US20110202194A1 - Sub-metering hardware for measuring energy data of an energy consuming device - Google Patents

Sub-metering hardware for measuring energy data of an energy consuming device Download PDF

Info

Publication number
US20110202194A1
US20110202194A1 US12/853,342 US85334210A US2011202194A1 US 20110202194 A1 US20110202194 A1 US 20110202194A1 US 85334210 A US85334210 A US 85334210A US 2011202194 A1 US2011202194 A1 US 2011202194A1
Authority
US
United States
Prior art keywords
power
energy consuming
heg
energy
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/853,342
Inventor
Henry Kobraei
John Besore
Robert Bultman
Timothy Worthington
Michael F. Finch
Jeff Drake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/853,342 priority Critical patent/US20110202194A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WORTHINGTON, TIMOTHY, BESORE, JOHN, BULTMAN, ROBERT, DRAKE, JEFF, FINCH, MICHAEL F., KOBRAEI, HENRY
Priority to AU2011205065A priority patent/AU2011205065A1/en
Priority to CA2747459A priority patent/CA2747459A1/en
Priority to EP11175691A priority patent/EP2418462A1/en
Priority to CN2011102577429A priority patent/CN102435870A/en
Publication of US20110202194A1 publication Critical patent/US20110202194A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building

Definitions

  • the following disclosure relates to energy management, and more particularly to energy management of household consumer appliances, as well as other energy consuming devices and/or systems found in the home.
  • the present disclosure finds particular application to a device which controls operation of consumer appliances, as well as other energy consuming devices and/or systems, and acts as a gateway between a Utility company network and the consumer appliances, as well as other energy consuming devices and/or systems.
  • the controller/gateway device to be discussed below is at times called herein a Home Energy Gateway (HEG).
  • HEG Home Energy Gateway
  • Utility companies commonly charge a flat rate for energy, but with the increasing cost of fuel prices and high energy usage during certain parts of the day, Utility companies have to buy more energy to supply customers during peak demand. Consequently, Utility companies are beginning to charge higher rates during peak demand. If peak demand can be lowered, then a potential cost savings can be achieved and the peak load that the Utility company has to accommodate is lessened.
  • One proposed third party solution is to provide a system where a controller “switches” the actual energy supply to the appliance or control unit on and off. However, there is no active control beyond the mere on/off switching. It is believed that others in the industry cease some operations of certain appliances during on-peak time.
  • AMI Advanced Metering Infrastructure
  • HEM Home energy management
  • the first category requires a large upfront cost to the consumer, because the cost of providing an integrated display on the HEM very expensive.
  • the electronics required to drive the display is complex and expensive.
  • they are forced to add one more display screen to their home in addition to the home computer, smart phones, televisions and the displays on pre-existing home devices such as thermostats, appliance displays etc.
  • the second category of HEM involves a substantial cost to provide the server infrastructure and data transfer.
  • this type of HEM must be connected continuously with a remote server otherwise energy data logging and energy saving commands for the devices in the home will be lost during service disruptions.
  • this configuration requires connection to the Internet to access and view data. Therefore this second configuration is very limiting in areas where Internet penetration is very low
  • HEM HEM
  • a HEM should result in a payback of less than a year for the consumer through energy savings.
  • Current HEM systems result in payback of about 3-5 years at best. Therefore, since the standard life of an electronic device is about 5 years, the consumer is never paid back for their investment; as they will need to procure a new device before the investment payback period is reached.
  • HEM Key functions of a HEM include:
  • the network of energy consuming devices usually employs a communication design which has very low power and low energy with a high degree of reliability.
  • the data bandwidth required to support a network of energy consuming devices is much smaller than the data bandwidth required for the networking of consumer electronics products, which is usually high bandwidth and high speed.
  • the networking standards, including the physical layer, networking layer and application layers are optimized for the end use.
  • the device disclosed herein is a home energy gateway (HEG) that enables all the key functions of the HEM described above, and enables the flow of data between networks having different physical, link, network, transport and/or application layers, provides a lowest cost product to the consumer with the flexibility to interface with the HEM from any consumer electronics product already available in the home and/or replace any HEM in a home energy management network.
  • HEG home energy gateway
  • the HEG is a single board computer with a variety of communication interfaces combined with sufficient memory and computing resources to enable energy management of a home or building.
  • This device does not have a dedicated display either on the device or in the system. It transmits the data stored within its memory to other display devices, to enable a consumer interface to the HEG.
  • the HEG hardware comprises of a single board computer with the following specification:
  • the single board computer has three co unication interfaces with different physical, networking and application layers.
  • the HEG it has an Ethernet and Wifi interface with the following specification:
  • Two Zigbee communication interfaces are provided so that HEG can talk to two separate energy networks.
