONs were synthesized by Prosensa Therapeutics B.V. (Leiden, Netherlands), and contain 2′-O-methyl RNA and full-length phosphorothioate (PS) backbones.
  • Myotube cultures derived from a healthy individual (“human control”) (examples 1, 3, and 4; exon 43, 50, 52 skipping) or a DMD patient carrying an exon 45 deletion (example 2; exon 46 skipping) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet. 2003; 12(8): 907-14).
  • myotube cultures were transfected with 50 nM and 150 nM (example 2), 200 nM and 500 nM (example 4) or 500 nM only (examples 1 and 3) of each AON.
  • a series of AONs targeting sequences within exon 43 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 43 herein defined as SEQ ID NO 2, was indeed capable of inducing exon 43 skipping.
  • PS237 SEQ ID NO: 65
  • PS238 and PS240 are shown, inducing exon 43 skipping levels up to 13% and 36% respectively ( FIG. 1 ).
  • the precise skipping of exon 43 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 43 skipping was observed in non-treated cells (NT).
  • a series of AONs targeting sequences within exon 46 were designed and transfected in myotube cultures derived from a DMD patient carrying an exon 45 deletion in the DMD gene.
  • antisense-induced exon 46 skipping would induce the synthesis of a novel, BMD-like dystrophin protein that may indeed alleviate one or more symptoms of the disease.
  • Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 46 herein defined as SEQ ID NO 3, was indeed capable of inducing exon 46 skipping, even at relatively low AON concentrations of 50 nM.
  • PS182 (SEQ ID NO: 117) reproducibly induced highest levels of exon 46 skipping (up to 50% at 50 nM and 74% at 150 nM), as shown in FIG. 2 .
  • PS177, PS179, and PS181 are shown, inducing exon 46 skipping levels up to 55%, 58% and 42% respectively at 150 nM ( FIG. 2 ).
  • the precise skipping of exon 46 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 46 skipping was observed in non-treated cells (NT).
  • a series of AONs targeting sequences within exon 50 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 50 herein defined as SEQ ID NO 4, was indeed capable of inducing exon 50 skipping.
  • PS248 SEQ ID NO: 127) reproducibly induced highest levels of exon 50 skipping (up to 35% at 500 nM), as shown in FIG. 3 .
  • PS245, PS246, and PS247 are shown, inducing exon 50 skipping levels up to 14-16% at 500 nM ( FIG. 3 ).
  • the precise skipping of exon 50 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 50 skipping was observed in non-treated cells (NT).
  • a series of AONs targeting sequences within exon 51 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 51 herein defined as SEQ ID NO 5, was indeed capable of inducing exon 51 skipping.
  • the AON with SEQ ID NO 180 reproducibly induced highest levels of exon 51 skipping (not shown).
  • a series of AONs targeting sequences within exon 52 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 52 herein defined as SEQ ID NO 6, was indeed capable of inducing exon 52 skipping.
  • PS236 SEQ ID NO: 299 reproducibly induced highest levels of exon 52 skipping (up to 88% at 200 nM and 91% at 500 nM), as shown in FIG. 4 .
  • PS232 and AON 52-1 previously published by Aartsma-Rus et al.
  • Oligonucleotides 2005 are shown, inducing exon 52 skipping at levels up to 59% and 10% respectively when applied at 500 nM ( FIG. 4 ).
  • the precise skipping of exon 52 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 52 skipping was observed in non-treated cells (NT).
  • a series of AONs targeting sequences within exon 53 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 53 herein defined as SEQ ID NO 7, was indeed capable of inducing exon 53 skipping.
  • the AON with SEQ ID NO 328 reproducibly induced highest levels of exon 53 skipping (not shown).
  • FIG. 1 In human control myotubes, a series of AONs (PS237, PS238, and PS240; SEQ ID NO 65, 66, 16 respectively) targeting exon 43 was tested at 500 nM. PS237 (SEQ ID NO 65) reproducibly induced highest levels of exon 43 skipping. (M: DNA size marker; NT: non-treated cells)
  • FIG. 2 In myotubes from a DMD patient with an exon 45 deletion, a series of AONs (PS177, PS179, PS181, and PS182; SEQ ID NO 91, 70, 110, and 117 respectively) targeting exon 46 was tested at two different concentrations (50 and 150 nM). PS182 (SEQ ID NO 117) reproducibly induced highest levels of exon 46 skipping. (M: DNA size marker)
  • FIG. 3 In human control myotubes, a series of AONs (PS245, PS246, PS247, and PS248; SEQ ID NO 167, 165, 166, and 127 respectively) targeting exon 50 was tested at 500 nM.
  • PS248 SEQ ID NO 127) reproducibly induced highest levels of exon 50 skipping.
  • M DNA size marker
  • NT non-treated cells.
  • FIG. 4 In human control myotubes, two novel AONs (PS232 and PS236; SEQ ID NO 246 and 299 respectively) targeting exon 52 were tested at two different concentrations (200 and 500 nM) and directly compared to a previously described AON (52-1).
  • PS236 SEQ ID NO 299
  • M DNA size marker
  • NT non-treated cells

Abstract

The invention relates a method wherein a molecule is used for inducing and/or promoting skipping of at least one of exon 43, exon 46, exons 50-53 of the DMD pre-mRNA in a patient, preferably in an isolated cell of a patient, the method comprising providing said cell and/or said patient with a molecule. The invention also relates to said molecule as such.

Description

  • This U.S. patent application is a continuation of PCT/NL2009/050113, filed on Mar. 11, 2009 which claims priority to PCT/NL2008/050673, filed on Oct. 27, 2008, which claims priority to European application no. 07119351.0, filed on Oct. 26, 2007, which claims the benefit of U.S. provisional patent application No. 61/000,670, filed on Oct. 26, 2007, the entirety of which is incorporated herein by reference. The invention relates to the field of genetics, more specifically human genetics. The invention in particular relates to modulation of splicing of the human Duchenne Muscular Dystrophy pre-mRNA.
  • BACKGROUND OF THE INVENTION Field
  • Myopathies are disorders that result in functional impairment of muscles. Muscular dystrophy (MD) refers to genetic diseases that are characterized by progressive weakness and degeneration of skeletal muscles. Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most common childhood forms of muscular dystrophy. They are recessive disorders and because the gene responsible for DMD and BMD resides on the X-chromosome, mutations mainly affect males with an incidence of about 1 in 3500 boys.
  • DMD and BMD are caused by genetic defects in the DMD gene encoding dystrophin, a muscle protein that is required for interactions between the cytoskeleton and the extracellular matrix to maintain muscle fiber stability during contraction. DMD is a severe, lethal neuromuscular disorder resulting in a dependency on wheelchair support before the age of 12 and DMD patients often die before the age of thirty due to respiratory- or heart failure. In contrast, BMD patients often remain ambulatory until later in life, and have near normal life expectancies. DMD mutations in the DMD gene are characterized by frame shifting insertions or deletions or nonsense point mutations, resulting in the absence of functional dystrophin. BMD mutations in general keep the reading frame intact, allowing synthesis of a partly functional dystrophin.
  • During the last decade, specific modification of splicing in order to restore the disrupted reading frame of the dystrophin transcript has emerged as a promising therapy for Duchenne muscular dystrophy (DMD) (van Ommen, van Deutekom, Aartsma-Rus, Curr Opin Mol. Ther. 2008; 10(2):140-9, Yokota, Duddy, Partidge, Acta Myol. 2007; 26(3):179-84, van Deutekom et al., N Engl J. Med. 2007; 357(26):2677-86).
  • Using antisense oligonucleotides (AONs) interfering with splicing signals the skipping of specific exons can be induced in the DMD pre-mRNA, thus restoring the open reading frame and converting the severe DMD into a milder BMD phenotype (van Deutekom et al. Hum Mol. Genet. 2001; 10: 1547-54; Aartsma-Rus et al., Hum Mol Genet. 2003; 12(8):907-14.). In vivo proof-of-concept was first obtained in the mdx mouse model, which is dystrophin-deficient due to a nonsense mutation in exon 23. Intramuscular and intravenous injections of AONs targeting the mutated exon 23 restored dystrophin expression for at least three months (Lu et al. Nat. Med. 2003; 8: 1009-14; Lu et al., Proc Natl Acad Sci USA. 2005; 102(1):198-203). This was accompanied by restoration of dystrophin-associated proteins at the fiber membrane as well as functional improvement of the treated muscle. In vivo skipping of human exons has also been achieved in the hDMD mouse model, which contains a complete copy of the human DMD gene integrated in chromosome 5 of the mouse (Bremmer-Bout et al. Molecular Therapy. 2004; 10: 232-40; 't Hoen et al. J Biol. Chem. 2008; 283: 5899-907).
  • Recently, a first-in-man study was successfully completed where an AON inducing the skipping of exon 51 was injected into a small area of the tibialis anterior muscle of four DMD patients. Novel dystrophin expression was observed in the majority of muscle fibers in all four patients treated, and the AON was safe and well tolerated (van Deutekom et al. N Engl J. Med. 2007; 357: 2677-86).
  • DESCRIPTION OF THE INVENTION Method
  • In a first aspect, the present invention provides a method for inducing, and/or promoting skipping of at least one of exons 43, 46, 50-53 of the DMD pre-mRNA in a patient, preferably in an isolated cell of a patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon. It is to be understood that said method encompasses an in vitro, in vivo or ex vivo method.
  • Accordingly, a method is provided for inducing and/or promoting skipping of at least one of exons 43, 46, 50-53 of DMD pre-mRNA in a patient, preferably in an isolated cell of said patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon.
  • As defined herein a DMD pre-mRNA preferably means the pre-mRNA of a DMD gene of a DMD or BMD patient.
  • A patient is preferably intended to mean a patient having DMD or BMD as later defined herein or a patient susceptible to develop DMD or BMD due to his or her genetic background. In the case of a DMD patient, an oligonucleotide used will preferably correct one mutation as present in the DMD gene of said patient and therefore will preferably create a DMD protein that will look like a BMD protein: said protein will preferably be a functional dystrophin as later defined herein. In the case of a BMD patient, an oligonucleotide as used will preferably correct one mutation as present in the BMD gene of said patient and therefore will preferably create a dystrophin which will be more functional than the dystrophin which was originally present in said BMD patient.
  • Exon skipping refers to the induction in a cell of a mature mRNA that does not contain a particular exon that is normally present therein. Exon skipping is performed by providing a cell expressing the pre-mRNA of said mRNA with a molecule capable of interfering with essential sequences such as for example the splice donor of splice acceptor sequence that required for splicing of said exon, or a molecule that is capable of interfering with an exon inclusion signal that is required for recognition of a stretch of nucleotides as an exon to be included in the mRNA. The term pre-mRNA refers to a non-processed or partly processed precursor mRNA that is synthesized from a DNA template in the cell nucleus by transcription.
  • Within the context of the invention, inducing and/or promoting skipping of an exon as indicated herein means that at least 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the DMD mRNA in one or more (muscle) cells of a treated patient will not contain said exon. This is preferably assessed by PCR as described in the examples.
  • Preferably, a method of the invention by inducing and/or promoting skipping of at least one of the following exons 43, 46, 50-53 of the DMD pre-mRNA in one or more (muscle) cells of a patient, provides said patient with a functional dystrophin protein and/or decreases the production of an aberrant dystrophin protein in said patient and/or increases the production of a functional dystrophin is said patient.
  • Providing a patient with a functional dystrophin protein and/or decreasing the production of an aberrant dystrophin protein in said patient is typically applied in a DMD patient. Increasing the production of a functional dystrophin is typically applied in a BMD patient.
  • Therefore a preferred method is a method, wherein a patient or one or more cells of said patient is provided with a functional dystrophin protein and/or wherein the production of an aberrant dystrophin protein in said patient is decreased and/or wherein the production of a functional dystrophin is increased in said patient, wherein the level of said aberrant or functional dystrophin is assessed by comparison to the level of said dystrophin in said patient at the onset of the method.
  • Decreasing the production of an aberrant dystrophin may be assessed at the mRNA level and preferably means that 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5% or less of the initial amount of aberrant dystrophin mRNA, is still detectable by RT PCR. An aberrant dystrophin mRNA or protein is also referred to herein as a non-functional dystrophin mRNA or protein. A non functional dystrophin protein is preferably a dystrophin protein which is not able to bind actin and/or members of the DGC protein complex. A non-functional dystrophin protein or dystrophin mRNA does typically not have, or does not encode a dystrophin protein with an intact C-terminus of the protein.
  • Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the mRNA level (by RT-PCR analysis) and preferably means that a detectable amount of a functional dystrophin mRNA is detectable by RT PCR. In another embodiment, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin mRNA is a functional dystrophin mRNA.
  • Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the protein level (by immuno fluorescence and western blot analyses) and preferably means that a detectable amount of a functional dystrophin protein is detectable by immunofluorescence or western blot analysis. In another embodiment, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin protein is a functional dystrophin protein.
  • As defined herein, a functional dystrophin is preferably a wild type dystrophin corresponding to a protein having the amino acid sequence as identified in SEQ ID NO: 1. A functional dystrophin is preferably a dystrophin, which has an actin binding domain in its N terminal part (first 240 amino acids at the N terminus), a cystein-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) each of these domains being present in a wild type dystrophin as known to the skilled person. The amino acids indicated herein correspond to amino acids of the wild type dystrophin being represented by SEQ ID NO:1. In other words, a functional dystrophin is a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin. “At least to some extent” preferably means at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% of a corresponding activity of a wild type functional dystrophin. In this context, an activity of a functional dystrophin is preferably binding to actin and to the dystrophin-associated glycoprotein complex (DGC) (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). Binding of dystrophin to actin and to the DGC complex may be visualized by either co-immunoprecipitation using total protein extracts or immuno fluorescence analysis of cross-sections, from a muscle biopsy, as known to the skilled person.
  • Individuals or patients suffering from Duchenne muscular dystrophy typically have a mutation in the gene encoding dystrophin that prevent synthesis of the complete protein, i.e of a premature stop prevents the synthesis of the C-terminus. In Becker muscular dystrophy the DMD gene also comprises a mutation compared tot the wild type gene but the mutation does typically not induce a premature stop and the C-terminus is typically synthesized. As a result a functional dystrophin protein is synthesized that has at least the same activity in kind as the wild type protein, not although not necessarily the same amount of activity. The genome of a BMD individual typically encodes a dystrophin protein comprising the N terminal part (first 240 amino acids at the N terminus), a cystein-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). Exon skipping for the treatment of DMD is typically directed to overcome a premature stop in the pre-mRNA by skipping an exon in the rod-shaped domain to correct the reading frame and allow synthesis of remainder of the dystrophin protein including the C-terminus, albeit that the protein is somewhat smaller as a result of a smaller rod domain. In a preferred embodiment, an individual having DMD and being treated by a method as defined herein will be provided a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin. More preferably, if said individual is a Duchenne patient or is suspected to be a Duchenne patient, a functional dystrophin is a dystrophin of an individual having BMD: typically said dystrophin is able to interact with both actin and the DGC, but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). The central rod-shaped domain of wild type dystrophin comprises 24 spectrin-like repeats (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). For example, a central rod-shaped domain of a dystrophin as provided herein may comprise 5 to 23, 10 to 22 or 12 to 18 spectrin-like repeats as long as it can bind to actin and to DGC.
  • A method of the invention may alleviate one or more characteristics of a myogenic or muscle cell of a patient or alleviate one or more symptoms of a DMD patient having a deletion including but not limited to exons 44, 44-46, 44-47, 44-48, 44-49, 44-51, 44-53 (correctable by exon 43 skipping), 19-45, 21-45, 43-45, 45, 47-54, 47-56 (correctable by exon 46 skipping), 51, 51-53, 51-55, 51-57 (correctable by exon 50 skipping), 13-50, 19-50, 29-50, 43-50, 45-50, 47-50, 48-50, 49-50, 50, 52 (correctable by exon 51 skipping), exons 8-51, 51, 53, 53-55, 53-57, 53-59, 53-60, (correctable by exon 52 skipping) and exons 10-52, 42-52, 43-52, 45-52, 47-52, 48-52, 49-52, 50-52, 52 (correctable by exon 53 skipping) in the DMD gene, occurring in a total of 68% of all DMD patients with a deletion (Aartsma-Rus et al., Hum. Mut. 2009).
  • Alternatively, a method of the invention may improve one or more characteristics of a muscle cell of a patient or alleviate one or more symptoms of a DMD patient having small mutations in, or single exon duplications of exon 43, 46, 50-53 in the DMD gene, occurring in a total of 36% of all DMD patients with a deletion (Aartsma-Rus et al, Hum. Mut. 2009)
  • Furthermore, for some patients the simultaneous skipping of one of more exons in addition to exon 43, exon 46 and/or exon 50-53 is required to restore the open reading frame, including patients with specific deletions, small (point) mutations, or double or multiple exon duplications, such as (but not limited to) a deletion of exons 44-50 requiring the co-skipping of exons 43 and 51, with a deletion of exons 46-50 requiring the co-skipping of exons 45 and 51, with a deletion of exons 44-52 requiring the co-skipping of exons 43 and 53, with a deletion of exons 46-52 requiring the co-skipping of exons 45 and 53, with a deletion of exons 51-54 requiring the co-skipping of exons 50 and 55, with a deletion of exons 53-54 requiring the co-skipping of exons 52 and 55, with a deletion of exons 53-56 requiring the co-skipping of exons 52 and 57, with a nonsense mutation in exon 43 or exon 44 requiring the co-skipping of exon 43 and 44, with a nonsense mutation in exon 45 or exon 46 requiring the co-skipping of exon 45 and 46, with a nonsense mutation in exon 50 or exon 51 requiring the co-skipping of exon 50 and 51, with a nonsense mutation in exon 51 or exon 52 requiring the co-skipping of exon 51 and 52, with a nonsense mutation in exon 52 or exon 53 requiring the co-skipping of exon 52 and 53, or with a double or multiple exon duplication involving exons 43, 46, 50, 51, 52, and/or 53.
  • In a preferred method, the skipping of exon 43 is induced, or the skipping of exon 46 is induced, or the skipping of exon 50 is induced or the skipping of exon 51 is induced or the skipping of exon 52 is induced or the skipping of exon 53 is induced. An induction of the skipping of two of these exons is also encompassed by a method of the invention. For example, preferably skipping of exons 50 and 51, or 52 and 53, or 43 and 51, or 43 and 53, or 51 and 52. Depending on the type and the identity (the specific exons involved) of mutation identified in a patient, the skilled person will know which combination of exons needs to be skipped in said patient.
  • In a preferred method, one or more symptom(s) of a DMD or a BMD patient is/are alleviated and/or one or more characteristic(s) of one or more muscle cells from a DMD or a BMD patient is/are improved. Such symptoms or characteristics may be assessed at the cellular, tissue level or on the patient self.
  • An alleviation of one or more characteristics may be assessed by any of the following assays on a myogenic cell or muscle cell from a patient: reduced calcium uptake by muscle cells, decreased collagen synthesis, altered morphology, altered lipid biosynthesis, decreased oxidative stress, and/or improved muscle fiber function, integrity, and/or survival. These parameters are usually assessed using immunofluorescence and/or histochemical analyses of cross sections of muscle biopsies.
  • The improvement of muscle fiber function, integrity and/or survival may be assessed using at least one of the following assays: a detectable decrease of creatine kinase in blood, a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic, and/or a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic. Each of these assays is known to the skilled person.
  • Creatine kinase may be detected in blood as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). A detectable decrease in creatine kinase may mean a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more compared to the concentration of creatine kinase in a same DMD or BMD patient before treatment.
  • A detectable decrease of necrosis of muscle fibers is preferably assessed in a muscle biopsy, more preferably as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006) using biopsy cross-sections. A detectable decrease of necrosis may be a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the area wherein necrosis has been identified using biopsy cross-sections. The decrease is measured by comparison to the necrosis as assessed in a same DMD or BMD patient before treatment.
  • A detectable increase of the homogeneity of the diameter of a muscle fiber is preferably assessed in a muscle biopsy cross-section, more preferably as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). The increase is measured by comparison to the homogeneity of the diameter of a muscle fiber in a same DMD or BMD patient before treatment
  • An alleviation of one or more symptoms may be assessed by any of the following assays on the patient self: prolongation of time to loss of walking, improvement of muscle strength, improvement of the ability to lift weight, improvement of the time taken to rise from the floor, improvement in the nine-meter walking time, improvement in the time taken for four-stairs climbing, improvement of the leg function grade, improvement of the pulmonary function, improvement of cardiac function, improvement of the quality of life. Each of these assays is known to the skilled person. As an example, the publication of Manzur at al (Manzur A Y et al, (2008), Glucocorticoid corticosteroids for Duchenne muscular dystrophy (review), Wiley publishers, The Cochrane collaboration.) gives an extensive explanation of each of these assays. For each of these assays, as soon as a detectable improvement or prolongation of a parameter measured in an assay has been found, it will preferably mean that one or more symptoms of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy has been alleviated in an individual using a method of the invention. Detectable improvement or prolongation is preferably a statistically significant improvement or prolongation as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). Alternatively, the alleviation of one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy may be assessed by measuring an improvement of a muscle fiber function, integrity and/or survival as later defined herein.
  • A treatment in a method according to the invention may have a duration of at least one week, at least one month, at least several months, at least one year, at least 2, 3, 4, 5, 6 years or more.
  • Each molecule or oligonucleotide or equivalent thereof as defined herein for use according to the invention may be suitable for direct administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing DMD or BMD, and may be administered directly in vivo, ex vivo or in vitro. The frequency of administration of a molecule or an oligonucleotide or a composition of the invention may depend on several parameters such as the age of the patient, the mutation of the patient, the number of molecules (dose), the formulation of said molecule. The frequency may be ranged between at least once in a two weeks, or three weeks or four weeks or five weeks or a longer time period.
  • A molecule or oligonucleotide or equivalent thereof can be delivered as is to a cell. When administering said molecule, oligonucleotide or equivalent thereof to an individual, it is preferred that it is dissolved in a solution that is compatible with the delivery method. For intravenous, subcutaneous, intramuscular, intrathecal and/or intraventricular administration it is preferred that the solution is a physiological salt solution. Particularly preferred for a method of the invention is the use of an excipient that will further enhance delivery of said molecule, oligonucleotide or functional equivalent thereof as defined herein, to a cell and into a cell, preferably a muscle cell. Preferred excipient are defined in the section entitled “pharmaceutical composition”.
  • In a preferred method of the invention, an additional molecule is used which is able to induce and/or promote skipping of another exon of the DMD pre-mRNA of a patient. Preferably, the second exon is selected from: exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA of a patient. Molecules which can be used are depicted in any one of Table 1 to 7. This way, inclusion of two or more exons of a DMD pre-mRNA in mRNA produced from this pre-mRNA is prevented. This embodiment is further referred to as double- or multi-exon skipping (Aartsma-Rus A, Janson A A, Kaman W E, et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet. 2004; 74(1):83-92, Aartsma-Rus A, Kaman W E, Weij R, den Dunnen J T, van Ommen G J, van Deutekom J C. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14(3):401-7). In most cases double-exon skipping results in the exclusion of only the two targeted exons from the DMD pre-mRNA. However, in other cases it was found that the targeted exons and the entire region in between said exons in said pre-mRNA were not present in the produced mRNA even when other exons (intervening exons) were present in such region. This multi-skipping was notably so for the combination of oligonucleotides derived from the DMD gene, wherein one oligonucleotide for exon 45 and one oligonucleotide for exon 51 was added to a cell transcribing the DMD gene. Such a set-up resulted in mRNA being produced that did not contain exons 45 to 51. Apparently, the structure of the pre-mRNA in the presence of the mentioned oligonucleotides was such that the splicing machinery was stimulated to connect exons 44 and 52 to each other.
  • It is possible to specifically promote the skipping of also the intervening exons by providing a linkage between the two complementary oligonucleotides. Hence, in one embodiment stretches of nucleotides complementary to at least two dystrophin exons are separated by a linking moiety. The at least two stretches of nucleotides are thus linked in this embodiment so as to form a single molecule.
  • In case, more than one compounds or molecules are used in a method of the invention, said compounds can be administered to an individual in any order. In one embodiment, said compounds are administered simultaneously (meaning that said compounds are administered within 10 hours, preferably within one hour). This is however not necessary. In another embodiment, said compounds are administered sequentially.
  • Molecule
  • In a second aspect, there is provided a molecule for use in a method as described in the previous section entitled “Method”. A molecule as defined herein is preferably an oligonucleotide or antisense oligonucleotide (AON).
  • It was found by the present investigators that any of exon 43, 46, 50-53 is specifically skipped at a high frequency using a molecule that preferably binds to a continuous stretch of at least 8 nucleotides within said exon. Although this effect can be associated with a higher binding affinity of said molecule, compared to a molecule that binds to a continuous stretch of less than 8 nucleotides, there could be other intracellular parameters involved that favor thermodynamic, kinetic, or structural characteristics of the hybrid duplex. In a preferred embodiment, a molecule that binds to a continuous stretch of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides within said exon is used.
  • In a preferred embodiment, a molecule or an oligonucleotide of the invention which comprises a sequence that is complementary to a part of any of exon 43, 46, 50-53 of DMD pre-mRNA is such that the complementary part is at least 50% of the length of the oligonucleotide of the invention, more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, even more preferably at least 90% or even more preferably at least 95%, or even more preferably 98% and most preferably up to 100%. “A part of said exon” preferably means a stretch of at least 8 nucleotides. In a most preferred embodiment, an oligonucleotide of the invention consists of a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein. For example, an oligonucleotide may comprise a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein and additional flanking sequences. In a more preferred embodiment, the length of said complementary part of said oligonucleotide is of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides. Preferably, additional flanking sequences are used to modify the binding of a protein to said molecule or oligonucleotide, or to modify a thermodynamic property of the oligonucleotide, more preferably to modify target RNA binding affinity.
  • A preferred molecule to be used in a method of the invention binds or is complementary to a continuous stretch of at least 8 nucleotides within one of the following nucleotide sequences selected from:
  • (SEQ ID NO: 2)
    5′-AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAUAG
    CAAGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′
    for skipping of exon 43;
    (SEQ ID NO: 3)
    5′-UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUGAA
    CCUGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′
    for skipping of exon 46;
    (SEQ ID NO: 4)
    5′-GGCGGTAAACCGUUUACUUCAAGAGCUGAGGGCAAAGCAGCCUGA
    CCUAGC UCCUGGACUGACCACUAUUGG-3′
    for skipping of exon 50;
    (SEQ ID NO: 5)
    5′-CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACUA
    AGGAAACUGCCAUC UCCAAACUAGAAAUGCCAUCUUCCUUGAUGUUG
    GAGGUAC-3′
    for skipping of exon 51;
    (SEQ ID NO: 6)
    5′-AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAUU
    ACCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′
    for skipping of exon 52,
    and
    (SEQ ID NO: 7)
    5′-AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAAG
    CUGAGCAGGUCUUAGGACAGGCCAGAG-3′
    for skipping of exon 53.
  • Of the numerous molecules that theoretically can be prepared to bind to the continuous nucleotide stretches as defined by SEQ ID NO 2-7 within one of said exons, the invention provides distinct molecules that can be used in a method for efficiently skipping of at least one of exon 43, exon 46 and/or exon 50-53. Although the skipping effect can be addressed to the relatively high density of putative SR protein binding sites within said stretches, there could be other parameters involved that favor uptake of the molecule or other, intracellular parameters such as thermodynamic, kinetic, or structural characteristics of the hybrid duplex.
  • It was found that a molecule that binds to a continuous stretch comprised within or consisting of any of SEQ ID NO 2-7 results in highly efficient skipping of exon 43, exon 46 and/or exon 50-53 respectively in a cell and/or in a patient provided with this molecule. Therefore, in a preferred embodiment, a method is provided wherein a molecule binds to a continuous stretch of at least 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, 50 nucleotides within SEQ ID NO 2-7.
  • In a preferred embodiment for inducing and/or promoting the skipping of any of exon 43, exon 46 and/or exon 50-53, the invention provides a molecule comprising or consisting of an antisense nucleotide sequence selected from the antisense nucleotide sequences depicted in any of Tables 1 to 6. A molecule of the invention preferably comprises or consist of the antisense nucleotide sequence of SEQ ID NO 16, SEQ ID NO 65, SEQ ID NO 70, SEQ ID NO 91, SEQ ID NO 110, SEQ ID NO 117, SEQ ID NO 127, SEQ ID NO 165, SEQ ID NO 166, SEQ ID NO 167, SEQ ID NO 246, SEQ ID NO 299, SEQ ID NO:357.
  • A preferred molecule of the invention comprises a nucleotide-based or nucleotide or an antisense oligonucleotide sequence of between 8 and 50 nucleotides or bases, more preferred between 10 and 50 nucleotides, more preferred between 20 and 40 nucleotides, more preferred between 20 and 30 nucleotides, such as 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, 40 nucleotides, 41 nucleotides, 42 nucleotides, 43 nucleotides, 44 nucleotides, 45 nucleotides, 46 nucleotides, 47 nucleotides, 48 nucleotides, 49 nucleotides or 50 nucleotides.
  • A most preferred molecule of the invention comprises a nucleotide-based sequence of 25 nucleotides.
  • Furthermore, none of the indicated sequences is derived from conserved parts of splice-junction sites. Therefore, said molecule is not likely to mediate differential splicing of other exons from the DMD pre-mRNA or exons from other genes.
  • In one embodiment, a molecule of the invention is a compound molecule that binds to the specified sequence, or a protein such as an RNA-binding protein or a non-natural zinc-finger protein that has been modified to be able to bind to the corresponding nucleotide sequence on a DMD pre-RNA molecule. Methods for screening compound molecules that bind specific nucleotide sequences are, for example, disclosed in PCT/NL01/00697 and U.S. Pat. No. 6,875,736, which are herein incorporated by reference. Methods for designing RNA-binding Zinc-finger proteins that bind specific nucleotide sequences are disclosed by Friesen and Darby, Nature Structural Biology 5: 543-546 (1998) which is herein incorporated by reference.
  • A preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 2: 5′-AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAU AGCAAGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′ which is present in exon 43 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 8 to SEQ ID NO 69.
  • In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 16 and/or SEQ ID NO 65.
  • In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 65. It was found that this molecule is very efficient in modulating splicing of exon 43 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 3: 5′-UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUG AACCUGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′ which is present in exon 46 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70 to SEQ ID NO 122. In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70, SEQ ID NO 91, SEQ ID NO 110, and/or SEQ ID NO 117.
  • In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 117. It was found that this molecule is very efficient in modulating splicing of exon 46 of the DMD pre-mRNA in a muscle cell or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 4: 5′-GGCGGTAAACCGUUUACUUCAAGAGCU GAGGGCAAAGCAGCCUG ACCUAGCUCCUGGACUGACCACUAUUGG-3′ which is present in exon 50 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 123 to SEQ ID NO 167 and/or SEQ ID NO 529 to SEQ ID NO 535.
  • In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127, or SEQ ID NO 165, or SEQ ID NO 166 and/or SEQ ID NO 167.
  • In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127. It was found that this molecule is very efficient in modulating splicing of exon 50 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 5: 5′-CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACU AAGGAAACUGCCAUC UCCAAACUAGAAAUGCCAUCUUCCUUGAUG UUGGAGGUAC-3′ which is present in exon 51 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 168 to SEQ ID NO 241.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 6: 5′-AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAU UACCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′ which is present in exon 52 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 242 to SEQ ID NO 310. In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 246 and/or SEQ ID NO 299. In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 299. It was found that this molecule is very efficient in modulating splicing of exon 52 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 7: 5′-AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAA GCUGAGCAGGUCUUAGGACAGGCCAGAG-3′ which is present in exon 53 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 311 to SEQ ID NO 358.
  • In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 357. It was found that this molecule is very efficient in modulating splicing of exon 53 of the DMD pre-mRNA in a muscle cell and/or in a patient.
  • A nucleotide sequence of a molecule of the invention may contain RNA residues, or one or more DNA residues, and/or one or more nucleotide analogues or equivalents, as will be further detailed herein below.
  • It is preferred that a molecule of the invention comprises one or more residues that are modified to increase nuclease resistance, and/or to increase the affinity of the antisense nucleotide for the target sequence. Therefore, in a preferred embodiment, the antisense nucleotide sequence comprises at least one nucleotide analogue or equivalent, wherein a nucleotide analogue or equivalent is defined as a residue having a modified base, and/or a modified backbone, and/or a non-natural internucleoside linkage, or a combination of these modifications.
  • In a preferred embodiment, the nucleotide analogue or equivalent comprises a modified backbone. Examples of such backbones are provided by morpholino backbones, carbamate backbones, siloxane backbones, sulfide, sulfoxide and sulfone backbones, formacetyl and thioformacetyl backbones, methyleneformacetyl backbones, riboacetyl backbones, alkene containing backbones, sulfamate, sulfonate and sulfonamide backbones, methyleneimino and methylenehydrazino backbones, and amide backbones. Phosphorodiamidate morpholino oligomers are modified backbone oligonucleotides that have previously been investigated as antisense agents. Morpholino oligonucleotides have an uncharged backbone in which the deoxyribose sugar of DNA is replaced by a six membered ring and the phosphodiester linkage is replaced by a phosphorodiamidate linkage. Morpholino oligonucleotides are resistant to enzymatic degradation and appear to function as antisense agents by arresting translation or interfering with pre-mRNA splicing rather than by activating RNase H. Morpholino oligonucleotides have been successfully delivered to tissue culture cells by methods that physically disrupt the cell membrane, and one study comparing several of these methods found that scrape loading was the most efficient method of delivery; however, because the morpholino backbone is uncharged, cationic lipids are not effective mediators of morpholino oligonucleotide uptake in cells. A recent report demonstrated triplex formation by a morpholino oligonucleotide and, because of the non-ionic backbone, these studies showed that the morpholino oligonucleotide was capable of triplex formation in the absence of magnesium.
  • It is further preferred that that the linkage between the residues in a backbone do not include a phosphorus atom, such as a linkage that is formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
  • A preferred nucleotide analogue or equivalent comprises a Peptide Nucleic Acid (PNA), having a modified polyamide backbone (Nielsen, et al. (1991) Science 254, 1497-1500). PNA-based molecules are true mimics of DNA molecules in terms of base-pair recognition. The backbone of the PNA is composed of N-(2-aminoethyl)-glycine units linked by peptide bonds, wherein the nucleobases are linked to the backbone by methylene carbonyl bonds. An alternative backbone comprises a one-carbon extended pyrrolidine PNA monomer (Govindaraju and Kumar (2005) Chem. Commun, 495-497). Since the backbone of a PNA molecule contains no charged phosphate groups, PNA-RNA hybrids are usually more stable than RNA-RNA or RNA-DNA hybrids, respectively (Egholm et al (1993) Nature 365, 566-568).
  • A further preferred backbone comprises a morpholino nucleotide analog or equivalent, in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring. A most preferred nucleotide analog or equivalent comprises a phosphorodiamidate morpholino oligomer (PMO), in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring, and the anionic phosphodiester linkage between adjacent morpholino rings is replaced by a non-ionic phosphorodiamidate linkage.
  • In yet a further embodiment, a nucleotide analogue or equivalent of the invention comprises a substitution of one of the non-bridging oxygens in the phosphodiester linkage. This modification slightly destabilizes base-pairing but adds significant resistance to nuclease degradation. A preferred nucleotide analogue or equivalent comprises phosphorothioate, chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, H-phosphonate, methyl and other alkyl phosphonate including 3′-alkylene phosphonate, 5′-alkylene phosphonate and chiral phosphonate, phosphinate, phosphoramidate including 3′-amino phosphoramidate and aminoalkylphosphoramidate, thionophosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate or boranophosphate.
  • A further preferred nucleotide analogue or equivalent of the invention comprises one or more sugar moieties that are mono- or disubstituted at the 2′, 3′ and/or 5′ position such as a —OH; —F; substituted or unsubstituted, linear or branched lower (C1-C10) alkyl, alkenyl, alkynyl, alkaryl, allyl, aryl, or aralkyl, that may be interrupted by one or more heteroatoms; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; O-, S-, or N-allyl; O-alkyl-O-alkyl, -methoxy, -aminopropoxy; -aminoxy; methoxyethoxy; -dimethylaminooxyethoxy; and -dimethylaminoethoxyethoxy. The sugar moiety can be a pyranose or derivative thereof, or a deoxypyranose or derivative thereof, preferably a ribose or a derivative thereof, or a deoxyribose or a derivative thereof. Such preferred derivatized sugar moieties comprise Locked Nucleic Acid (LNA), in which the 2′-carbon atom is linked to the 3′ or 4′ carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. A preferred LNA comprises 2′-O,4′-C-ethylene-bridged nucleic acid (Morita et al. 2001. Nucleic Acid Res Supplement No. 1: 241-242). These substitutions render the nucleotide analogue or equivalent RNase H and nuclease resistant and increase the affinity for the target RNA.
  • It is understood by a skilled person that it is not necessary for all positions in an antisense oligonucleotide to be modified uniformly. In addition, more than one of the aforementioned analogues or equivalents may be incorporated in a single antisense oligonucleotide or even at a single position within an antisense oligonucleotide. In certain embodiments, an antisense oligonucleotide of the invention has at least two different types of analogues or equivalents.
  • A preferred antisense oligonucleotide according to the invention comprises a 2′-O alkyl phosphorothioate antisense oligonucleotide, such as 2′-O-methyl modified ribose (RNA), 2′-O-ethyl modified ribose, 2′-O-propyl modified ribose, and/or substituted derivatives of these modifications such as halogenated derivatives.
  • A most preferred antisense oligonucleotide according to the invention comprises of 2′-O-methyl phosphorothioate ribose.
  • A functional equivalent of a molecule of the invention may be defined as an oligonucleotide as defined herein wherein an activity of said functional equivalent is retained to at least some extent. Preferably, an activity of said functional equivalent is inducing exon 43, 46, 50, 51, 52, or 53 skipping and providing a functional dystrophin protein. Said activity of said functional equivalent is therefore preferably assessed by detection of exon 43, 46, 50, 51, 52, or 53 skipping and by quantifying the amount of functional dystrophin protein. A functional dystrophin is herein preferably defined as being a dystrophin able to bind actin and members of the DGC protein complex. The assessment of said activity of an oligonucleotide is preferably done by RT-PCR or by immunofluorescence or Western blot analyses. Said activity is preferably retained to at least some extent when it represents at least 50%, or at least 60%, or at least 70% or at least 80% or at least 90% or at least 95% or more of corresponding activity of said oligonucleotide the functional equivalent derives from. Throughout this application, when the word oligonucleotide is used it may be replaced by a functional equivalent thereof as defined herein.
  • It will be understood by a skilled person that distinct antisense oligonucleotides can be combined for efficiently skipping any of exon 43, exon 46, exon 50, exon 51, exon 52 and/or exon 53 of the human DMD pre-mRNA. It is encompassed by the present invention to use one, two, three, four, five or more oligonucleotides for skipping one of said exons (i.e. exon, 43, 46, 50, 51, 52, or 53). It is also encompassed to use at least two oligonucleotides for skipping at least two, of said exons. Preferably two of said exons are skipped. More preferably, these two exons are:
  • 43 and 51, or
    43 and 53, or
    50 and 51, or
    51 and 52, or
    52 and 53.
  • The skilled person will know which combination of exons is preferred to be skipped depending on the type, the number and the location of the mutation present in a DMD or BMD patient.
  • An antisense oligonucleotide can be linked to a moiety that enhances uptake of the antisense oligonucleotide in cells, preferably muscle cells. Examples of such moieties are cholesterols, carbohydrates, vitamins, biotin, lipids, phospholipids, cell-penetrating peptides including but not limited to antennapedia, TAT, transportan and positively charged amino acids such as oligoarginine, poly-arginine, oligolysine or polylysine, antigen-binding domains such as provided by an antibody, a Fab fragment of an antibody, or a single chain antigen binding domain such as a cameloid single domain antigen-binding domain.
  • A preferred antisense oligonucleotide comprises a peptide-linked PMO.
  • A preferred antisense oligonucleotide comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery. In this respect, systemic delivery of an antisense oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an antisense oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells. Therefore, in one embodiment it is preferred to use a combination of antisense oligonucleotides comprising different nucleotide analogs or equivalents for inducing skipping of exon 43, 46, 50, 51, 52, or 53 of the human DMD pre-mRNA.
  • A cell can be provided with a molecule capable of interfering with essential sequences that result in highly efficient skipping of exon 43, exon 46, exon 50, exon 51, exon 52 or exon 53 of the human DMD pre-mRNA by plasmid-derived antisense oligonucleotide expression or viral expression provided by adenovirus- or adeno-associated virus-based vectors. In a preferred embodiment, there is provided a viral-based expression vector comprising an expression cassette that drives expression of a molecule as identified herein. Expression is preferably driven by a polymerase III promoter, such as a U1, a U6, or a U7 RNA promoter. A muscle or myogenic cell can be provided with a plasmid for antisense oligonucleotide expression by providing the plasmid in an aqueous solution. Alternatively, a plasmid can be provided by transfection using known transfection agentia such as, for example, LipofectAMINE™ 2000 (Invitrogen) or polyethyleneimine (PEI; ExGen500 (MBI Fermentas)), or derivatives thereof.
  • One preferred antisense oligonucleotide expression system is an adenovirus associated virus (AAV)-based vector. Single chain and double chain AAV-based vectors have been developed that can be used for prolonged expression of small antisense nucleotide sequences for highly efficient skipping of exon 43, 46, 50, 51, 52 or 53 of the DMD pre-mRNA.
  • A preferred AAV-based vector comprises an expression cassette that is driven by a polymerase III-promoter (Pol III). A preferred Pol III promoter is, for example, a U1, a U6, or a U7 RNA promoter.
  • The invention therefore also provides a viral-based vector, comprising a Pol III-promoter driven expression cassette for expression of one or more antisense sequences of the invention for inducing skipping of exon 43, exon 46, exon 50, exon 51, exon 52 or exon 53 of the human DMD pre-mRNA.
  • Pharmaceutical Composition
  • If required, a molecule or a vector expressing an antisense oligonucleotide of the invention can be incorporated into a pharmaceutically active mixture or composition by adding a pharmaceutically acceptable carrier.
  • Therefore, in a further aspect, the invention provides a composition, preferably a pharmaceutical composition comprising a molecule comprising an antisense oligonucleotide according to the invention, and/or a viral-based vector expressing the antisense sequence(s) according to the invention and a pharmaceutically acceptable carrier.
  • A preferred pharmaceutical composition comprises a molecule as defined herein and/or a vector as defined herein, and a pharmaceutical acceptable carrier or excipient, optionally combined with a molecule and/or a vector as defined herein which is able to induce skipping of exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA. Preferred molecules able to induce skipping of any of these exon are identified in any one of Tables 1 to 7.
  • Preferred excipients include excipients capable of forming complexes, vesicles and/or liposomes that deliver such a molecule as defined herein, preferably an oligonucleotide complexed or trapped in a vesicle or liposome through a cell membrane. Many of these excipients are known in the art. Suitable excipients comprise polyethylenimine and derivatives, or similar cationic polymers, including polypropyleneimine or polyethylenimine copolymers (PECs) and derivatives, ExGen 500, synthetic amphiphils (SAINT-18), Lipofectin™, DOTAP and/or viral capsid proteins that are capable of self assembly into particles that can deliver such molecule, preferably an oligonucleotide as defined herein to a cell, preferably a muscle cell. Such excipients have been shown to efficiently deliver (oligonucleotide such as antisense) nucleic acids to a wide variety of cultured cells, including muscle cells. Their high transfection potential is combined with an excepted low to moderate toxicity in terms of overall cell survival. The ease of structural modification can be used to allow further modifications and the analysis of their further (in vivo) nucleic acid transfer characteristics and toxicity.
  • Lipofectin represents an example of a liposomal transfection agent. It consists of two lipid components, a cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) (cp. DOTAP which is the methylsulfate salt) and a neutral lipid dioleoylphosphatidylethanolamine (DOPE). The neutral component mediates the intracellular release. Another group of delivery systems are polymeric nanoparticles.
  • Polycations such like diethylaminoethylaminoethyl (DEAE)-dextran, which are well known as DNA transfection reagent can be combined with butylcyanoacrylate (PBCA) and hexylcyanoacrylate (PHCA) to formulate cationic nanoparticles that can deliver a molecule or a compound as defined herein, preferably an oligonucleotide across cell membranes into cells.
  • In addition to these common nanoparticle materials, the cationic peptide protamine offers an alternative approach to formulate a compound as defined herein, preferably an oligonucleotide as colloids. This colloidal nanoparticle system can form so called proticles, which can be prepared by a simple self-assembly process to package and mediate intracellular release of a compound as defined herein, preferably an oligonucleotide. The skilled person may select and adapt any of the above or other commercially available alternative excipients and delivery systems to package and deliver a compound as defined herein, preferably an oligonucleotide for use in the current invention to deliver said compound for the treatment of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in humans.
  • In addition, a compound as defined herein, preferably an oligonucleotide could be covalently or non-covalently linked to a targeting ligand specifically designed to facilitate the uptake in to the cell, cytoplasm and/or its nucleus. Such ligand could comprise (i) a compound (including but not limited to peptide(-like) structures) recognising cell, tissue or organ specific elements facilitating cellular uptake and/or (ii) a chemical compound able to facilitate the uptake in to cells and/or the intracellular release of an a compound as defined herein, preferably an oligonucleotide from vesicles, e.g. endosomes or lysosomes.
  • Therefore, in a preferred embodiment, a compound as defined herein, preferably an oligonucleotide are formulated in a medicament which is provided with at least an excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery. Accordingly, the invention also encompasses a pharmaceutically acceptable composition comprising a compound as defined herein, preferably an oligonucleotide and further comprising at least one excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery.
  • It is to be understood that a molecule or compound or oligonucleotide may not be formulated in one single composition or preparation. Depending on their identity, the skilled person will know which type of formulation is the most appropriate for each compound.
  • In a preferred embodiment, an in vitro concentration of a molecule or an oligonucleotide as defined herein, which is ranged between 0.1 nM and 1 □M is used. More preferably, the concentration used is ranged between 0.3 to 400 nM, even more preferably between 1 to 200 nM. A molecule or an oligonucleotide as defined herein may be used at a dose which is ranged between 0.1 and 20 mg/kg, preferably 0.5 and 10 mg/kg. If several molecules or oligonucleotides are used, these concentrations may refer to the total concentration of oligonucleotides or the concentration of each oligonucleotide added. The ranges of concentration of oligonucleotide(s) as given above are preferred concentrations for in vitro or ex vivo uses. The skilled person will understand that depending on the oligonucleotide(s) used, the target cell to be treated, the gene target and its expression levels, the medium used and the transfection and incubation conditions, the concentration of oligonucleotide(s) used may further vary and may need to be optimised any further.
  • More preferably, a compound preferably an oligonucleotide to be used in the invention to prevent, treat DMD or BMD are synthetically produced and administered directly to a cell, a tissue, an organ and/or patients in formulated form in a pharmaceutically acceptable composition or preparation. The delivery of a pharmaceutical composition to the subject is preferably carried out by one or more parenteral injections, e.g. intravenous and/or subcutaneous and/or intramuscular and/or intrathecal and/or intraventricular administrations, preferably injections, at one or at multiple sites in the human body.
  • A preferred oligonucleotide as defined herein optionally comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery. In this respect, systemic delivery of an oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells.
  • In this respect, systemic delivery of an oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting a different subset of muscle cells. Therefore, in this embodiment, it is preferred to use a combination of oligonucleotides comprising different nucleotide analogs or equivalents for modulating splicing of the DMD mRNA in at least one type of muscle cells.
  • In a preferred embodiment, there is provided a molecule or a viral-based vector for use as a medicament, preferably for modulating splicing of the DMD pre-mRNA, more preferably for promoting or inducing skipping of any of exon 43, 46, 50-53 as identified herein.
  • Use
  • In yet a further aspect, the invention provides the use of an antisense oligonucleotide or molecule according to the invention, and/or a viral-based vector that expresses one or more antisense sequences according to the invention and/or a pharmaceutical composition, for modulating splicing of the DMD pre-mRNA. The splicing is preferably modulated in a human myogenic cell or muscle cell in vitro. More preferred is that splicing is modulated in a human muscle cell in vivo. Accordingly, the invention further relates to the use of the molecule as defined herein and/or the vector as defined herein and/or or the pharmaceutical composition as defined herein for modulating splicing of the DMD pre-mRNA or for the preparation of a medicament for the treatment of a DMD or BMD patient.
  • In this document and in its claims, the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition the verb “to consist” may be replaced by “to consist essentially of” meaning that a molecule or a viral-based vector or a composition as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention. In addition, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”. Each embodiment as identified herein may be combined together unless otherwise indicated. All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.
  • The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.
  • EXAMPLES Examples 1-4 Materials and Methods
  • AON design was based on (partly) overlapping open secondary structures of the target exon RNA as predicted by the m-fold program, on (partly) overlapping putative SR-protein binding sites as predicted by the ESE-finder software. AONs were synthesized by Prosensa Therapeutics B.V. (Leiden, Netherlands), and contain 2′-O-methyl RNA and full-length phosphorothioate (PS) backbones.
  • Tissue Culturing, Transfection and RT-PCR Analysis
  • Myotube cultures derived from a healthy individual (“human control”) (examples 1, 3, and 4; exon 43, 50, 52 skipping) or a DMD patient carrying an exon 45 deletion (example 2; exon 46 skipping) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet. 2003; 12(8): 907-14). For the screening of AONs, myotube cultures were transfected with 50 nM and 150 nM (example 2), 200 nM and 500 nM (example 4) or 500 nM only (examples 1 and 3) of each AON. Transfection reagent UNIFectylin (Prosensa Therapeutics BV, Netherlands) was used, with 2 □l UNIFectylin per □g AON. Exon skipping efficiencies were determined by nested RT-PCR analysis using primers in the exons flanking the targeted exons (43, 46, 50, 51, 52, or 53). PCR fragments were isolated from agarose gels for sequence verification. For quantification, the PCR products were analyzed using the DNA 1000 LabChips Kit on the Agilent 2100 bioanalyzer (Agilent Technologies, USA).
  • Results DMD Exon 43 Skipping.
  • A series of AONs targeting sequences within exon 43 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 43 herein defined as SEQ ID NO 2, was indeed capable of inducing exon 43 skipping. PS237 (SEQ ID NO: 65) reproducibly induced highest levels of exon 43 skipping (up to 66%) at 500 nM, as shown in FIG. 1. For comparison, also PS238 and PS240 are shown, inducing exon 43 skipping levels up to 13% and 36% respectively (FIG. 1). The precise skipping of exon 43 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 43 skipping was observed in non-treated cells (NT).
  • DMD Exon 46 Skipping
  • A series of AONs targeting sequences within exon 46 were designed and transfected in myotube cultures derived from a DMD patient carrying an exon 45 deletion in the DMD gene. For patients with such mutation antisense-induced exon 46 skipping would induce the synthesis of a novel, BMD-like dystrophin protein that may indeed alleviate one or more symptoms of the disease. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 46 herein defined as SEQ ID NO 3, was indeed capable of inducing exon 46 skipping, even at relatively low AON concentrations of 50 nM. PS182 (SEQ ID NO: 117) reproducibly induced highest levels of exon 46 skipping (up to 50% at 50 nM and 74% at 150 nM), as shown in FIG. 2. For comparison, also PS177, PS179, and PS181 are shown, inducing exon 46 skipping levels up to 55%, 58% and 42% respectively at 150 nM (FIG. 2). The precise skipping of exon 46 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 46 skipping was observed in non-treated cells (NT).
  • DMD Exon 50 Skipping
  • A series of AONs targeting sequences within exon 50 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 50 herein defined as SEQ ID NO 4, was indeed capable of inducing exon 50 skipping. PS248 (SEQ ID NO: 127) reproducibly induced highest levels of exon 50 skipping (up to 35% at 500 nM), as shown in FIG. 3. For comparison, also PS245, PS246, and PS247 are shown, inducing exon 50 skipping levels up to 14-16% at 500 nM (FIG. 3). The precise skipping of exon 50 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 50 skipping was observed in non-treated cells (NT).
  • DMD Exon 51 Skipping
  • A series of AONs targeting sequences within exon 51 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 51 herein defined as SEQ ID NO 5, was indeed capable of inducing exon 51 skipping. The AON with SEQ ID NO 180 reproducibly induced highest levels of exon 51 skipping (not shown).
  • DMD Exon 52 Skipping
  • A series of AONs targeting sequences within exon 52 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 52 herein defined as SEQ ID NO 6, was indeed capable of inducing exon 52 skipping. PS236 (SEQ ID NO: 299) reproducibly induced highest levels of exon 52 skipping (up to 88% at 200 nM and 91% at 500 nM), as shown in FIG. 4. For comparison, also PS232 and AON 52-1 (previously published by Aartsma-Rus et al. Oligonucleotides 2005) are shown, inducing exon 52 skipping at levels up to 59% and 10% respectively when applied at 500 nM (FIG. 4). The precise skipping of exon 52 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 52 skipping was observed in non-treated cells (NT).
  • DMD Exon 53 Skipping
  • A series of AONs targeting sequences within exon 53 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 53 herein defined as SEQ ID NO 7, was indeed capable of inducing exon 53 skipping. The AON with SEQ ID NO 328 reproducibly induced highest levels of exon 53 skipping (not shown).
  • Sequence Listing:
  • DMD gene amino acid sequence
    SEQ ID NO: 1:
    MLWWEEVEDCYEREDVQKKTFTKWVNAQFSKFGKQHIENLFSDLQDGR
    RLLDLLEGLTGQKLPKEKGSTRVHALNNVNKALRVLQNNNVDLVNIGS
    TDIVDGNHKLTLGLIWNIILHWQVKNVMKNIMAGLQQTNSEKILLSWV
    RQSTRNYPQVNVINFTTSWSDGLALNALIHSHRPDLFDWSVVCQQSAT
    QRLEHAFNIARYQLGIEKLLDPEDVDTTYPDKKSILMYITSLFQVLPQ
    QVSIEAIQEVEMLPRPPKVTKEEHFQLHHQMHYSQQITVSLAQGYERT
    SSPKPRFKSYAYTQAAYVTTSDPTRSPFPSQHLEAPEDKSFGSSLMES
    EVNLDRYQTALEEVLSWLLSAEDTLQAQGEISNDVEVVKDQFHTHEGY
    MMDLTAHQGRVGNILQLGSKLIGTGKLSEDEETEVQEQMNLLNSRWEC
    LRVASMEKQSNLHRVLMDLQNQKLKELNDWLTKTEERTRKMEEEPLGP
    DLEDLKRQVQQHKVLQCDLEOEQVRVNSLTHMVVVVDESSGDHATAAL
    EEQLKVLGORVVANICRWTEDRWVLLQDILLKWQRLTEEQCLFSAWLS
    EKEDAVNKIHTTGFKDQNEMLSSLQKLAVLKADLEKKKQSMGKLYSLK
    QDLLSTLKNKSVTQKTEAWLDNFARCWDNLVQKLEKSTAQISQAVTTT
    QPSLTQTTVMETVTTVTTREQILVKHAQEELPPPPPQKKRQITVDSEI
    RKRLDVDITELHSWITRSEAVLQSPEFAIFRKEGNFSDLKEKVNAIER
    EKAEKFRKLQDASRSAQALVEQMVNEGVNADSIKQASEQLNSRWIEFC
    QLLSERLNWLEYQNNIIAFYNQLQQLEOMTTTAENWLKIQPTTPSEPT
    AIKSQLKICKDEVNRLSGLQPQIERLKIQSIALKEKGQGPMFLDADFV
    AFTNHFKQVFSDVQAREKELQTIFDTLPPMRYQETMSAIRTWVQQSET
    KLSIPQLSVTDYEIMEQRLGELQALQSSLQEQQSGLYYLSTTVKEMSK
    KAPSEISRKYQSEFEEIEGRWKKLSSQLVEHCQKLEEQMNKLRKIQNH
    IQTLKKWMAEVDVFLKEEWPALGDSEILKKQLKQCRLLVSDIQTIQPS
    LNSVNEGGQKIKNEAEPEFASRLETELKELNTQWDHMCQQVYARKEAL
    KGGLEKTVSLQKDLSEMHEWMTQAEEEYLERDFEYKTPQELQKAVEEM
    KRAKEEAQQKEAKVKLLTESVNSVIAQAPPVAQEALKKELETLTTNYQ
    WLCTRLNGKCKTLEEVWACWHELLSYLEKANKWLNEVEFKLKTTENIP
    GGAEEISEVLDSLENLMRHSEDNPNQIRILAQTLTDGGVMDELINEEL
    ETFNSRWRELHEEAVRRQKLLEQSIQSAQETEKSLHLIQESLTFIDKQ
    LAAYIADKVDAAQMPQEAQKIQSDLTSHEISLEEMKKHNQGKEAAQRV
    LSQIDVAQKKLQDVSMKFRLFQKPANFEQRLQESKMILDEVKMHLPAL
    ETKSVEQEVVQSQLNHCVNLYKSLSEVKSEVEMVIKTGRQIVQKKQTE
    NPKELDERVTALKLHYNELGAKVTERKQQLEKCLKLSRKMRKEMNVLT
    EWLAATDMELTKRSAVEGMPSNLDSEVAWGKATQKEIEKOKVHLKSIT
    EVGEALKTVLGKKETLVEDKLSLLNSNWIAVTSRAEEWLNLLLEYOKH
    METFDQNVDHITKWIIQADTLLDESEKKKPQQKEDVLKRLKAELNDIR
    PKVDSTRDQAANLMANRGDHCRKLVEPQISELNHRFAAISHRIKTGKA
    SIPLKELEQFNSDIQKLLEPLEAEIQQGVNLKEEDFNKDMNEDNCGTV
    KELLQRGDNLQQRITDERKREEIKIKQQLLQTKHNALKDLRSQRRKKA
    LEISHQWYQYKRQADDLLKCLDDIEKKLASLPEPRDERKIKEIDRELQ
    KKKEELNAVRRQAEGLSEDGAAMAVEPTQIQLSKRWREIESKFAQFRR
    LNFAQIHTVREETMMVMTEDMPLEISYVPSTYLTEITHVSQALLEVEQ
    LLNAPDLCAKDFEDLFKQEESLKNIKDSLQQSSGRIDIIHSKKTAALQ
    SATPVERVKLQEALSQLDFQWEKVNKMYKDRQGRFDRSVEKWRRFHYD
    IKIFNQWLTEAEQFLRKTQIPENWEHAKYKWYLKELQDGIGQRQTWRT
    LNATGEEIIQQSSKTDASILQEKLGSLNLRWQEVCKQLSDRKKRLEEQ
    KNILSEFQRDLNEFVLWLEEADNIASIPLEPGKEQOLKEKLEQVKLLV
    EELPLRQCILKQLNETGGPVLVSAPISPEEQDKLENKLKQTNLQWIKV
    SRALPEKQGEIEAQIKDLGQLEKKLEDLEEQLNHLLLWLSPIRNQLEI
    YNQPNQEGPFDVQETEIAVQAKQPDVEEILSKGQHLYKEKPATQPVKR
    KLEDLSSEWKAVNRLLQELRAKQPDLAPGLTTKIGASPTQTVTLVTQP
    WTKETAISKLEMPSSLMLEVPALADFNRAWTELTDWLSLLDQVIKSQR
    VMVGDLEDINEMIIKQKATMQDLEQRRPQLEELITAAQNLKNKTSNQE
    ARTIITDRIERIQNQWDEVQEHLQNRRQQLNEMLKDSTQWLEAKEEAE
    QVLGQARAKLESWKEGPYTVDAIQKKITETKQLAKDLRQWQTNVDVAN
    DLALKLLRDYSADDTRKVHMITENINASWRSIHKRVSEREAALEETHR
    LLQQFPLDLEKFLAWLTEAETTANVLQDATRKERLLEDSKGVKELMKQ
    WQDLQGEIEAHTDVYHNLDENSQKILRSLEGSDDAVLLQRRLDNMNFK
    WSELRKKSLNIRSHLEASSDQWKRLHLSLQELLVWLQLKDDELSRQAP
    IGGDFPAVQKQNDVHRAFKRELKTKEPVIMSTLETVRIFLTEQPLEGL
    EKLYQEPRELPPEERAQNVTRLLRKQAEEVNTEWEKLNLHSADWQRKI
    DETLERLQELQEATDELDLKLRQAEVIKGSWQPVGDLLIDSLQDHLEK
    VKALRGEIAPLKENVSHVNDLARQLTTLGIQLSPYNLSTLEDLNTRWK
    LLQVAVEDRVRQLHEAHRDFGPASQHFLSTSVQGPWERAISPNKVPYY
    INHETQTTCWDHPKMTELYQSLADLNNVRFSAYRTAMKLRRLQKALCL
    DLLSLSAACDALDQHNLKQNDQPMDILQIINCLTTIYDRLEQEHNNLV
    NVPLCVDMCLNWLLNVYDTGRTGRIRVLSFKTGIISLCKAHLEDKYRY
    LFKQVASSTGFCDQRRLGLLLHDSIQIPRQLGEVASFGGSNIEPSVRS
    CFQFANNKPEIEAALFLDWMRLEPQSMVWLPVLHRVAAAETAKHQAKC
    NICKECPIIGFRYRSLKHFNYDICQSCFFSGRVAKGHKMHYPMVEYCT
    PTTSGEDVRDFAKVLKNKFRTKRYFAKHPRMGYLPVQTVLEGDNMETP
    VTLINFWPVDSAPASSPQLSHDDTHSRIEHYASRLAEMENSNGSYLND
    SISPNESIDDEHLLIQHYCQSLNQDSPLSQPRSPAQILISLESEERGE
    LERILADLEEENRNLQAEYDRLKQQHEHKGLSPLPSPPEMMPTSPQSP
    RDAELIAEAKLLRQHKGRLEARMQILEDHNKQLESQLHRLRQLLEQPQ
    AEAKVNGTTVSSPSTSLQRSDSSQPMLLRVVGSQTSDSMGEEDLLSPP
    QDTSTGLEEVMEQLNNSFPSSRGRNTPGKPMREDTM
    SEQ ID NO 2 (exon 43):
    AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAUAGCAA
    GAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG
    SEQ ID NO 3 (exon 46):
    UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUGAACCU
    GGAAAAGAGCAGCAACUAAAAGAAAAGC
    SEQ ID NO 4 (exon 50):
    ′GGCGGTAAACCGUUUACUUCAAGAGCUGAGGGCAAAGCAGCCUG AC
    CUAGCUCCUGGACUGACCACUAUUGG
    SEQ ID NO 5 (exon 51):
    CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACUAAGG
    AAACUGCCAUCUCCAAACUAGAAAUGCCAUCUUCCUUGAUGUUGGAGG
    UAC
    SEQ ID NO 6 (exon 52):
    AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAUUACC
    GCUGCCCAAAAUUUGAAAAA CAAGACCAGCAAUCAAGAGGCU
    SEQ ID NO 7 (exon 53):
    AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAAGCUG
    AGCAGGUCUUAGGACAGGCCAGAG
  • TABLE 1
    oligonucleotides for skipping DMD Gene Exon 43
    SEQ ID NO 8 CCACAGGCGUUGCACUUUGCAAUGC
    SEQ ID NO 9 CACAGGCGUUGCACUUUGCAAUGCU
    SEQ ID NO 10 ACAGGCGUUGCACUUUGCAAUGCUG
    SEQ ID NO 11 CAGGCGUUGCACUUUGCAAUGCUGC
    SEQ ID NO 12 AGGCGUUGCACUUUGCAAUGCUGCU
    SEQ ID NO 13 GGCGUUGCACUUUGCAAUGCUGCUG
    SEQ ID NO 14 GCGUUGCACUUUGCAAUGCUGCUGU
    SEQ ID NO 15 CGUUGCACUUUGCAAUGCUGCUGUC
    SEQ ID NO 16 CGUUGCACUUUGCAAUGCUGCUG
    PS240
    SEQ ID NO 17 GUUGCACUUUGCAAUGCUGCUGUCU
    SEQ ID NO 18 UUGCACUUUGCAAUGCUGCUGUCUU
    SEQ ID NO 19 UGCACUUUGCAAUGCUGCUGUCUUC
    SEQ ID NO 20 GCACUUUGCAAUGCUGCUGUCUUCU
    SEQ ID NO 21 CACUUUGCAAUGCUGCUGUCUUCUU
    SEQ ID NO 22 ACUUUGCAAUGCUGCUGUCUUCUUG
    SEQ ID NO 23 CUUUGCAAUGCUGCUGUCUUCUUGC
    SEQ ID NO 24 UUUGCAAUGCUGCUGUCUUCUUGCU
    SEQ ID NO 25 UUGCAAUGCUGCUGUCUUCUUGCUA
    SEQ ID NO 26 UGCAAUGCUGCUGUCUUCUUGCUAU
    SEQ ID NO 27 GCAAUGCUGCUGUCUUCUUGCUAUG
    SEQ ID NO 28 CAAUGCUGCUGUCUUCUUGCUAUGA
    SEQ ID NO 29 AAUGCUGCUGUCUUCUUGCUAUGAA
    SEQ ID NO 30 AUGCUGCUGUCUUCUUGCUAUGAAU
    SEQ ID NO 31 UGCUGCUGUCUUCUUGCUAUGAAUA
    SEQ ID NO 32 GCUGCUGUCUUCUUGCUAUGAAUAA
    SEQ ID NO 33 CUGCUGUCUUCUUGCUAUGAAUAAU
    SEQ ID NO 34 UGCUGUCUUCUUGCUAUGAAUAAUG
    SEQ ID NO 35 GCUGUCUUCUUGCUAUGAAUAAUGU
    SEQ ID NO 36 CUGUCUUCUUGCUAUGAAUAAUGUC
    SEQ ID NO 37 UGUCUUCUUGCUAUGAAUAAUGUCA
    SEQ ID NO 38 GUCUUCUUGCUAUGAAUAAUGUCAA
    SEQ ID NO 39 UCUUCUUGCUAUGAAUAAUGUCAAU
    SEQ ID NO 40 CUUCUUGCUAUGAAUAAUGUCAAUC
    SEQ ID NO 41 UUCUUGCUAUGAAUAAUGUCAAUCC
    SEQ ID NO 42 UCUUGCUAUGAAUAAUGUCAAUCCG
    SEQ ID NO 43 CUUGCUAUGAAUAAUGUCAAUCCGA
    SEQ ID NO 44 UUGCUAUGAAUAAUGUCAAUCCGAC
    SEQ ID NO 45 UGCUAUGAAUAAUGUCAAUCCGACC
    SEQ ID NO 46 GCUAUGAAUAAUGUCAAUCCGACCU
    SEQ ID NO 47 CUAUGAAUAAUGUCAAUCCGACCUG
    SEQ ID NO 48 UAUGAAUAAUGUCAAUCCGACCUGA
    SEQ ID NO 49 AUGAAUAAUGUCAAUCCGACCUGAG
    SEQ ID NO 50 UGAAUAAUGUCAAUCCGACCUGAGC
    SEQ ID NO 51 GAAUAAUGUCAAUCCGACCUGAGCU
    SEQ ID NO 52 AAUAAUGUCAAUCCGACCUGAGCUU
    SEQ ID NO 53 AUAAUGUCAAUCCGACCUGAGCUUU
    SEQ ID NO 54 UAAUGUCAAUCCGACCUGAGCUUUG
    SEQ ID NO 55 AAUGUCAAUCCGACCUGAGCUUUGU
    SEQ ID NO 56 AUGUCAAUCCGACCUGAGCUUUGUU
    SEQ ID NO 57 UGUCAAUCCGACCUGAGCUUUGUUG
    SEQ ID NO 58 GUCAAUCCGACCUGAGCUUUGUUGU
    SEQ ID NO 59 UCAAUCCGACCUGAGCUUUGUUGUA
    SEQ ID NO 60 CAAUCCGACCUGAGCUUUGUUGUAG
    SEQ ID NO 61 AAUCCGACCUGAGCUUUGUUGUAGA
    SEQ ID NO 62 AUCCGACCUGAGCUUUGUUGUAGAC
    SEQ ID NO 63 UCCGACCUGAGCUUUGUUGUAGACU
    SEQ ID NO 64 CCGACCUGAGCUUUGUUGUAGACUA
    SEQ ID NO 65 CGACCUGAGCUUUGUUGUAG
    PS237
    SEQ ID NO 66 CGACCUGAGCUUUGUUGUAGACUAU
    PS238
    SEQ ID NO 67 GACCUGAGCUUUGUUGUAGACUAUC
    SEQ ID NO 68 ACCUGAGCUUUGUUGUAGACUAUCA
    SEQ ID NO 69 CCUGA GCUUU GUUGU AGACU AUC
  • TABLE 2
    oligonucleotides for skipping DMD Gene Exon 46
    SEQ ID NO 70 GCUUUUCUUUUAGUUGCUGCUCUUU
    PS179
    SEQ ID NO 71 CUUUUCUUUUAGUUGCUGCUCUUUU
    SEQ ID NO 72 UUUUCUUUUAGUUGCUGCUCUUUUC
    SEQ ID NO 73 UUUCUUUUAGUUGCUGCUCUUUUCC
    SEQ ID NO 74 UUCUUUUAGUUGCUGCUCUUUUCCA
    SEQ ID NO 75 UCUUUUAGUUGCUGCUCUUUUCCAG
    SEQ ID NO 76 CUUUUAGUUGCUGCUCUUUUCCAGG
    SEQ ID NO 77 UUUUAGUUGCUGCUCUUUUCCAGGU
    SEQ ID NO 78 UUUAGUUGCUGCUCUUUUCCAGGUU
    SEQ ID NO 79 UUAGUUGCUGCUCUUUUCCAGGUUC
    SEQ ID NO 80 UAGUUGCUGCUCUUUUCCAGGUUCA
    SEQ ID NO 81 AGUUGCUGCUCUUUUCCAGGUUCAA
    SEQ ID NO 82 GUUGCUGCUCUUUUCCAGGUUCAAG
    SEQ ID NO 83 UUGCUGCUCUUUUCCAGGUUCAAGU
    SEQ ID NO 84 UGCUGCUCUUUUCCAGGUUCAAGUG
    SEQ ID NO 85 GCUGCUCUUUUCCAGGUUCAAGUGG
    SEQ ID NO 86 CUGCUCUUUUCCAGGUUCAAGUGGG
    SEQ ID NO 87 UGCUCUUUUCCAGGUUCAAGUGGGA
    SEQ ID NO 88 GCUCUUUUCCAGGUUCAAGUGGGAC
    SEQ ID NO 89 CUCUUUUCCAGGUUCAAGUGGGAUA
    SEQ ID NO 90 UCUUUUCCAGGUUCAAGUGGGAUAC
    SEQ ID NO 91 UCUUUUCCAGGUUCAAGUGG
    PS177
    SEQ ID NO 92 CUUUUCCAGGUUCAAGUGGGAUACU
    SEQ ID NO 93 UUUUCCAGGUUCAAGUGGGAUACUA
    SEQ ID NO 94 UUUCCAGGUUCAAGUGGGAUACUAG
    SEQ ID NO 95 UUCCAGGUUCAAGUGGGAUACUAGC
    SEQ ID NO 96 UCCAGGUUCAAGUGGGAUACUAGCA
    SEQ ID NO 97 CCAGGUUCAAGUGGGAUACUAGCAA
    SEQ ID NO 98 CAGGUUCAAGUGGGAUACUAGCAAU
    SEQ ID NO 99 AGGUUCAAGUGGGAUACUAGCAAUG
    SEQ ID NO 100 GGUUCAAGUGGGAUACUAGCAAUGU
    SEQ ID NO 101 GUUCAAGUGGGAUACUAGCAAUGUU
    SEQ ID NO 102 UUCAAGUGGGAUACUAGCAAUGUUA
    SEQ ID NO 103 UCAAGUGGGAUACUAGCAAUGUUAU
    SEQ ID NO 104 CAAGUGGGAUACUAGCAAUGUUAUC
    SEQ ID NO 105 AAGUGGGAUACUAGCAAUGUUAUCU
    SEQ ID NO 106 AGUGGGAUACUAGCAAUGUUAUCUG
    SEQ ID NO 107 GUGGGAUACUAGCAAUGUUAUCUGC
    SEQ ID NO 108 UGGGAUACUAGCAAUGUUAUCUGCU
    SEQ ID NO 109 GGGAUACUAGCAAUGUUAUCUGCUU
    SEQ ID NO 110 GGAUACUAGCAAUGUUAUCUGCUUC
    PS181
    SEQ ID NO 111 GAUACUAGCAAUGUUAUCUGCUUCC
    SEQ ID NO 112 AUACUAGCAAUGUUAUCUGCUUCCU
    SEQ ID NO 113 UACUAGCAAUGUUAUCUGCUUCCUC
    SEQ ID NO 114 ACUAGCAAUGUUAUCUGCUUCCUCC
    SEQ ID NO 115 CUAGCAAUGUUAUCUGCUUCCUCCA
    SEQ ID NO 116 UAGCAAUGUUAUCUGCUUCCUCCAA
    SEQ ID NO 117 AGCAAUGUUAUCUGCUUCCUCCAAC
    PS182
    SEQ ID NO 118 GCAAUGUUAUCUGCUUCCUCCAACC
    SEQ ID NO 119 CAAUGUUAUCUGCUUCCUCCAACCA
    SEQ ID NO 120 AAUGUUAUCUGCUUCCUCCAACCAU
    SEQ ID NO 121 AUGUUAUCUGCUUCCUCCAACCAUA
    SEQ ID NO 122 UGUUAUCUGCUUCCUCCAACCAUAA
  • TABLE 3
    oligonucleotides for skipping DMD Gene Exon 50
    SEQ ID NO 123 CCAAUAGUGGUCAGUCCAGGAGCUA
    SEQ ID NO 124 CAAUAGUGGUCAGUCCAGGAGCUAG
    SEQ ID NO 125 AAUAGUGGUCAGUCCAGGAGCUAGG
    SEQ ID NO 126 AUAGUGGUCAGUCCAGGAGCUAGGU
    SEQ ID NO 127 AUAGUGGUCAGUCCAGGAGCU
    PS248
    SEQ ID NO 128 UAGUGGUCAGUCCAGGAGCUAGGUC
    SEQ ID NO 129 AGUGGUCAGUCCAGGAGCUAGGUCA
    SEQ ID NO 130 GUGGUCAGUCCAGGAGCUAGGUCAG
    SEQ ID NO 131 UGGUCAGUCCAGGAGCUAGGUCAGG
    SEQ ID NO 132 GGUCAGUCCAGGAGCUAGGUCAGGC
    SEQ ID NO 133 GUCAGUCCAGGAGCUAGGUCAGGCU
    SEQ ID NO 134 UCAGUCCAGGAGCUAGGUCAGGCUG
    SEQ ID NO 135 CAGUCCAGGAGCUAGGUCAGGCUGC
    SEQ ID NO 136 AGUCCAGGAGCUAGGUCAGGCUGCU
    SEQ ID NO 137 GUCCAGGAGCUAGGUCAGGCUGCUU
    SEQ ID NO 138 UCCAGGAGCUAGGUCAGGCUGCUUU
    SEQ ID NO 139 CCAGGAGCUAGGUCAGGCUGCUUUG
    SEQ ID NO 140 CAGGAGCUAGGUCAGGCUGCUUUGC
    SEQ ID NO 141 AGGAGCUAGGUCAGGCUGCUUUGCC
    SEQ ID NO 142 GGAGCUAGGUCAGGCUGCUUUGCCC
    SEQ ID NO 143 GAGCUAGGUCAGGCUGCUUUGCCCU
    SEQ ID NO 144 AGCUAGGUCAGGCUGCUUUGCCCUC
    SEQ ID NO 145 GCUAGGUCAGGCUGCUUUGCCCUCA
    SEQ ID NO 530 CUCAGCUCUUGAAGUAAACGGUUUA
    SEQ ID NO 532 CAGCUCUUGAAGUAAACGGUUUACC
    SEQ ID NO 534 GCUCUUGAAGUAAACGGUUUACCGC
    SEQ ID NO 146 CUAGGUCAGGCUGCUUUGCCCUCAG
    SEQ ID NO 147 UAGGUCAGGCUGCUUUGCCCUCAGC
    SEQ ID NO 148 AGGUCAGGCUGCUUUGCCCUCAGCU
    SEQ ID NO 149 GGUCAGGCUGCUUUGCCCUCAGCUC
    SEQ ID NO 150 GUCAGGCUGCUUUGCCCUCAGCUCU
    SEQ ID NO 151 UCAGGCUGCUUUGCCCUCAGCUCUU
    SEQ ID NO 152 CAGGCUGCUUUGCCCUCAGCUCUUG
    SEQ ID NO 153 AGGCUGCUUUGCCCUCAGCUCUUGA
    SEQ ID NO 154 GGCUGCUUUGCCCUCAGCUCUUGAA
    SEQ ID NO 155 GCUGCUUUGCCCUCAGCUCUUGAAG
    SEQ ID NO 156 CUGCUUUGCCCUCAGCUCUUGAAGU
    SEQ ID NO 157 UGCUUUGCCCUCAGCUCUUGAAGUA
    SEQ ID NO 158 GCUUUGCCCUCAGCUCUUGAAGUAA
    SEQ ID NO 159 CUUUGCCCUCAGCUCUUGAAGUAAA
    SEQ ID NO 160 UUUGCCCUCAGCUCUUGAAGUAAAC
    SEQ ID NO 161 UUGCCCUCAGCUCUUGAAGUAAACG
    SEQ ID NO 162 UGCCCUCAGCUCUUGAAGUAAACGG
    SEQ ID NO 163 GCCCUCAGCUCUUGAAGUAAACGGU
    SEQ ID NO 164 CCCUCAGCUCUUGAAGUAAACGGUU
    SEQ ID NO 165 CCUCAGCUCUUGAAGUAAAC
    PS246
    SEQ ID NO 166 CCUCAGCUCUUGAAGUAAACG
    PS247
    SEQ ID NO 167 CUCAGCUCUUGAAGUAAACG
    PS245
    SEQ ID NO 529 CCUCAGCUCUUGAAGUAAACGGUUU
    SEQ ID NO 531 UCAGCUCUUGAAGUAAACGGUUUAC
    SEQ ID NO 533 AGCUCUUGAAGUAAACGGUUUACCG
    SEQ ID NO 535 CUCUUGAAGUAAACGGUUUACCGCC
  • TABLE 4
    oligonucleotides for skipping DMD Gene Exon 51
    SEQ ID NO 168 GUACCUCCAACAUCAAGGAAGAUGG
    SEQ ID NO 169 UACCUCCAACAUCAAGGAAGAUGGC
    SEQ ID NO 170 ACCUCCAACAUCAAGGAAGAUGGCA
    SEQ ID NO 171 CCUCCAACAUCAAGGAAGAUGGCAU
    SEQ ID NO 172 CUCCAACAUCAAGGAAGAUGGCAUU
    SEQ ID NO 173 UCCAACAUCAAGGAAGAUGGCAUUU
    SEQ ID NO 174 CCAACAUCAAGGAAGAUGGCAUUUC
    SEQ ID NO 175 CAACAUCAAGGAAGAUGGCAUUUCU
    SEQ ID NO 176 AACAUCAAGGAAGAUGGCAUUUCUA
    SEQ ID NO 177 ACAUCAAGGAAGAUGGCAUUUCUAG
    SEQ ID NO 178 CAUCAAGGAAGAUGGCAUUUCUAGU
    SEQ ID NO 179 AUCAAGGAAGAUGGCAUUUCUAGUU
    SEQ ID NO 180 UCAAGGAAGAUGGCAUUUCUAGUUU
    SEQ ID NO 181 CAAGGAAGAUGGCAUUUCUAGUUUG
    SEQ ID NO 182 AAGGAAGAUGGCAUUUCUAGUUUGG
    SEQ ID NO 183 AGGAAGAUGGCAUUUCUAGUUUGGA
    SEQ ID NO 184 GGAAGAUGGCAUUUCUAGUUUGGAG
    SEQ ID NO 185 GAAGAUGGCAUUUCUAGUUUGGAGA
    SEQ ID NO 186 AAGAUGGCAUUUCUAGUUUGGAGAU
    SEQ ID NO 187 AGAUGGCAUUUCUAGUUUGGAGAUG
    SEQ ID NO 188 GAUGGCAUUUCUAGUUUGGAGAUGG
    SEQ ID NO 189 AUGGCAUUUCUAGUUUGGAGAUGGC
    SEQ ID NO 190 UGGCAUUUCUAGUUUGGAGAUGGCA
    SEQ ID NO 191 GGCAUUUCUAGUUUGGAGAUGGCAG
    SEQ ID NO 192 GCAUUUCUAGUUUGGAGAUGGCAGU
    SEQ ID NO 193 CAUUUCUAGUUUGGAGAUGGCAGUU
    SEQ ID NO 194 AUUUCUAGUUUGGAGAUGGCAGUUU
    SEQ ID NO 195 UUUCUAGUUUGGAGAUGGCAGUUUC
    SEQ ID NO 196 UUCUAGUUUGGAGAUGGCAGUUUCC
    SEQ ID NO 197 UCUAGUUUGGAGAUGGCAGUUUCCU
    SEQ ID NO 198 CUAGUUUGGAGAUGGCAGUUUCCUU
    SEQ ID NO 199 UAGUUUGGAGAUGGCAGUUUCCUUA
    SEQ ID NO 200 AGUUUGGAGAUGGCAGUUUCCUUAG
    SEQ ID NO 201 GUUUGGAGAUGGCAGUUUCCUUAGU
    SEQ ID NO 202 UUUGGAGAUGGCAGUUUCCUUAGUA
    SEQ ID NO 203 UUGGAGAUGGCAGUUUCCUUAGUAA
    SEQ ID NO 204 UGGAGAUGGCAGUUUCCUUAGUAAC
    SEQ ID NO 205 GAGAUGGCAGUUUCCUUAGUAACCA
    SEQ ID NO 206 AGAUGGCAGUUUCCUUAGUAACCAC
    SEQ ID NO 207 GAUGGCAGUUUCCUUAGUAACCACA
    SEQ ID NO 208 AUGGCAGUUUCCUUAGUAACCACAG
    SEQ ID NO 209 UGGCAGUUUCCUUAGUAACCACAGG
    SEQ ID NO 210 GGCAGUUUCCUUAGUAACCACAGGU
    SEQ ID NO 211 GCAGUUUCCUUAGUAACCACAGGUU
    SEQ ID NO 212 CAGUUUCCUUAGUAACCACAGGUUG
    SEQ ID NO 213 AGUUUCCUUAGUAACCACAGGUUGU
    SEQ ID NO 214 GUUUCCUUAGUAACCACAGGUUGUG
    SEQ ID NO 215 UUUCCUUAGUAACCACAGGUUGUGU
    SEQ ID NO 216 UUCCUUAGUAACCACAGGUUGUGUC
    SEQ ID NO 217 UCCUUAGUAACCACAGGUUGUGUCA
    SEQ ID NO 218 CCUUAGUAACCACAGGUUGUGUCAC
    SEQ ID NO 219 CUUAGUAACCACAGGUUGUGUCACC
    SEQ ID NO 220 UUAGUAACCACAGGUUGUGUCACCA
    SEQ ID NO 221 UAGUAACCACAGGUUGUGUCACCAG
    SEQ ID NO 222 AGUAACCACAGGUUGUGUCACCAGA
    SEQ ID NO 223 GUAACCACAGGUUGUGUCACCAGAG
    SEQ ID NO 224 UAACCACAGGUUGUGUCACCAGAGU
    SEQ ID NO 225 AACCACAGGUUGUGUCACCAGAGUA
    SEQ ID NO 226 ACCACAGGUUGUGUCACCAGAGUAA
    SEQ ID NO 227 CCACAGGUUGUGUCACCAGAGUAAC
    SEQ ID NO 228 CACAGGUUGUGUCACCAGAGUAACA
    SEQ ID NO 229 ACAGGUUGUGUCACCAGAGUAACAG
    SEQ ID NO 230 CAGGUUGUGUCACCAGAGUAACAGU
    SEQ ID NO 231 AGGUUGUGUCACCAGAGUAACAGUC
    SEQ ID NO 232 GGUUGUGUCACCAGAGUAACAGUCU
    SEQ ID NO 233 GUUGUGUCACCAGAGUAACAGUCUG
    SEQ ID NO 234 UUGUGUCACCAGAGUAACAGUCUGA
    SEQ ID NO 235 UGUGUCACCAGAGUAACAGUCUGAG
    SEQ ID NO 236 GUGUCACCAGAGUAACAGUCUGAGU
    SEQ ID NO 237 UGUCACCAGAGUAACAGUCUGAGUA
    SEQ ID NO 238 GUCACCAGAGUAACAGUCUGAGUAG
    SEQ ID NO 239 UCACCAGAGUAACAGUCUGAGUAGG
    SEQ ID NO 240 CACCAGAGUAACAGUCUGAGUAGGA
    SEQ ID NO 241 ACCAGAGUAACAGUCUGAGUAGGAG
  • TABLE 5
    oligonucleotides for skipping DMD Gene Exon 52
    SEQ ID NO 242 AGCCUCUUGAUUGCUGGUCUUGUUU
    SEQ ID NO 243 GCCUCUUGAUUGCUGGUCUUGUUUU
    SEQ ID NO 244 CCUCUUGAUUGCUGGUCUUGUUUUU
    SEQ ID NO 245 CCUCUUGAUUGCUGGUCUUG
    SEQ ID NO 246 CUCUUGAUUGCUGGUCUUGUUUUUC
    PS232
    SEQ ID NO 247 UCUUGAUUGCUGGUCUUGUUUUUCA
    SEQ ID NO 248 CUUGAUUGCUGGUCUUGUUUUUCAA
    SEQ ID NO 249 UUGAUUGCUGGUCUUGUUUUUCAAA
    SEQ ID NO 250 UGAUUGCUGGUCUUGUUUUUCAAAU
    SEQ ID NO 251 GAUUGCUGGUCUUGUUUUUCAAAUU
    SEQ ID NO 252 GAUUGCUGGUCUUGUUUUUC
    SEQ ID NO 253 AUUGCUGGUCUUGUUUUUCAAAUUU
    SEQ ID NO 254 UUGCUGGUCUUGUUUUUCAAAUUUU
    SEQ ID NO 255 UGCUGGUCUUGUUUUUCAAAUUUUG
    SEQ ID NO 256 GCUGGUCUUGUUUUUCAAAUUUUGG
    SEQ ID NO 257 CUGGUCUUGUUUUUCAAAUUUUGGG
    SEQ ID NO 258 UGGUCUUGUUUUUCAAAUUUUGGGC
    SEQ ID NO 259 GGUCUUGUUUUUCAAAUUUUGGGCA
    SEQ ID NO 260 GUCUUGUUUUUCAAAUUUUGGGCAG
    SEQ ID NO 261 UCUUGUUUUUCAAAUUUUGGGCAGC
    SEQ ID NO 262 CUUGUUUUUCAAAUUUUGGGCAGCG
    SEQ ID NO 263 UUGUUUUUCAAAUUUUGGGCAGCGG
    SEQ ID NO 264 UGUUUUUCAAAUUUUGGGCAGCGGU
    SEQ ID NO 265 GUUUUUCAAAUUUUGGGCAGCGGUA
    SEQ ID NO 266 UUUUUCAAAUUUUGGGCAGCGGUAA
    SEQ ID NO 267 UUUUCAAAUUUUGGGCAGCGGUAAU
    SEQ ID NO 268 UUUCAAAUUUUGGGCAGCGGUAAUG
    SEQ ID NO 269 UUCAAAUUUUGGGCAGCGGUAAUGA
    SEQ ID NO 270 UCAAAUUUUGGGCAGCGGUAAUGAG
    SEQ ID NO 271 CAAAUUUUGGGCAGCGGUAAUGAGU
    SEQ ID NO 272 AAAUUUUGGGCAGCGGUAAUGAGUU
    SEQ ID NO 273 AAUUUUGGGCAGCGGUAAUGAGUUC
    SEQ ID NO 274 AUUUUGGGCAGCGGUAAUGAGUUCU
    SEQ ID NO 275 UUUUGGGCAGCGGUAAUGAGUUCU
    SEQ ID NO 276 UUUGGGCAGCGGUAAUGAGUUCUUC
    SEQ ID NO 277 UUGGGCAGCGGUAAUGAGUUCUUCC
    SEQ ID NO 278 UGGGCAGCGGUAAUGAGUUCUUCCA
    SEQ ID NO 279 GGGCAGCGGUAAUGAGUUCUUCCAA
    SEQ ID NO 280 GGCAGCGGUAAUGAGUUCUUCCAAC
    SEQ ID NO 281 GCAGCGGUAAUGAGUUCUUCCAACU
    SEQ ID NO 282 CAGCGGUAAUGAGUUCUUCCAACUG
    SEQ ID NO 283 AGCGGUAAUGAGUUCUUCCAACUGG
    SEQ ID NO 284 GCGGUAAUGAGUUCUUCCAACUGGG
    SEQ ID NO 285 CGGUAAUGAGUUCUUCCAACUGGGG
    SEQ ID NO 286 GGUAAUGAGUUCUUCCAACUGGGGA
    SEQ ID NO 287 GGUAAUGAGUUCUUCCAACUGG
    SEQ ID NO 288 GUAAUGAGUUCUUCCAACUGGGGAC
    SEQ ID NO 289 UAAUGAGUUCUUCCAACUGGGGACG
    SEQ ID NO 290 AAUGAGUUCUUCCAACUGGGGACGC
    SEQ ID NO 291 AUGAGUUCUUCCAACUGGGGACGCC
    SEQ ID NO 292 UGAGUUCUUCCAACUGGGGACGCCU
    SEQ ID NO 293 GAGUUCUUCCAACUGGGGACGCCUC
    SEQ ID NO 294 AGUUCUUCCAACUGGGGACGCCUCU
    SEQ ID NO 295 GUUCUUCCAACUGGGGACGCCUCUG
    SEQ ID NO 296 UUCUUCCAACUGGGGACGCCUCUGU
    SEQ ID NO 297 UCUUCCAACUGGGGACGCCUCUGUU
    SEQ ID NO 298 CUUCCAACUGGGGACGCCUCUGUUC
    SEQ ID NO 299 UUCCAACUGGGGACGCCUCUGUUCC
    PS236
    SEQ ID NO 300 UCCAACUGGGGACGCCUCUGUUCCA
    SEQ ID NO 301 CCAACUGGGGACGCCUCUGUUCCAA
    SEQ ID NO 302 CAACUGGGGACGCCUCUGUUCCAAA
    SEQ ID NO 303 AACUGGGGACGCCUCUGUUCCAAAU
    SEQ ID NO 304 ACUGGGGACGCCUCUGUUCCAAAUC
    SEQ ID NO 305 CUGGGGACGCCUCUGUUCCAAAUCC
    SEQ ID NO 306 UGGGGACGCCUCUGUUCCAAAUCCU
    SEQ ID NO 307 GGGGACGCCUCUGUUCCAAAUCCUG
    SEQ ID NO 308 GGGACGCCUCUGUUCCAAAUCCUGC
    SEQ ID NO 309 GGACGCCUCUGUUCCAAAUCCUGCA
    SEQ ID NO 310 GACGCCUCUGUUCCAAAUCCUGCAU
  • TABLE 6
    oligonucleotides for skipping DMD Gene Exon 53
    SEQ ID NO 311 CUCUGGCCUGUCCUAAGACCUGCUC
    SEQ ID NO 312 UCUGGCCUGUCCUAAGACCUGCUCA
    SEQ ID NO 313 CUGGCCUGUCCUAAGACCUGCUCAG
    SEQ ID NO 314 UGGCCUGUCCUAAGACCUGCUCAGC
    SEQ ID NO 315 GGCCUGUCCUAAGACCUGCUCAGCU
    SEQ ID NO 316 GCCUGUCCUAAGACCUGCUCAGCUU
    SEQ ID NO 317 CCUGUCCUAAGACCUGCUCAGCUUC
    SEQ ID NO 318 CUGUCCUAAGACCUGCUCAGCUUCU
    SEQ ID NO 319 UGUCCUAAGACCUGCUCAGCUUCUU
    SEQ ID NO 320 GUCCUAAGACCUGCUCAGCUUCUUC
    SEQ ID NO 321 UCCUAAGACCUGCUCAGCUUCUUCC
    SEQ ID NO 322 CCUAAGACCUGCUCAGCUUCUUCCU
    SEQ ID NO 323 CUAAGACCUGCUCAGCUUCUUCCUU
    SEQ ID NO 324 UAAGACCUGCUCAGCUUCUUCCUUA
    SEQ ID NO 325 AAGACCUGCUCAGCUUCUUCCUUAG
    SEQ ID NO 326 AGACCUGCUCAGCUUCUUCCUUAGC
    SEQ ID NO 327 GACCUGCUCAGCUUCUUCCUUAGCU 
    SEQ ID NO 328 ACCUGCUCAGCUUCUUCCUUAGCUU
    SEQ ID NO 329 CCUGCUCAGCUUCUUCCUUAGCUUC
    SEQ ID NO 330 CUGCUCAGCUUCUUCCUUAGCUUCC
    SEQ ID NO 331 UGCUCAGCUUCUUCCUUAGCUUCCA
    SEQ ID NO 332 GCUCAGCUUCUUCCUUAGCUUCCAG
    SEQ ID NO 333 CUCAGCUUCUUCCUUAGCUUCCAGC
    SEQ ID NO 334 UCAGCUUCUUCCUUAGCUUCCAGCC
    SEQ ID NO 335 CAGCUUCUUCCUUAGCUUCCAGCCA
    SEQ ID NO 336 AGCUUCUUCCUUAGCUUCCAGCCAU
    SEQ ID NO 337 GCUUCUUCCUUAGCUUCCAGCCAUU
    SEQ ID NO 338 CUUCUUCCUUAGCUUCCAGCCAUUG
    SEQ ID NO 339 UUCUUCCUUAGCUUCCAGCCAUUGU
    SEQ ID NO 340 UCUUCCUUAGCUUCCAGCCAUUGUG
    SEQ ID NO 341 CUUCCUUAGCUUCCAGCCAUUGUGU
    SEQ ID NO 342 UUCCUUAGCUUCCAGCCAUUGUGUU
    SEQ ID NO 343 UCCUUAGCUUCCAGCCAUUGUGUUG
    SEQ ID NO 344 CCUUAGCUUCCAGCCAUUGUGUUGA
    SEQ ID NO 345 CUUAGCUUCCAGCCAUUGUGUUGAA
    SEQ ID NO 346 UUAGCUUCCAGCCAUUGUGUUGAAU
    SEQ ID NO 347 UAGCUUCCAGCCAUUGUGUUGAAUC
    SEQ ID NO 348 AGCUUCCAGCCAUUGUGUUGAAUCC
    SEQ ID NO 349 GCUUCCAGCCAUUGUGUUGAAUCCU
    SEQ ID NO 350 CUUCCAGCCAUUGUGUUGAAUCCUU
    SEQ ID NO 351 UUCCAGCCAUUGUGUUGAAUCCUUU
    SEQ ID NO 352 UCCAGCCAUUGUGUUGAAUCCUUUA
    SEQ ID NO 353 CCAGCCAUUGUGUUGAAUCCUUUAA
    SEQ ID NO 354 CAGCCAUUGUGUUGAAUCCUUUAAC
    SEQ ID NO 355 AGCCAUUGUGUUGAAUCCUUUAACA
    SEQ ID NO 356 GCCAUUGUGUUGAAUCCUUUAACAU
    SEQ ID NO 357 CCAUUGUGUUGAAUCCUUUAACAUU
    SEQ ID NO 358 CAUUGUGUUGAAUCCUUUAACAUUU
  • TABLE 7
    oligonucleotides for skipping other
     exons of the DMD gene as identified
    DMD Gene Exon 6
    SEQ ID NO 359 CAUUUUUGACCUACAUGUGG
    SEQ ID NO 360 UUUGACCUACAUGUGGAAAG
    SEQ ID NO 361 UACAUUUUUGACCUACAUGUGGAAA G
    SEQ ID NO 362 GGUCUCCUUACCUAUGA
    SEQ ID NO 363 UCUUACCUAUGACUAUGGAUGAGA
    SEQ ID NO 364 AUUUUUGACCUACAUGGGAAAG
    SEQ ID NO 365 UACGAGUUGAUUGUCGGACCCAG
    SEQ ID NO 366 GUGGUCUCCUUACCUAUGACUGUGG
    SEQ ID NO 367 UGUCUCAGUAAUCUUCUUACCUAU
    DMD Gene Exon 7
    SEQ ID NO 368 UGCAUGUUCCAGUCGUUGUGUGG
    SEQ ID NO 369 CACUAUUCCAGUCAAAUAGGUCUGG
    SEQ ID NO 370 AUUUACCAACCUUCAGGAUCGAGUA
    SEQ ID NO 371 GGCCUAAAACACAUACACAUA
    DMD Gene Exon 11
    SEQ ID NO 372 CCCUGAGGCAUUCCCAUCUUGAAU
    SEQ ID NO 373 AGGACUUACUUGCUUUGUUU
    SEQ ID NO 374 CUUGAAUUUAGGAGAUUCAUCUG
    SEQ ID NO 375 CAUCUUCUGAUAAUUUUCCUGUU
    DMD Gene Exon 17
    SEQ ID NO 376 CCAUUACAGUUGUCUGUGUU
    SEQ ID NO 377 UGACAGCCUGUGAAAUCUGUGAG
    SEQ ID NO 378 UAAUCUGCCUCUUCUUUUGG
    DMD Gene Exon 19
    SEQ ID NO 379 CAGCAGUAGUUGUCAUCUGC
    SEQ ID NO 380 GCCUGAGCUGAUCUGCUGGCAUCUUGC
    SEQ ID NO 381 GCCUGAGCUGAUCUGCUGGCAUCUUGCAGUU
    SEQ ID NO 382 UCUGCUGGCAUCUUGC
    DMD Gene Exon 21
    SEQ ID NO 383 GCCGGUUGACUUCAUCCUGUGC
    SEQ ID NO 384 GUCUGCAUCCAGGAACAUGGGUC
    SEQ ID NO 385 UACUUACUGUCUGUAGCUCUUUCU
    SEQ ID NO 386 CUGCAUCCAGGAACAUGGGUCC
    SEQ ID NO 387 GUUGAAGAUCUGAUAGCCGGUUGA
    DMD Gene Exon 44
    SEQ ID NO 388 UCAGCUUCUGUUAGCCACUG
    SEQ ID NO 389 UUCAGCUUCUGUUAGCCACU
    SEQ ID NO 390 UUCAGCUUCUGUUAGCCACUG
    SEQ ID NO 391 UCAGCUUCUGUUAGCCACUGA
    SEQ ID NO 392 UUCAGCUUCUGUUAGCCACUGA
    SEQ ID NO 393 UCAGCUUCUGUUAGCCACUGA
    SEQ ID NO 394 UUCAGCUUCUGUUAGCCACUGA
    SEQ ID NO 395 UCAGCUUCUGUUAGCCACUGAU
    SEQ ID NO 396 UUCAGCUUCUGUUAGCCACUGAU
    SEQ ID NO 397 UCAGCUUCUGUUAGCCACUGAUU
    SEQ ID NO 398 UUCAGCUUCUGUUAGCCACUGAUU
    SEQ ID NO 399 UCAGCUUCUGUUAGCCACUGAUUA
    SEQ ID NO 400 UUCAGCUUCUGUUAGCCACUGAUA
    SEQ ID NO 401 UCAGCUUCUGUUAGCCACUGAUUAA
    SEQ ID NO 402 UUCAGCUUCUGUUAGCCACUGAUUAA
    SEQ ID NO 403 UCAGCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 404 UUCAGCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 405 CAGCUUCUGUUAGCCACUG
    SEQ ID NO 406 CAGCUUCUGUUAGCCACUGAU
    SEQ ID NO 407 AGCUUCUGUUAGCCACUGAUU
    SEQ ID NO 408 CAGCUUCUGUUAGCCACUGAUU
    SEQ ID NO 409 AGCUUCUGUUAGCCACUGAUUA
    SEQ ID NO 410 CAGCUUCUGUUAGCCACUGAUUA
    SEQ ID NO 411 AGCUUCUGUUAGCCACUGAUUAA
    SEQ ID NO 412 CAGCUUCUGUUAGCCACUGAUUAA
    SEQ ID NO 413 AGCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 414 CAGCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 415 AGCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 416 AGCUUCUGUUAGCCACUGAU
    SEQ ID NO 417 GCUUCUGUUAGCCACUGAUU
    SEQ ID NO 418 AGCUUCUGUUAGCCACUGAUU
    SEQ ID NO 419 GCUUCUGUUAGCCACUGAUUA
    SEQ ID NO 420 AGCUUCUGUUAGCCACUGAUUA
    SEQ ID NO 421 GCUUCUGUUAGCCACUGAUUAA
    SEQ ID NO 422 AGCUUCUGUUAGCCACUGAUUAA
    SEQ ID NO 423 GCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 424 AGCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 425 GCUUCUGUUAGCCACUGAUUAAA
    SEQ ID NO 426 CCAUUUGUAUUUAGCAUGUUCCC
    SEQ ID NO 427 AGAUACCAUUUGUAUUUAGC
    SEQ ID NO 428 GCCAUUUCUCAACAGAUCU
    SEQ ID NO 429 GCCAUUUCUCAACAGAUCUGUCA
    SEQ ID NO 430 AUUCUCAGGAAUUUGUGUCUUUC
    SEQ ID NO 431 UCUCAGGAAUUUGUGUCUUUC
    SEQ ID NO 432 GUUCAGCUUCUGUUAGCC
    SEQ ID NO 433 CUGAUUAAAUAUCUUUAUAU C
    SEQ ID NO 434 GCCGCCAUUUCUCAACAG
    SEQ ID NO 435 GUAUUUAGCAUGUUCCCA
    SEQ ID NO 436 CAGGAAUUUGUGUCUUUC
    DMD Gene Exon 45
    SEQ ID NO 437 UUUGCCGCUGCCCAAUGCCAUCCUG
    SEQ ID NO 438 AUUCAAUGUUCUGACAACAGUUUGC
    SEQ ID NO 439 CCAGUUGCAUUCAAUGUUCUGACAA
    SEQ ID NO 440 CAGUUGCAUUCAAUGUUCUGAC
    SEQ ID NO 441 AGUUGCAUUCAAUGUUCUGA
    SEQ ID NO 442 GAUUGCUGAAUUAUUUCUUCC
    SEQ ID NO 443 GAUUGCUGAAUUAUUUCUUCCCCAG
    SEQ ID NO 444 AUUGCUGAAUUAUUUCUUCCCCAGU
    SEQ ID NO 445 UUGCUGAAUUAUUUCUUCCCCAGUU
    SEQ ID NO 446 UGCUGAAUUAUUUCUUCCCCAGUUG
    SEQ ID NO 447 GCUGAAUUAUUUCUUCCCCAGUUGC
    SEQ ID NO 448 CUGAAUUAUUUCUUCCCCAGUUGCA
    SEQ ID NO 449 UGAAUUAUUUCUUCCCCAGUUGCAU
    SEQ ID NO 450 GAAUUAUUUCUUCCCCAGUUGCAUU
    SEQ ID NO 451 AAUUAUUUCUUCCCCAGUUGCAUUC
    SEQ ID NO 452 AUUAUUUCUUCCCCAGUUGCAUUCA
    SEQ ID NO 453 UUAUUUCUUCCCCAGUUGCAUUCAA
    SEQ ID NO 454 UAUUUCUUCCCCAGUUGCAUUCAAU
    SEQ ID NO 455 AUUUCUUCCCCAGUUGCAUUCAAUG
    SEQ ID NO 456 UUUCUUCCCCAGUUGCAUUCAAUGU
    SEQ ID NO 457 UUCUUCCCCAGUUGCAUUCAAUGUU
    SEQ ID NO 458 UCUUCCCCAGUUGCAUUCAAUGUUC
    SEQ ID NO 459 CUUCCCCAGUUGCAUUCAAUGUUCU
    SEQ ID NO 460 UUCCCCAGUUGCAUUCAAUGUUCUG
    SEQ ID NO 461 UCCCCAGUUGCAUUCAAUGUUCUGA
    SEQ ID NO 462 CCCCAGUUGCAUUCAAUGUUCUGAC
    SEQ ID NO 463 CCCAGUUGCAUUCAAUGUUCUGACA
    SEQ ID NO 464 CCAGUUGCAUUCAAUGUUCUGACAA
    SEQ ID NO 465 CAGUUGCAUUCAAUGUUCUGACAAC
    SEQ ID NO 466 AGUUGCAUUCAAUGUUCUGACAACA
    SEQ ID NO 467 UCC UGU AGA AUA CUG GCA UC
    SEQ ID NO 468 UGCAGACCUCCUGCCACCGCAGAUUCA
    SEQ ID NO 469 UUGCAGACCUCCUGCCACCGCAGAUUCAGGCUUC
    SEQ ID NO 470 GUUGCAUUCAAUGUUCUGACAACAG
    SEQ ID NO 471 UUGCAUUCAAUGUUCUGACAACAGU
    SEQ ID NO 472 UGCAUUCAAUGUUCUGACAACAGUU
    SEQ ID NO 473 GCAUUCAAUGUUCUGACAACAGUUU
    SEQ ID NO 474 CAUUCAAUGUUCUGACAACAGUUUG
    SEQ ID NO 475 AUUCAAUGUUCUGACAACAGUUUGC
    SEQ ID NO 476 UCAAUGUUCUGACAACAGUUUGCCG
    SEQ ID NO 477 CAAUGUUCUGACAACAGUUUGCCGC
    SEQ ID NO 478 AAUGUUCUGACAACAGUUUGCCGCU
    SEQ ID NO 479 AUGUUCUGACAACAGUUUGCCGCUG
    SEQ ID NO 480 UGUUCUGACAACAGUUUGCCGCUGC
    SEQ ID NO 481 GUUCUGACAACAGUUUGCCGCUGCC
    SEQ ID NO 482 UUCUGACAACAGUUUGCCGCUGCCC
    SEQ ID NO 483 UCUGACAACAGUUUGCCGCUGCCCA
    SEQ ID NO 484 CUGACAACAGUUUGCCGCUGCCCAA
    SEQ ID NO 485 UGACAACAGUUUGCCGCUGCCCAAU
    SEQ ID NO 486 GACAACAGUUUGCCGCUGCCCAAUG
    SEQ ID NO 487 ACAACAGUUUGCCGCUGCCCAAUGC
    SEQ ID NO 488 CAACAGUUUGCCGCUGCCCAAUGCC
    SEQ ID NO 489 AACAGUUUGCCGCUGCCCAAUGCCA
    SEQ ID NO 490 ACAGUUUGCCGCUGCCCAAUGCCAU
    SEQ ID NO 491 CAGUUUGCCGCUGCCCAAUGCCAUC
    SEQ ID NO 492 AGUUUGCCGCUGCCCAAUGCCAUCC
    SEQ ID NO 493 GUUUGCCGCUGCCCAAUGCCAUCCU
    SEQ ID NO 494 UUUGCCGCUGCCCAAUGCCAUCCUG
    SEQ ID NO 495 UUGCCGCUGCCCAAUGCCAUCCUGG
    SEQ ID NO 496 UGCCGCUGCCCAAUGCCAUCCUGGA
    SEQ ID NO 497 GCCGCUGCCCAAUGCCAUCCUGGAG
    SEQ ID NO 498 CCGCUGCCCAAUGCCAUCCUGGAGU
    SEQ ID NO 499 CGCUGCCCAAUGCCAUCCUGGAGUU
    SEQ ID NO 500 UGUUUUUGAGGAUUGCUGAA
    SEQ ID NO 501 UGUUCUGACAACAGUUUGCCGCUGCCCAAUGCCA
    UCCUGG
    DMD Gene Exon 55
    SEQ ID NO 502 CUGUUGCAGUAAUCUAUGAG
    SEQ ID NO 503 UGCAGUAAUCUAUGAGUUUC
    SEQ ID NO 504 GAGUCUUCUAGGAGCCUU
    SEQ ID NO 505 UGCCAUUGUUUCAUCAGCUCUUU
    SEQ ID NO 506 UCCUGUAGGACAUUGGCAGU
    SEQ ID NO 507 CUUGGAGUCUUCUAGGAGCC
    DMD Gene Exon 57
    SEQ ID NO 508 UAGGUGCCUGCCGGCUU
    SEQ ID NO 509 UUCAGCUGUAGCCACACC
    SEQ ID NO 510 CUGAACUGCUGGAAAGUCGCC
    SEQ ID NO 511 CUGGCUUCCAAAUGGGACCUGAAAAAGAAC
    DMD Gene Exon 59
    SEQ ID NO 512 CAAUUUUUCCCACUCAGUAUU
    SEQ ID NO 513 UUGAAGUUCCUGGAGUCUU
    SEQ ID NO 514 UCCUCAGGAGGCAGCUCUAAAU
    DMD Gene Exon 62
    SEQ ID NO 515 UGGCUCUCUCCCAGGG
    SEQ ID NO 516 GAGAUGGCUCUCUCCCAGGGACCCUGG
    SEQ ID NO 517 GGGCACUUUGUUUGGCG
    DMD Gene Exon 63
    SEQ ID NO 518 GGUCCCAGCAAGUUGUUUG
    SEQ ID NO 519 UGGGAUGGUCCCAGCAAGUUGUUUG
    SEQ ID NO 520 GUAGAGCUCUGUCAUUUUGGG
    DMD Gene Exon 65
    SEQ ID NO 521 GCUCAAGAGAUCCACUGCAAAAAAC
    SEQ ID NO 522 GCCAUACGUACGUAUCAUAAACAUUC
    SEQ ID NO 523 UCUGCAGGAUAUCCAUGGGCUGGUC
    DMD Gene Exon 66
    SEQ ID NO 524 GAUCCUCCCUGUUCGUCCCCUAUUAUG
    DMD Gene Exon 69
    SEQ ID NO 525 UGCUUUAGACUCCUGUACCUGAUA
    DMD Gene Exon 75
    SEQ ID NO 526 GGCGGCCUUUGUGUUGAC
    SEQ ID NO 527 GGACAGGCCUUUAUGUUCGUGCUGC
    SEQ ID NO 528 CCUUUAUGUUCGUGCUGCU
  • FIGURE LEGENDS
  • FIG. 1. In human control myotubes, a series of AONs (PS237, PS238, and PS240; SEQ ID NO 65, 66, 16 respectively) targeting exon 43 was tested at 500 nM. PS237 (SEQ ID NO 65) reproducibly induced highest levels of exon 43 skipping. (M: DNA size marker; NT: non-treated cells)
  • FIG. 2. In myotubes from a DMD patient with an exon 45 deletion, a series of AONs (PS177, PS179, PS181, and PS182; SEQ ID NO 91, 70, 110, and 117 respectively) targeting exon 46 was tested at two different concentrations (50 and 150 nM). PS182 (SEQ ID NO 117) reproducibly induced highest levels of exon 46 skipping. (M: DNA size marker)
  • FIG. 3. In human control myotubes, a series of AONs (PS245, PS246, PS247, and PS248; SEQ ID NO 167, 165, 166, and 127 respectively) targeting exon 50 was tested at 500 nM. PS248 (SEQ ID NO 127) reproducibly induced highest levels of exon 50 skipping. (M: DNA size marker; NT: non-treated cells).
  • FIG. 4. In human control myotubes, two novel AONs (PS232 and PS236; SEQ ID NO 246 and 299 respectively) targeting exon 52 were tested at two different concentrations (200 and 500 nM) and directly compared to a previously described AON (52-1). PS236 (SEQ ID NO 299) reproducibly induced highest levels of exon 52 skipping. (M: DNA size marker; NT: non-treated cells).

Claims (11)

1. A molecule, which binds to a continuous stretch of at least 8 nucleotides within one of the following nucleotide sequences selected from:
(SEQ ID NO: 4) 5′-GGCGGTAAACCGUUUACUUCAAGAGCUGAGGGCAAAGCAGCCUGA CCUAGCUCCUGGACUGACCACUAUUGG-3′ for skipping of exon 50; (SEQ ID NO: 2) 5′AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAUAGC AAGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′ for skipping of exon 43 (SEQ ID NO: 3) 5′UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUGAAC CUGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′ for skipping of exon 46; (SEQ ID NO: 5) 5′CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACUAA GGAAACUGCCAUCUCCAAACUAGAAAUGCCAUCUUCCUUGAUG UUGG AGGUAC-3′ for skipping of exon 51; (SEQ ID NO: 6) 5′AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAUUA CCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′ for skipping of exon 52, and (SEQ ID NO: 7) 5′AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAAA GC UGAGCAGGUCUUAGGACAGGCCAGAG-3′ for skipping of exon 53.
2. A molecule according to claim 1, wherein the molecule comprises or consists of the antisense nucleotide sequence selected from SEQ ID NO: 8-358, and/or SEQ ID NO 529-535 as depicted in tables 1 to 6.
3. A molecule according to claim 2, wherein the molecule comprises or consists of the antisense nucleotide sequence selected from SEQ ID NO:16, SEQ ID NO:65, SEQ ID NO:70, SEQ ID NO:91, SEQ ID NO:110, SEQ ID NO:117, SEQ ID NO:127, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:246, SEQ ID NO:299 and SEQ ID NO:357.
4. A molecule according to claim 1, comprising a 2′-O-alkyl phosphorothioate antisense oligonucleotide.
5. A molecule according to claim 4, comprising a 2′-O methyl phosphorothioate ribose.
6. A viral-based vector, comprising an expression cassette that drives expression of a molecule as defined in claim 1.
7. A molecule according to claim 1 for use as a medicament, preferably for modulating splicing of the DMD pre-mRNA of a DMD or BMD patient or for the treatment of a DMD or BMD patient.
8. A pharmaceutical composition comprising a molecule as defined in claim 1, a pharmaceutical acceptable carrier, and optionally combined with a molecule which is able to induce or promote skipping of at least one of exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50-53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA of a patient.
9. A method for inducing and/or promoting skipping of at least one of exon 43, exon 46, and exons 50-53 of the DMD pre-mRNA in a patient, preferably in an isolated cell of a patient, the method comprising providing said cell and/or said patient with a molecule as defined in claim 1.
10. A method according to claim 9, wherein an additional molecule is used which is able to induce or promote skipping of at least one of exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50-53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA of a patient.
11. A method of treating a patient with DMD or BMD comprising administering the molecule of claim 1, wherein following administration, splicing of the DMD pre-mRNA of said patient is modulated, thereby treating said patient.
US13/094,571 2007-10-26 2011-04-26 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 Abandoned US20110263682A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/631,686 US9499818B2 (en) 2007-10-26 2015-02-25 Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene
US15/289,053 US20170044534A1 (en) 2007-10-26 2016-10-07 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53
US16/024,558 US10876114B2 (en) 2007-10-26 2018-06-29 Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
US17/129,117 US20210139904A1 (en) 2007-10-26 2020-12-21 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP07119351.0 2007-10-26
EP07119351 2007-10-26
PCT/NL2008/050673 WO2009054725A2 (en) 2007-10-26 2008-10-27 Means and methods for counteracting muscle disorders
NLPCT/NL2008/050673 2008-10-27
PCT/NL2009/050113 WO2010050802A2 (en) 2008-10-27 2009-03-11 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50- 53.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2009/050113 Continuation WO2010050802A2 (en) 2007-10-26 2009-03-11 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50- 53.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/631,686 Continuation US9499818B2 (en) 2007-10-26 2015-02-25 Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene

Publications (1)

Publication Number Publication Date
US20110263682A1 true US20110263682A1 (en) 2011-10-27

Family

ID=39045623

Family Applications (18)

Application Number Title Priority Date Filing Date
US12/767,702 Ceased US9243245B2 (en) 2007-10-26 2010-04-26 Means and methods for counteracting muscle disorders
US13/094,571 Abandoned US20110263682A1 (en) 2007-10-26 2011-04-26 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53
US13/094,548 Active US9926557B2 (en) 2007-10-26 2011-04-26 Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US14/097,210 Abandoned US20140113955A1 (en) 2007-10-26 2013-12-04 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US14/134,971 Abandoned US20140128592A1 (en) 2007-10-26 2013-12-19 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US14/200,251 Abandoned US20140221458A1 (en) 2007-10-26 2014-03-07 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US14/542,183 Active US9528109B2 (en) 2007-10-26 2014-11-14 Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mRNA
US14/631,686 Active US9499818B2 (en) 2007-10-26 2015-02-25 Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene
US14/990,712 Abandoned US20160304864A1 (en) 2007-10-26 2016-01-07 Means and methods for counteracting muscle disorders
US15/289,053 Abandoned US20170044534A1 (en) 2007-10-26 2016-10-07 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53
US15/390,836 Abandoned US20170107512A1 (en) 2007-10-26 2016-12-27 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/024,558 Active US10876114B2 (en) 2007-10-26 2018-06-29 Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
US16/229,534 Abandoned US20190112604A1 (en) 2007-10-26 2018-12-21 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/229,821 Abandoned US20190119679A1 (en) 2007-10-26 2018-12-21 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/283,458 Abandoned US20190177725A1 (en) 2007-10-26 2019-02-22 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/584,115 Active US11427820B2 (en) 2007-10-26 2019-09-26 Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US17/129,117 Pending US20210139904A1 (en) 2007-10-26 2020-12-21 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53
US17/814,781 Pending US20230151362A1 (en) 2007-10-26 2022-07-25 Methods and means for efficient dkipping of exon 45 in duchenne muscular dystrophy pre-mrna

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/767,702 Ceased US9243245B2 (en) 2007-10-26 2010-04-26 Means and methods for counteracting muscle disorders

Family Applications After (16)

Application Number Title Priority Date Filing Date
US13/094,548 Active US9926557B2 (en) 2007-10-26 2011-04-26 Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US14/097,210 Abandoned US20140113955A1 (en) 2007-10-26 2013-12-04 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US14/134,971 Abandoned US20140128592A1 (en) 2007-10-26 2013-12-19 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US14/200,251 Abandoned US20140221458A1 (en) 2007-10-26 2014-03-07 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US14/542,183 Active US9528109B2 (en) 2007-10-26 2014-11-14 Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mRNA
US14/631,686 Active US9499818B2 (en) 2007-10-26 2015-02-25 Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene
US14/990,712 Abandoned US20160304864A1 (en) 2007-10-26 2016-01-07 Means and methods for counteracting muscle disorders
US15/289,053 Abandoned US20170044534A1 (en) 2007-10-26 2016-10-07 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53
US15/390,836 Abandoned US20170107512A1 (en) 2007-10-26 2016-12-27 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/024,558 Active US10876114B2 (en) 2007-10-26 2018-06-29 Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
US16/229,534 Abandoned US20190112604A1 (en) 2007-10-26 2018-12-21 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/229,821 Abandoned US20190119679A1 (en) 2007-10-26 2018-12-21 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/283,458 Abandoned US20190177725A1 (en) 2007-10-26 2019-02-22 METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA
US16/584,115 Active US11427820B2 (en) 2007-10-26 2019-09-26 Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US17/129,117 Pending US20210139904A1 (en) 2007-10-26 2020-12-21 Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53
US17/814,781 Pending US20230151362A1 (en) 2007-10-26 2022-07-25 Methods and means for efficient dkipping of exon 45 in duchenne muscular dystrophy pre-mrna

Country Status (17)

Country Link
US (18) US9243245B2 (en)
EP (4) EP3238737B1 (en)
JP (6) JP5600064B2 (en)
CN (5) CN105641700B (en)
AU (1) AU2008317566B2 (en)
CA (1) CA2704049A1 (en)
CY (2) CY1117286T1 (en)
DK (1) DK2203173T3 (en)
ES (5) ES2639852T3 (en)
HK (2) HK1185098A1 (en)
HR (1) HRP20160025T1 (en)
HU (2) HUE028662T2 (en)
IL (4) IL205322A (en)
NZ (2) NZ584793A (en)
PL (1) PL2203173T3 (en)
PT (1) PT2203173E (en)
WO (1) WO2009054725A2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130591A1 (en) * 2008-10-24 2010-05-27 Peter Sazani Multiple exon skipping compositions for dmd
US20110015258A1 (en) * 2004-06-28 2011-01-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
WO2013112053A1 (en) * 2012-01-27 2013-08-01 Prosensa Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
US8637483B2 (en) 2009-11-12 2014-01-28 The University Of Western Australia Antisense molecules and methods for treating pathologies
US20140057964A1 (en) * 2008-09-11 2014-02-27 Royal Holloway, University Of London Oligomers
US9139828B2 (en) 2008-05-14 2015-09-22 Prosensa Technologies B.V. Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means
US9217148B2 (en) 2013-03-14 2015-12-22 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US20160201089A1 (en) * 2013-06-05 2016-07-14 Duke University Rna-guided gene editing and gene regulation
US9499818B2 (en) 2007-10-26 2016-11-22 BioMarin Technologies, B.V. Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene
US9506058B2 (en) 2013-03-15 2016-11-29 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US9512424B2 (en) 2011-12-28 2016-12-06 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US9890379B2 (en) 2006-08-11 2018-02-13 Biomarin Technologies B.V. Treatment of genetic disorders associated with DNA repeat instability
US9988629B2 (en) 2014-03-12 2018-06-05 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US10450568B2 (en) 2015-10-09 2019-10-22 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US10676735B2 (en) 2015-07-22 2020-06-09 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
US10676726B2 (en) 2015-02-09 2020-06-09 Duke University Compositions and methods for epigenome editing
US10711256B2 (en) 2012-04-27 2020-07-14 Duke University Genetic correction of mutated genes
US10851373B2 (en) 2015-09-15 2020-12-01 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US11034956B2 (en) * 2009-04-24 2021-06-15 Biomarin Technologies B.V. Oligonucleotide comprising an inosine for treating DMD
USRE48960E1 (en) 2004-06-28 2022-03-08 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20220186217A1 (en) * 2018-12-06 2022-06-16 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11427817B2 (en) 2015-08-25 2022-08-30 Duke University Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases
WO2022241408A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Compositions and methods for modulating tissue distribution of intracellular therapeutics
WO2022271818A1 (en) 2021-06-23 2022-12-29 Entrada Therapeutics, Inc. Antisense compounds and methods for targeting cug repeats
US20230045002A1 (en) * 2021-07-09 2023-02-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11633496B2 (en) 2018-08-02 2023-04-25 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11679161B2 (en) 2021-07-09 2023-06-20 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
US11787869B2 (en) 2018-08-02 2023-10-17 Dyne Therapeutics, Inc. Methods of using muscle targeting complexes to deliver an oligonucleotide to a subject having facioscapulohumeral muscular dystrophy or a disease associated with muscle weakness

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191097A1 (en) * 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
CA2524255C (en) 2003-03-21 2014-02-11 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
EP3103800B1 (en) 2003-04-11 2018-06-13 PTC Therapeutics, Inc. 1,2,4-oxadiazole benzoic acid compound and its use for nonsense suppression and the treatment of disease
WO2006086667A2 (en) 2005-02-09 2006-08-17 Avi Bio Pharma, Inc. Antisense composition and method for treating muscle atrophy
AU2009310557B2 (en) 2008-10-27 2014-09-11 Academisch Ziekenhuis Leiden Methods and means for efficient skipping of exon 45 in Duchenne Muscular Dystrophy pre-mRNA
US20120270930A1 (en) 2009-10-29 2012-10-25 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Methods and compositions for dysferlin exon-skipping
CA2807187C (en) 2010-08-05 2019-06-11 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Antisense oligonucleotide directed removal of proteolytic cleavage sites from proteins.
TWI541024B (en) 2010-09-01 2016-07-11 日本新藥股份有限公司 Antisense nucleic acid
BR112013020273A2 (en) 2011-02-08 2016-10-18 Charlotte Mecklenburg Hospital antisense oligonucleotides
WO2012138223A2 (en) 2011-04-05 2012-10-11 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Compounds and methods for altering activin receptor-like kinase signalling
JP5850519B2 (en) 2011-05-09 2016-02-03 ネッパジーン株式会社 A therapeutic agent for muscular dystrophy containing morpholino-loaded bubble liposomes as active ingredients
US9765398B2 (en) * 2011-07-28 2017-09-19 The Regents Of The University Of California Exonic splicing enhancers and exonic splicing silencers
US20130085139A1 (en) 2011-10-04 2013-04-04 Royal Holloway And Bedford New College Oligomers
DE102012103041A1 (en) 2012-04-10 2013-10-10 Eberhard-Karls-Universität Tübingen Universitätsklinikum New isolated antisense-oligonucleotide comprising sequence that is hybridized to messenger RNA-splicing-sequence of mutation-bearing exons of pre-messenger RNA of titin-gene and induces skipping of exons, used to treat heart disease
EP2870246B1 (en) * 2012-07-03 2019-09-11 BioMarin Technologies B.V. Oligonucleotide for the treatment of muscular dystrophy patients
US9849066B2 (en) 2013-04-24 2017-12-26 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
TWI636978B (en) 2014-03-06 2018-10-01 美商Ptc治療公司 Pharmaceutical compositions and salts of a 1,2,4-oxadiazole benzoic acid
GB201410693D0 (en) 2014-06-16 2014-07-30 Univ Southampton Splicing modulation
AU2015277924B2 (en) 2014-06-17 2021-02-25 National Center Of Neurology And Psychiatry Antisense nucleic acids
WO2016025469A1 (en) * 2014-08-11 2016-02-18 The Board Of Regents Of The University Of Texas System Prevention of muscular dystrophy by crispr/cas9-mediated gene editing
WO2016054615A2 (en) 2014-10-03 2016-04-07 Cold Spring Harbor Laboratory Targeted augmentation of nuclear gene output
MA41795A (en) 2015-03-18 2018-01-23 Sarepta Therapeutics Inc EXCLUSION OF AN EXON INDUCED BY ANTISENSE COMPOUNDS IN MYOSTATIN
CN107667174B (en) * 2015-05-21 2021-10-26 翼治疗有限公司 Antisense oligonucleotides for treating dystrophic epidermolysis bullosa
WO2016198676A1 (en) * 2015-06-10 2016-12-15 Association Institut De Myologie Combined therapy for duchenne muscular dystrophy
WO2017062835A2 (en) 2015-10-09 2017-04-13 Sarepta Therapeutics, Inc. Compositions and methods for treating duchenne muscular dystrophy and related disorders
SG11201802870RA (en) 2015-10-09 2018-05-30 Univ Southampton Modulation of gene expression and screening for deregulated protein expression
EP3368042A4 (en) 2015-10-30 2019-06-26 PTC Therapeutics, Inc. Methods for treating epilepsy
WO2017106377A1 (en) 2015-12-14 2017-06-22 Cold Spring Harbor Laboratory Antisense oligomers for treatment of autosomal dominant mental retardation-5 and dravet syndrome
US11096956B2 (en) 2015-12-14 2021-08-24 Stoke Therapeutics, Inc. Antisense oligomers and uses thereof
GB2574525B (en) * 2015-12-21 2020-09-02 Sutura Therapeutics Ltd Improved drug delivery by conjugating oligonucleotides to stitched/stapled peptides
GB2545898B (en) 2015-12-21 2019-10-09 Sutura Therapeutics Ltd Improved drug delivery by conjugating oligonucleotides to stitched/stapled peptides
MA45328A (en) 2016-04-01 2019-02-06 Avidity Biosciences Llc NUCLEIC ACID-POLYPEPTIDE COMPOSITIONS AND USES THEREOF
AU2017250756B2 (en) 2016-04-15 2021-04-08 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of B-sarcoglycan and microRNA-29 and the treatment of muscular dystrophy
MA45290A (en) * 2016-05-04 2019-03-13 Wave Life Sciences Ltd PROCESSES AND COMPOSITIONS OF BIOLOGICALLY ACTIVE AGENTS
EP3478697A1 (en) 2016-06-30 2019-05-08 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
JP7125940B2 (en) 2016-12-19 2022-08-25 サレプタ セラピューティクス, インコーポレイテッド Exon-skipping oligomeric conjugates for muscular dystrophy
CA3047010A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
PL3554553T3 (en) 2016-12-19 2022-11-07 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
CA3049424A1 (en) 2017-01-06 2018-07-12 Avidity Biosciences Llc Nucleic acid-polypeptide compositions and methods of inducing exon skipping
PL3596222T3 (en) * 2017-03-17 2023-10-09 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of muscle specific micro-dystrophin to treat muscular dystrophy
JP2020517613A (en) * 2017-04-20 2020-06-18 シンセナ アーゲー Modified oligomeric compounds containing tricyclo DNA nucleosides and uses thereof
GB201711809D0 (en) * 2017-07-21 2017-09-06 Governors Of The Univ Of Alberta Antisense oligonucleotide
CA3072205A1 (en) 2017-08-04 2019-02-07 Skyhawk Therapeutics, Inc. Methods and compositions for modulating splicing
GB2599884B (en) 2017-08-25 2022-08-31 Stoke Therapeutics Inc Antisense oligomers for treatment of conditions and diseases
EA201991450A1 (en) 2017-09-22 2019-12-30 Сарепта Терапьютикс, Инк. OLIGOMER CONJUGATES FOR EXONISM SKIP IN MUSCULAR DYSTROPHY
EP3684376A4 (en) * 2017-09-22 2021-10-20 Avidity Biosciences, Inc. Nucleic acid-polypeptide compositions and methods of inducing exon skipping
US20200254002A1 (en) 2017-09-28 2020-08-13 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
JP2020536060A (en) 2017-09-28 2020-12-10 サレプタ セラピューティクス, インコーポレイテッド Combination therapy to treat muscular dystrophy
EP3687577A1 (en) 2017-09-28 2020-08-05 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
KR102527941B1 (en) 2017-12-06 2023-05-02 어비디티 바이오사이언시스 인크. Compositions and methods of treating muscle atrophy and myotonic dystrophy
EP3755352A4 (en) * 2018-02-20 2021-12-22 Edgewise Therapeutics, Inc. Methods and compositions for treating movement disorders
BR112020020670A2 (en) * 2018-04-12 2021-03-02 Wave Life Sciences Ltd. oligonucleotide composition, pharmaceutical composition, method of altering the splicing of a target transcript, method of treating muscular dystrophy, method of preparing an oligonucleotide or an oligonucleotide composition thereof and oligonucleotide
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
CN109486813B (en) * 2018-10-10 2022-01-18 广州医科大学附属第二医院 U1-snRNA for repairing abnormal splicing of PremRNA of TPP1 gene and application thereof
WO2020163405A1 (en) 2019-02-05 2020-08-13 Skyhawk Therapeutics, Inc. Methods and compositions for modulating splicing
MX2021012428A (en) * 2019-04-10 2022-01-19 Ptc Therapeutics Inc Method for treating nonsense mutation mediated duchenne muscular dystrophy in pediatric patients.
CN110288555B (en) * 2019-07-02 2022-08-02 桂林电子科技大学 Low-illumination enhancement method based on improved capsule network
CA3149488A1 (en) * 2019-08-02 2021-02-11 Research Institute At Nationwide Children's Hospital Exon 44-targeted nucleic acids and recombinant adeno-associated virus comprising said nucleic acids for treatment of dystrophin-based myopathies
WO2021055011A1 (en) * 2019-09-19 2021-03-25 Sudhir Agrawal Compounds and methods useful for modulating gene splicing
CN115210376A (en) 2020-02-28 2022-10-18 日本新药株式会社 Antisense nucleic acids inducing skipping of exon 51
WO2021188390A1 (en) 2020-03-19 2021-09-23 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
US20230287410A1 (en) 2020-05-11 2023-09-14 Stoke Therapeutics, Inc. Opa1 antisense oligomers for treatment of conditions and diseases
KR20240009393A (en) 2021-03-31 2024-01-22 엔트라다 테라퓨틱스, 인크. Cyclic cell penetrating peptide
EP4088722A1 (en) * 2021-05-12 2022-11-16 Justus-Liebig-Universität Gießen Pharmaceutical compositions, uses thereof and methods for treatment of genetic diseases caused by intronic splice-acceptor site mutations
AU2022307934A1 (en) * 2021-07-09 2024-01-25 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
CA3231330A1 (en) 2021-09-16 2023-03-23 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
EP4215614A1 (en) 2022-01-24 2023-07-26 Dynacure Combination therapy for dystrophin-related diseases
WO2023168427A1 (en) 2022-03-03 2023-09-07 Yale University Compositions and methods for delivering therapeutic polynucleotides for exon skipping
WO2024069229A2 (en) 2022-08-03 2024-04-04 Sutura Therapeutics Ltd Biologically active compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024715A1 (en) * 2004-07-02 2006-02-02 Affymetrix, Inc. Methods for genotyping polymorphisms in humans
US20060099612A1 (en) * 2004-09-02 2006-05-11 Suntory Limited Method for analyzing genes of industrial yeasts
US20060160121A1 (en) * 2004-10-05 2006-07-20 Wyeth Probe arrays for detecting multiple strains of different species
US20070134655A1 (en) * 2002-11-14 2007-06-14 Itzhak Bentwich Bioinformatically detectable group of novel regulatory genes and uses thereof
US20100130591A1 (en) * 2008-10-24 2010-05-27 Peter Sazani Multiple exon skipping compositions for dmd

Family Cites Families (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2752581C2 (en) 1977-11-25 1979-12-13 Wolfgang 4044 Kaarst Keil Device for the complete demineralisation of water
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5541308A (en) 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
US5766847A (en) 1988-10-11 1998-06-16 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Process for analyzing length polymorphisms in DNA regions
DE3834636A1 (en) 1988-10-11 1990-04-19 Max Planck Gesellschaft METHOD FOR ANALYZING LENGTH POLYMORPHISMS IN DNA AREAS
US6867195B1 (en) 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
FR2675803B1 (en) 1991-04-25 1996-09-06 Genset Sa CLOSED, ANTISENSE AND SENSE OLIGONUCLEOTIDES AND THEIR APPLICATIONS.
CA2082411A1 (en) 1991-06-28 1992-12-29 Robert D. Rosenberg Localized oligonucleotide therapy
AU659482B2 (en) 1991-06-28 1995-05-18 Massachusetts Institute Of Technology Localized oligonucleotide therapy
US6200747B1 (en) 1992-01-28 2001-03-13 North Shore University Hospital Research Corp. Method and kits for detection of fragile X specific, GC-rich DNA sequences
US5869252A (en) 1992-03-31 1999-02-09 Abbott Laboratories Method of multiplex ligase chain reaction
US6172208B1 (en) 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
US5418139A (en) 1993-02-10 1995-05-23 University Of Iowa Research Foundation Method for screening for cardiomyopathy
CA2116280A1 (en) 1993-03-05 1994-09-06 Marcy E. Macdonald Huntingtin dna, protein and uses thereof
CA2162361C (en) 1993-05-11 2008-10-21 Ryszard Kole Antisense oligonucleotides which combat aberrant splicing and methods of using the same
US5695933A (en) 1993-05-28 1997-12-09 Massachusetts Institute Of Technology Direct detection of expanded nucleotide repeats in the human genome
US5741645A (en) 1993-06-29 1998-04-21 Regents Of The University Of Minnesota Gene sequence for spinocerebellar ataxia type 1 and method for diagnosis
US5624803A (en) 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5627263A (en) 1993-11-24 1997-05-06 La Jolla Cancer Research Foundation Integrin-binding peptides
DE4342605A1 (en) 1993-12-14 1995-06-22 Buna Gmbh Functionalized olefin homo- and copolymers
US5962332A (en) 1994-03-17 1999-10-05 University Of Massachusetts Detection of trinucleotide repeats by in situ hybridization
DE69503126T2 (en) 1994-05-05 1998-11-12 Beckman Instruments Inc REPETITIVE OLIGONUCLEOTIDE MATRIX
US5968909A (en) 1995-08-04 1999-10-19 Hybridon, Inc. Method of modulating gene expression with reduced immunostimulatory response
US5854223A (en) 1995-10-06 1998-12-29 The Trustees Of Columbia University In The City Of New York S-DC28 as an antirestenosis agent after balloon injury
US20070173465A9 (en) 1995-10-11 2007-07-26 Monahan Sean D Expression of zeta negative and zeta positive nucleic acids using a dystrophin gene
US7034009B2 (en) 1995-10-26 2006-04-25 Sirna Therapeutics, Inc. Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R)
US6300060B1 (en) 1995-11-09 2001-10-09 Dana-Farber Cancer Institute, Inc. Method for predicting the risk of prostate cancer morbidity and mortality
DE69729179T2 (en) 1996-02-14 2004-12-30 Isis Pharmaceuticals, Inc., Carlsbad Patchy sugar-modified oligonucleotides
EP0869186A4 (en) 1996-07-18 2002-04-03 Srl Inc Method for the diagnosis of spinocerebellar ataxia type 2 and primers therefor
WO1998018920A1 (en) 1996-10-30 1998-05-07 Srl, Inc. cDNA FRAGMENTS OF GENE CAUSATIVE OF SPINOCEREBELLAR ATAXIA TYPE 2
US5853995A (en) 1997-01-07 1998-12-29 Research Development Foundation Large scale genotyping of diseases and a diagnostic test for spinocerebellar ataxia type 6
AU6591798A (en) 1997-03-31 1998-10-22 Yale University Nucleic acid catalysts
US20020137890A1 (en) 1997-03-31 2002-09-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
AU7265298A (en) 1997-04-29 1998-11-24 Trustees Of Boston University Methods and compositions for targeted dna differential display
US6329501B1 (en) 1997-05-29 2001-12-11 Auburn University Methods and compositions for targeting compounds to muscle
US6514755B1 (en) 1998-08-18 2003-02-04 Regents Of The University Of Minnesota SCA7 gene and methods of use
US6280938B1 (en) 1997-08-19 2001-08-28 Regents Of The University Of Minnesota SCA7 gene and method of use
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
AU750947C (en) 1997-09-22 2003-05-22 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Nucleic acid catalysts with endonuclease activity
US6130207A (en) 1997-11-05 2000-10-10 South Alabama Medical Science Foundation Cell-specific molecule and method for importing DNA into a nucleus
JP3012923B2 (en) 1998-01-26 2000-02-28 新潟大学長 Drug for treating CAG repeat disease
KR100280219B1 (en) 1998-02-26 2001-04-02 이수빈 Diagnostic Method and Diagnostic Reagent of Neuropsychiatric Disease Using Trinucleic Acid Repeat Sequence
US6322978B1 (en) 1998-04-20 2001-11-27 Joslin Diabetes Center, Inc. Repeat polymorphism in the frataxin gene and uses therefore
CA2330574A1 (en) 1998-04-29 1999-11-04 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
EP1089764B1 (en) 1998-06-10 2004-09-01 Biognostik Gesellschaft für biomolekulare Diagnostik mbH Stimulating the immune system
US6924355B2 (en) 1998-09-01 2005-08-02 Genentech, Inc. PRO1343 polypeptides
CA2343934A1 (en) 1998-09-25 2000-04-06 The Children's Medical Center Corporation Short peptides which selectively modulate the activity of protein kinases
US6210892B1 (en) 1998-10-07 2001-04-03 Isis Pharmaceuticals, Inc. Alteration of cellular behavior by antisense modulation of mRNA processing
US6172216B1 (en) 1998-10-07 2001-01-09 Isis Pharmaceuticals Inc. Antisense modulation of BCL-X expression
EP1124950B1 (en) * 1998-10-26 2006-07-12 Avi Biopharma, Inc. Morpholino based p53 antisense oligonucleotide, and uses thereof
US6399575B1 (en) 1998-11-10 2002-06-04 Auburn University Methods and compositions for targeting compounds to the central nervous system
US6133031A (en) 1999-08-19 2000-10-17 Isis Pharmaceuticals Inc. Antisense inhibition of focal adhesion kinase expression
US20040226056A1 (en) 1998-12-22 2004-11-11 Myriad Genetics, Incorporated Compositions and methods for treating neurological disorders and diseases
US20020049173A1 (en) 1999-03-26 2002-04-25 Bennett C. Frank Alteration of cellular behavior by antisense modulation of mRNA processing
US6379698B1 (en) 1999-04-06 2002-04-30 Isis Pharmaceuticals, Inc. Fusogenic lipids and vesicles
KR20020013519A (en) 1999-04-08 2002-02-20 추후제출 Antisense Oligonucleotides Comprising Universal and/or Degenerate Bases
JP2000325085A (en) 1999-05-21 2000-11-28 Masafumi Matsuo Pharmaceutical composition for treatment of duchenne muscular dystrophy
US20030236214A1 (en) 1999-06-09 2003-12-25 Wolff Jon A. Charge reversal of polyion complexes and treatment of peripheral occlusive disease
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
US6355481B1 (en) 1999-06-18 2002-03-12 Emory University Hybridoma cell line and monoclonal antibody for huntingtin protein
CA2403243A1 (en) 1999-08-31 2001-03-08 Ribozyme Pharmaceuticals, Inc. Nucleic acid based modulators of gene expression
AU7856600A (en) 1999-10-04 2001-05-10 University Of Medicine And Dentistry Of New Jersey Novel carbamates and ureas
US6165786A (en) 1999-11-03 2000-12-26 Isis Pharmaceuticals, Inc. Antisense modulation of nucleolin expression
WO2001059102A2 (en) 2000-02-08 2001-08-16 Ribozyme Pharmaceuticals, Inc. Nucleozymes with endonuclease activity
EP1133993A1 (en) 2000-03-10 2001-09-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Substances for the treatment of spinal muscular atrophy
US20020187931A1 (en) 2000-04-13 2002-12-12 Michael Hayden Modulating cell survival by modulating huntingtin function
US6653467B1 (en) 2000-04-26 2003-11-25 Jcr Pharmaceutical Co., Ltd. Medicament for treatment of Duchenne muscular dystrophy
AU2001261063A1 (en) 2000-04-28 2001-11-12 Xiao Xiao Dna sequences encoding dystrophin minigenes and methods of use thereof
ES2238044T3 (en) 2000-05-01 2005-08-16 Hybridon, Inc. MODULATION OF IMMUNOLOGICAL STIMULATION MEDIATED BY THE CPG OLIGONUCLEOTIDE BY POSITIONAL MODIFICATION OF NUCLEOSIDS.
US20020013287A1 (en) 2000-05-09 2002-01-31 Reliable Biopharmaceuticals, Inc. St Louis Missouri Polymeric compounds useful as prodrugs
IL153200A0 (en) 2000-05-31 2003-07-06 Genset Sa PHARMACEUTICAL COMPOSITIONS COMPRISING A gOBG3
CN1326990A (en) 2000-06-07 2001-12-19 上海博德基因开发有限公司 New polypeptide-human DNA-like CGG repeative conjugated protein 16.17 and polynucleotide for encoding such polypeptide
US20030124523A1 (en) 2000-06-22 2003-07-03 Asselbergs Fredericus Alphonsus Maria Organic compounds
US6794192B2 (en) 2000-06-29 2004-09-21 Pfizer Inc. Target
RU2165149C1 (en) 2000-07-03 2001-04-20 Шапошников Валерий Геннадьевич "sugar wool" products forming and packaging method
US6727355B2 (en) * 2000-08-25 2004-04-27 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
JP4836366B2 (en) 2000-08-25 2011-12-14 雅文 松尾 Duchenne muscular dystrophy treatment
EP1191097A1 (en) 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
AU3922802A (en) 2000-10-02 2002-05-27 Keck Graduate Inst Methods for identifying nucleotides at defined positions in target nucleic acidsusing fluorescence polarization
ATE400656T1 (en) 2000-10-06 2008-07-15 Univ Michigan MINI-DYSTROPHIN NUCLEIC ACID AND PEPTIDE SEQUENCES
US6623927B1 (en) 2000-11-08 2003-09-23 Council Of Scientific And Industrial Research Method of detection of allelic variants of SCA2 gene
AU2002236499A8 (en) 2000-11-30 2009-12-03 Uab Research Foundation Receptor-mediated uptake of peptides that bind the human transferrin receptor
US7001994B2 (en) 2001-01-18 2006-02-21 Genzyme Corporation Methods for introducing mannose 6-phosphate and other oligosaccharides onto glycoproteins
TWI329129B (en) 2001-02-08 2010-08-21 Wyeth Corp Modified and stabilized gdf propeptides and uses thereof
KR100408053B1 (en) 2001-02-13 2003-12-01 엘지전자 주식회사 Torque ripple reduction method for srm
US20070021360A1 (en) * 2001-04-24 2007-01-25 Nyce Jonathan W Compositions, formulations and kit with anti-sense oligonucleotide and anti-inflammatory steroid and/or obiquinone for treatment of respiratory and lung disesase
CA2414782C (en) 2001-05-11 2012-10-09 Regents Of The University Of Minnesota Intron associated with myotonic dystrophy type 2 and methods of use
US20050014172A1 (en) 2002-02-20 2005-01-20 Ivan Richards RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA)
AU2004266311B2 (en) 2001-05-18 2009-07-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20050282188A1 (en) 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050277133A1 (en) 2001-05-18 2005-12-15 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
IL143379A (en) 2001-05-24 2013-11-28 Yissum Res Dev Co Antisense oligonucleotide against the r isophorm of human ache and uses thereof
EP1406875B1 (en) 2001-06-26 2013-07-31 Bristol-Myers Squibb Company N-heterocyclic inhibitors of tnf-alpha expression
JP4903984B2 (en) 2001-07-06 2012-03-28 トピジェン・ファーマシューティカルズ・インコーポレーテッド Methods for increasing the efficiency of oligonucleotides in vivo and inhibiting inflammation in mammals
US20030109476A1 (en) 2001-08-07 2003-06-12 Kmiec Eric B. Compositions and methods for the prevention and treatment of Huntington's disease
US20070264194A1 (en) 2001-08-10 2007-11-15 The Scripps Research Institute Peptides That Bind To Atherosclerotic Lesions
US20060074034A1 (en) 2001-09-17 2006-04-06 Collins Douglas A Cobalamin mediated delivery of nucleic acids, analogs and derivatives thereof
KR20030035047A (en) 2001-10-29 2003-05-09 (주)바이오코돈 Use of BMP-4 gene and its gene product for treatment and diagnosis of Lichen Planus
WO2003037172A2 (en) 2001-11-01 2003-05-08 Gpc Biotech Inc. Endothelial-cell binding peptides for diagnosis and therapy
US20030134790A1 (en) 2002-01-11 2003-07-17 University Of Medicine And Dentistry Of New Jersey Bone Morphogenetic Protein-2 And Bone Morphogenetic Protein-4 In The Treatment And Diagnosis Of Cancer
US20030203356A1 (en) 2002-01-22 2003-10-30 The Cleveland Clinic Foundation RNase L activator-antisense complexes
WO2003069330A1 (en) 2002-02-11 2003-08-21 The Trustees Of Columbia University In The City Of New York System and method for identifying proteins involved in force-initiated signal transduction
US20050096284A1 (en) 2002-02-20 2005-05-05 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
MXPA04008419A (en) 2002-03-01 2004-11-26 Univ Tulane Conjugates of therapeutic or cytotoxic agents and biologically active peptides.
US20040101852A1 (en) 2002-11-21 2004-05-27 Isis Pharmaceuticals Inc. Modulation of CGG triplet repeat binding protein 1 expression
ITRM20020253A1 (en) 2002-05-08 2003-11-10 Univ Roma SNRNA CHEMICAL MOLECULES WITH ANTISENSE SEQUENCES FOR SPLICING JUNCTIONS OF THE DYSTROPHINE GENE AND THERAPEUTIC APPLICATIONS.
US20040102395A1 (en) 2002-11-22 2004-05-27 Isis Pharmaceuticals Inc. Modulation of IAP-like expression
EP1380644A1 (en) 2002-07-08 2004-01-14 Kylix B.V. The use of specified TCF target genes to identify drugs for the treatment of cancer, in particular colorectal cancer, in which TCF/beta-catenin/WNT signalling plays a central role
WO2004011060A2 (en) 2002-07-26 2004-02-05 Mirus Corporation Delivery of molecules and complexes to mammalian cells in vivo
US20050255086A1 (en) 2002-08-05 2005-11-17 Davidson Beverly L Nucleic acid silencing of Huntington's Disease gene
AU2003282078A1 (en) 2002-08-12 2004-02-25 Universite De Sherbrooke Methods to reprogram splice site selection in pre-messenger rnas
GB0219143D0 (en) 2002-08-16 2002-09-25 Univ Leicester Modified tailed oligonucleotides
US20040219565A1 (en) 2002-10-21 2004-11-04 Sakari Kauppinen Oligonucleotides useful for detecting and analyzing nucleic acids of interest
DE60219215T2 (en) 2002-10-23 2008-01-03 Centre For Research And Technology Hellas/Intitute Of Agrobiotechnology In.A, Thermi PRION-BINDING PEPTIDE SEQUENCES
US7892793B2 (en) 2002-11-04 2011-02-22 University Of Massachusetts Allele-specific RNA interference
ES2440284T3 (en) 2002-11-14 2014-01-28 Thermo Fisher Scientific Biosciences Inc. SiRNA directed to tp53
US7655785B1 (en) 2002-11-14 2010-02-02 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
EP2135948B1 (en) 2002-11-25 2014-09-17 Masafumi Matsuo ENA nucleic acid drugs modifying splicing in mRNA precursor
GB0228079D0 (en) 2002-12-02 2003-01-08 Laxdale Ltd Huntington's Disease
ATE479752T1 (en) 2003-03-07 2010-09-15 Alnylam Pharmaceuticals Inc THERAPEUTIC COMPOSITIONS
CA2524255C (en) * 2003-03-21 2014-02-11 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
US7514551B2 (en) 2003-04-03 2009-04-07 Enzo Life Sciences, Inc. Multisignal labeling reagents, and processes and uses therefor
WO2004101787A1 (en) 2003-05-14 2004-11-25 Japan Science And Technology Agency Inhibition of the expression of huntington gene
KR20060026860A (en) 2003-06-02 2006-03-24 와이어쓰 Use of myostatin (gdf8) inhibitors in conjunction with corticosteroids for treating neuromuscular disorders
ES2302898T3 (en) 2003-07-11 2008-08-01 Lbr Medbiotech B.V. TRANSFER OF GENES TO MUSCLE CELLS MEDIATED BY THE MANOSA-6-PHOSPHATE RECEIVER.
US20050048495A1 (en) 2003-08-29 2005-03-03 Baker Brenda F. Isoform-specific targeting of splice variants
US20050054752A1 (en) 2003-09-08 2005-03-10 O'brien John P. Peptide-based diblock and triblock dispersants and diblock polymers
US7355018B2 (en) 2003-09-30 2008-04-08 Regeneron Pharmaceuticals, Inc. Modified IGF1 polypeptides with increased stability and potency
US20050222009A1 (en) 2003-10-14 2005-10-06 Itschak Lamensdorf Dual phase - PNA conjugates for the delivery of PNA through the blood brain barrier
US20050191636A1 (en) 2004-03-01 2005-09-01 Biocept, Inc. Detection of STRP, such as fragile X syndrome
US20080207538A1 (en) 2004-03-11 2008-08-28 Lawrence David S Enhanced Production of Functional Proteins From Defective Genes
WO2005105995A2 (en) 2004-04-14 2005-11-10 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TREATMENT OF POLYGLUTAMINE (POLYQ) REPEAT EXPANSION DISEASES USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1752536A4 (en) 2004-05-11 2008-04-16 Alphagen Co Ltd Polynucleotide causing rna interfere and method of regulating gene expression with the use of the same
US20050288246A1 (en) 2004-05-24 2005-12-29 Iversen Patrick L Peptide conjugated, inosine-substituted antisense oligomer compound and method
CA2567810A1 (en) 2004-05-27 2005-12-08 Acceleron Pharma Inc. Cerberus/coco derivatives and uses thereof
DE602005026386D1 (en) 2004-06-28 2011-03-31 Univ Western Australia ANTISENSE OLIGONUCLEOTIDES FOR THE INDUCTION OF EXON-SKIPPING AND METHOD OF USE THEREOF
EP1618881A1 (en) * 2004-07-20 2006-01-25 Santhera Pharmaceuticals (Schweiz) GmbH Use of non-glucocorticoid steroids for the treatment of muscular dystrophy
US20110046200A1 (en) 2004-08-03 2011-02-24 Michael T Howard Use of antisense oligonucleotides to effect translation modulation
ITRM20040568A1 (en) 2004-11-18 2005-02-18 Uni Degli Studi Di Roma Tor Vergata USE OF THE "PHAGE DISPLAY" TECHNIQUE FOR THE IDENTIFICATION OF PEPTIDES WITH CAPACITY OF STAMIN CELLS / PROGENITOR, PEPTIDES SO OBTAINED AND THEIR USES.
US7838657B2 (en) 2004-12-03 2010-11-23 University Of Massachusetts Spinal muscular atrophy (SMA) treatment via targeting of SMN2 splice site inhibitory sequences
KR100663277B1 (en) 2004-12-20 2007-01-02 삼성전자주식회사 Device and?method for processing system-related event in wireless terminal
US20060148740A1 (en) 2005-01-05 2006-07-06 Prosensa B.V. Mannose-6-phosphate receptor mediated gene transfer into muscle cells
US20120122801A1 (en) 2005-01-05 2012-05-17 Prosensa B.V. Mannose-6-phosphate receptor mediated gene transfer into muscle cells
WO2006083800A2 (en) 2005-01-31 2006-08-10 University Of Iowa Research Foundation Nucleic acid silencing of huntington's disease gene
EP1877099B1 (en) 2005-04-06 2012-09-19 Genzyme Corporation Therapeutic conjugates comprising a lysosomal enzyme, polysialic acid and a targeting moiety
KR20080031164A (en) 2005-04-22 2008-04-08 아카데미슈 지켄후이스 라이덴 Modulation of exon recognition in pre-mrna by interfering with the binding of sr proteins and by interfering with seconcary rna structure
WO2006121960A2 (en) 2005-05-06 2006-11-16 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US7902352B2 (en) 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
WO2006121277A1 (en) 2005-05-09 2006-11-16 Korea Research Institute Of Standards And Science Fret probes for fluorescent detection of the epsps gene
ES2702531T3 (en) 2005-06-23 2019-03-01 Biogen Ma Inc Compositions and procedures for SMN2 splicing modulation
EP2062980B1 (en) 2005-06-28 2011-08-31 Medtronic, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin gene.
DK2179737T3 (en) * 2005-07-01 2013-11-11 Index Pharmaceuticals Ab MODULE RESPONSE ON STEROIDS
JP5111385B2 (en) 2005-10-28 2013-01-09 アルナイラム ファーマシューティカルズ, インコーポレイテッド Composition and method for suppressing expression of huntingtin gene
US7906617B2 (en) 2005-12-15 2011-03-15 E. I. Du Pont De Nemours And Company Polyethylene binding peptides and methods of use
EP2422819B1 (en) 2006-01-26 2017-03-01 Ionis Pharmaceuticals, Inc. Compositions and their uses directed to Huntingtin
WO2007123391A1 (en) 2006-04-20 2007-11-01 Academisch Ziekenhuis Leiden Therapeutic intervention in a genetic disease in an individual by modifying expression of an aberrantly expressed gene.
EP1857548A1 (en) * 2006-05-19 2007-11-21 Academisch Ziekenhuis Leiden Means and method for inducing exon-skipping
US7855053B2 (en) 2006-07-19 2010-12-21 The Regents Of The University Of California Methods for detecting the presence of expanded CGG repeats in the FMR1 gene 5′ untranslated region
CN101501193B (en) 2006-08-11 2013-07-03 普罗森那技术公司 Methods and means for treating DNA repeat instability associated genetic disorders
ES2373246T3 (en) 2006-08-11 2012-02-01 Prosensa Technologies B.V. COMPLEMENTARY MONOCATENARY OLIGONUCLEOTIDES OF REPETITIVE ELEMENTS FOR THE TREATMENT OF GENETIC DISORDERS ASSOCIATED WITH THE INSTABILITY OF DNA REPETITIONS.
AU2007300529A1 (en) 2006-09-27 2008-04-03 Merck Sharp & Dohme Corp. Acylated piperidine derivatives as melanocortin-4 receptor modulators
EP2087110A2 (en) 2006-10-11 2009-08-12 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Influenza targets
WO2008103755A1 (en) 2007-02-20 2008-08-28 Mayo Foundation For Medical Education And Research Treating cancer with viral nucleic acid
PL381824A1 (en) 2007-02-22 2008-09-01 Instytut Chemii Bioorganicznej Pan W Poznaniu The sequence of siRNA, vector, molecular target for siRNA reagents and vectors introduced to cells and tissues, the manner of assessment of specifity of silencing of a mutated transcript, the manner of testing of influences of RNA interference route of enz
WO2009005793A2 (en) 2007-06-29 2009-01-08 Avi Biopharma, Inc. Tissue specific peptide conjugates and methods
NZ582521A (en) 2007-07-12 2011-09-30 Prosensa Technologies Bv A conjugate comprising the amino acid sequence LGAQSNF for targeting compounds to muscle tissue
JP2010533170A (en) 2007-07-12 2010-10-21 プロセンサ テクノロジーズ ビー.ブイ. Molecules for targeting compounds to various selected organs, tissues or tumor cells
US9212205B2 (en) 2007-07-26 2015-12-15 University Of Rochester Nucleic acid binding compounds and methods of use
US8088904B2 (en) 2007-08-15 2012-01-03 Isis Pharmaceuticals, Inc. Tetrahydropyran nucleic acid analogs
NZ584793A (en) 2007-10-26 2012-05-25 Academisch Ziekenhuis Leiden Means and methods for counteracting muscle disorders
EP2249874A1 (en) 2008-02-08 2010-11-17 ProSensa Holding BV Methods and means for treating dna repeat instability associated genetic disorders
WO2009101399A1 (en) 2008-02-12 2009-08-20 Isis Innovation Limited Treatment of muscular dystrophy using peptide nucleic acid ( pna)
EP2105145A1 (en) 2008-03-27 2009-09-30 ETH Zürich Method for muscle-specific delivery lipid-conjugated oligonucleotides
EP2297341A4 (en) 2008-05-09 2013-01-09 Univ British Columbia Methods and compositions for the treatment of huntington's disease
EP2119783A1 (en) 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
WO2009144481A2 (en) 2008-05-30 2009-12-03 Isis Innovation Limited Conjugates for delivery of biologically active compounds
US20110152352A1 (en) 2008-06-10 2011-06-23 Tufts University Smad proteins control drosha-mediated mirna maturation
GB2457965B8 (en) 2008-07-01 2011-02-16 Renovo Ltd Methods and systems for determining efficacy of medicaments.
US20110218334A1 (en) 2008-07-11 2011-09-08 Alnylam Pharmaceuticals, Inc. PHOSPHOROTHIOATE OLIGONUCLEOTIDES AND NON-NUCLEOSIDIC PHOSPHOROTHIOATES AS DELIVERY AGENTS FOR iRNA AGENTS
AU2009276763B2 (en) 2008-07-29 2015-07-16 The Board Of Regents Of The University Of Texas Sytem Selective inhibition of polyglutamine protein expression
US8084601B2 (en) * 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers
WO2010044894A1 (en) 2008-10-15 2010-04-22 4S3 Bioscience Inc. Methods and compositions for treatment of myotonic dystrophy
AU2009310557B2 (en) 2008-10-27 2014-09-11 Academisch Ziekenhuis Leiden Methods and means for efficient skipping of exon 45 in Duchenne Muscular Dystrophy pre-mRNA
US20100248239A1 (en) 2009-03-24 2010-09-30 Mayo Foundation For Medical Education And Research Methods and materials for detecting fragile x mutations
EP2411532B1 (en) 2009-03-24 2017-04-05 Asuragen, Inc. Pcr methods for characterizing the 5' untranslated region of the fmr1 and fmr2 genes
JP2012523225A (en) 2009-04-10 2012-10-04 アソシアシオン・アンスティテュ・ドゥ・ミオロジー Tricyclo-DNA antisense oligonucleotides, compositions and methods for treatment of disease
EP2421971B1 (en) 2009-04-24 2016-07-06 BioMarin Technologies B.V. Oligonucleotide comprising an inosine for treating dmd
EP2440566A4 (en) 2009-06-08 2013-10-16 Miragen Therapeutics CHEMICAL MODIFICATION MOTIFS FOR miRNA INHIBITORS AND MIMETICS
EP3626823A1 (en) 2009-09-11 2020-03-25 Ionis Pharmaceuticals, Inc. Modulation of huntingtin expression
RS58079B1 (en) 2009-11-12 2019-02-28 Univ Western Australia Antisense molecules and methods for treating pathologies
US20110166081A1 (en) 2009-12-03 2011-07-07 University Of Iowa Research Foundation Alpha-dystroglycan as a Protein Therapeutic
WO2011078797A2 (en) 2009-12-22 2011-06-30 Singapore Health Services Pte. Ltd Antisense oligonucleotides and uses threreof
CA2785451C (en) 2009-12-24 2019-01-22 Prosensa Technologies B.V. Molecule for treating an inflammatory disorder
EP2536738A4 (en) 2010-02-08 2014-09-17 Isis Pharmaceuticals Inc Methods and compositions useful in treatment of diseases or conditions related to repeat expansion
WO2011097614A1 (en) 2010-02-08 2011-08-11 Isis Pharmaceuticals, Inc. Mehods and compositions useful in diseases or conditions related to repeat expansion
US20130237585A1 (en) 2010-07-19 2013-09-12 University Of Rochester Modulation of dystrophia myotonica-protein kinase (dmpk) expression
SG187165A1 (en) 2010-08-20 2013-02-28 Replicor Inc Oligonucleotide chelate complexes
TWI541024B (en) 2010-09-01 2016-07-11 日本新藥股份有限公司 Antisense nucleic acid
BR112013020273A2 (en) 2011-02-08 2016-10-18 Charlotte Mecklenburg Hospital antisense oligonucleotides
EP3067421B1 (en) 2011-02-08 2018-10-10 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
EP2699269A1 (en) 2011-04-22 2014-02-26 Prosensa Technologies B.V. New compounds for treating, delaying and/or preventing a human genetic disorder such as myotonic dystrophy type 1 (dm1)
CA3092114A1 (en) 2011-05-05 2012-11-08 Sarepta Therapeutics, Inc. Peptide oligonucleotide conjugates
US20140298496A1 (en) 2011-06-23 2014-10-02 Cold Spring Harbor Laboratory Phenocopy model of disease
JP6317675B2 (en) 2011-11-30 2018-04-25 サレプタ セラピューティクス, インコーポレイテッド Oligonucleotides for treating prolonged repeat disease
WO2013082578A1 (en) 2011-12-03 2013-06-06 Thomas Krupenkin Method and apparatus for mechanical energy harvesting using combined magnetic and microfluidic energy generation
WO2013090457A2 (en) 2011-12-12 2013-06-20 Oncoimmunin Inc. In vivo delivery of oligonucleotides
CN110055244A (en) 2011-12-28 2019-07-26 日本新药株式会社 Antisense nucleic acid
AU2013212758A1 (en) 2012-01-27 2014-08-14 Biomarin Technologies B.V. RNA modulating oligonucleotides with improved characteristics for the treatment of Duchenne and Becker muscular dystrophy
WO2013120003A1 (en) 2012-02-08 2013-08-15 Isis Pharmaceuticals, Inc. Modulation of rna by repeat targeting
CN110025628B (en) 2012-04-23 2023-03-31 维科医疗有限公司 RNA-regulatory oligonucleotides with improved properties for the treatment of neuromuscular disorders
AR091065A1 (en) 2012-05-18 2014-12-30 Replicor Inc A PHARMACEUTICAL FORMULATION THAT INCLUDES AN ANTIVIRAL OLIGONUCLEOTIDE CHELATE FOR THE TREATMENT OF AN ANTI-VIRAL INFECTION
EP2870246B1 (en) 2012-07-03 2019-09-11 BioMarin Technologies B.V. Oligonucleotide for the treatment of muscular dystrophy patients
HUE042218T2 (en) * 2013-03-14 2019-06-28 Sarepta Therapeutics Inc Exon skipping compositions for treating muscular dystrophy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070134655A1 (en) * 2002-11-14 2007-06-14 Itzhak Bentwich Bioinformatically detectable group of novel regulatory genes and uses thereof
US20060024715A1 (en) * 2004-07-02 2006-02-02 Affymetrix, Inc. Methods for genotyping polymorphisms in humans
US20060099612A1 (en) * 2004-09-02 2006-05-11 Suntory Limited Method for analyzing genes of industrial yeasts
US20060160121A1 (en) * 2004-10-05 2006-07-20 Wyeth Probe arrays for detecting multiple strains of different species
US20100130591A1 (en) * 2008-10-24 2010-05-27 Peter Sazani Multiple exon skipping compositions for dmd

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
McClorey et al., Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD, 2006, Gene Therapy, volume 13, pages 1373-1381. *

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421966B2 (en) 2004-06-28 2019-09-24 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455635B2 (en) 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8450474B2 (en) 2004-06-28 2013-05-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9035040B2 (en) 2004-06-28 2015-05-19 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455634B2 (en) 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10781451B2 (en) 2004-06-28 2020-09-22 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8476423B2 (en) 2004-06-28 2013-07-02 The University of Western Austrailia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8486907B2 (en) 2004-06-28 2013-07-16 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9024007B2 (en) 2004-06-28 2015-05-05 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8524880B2 (en) 2004-06-28 2013-09-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9447415B2 (en) 2004-06-28 2016-09-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE48960E1 (en) 2004-06-28 2022-03-08 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10995337B2 (en) 2004-06-28 2021-05-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10968450B2 (en) 2004-06-28 2021-04-06 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9994851B2 (en) 2004-06-28 2018-06-12 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9018368B2 (en) 2004-06-28 2015-04-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9441229B2 (en) 2004-06-28 2016-09-13 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110015258A1 (en) * 2004-06-28 2011-01-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455636B2 (en) 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9175286B2 (en) 2004-06-28 2015-11-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10227590B2 (en) 2004-06-28 2019-03-12 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE47769E1 (en) 2004-06-28 2019-12-17 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE47751E1 (en) 2004-06-28 2019-12-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE47691E1 (en) 2004-06-28 2019-11-05 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9605262B2 (en) 2004-06-28 2017-03-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9249416B2 (en) 2004-06-28 2016-02-02 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10266827B2 (en) 2004-06-28 2019-04-23 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9422555B2 (en) 2004-06-28 2016-08-23 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10689646B2 (en) 2006-08-11 2020-06-23 Biomarin Technologies B.V. Treatment of genetic disorders associated with DNA repeat instability
US9890379B2 (en) 2006-08-11 2018-02-13 Biomarin Technologies B.V. Treatment of genetic disorders associated with DNA repeat instability
US11274299B2 (en) 2006-08-11 2022-03-15 Vico Therapeutics B.V. Methods and means for treating DNA repeat instability associated genetic disorders
US10876114B2 (en) 2007-10-26 2020-12-29 Biomarin Technologies B.V. Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
US9926557B2 (en) 2007-10-26 2018-03-27 Biomarin Technologies B.V. Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US11427820B2 (en) 2007-10-26 2022-08-30 Biomarin Technologies B.V. Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US9499818B2 (en) 2007-10-26 2016-11-22 BioMarin Technologies, B.V. Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene
US10246707B2 (en) 2008-05-14 2019-04-02 Biomarin Technologies B.V. Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means
US9139828B2 (en) 2008-05-14 2015-09-22 Prosensa Technologies B.V. Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means
US20140057964A1 (en) * 2008-09-11 2014-02-27 Royal Holloway, University Of London Oligomers
US11697811B2 (en) 2008-09-11 2023-07-11 Royal Holloway, University Of London Oligomers
US9650632B2 (en) 2008-09-11 2017-05-16 Royal Holloway, University Of London Oligomers
US9243252B2 (en) * 2008-09-11 2016-01-26 Royal Holloway, University Of London Oligomers
US10457944B2 (en) 2008-09-11 2019-10-29 Royal Holloway, University Of London Oligomers
US9243251B2 (en) 2008-09-11 2016-01-26 Royal Holloway, University Of London Oligomers
US9447417B2 (en) 2008-10-24 2016-09-20 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9234198B1 (en) 2008-10-24 2016-01-12 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US8871918B2 (en) 2008-10-24 2014-10-28 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9434948B2 (en) 2008-10-24 2016-09-06 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US20100130591A1 (en) * 2008-10-24 2010-05-27 Peter Sazani Multiple exon skipping compositions for dmd
US8865883B2 (en) 2008-10-24 2014-10-21 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9447416B2 (en) 2008-10-24 2016-09-20 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9453225B2 (en) 2008-10-24 2016-09-27 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US11634714B2 (en) 2009-04-24 2023-04-25 Biomarin Technologies B.V. Oligonucleotide comprising an inosine for treating DMD
US11034956B2 (en) * 2009-04-24 2021-06-15 Biomarin Technologies B.V. Oligonucleotide comprising an inosine for treating DMD
US8637483B2 (en) 2009-11-12 2014-01-28 The University Of Western Australia Antisense molecules and methods for treating pathologies
US9758783B2 (en) 2009-11-12 2017-09-12 The University Of Western Australia Antisense molecules and methods for treating pathologies
US10287586B2 (en) 2009-11-12 2019-05-14 The University Of Western Australia Antisense molecules and methods for treating pathologies
US9228187B2 (en) 2009-11-12 2016-01-05 The University Of Western Australia Antisense molecules and methods for treating pathologies
US11447776B2 (en) 2009-11-12 2022-09-20 The University Of Western Australia Antisense molecules and methods for treating pathologies
US10781450B2 (en) 2009-11-12 2020-09-22 Sarepta Therapeutics, Inc. Antisense molecules and methods for treating pathologies
US9890381B2 (en) 2011-12-28 2018-02-13 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US9512424B2 (en) 2011-12-28 2016-12-06 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US10781448B2 (en) 2011-12-28 2020-09-22 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
WO2013112053A1 (en) * 2012-01-27 2013-08-01 Prosensa Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
US10913946B2 (en) 2012-01-27 2021-02-09 Biomarin Technologies B.V. RNA modulating oligonucleotides with improved characteristics for the treatment of Duchenne and Becker muscular dystrophy
US10179912B2 (en) 2012-01-27 2019-01-15 Biomarin Technologies B.V. RNA modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
EP4043039A1 (en) * 2012-01-27 2022-08-17 BioMarin Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
CN104203289A (en) * 2012-01-27 2014-12-10 普罗森萨科技有限公司 RNA modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
US10711256B2 (en) 2012-04-27 2020-07-14 Duke University Genetic correction of mutated genes
US11898176B2 (en) 2012-04-27 2024-02-13 Duke University Genetic correction of mutated genes
US11932851B2 (en) 2013-03-14 2024-03-19 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US10907154B2 (en) 2013-03-14 2021-02-02 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US9217148B2 (en) 2013-03-14 2015-12-22 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US9506058B2 (en) 2013-03-15 2016-11-29 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US10364431B2 (en) 2013-03-15 2019-07-30 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US10337003B2 (en) 2013-03-15 2019-07-02 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US20160201089A1 (en) * 2013-06-05 2016-07-14 Duke University Rna-guided gene editing and gene regulation
US10745714B2 (en) 2013-06-05 2020-08-18 Duke University RNA-guided gene editing and gene regulation
US10704060B2 (en) * 2013-06-05 2020-07-07 Duke University RNA-guided gene editing and gene regulation
US11053497B2 (en) 2014-03-12 2021-07-06 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US9988629B2 (en) 2014-03-12 2018-06-05 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
US10676726B2 (en) 2015-02-09 2020-06-09 Duke University Compositions and methods for epigenome editing
US11155796B2 (en) 2015-02-09 2021-10-26 Duke University Compositions and methods for epigenome editing
US10676735B2 (en) 2015-07-22 2020-06-09 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
US11427817B2 (en) 2015-08-25 2022-08-30 Duke University Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases
US10851373B2 (en) 2015-09-15 2020-12-01 Nippon Shinyaku Co., Ltd. Antisense nucleic acids
CN113913426A (en) * 2015-09-15 2022-01-11 日本新药株式会社 Antisense nucleic acid
US10450568B2 (en) 2015-10-09 2019-10-22 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11787869B2 (en) 2018-08-02 2023-10-17 Dyne Therapeutics, Inc. Methods of using muscle targeting complexes to deliver an oligonucleotide to a subject having facioscapulohumeral muscular dystrophy or a disease associated with muscle weakness
US11833217B2 (en) 2018-08-02 2023-12-05 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11633496B2 (en) 2018-08-02 2023-04-25 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11795234B2 (en) 2018-08-02 2023-10-24 Dyne Therapeutics, Inc. Methods of producing muscle-targeting complexes comprising an anti-transferrin receptor antibody linked to an oligonucleotide
US11795233B2 (en) 2018-08-02 2023-10-24 Dyne Therapeutics, Inc. Muscle-targeting complex comprising an anti-transferrin receptor antibody linked to an oligonucleotide
US20220186217A1 (en) * 2018-12-06 2022-06-16 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
WO2022241408A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Compositions and methods for modulating tissue distribution of intracellular therapeutics
WO2022271818A1 (en) 2021-06-23 2022-12-29 Entrada Therapeutics, Inc. Antisense compounds and methods for targeting cug repeats
US11771776B2 (en) * 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11679161B2 (en) 2021-07-09 2023-06-20 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
US20230045002A1 (en) * 2021-07-09 2023-02-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11844843B2 (en) 2021-07-09 2023-12-19 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy

Also Published As

Publication number Publication date
EP4183399A1 (en) 2023-05-24
US20150166996A1 (en) 2015-06-18
ES2639852T3 (en) 2017-10-30
US20230151362A1 (en) 2023-05-18
HRP20160025T1 (en) 2016-02-12
JP2014111638A (en) 2014-06-19
PT2203173E (en) 2016-03-15
US20190112604A1 (en) 2019-04-18
EP2614827B1 (en) 2017-06-28
IL205322A0 (en) 2010-12-30
AU2008317566B2 (en) 2014-05-01
EP3238737B1 (en) 2022-04-06
JP6885620B2 (en) 2021-06-16
US20190119679A1 (en) 2019-04-25
US20170107512A1 (en) 2017-04-20
NZ584793A (en) 2012-05-25
CN105641700B (en) 2021-01-01
CA2704049A1 (en) 2009-04-30
US20160304864A1 (en) 2016-10-20
AU2008317566A1 (en) 2009-04-30
CN102264903A (en) 2011-11-30
JP7107622B2 (en) 2022-07-27
CN105641700A (en) 2016-06-08
JP5600064B2 (en) 2014-10-01
JP2017141296A (en) 2017-08-17
IL284321B (en) 2022-04-01
CN102264903B (en) 2015-01-07
NZ592446A (en) 2012-03-30
CY1117454T1 (en) 2017-04-26
US20140128592A1 (en) 2014-05-08
EP2614827A3 (en) 2013-09-25
ES2914775T3 (en) 2022-06-16
HK1185098A1 (en) 2014-02-07
US9926557B2 (en) 2018-03-27
CN101896186A (en) 2010-11-24
WO2009054725A2 (en) 2009-04-30
ES2692886T3 (en) 2018-12-05
CN102256606A (en) 2011-11-23
US20110294753A1 (en) 2011-12-01
US20140221458A1 (en) 2014-08-07
EP2203173B1 (en) 2015-12-23
US20210139904A1 (en) 2021-05-13
US9499818B2 (en) 2016-11-22
US11427820B2 (en) 2022-08-30
JP2011502118A (en) 2011-01-20
HK1245670A1 (en) 2018-08-31
PL2203173T3 (en) 2016-06-30
EP2203173A2 (en) 2010-07-07
US20120022134A1 (en) 2012-01-26
US10876114B2 (en) 2020-12-29
US20150073037A1 (en) 2015-03-12
IL284321A (en) 2021-07-29
CY1117286T1 (en) 2017-04-26
HUE027124T2 (en) 2016-08-29
EP2614827A2 (en) 2013-07-17
WO2009054725A3 (en) 2009-10-15
JP5879374B2 (en) 2016-03-08
US20190177725A1 (en) 2019-06-13
DK2203173T3 (en) 2016-02-29
ES2936464T3 (en) 2023-03-17
US9528109B2 (en) 2016-12-27
JP2021113229A (en) 2021-08-05
JP2019142942A (en) 2019-08-29
US20170044534A1 (en) 2017-02-16
US20190100754A1 (en) 2019-04-04
IL241928A0 (en) 2015-11-30
US20140113955A1 (en) 2014-04-24
EP3238737A1 (en) 2017-11-01
CN105647921A (en) 2016-06-08
IL261127A (en) 2018-10-31
ES2564563T3 (en) 2016-03-23
IL241928B (en) 2018-08-30
JP6579629B2 (en) 2019-09-25
US9243245B2 (en) 2016-01-26
US20200239886A1 (en) 2020-07-30
HUE028662T2 (en) 2016-12-28
IL205322A (en) 2016-08-31
IL261127B (en) 2020-07-30
JP2016033140A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
US10876114B2 (en) Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
EP2349287B1 (en) Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50- 53.
AU2009310558B8 (en) Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50- 53.

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROSENSA HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE KIMPE, JOSEPHUS JOHANNES;PLATENBURG, GERARDUS JOHANNES;VAN DEUTEKOM, JUDITH CHRISTINA THEODORA;AND OTHERS;REEL/FRAME:026556/0428

Effective date: 20110511

Owner name: PROSENSA TECHNOLOGIES B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE KIMPE, JOSEPHUS JOHANNES;PLATENBURG, GERARDUS JOHANNES;VAN DEUTEKOM, JUDITH CHRISTINA THEODORA;AND OTHERS;REEL/FRAME:026556/0428

Effective date: 20110511

Owner name: PROSENSA B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE KIMPE, JOSEPHUS JOHANNES;PLATENBURG, GERARDUS JOHANNES;VAN DEUTEKOM, JUDITH CHRISTINA THEODORA;AND OTHERS;REEL/FRAME:026556/0428

Effective date: 20110511

Owner name: ACADEMISCH ZIEKENHUIS LEIDEN, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE KIMPE, JOSEPHUS JOHANNES;PLATENBURG, GERARDUS JOHANNES;VAN DEUTEKOM, JUDITH CHRISTINA THEODORA;AND OTHERS;REEL/FRAME:026556/0428

Effective date: 20110511

AS Assignment

Owner name: PROSENSA HOLDING N.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:PROSENSA HOLDING B.V.;REEL/FRAME:034115/0965

Effective date: 20140828

Owner name: PROSENSA HOLDING B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:PROSENSA B.V.;REEL/FRAME:034115/0916

Effective date: 20140828

Owner name: PROSENSA TECHNOLOGIES B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROSENSA HOLDING N.V.;REEL/FRAME:034115/0924

Effective date: 20140828

AS Assignment

Owner name: PROSENSA TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF ADDRESS OF ASSIGNEE;ASSIGNOR:PROSENSA TECHNOLOGIES B.V.;REEL/FRAME:034916/0132

Effective date: 20110704

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BIOMARIN TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:PROSENSA TECHNOLOGIES B.V.;REEL/FRAME:036732/0042

Effective date: 20150908