US20110262989A1 - Isolating a target analyte from a body fluid - Google Patents

Isolating a target analyte from a body fluid Download PDF

Info

Publication number
US20110262989A1
US20110262989A1 US12/850,203 US85020310A US2011262989A1 US 20110262989 A1 US20110262989 A1 US 20110262989A1 US 85020310 A US85020310 A US 85020310A US 2011262989 A1 US2011262989 A1 US 2011262989A1
Authority
US
United States
Prior art keywords
target
method
magnetic
bacteria
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US12/850,203
Inventor
Lisa-Jo Ann CLARIZIA
Eddie W. Adams
Sergey A. Dryga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNAe Group Holdings Ltd
Original Assignee
NanoMR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US32658810P priority Critical
Application filed by NanoMR Inc filed Critical NanoMR Inc
Priority to US12/850,203 priority patent/US20110262989A1/en
Assigned to NANOMR, INC. reassignment NANOMR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAMS, EDDIE W., CLARIZIA, LISA-JO ANN, DRYGA, SERGEY A.
Publication of US20110262989A1 publication Critical patent/US20110262989A1/en
Priority claimed from US13/720,771 external-priority patent/US20130109590A1/en
Priority claimed from US14/102,861 external-priority patent/US20140100136A1/en
Assigned to DNA ELECTRONICS, INC. reassignment DNA ELECTRONICS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NANOMR, INC.
Assigned to DNA ELECTRONICS, INC. reassignment DNA ELECTRONICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NANOMR, INC.
Assigned to DNAE GROUP HOLDINGS LIMITED reassignment DNAE GROUP HOLDINGS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DNA ELECTRONICS, INC.
Application status is Pending legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/633NMR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/20Magnetic particle immunoreagent carriers the magnetic material being present in the particle core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/465NMR spectroscopy applied to biological material, e.g. in vitro testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

The invention generally relates to using magnetic particles and magnets to isolate a target analyte from a body fluid sample. In certain embodiments, methods of the invention involve introducing magnetic particles including a target-specific binding moiety to a body fluid sample in order to create a mixture, incubating the mixture to allow the particles to bind to a target, applying a magnetic field to capture target/magnetic particle complexes on a surface, and washing with a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes.