  • the HEG uses one Zigbee interface, (referred to as the second interface or second network) the HEG communicates with the smart meter network.
  • This interface reads the smart meter, an energy-metering device, and records the data in the database of the HEG.
  • the HEG communicates to the devices within the home using the other Zigbee communication interface (referred to as the third interface or third network). Using this interface, the HEG reads the consumption of the individual energy consuming devices and records it in the database.
  • Utility communications such as price signals, demand response signals and text messages are received through the second interface, recorded in the database, and communicated to the devices in the home through the third interface.
  • the command and control information of the energy consuming devices and their response to Utility signals is received through the third communication interface, recorded in a database, and communicated to the Utility company via the second interface, the communication being routed through the Utility smart meter.
  • the HEG can also be programmed to vary the response of energy consuming devices to utility communication based on consumer preferences.
  • the consumer may, if desired, program the schedule, mode of operation and create unique device response to utility messages. This programming is communicated through the first interface.
  • the stored events, energy data, utility messages and consumer setting preferences are accessed also accessed through the first communication interface, which operates at a higher bandwidth and uses a consumer electronics friendly communication protocol. For example, in some embodiments this communication could be over Wifi or Ethernet.
  • the user interface is an application that resides in one of the consumer electronics products in a home or the home computer. These home devices communicate to the HEG through a predefined communication protocol.
  • the user interface may request specific data from the HEG like historical electricity consumption information and the HEG can push information to devices in the Local Area Network (LAN), like price changes or utility messages, with all communication exchanges occurring thru commands based on this communication protocol.
  • LAN Local Area Network
  • the energy consuming devices can be controlled or interfaced through the HEG, the user interface communicating with the HEG using this communication protocol over the first interface and the HEG communicating with the energy consuming devices with a low bandwidth protocol using a different physical communication layer.
  • the term communication protocol refers to three aspects language, transport, and session.
  • the term language is defined as what is used to communicate data or commands such as XML, JSON-RPC, XML-RPC, SOAP, bit stream, or line terminated string.
  • transport is defined as the protocol used to deliver the data or commands such as UDP, TCP, HTTP.
  • Session is defined as terms such as, the Device pushing data via a socket based connection, or the Device sending data in response to being polled. Examples of data being pushed are TCP socket streams, and examples of polling are the restful create, read, update, and delete methods.
  • the HEG plays a key role for the Utility company in registering and communicating with devices within the home. Typical devices that have to work with the smart grid thru the smart meter need to be registered with the smart meter. This means that for every energy consuming device that is installed in a consumer's home, the consumer has to contact the Utility and provide them an install code to register the device, which requires time and resources for both the Utility Company and the consumer.
  • the HEG Once the HEG is registered to the smart meter, the HEG then acts as a single point gateway for the Utility Company. In this way all other devices in the home are registered with the HEG and communicate with the HEG.
  • the HEG then summarizes device actions, responses and status and communicates a single message to the Utility Company. This saves resources and infrastructure for the Utility Company's meter system as there is only one device communicating from the home, rather than 10 to 15 devices receiving messages, which would otherwise require a large amount of bandwidth.
  • the HEG can also be used to network other devices within the home and store data. For example it could monitor the health of consumers living in a home.
  • a bathroom weighing scale can be enabled with a communication interface, and the weight of a person can be automatically read off the HEG and stored in the data base with a time stamp, every time a person steps on the scale.
  • the device could similarly read other health parameters like blood pressure, glucose, temperature etc.
  • energy and water consumption in a home is an indicator of daily life in a home. It can indicate activity in a home, the number of people in a home, the health of people in a home, safety and intrusion in a home.
  • the HEG could also operate with home automation and home security systems over open standards. This would coordinate the devices trying to control lighting, pool pumps, and other devices. They could also share information in new ways.
  • the appliances could act as additional occupancy or intruder detection systems. For example, if the home security is in the away mode, and the refrigerator door opens, this could be passed to the security system, just like a motion sensor.
  • an energy consuming device comprises at least one energy consuming component, a sensor for collecting data from a power supplying conductor delivering power to the device, the sensor configured to collect data relating to electrical usage of the at least one component and/or properties of power provided to the device via the power supplying conductor, and a communication interface for communicating the data (e.g., to a remote energy management system device).
  • the sensor can collect data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power.
  • the sensor can include at least one of a current transformer, Rogowski coil, shunt resistor, or hall effect sensor.
  • the communication interface can include a display for displaying the collected data to user, and a control board for controlling at least one aspect of operation of the energy consuming device.
  • the sensor can be included on the control board.
  • the energy consuming device can be at least one of a washer, a dryer, a refrigerator, a cooking product, a dishwasher, a dehumidifier, and HVAC equipment.
  • a sub-meter device for monitoring usage of an energy consuming device in a residential energy management system comprises a sensor for collecting data from a power supplying conductor delivering power directly to the energy consuming device, and a communication interface for communicating the data to a remote energy management system device.
  • the sensor is configured to collect data relating to electrical usage of the device and/or properties of power provided to the device via the power supplying conductor.
  • the sensor can collect data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power.
  • the at least one sensor and communication interface can be contained in a common housing.
  • the sub-meter device can further comprise a second communication interface for communicating with the energy consuming device.
  • the sensor and communication interface can be contained in a modular housing having at least two prongs designed to be plugged into a wall outlet for receiving power, and having a socket for receiving the power supplying conductor for transmitting power to the energy consuming device, whereby the common housing can be plugged into a wall socket and the energy consuming device can be plugged into the socket of the housing.
  • the sensor can include at least one of a current transformer, Rogowski coil, shunt resistor, and/or hall effect sensor.
  • the sub-meter can include a display for displaying the collected data to a user.
  • the sensor can be integrated into a power supply cord of the energy consuming device.
  • a residential energy management system comprises an energy consuming device, a power supplying conductor connected to the energy consuming device for delivering power thereto, a sub-meter device, and an energy management controller configured to control at least one aspect of operation of the energy consuming device.
  • the at least one sub-meter device includes a communication interface for communicating the collected data to the energy management controller for use by the energy management controller in controlling the energy consuming device.
  • an energy management controller for a residential energy management system comprises a processor, and a communication interface for communicating with the sub-meter device.
  • a method of managing a residential energy consuming device comprises using a sensor to collect data from a power supplying conductor delivering power to the energy consuming device, communicating the collected data to an energy management controller remote from the sensor, and controlling at least one aspect of the operation of the energy consuming device in response to the collected data, wherein the sensor is configured to collect data relating to electrical usage of the device and/or properties of power provided to the device via the power supplying conductor.
  • FIG. 1 illustrates a system in which the concepts of the present application are implemented.
  • FIG. 2 is a block diagram of a Home Energy Gateway (HE of the present application.
  • FIG. 3 is a hardware block diagram of the HEG.
  • FIGS. 4A-4P illustrates views of the physical HEG device.
  • FIG. 5 is a flow diagram or connecting the HEG.
  • FIG. 6 is a graphical illustration of a step in setting up the HEG.
  • FIG. 7 is a graphical illustration of a step of connecting the HEG to a WiFi access point.
  • FIG. 8 is a graphical illustration of a step of connecting the HEG to the Internet.
  • FIG. 9 is a graphical illustration of a step of connecting the HEG and a smart meter.
  • FIG. 10 is a graphical illustration of a step of making connections to appliances.
  • FIG. 11 illustrates remote agent data access.
  • FIG. 12 is an example message payload to update a schedule.
  • FIG. 13 is a block diagram of a home energy management system including an exemplary sub-meter for measuring power properties of an associated device.
  • FIG. 14 is another block diagram a home energy management system including another exemplary sub-meter integrated into an energy consuming device.
  • FIG. 15 is a block diagram illustrating the details of an exemplary sub-meter device.
  • FIG. 16 is a flow chart us rating a method of performing diagnostics on an energy consuming device.
  • FIG. 1 is an exemplary implementation of the energy management system 100 according to the present application.
  • smart electric meter 102 acting as trust center, coordinator, and/or and energy service portal (ESP), and which is configured to communicate with a home energy gateway (HEG) 104 .
  • HOG home energy gateway
  • smart meter 102 may be separated into different devices. For example, if the home does not have a smart meter 102 —so the electric meter functions only as a meter to provide consumption information—other components can be used to provide the additional capabilities. For example, homes without smart meter 102 , can have the metering functionality of smart meter 102 replaced with a simple radio and CT configuration. Also, there are devices that can be placed on the outside of the meter to communicate its consumption by reading pulse counts or the rotating disk of the meter. In this embodiment, smart meter 102 is shown with an IEEE 802.15.4 (ZigBee) radio, but the meter could also communicate by a number of other standards such as IEEE 1901 (Home Plug Green Phy or Home Plug A V), among others.
  • IEEE 802.15.4 ZigBee
  • FIG. 1 is a computer 106 (such as a desk top, lap top of other computing device) attached to a modem/router 108 , a common manner of attaching computers to the internet 110 .
  • a computer connected to the router by a wired IEEE 802.3 (Ethernet) connection 111 .
  • the connection could be made by other known connections such as an IEEE 802.11 (Witi) connection, power line communication or power line carrier (PLC) connection, among others.
  • the PLC connection is made using an adaptor such as sold by Netgear or other manufacturer for that purpose.
  • system 100 Although a modem/router arrangement is shown in system 100 , it is not essential, and the system would function for its primary purpose of monitoring and displaying energy consumption information without them. In that case computer 106 would connect directly to HEG 104 via a wired or wireless connection.
  • a web enabled smart phone 112 is configured to connect to HEG 104 for displaying data and configuring accessories (such as home appliances 114 a - 114 k ), except that only a wireless connection is available.
  • Accessories 114 a - 114 k fall into two categories sensors and devices (where, depending on how they are used, some accessories fall into both categories).
  • sensors include solar meters 114 a , gas meters 114 b , temperature sensors 114 c , motion sensors 114 d , and appliances reporting their power consumption (such as dishwashers 114 e , refrigerators 114 f , stoves 114 g , washers/dryers 114 h , etc.).
  • Devices include thermostats 114 i , alarms 114 j and simple switches 114 k , along with the appliances (e.g., dishwashers 114 e , etc.), when performing their normal functions.
  • the foregoing are just some examples of accessories to which the concepts of the present application will apply.
  • the HEG 102 is constructed with computational capabilities and multiple communication technologies. In contrast to existing controllers (such as an HEM) used in home energy systems, the special purpose HEG 102 is significantly smaller, cheaper, and consumes less power.
  • the HEG 102 also has the capability of operating over multiple communication networks, which allows HEG 102 to acquire and manipulate data of one communication network (e.g., that which monitors/controls the home appliances) and to supply that manipulated data to another communication network (e.g., to the consumer electronics network, such as to a home computer, smart phone, web-enabled TV, etc.), even though these networks are not generally compatible.
  • the HEG 102 is connected to system loads (e.g., the home appliances, etc.) over one type of communication network, to the Utility company over a different communication network, and to a display over a third different communication network.
  • connection to the display is via a WiFi communication network
  • connection to the Utility Company is via a ZigBee communication network
  • connection to the home device/appliance network is over the third.
  • the data could be structured differently.
  • the whole home consumption could be available over the Internet (as it is in Allentown, Pa. pilot project), or via a ZigBee meter on the second network.
  • several home automation devices including pool controllers, emergency generators, and storage batteries are designed to be accessed over Ethernet using Internet Protocol (IP).
  • IP Internet Protocol
  • FIG. 2 depicted is a block diagram 200 illustrating one embodiment of the HEG 102 .
  • remote configuration and data acquisition block 202 (which is not part of HEG block diagram 200 ).
  • the external data and remote configuration requests are received into block 200 via WiFi radio block 204 , which in turn accesses energy and event database 206 .
  • the external data and remote configuration requests of block 202 could also enter block diagram 200 via Ethernet port 208 in order to access the energy and event database 206 .
  • a power line communication (PLC) adapter 210 (dotted lines) may be used with or as an alternative to the Ethernet port 208 , in order to input the external data and remote configuration requests 202 into the energy and event database 206 .
  • PLC power line communication
  • first data interface block 212 such as a 802.15.4 Zigbee radio
  • second data interface block 214 such as a 802.15.4 Zigbee radio
  • the first data interface block 214 is configured to send and receive data and configuration messages to/from utility meter Zigbee network 216
  • second data interface block 214 is configured to send and receive data and configuration messages to/from the internal HAN (e.g., data from appliances in the system) 218 .
  • the data and messages from these sources also connect to the energy and event database 206 , via internal HAN smart energy block 220 .
  • the database functions will be covered in more detail later.
  • power line interfaces 222 , 224 may be included with or as an alternative to the interfaces 212 , 218 .
  • FIG. 3 shows a more detailed hardware block diagram 300 of HEG 102 .
  • I/O input/output
  • the I/O block 302 consists of chip LEDs 304 , 306 , and 308 which are used to convey network status for the three individual networks of the HEG 102 .
  • the LEDs convey status from off (no network), flashing (network available), to solid lit (joined network) for each network.
  • an additional LED (not shown) may be provided to identify power availability.
  • an additional LED may be add for the additional communication network.
  • a user may connect with an display device for more detailed investigation of the problem and to correct the Issue. Also depicted is a reset push button 312 which (as will be shown below) may be assessed by a user externally on the HEG unit itself.
  • FIGS. 4A-4P illustrates various views of HEG 102 . Not requiring a display or input keys on HEG 102 allows the HEG 102 to be configured in a very compact design. In one embodiment, this results in the HEG having dimensions of 53(W) ⁇ 72(H) ⁇ 55(D) mm (2.09(W) ⁇ 2.83(H) ⁇ 2.16(D) inches). With a depth (D) of 37 mm (1.45 inches) minus the prongs of the plug. The volume of the HEG being 160 cm ⁇ 3 and the weight of the HEG being 100 g.
  • FIG. 4C shows reset button 400 (corresponding to block 312 of FIG. 3 ) and Ethernet input 402 (e.g., 208 of FIG. 3 ).
  • HEG Client Application Software
  • CAS Client Application Software
  • the software may be a general purpose Java application that will run on any PC, or it may be tailored specifically to the physical limitations and operating system of the device, which is common in the cellular phone business. Alternatively a Web CAS could also be used.
  • FIG. 5 is a flow diagram 500 which illustrates, for one embodiment, the steps undertaken to achieve such configuration.
  • An expanded discussion of FIG. 5 is set forth in later sections of this disclosure.
  • a user connects to the HEG 504 by providing the HEG with power (e.g., plugging it into a home outlet) and accessing the HEG via the CAS.
  • the CAS allows the user to provide the HEG with a name so it may be identified in the network (see FIG. 6 ).
  • the user may optionally connect the HEG to that network 508 (see FIG. 7 ).
  • the HEG can be connected to this network 512 (see FIG. 8 ). Once these steps are accomplished, the user connects the HEG to the energy supplier (e.g., Utility company) network 514 (see FIG. 9 ). Finally, the user connects the appliances (and other systems) to the HEG 516 (see FIG. 10 ).
  • the energy supplier e.g., Utility company
  • a particular beneficial aspect of the HEG 102 is the value and flexibility obtained by not having a dedicated, integrated user interface display. Not having such a display does require initial steps in the configuration of the HEG into the home energy network (or HAN) in order to connect the HEG to the network. These steps include:
  • step 508 of FIG. 5 is optional. However, for homes with WiFi network and where the HEG is attached via an Ethernet connection, step 508 is available. In this case, the Ethernet cable would be disconnected and the HEG moved to an out of the way home electrical outlet. By this action the consumer will still have access to the HEG over their home network but the HEG would not need a prime electrical outlet. If the HEG is replacing an HEM or other type of controller which has a built in or otherwise connected display and is therefore mounted on a wall for viewing of the display, the HEG in the wireless environment would of course not be mounted on a wall and could, again be, located in an out of the way electrical outlet. If the consumer does not have a home wireless network, they may continue to have the HEG connected to a router to share their Internet connection or remain directly connected to their computer if they do not have an Internet connection. If connected over WiFi the WiFi LED on the HEG will illuminate.
  • This step is also optional, and is not required for the device to work. No special configuration is required on the HEG. Depending on the security implemented on the consumer's Internet connection, some modification to their router and/or firewall may be required. In some instances the use of the HEG may be advantageous over a “Cloud Computing” model for home energy control, as that the data storage for the HEG is local.
  • appliances will be installed on a second network that is entirely maintained by the homeowner.
  • the ZigBee network is used for this purpose in the exemplar, but that is not critical to the invention.
  • Some devices, such as a Thermostat, or PHEV charger may be tied directly to the Utility network in the same manner as the HEG, if for instance, the PHEV qualifies for a different rate or the customer is getting a credit for allowing the Utility to control their HVAC. In this case the consumer can skip directly to step vi.
  • Google Inc. has a Google Power Meter (GPM) service.
  • GPM Google Power Meter
  • the consumer could select connect to GPM, and the data could be ported to the cloud server.
  • the consumer or the cloud server may select only to accept a portion of the data.
  • the consumer may select to pass the utility power meter to the cloud server, so he can access it from work, or the cloud server may limit the consumer to two devices with 15 minute increments between points.
  • ZigBee home automation for controlling lights, security and comfort.
  • ZBLC30-Dual (30/15A) Relay with energy meter is the ZBLC30-Dual (30/15A) Relay with energy meter.
  • This ZigBee 110/220V Dual-relay (30/15A) describes itself as a controller with energy meter which remotely controls high current heavy loads such as water heaters, pool pumps, pool heaters, electric vehicle charges, air conditioners, etc.
  • Using the wireless ZigBee protocol allows the switch to constantly measure the power delivered to the load and report various parameters such as real and apparent power based on high accuracy industry standards. This makes possible the intelligent management of large appliances.
  • NO normally open
  • NC normally closed
  • Pentair pool controller from Pentair Water Pool and Spa, or an alarm system controller from Smart Home, are just two examples.
  • a particular benefit of this system which uses the HEG without a dedicated or integrated display, is the ability to use a high quality display to view data and interact with appliances without having to pay for it separately.
  • Many of these devices already are provided with Web CASs. Accessing the electricity consumption of a home on a TV screen will provide a more readable display of their consumption habits to the consumer than the small monochrome in-home displays that Utilities have been using in pilots.
  • the present design provides consumers with an increased awareness of where there energy dollar is going. Because the consumer displays (e.g., TVs, computers, smart phones) are adapted to graphical display, they are well suited to display this type of information.
  • the consumer displays e.g., TVs, computers, smart phones
  • This improved interface also allows the consumer to fine tune their response for different appliances with more detail than was possible over a typical appliance control screen.
  • This customization can be done either in conjunction with energy prices, weather information, time of day, occupancy or other external parameter, or just as a user defined rule without any outside parameters.
  • a dishwasher cycle is delayed because of high energy costs. However the water heater is not heating either.
  • the HEG provides the consumer with the option of waiting until the water heater has caught up before starting the dishwasher.
  • Another dishwasher option The consumer can determine to not allow (or always require) heated dry, extra pre-washes, or extra heat on a dishwasher at any time, despite what is selected at the controls of the dishwasher. This feature may be valuable for people whose children are assisting with meal clean up.
  • the consumer starts their dryer in a delay start mode, but before the delay time is completed energy price goes up. The consumer will be asked if they still want the dryer to start when scheduled.
  • An additional dryer example is to limit the maximum heat regardless of the energy level selected. This balance of saving energy at the expense of drying time could be made at any time, or could be done to prevent children or spouse from damaging garments by drying at too high a temperature.
  • An example of using weather is to prohibit dryer operation when the external temperature was above 80 degrees to avoid competing with the air conditioning, or to prohibit dryer use if the sun was shining and line-dry clothes instead.
  • the consumer can automate the decision for which of various modes he would like his water heater to operate in.
  • the modes that can be selected from include: Electric Resistive Heaters Cal Rod, Electric Heat Pump, Gas, Solar, and Off. He can use electric price, weather, gas price and home occupancy to select from.
  • a washing machine example The consumer could use this feature to control which temperatures can be selected, or prohibit using the washer at certain electric costs.
  • the improved user interface is also an advantage when programming devices. Programmable thermostats are often hard to program via their limited user interfaces. For example, you have to push the menu button twice, then the left button, then the down button to set the hour, then the left button, until a full schedule of 7 days with 4-6 events per day have been loaded.
  • the user interface on the HEG with a computer or smartphone can display it graphically. Because the consumer is familiar with the interface, the commands are more intuitive. They can drag and drop changes of times, and copy and paste of one days schedule to a different day. Once they are happy with the schedule, they can save the whole schedule and then send it to the HEG over a high data rate Ethernet/WiFi connection. The HEG will save the schedule internally. A customer can build a number of schedules.
  • FIG. 12 shown is an example of the data portion of a message payload that could be used to send a schedule to a thermostat. Appropriate headers and checksum fields can be added based on the exact communication protocol established.
  • the row Bytes is the size of the field.
  • the Data Type and Field Name describe the type of data in each field.
  • the schedule consists of a series of Transition times, high set points, and low set points. Each set point is scheduled to be in effect until the next transition.
  • the variable field can contain multiple transitions until a final (nth) transition for a given day. At midnight the schedule will continue the prior days last transition until the first transition of the new day.
  • the Day of Week field identities the day that is being scheduled. Where Day 0 is Sunday, Day 1 is Monday, Day 2 is Tuesday etc. Alternatively a bitmap field could be used to set the same schedule into multiple days simultaneously.
  • the variable field can contain repeated Transitions.
  • thermostat programming is not limited to a thermostat, but could be included with anything that normally runs on a schedule.
  • a different example could be a pool pump and spa controller, where high set point is spa temp and low set point is the pool temp.
  • Another application is setting pool pump run times, where the high and low set points can be set at 0 and 100 to control off and on.
  • a variable speed controller could use 1-99 to indicate a percentage of full run.
  • This on off scheduling could also be used with a water heater controller so it would not maintain water temperature when the homeowner is scheduled to be at work.
  • the HEG relies on a number of different software sets. There is software on the HEG itself. There is a second piece of software on the desktop or laptop computer used to configure the HEG and gather data from it. There is a third piece of software on the smart phone. The phone and computer may be further defined by the operating system, or may take advantage of a platform like Java that allows the programs to operate on multiple operating systems. Each of these can be upgraded independently of each other.
  • the desktop (or laptop) and smart phone Apps also have a service for the HEG. They can ping a server (e.g., if from General Electric, a GE server) every day checking for the latest software release. As new software becomes available, either to correct issues or add features, they can down load the newest HEG software and the push it down to the HEG. This way the software sets can be upgraded independently of each other.
  • a server e.g., if from General Electric, a GE server
  • the HEG can also check the server for updates for those devices, and download that software if needed.
  • the present system allows for provisioning (i.e., preparing the system to accept new services) whereby special purpose software can be downloaded.
  • provisioning i.e., preparing the system to accept new services
  • special purpose software can be downloaded.
  • the software can contact the GE server, and be given an app to download.
  • This app allows the consumer to set more detailed control of the appliance. It would know for instance this particular washer has five wash temperatures. It would then provide the customer with the opportunity to customize their wash experience. For example the customer could set the washer to not ever allow sanitation cycles and only allow hot wash when electric prices are at or below a threshold price (e.g., ⁇ $0.15 a kWhr). Alternatively the customer may decide that since they are on a gas water heater, the HEG should not control water temp when electric price changes.
  • Another function that the washer could have is a delayed start feature. If the washer is in the delayed start, the customer could (through the HEG) either tell the washer to start now, or to delay its start even longer.
  • monitoring software Another specific example of software that can be downloaded is monitoring software. This software could be loaded as part of registering the appliance, or the consumer could download and run as part of troubleshooting an issue before deciding to schedule a service call. Either on a preventative basis or in response to a service issue, specific software could be used that checks for issues in the appliance. A fairly simple implementation would be to have the software check for service error codes and present them. Most major appliances with electronic controls have fault code embedded. Fault codes can include things like “excessive fill time” on a clothes washer, “detergent tank empty” on a dishwasher, etc.
  • a more elaborate appliance can be provided with power monitoring features that would have the appliance check different components and determine if the power draw characteristics are correct.
  • Such power monitoring could be performed by a sub-meter device having a sensor for collecting data from a power supplying conductor delivering power to the appliance.
  • the sensor can be configured to collect data relating to electrical usage of the appliances components and/or properties of the power provided to the device via the power supplying conductor.
  • a home energy management system 700 includes an energy consuming device, in the form of an appliance 702 , a sub-meter device 704 and an HEG 706 .
  • Power is supplied to the appliance 702 via a power supplying conductor 710 that delivers power from a power source 712 , such as a residential distribution panel (for hardwired appliances) or an electrical outlet, for example.
  • a power source 712 such as a residential distribution panel (for hardwired appliances) or an electrical outlet, for example.
  • the power supplying conductor 710 supplies power directly to the appliance 702 and is an end-of-line (i.e., terminal) conductor such that power delivered by the power supplying conductor 710 is only used by the appliance 702 (in atypical installation).
  • end-of-line i.e., terminal
  • the sub-meter device 704 is a module that can be added to a home energy management network.
  • the sub-meter 704 can be a plug module (e.g., a wall-wort) that plugs into a wall outlet and includes an outlet for receiving a plug from the appliance (or other device.)
  • the sub-meter can be included as part of a device's power supply cord, or as a stand-alone unit.
  • the sub-meter 704 can also be integrated into a control panel 716 of the appliance 702 , or provided on a daughter panel acting as a slave to the control panel.
  • the sub-meter device 704 includes at least one sensor 724 for collecting data relating regarding the supply of power delivered to the appliance/energy consuming components, including real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power.
  • the sensor 724 can be at least one of a current transformer, Rogowski coil, shunt resistor, or hall effect sensor, for example.
  • the data collected by the sensor 724 is read by a processor 728 which is configured to then display the information on a display 734 of the device 704 and/or communicate the data via a communication interface 738 to another device (typically the HEG) for use by that device in connection with the control of the appliance within the home energy management system.
  • the sub-meter 704 may also include additional hardware such as memory, additional communication interfaces (e.g., wi-fi, Bluetooth, Ethernet, etc) for communicating with additional devices or the appliance itself, a controller, etc.
  • the sub-meter 704 can collect real-time data relating to the operation of the appliance, it is uniquely positioned to perform diagnostics on the appliance or other device to which it is attached. For example a refrigerator “knows” that it has a 600 W defrost heater. During defrost, the sub-meter measures the power consumption of just the defrost circuit and reads 0 watts. This would be an indication that potentially the defrost heater had failed open. The sub-meter could similarly be configured to measure operation of various energy consuming components and/or functions of the refrigerator (e.g., lights, icemaker, ice crusher, etc.) to detect other potential problems with the unit.
  • various energy consuming components and/or functions of the refrigerator e.g., lights, icemaker, ice crusher, etc.
  • An appliance could also rely on the network for these power consumption measurement.
  • the appliance or appliance communication module
  • Other devices in the house transitioning at the same time would influence this measurement, for example a 5.1 kW, 5.7 kW, 6.7 kW could either mean that the heater was only drawing 1 kW or that it was drawing the correct 4 kW, but that the 3 kW air conditioner shut off at the same time. Repeated measurements over multiple cycles would be necessary to check this.
  • the HEG can perform such calculations. Performing the calculations in the HEG would provide an additional benefit in that if it is tracking the thermostat (which control HVAC on/off), dryer, range, and electric water heater, for example, it would be able to resolve more easily the situation where multiple devices come on and off.
  • FIG. 16 a flow chart illustrating an exemplary method of performing diagnostics using the sub-meter 704 (or other sensor) is illustrated.
  • the method begins with process step 802 wherein a function of the device that draws an electrical load is activated. Activating a function of the device can include switching the device on, varying a speed, varying an intensity, varying a brightness, and varying a duty cycle, etc. This step can be performed by a controller associated with the device, or can be the result of a user being prompted to activate the feature (e.g., opening a refrigerator door).
  • the electrical load is measured with the sub-meter device.
  • the measured electrical load is then compared to a predetermined value corresponding to normal operation of the function of the device to determine if the device is operating normally. If the difference between the measured load and the predetermined value is greater than a prescribed amount, a report identifying the device and/or function, etc., is generated in process step 808 . Otherwise, the method terminates. As will be appreciated, the process may repeat until all functions are tested.
  • the predetermined value can be stored in memory for each component or state of each component of the appliance.
  • the predetermined value can be calculated continually based on RPM, Phase angles, drive voltages, frequencies and other parameters which are well known to an inverter designer. Such method works well for devices with a fixed number of configurations that ship from the factory.
  • the most effective solution may be to load the model number of the power-consuming device into the HEG.
  • the HEG can then use its Wifi or Ethernet interface to download the expected wattage from a remote database over the internet.
  • the pipe size is important.
  • the HEG and/or sub-meter can measure a number of pump on/off cycles and determine a baseline power draw. As the filter gathers debris, the flow rate will decrease and the power consumption will change in predictable way. When the power consumption has changed enough, the consumer can be given an indication to backwash their filter or change the filter element. Over time the HEG can monitor the health of the appliances, either passively by looking at performance or actively by getting health, maintenance, and diagnostic info from the appliance.
  • An example of passive operation is the monitoring a dryer.
  • the HEG can notice that the dryer says it is in high heat, but never goes over 3 kW. If this occurs on a single occasion this may be a loading or airflow condition, but if it happens repeatedly, it may be a failed open heater.
  • the HEG could ping a dishwasher, and ask it for all of its error codes.
  • the HEG can then send that information to the dishwasher manufacturer, either automatically or upon the customer's request, or make it available to the customer on a display when they call for service, thereby assisting the manufacturer in troubleshooting the unit.
  • the customer could download more detailed analytical software if they were having issues with a specific appliance that could run diagnostics on the appliance and sends the results back to the manufacturer so the technician could arrive with the correct part.
  • the monitoring software can also keep the consumer up to date on the status of their home. For example the time remaining on an oven self-clean, the end of cycle on a dishwasher, or the current hot water tank temperatures could be communicated to the HEG by appliances over a the low bandwidth third network. This info can then be sent to the consumer via the first interface to a WiFi enabled smart phone or Web enabled television, or possibly a Bluetooth device. It could also be sent to him outside of the hoe by email, SMS text message or similar method.
  • Another option during provisioning is to download a software set that customizes the display so that it essentially duplicates the features of the appliance, but uses large font and improved colors for people with poor visual acuity. People with vision impairment could use a 17′′ screen with black numbers on a yellow background to set the temperatures on the refrigerator or schedule the self clean on an oven.
  • Other special purpose software may be offered in conjunction with a Utility company.
  • the customer may have a special code from their Utility company which downloads a software set that tracks air conditioner thermostat setpoints and passes that information back to a Utility company server. The customer then gets a bonus for maintaining certain target temps, and by not overriding setpoint changes during grid emergencies.
  • Another set of specialty software is for commercially available devices. If the customer buys a device from a third party, they can log on and download the software that blends that device into their network. It may be lighting controls, the pool controller mentioned earlier, or a third party thermostat.
  • the HEG of the present application is particularly useful in a home energy management network and may receive communication from existing controllers (such as HEMs) and/or replace the controllers (HEMS) in such networks.
  • HEMs controllers
  • HEMS controllers
  • Exhibit A U.S. Ser. No. 12/559,703

Abstract

A sub-meter device for use in a home energy management (HEM) network. The sub-meter device measure power characteristics related to usage of an appliance (or other device) within a HEM network and provides such data to a home energy controller or the like. The sub-meter device can include one or more sensors, such as a current transformer, Rogowski coil, shunt resistor, or hall effect sensor, for collecting data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power, etc.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Ser. No. 61/304,712, filed on, Feb. 15, 2010, which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE DISCLOSURE
  • The following disclosure relates to energy management, and more particularly to energy management of household consumer appliances, as well as other energy consuming devices and/or systems found in the home. The present disclosure finds particular application to a device which controls operation of consumer appliances, as well as other energy consuming devices and/or systems, and acts as a gateway between a Utility company network and the consumer appliances, as well as other energy consuming devices and/or systems. The controller/gateway device to be discussed below is at times called herein a Home Energy Gateway (HEG).
  • Currently Utility companies commonly charge a flat rate for energy, but with the increasing cost of fuel prices and high energy usage during certain parts of the day, Utility companies have to buy more energy to supply customers during peak demand. