US20110239868A1 - Frozen mixing system and container restraint - Google Patents

Frozen mixing system and container restraint Download PDF

Info

Publication number
US20110239868A1
US20110239868A1 US13/159,325 US201113159325A US2011239868A1 US 20110239868 A1 US20110239868 A1 US 20110239868A1 US 201113159325 A US201113159325 A US 201113159325A US 2011239868 A1 US2011239868 A1 US 2011239868A1
Authority
US
United States
Prior art keywords
cup
rotation
vanes
container
food product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/159,325
Inventor
James J. Farrell
Clayton Gardner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FReal Foods LLC
Original Assignee
FReal Foods LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FReal Foods LLC filed Critical FReal Foods LLC
Priority to US13/159,325 priority Critical patent/US20110239868A1/en
Publication of US20110239868A1 publication Critical patent/US20110239868A1/en
Assigned to FREAL! FOODS LLC reassignment FREAL! FOODS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARRELL, JAMES J
Assigned to RICH PRODUCTS CORPORATION reassignment RICH PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F'REAL FOODS, LLC
Assigned to F'REAL FOODS, LLC reassignment F'REAL FOODS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RICH PRODUCTS CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • B65D1/265Drinking cups
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/04Production of frozen sweets, e.g. ice-cream
    • A23G9/08Batch production
    • A23G9/12Batch production using means for stirring the contents in a non-moving container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2303/00Orienting or positioning means for containers

Definitions

  • the present invention relates generally to the field of food and beverage containers and specifically to containers for holding foods and/or beverages during blending, whipping, stirring, etc.
  • a serving cup containing the frozen block is positioned in a cup holder which forms a part of the frozen drink machine.
  • a rotating blade is lowered into the cup and bores through the frozen substance in the cup, grinding it into small frozen particles. Milk, water, or another liquid is added to the cup and is blended into the frozen substance by the rotating blade.
  • the rotating blade also whips air into the frozen particle mixture in order to give the milkshake or frozen drink its proper volume, texture, and flavor delivery.
  • a container for a frozen drink (or other food or beverage) which may be supported in a cup holder while the ingredients the container inside are processed, and which is restrained against rotation which would otherwise be caused by the action of the rotating blade or other processing tool. It is further desirable to provide a container having an anti-rotation feature and which container is further suitable for serving directly to customers after its removal from the cup holder.
  • Each ridge on the cup bottom includes a sloped side wall that acts as a self aligning mechanism, so that if a cup is placed onto the support and the sloped side wall contacts the corresponding rib before the cup is fully seated, the angled wall causes the cup to twist slightly so that the cup slides into a fully engaged position within the anti-rotation pattern in the cup holder.
  • the number of anti-rotation elements on the cup support (not shown) was reduced to two members 48 or ribs spaced 180° as shown in FIG. 1 , while the anti-rotation pattern 102 on the cup 100 remained at six ridges 104 .
  • the pair of the ridges that are engaged by the ribs are likewise spaced 180°, giving balanced, symmetrical, restriction against rotation while imparting evenly balanced loads to the cup's anti-rotation pattern. Distributing/balancing the loads prevents damage to the cup during use and allows thinner walls to be used in the anti-rotation features of the cup, thus minimizing resin costs in the manufacture of the cup.
  • the prior art cup of FIG. 1 will seat against the members 48 in a manner that prevents the cup from advancing fully onto the cup support.
  • the risk that the cup will be improperly positioned in this way is greatest in situations where consumers place the cup in the cup holder for themselves in a self-serve setting. Because these consumers are not aware of the need to be sure the cup fully advances into the cups support, it is important that the possibility of the lack of such full advancement be eliminated. To this end, the applicant has developed a new anti-rotation arrangement that promotes more consistent seating of the cup within the cup support.
  • FIG. 1 is a perspective view showing a bottom portion of a cup with a prior art anti-rotation feature. The cup is shown above a portion of a cup support having anti-rotation members engageable with the anti-rotation feature of the cup.
  • FIG. 2 is a perspective view of a cup showing a first embodiment of a new anti-rotation pattern.
  • FIG. 3A is a perspective view of the bottom of the cup of FIG. 2 .
  • FIG. 3B is a perspective view of an alternative bottom for the cup of FIG. 2 .
  • FIG. 4 is a perspective view of the cup of FIG. 2 , showing the cup interior.
  • FIG. 5 is a perspective view of an exemplary cup holder.
  • FIG. 6 is a perspective view showing the interior of the cup holder of FIG. 5 .
  • FIG. 7 is a perspective view of the bracket and anti-rotation members of the cup holder of FIG. 5 .
  • FIG. 8 is similar to FIG. 5 and shows the cup positioned in the cup holder.
  • FIG. 9 is a bottom perspective view showing the cup in the cup holder.
  • FIG. 10 is similar to FIG. 9 , but shows only the bracket of the cup holder.
  • FIGS. 2-4 show perspective views of an embodiment of a container 10 .
  • Container 10 (which will also be referred to as a cup) includes a cup wall 12 that defines an interior 14 ( FIG. 4 ), and a cup bottom 16 .
  • the container 10 contains food or beverage ingredients that are to be processed inside the cup using a rotating blade or other boring and/or blending device.
  • Container 10 is provided with an anti-rotation mechanism designed to engage the container within a cup holder associated with the boring/blending device so as to prevent rotation of the cup during processing.
  • Anti-rotation pattern 18 is formed in the cup bottom 16 .
  • Pattern 18 includes outwardly protruding vanes 26 positioned to engage with a corresponding anti-rotation feature (described below) in a corresponding cup holder.
  • a corresponding anti-rotation feature described below
  • FIG. 3A three vanes are shown spaced 120° apart, however in other embodiments different numbers of vanes, including one or five vanes (see e.g. the 5-vane embodiment of FIG. 3B ) might be used.
  • the vanes are arranged such that no two vanes are separated by 180°.
  • the cup bottom includes a circular center section 20 and a beveled circumferential section 22 extending between center section 20 and an outer rim 23 .
  • the cup bottom 16 further includes a recessed center portion 24 (as viewed from the cup interior) centered in the circular center section 20 .
  • Vanes 26 radiate from the recessed center portion 24 and extend downwardly from the bottom surface of center section 20 . Trailing edges 28 extend from each arcuate ridge 26 into the beveled circumferential section 22 .
  • Each vane 26 preferably includes a substantially triangular cross-section, formed by first and second side walls 30 , 32 which meet along ridge 33 .
  • the wall 30 is vertical or near vertical relative to center section 20
  • the surface wall 32 is angled or curved in a counterclockwise direction as viewed from the bottom of the cup as in FIG. 3A .
  • the lower edge of each of the walls 30 , 32 (i.e. along the center surface 20 ) curves slightly in a counterclockwise direction.
  • the walls 30 , 32 are joined at an angle of approximately 45°.
  • the portion of the vane 26 facing the cup interior 14 forms a hollow groove 34 as shown in FIG. 4 .
  • the triangular configuration of the anti-rotation pattern enhances the rigidity of the cup during use by creating a triangular structural element and by allowing the cup's ingredients to freeze down into the groove 34 created by the angled/curved wall 32 to form a frozen, rigid backing for the anti-rotation pattern.
  • the other side wall 30 is approximately straight up and down so that as it resists rotation by pressing against a corresponding cup holder member, there is no upward force created, as would be the case if it were angled like the other side. In fact, by bringing this face 30 past vertical, a downward force can be generated which helps to keep the cup seated on the cup holder as torque is applied.
  • shapes other than a triangular cross-section such as a rectangular cross-section, would also be quite effective in preventing rotation and (as with the triangular cross-section) would have the benefit of added strength due to their wide cross-section at the point where they meet the cup bottom. They would also posses the advantage of allowing the cup's ingredients to freeze down into the rectangular or other shaped groove created by the cross-section to form a frozen, rigid backing for the anti-rotation pattern.
  • FIG. 5 illustrates one type of cup holder 40 that might be used to support the cup 10 when used in frozen drink machine of the type described in the above-referenced prior patents, or in the frozen drink blender available from f'REAL! Foods, LLC, Orinda, Calif.
  • the frozen drink machine includes a rotatable blade on a shaft that is extendable into the cup 10 . During use, the rotatable blade is lowered into the cup 10 , where it grinds the frozen ingredients in the container and where it blends the ground frozen ingredients with an added liquid.
  • the cup holder 40 has an interior 42 for receiving the container 10 and a connector 44 that couples the cup holder to the blender or other type of food/beverage processor.
  • a bracket 46 having anti-rotation members such as fins 48 , each of which is laterally offset from the longitudinal axis of the holder 40 (and thus the cup 10 ).
  • each fin 48 is provided with a wall 50 shaped to seat against wall 30 of one of the vanes 26 on the cup bottom.
  • Wall 50 forms a ridge 52 at its intersection with a second, more curved, wall 54 .
  • This embodiment uses a pair of fins positioned 180° apart from one another as shown.
  • the container is inserted into the interior of the cup holder as shown in FIG. 8 .
  • one of the fins 48 moves into contact with the wall 30 of one of the vanes sufficient to prevent rotation of the cup within the holder during processing (e.g. grinding and blending) using a rotating blade in the cup. Since the fins 48 are separated by 180°, but no two vanes are separated by 180°, anti-rotational contact (i.e.
  • the anti-rotation features within the holder 40 are modified to eliminate one of the fins 48 on the bracket 46 , leaving just a single fin (and thus a single anti-rotational contact) laterally offset from the center of the bracket 46 .
  • This holder is suitable for use with a cup having any number of vanes (whether even or odd), including vanes that are spaced 180° apart.