Description

    RELATED APPLICATION
  • The present application claims the benefit of and priority to U.S. provisional patent application Ser. No. 61/326,588, filed Apr. 21, 2010, the content of which is incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • The invention generally relates to using magnetic particles and magnets to isolate a target analyte from a body fluid sample.
  • BACKGROUND
  • Blood-borne pathogens are a significant healthcare problem. A delayed or improper diagnosis of a bacterial infection can result in sepsis—a serious, and often deadly, inflammatory response to the infection. Sepsis is the 10th leading cause of death in the United States. Early detection of bacterial infections in blood is the key to preventing the onset of sepsis. Traditional methods of detection and identification of blood-borne infection include blood culture and antibiotic susceptibility assays. Those methods typically require culturing cells, which can be expensive and can take as long as 72 hours. Often, septic shock will occur before cell culture results can be obtained.
  • Alternative methods for detection of pathogens, particularly bacteria, have been described by others. Those methods include molecular detection methods, antigen detection methods, and metabolite detection methods. Molecular detection methods, whether involving hybrid capture or polymerase chain reaction (PCR), require high concentrations of purified DNA for detection. Both antigen detection and metabolite detection methods also require a relatively large amount of bacteria and have high limit of detection (usually >104 CFU/mL), thus requiring an enrichment step prior to detection. This incubation/enrichment period is intended to allow for the growth of bacteria and an increase in bacterial cell numbers to more readily aid in identification. In many cases, a series of two or three separate incubations is needed to isolate the target bacteria. However, such enrichment steps require a significant amount of time (e.g., at least a few days to a week) and can potentially compromise test sensitivity by killing some of the cells sought to be measured.
  • There is a need for methods for isolating target analytes, such as bacteria, from a sample, such as a blood sample, without an additional enrichment step. There is also a need for methods of isolating target analytes that are fast and sensitive in order to provide data for patient treatment decisions in a clinically relevant time frame.
  • SUMMARY
  • The present invention provides methods and devices for isolating pathogens in a biological sample. The invention allows the rapid detection of pathogen at very low levels in the sample; thus enabling early and accurate detection and identification of the pathogen. The invention is carried out with magnetic particles having a target-specific binding moiety. Methods of the invention involve introducing magnetic particles including a target-specific binding moiety to a body fluid sample in order to create a mixture, incubating the mixture to allow the particles to bind to a target, applying a magnetic field to capture target/magnetic particle complexes on a surface, and washing with a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes. A particular advantage of methods of the invention is for capture and isolation of bacteria and fungi directly from blood samples at low concentrations that are present in many clinical samples (as low as 1 CFU/ml of bacteria in a blood sample).
  • The target-specific binding moiety will depend on the target to be captured. The moiety may be any capture moiety known in the art, such as an antibody, an aptamer, a nucleic acid, a protein, a receptor, a phage or a ligand. In particular embodiments, the target-specific binding moiety is an antibody. In certain embodiments, the antibody is specific for bacteria. In other embodiments, the antibody is specific for fungi.
  • The target analyte refers to the target that will be captured and isolated by methods of the invention. The target may be bacteria, fungi, protein, a cell, a virus, a nucleic acid, a receptor, a ligand, or any molecule known in the art. In certain embodiments, the target is a pathogenic bacteria. In other embodiments, the target is a gram positive or gram negative bacteria. Exemplary bacterial species that may be captured and isolated by methods of the invention include E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof.
  • Methods of the invention may be performed with any type of magnetic particle. Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic beads. In other embodiments, the magnetic particles include at least 70% superparamagnetic beads by weight. In certain embodiments, the superparamagnetic beads are from about 100 nm to about 250 nm in diameter. In certain embodiments, the magnetic particle is an iron-containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.
  • In certain embodiments, the incubating step includes incubating the mixture in a buffer that inhibits cell lysis. In certain embodiments, the buffer includes Tris(hydroximethyl)-aminomethane hydrochloride at a concentration of between about 50 mM and about 100 mM, preferably about 75 mM. In other embodiments, methods of the invention further include retaining the magnetic particles in a magnetic field during the washing step. Methods of the invention may be used with any body fluid. Exemplary body fluids include blood, sputum, serum, plasma, urine, saliva, sweat, and cerebral spinal fluid.
  • Another aspect of the invention provides methods for isolating a target microorganism from a body fluid sample including introducing magnetic particles having a target-specific binding moiety to a body fluid sample in order to create a mixture, incubating the mixture to allow the particles to bind to the target, applying a magnetic field to isolate on a surface magnetic particles to which target is bound, washing the mixture in a wash solution that reduces particle aggregation, and lysing the captured bacteria and extracting DNA for further analysis by PCR, microarray hybridization or sequencing.
  • Another aspect of the invention provides methods for isolating as low as 1 CFU/ml of bacteria in a blood sample including introducing superparamagnetic particles having a diameter from about 100 nm to about 250 nm and having a bacteria-specific binding moiety to a body fluid sample in order to create a mixture, incubating said mixture to allow said particles to bind to a bacteria, applying a magnetic field to isolate on a surface bacteria/magnetic particle complexes, and washing the mixture in a wash solution that reduces particle aggregation, thereby isolating as low as 1 viable CFU/ml of bacteria in the blood sample.
  • DETAILED DESCRIPTION
  • The invention generally relates to using magnetic particles that capture target pathogens in a body fluid sample and magnets to isolate the target. Methods of the invention involve introducing magnetic particles including a target-specific binding moiety to a body fluid sample in order to create a mixture, incubating the mixture to allow the particles to bind to a target, applying a magnetic field to capture target/magnetic particle complexes on a surface, and washing the mixture in a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes. Certain fundamental technologies and principles are associated with binding magnetic materials to target entities and subsequently separating by use of magnet fields and gradients. Such fundamental technologies and principles are known in the art and have been previously described, such as those described in Janeway (Immunobiology, 6th edition, Garland Science Publishing), the content of which is incorporated by reference herein in its entirety.
  • Methods of the invention involve collecting a body fluid having a target analyte in a container, such as a blood collection tube (e.g., VACUTAINER, test tube specifically designed for venipuncture, commercially available from Becton, Dickinson and company). In certain embodiments, a solution is added that prevents or reduces aggregation of endogenous aggregating factors, such as heparin in the case of blood.
  • A body fluid refers to a liquid material derived from, for example, a human or other mammal. Such body fluids include, but are not limited to, mucus, blood, plasma, serum, serum derivatives, bile, phlegm, saliva, sweat, amniotic fluid, mammary fluid, urine, sputum, and cerebrospinal fluid (CSF), such as lumbar or ventricular CSF. A body fluid may also be a fine needle aspirate. A body fluid also may be media containing cells or biological material. In particular embodiments, the fluid is blood.
  • Methods of the invention may be used to detect any target analyte. The target analyte refers to the substance in the sample that will be captured and isolated by methods of the invention. The target may be bacteria, fungi, a protein, a cell (such as a cancer cell, a white blood cell a virally infected cell, or a fetal cell circulating in maternal circulation), a virus, a nucleic acid (e.g., DNA or RNA), a receptor, a ligand, a hormone, a drug, a chemical substance, or any molecule known in the art. In certain embodiments, the target is a pathogenic bacteria. In other embodiments, the target is a gram positive or gram negative bacteria. Exemplary bacterial species that may be captured and isolated by methods of the invention include E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof.
  • The sample is then mixed with magnetic particles including a target-specific binding moiety to generate a mixture that is allowed to incubate such that the particles bind to a target in the sample, such as a bacterium in a blood sample. The mixture is allowed to incubate for a sufficient time to allow for the particles to bind to the target analyte. The process of binding the magnetic particles to the target analytes associates a magnetic moment with the target analytes, and thus allows the target analytes to be manipulated through forces generated by magnetic fields upon the attached magnetic moment.
  • In general, incubation time will depend on the desired degree of binding between the target analyte and the magnetic beads (e.g., the amount of moment that would be desirably attached to the target), the amount of moment per target, the amount of time of mixing, the type of mixing, the reagents present to promote the binding and the binding chemistry system that is being employed. Incubation time can be anywhere from about 5 seconds to a few days. Exemplary incubation times range from about 10 seconds to about 2 hours. Binding occurs over a wide range of temperatures, generally between 15 ° C. and 40 ° C.
  • Methods of the invention may be performed with any type of magnetic particle. Production of magnetic particles and particles for use with the invention are known in the art. See for example Giaever (U.S. Pat. No. 3,970,518), Senyi et al. (U.S. Pat. No. 4,230,685), Dodin et al. (U.S. 4,677,055), Whitehead et al. (U.S. Pat. No. 4,695,393), Benjamin et al. (U.S. Pat. No. 5,695,946), Giaever (U.S. 4,018,886), Rembaum (U.S. Pat. No. 4,267,234), Molday (U.S. Pat. No. 4,452,773), Whitehead et al. (U.S. 4,554,088), Forrest (U.S. Pat. No. 4,659,678), Liberti et al. (U.S. Pat. No. 5,186,827), Own et al. (U.S. Pat. No. 4,795,698), and Liberti et al. (WO 91/02811), the content of each of which is incorporated by reference herein in its entirety.
  • Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic beads. In certain embodiments, the magnetic particle is an iron containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.
  • In certain embodiments, the magnetic particles include at least about 10% superparamagnetic beads by weight, at least about 20% superparamagnetic beads by weight, at least about 30% superparamagnetic beads by weight, at least about 40% superparamagnetic beads by weight, at least about 50% superparamagnetic beads by weight, at least about 60% superparamagnetic beads by weight, at least about 70% superparamagnetic beads by weight, at least about 80% superparamagnetic beads by weight, at least about 90% superparamagnetic beads by weight, at least about 95% superparamagnetic beads by weight, or at least about 99% superparamagnetic beads by weight. In a particular embodiment, the magnetic particles include at least about 70% superparamagnetic beads by weight.
  • In certain embodiments, the superparamagnetic beads are less than 100 nm in diameter. In other embodiments, the superparamagnetic beads are about 150 nm in diameter, are about 200 nm in diameter, are about 250 nm in diameter, are about 300 nm in diameter, are about 350 nm in diameter, are about 400 nm in diameter, are about 500 nm in diameter, or are about 1000 nm in diameter. In a particular embodiment, the superparamagnetic beads are from about 100 nm to about 250 nm in diameter.
  • In certain embodiments, the particles are beads (e.g., nanoparticles) that incorporate magnetic materials, or magnetic materials that have been functionalized, or other configurations as are known in the art. In certain embodiments, nanoparticles may be used that include a polymer material that incorporates magnetic material(s), such as nanometal material(s). When those nanometal material(s) or crystal(s), such as Fe3O4, are superparamagnetic, they may provide advantageous properties, such as being capable of being magnetized by an external magnetic field, and demagnetized when the external magnetic field has been removed. This may be advantageous for facilitating sample transport into and away from an area where the sample is being processed without undue bead aggregation.
  • One or more or many different nanometal(s) may be employed, such as Fe3O4, FePt, or Fe, in a core-shell configuration to provide stability, and/or various others as may be known in the art. In many applications, it may be advantageous to have a nanometal having as high a saturated moment per volume as possible, as this may maximize gradient related forces, and/or may enhance a signal associated with the presence of the beads. It may also be advantageous to have the volumetric loading in a bead be as high as possible, for the same or similar reason(s). In order to maximize the moment provided by a magnetizable nanometal, a certain saturation field may be provided. For example, for Fe3O4 superparamagnetic particles, this field may be on the order of about 0.3 T.
  • The size of the nanometal containing bead may be optimized for a particular application, for example, maximizing moment loaded upon a target, maximizing the number of beads on a target with an acceptable detectability, maximizing desired force-induced motion, and/or maximizing the difference in attached moment between the labeled target and non-specifically bound targets or bead aggregates or individual beads. While maximizing is referenced by example above, other optimizations or alterations are contemplated, such as minimizing or otherwise desirably affecting conditions.
  • In an exemplary embodiment, a polymer bead containing 80 wt % Fe3O4 superparamagnetic particles, or for example, 90 wt % or higher superparamagnetic particles, is produced by encapsulating superparamagnetic particles with a polymer coating to produce a bead having a diameter of about 250 nm.
  • Magnetic particles for use with methods of the invention have a target-specific binding moiety that allows for the particles to specifically bind the target of interest in the sample. The target-specific moiety may be any molecule known in the art and will depend on the target to be captured and isolated. Exemplary target-specific binding moieties include nucleic acids, proteins, ligands, antibodies, aptamers, and receptors.
  • In particular embodiments, the target-specific binding moiety is an antibody, such as an antibody that binds a particular bacterium. General methodologies for antibody production, including criteria to be considered when choosing an animal for the production of antisera, are described in Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, pp. 93-117, 1988). For example, an animal of suitable size such as goats, dogs, sheep, mice, or camels are immunized by administration of an amount of immunogen, such the target bacteria, effective to produce an immune response. An exemplary protocol is as follows. The animal is injected with 100 milligrams of antigen resuspended in adjuvant, for example Freund's complete adjuvant, dependent on the size of the animal, followed three weeks later with a subcutaneous injection of 100 micrograms to 100 milligrams of immunogen with adjuvant dependent on the size of the animal, for example Freund's incomplete adjuvant. Additional subcutaneous or intraperitoneal injections every two weeks with adjuvant, for example Freund's incomplete adjuvant, are administered until a suitable titer of antibody in the animal's blood is achieved. Exemplary titers include a titer of at least about 1:5000 or a titer of 1:100,000 or more, i.e., the dilution having a detectable activity. The antibodies are purified, for example, by affinity purification on columns containing protein G resin or target-specific affinity resin.
  • The technique of in vitro immunization of human lymphocytes is used to generate monoclonal antibodies. Techniques for in vitro immunization of human lymphocytes are well known to those skilled in the art. See, e.g., Inai, et al., Histochemistry, 99(5):335 362, May 1993; Mulder, et al., Hum. Immunol., 36(3):186 192, 1993; Harada, et al., J. Oral Pathol. Med., 22(4):145 152, 1993; Stauber, et al., J. Immunol. Methods, 161(2):157 168, 1993; and Venkateswaran, et al., Hybridoma, 11(6) 729 739, 1992. These techniques can be used to produce antigen-reactive monoclonal antibodies, including antigen-specific IgG, and IgM monoclonal antibodies.
  • Any antibody or fragment thereof having affinity and specific for the bacteria of interest is within the scope of the invention provided herein. Immunomagnetic beads against Salmonella are provided in Vermunt et al. (J. Appl. Bact. 72:112, 1992). Immunomagnetic beads against Staphylococcus aureus are provided in Johne et al. (J. Clin. Microbiol. 27:1631, 1989). Immunomagnetic beads against Listeria are provided in Skjerve et al. (Appl. Env. Microbiol. 56:3478, 1990). Immunomagnetic beads against Escherichia coli are provided in Lund et al. (J. Clin. Microbiol. 29:2259, 1991).
  • Methods for attaching the target-specific binding moiety to the magnetic particle are known in the art. Coating magnetic particles with antibodies is well known in the art, see for example Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, 1988), Hunter et al. (Immunoassays for Clinical Chemistry, pp. 147-162, eds., Churchill Livingston, Edinborough, 1983), and Stanley (Essentials in Immunology and Serology, Delmar, pp. 152-153, 2002). Such methodology can easily be modified by one of skill in the art to bind other types of target-specific binding moieties to the magnetic particles. Certain types of magnetic particles coated with a functional moiety are commercially available from Sigma-Aldrich (St. Louis, Mo.).
  • In certain embodiments, a buffer solution is added to the sample along with the magnetic beads. An exemplary buffer includes Tris(hydroximethyl)-aminomethane hydrochloride at a concentration of about 75 mM. It has been found that the buffer composition, mixing parameters (speed, type of mixing, such as rotation, shaking etc., and temperature) influence binding. It is important to maintain osmolality of the final solution (e.g., blood+buffer) to maintain high label efficiency. In certain embodiments, buffers used in methods of the invention are designed to prevent lysis of blood cells, facilitate efficient binding of targets with magnetic beads and to reduce formation of bead aggregates. It has been found that the buffer solution containing 300 mM NaCl, 75 mM Tris-HCl pH 8.0 and 0.1% Tween 20 meets these design goals.
  • Without being limited by any particular theory or mechanism of action, it is believed that sodium chloride is mainly responsible for maintaining osmolality of the solution and for the reduction of non-specific binding of magnetic bead through ionic interaction. Tris(hydroximethyl)-aminomethane hydrochloride is a well established buffer compound frequently used in biology to maintain pH of a solution. It has been found that 75 mM concentration is beneficial and sufficient for high binding efficiency. Likewise, Tween 20 is widely used as a mild detergent to decrease nonspecific attachment due to hydrophobic interactions. Various assays use Tween 20 at concentrations ranging from 0.01% to 1%. The 0.1% concentration appears to be optimal for the efficient labeling of bacteria, while maintaining blood cells intact.
  • An alternative approach to achieve high binding efficiency while reducing time required for the binding step is to use static mixer, or other mixing devices that provide efficient mixing of viscous samples at high flow rates, such as at or around 5 mL/min. In one embodiment, the sample is mixed with binding buffer in ratio of, or about, 1:1, using a mixing interface connector. The diluted sample then flows through a mixing interface connector where it is mixed with target-specific nanoparticles. Additional mixing interface connectors providing mixing of sample and antigen-specific nanoparticles can be attached downstream to improve binding efficiency. The combined flow rate of the labeled sample is selected such that it is compatible with downstream processing.
  • After binding of the magnetic particles to the target analyte in the mixture to form target/magnetic particle complexes, a magnetic field is applied to the mixture to capture the complexes on a surface. Components of the mixture that are not bound to magnetic particles will not be affected by the magnetic field and will remain free in the mixture. Methods and apparatuses for separating target/magnetic particle complexes from other components of a mixture are known in the art. For example, a steel mesh may be coupled to a magnet, a linear channel or channels may be configured with adjacent magnets, or quadrapole magnets with annular flow may be used. Other methods and apparatuses for separating target/magnetic particle complexes from other components of a mixture are shown in Rao et al. (U.S. Pat. No. 6,551,843), Liberti et al. (U.S. Pat. No. 5,622,831), Hatch et al. (U.S. Pat. No. 6,514,415), Benjamin et al. (U.S. Pat. No. 5,695,946), Liberti et al. (U.S. Pat. No. 5,186,827), Wang et al. (U.S. Pat. No. 5,541,072), Liberti et al. (U.S. Pat. No. 5,466,574), and Terstappen et al. (U.S. Pat. No. 6,623,983), the content of each of which is incorporated by reference herein in its entirety.
  • In certain embodiments, the magnetic capture is achieved at high efficiency by utilizing a flow-through capture cell with a number of strong rare earth bar magnets placed perpendicular to the flow of the sample. When using a flow chamber with flow path cross-section 0.5 mm×20 mm (h×w) and 7 bar NdFeB magnets, the flow rate could be as high as 5 mL/min or more, while achieving capture efficiency close to 100%.
  • The above described type of magnetic separation produces efficient capture of a target analyte and the removal of a majority of the remaining components of a sample mixture. However, such a process produces a sample that contains a very high percent of magnetic particles that are not bound to target analytes because the magnetic particles are typically added in excess, as well as non-specific target entities. Non-specific target entities may for example be bound at a much lower efficiency, for example 1% of the surface area, while a target of interest might be loaded at 50% or nearly 100% of the available surface area or available antigenic cites. However, even 1% loading may be sufficient to impart force necessary for trapping in a magnetic gradient flow cell or sample chamber.
  • For example, in the case of immunomagnetic binding of bacteria or fungi in a blood sample, the sample may include: bound targets at a concentration of about 1/mL or a concentration less than about 106/mL; background particles at a concentration of about 107/ml to about 1010/ml; and non-specific targets at a concentration of about 10/ml to about 105/ml.
  • The presence of magnetic particles that are not bound to target analytes and non-specific target entities on the surface that includes the target/magnetic particle complexes interferes with the ability to successfully detect the target of interest. The magnetic capture of the resulting mix, and close contact of magnetic particles with each other and bound targets, result in the formation of aggregate that is hard to dispense and which might be resistant or inadequate for subsequent processing or analysis steps. In order to remove magnetic particles that are not bound to target analytes and non-specific target entities, methods of the invention involve washing the surface with a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes from the magnetic particles that are not bound to target analytes and non-specific target entities. The wash solution minimizes the formation of the aggregates.
  • Methods of the invention may use any wash solution that imparts a net negative charge to the magnetic particle that is not sufficient to disrupt interaction between the target-specific moiety of the magnetic particle and the target analyte. Without being limited by any particular theory or mechanism of action, it is believed that attachment of the negatively charged molecules in the wash solution to magnetic particles provides net negative charge to the particles and facilitates dispersal of non-specifically aggregated particles. At the same time, the net negative charge is not sufficient to disrupt strong interaction between the target-specific moiety of the magnetic particle and the target analyte (e.g., an antibody-antigen interaction). Exemplary solutions include heparin, Tris-HCl, Tris-borate-EDTA (TBE), Tris-acetate-EDTA (TAE), Tris-cacodylate, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid), PBS (phosphate buffered saline), PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid), MES (2-N-morpholino)ethanesulfonic acid), Tricine (N-(Tri(hydroximethyl)methyl)glycine), and similar buffering agents. In certain embodiments, only a single wash cycle is performed. In other embodiments, more than one wash cycle is performed.
  • In particular embodiments, the wash solution includes heparin. For embodiments in which the body fluid sample is blood, the heparin also reduces probability of clotting of blood components after magnetic capture. The bound targets are washed with heparin-containing buffer 1-3 times to remove blood components and to reduce formation of aggregates.
  • Once the target/magnetic particle complexes are isolated, the target may be analyzed by a multitude of existing technologies, such as miniature NMR , Polymerase Chain Reaction (PCR), mass spectrometry, fluorescent labeling and visualization using microscopic observation, fluorescent in situ hybridization (FISH), growth-based antibiotic sensitivity tests, and variety of other methods that may be conducted with purified target without significant contamination from other sample components. In one embodiment, isolated bacteria are lysed with a chaotropic solution, and DNA is bound to DNA extraction resin. After washing of the resin, the bacterial DNA is eluted and used in quantitative RT-PCR to detect the presence of a specific species, and/or, subclasses of bacteria.
  • In another embodiment, captured bacteria is removed from the magnetic particles to which they are bound and the processed sample is mixed with fluorescent labeled antibodies specific to the bacteria or fluorescent Gram stain. After incubation, the reaction mixture is filtered through 0.2 μm to 1.0 μm filter to capture labeled bacteria while allowing majority of free beads and fluorescent labels to pass through the filter. Bacteria is visualized on the filter using microscopic techniques, e.g. direct microscopic observation, laser scanning or other automated methods of image capture. The presence of bacteria is detected through image analysis. After the positive detection by visual techniques, the bacteria can be further characterized using PCR or genomic methods.
  • Detection of bacteria of interest can be performed by use of nucleic acid probes following procedures which are known in the art. Suitable procedures for detection of bacteria using nucleic acid probes are described, for example, in Stackebrandt et al. (U.S. Pat. No. 5,089,386), King et al. (WO 90/08841), Foster et al. (WO 92/15883), and Cossart et al. (WO 89/06699), each of which is hereby incorporated by reference.
  • A suitable nucleic acid probe assay generally includes sample treatment and lysis, hybridization with selected probe(s), hybrid capture, and detection. Lysis of the bacteria is necessary to release the nucleic acid for the probes. The nucleic acid target molecules are released by treatment with any of a number of lysis agents, including alkali (such as NaOH), guanidine salts (such as guanidine thiocyanate), enzymes (such as lysozyme, mutanolysin and proteinase K), and detergents. Lysis of the bacteria, therefore, releases both DNA and RNA, particularly ribosomal RNA and chromosomal DNA both of which can be utilized as the target molecules with appropriate selection of a suitable probe. Use of rRNA as the target molecule(s), may be advantageous because rRNAs constitute a significant component of cellular mass, thereby providing an abundance of target molecules. The use of rRNA probes also enhances specificity for the bacteria of interest, that is, positive detection without undesirable cross-reactivity which can lead to false positives or false detection.
  • Hybridization includes addition of the specific nucleic acid probes. In general, hybridization is the procedure by which two partially or completely complementary nucleic acids are combined, under defined reaction conditions, in an anti-parallel fashion to form specific and stable hydrogen bonds. The selection or stringency of the hybridization/reaction conditions is defined by the length and base composition of the probe/target duplex, as well as by the level and geometry of mis-pairing between the two nucleic acid strands. Stringency is also governed by such reaction parameters as temperature, types and concentrations of denaturing agents present and the type and concentration of ionic species present in the hybridization solution.
  • The hybridization phase of the nucleic acid probe assay is performed with a single selected probe or with a combination of two, three or more probes. Probes are selected having sequences which are homologous to unique nucleic acid sequences of the target organism. In general, a first capture probe is utilized to capture formed hybrid molecules. The hybrid molecule is then detected by use of antibody reaction or by use of a second detector probe which may be labelled with a radioisotope (such as phosphorus-32) or a fluorescent label (such as fluorescein) or chemiluminescent label.
  • Detection of bacteria of interest can also be performed by use of PCR techniques. A suitable PCR technique is described, for example, in Verhoef et al. (WO 92/08805). Such protocols may be applied directly to the bacteria captured on the magnetic beads. The bacteria is combined with a lysis buffer and collected nucleic acid target molecules are then utilized as the template for the PCR reaction.
  • For detection of the selected bacteria by use of antibodies, isolated bacteria are contacted with antibodies specific to the bacteria of interest. As noted above, either polyclonal or monoclonal antibodies can be utilized, but in either case have affinity for the particular bacteria to be detected. These antibodies, will adhere/bind to material from the specific target bacteria. With respect to labeling of the antibodies, these are labeled either directly or indirectly with labels used in other known immunoassays. Direct labels may include fluorescent, chemiluminescent, bioluminescent, radioactive, metallic, biotin or enzymatic molecules. Methods of combining these labels to antibodies or other macromolecules are well known to those in the art. Examples include the methods of Hijmans, W. et al. (1969), Clin. Exp. Immunol. 4, 457-, for fluorescein isothiocyanate, the method of Goding, J. W. (1976), J. Immunol. Meth. 13, 215-, for tetramethylrhodamine isothiocyanate, and the method of Ingrall, E. (1980), Meth. in Enzymol. 70, 419-439 for enzymes.
  • These detector antibodies may also be labeled indirectly. In this case the actual detection molecule is attached to a secondary antibody or other molecule with binding affinity for the anti-bacteria cell surface antibody. If a secondary antibody is used it is preferably a general antibody to a class of antibody (IgG and IgM) from the animal species used to raise the anti-bacteria cell surface antibodies. For example, the second antibody may be conjugated to an enzyme, either alkaline phosphatase or to peroxidase. To detect the label, after the bacteria of interest is contacted with the second antibody and washed, the isolated component of the sample is immersed in a solution containing a chromogenic substrate for either alkaline phosphatase or peroxidase. A chromogenic substrate is a compound that can be cleaved by an enzyme to result in the production of some type of detectable signal which only appears when the substrate is cleaved from the base molecule. The chromogenic substrate is colorless, until it reacts with the enzyme, at which time an intensely colored product is made. Thus, material from the bacteria colonies adhered to the membrane sheet will become an intense blue/purple/black color, or brown/red while material from other colonies will remain colorless. Examples of detection molecules include fluorescent substances, such as 4-methylumbelliferyl phosphate, and chromogenic substances, such as 4-nitrophenylphosphate, 3,3′,5,5′-tetramethylbenzidine and 2,2′-azino-di-[3-ethelbenz-thiazoliane sulfonate (6)]. In addition to alkaline phosphatase and peroxidase, other useful enzymes include □-galactosidase, □-glucuronidase, □-glucosidase, □-glucosidase, □-mannosidase, galactose oxidase, glucose oxidase and hexokinase.
  • Detection of bacteria of interest using NMR may be accomplished as follows. In the use of NMR as a detection methodology, in which a sample is delivered to a detector coil centered in a magnet, the target of interest, such as a magnetically labeled bacterium, may be delivered by a fluid medium, such as a fluid substantially composed of water. In such a case, the magnetically labeled target may go from a region of very low magnetic field to a region of high magnetic field, for example, a field produced by an about 1 to about 2 Tesla magnet. In this manner, the sample may traverse a magnetic gradient, on the way into the magnet and on the way out of the magnet. As may be seen via equations 1 and 2 below, the target may experience a force pulling into the magnet in the direction of sample flow on the way into the magnet, and a force into the magnet in the opposite direction of flow on the way out of the magnet. The target may experience a retaining force trapping the target in the magnet if flow is not sufficient to overcome the gradient force.

  • m dot (del B)=F  Equation 1

  • v t =−F/(6*p*n*r)  Equation 2
  • where n is the viscosity, r is the bead diameter, F is the vector force, B is the vector field, and m is the vector moment of the bead
  • Magnetic fields on a path into a magnet may be non-uniform in the transverse direction with respect to the flow into the magnet. As such, there may be a transverse force that pulls targets to the side of a container or a conduit that provides the sample flow into the magnet. Generally, the time it takes a target to reach the wall of a conduit is associated with the terminal velocity and is lower with increasing viscosity. The terminal velocity is associated with the drag force, which may be indicative of creep flow in certain cases. In general, it may be advantageous to have a high viscosity to provide a higher drag force such that a target will tend to be carried with the fluid flow through the magnet without being trapped in the magnet or against the conduit walls.
  • Newtonian fluids have a flow characteristic in a conduit, such as a round pipe, for example, that is parabolic, such that the flow velocity is zero at the wall, and maximal at the center, and having a parabolic characteristic with radius. The velocity decreases in a direction toward the walls, and it is easier to magnetically trap targets near the walls, either with transverse gradients force on the target toward the conduit wall, or in longitudinal gradients sufficient to prevent target flow in the pipe at any position. In order to provide favorable fluid drag force to keep the samples from being trapped in the conduit, it may be advantageous to have a plug flow condition, wherein the fluid velocity is substantially uniform as a function of radial position in the conduit.
  • When NMR detection is employed in connection with a flowing sample, the detection may be based on a perturbation of the NMR water signal caused by a magnetically labeled target (Sillerud et al., JMR (Journal of Magnetic Resonance), vol. 181, 2006). In such a case, the sample may be excited at time 0, and after some delay, such as about 50 ms or about 100 ms, an acceptable measurement (based on a detected NMR signal) may be produced. Alternatively, such a measurement may be produced immediately after excitation, with the detection continuing for some duration, such as about 50 ms or about 100 ms. It may be advantageous to detect the NMR signal for substantially longer time durations after the excitation.
  • By way of example, the detection of the NMR signal may continue for a period of about 2 seconds in order to record spectral information at high-resolution. In the case of parabolic or Newtonian flow, the perturbation excited at time 0 is typically smeared because the water around the perturbation source travels at different velocity, depending on radial position in the conduit. In addition, spectral information may be lost due to the smearing or mixing effects of the differential motion of the sample fluid during signal detection. When carrying out an NMR detection application involving a flowing fluid sample, it may be advantageous to provide plug-like sample flow to facilitate desirable NMR contrast and/or desirable NMR signal detection.
  • Differential motion within a flowing Newtonian fluid may have deleterious effects in certain situations, such as a situation in which spatially localized NMR detection is desired, as in magnetic resonance imaging. In one example, a magnetic object, such as a magnetically labeled bacterium, is flowed through the NMR detector and its presence and location are detected using MRI techniques. The detection may be possible due to the magnetic field of the magnetic object, since this field perturbs the magnetic field of the fluid in the vicinity of the magnetic object. The detection of the magnetic object is improved if the fluid near the object remains near the object. Under these conditions, the magnetic perturbation may be allowed to act longer on any given volume element of the fluid, and the volume elements of the fluid so affected will remain in close spatial proximity. Such a stronger, more localized magnetic perturbation will be more readily detected using NMR or MRI techniques.
  • If a Newtonian fluid is used to carry the magnetic objects through the detector, the velocity of the fluid volume elements will depend on radial position in the fluid conduit. In such a case, the fluid near a magnetic object will not remain near the magnetic object as the object flows through the detector. The effect of the magnetic perturbation of the object on the surrounding fluid may be smeared out in space, and the strength of the perturbation on any one fluid volume element may be reduced because that element does not stay within range of the perturbation. The weaker, less-well-localized perturbation in the sample fluid may be undetectable using NMR or MRI techniques.
  • Certain liquids, or mixtures of liquids, exhibit non-parabolic flow profiles in circular conduits. Such fluids may exhibit non-Newtonian flow profiles in other conduit shapes. The use of such a fluid may prove advantageous as the detection fluid in an application employing an NMR-based detection device. Any such advantageous effect may be attributable to high viscosity of the fluid, a plug-like flow profile associated with the fluid, and/or other characteristic(s) attributed to the fluid that facilitate detection. As an example, a shear-thinning fluid of high viscosity may exhibit a flow velocity profile that is substantially uniform across the central regions of the conduit cross-section. The velocity profile of such a fluid may transition to a zero or very low value near or at the walls of the conduit, and this transition region may be confined to a very thin layer near the wall.
  • Not all fluids, or all fluid mixtures, are compatible with the NMR detection methodology. In one example, a mixture of glycerol and water can provide high viscosity, but the NMR measurement is degraded because separate NMR signals are detected from the water and glycerol molecules making up the mixture. This can undermine the sensitivity of the NMR detector. In another example, the non-water component of the fluid mixture can be chosen to have no NMR signal, which may be achieved by using a perdeuterated fluid component, for example, or using a perfluorinated fluid component. This approach may suffer from the loss of signal intensity since a portion of the fluid in the detection coil does not produce a signal.
  • Another approach may be to use a secondary fluid component that constitutes only a small fraction of the total fluid mixture. Such a low-concentration secondary fluid component can produce an NMR signal that is of negligible intensity when compared to the signal from the main component of the fluid, which may be water. It may be advantageous to use a low-concentration secondary fluid component that does not produce an NMR signal in the detector. For example, a perfluorinated or perdeuterated secondary fluid component may be used. The fluid mixture used in the NMR detector may include one, two, or more than two secondary components in addition to the main fluid component. The fluid components employed may act in concert to produce the desired fluid flow characteristics, such as high-viscosity and/or plug flow. The fluid components may be useful for providing fluid characteristics that are advantageous for the performance of the NMR detector, for example by providing NMR relaxation times that allow faster operation or higher signal intensities.
  • A non-Newtonian fluid may provide additional advantages for the detection of objects by NMR or MRI techniques. As one example, the objects being detected may all have substantially the same velocity as they go through the detection coil. This characteristic velocity may allow simpler or more robust algorithms for the analysis of the detection data. As another example, the objects being detected may have fixed, known, and uniform velocity. This may prove advantageous in devices where the position of the detected object at later times is needed, such as in a device that has a sequestration chamber or secondary detection chamber down-stream from the NMR or MRI detection coil, for example.
  • In an exemplary embodiment, sample delivery into and out of a 1.7 T cylindrical magnet using a fluid delivery medium containing 0.1% to 0.5% Xanthan gum in water was successfully achieved. Such delivery is suitable to provide substantially plug-like flow, high viscosity, such as from about 10 cP to about 3000 cP, and good NMR contrast in relation to water. Xanthan gum acts as a non-Newtonian fluid, having characteristics of a non-Newtonian fluid that are well know in the art, and does not compromise NMR signal characteristics desirable for good detection in a desirable mode of operation.
  • In certain embodiments, methods of the invention are useful for direct detection of bacteria from blood. Such a process is described here. Sample is collected in sodium heparin tube by venipuncture, acceptable sample volume is about 1 mL to 10 mL. Sample is diluted with binding buffer and superparamagnetic particles having target-specific binding moieties are added to the sample, followed by incubation on a shaking incubator at 37° C. for about 30 min to 120 min. Alternative mixing methods can also be used. In a particular embodiment, sample is pumped through a static mixer, such that reaction buffer and magnetic beads are added to the sample as the sample is pumped through the mixer. This process allows for efficient integration of all components into a single fluidic part, avoids moving parts and separate incubation vessels and reduces incubation time.
  • Capture of the labeled targets allows for the removal of blood components and reduction of sample volume from 30 mL to 5 mL. The capture is performed in a variety of magnet/flow configurations. In certain embodiments, methods include capture in a sample tube on a shaking platform or capture in a flow-through device at flow rate of 5 mL/min, resulting in total capture time of 6 min.
  • After capture, the sample is washed with wash buffer including heparin to remove blood components and free beads. The composition of the wash buffer is optimized to reduce aggregation of free beads, while maintaining the integrity of the bead/target complexes.
  • The detection method is based on a miniature NMR detector tuned to the magnetic resonance of water. When the sample is magnetically homogenous (no bound targets), the NMR signal from water is clearly detectable and strong. The presence of magnetic material in the detector coil disturbs the magnetic field, resulting in reduction in water signal. One of the primary benefits of this detection method is that there is no magnetic background in biological samples which significantly reduces the requirements for stringency of sample processing. In addition, since the detected signal is generated by water, there is a built-in signal amplification which allows for the detection of a single labeled bacterium.
  • This method provides for isolation and detection of as low as or even lower than 1 CFU/ml of bacteria in a blood sample.
  • Methods of the invention may also be combined with other separation and isolation protocols known in the art. Particularly, methods of the invention may be combined with methods shown in co-pending and co-owned U.S. Pat. No. patent application Ser. No. ______, filed ______, entitled Separating Target Analytes Using Alternating Magnetic Fields, and having Attorney Docket No.: NANO-002/00U.S. Pat No. 2,8864/4, the content of which is incorporated by reference herein in its entirety.
  • INCORPORATION BY REFERENCE
  • References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
  • EQUIVALENTS
  • Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
  • EXAMPLES Example 1 Sample
  • Blood samples from healthy volunteers were spiked with clinically relevant concentrations of bacteria (1-10 CFU/mL) including both laboratory strains and clinical isolates of the bacterial species most frequently found in bloodstream infections.
  • Example 2 Antibody Preparation
  • In order to generate polyclonal, pan-Gram-positive bacteria-specific IgG, a goat was immunized by first administering bacterial antigens suspended in complete Freund's adjuvant intra lymph node, followed by subcutaneous injection of bacterial antigens in incomplete Freund's adjuvant in 2 week intervals. The antigens were prepared for antibody production by growing bacteria to exponential phase (OD600=0.4-0.8). Following harvest of the bacteria by centrifugation, the bacteria was inactivated using formalin fixation in 4% formaldehyde for 4 hr at 37° C. After 3 washes of bacteria with PBS (15 min wash, centrifugation for 20 min at 4000 rpm) the antigen concentration was measured using BCA assay and the antigen was used at 1 mg/mL for immunization. In order to generate Gram-positive bacteria-specific IgG, several bacterial species were used for inoculation: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus fecalis.
  • The immune serum was purified using affinity chromatography on a protein G sepharose column (GE Healthcare), and reactivity was determined using ELISA. Antibodies cross-reacting with Gram-negative bacteria and fungi were removed by absorption of purified IgG with formalin-fixed Gram-negative bacteria and fungi. The formalin-fixed organisms were prepared similar to as described above and mixed with IgG. After incubation for 2 hrs at room temperature, the preparation was centrifuged to remove bacteria. Final antibody preparation was clarified by centrifugation and used for the preparation of antigen-specific magnetic beads.
  • Example 3 Preparation of Antigen-Specific Magnetic Beads
  • Superparamagnetic beads were synthesized by encapsulating iron oxide nanoparticles (5-15 nm diameter) in a latex core and labeling with goat IgG. Ferrofluid containing nanoparticles in organic solvent was precipitated with ethanol, nanoparticles were resuspended in aqueous solution of styrene and surfactant Hitenol BC-10, and emulsified using sonication. The mixture was allowed to equilibrate overnight with stirring and filtered through 1.2 and 0.45 μm filters to achieve uniform micelle size. Styrene, acrylic acid and divynilbenzene were added in carbonate buffer at pH 9.6. The polymerization was initiated in a mixture at 70° C. with the addition of K2S2O8 and the reaction was allowed to complete overnight. The synthesized particles were washed 3 times with 0.1% SDS using magnetic capture, filtered through 1.2, 0.8, and 0.45 μm filters and used for antibody conjugation.
  • The production of beads resulted in a distribution of sizes that may be characterized by an average size and a standard deviation. In the case of labeling and extracting of bacteria from blood, the average size for optimal performance was found to be between 100 and 350 nm, for example between 200 nm to 250 nm.
  • The purified IgG were conjugated to prepared beads using standard chemistry. After conjugation, the beads were resuspended in 0.1% BSA which is used to block non-specific binding sites on the bead and to increase the stability of bead preparation.
  • Example 4 Labeling of Rare Cells Using Excess of Magnetic Nanoparticles
  • Bacteria, present in blood during blood-stream infection, were magnetically labeled using the superparamagnetic beads prepared in Example 3 above. The spiked samples as described in Example 1 were diluted 3-fold with a Tris-based binding buffer and target-specific beads, followed by incubation on a shaking platform at 37° C. for up to 2 hr. After incubation, the labeled targets were magnetically separated followed by a wash step designed to remove blood products. See example 5 below.
  • Example 5 Magnetic Capture of Bound Bacteria
  • Blood including the magnetically labeled target bacteria and excess free beads were injected into a flow-through capture cell with a number of strong rare earth bar magnets placed perpendicular to the flow of the sample. With using a flow chamber with flow path cross-section 0.5 mm×20 mm (h×w) and 7 bar NdFeB magnets, a flow rate as high as 5 mL/min was achieved. After flowing the mixture through the channel in the presence of the magnet, a wash solution including heparin was flowed through the channel. The bound targets were washed with heparin-containing buffer one time to remove blood components and to reduce formation of magnetic particle aggregates. In order to effectively wash bound targets, the magnet was removed and captured magnetic material was resuspended in wash buffer, followed by re-application of the magnetic field and capture of the magnetic material in the same flow-through capture cell.
  • Removal of the captured labeled targets was possible after moving magnets away from the capture chamber and eluting with flow of buffer solution.

Claims (22)

1. A method for isolating a target analyte from a body fluid sample, the method comprising the steps of:
introducing magnetic particles comprising a target-specific binding moiety to a body fluid sample in order to create a mixture;
incubating said mixture to allow said particles to bind to a target;
applying a magnetic field to capture target/magnetic particle complexes on a surface; and
washing with a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes.
2. The method of claim 1, wherein said target-specific binding moiety is an antibody.
3. The method of claim 2, wherein said antibody is specific for bacteria.
4. The method of claim 1, wherein said particles are superparamagnetic beads.
5. The method of claim 1, wherein said incubating step comprises incubating said mixture in a buffer that inhibits cell lysis.
6. The method of claim 1, wherein said body fluid is selected from blood, sputum, urine, saliva, sweat, and cerebral spinal fluid.
7. The method of claim 5, wherein said buffer comprises Tris(hydroximethyl)-aminomethane hydrochloride at a concentration of about 75 mM.
8. The method of claim 4, wherein said magnetic particles comprise at least 70% superparamagnetic beads by weight.
9. The method of claim 4, wherein said superparamagnetic beads are from about 100 nm to about 250 nm in diameter.
10. The method of claim 1, further comprising retaining said magnetic particles in a magnetic field during said washing step.
11. The method of claim 1, wherein washing comprises:
removing the magnetic field, thereby re-suspending the target/magnetic particle complexes;
introducing the wash solution;
flowing the re-suspended target/magnetic particle complexes over the surface in the presence of a re-applied magnetic field, thereby re-capturing the target/magnetic particle complexes on the surface.
12. The method of claim 2, wherein said antibody is specific for fungi.
13. The method of claim 3, wherein said bacteria is pathogenic.
14. The method of claim 3, wherein the bacteria is gram positive bacteria.
15. The method of claim 3, wherein the bacteria is gram negative bacteria
16. The method of claim 3, wherein said bacteria is selected from E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof.
17. The method of claim 1, wherein the magnetic particle is an iron containing magnetic particle.
18. The method of claim 17, wherein the magnetic particle comprises iron oxide or iron platinum.
19. A method for isolating a target microorganism from a body fluid sample, the method comprising the steps of:
introducing magnetic particles comprising a target-specific binding moiety to a body fluid sample in order to create mixture;
incubating said mixture to allow said particles to bind to target;
applying a magnetic field to isolate on a surface magnetic particles to which target is bound;
washing with a wash solution that reduces particle aggregation; and
lysing the captured bacteria and extracting DNA for further analysis by PCR, microarray hybridization or sequencing.
20. A method for isolating a target analyte from a body fluid sample, the method comprising the steps of:
introducing magnetic beads comprising 70% by weight superparamagnetic particles and having a target-specific binding moiety to a body fluid sample in order to create mixture;
incubating said mixture to allow said particles to bind to target;
applying a magnetic field to isolate on a surface magnetic particles to which target is bound; and
washing with a wash solution that reduces particle aggregation.
21. A method for isolating a target analyte from a body fluid sample, the method comprising the steps of:
introducing superparamagnetic particles having a diameter from about 100 nm to about 250 nm and comprising a target-specific binding moiety to a body fluid sample in order to create a mixture;
incubating said mixture to allow said particles to bind to a target;
applying a magnetic field to isolate target/magnetic particle complexes on a surface; and
washing with a wash solution that reduces particle aggregation.
22. A method for isolating as low as 1 CFU/ml of bacteria in a blood sample, the method comprising the steps of:
introducing superparamagnetic particles having a diameter from about 100 nm to about 250 nm and comprising a bacteria-specific binding moiety to a body fluid sample in order to create a mixture;
incubating said mixture to allow said particles to bind to bacteria;
applying a magnetic field to isolate bacteria/magnetic particle complexes on a surface; and
washing with a wash solution that reduces particle aggregation, thereby isolating as low as 1 CFU/ml of bacteria in the blood sample.
US12/850,203 2010-04-21 2010-08-04 Isolating a target analyte from a body fluid Pending US20110262989A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US32658810P true 2010-04-21 2010-04-21
US12/850,203 US20110262989A1 (en) 2010-04-21 2010-08-04 Isolating a target analyte from a body fluid

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US12/850,203 US20110262989A1 (en) 2010-04-21 2010-08-04 Isolating a target analyte from a body fluid
JP2013506262A JP5814344B2 (en) 2010-04-21 2011-04-20 Isolation of target analytes from body fluids
PCT/US2011/033184 WO2011133630A1 (en) 2010-04-21 2011-04-20 Isolating a target analyte from a body fluid
CA2796767A CA2796767C (en) 2010-04-21 2011-04-20 Isolating a target analyte from a body fluid
ES11772606.7T ES2656965T3 (en) 2010-04-21 2011-04-20 Isolation of a target analyte from a body fluid
EP11772606.7A EP2561360B9 (en) 2010-04-21 2011-04-20 Isolating a target analyte from a body fluid
US13/720,771 US20130109590A1 (en) 2010-04-21 2012-12-19 Isolating a target analyte from a body fluid
US14/102,861 US20140100136A1 (en) 2010-04-21 2013-12-11 Isolation and characterization of pathogens
US15/869,146 US20180149642A1 (en) 2010-04-21 2018-01-12 Isolating a target analyte from a body fluid

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/720,771 Continuation-In-Part US20130109590A1 (en) 2010-04-21 2012-12-19 Isolating a target analyte from a body fluid
US14/102,861 Continuation-In-Part US20140100136A1 (en) 2010-04-21 2013-12-11 Isolation and characterization of pathogens
US15/869,146 Continuation US20180149642A1 (en) 2010-04-21 2018-01-12 Isolating a target analyte from a body fluid

Publications (1)

Publication Number Publication Date
US20110262989A1 true US20110262989A1 (en) 2011-10-27

Family

ID=44816109

Family Applications (11)

Application Number Title Priority Date Filing Date
US12/850,203 Pending US20110262989A1 (en) 2010-04-21 2010-08-04 Isolating a target analyte from a body fluid
US12/855,147 Active 2032-08-07 US9389225B2 (en) 2010-04-21 2010-08-12 Separating target analytes using alternating magnetic fields
US13/091,518 Abandoned US20110262932A1 (en) 2010-04-21 2011-04-21 Compositions
US13/091,548 Active 2031-11-03 US9671395B2 (en) 2010-04-21 2011-04-21 Analyzing bacteria without culturing
US13/091,527 Abandoned US20110262933A1 (en) 2010-04-21 2011-04-21 Compositions and method for isolating mid-log phase bacteria
US13/091,534 Active 2032-05-11 US9562896B2 (en) 2010-04-21 2011-04-21 Extracting low concentrations of bacteria from a sample
US15/206,751 Pending US20160327550A1 (en) 2010-04-21 2016-07-11 Separating target analytes using alternating magnetic fields
US15/425,539 Pending US20170145406A1 (en) 2010-04-21 2017-02-06 Extracting low concentrations of bacteria from a sample
US15/496,790 Active US9869671B2 (en) 2010-04-21 2017-04-25 Analyzing bacteria without culturing
US15/866,628 Pending US20180136205A1 (en) 2010-04-21 2018-01-10 Analyzing bacteria without culturing
US15/869,146 Pending US20180149642A1 (en) 2010-04-21 2018-01-12 Isolating a target analyte from a body fluid

Family Applications After (10)

Application Number Title Priority Date Filing Date
US12/855,147 Active 2032-08-07 US9389225B2 (en) 2010-04-21 2010-08-12 Separating target analytes using alternating magnetic fields
US13/091,518 Abandoned US20110262932A1 (en) 2010-04-21 2011-04-21 Compositions
US13/091,548 Active 2031-11-03 US9671395B2 (en) 2010-04-21 2011-04-21 Analyzing bacteria without culturing
US13/091,527 Abandoned US20110262933A1 (en) 2010-04-21 2011-04-21 Compositions and method for isolating mid-log phase bacteria
US13/091,534 Active 2032-05-11 US9562896B2 (en) 2010-04-21 2011-04-21 Extracting low concentrations of bacteria from a sample
US15/206,751 Pending US20160327550A1 (en) 2010-04-21 2016-07-11 Separating target analytes using alternating magnetic fields
US15/425,539 Pending US20170145406A1 (en) 2010-04-21 2017-02-06 Extracting low concentrations of bacteria from a sample
US15/496,790 Active US9869671B2 (en) 2010-04-21 2017-04-25 Analyzing bacteria without culturing
US15/866,628 Pending US20180136205A1 (en) 2010-04-21 2018-01-10 Analyzing bacteria without culturing
US15/869,146 Pending US20180149642A1 (en) 2010-04-21 2018-01-12 Isolating a target analyte from a body fluid

Country Status (6)

Country Link
US (11) US20110262989A1 (en)
EP (5) EP3138927A1 (en)
JP (3) JP5814344B2 (en)
CA (4) CA2796897C (en)
ES (2) ES2656965T3 (en)
WO (4) WO2011133630A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262893A1 (en) * 2010-04-21 2011-10-27 Nanomr, Inc. Separating target analytes using alternating magnetic fields
US20130109590A1 (en) * 2010-04-21 2013-05-02 Lisa-Jo Ann CLARIZIA Isolating a target analyte from a body fluid
US9476812B2 (en) 2010-04-21 2016-10-25 Dna Electronics, Inc. Methods for isolating a target analyte from a heterogeneous sample
US9551704B2 (en) 2012-12-19 2017-01-24 Dna Electronics, Inc. Target detection
US9599610B2 (en) 2012-12-19 2017-03-21 Dnae Group Holdings Limited Target capture system
US9696302B2 (en) 2010-04-21 2017-07-04 Dnae Group Holdings Limited Methods for isolating a target analyte from a heterogeneous sample
US9804069B2 (en) 2012-12-19 2017-10-31 Dnae Group Holdings Limited Methods for degrading nucleic acid
US9902949B2 (en) 2012-12-19 2018-02-27 Dnae Group Holdings Limited Methods for universal target capture
US9995742B2 (en) 2012-12-19 2018-06-12 Dnae Group Holdings Limited Sample entry
US10000557B2 (en) 2012-12-19 2018-06-19 Dnae Group Holdings Limited Methods for raising antibodies
US10151749B2 (en) * 2015-08-05 2018-12-11 Alfaisal University Method and kit for the detection of microorganisms
US10350320B2 (en) 2013-01-29 2019-07-16 Children's Medical Center Corporation Magnetic separation using nanoparticles
US10386373B2 (en) 2015-11-11 2019-08-20 Serimmune Inc. Methods and compositions for assessing antibody specificities

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710836B2 (en) 2008-12-10 2014-04-29 Nanomr, Inc. NMR, instrumentation, and flow meter/controller continuously detecting MR signals, from continuously flowing sample material
US20140100136A1 (en) * 2010-04-21 2014-04-10 Nanomr, Inc. Isolation and characterization of pathogens
US9428547B2 (en) 2010-04-21 2016-08-30 Dna Electronics, Inc. Compositions for isolating a target analyte from a heterogeneous sample
GB201100515D0 (en) * 2011-01-13 2011-02-23 Matrix Microscience Ltd Methods of capturing bindable targets from liquids
US9099233B2 (en) * 2011-09-23 2015-08-04 Uchicago Argonne, Llc Interface colloidal robotic manipulator
CN103389241A (en) * 2012-05-10 2013-11-13 中国科学院理化技术研究所 Blood purifying method
KR101523822B1 (en) 2012-11-26 2015-05-28 포항공과대학교 산학협력단 Methods of sensing for food poisoning bacteria using magnetic nano particles and high viscous solution
EP2932289A1 (en) 2012-12-17 2015-10-21 General Electric Company In-vitro magnetic resonance detection of a target substance
US20140170667A1 (en) * 2012-12-19 2014-06-19 Nanomr, Inc. Methods for amplifying nucleic acid from a target
CA2895945A1 (en) * 2012-12-19 2014-06-26 Nanomr, Inc. Target capture system
US20140212990A1 (en) * 2013-01-29 2014-07-31 Bio-Rad Haifa Ltd. Detection assays employing magnetic nanoparticles
US20160296944A1 (en) * 2013-03-15 2016-10-13 Ancera, Inc. Systems and methods for three-dimensional extraction of target particles ferrofluids
JP6252933B2 (en) * 2013-09-17 2017-12-27 学校法人上智学院 Structure and method for collecting and detecting bacteria using the same
US20150119285A1 (en) * 2013-10-28 2015-04-30 Chin-Yih Hong Magnetic-assisted rapid aptamer selection method for generating high affinity dna aptamer
CN104655838A (en) * 2013-11-19 2015-05-27 北京市理化分析测试中心 Method for detecting living bacteria body of staphylococcus aureus in sample
DE102014206444A1 (en) * 2014-04-03 2015-10-08 Siemens Aktiengesellschaft A method for molecular diagnostics for enriching a nucleic acid from a biological sample
CA2997546A1 (en) 2015-09-14 2017-03-23 Medisieve Ltd Magnetic filter apparatus and method
WO2018119367A1 (en) * 2016-12-23 2018-06-28 Quantum Diamond Technologies Inc. Methods and apparatus for magnetic multi-bead assays

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180563A (en) * 1971-12-24 1979-12-25 Institut Pasteur Immunostimulant agent from Salmonella typhimurium or Listeria monocytogenes bacterial cells and pharmaceutical composition
US4434237A (en) * 1982-03-31 1984-02-28 Dinarello Charles A Human leukocytic pyrogen test for the detection of exogenous fever-producing substances
US6495357B1 (en) * 1995-07-14 2002-12-17 Novozyme A/S Lipolytic enzymes
US20070037231A1 (en) * 2005-05-02 2007-02-15 Bioscale, Inc. Methods and apparatus for detecting bacteria using an acoustic device
US20070183935A1 (en) * 2005-11-30 2007-08-09 Micronics, Inc. Microfluidic mixing and analytical apparatus
WO2009072003A2 (en) * 2007-12-07 2009-06-11 Miltenyi Biotec Gmbh Sample processing system and methods
US20100129785A1 (en) * 2008-11-21 2010-05-27 General Electric Company Agents and methods for spectrometric analysis
US8889368B2 (en) * 2004-05-05 2014-11-18 Diagast Use of ferrofluids for phenotyping blood and related applications

Family Cites Families (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018886A (en) 1975-07-01 1977-04-19 General Electric Company Diagnostic method and device employing protein-coated magnetic particles
US3970518A (en) 1975-07-01 1976-07-20 General Electric Company Magnetic separation of biological particles
US4267234A (en) 1978-03-17 1981-05-12 California Institute Of Technology Polyglutaraldehyde synthesis and protein bonding substrates
US4230685A (en) 1979-02-28 1980-10-28 Northwestern University Method of magnetic separation of cells and the like, and microspheres for use therein
US4452773A (en) 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
US4659678A (en) 1982-09-29 1987-04-21 Serono Diagnostics Limited Immunoassay of antigens
FR2537725B1 (en) 1982-12-09 1985-07-12 Pasteur Institut Process for immunobacteriologique of pathogenic bacteria detection in biological environments contaminated
US4695393A (en) 1983-05-12 1987-09-22 Advanced Magnetics Inc. Magnetic particles for use in separations
US4554088A (en) 1983-05-12 1985-11-19 Advanced Magnetics Inc. Magnetic particles for use in separations
US4551435A (en) 1983-08-24 1985-11-05 Immunicon, Inc. Selective removal of immunospecifically recognizable substances from solution
US5242794A (en) 1984-12-13 1993-09-07 Applied Biosystems, Inc. Detection of specific sequences in nucleic acids
US4683202B1 (en) 1985-03-28 1990-11-27 Cetus Corp
US5698271A (en) 1989-08-22 1997-12-16 Immunivest Corporation Methods for the manufacture of magnetically responsive particles
US4795698A (en) 1985-10-04 1989-01-03 Immunicon Corporation Magnetic-polymer particles
US5597531A (en) 1985-10-04 1997-01-28 Immunivest Corporation Resuspendable coated magnetic particles and stable magnetic particle suspensions
US5512332A (en) 1985-10-04 1996-04-30 Immunivest Corporation Process of making resuspendable coated magnetic particles
US5583024A (en) 1985-12-02 1996-12-10 The Regents Of The University Of California Recombinant expression of Coleoptera luciferase
US4683195B1 (en) 1986-01-30 1990-11-27 Cetus Corp
US4925788A (en) 1986-10-24 1990-05-15 Immunicon Corporation Immunoassay system and procedure based on precipitin-like interaction between immune complex and Clq or other non-immunospecific factor
US5136095A (en) 1987-05-19 1992-08-04 Syntex (U.S.A.) Inc. Reversible agglutination mediators
US4901018A (en) 1987-06-01 1990-02-13 Lew Hyok S Nuclear magnetic resonance net organic flowmeter
US5149625A (en) 1987-08-11 1992-09-22 President And Fellows Of Harvard College Multiplex analysis of DNA
US4942124A (en) 1987-08-11 1990-07-17 President And Fellows Of Harvard College Multiplex sequencing
US5089386A (en) 1987-09-11 1992-02-18 Gene-Trak Systems Test for listeria
EP0355147B1 (en) 1988-01-13 1995-04-19 Institut Pasteur Dna probe specific for pathogenic listeria
US4988617A (en) 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
US5057413A (en) 1988-06-13 1991-10-15 Becton, Dickinson And Company Method for discriminating between intact and damaged cells in a sample
US5047321A (en) 1988-06-15 1991-09-10 Becton Dickinson & Co. Method for analysis of cellular components of a fluid
US5108933A (en) 1988-09-16 1992-04-28 Immunicon Corporation Manipulation of colloids for facilitating magnetic separations
JP3015462B2 (en) 1989-02-06 2000-03-06 ジーン‐トラック・システムス Probes for Listeria detection and methods
GB8927744D0 (en) 1989-12-07 1990-02-07 Diatec A S Process and apparatus
DE4002160C2 (en) 1990-01-25 1993-03-11 Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De
US5622853A (en) 1990-05-01 1997-04-22 Becton Dickinson And Company T lymphocyte precursor
US5840580A (en) 1990-05-01 1998-11-24 Becton Dickinson And Company Phenotypic characterization of the hematopoietic stem cell
US5494810A (en) 1990-05-03 1996-02-27 Cornell Research Foundation, Inc. Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease
US5254460A (en) 1990-05-03 1993-10-19 Advanced Magnetics, Inc. Solvent mediated relaxation assay system
US5164297A (en) 1990-05-03 1992-11-17 Advanced Magnetics Inc. Solvent mediated relaxation assay system
US5622831A (en) 1990-09-26 1997-04-22 Immunivest Corporation Methods and devices for manipulation of magnetically collected material
US6013532A (en) 1990-09-26 2000-01-11 Immunivest Corporation Methods for magnetic immobilization and manipulation of cells
US5200084A (en) 1990-09-26 1993-04-06 Immunicon Corporation Apparatus and methods for magnetic separation
NL9002696A (en) 1990-11-15 1992-06-01 U Gene Research Bv A method and kit for the detection of microoerganismen.
US5491068A (en) 1991-02-14 1996-02-13 Vicam, L.P. Assay method for detecting the presence of bacteria
WO1992015883A1 (en) 1991-03-08 1992-09-17 Amoco Corporation Improved assays including colored organic compounds
US5466574A (en) 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
US5795470A (en) 1991-03-25 1998-08-18 Immunivest Corporation Magnetic separation apparatus
US5646001A (en) 1991-03-25 1997-07-08 Immunivest Corporation Affinity-binding separation and release of one or more selected subset of biological entities from a mixed population thereof
US5186827A (en) 1991-03-25 1993-02-16 Immunicon Corporation Apparatus for magnetic separation featuring external magnetic means
US5234816A (en) 1991-07-12 1993-08-10 Becton, Dickinson And Company Method for the classification and monitoring of leukemias
CA2087086A1 (en) 1992-01-22 1993-07-23 Leon Wmm Terstappen Multidimensional cell differential analysis
US6100099A (en) 1994-09-06 2000-08-08 Abbott Laboratories Test strip having a diagonal array of capture spots
US5869252A (en) 1992-03-31 1999-02-09 Abbott Laboratories Method of multiplex ligase chain reaction
US5338687A (en) 1992-09-11 1994-08-16 Lee Lawrence L Detection of biological macromolecules by NMR-sensitive labels
US5342790A (en) 1992-10-30 1994-08-30 Becton Dickinson And Company Apparatus for indirect fluorescent assay of blood samples
DE69426948T2 (en) 1993-02-09 2001-10-11 Becton Dickinson Co Automatic determination of the cell line severe leukemia by flow cytometry
JPH08507148A (en) 1993-02-17 1996-07-30 カーディオヴァスキュラー ダイアグノスティクス,インク. Solid phase chemical cascade immunoassays and affinity assays
PT1038963E (en) * 1993-05-27 2009-10-13 Univ Washington Cyclic gmp-binding, cyclic gmp-specific phosphodiesterase materials and methods
US5445936A (en) * 1993-09-15 1995-08-29 Ciba Corning Diagnostics Corp. Method for non-competitive binding assays
FR2710410B1 (en) 1993-09-20 1995-10-20 Bio Merieux Method and device for the determination of an analyte in a sample.
US6555324B1 (en) 1993-11-04 2003-04-29 Becton Dickinson & Company Method to distinguish hematopoietic progenitor cells
US5541072A (en) 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
WO1995031418A1 (en) 1994-05-17 1995-11-23 Asahi Chemical Company, Limited Glazing layer forming composition for hot coating of oven refractory and method of forming glazing layer
US5607846A (en) 1994-05-17 1997-03-04 Research Foundation Of State University Of New York Vaccine for moraxella catarrhalis
WO1995031481A1 (en) * 1994-05-18 1995-11-23 The Research And Development Institute, Inc. Simple, rapid method for the detection, identification and enumeration of specific viable microorganisms
US5942391A (en) * 1994-06-22 1999-08-24 Mount Sinai School Of Medicine Nucleic acid amplification method: ramification-extension amplification method (RAM)
JP3607320B2 (en) 1994-09-02 2005-01-05 株式会社日立製作所 Recovery method and apparatus for the solid phase in analysis using particulate
US5695934A (en) 1994-10-13 1997-12-09 Lynx Therapeutics, Inc. Massively parallel sequencing of sorted polynucleotides
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5604097A (en) 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
US5654636A (en) 1994-11-14 1997-08-05 The Board Of Trustees Of The University Of Illinois Method and apparatus for NMR spectroscopy of nanoliter volume samples
US5935825A (en) 1994-11-18 1999-08-10 Shimadzu Corporation Process and reagent for amplifying nucleic acid sequences
US6097188A (en) 1995-01-31 2000-08-01 The Board Of Trustees Of The University Of Illinois Microcoil based micro-NMR spectrometer and method
US6884357B2 (en) 1995-02-21 2005-04-26 Iqbal Waheed Siddiqi Apparatus and method for processing magnetic particles
FR2732116B1 (en) 1995-03-21 1997-05-09 Bio Merieux Method and apparatus for the qualitative and / or quantitative detection of an analyte, in particular a bacterium in a sample, magnetically
US6265150B1 (en) 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
US5741714A (en) 1995-07-18 1998-04-21 Immunivest Corporation Detection of bound analyte by magnetic partitioning and masking
US5636400A (en) 1995-08-07 1997-06-10 Young; Keenan L. Automatic infant bottle cleaner
US5660990A (en) 1995-08-18 1997-08-26 Immunivest Corporation Surface immobilization of magnetically collected materials
US6060882A (en) 1995-12-29 2000-05-09 Doty Scientific, Inc. Low-inductance transverse litz foil coils
US5684401A (en) 1996-02-01 1997-11-04 Board Of Trustees Of The University Of Illinois Apparatus and method for compensation of magnetic susceptibility variation in NMR microspectroscopy detection microcoils
JP3749959B2 (en) * 1996-02-26 2006-03-01 株式会社シノテスト Measuring instrument for use in the measurement method and the method of the test substance using magnetic particles
US6660159B1 (en) 1996-06-07 2003-12-09 Immunivest Corporation Magnetic separation apparatus and methods
US6136182A (en) 1996-06-07 2000-10-24 Immunivest Corporation Magnetic devices and sample chambers for examination and manipulation of cells
WO1997046882A1 (en) 1996-06-07 1997-12-11 Immunivest Corporation Magnetic separation employing external and internal gradients
US6890426B2 (en) 1996-06-07 2005-05-10 Immunivest Corporation Magnetic separation apparatus and methods
US6790366B2 (en) 1996-06-07 2004-09-14 Immunivest Corporation Magnetic separation apparatus and methods
US7666308B2 (en) 1996-06-07 2010-02-23 Veridex, Llc. Magnetic separation apparatus and methods
US20030054376A1 (en) 1997-07-07 2003-03-20 Mullis Kary Banks Dual bead assays using cleavable spacers and/or ligation to improve specificity and sensitivity including related methods and apparatus
US6383763B1 (en) * 1996-07-26 2002-05-07 Case Western Reserve University Detection of mycobacteria
US6361944B1 (en) 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6228624B1 (en) 1996-08-02 2001-05-08 Immunivest Corporation Method to select and transfect cell subpopulations
WO1998020148A1 (en) * 1996-11-04 1998-05-14 The Regents Of The University Of California Method for detection of pathogens in food
US5768089A (en) 1997-01-10 1998-06-16 Varian Associates, Inc. Variable external capacitor for NMR probe
US6146838A (en) 1997-03-18 2000-11-14 Igen International, Inc. Detecting water-borne parasites using electrochemiluminescence
DE69818650T2 (en) 1997-03-25 2004-08-12 Immunivest Corp., Wilmington Device and method for einfnag and analysis of particulate-units
US6348318B1 (en) 1997-04-04 2002-02-19 Biosite Diagnostics Methods for concentrating ligands using magnetic particles
US6587706B1 (en) 1997-08-22 2003-07-01 Image-Guided Drug Delivery Systems, Inc. Microcoil device with a forward field-of-view for large gain magnetic resonance imaging
EP1139110B1 (en) 2000-03-21 2009-11-11 Image-Guided Neurologics, Inc. Device with field-modifying structure
JPH11169194A (en) * 1997-12-09 1999-06-29 Kikkoman Corp Immunological bioluminescent reagent for detection of microorganism and immunological detection of microorganism
DE19755782A1 (en) 1997-12-16 1999-06-17 Philips Patentverwaltung Magnetic resonance device
DE19800471A1 (en) 1998-01-09 1999-07-15 Philips Patentverwaltung An MR method with located in the examination zone micro-coils
US20010018192A1 (en) 1998-02-12 2001-08-30 Terstappen Leon W.M.M. Labeled cells for use as an internal functional control in rare cell detection assays
JP2002503814A (en) 1998-02-12 2002-02-05 イムニベスト・コーポレイション Methods and reagents for the rapid and efficient isolation of circulating cancer cells
US7282350B2 (en) 1998-02-12 2007-10-16 Immunivest Corporation Labeled cell sets for use as functional controls in rare cell detection assays
US20020172987A1 (en) 1998-02-12 2002-11-21 Terstappen Leon W.M.M. Methods and reagents for the rapid and efficient isolation of circulating cancer cells
US6036857A (en) * 1998-02-20 2000-03-14 Florida State University Research Foundation, Inc. Apparatus for continuous magnetic separation of components from a mixture
NZ508172A (en) * 1998-04-15 2003-08-29 Univ Utah State Real time detection of antigens
CA2331947A1 (en) 1998-05-15 1999-11-25 Erez Nevo Method and apparatus for generating controlled torques on objects particularly objects inside a living body
US6194900B1 (en) 1998-06-19 2001-02-27 Agilent Technologies, Inc. Integrated miniaturized device for processing and NMR detection of liquid phase samples
US6361749B1 (en) 1998-08-18 2002-03-26 Immunivest Corporation Apparatus and methods for magnetic separation
US6469636B1 (en) 1998-12-02 2002-10-22 Halliburton Energy Services, Inc. High-power well logging method and apparatus
US6551843B1 (en) 1999-01-29 2003-04-22 Immunivest Corporation Methods for enhancing binding interactions between members of specific binding pairs
AU3007300A (en) 1999-02-26 2000-09-14 Purdue Research Foundation Nuclear magnetic resonance analysis of multiple samples
US7078224B1 (en) 1999-05-14 2006-07-18 Promega Corporation Cell concentration and lysate clearance using paramagnetic particles
US6326787B1 (en) 1999-06-10 2001-12-04 Sandia National Laboratories NMR of thin layers using a meanderline surface coil
US7523385B2 (en) 1999-06-22 2009-04-21 Starcite, Inc. System and method for enterprise event marketing and management automation
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6623982B1 (en) 1999-07-12 2003-09-23 Immunivest Corporation Increased separation efficiency via controlled aggregation of magnetic nanoparticles
EP1210358A4 (en) 1999-08-13 2005-01-05 Univ Brandeis Detection of nucleic acids
AU6779700A (en) 1999-08-17 2001-03-13 Luminex Corporation Microparticles with multiple fluorescent signals and methods of using same
CA2382221A1 (en) * 1999-08-20 2001-03-01 H. Shaw Warren Outer membrane protein a, peptidoglycan-associated lipoprotein, and murein lipoprotein as therapeutic targets for treatment of sepsis
US6242915B1 (en) 1999-08-27 2001-06-05 General Electric Company Field-frequency lock system for magnetic resonance system
US6898430B1 (en) 1999-10-27 2005-05-24 Telecordia Technologies, Inc. Methods for establishing reliable communications between two points in a mobile wireless network
US6307372B1 (en) 1999-11-02 2001-10-23 Glaxo Wellcome, Inc. Methods for high throughput chemical screening using magnetic resonance imaging
DE19956595A1 (en) 1999-11-25 2001-05-31 Philips Corp Intellectual Pty Nuclear magnetic resonance method for excitation of nuclear magnetization in only a limited area around a micro-coil that can be inserted with an instrument into an object under examination
CA2393369A1 (en) 1999-12-03 2001-06-07 Zymogenetics, Inc. Human cytokine receptor
US6514415B2 (en) 2000-01-31 2003-02-04 Dexter Magnetic Technologies, Inc. Method and apparatus for magnetic separation of particles
AU5092501A (en) 2000-03-21 2001-10-03 Telcordia Tech Inc Combined adaptive spatio-temporal processing and multi-user detection for cdma wireless systems
US6487437B1 (en) 2000-03-21 2002-11-26 Image-Guided Neurologies, Inc. Device for high gain and uniformly localized magnetic resonance imaging
US7200430B2 (en) 2001-03-29 2007-04-03 The Regents Of The University Of California Localized two-dimensional shift correlated MR spectroscopy of human brain
US6845262B2 (en) 2000-03-29 2005-01-18 The Brigham And Women's Hospital, Inc. Low-field MRI
EP1297350A1 (en) 2000-03-30 2003-04-02 Philips Electronics N.V. Magnetic resonance imaging utilizing a microcoil
US6456072B1 (en) 2000-05-26 2002-09-24 The Board Of Trustees Of The University Of Illinois Method and apparatus for simultaneous acquisition of high resolution NMR spectra from multiple samples
US6788061B1 (en) 2000-08-01 2004-09-07 The Board Of Trustees Of The University Of Illinois Microcoil based micro-NMR spectrometer and method
US6610499B1 (en) * 2000-08-31 2003-08-26 The Regents Of The University Of California Capillary array and related methods
US20020164659A1 (en) 2000-11-30 2002-11-07 Rao Galla Chandra Analytical methods and compositions
WO2002056049A2 (en) 2000-12-01 2002-07-18 Jim Norcross Microfluidic device with multiple microcoil nmr detectors
AU2016702A (en) 2000-12-01 2002-06-11 Protasis Corp Steep solvent gradient nmr analysis method
AU2002327163B2 (en) 2001-01-25 2007-10-11 Thaco Research, Inc. Rapid methods for microbial typing and enumeration
US6867021B2 (en) 2001-02-20 2005-03-15 Board Of Trustees Of Michigan State University Multiplex RT-PCR/PCR for simultaneous detection of bovine coronavirus, bovine rotavirus, Cryptosporidium parvum, and Escherichia coli
JP4167491B2 (en) * 2001-03-09 2008-10-15 株式会社三菱化学ヤトロン Whole blood measurement method
US7297518B2 (en) 2001-03-12 2007-11-20 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
US6404193B1 (en) 2001-04-09 2002-06-11 Waters Investments Limited Solvent susceptibility compensation for coupled LC-NMR
US6582938B1 (en) 2001-05-11 2003-06-24 Affymetrix, Inc. Amplification of nucleic acids
US20030092029A1 (en) 2001-06-06 2003-05-15 Lee Josephson Magneitc-nanoparticle conjugates and methods of use
US6905885B2 (en) 2001-06-12 2005-06-14 The Regents Of The University Of California Portable pathogen detection system
US20020192676A1 (en) * 2001-06-18 2002-12-19 Madonna Angelo J. Method for determining if a type of bacteria is present in a mixture
EP1407051B1 (en) 2001-07-19 2006-04-12 Infectio Diagnostic (I.D.I.) INC. Universal method and composition for the rapid lysis of cells for the release of nucleic acids and their detection
DE10151779A1 (en) 2001-10-19 2003-05-08 Philips Corp Intellectual Pty A method of locating an object in an MR apparatus, as well as catheters and MR apparatus for implementing the method
US7148683B2 (en) 2001-10-25 2006-12-12 Intematix Corporation Detection with evanescent wave probe
MXPA04004056A (en) * 2001-10-29 2004-09-10 Univ Mcgill Acyclic linker-containing oligonucleotides and uses thereof.
US7764821B2 (en) 2002-02-14 2010-07-27 Veridex, Llc Methods and algorithms for cell enumeration in a low-cost cytometer
US8189899B2 (en) 2004-07-30 2012-05-29 Veridex, Llc Methods and algorithms for cell enumeration in a low-cost cytometer
EP1474772A4 (en) 2002-02-14 2005-11-09 Immunivest Corp Methods and algorithms for cell enumeration in a low-cost cytometer
US6798200B2 (en) 2002-06-03 2004-09-28 Long-Sheng Fan Batch-fabricated gradient and RF coils for submicrometer resolution magnetic resonance imaging and manipulation
US20040018611A1 (en) 2002-07-23 2004-01-29 Ward Michael Dennis Microfluidic devices for high gradient magnetic separation
US7096057B2 (en) 2002-08-02 2006-08-22 Barnes Jewish Hospital Method and apparatus for intracorporeal medical imaging using a self-tuned coil
JP4212331B2 (en) 2002-10-24 2009-01-21 株式会社日立メディコ Magnetic resonance imaging apparatus and a superconducting magnet apparatus
US7011794B2 (en) 2002-11-25 2006-03-14 Immunivest Corporation Upon a cartridge for containing a specimen sample for optical analysis
US7338637B2 (en) 2003-01-31 2008-03-04 Hewlett-Packard Development Company, L.P. Microfluidic device with thin-film electronic devices
US6876200B2 (en) 2003-03-31 2005-04-05 Varian, Inc. NMR probe having an inner quadrature detection coil combined with a spiral wound outer coil for irradiation
GB0313259D0 (en) 2003-06-09 2003-07-16 Consejo Superior Investigacion Magnetic nanoparticles
US7282180B2 (en) 2003-07-02 2007-10-16 Immunivest Corporation Devices and methods to image objects
US7422296B2 (en) 2003-07-07 2008-09-09 Ws Packaging Group, Inc. Sheet dispenser display strip
WO2005010494A2 (en) * 2003-07-21 2005-02-03 Jie Wu Multiplexed analyte detection
GB0319671D0 (en) 2003-08-21 2003-09-24 Secr Defence Apparatus for processing a fluid sample
EP1664819B1 (en) 2003-09-12 2017-07-05 Philips Intellectual Property & Standards GmbH Process for locating a medical instrument with a microcoil
US20050069900A1 (en) 2003-09-25 2005-03-31 Cytyc Corporation Analyte sample detection
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
US20050181353A1 (en) 2004-02-17 2005-08-18 Rao Galla C. Stabilization of cells and biological specimens for analysis
US7863012B2 (en) 2004-02-17 2011-01-04 Veridex, Llc Analysis of circulating tumor cells, fragments, and debris
MXPA06010789A (en) 2004-03-23 2007-05-15 Commw Scient Ind Res Org Polymer beads incorporating iron oxide particles.
JP2005315677A (en) * 2004-04-28 2005-11-10 Canon Inc Detector and detection method
CA2505464C (en) 2004-04-28 2013-12-10 Sunnybrook And Women's College Health Sciences Centre Catheter tracking with phase information
WO2005118925A2 (en) * 2004-06-01 2005-12-15 Massachusetts Institute Of Technology Field-responsive superparamagnetic composite nanofibers and methods of use thereof
US7202667B2 (en) 2004-06-07 2007-04-10 California Institute Of Technology Anisotropic nanoparticle amplification of magnetic resonance signals
US7271592B1 (en) 2004-06-14 2007-09-18 U.S. Department Of Energy Toroid cavity/coil NMR multi-detector
AU2005329068A1 (en) 2005-07-29 2006-09-21 Kim Laboratories, Inc. Ultrasensitive sensor and rapid detection of analytes
US7403008B2 (en) 2004-08-02 2008-07-22 Cornell Research Foundation, Inc. Electron spin resonance microscope for imaging with micron resolution
US7901950B2 (en) 2005-08-12 2011-03-08 Veridex, Llc Method for assessing disease states by profile analysis of isolated circulating endothelial cells
EP1794581A2 (en) * 2004-09-15 2007-06-13 Microchip Biotechnologies, Inc. Microfluidic devices
US7699979B2 (en) 2005-01-07 2010-04-20 Board Of Trustees Of The University Of Arkansas Separation system and efficient capture of contaminants using magnetic nanoparticles
US20110086338A1 (en) 2005-02-18 2011-04-14 Jeeseong Hwang Bacteriophage/Quantum-Dot (Phage-QD) Nanocomplex to Detect Biological Targets in Clinical and Environmental Isolates
JP4791867B2 (en) * 2005-03-31 2011-10-12 日立マクセル株式会社 Detection method of test substance using precious metal coated magnetic particles
EP1924704B1 (en) 2005-08-02 2011-05-25 Rubicon Genomics, Inc. Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
US20070037173A1 (en) 2005-08-12 2007-02-15 Allard Jeffrey W Circulating tumor cells (CTC's): early assessment of time to progression, survival and response to therapy in metastatic cancer patients
CA2620861C (en) 2005-08-31 2016-07-05 T2 Biosystems, Inc. Nmr device for detection of analytes
JP2007097551A (en) * 2005-10-07 2007-04-19 Daikin Ind Ltd Method for detecting microorganism
US20070166835A1 (en) 2005-12-23 2007-07-19 Perkinelmer Las, Inc. Multiplex assays using magnetic and non-magnetic particles
US7274191B2 (en) 2005-12-29 2007-09-25 Intel Corporation Integrated on-chip NMR and ESR device and method for making and using the same
US7345479B2 (en) 2005-12-29 2008-03-18 Intel Corporation Portable NMR device and method for making and using the same
US7537897B2 (en) 2006-01-23 2009-05-26 Population Genetics Technologies, Ltd. Molecular counting
US7544473B2 (en) 2006-01-23 2009-06-09 Population Genetics Technologies Ltd. Nucleic acid analysis using sequence tokens
US20090227044A1 (en) * 2006-01-26 2009-09-10 Dosi Dosev Microchannel Magneto-Immunoassay
AU2007217765A1 (en) 2006-02-21 2007-08-30 Nanogen, Inc. Methods and compositions for analyte detection
JP5254949B2 (en) 2006-03-15 2013-08-07 マイクロニクス, インコーポレイテッド Integrated nucleic acid assay
US8945946B2 (en) 2006-03-31 2015-02-03 Canon Kabushiki Kaisha Sensor element and detection method of magnetic particles using this element, and detection method of target substance
US7282337B1 (en) 2006-04-14 2007-10-16 Helicos Biosciences Corporation Methods for increasing accuracy of nucleic acid sequencing
WO2007123342A1 (en) 2006-04-20 2007-11-01 Korea Institute Of Constructuion Technology The linear infiltration system functioning as a storm sewer
JP5164971B2 (en) 2006-04-21 2013-03-21 ピープルバイオ,アイ エヌ シーPeoplebio,Inc. A method for differential detection of multimers from monomers of multimer-forming polypeptides using three-dimensional interactions
CA2652404A1 (en) 2006-05-18 2007-11-29 Veterinarmedizinische Universitat Wien Detection method for influenza viruses
EP2035540A2 (en) 2006-06-15 2009-03-18 Stratagene System for isolating biomolecules from a sample
CA2661210A1 (en) * 2006-08-17 2008-02-21 The Uab Research Foundation Diagnosing pneumococcal pneumonia
US8339135B2 (en) 2006-08-21 2012-12-25 Stc.Unm Biological detector and method
US7405567B2 (en) 2006-08-21 2008-07-29 Abqmr, Inc. Tuning low-inductance coils at low frequencies
US20080081330A1 (en) 2006-09-28 2008-04-03 Helicos Biosciences Corporation Method and devices for analyzing small RNA molecules
CA2669045A1 (en) 2006-11-08 2008-05-15 T2 Biosystems, Inc. Nmr systems for in vivo detection of analytes
US20080113350A1 (en) 2006-11-09 2008-05-15 Terstappen Leon W M M Blood test to monitor the genetic changes of progressive cancer using immunomagnetic enrichment and fluorescence in situ hybridization (FISH)
EP2677309B9 (en) 2006-12-14 2014-11-19 Life Technologies Corporation Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8354514B2 (en) 2007-01-12 2013-01-15 Lawrence Livermore National Security, Llc Multiplex detection of agricultural pathogens
JP4458103B2 (en) 2007-02-27 2010-04-28 Tdk株式会社 A magnetic sensor, a magnetic direction sensor, the magnetic field detection method and magnetic azimuth detecting method
US8652480B2 (en) 2007-03-23 2014-02-18 Wyeth Llc Shortened purification process for the production of capsular Streptococcus pneumoniae polysaccharides
US20080241909A1 (en) * 2007-03-27 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Microfluidic chips for pathogen detection
JP2010522888A (en) 2007-03-27 2010-07-08 アブクマー インコーポレイテッド System and method for detecting the labeled entity by using a micro coil magnetic mri
WO2009008925A2 (en) * 2007-04-05 2009-01-15 The Regents Of The University Of California A particle-based microfluidic device for providing high magnetic field gradients
CA2685229A1 (en) 2007-04-26 2008-11-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Health Process for isolating microorganisms from samples and system, apparatus and compositions therefor
US8067938B2 (en) 2007-05-03 2011-11-29 Abqmr, Inc. Microcoil NMR detectors
EP1992938A1 (en) 2007-05-14 2008-11-19 Philips Electronics N.V. Improved methods of SE(R)RS detection using multiple labels
WO2009048673A2 (en) 2007-07-26 2009-04-16 University Of Chicago Stochastic confinement to detect, manipulate, and utilize molecules and organisms
US20090061456A1 (en) 2007-08-30 2009-03-05 Allard William J Method for predicting progression free and overall survival at each follow-up time point during therapy of metastatic breast cancer patients using circulating tumor cells
US7828968B2 (en) 2007-08-30 2010-11-09 Veridex, Llc Method and apparatus for imaging target components in a biological sample using permanent magnets
US8110101B2 (en) 2007-08-30 2012-02-07 Veridex, Llc Method and apparatus for imaging target components in a biological sample using permanent magnets
US8709727B2 (en) 2007-09-17 2014-04-29 Mattias Strömberg Magnetic detection of small entities
WO2009045551A1 (en) 2007-10-04 2009-04-09 The General Hospital Corporation Miniaturized magnetic resonance systems and methods
JP5539889B2 (en) 2007-10-23 2014-07-02 アブクマー インコーポレイテッド Micro coil magnetic resonance detector
BRPI0819854B1 (en) 2007-11-27 2019-06-04