Abstract

A container for containing food and/or beverage ingredients is described. The container is of a type which may be supported in a support while the ingredients inside the container are processed, such as by a rotating blade or other mechanism. The container includes anti-rotation elements positionable in anti-rotational contact with a corresponding protruding portion in a container support in a manner which restricts rotational movement of the vessel relative to the container support.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of and claims benefit of U.S. patent application Ser. No. 12/265,397 filed on Nov. 5, 2008, which is hereby incorporated by reference in the entirety.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to the field of food and beverage containers and specifically to containers for holding foods and/or beverages during blending, whipping, stirring, etc.
  • BACKGROUND
    • Preparation of certain foods and beverages can involve blending, whipping, stirring, etc. the food or beverage using a rotary blade or mixer.
  • Methods and systems for making frozen drinks are described in patent numbers U.S. Pat. No. 5,803,377, U.S. Pat. No. 5,962,060, U.S. Pat. No. 6,326,047, U.S. Pat. No. 6,465,034, U.S. Pat. No. 6,474,862, U.S. Pat. No. 6,527,207 and U.S. Pat. No. 7,144,150, which are commonly-owned with the present application and which are incorporated herein by reference. These patents describes an apparatus which allows milkshakes and other frozen drinks to be quickly made by breaking up pre-frozen blocks of ingredients into small frozen particles using a rotating blade, and blending them with an added liquid also using the rotating blade. The ingredients to be frozen into frozen blocks are pre-mixed in liquid form, placed into serving cups which are the same serving cups in which the finished milkshake or frozen drinks are to be served, and then frozen into blocks conforming to the insides of the serving cups and stored.
  • According to the prior patents, when a milkshake or other frozen drink is to be made, a serving cup containing the frozen block is positioned in a cup holder which forms a part of the frozen drink machine. A rotating blade is lowered into the cup and bores through the frozen substance in the cup, grinding it into small frozen particles. Milk, water, or another liquid is added to the cup and is blended into the frozen substance by the rotating blade. The rotating blade also whips air into the frozen particle mixture in order to give the milkshake or frozen drink its proper volume, texture, and flavor delivery.
  • In this and other contexts, it is desirable to provide a container for a frozen drink (or other food or beverage) which may be supported in a cup holder while the ingredients the container inside are processed, and which is restrained against rotation which would otherwise be caused by the action of the rotating blade or other processing tool. It is further desirable to provide a container having an anti-rotation feature and which container is further suitable for serving directly to customers after its removal from the cup holder.
  • Various solutions are disclosed in U.S. Pat. No.6041961 (691 patent), which is also commonly owned with the present application and incorporated herein by reference. In one of the illustrated embodiments, that patent shows a cup bottom having an anti-rotation pattern extending from its lower surface. The patent shows in FIGS. 1 and 2 a pattern formed of six arcuate ridges radiating from a center portion of the cup bottom. The patent shows corresponding anti-rotation features, shown in FIG. 5 as a pattern of six radiating ribs, on the support upon which the cup sits during processing of the beverage within the cup. Because of the six-ridge/six-rib patterns, the illustrated embodiment creates six areas of contact between the anti-rotation pattern on the cup bottom and the anti-rotation features of the support. Each ridge on the cup bottom includes a sloped side wall that acts as a self aligning mechanism, so that if a cup is placed onto the support and the sloped side wall contacts the corresponding rib before the cup is fully seated, the angled wall causes the cup to twist slightly so that the cup slides into a fully engaged position within the anti-rotation pattern in the cup holder.
  • In a further modification put into commercial use, the number of anti-rotation elements on the cup support (not shown) was reduced to two members 48 or ribs spaced 180° as shown in FIG. 1, while the anti-rotation pattern 102 on the cup 100 remained at six ridges 104. Obviously, given the 180° spacing between the ribs, the pair of the ridges that are engaged by the ribs are likewise spaced 180°, giving balanced, symmetrical, restriction against rotation while imparting evenly balanced loads to the cup's anti-rotation pattern. Distributing/balancing the loads prevents damage to the cup during use and allows thinner walls to be used in the anti-rotation features of the cup, thus minimizing resin costs in the manufacture of the cup.
  • On occasion, the prior art cup of FIG. 1 will seat against the members 48 in a manner that prevents the cup from advancing fully onto the cup support. This positions the cup higher on/in the cup support than is intended, causing the interior of the cup bottom to be damaged by the mixing element processing the contents of the cup. The risk that the cup will be improperly positioned in this way is greatest in situations where consumers place the cup in the cup holder for themselves in a self-serve setting. Because these consumers are not aware of the need to be sure the cup fully advances into the cups support, it is important that the possibility of the lack of such full advancement be eliminated. To this end, the applicant has developed a new anti-rotation arrangement that promotes more consistent seating of the cup within the cup support.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view showing a bottom portion of a cup with a prior art anti-rotation feature. The cup is shown above a portion of a cup support having anti-rotation members engageable with the anti-rotation feature of the cup.
  • FIG. 2 is a perspective view of a cup showing a first embodiment of a new anti-rotation pattern.
  • FIG. 3A is a perspective view of the bottom of the cup of FIG. 2.
  • FIG. 3B is a perspective view of an alternative bottom for the cup of FIG. 2.
  • FIG. 4 is a perspective view of the cup of FIG. 2, showing the cup interior.
  • FIG. 5 is a perspective view of an exemplary cup holder.
  • FIG. 6 is a perspective view showing the interior of the cup holder of FIG. 5.
  • FIG. 7 is a perspective view of the bracket and anti-rotation members of the cup holder of FIG. 5.
  • FIG. 8 is similar to FIG. 5 and shows the cup positioned in the cup holder.
  • FIG. 9 is a bottom perspective view showing the cup in the cup holder.
  • FIG. 10 is similar to FIG. 9, but shows only the bracket of the cup holder.
  • DETAILED DESCRIPTION
  • FIGS. 2-4 show perspective views of an embodiment of a container 10. Container 10 (which will also be referred to as a cup) includes a cup wall 12 that defines an interior 14 (FIG. 4), and a cup bottom 16. During use, the container 10 contains food or beverage ingredients that are to be processed inside the cup using a rotating blade or other boring and/or blending device. Container 10 is provided with an anti-rotation mechanism designed to engage the container within a cup holder associated with the boring/blending device so as to prevent rotation of the cup during processing.
  • Anti-rotation pattern 18 is formed in the cup bottom 16. Pattern 18 includes outwardly protruding vanes 26 positioned to engage with a corresponding anti-rotation feature (described below) in a corresponding cup holder. In the FIG. 3A embodiment, three vanes are shown spaced 120° apart, however in other embodiments different numbers of vanes, including one or five vanes (see e.g. the 5-vane embodiment of FIG. 3B) might be used. Preferably, however, the vanes are arranged such that no two vanes are separated by 180°.
  • Referring to FIG. 3A, the cup bottom includes a circular center section 20 and a beveled circumferential section 22 extending between center section 20 and an outer rim 23. The cup bottom 16 further includes a recessed center portion 24 (as viewed from the cup interior) centered in the circular center section 20.
  • Vanes 26 radiate from the recessed center portion 24 and extend downwardly from the bottom surface of center section 20. Trailing edges 28 extend from each arcuate ridge 26 into the beveled circumferential section 22. Each vane 26 preferably includes a substantially triangular cross-section, formed by first and second side walls 30, 32 which meet along ridge 33. In the illustrated embodiment, the wall 30 is vertical or near vertical relative to center section 20, and the surface wall 32 is angled or curved in a counterclockwise direction as viewed from the bottom of the cup as in FIG. 3A. As is also visible in FIG. 3A, the lower edge of each of the walls 30, 32 (i.e. along the center surface 20) curves slightly in a counterclockwise direction. In a preferred embodiment of the container, the walls 30, 32 are joined at an angle of approximately 45°. The portion of the vane 26 facing the cup interior 14 forms a hollow groove 34 as shown in FIG. 4.
  • The triangular configuration of the anti-rotation pattern enhances the rigidity of the cup during use by creating a triangular structural element and by allowing the cup's ingredients to freeze down into the groove 34 created by the angled/curved wall 32 to form a frozen, rigid backing for the anti-rotation pattern. The other side wall 30 is approximately straight up and down so that as it resists rotation by pressing against a corresponding cup holder member, there is no upward force created, as would be the case if it were angled like the other side. In fact, by bringing this face 30 past vertical, a downward force can be generated which helps to keep the cup seated on the cup holder as torque is applied.
  • It should be noted that shapes other than a triangular cross-section, such as a rectangular cross-section, would also be quite effective in preventing rotation and (as with the triangular cross-section) would have the benefit of added strength due to their wide cross-section at the point where they meet the cup bottom. They would also posses the advantage of allowing the cup's ingredients to freeze down into the rectangular or other shaped groove created by the cross-section to form a frozen, rigid backing for the anti-rotation pattern.
  • FIG. 5 illustrates one type of cup holder 40 that might be used to support the cup 10 when used in frozen drink machine of the type described in the above-referenced prior patents, or in the frozen drink blender available from f'REAL! Foods, LLC, Orinda, Calif. As discussed in the prior patents, the frozen drink machine includes a rotatable blade on a shaft that is extendable into the cup 10. During use, the rotatable blade is lowered into the cup 10, where it grinds the frozen ingredients in the container and where it blends the ground frozen ingredients with an added liquid.
  • The cup holder 40 has an interior 42 for receiving the container 10 and a connector 44 that couples the cup holder to the blender or other type of food/beverage processor. Referring to FIG. 6, disposed within the interior 42 is a bracket 46 having anti-rotation members such as fins 48, each of which is laterally offset from the longitudinal axis of the holder 40 (and thus the cup 10). As best shown in FIG. 7, each fin 48 is provided with a wall 50 shaped to seat against wall 30 of one of the vanes 26 on the cup bottom. Wall 50 forms a ridge 52 at its intersection with a second, more curved, wall 54. This embodiment uses a pair of fins positioned 180° apart from one another as shown.
  • During use of container 10 with the cup holder 40 of a corresponding machine, the container is inserted into the interior of the cup holder as shown in FIG. 8. As the container 10 moves into the holder 40, one of the fins 48 moves into contact with the wall 30 of one of the vanes sufficient to prevent rotation of the cup within the holder during processing (e.g. grinding and blending) using a rotating blade in the cup. Since the fins 48 are separated by 180°, but no two vanes are separated by 180°, anti-rotational contact (i.e. contact that will restrain the cup against rotation during processing of the cup contents using a grinding, boring and/or mixing element) occurs only between a single one of the vanes and a single one of the fins, giving asymmetrical anti-rotational contact between the cup and the cup holder.
  • In an alternate embodiment of a holder 40, the anti-rotation features within the holder 40 are modified to eliminate one of the fins 48 on the bracket 46, leaving just a single fin (and thus a single anti-rotational contact) laterally offset from the center of the bracket 46. This holder is suitable for use with a cup having any number of vanes (whether even or odd), including vanes that are spaced 180° apart.
  • It should be recognized that a number of variations of the above-identified embodiments will be obvious to one of ordinary skill in the art in view of the foregoing description. Accordingly, the invention is not to be limited by those specific embodiments and methods of the present invention shown and described herein. Rather, the scope of the invention is to be defined by the following claims and their equivalents.
  • Any and all patents and patent applications referred to herein, including for purposes of priority, are incorporated herein by reference for all purposes.

Claims (13)

1. An anti-rotation system comprising:
a container support having a single anti-rotation element; and
a container receivable by the support, the container having an open top, a side wall and a bottom wall defining a vessel, the bottom wall including an anti-rotation pattern comprising at least three radially extending anti-rotation elements positionable in anti-rotational contact with the anti-rotation element on the support, wherein the anti-rotation elements are laterally offset from the longitudinal axis of the container when the container is positioned on the support.
2. An anti-rotation system comprising:
a container support having at least two anti-rotation elements offset from each other by a first number of degrees; and
a container receivable by the support, the container having a side wall and a bottom wall defining a vessel with an open top, the bottom wall including an anti-rotation pattern comprising at least two radially extending anti-rotation elements positionable in anti-rotational contact with the anti-rotation element on the support, wherein no two of the anti-rotation elements are offset from one another by an angle of the first number of degrees.
3. The anti-rotation system of claim 2, wherein the anti-rotation pattern includes an odd number of anti-rotation elements.
4. The anti-rotation system of claim 3, wherein the anti-rotation pattern includes only three anti-rotation elements.
5. The anti-rotation system of claim 3, wherein the anti-rotation pattern includes only five anti-rotation elements.
6. A system for providing a pre packaged food product to be prepared by a consumer, the system comprising:
a cup having an open top, a sidewall, and a bottom;
a group of vanes formed within the bottom of the cup; and
a mixing machine comprising a mixing blade and a cup holder that comprises two or more fins radiating from a central point,
the group of vanes arranged to extend between the fins of the cup holder such that only one vane of the group of vanes of the cup may seat against and contact only one fin of the two or more fins of the cup holder when the cup is inserted into the cup holder.
7. A system for providing a pre packaged food product to be prepared by a consumer, the system comprising:
a cup comprising a cup wall that defines an interior and a cup bottom, the cup having an opening through which a blade may pass to prepare a food product;
a food product in a frozen state within the interior of the cup;
an anti rotation mechanism formed within the cup bottom, the anti rotation mechanism comprising a plurality of vanes radiating from a central location;
a food preparation machine comprising:
a cup holder having a plurality of ridges extending radially from a central location; and
a rotating blade that enters the cup to blend the frozen food product, wherein the blade creates a torque upon the cup, and wherein the rotation of the blade causes a single vane of the anti rotation mechanism to contact a single ridge of the plurality of ridges of the cup holder.
8. The system of claim 7, wherein the vanes of the anti rotation mechanism are spaced approximately 120 degrees apart.
9. The system of claim 7, wherein the ridges of the cup holder are spaced approximately 180 degrees apart.
10. The system of claim 9, wherein no two of the vanes are spaced 180 degrees apart.
11. The system of claim 7, wherein the vanes of the cup provided allow no more than 65 degrees of rotation before a vane of the cup makes contact with a ridge of the cup holder.
12. A system for providing a food product and rotationally restraining a cup containing the product against a torque generated by a food preparation device used to prepare the food product, the system comprising:
a cup comprising a cup wall that defines an interior and a cup bottom, the cup having an opening through which a blade may pass to prepare the food product;
a food product in a frozen state within the interior of the cup;
a food preparation machine comprising a cup holder having a plurality of ridges extending radially from a central location and a rotating blade that enters the cup to blend the frozen food product, wherein the blade creates a torque upon the cup; and
an anti rotation mechanism formed within the cup bottom, the anti rotation mechanism configured to mate with the cup holder of the food preparation device, the anti rotation mechanism comprising:
a first structural element having a first pattern and formed in the cup bottom of the cup wall to engage the container product within a cup holder associated with the food preparation device so as to prevent rotation of the cup during processing;
a second structural element within a volume formed by the first pattern and comprised of the frozen food or beverage material within the interior,
the first pattern comprising a plurality of vanes, the plurality of vanes comprising a greater number of vanes than the number of ridges of the plurality of ridges of the cup holder, the first pattern arranged such that the rotation of the blade causes a single vane of the anti rotation mechanism to contact a single ridge of the plurality of ridges of the cup holder.
13. A system for providing a food product, comprising:
a cup comprising a cup wall that defines an interior and a cup bottom, the cup having an opening through which a blade may pass to prepare a food product within the cup;
a food product in a frozen state within the interior of the cup;
an anti rotation mechanism formed within the cup bottom, the anti rotation mechanism, the anti rotation mechanism comprising a first plurality of vanes radiating from a central location; and
a food preparation device comprising a cup holder including a second plurality of ridges radiating from a central location, the second plurality of ridges configured to sit between the vanes of the first plurality, the first and second pluralities arranged to allow no more than 65 degrees of rotation of the cup before a vane of the first plurality is rotated into a ridge of the second plurality, and thereafter to prevent rotation of the cup.
US13/159,325 2008-11-05 2011-06-13 Frozen mixing system and container restraint Abandoned US20110239868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/159,325 US20110239868A1 (en) 2008-11-05 2011-06-13 Frozen mixing system and container restraint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/265,397 US8336731B2 (en) 2008-11-05 2008-11-05 Method and apparatus for rotationally restraining a mixing container
US13/159,325 US20110239868A1 (en) 2008-11-05 2011-06-13 Frozen mixing system and container restraint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/265,397 Division US8336731B2 (en) 2008-11-05 2008-11-05 Method and apparatus for rotationally restraining a mixing container

Publications (1)

Publication Number Publication Date
US20110239868A1 true US20110239868A1 (en) 2011-10-06

Family

ID=42130174

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/265,397 Active 2030-02-05 US8336731B2 (en) 2008-11-05 2008-11-05 Method and apparatus for rotationally restraining a mixing container
US13/159,322 Abandoned US20110242931A1 (en) 2008-11-05 2011-06-13 Rotational restraint methodology in a frozen mixing system and container
US13/159,325 Abandoned US20110239868A1 (en) 2008-11-05 2011-06-13 Frozen mixing system and container restraint

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/265,397 Active 2030-02-05 US8336731B2 (en) 2008-11-05 2008-11-05 Method and apparatus for rotationally restraining a mixing container
US13/159,322 Abandoned US20110242931A1 (en) 2008-11-05 2011-06-13 Rotational restraint methodology in a frozen mixing system and container

Country Status (6)

Country Link
US (3) US8336731B2 (en)
EP (1) EP2342138B8 (en)
AU (1) AU2009313638B2 (en)
CA (1) CA2736153C (en)
ES (1) ES2496691T3 (en)
WO (1) WO2010053925A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907319B2 (en) 2015-03-13 2018-03-06 Steak 'n Shake Enterprises, Inc. Dual-axis rotational mixer for food products
US10076124B2 (en) 2015-03-13 2018-09-18 Steak 'n Shake Enterprises, Inc. Rapid-agitation mixer for food products

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046893A1 (en) 2009-10-16 2011-04-21 F'real Foods, L.L.C. Commercial frozen food preparation apparatus electronics
US9386882B2 (en) 2012-06-26 2016-07-12 F'real Foods, Llc Compact blender for frozen beverages
EP3936015A1 (en) 2012-06-26 2022-01-12 F'Real Foods, LLC Blender with elevator assembly and removable spindle
WO2014004744A2 (en) * 2012-06-26 2014-01-03 F'real Foods, Llc Blender with elevator assembly and removable spindle
US9420917B2 (en) 2012-06-26 2016-08-23 F'real Foods, Llc Method for blending food or beverages
US10299628B2 (en) 2015-02-04 2019-05-28 F'real Foods, Llc Blender with removable spindle and monitored reservoir
US10358284B2 (en) 2016-06-16 2019-07-23 Sigma Phase, Corp. System for providing a single serving of a frozen confection
USD807691S1 (en) 2016-10-18 2018-01-16 F'real Foods, Llc Blender
US10898031B2 (en) 2016-11-16 2021-01-26 F'real Foods Llc Modular blender with improved water heating and light beam detection
CN111615491A (en) * 2017-12-17 2020-09-01 艾德闻帝创新有限公司 Small container-based food mixing and dispensing system and related methods
US10612835B2 (en) 2018-08-17 2020-04-07 Sigma Phase, Corp. Rapidly cooling food and drinks
US11470855B2 (en) 2018-08-17 2022-10-18 Coldsnap, Corp. Providing single servings of cooled foods and drinks
US10543978B1 (en) 2018-08-17 2020-01-28 Sigma Phase, Corp. Rapidly cooling food and drinks
US11337438B2 (en) 2020-01-15 2022-05-24 Coldsnap, Corp. Rapidly cooling food and drinks
TW202202790A (en) 2020-06-01 2022-01-16 美商寇德斯納普公司 Refrigeration systems for rapidly cooling food and drinks
WO2022170323A1 (en) 2021-02-02 2022-08-11 Coldsnap, Corp. Filling aluminum cans aseptically
USD1019255S1 (en) 2022-09-30 2024-03-26 Sharkninja Operating Llc Housing of a micro puree machine
USD1020383S1 (en) 2022-09-30 2024-04-02 Sharkninja Operating Llc Bowl of a micro puree machine

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA804966A (en) 1969-01-28 E. Johnson Roland Nestable cup construction
US1313830A (en) 1919-08-19 Ciiabence minsk
US37046A (en) 1862-12-02 Improvement in drip-pots for refining sugar
US496674A (en) 1893-05-02 John theodore urbach
US934537A (en) 1909-01-23 1909-09-21 Adolphus Marian Johnson Churn-operating mechanism.
US1663822A (en) * 1925-08-26 1928-03-27 William G Walker Fruit jar or container
US1592788A (en) 1926-01-15 1926-07-13 Supervielle Pablo Sanitary drink mixer
US2026240A (en) 1933-08-03 1935-12-31 Albert G Mccaleb Drink mixer
US2072691A (en) 1933-12-26 1937-03-02 Hobart Mfg Co Aerating apparatus
US2115809A (en) 1934-05-16 1938-05-03 Goldman Bronislaw Means for automatically moving a rotating blade in axial direction
GB492940A (en) 1937-11-29 1938-09-29 Werd Worth Turnbull An improved ice cream cone
US2123496A (en) 1937-12-15 1938-07-12 George L Briggs Drink mixer
US2440425A (en) 1944-09-23 1948-04-27 Joseph B Williams Fruit and vegetable juice extractor
US2462497A (en) 1948-01-29 1949-02-22 Maryland Baking Company Inc Ice-cream cup
GB733645A (en) 1952-07-23 1955-07-13 Lester Plastics Ltd Improvements in or relating to beakers and like receptacles
US2701131A (en) 1952-08-01 1955-02-01 Arthur J Love Paint mixer
US2898094A (en) 1956-01-16 1959-08-04 Union Machine Company Paint mixer
US2967433A (en) 1957-02-15 1961-01-10 Edwin D Phillips Apparatus for supporting and facilitating the handling of work tools
US2941885A (en) 1957-02-18 1960-06-21 Barnard E Tomlinson Milkshake art
US3171635A (en) 1961-10-16 1965-03-02 Barrett Haentjens & Company Jet flow agitator
US3154123A (en) 1963-04-02 1964-10-27 Barnard E Tomlinson Frozen material shaving and mixing apparatus
US3295997A (en) 1963-12-19 1967-01-03 Northwest Historical Metals In Milk shake machine
US3362575A (en) 1964-10-01 1968-01-09 Union Carbide Corp Plastic container for materials in bulk
US3250422A (en) * 1965-02-23 1966-05-10 Robert K Parish Cup and tray set
US3503757A (en) 1966-03-29 1970-03-31 Maryland Cup Corp Method of producing a gasified frozen confection
US3514080A (en) 1968-08-16 1970-05-26 Int Patent Dev Corp Rotary and reciprocating mixer
US3738619A (en) 1969-05-08 1973-06-12 Tiger Vacuum Bottle Ind Co Ltd Method and device for preparing homemade ice cream
US3653575A (en) 1970-07-13 1972-04-04 Fabri Kal Corp Holder and cup
BE791808A (en) 1971-11-23 1973-05-23 Hoechst Ag MIXER FOR VERY VISCOUS LIQUIDS
US3934725A (en) 1972-03-13 1976-01-27 Illinois Tool Works Inc. Nestable article
US3814360A (en) * 1972-06-23 1974-06-04 Gen Signal Corp Bowl supporting turntable for kitchen mixer
US3973693A (en) 1974-03-12 1976-08-10 Plastona (John Waddington) Limited Containers for containing carbonated beverages
GB1508574A (en) 1974-06-29 1978-04-26 Plastona Waddington Ltd John Containers thermo-formed in plastics material
US4169681A (en) 1974-11-06 1979-10-02 Nihon Senshoku Kikai Kabushiki Kaisha Liquid stirring apparatus
US4175670A (en) * 1978-03-22 1979-11-27 Reynolds Metals Company Container construction
US4233325A (en) 1979-09-13 1980-11-11 International Flavors & Fragrances Inc. Ice cream package including compartment for heating syrup
US4297379A (en) 1980-03-27 1981-10-27 General Foods Corporation Frozen aerated ready-to-eat gelatin composition
US4346815A (en) 1980-11-05 1982-08-31 Seligco Food Corporation Frozen food container
NZ200043A (en) 1981-04-15 1986-01-24 W Maurer Producing soft ice-cream by fragmenting frozen block under gas-pressure
US4358298A (en) 1981-09-10 1982-11-09 Ratcliff Elmer G Motorized gas trap
US4388356A (en) 1981-11-16 1983-06-14 The Goodyear Tire & Rubber Company Heat setting a thermoformed PET article utilizing a male plug as a constraint
US4434186A (en) 1982-04-19 1984-02-28 The Pillsbury Company Stable aerated frozen food product
US4431682A (en) 1982-06-15 1984-02-14 General Foods Corporation Frozen aerated creamy frosting and method therefore
EP0098963B1 (en) 1982-06-25 1986-01-02 AG Ernest Fischer's Söhne Internal mixer
IT8320690V0 (en) 1983-02-04 1983-02-04 I P E Nuova Bialetti Ind Prodo HOME-MADE ICE CREAM MAKER.
US4549811A (en) 1983-05-26 1985-10-29 Schiffner Robert E Mixing bowl splatter guard
US4542035A (en) 1984-03-16 1985-09-17 The Pillsbury Company Stable aerated frozen dessert with multivalent cation electrolyte
US4577975A (en) * 1984-05-09 1986-03-25 Carl Mccrory Enterprises, Inc. Mixing and blending apparatus
JPS6149275U (en) 1984-09-05 1986-04-02
US4830868A (en) 1984-12-13 1989-05-16 Olympus Industries, Inc. Fruit shake and method of making the same
US4609561A (en) 1984-12-13 1986-09-02 Olympus Industries, Inc. Frozen aerated fruit juice dessert
CH666991A5 (en) 1986-05-16 1988-09-15 Jacobs Suchard Ag AERATED FOOD PRODUCT BASED ON FRESH MILK AND PROCESS FOR ITS PREPARATION.
US4740088A (en) 1986-11-03 1988-04-26 Kelly Jr James J Safety and sanitary system improvements for frozen confections blending machines
US5000974A (en) 1986-11-12 1991-03-19 International Flavors & Fragrances, Inc. Process of the preparation of fruit, vegetable or spicy aerated foods
US4708487A (en) 1987-10-17 1987-11-24 Robert Marshall Space saver blender
US4821906A (en) 1988-01-29 1989-04-18 Christopher Clark Ice cream cone guard and the like
US5150967A (en) 1988-07-18 1992-09-29 Jim L. Neilson Milkshake machine
US4988529A (en) 1989-03-24 1991-01-29 Nissei Kabushiki Kaisha Milk shake and manufacturing method thereof
GB8923909D0 (en) 1989-10-24 1989-12-13 Metal Box Plc Containers
DE3935548A1 (en) 1989-10-25 1991-05-02 Ee Fu Ye Simple container for hot or cold foodstuffs - can be kept hot and has polyethylene body and cover with projecting edge which is hot pressed onto body
US5112626A (en) 1990-12-31 1992-05-12 The Pillsbury Company Aerated frozen dessert compositions and products
US5465891A (en) 1991-05-22 1995-11-14 Aladdin Industries, Inc. Beverage container holder
US5186350A (en) 1991-06-24 1993-02-16 Mcbride Larry D Insulated beverage container holder
US5178351A (en) 1992-01-28 1993-01-12 Giant Factories Inc. Insulating support base for a cylindrical electric hot water tank
NO940868L (en) 1993-03-29 1994-09-30 Bfe Ltd Method and apparatus for bread baking
US5328263A (en) 1993-04-05 1994-07-12 Neilson Jim L Apparatus for mixing ingredients in a receptacle
US5439289A (en) 1993-04-05 1995-08-08 Neilson; Jim L. Apparatus for mixing ingredients in a receptacle
DE59408851D1 (en) 1993-06-07 1999-12-02 Buechi Labortechnik Ag Flawil Device and method for comminuting and mixing material
DE4417357C2 (en) 1994-05-18 2003-10-30 Buehler Ag Process and device for cleaning pasta presses
US5474206A (en) 1994-07-05 1995-12-12 Herring, Sr.; James R. Culinary assembly with an interlocking bowl and base
US5503283A (en) * 1994-11-14 1996-04-02 Graham Packaging Corporation Blow-molded container base structure
US5653157A (en) 1996-08-08 1997-08-05 Miller; Eric R. Flavor-injected blending apparatus
US5669288A (en) 1996-03-29 1997-09-23 Lyco Manufacturing, Inc. Rotating drum food processor with cleaning spray accessible panels
US5599103A (en) 1996-05-10 1997-02-04 Linscott; William D. Milkshake mixer blade
US5962060A (en) 1996-05-17 1999-10-05 f'Real| Foods, LLC Method for making frozen drinks
US6326047B1 (en) 1997-05-30 2001-12-04 Stevens-Lee Company Apparatus and method for making frozen drinks
DE19750813C2 (en) 1997-11-17 2002-06-13 Braun Gmbh Tool for stirring or chopping food, especially hand blenders
US6041961A (en) 1998-05-14 2000-03-28 F'real! Foods, Llc Cup with anti-rotation mechanism
JP4500442B2 (en) 1998-05-14 2010-07-14 スティーブンズ−リー カンパニー Method for cutting material in a container
US6071006A (en) 1998-09-02 2000-06-06 Hochstein; Peter A. Container for delivering a beverage to be mixed
GB9901105D0 (en) 1999-01-20 1999-03-10 S & W Process Eng Ltd Mixer
JP2002541882A (en) 1999-02-26 2002-12-10 マクギル テクノロジー リミテッド Food mixing equipment
US20030205148A1 (en) * 2000-01-10 2003-11-06 Rubin Stuart A. Anti-rotational cup holder
US6378723B1 (en) * 2000-02-05 2002-04-30 J. P. Casey Container having bottom lug for radial positioning and bottom mold therefor
CA2314657A1 (en) * 2000-07-26 2002-01-26 Paul Joseph Taillefer Beverage container holder adaptor
US6634517B2 (en) * 2001-09-17 2003-10-21 Crown Cork & Seal Technologies Corporation Base for plastic container
US7144150B2 (en) 2002-11-15 2006-12-05 F'real Foods L.L.C. Rinseable splash shield and method of use
US7351385B1 (en) 2003-12-17 2008-04-01 Clearline Systems, Inc. System for enabling landfill disposal of kitchen waste oil/grease
US8276505B2 (en) 2004-02-18 2012-10-02 David Benjamin Buehler Food preparation system
US20050254341A1 (en) 2004-05-17 2005-11-17 Gerling Christian A Food and drink blender
AR052440A1 (en) 2004-12-23 2007-03-21 Tarvis Technology Ltd A CONTAINER
US7845845B1 (en) * 2005-07-06 2010-12-07 Kelly Dwight E Vessel with securing device
US20070292578A1 (en) * 2006-06-19 2007-12-20 Robert Joseph Baschnagel Personal drink blender system with a single use ribbed interlocking drink container
US7473026B2 (en) 2007-04-09 2009-01-06 Site-B Company Method for cleaning a rotary mixing device with a cleaning shield
EP2194824B2 (en) 2007-08-29 2016-02-10 Nestec S.A. Dispensing device for preparing and dispensing food and/or nutritional composition
NZ561934A (en) 2007-09-25 2009-04-30 Electrical Control Systems Ltd Portable in-place cleaning ring
NZ561933A (en) 2007-09-25 2009-04-30 Electrical Control Systems Ltd Automated in-place cleaning unit
US20090291174A1 (en) 2008-03-13 2009-11-26 Portage Plastics Corporation High pressure pasteurizable/ultra-high pressure sterilizable food processing container and method
WO2010064042A2 (en) 2008-12-02 2010-06-10 Mcgill Technology Limited Blended beverages

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907319B2 (en) 2015-03-13 2018-03-06 Steak 'n Shake Enterprises, Inc. Dual-axis rotational mixer for food products
US10076124B2 (en) 2015-03-13 2018-09-18 Steak 'n Shake Enterprises, Inc. Rapid-agitation mixer for food products

Also Published As

Publication number Publication date
WO2010053925A1 (en) 2010-05-14
EP2342138A4 (en) 2012-03-07
US8336731B2 (en) 2012-12-25
EP2342138B8 (en) 2022-07-20
AU2009313638B2 (en) 2015-12-03
US20110242931A1 (en) 2011-10-06
US20100108696A1 (en) 2010-05-06
ES2496691T3 (en) 2014-09-19
EP2342138B1 (en) 2014-07-02
EP2342138A1 (en) 2011-07-13
CA2736153C (en) 2013-12-31
CA2736153A1 (en) 2010-05-14
AU2009313638A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
EP2342138B1 (en) Apparatus for rotationally restraining a mixing container
US6041961A (en) Cup with anti-rotation mechanism
US20220193625A1 (en) Whipping blade
US6935767B2 (en) Stir stick assembly for blender apparatus
US6431744B1 (en) Blender hopper
US9420915B2 (en) Blending jar with ridges
EP3192415B1 (en) Container and blade arrangement for food preparation appliance
ES2390581T3 (en) Departure for a beverage dispenser
US20130223183A1 (en) Torque limiting disposable agitator for a food mixer
JP6642956B2 (en) Disposable container hybrid apparatus and method
JP6169163B2 (en) Mixing device for frothing beverages
ES2461345T3 (en) Drink blender
MXPA06001472A (en) Blender jar.
US7823817B1 (en) Desktop electric stirrer
US20030205148A1 (en) Anti-rotational cup holder
US20170027187A1 (en) Rigid agitator for blender system
US20080106970A1 (en) Agitator for a food mixing machine
WO2001052994A1 (en) Anti-rotational cup holder
WO2020003466A1 (en) Apparatus for producing hot or frozen or ice beverages
TW201347711A (en) Mixing device for frothing beverages
NZ598788B (en) Torque limiting disposable agitator for a food mixer

Legal Events

Date Code Title Description
AS Assignment

Owner name: FREAL| FOODS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FARRELL, JAMES J;REEL/FRAME:028948/0396

Effective date: 20081107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: RICH PRODUCTS CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F'REAL FOODS, LLC;REEL/FRAME:037802/0590

Effective date: 20121211

Owner name: F'REAL FOODS, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RICH PRODUCTS CORPORATION;REEL/FRAME:037803/0099

Effective date: 20160125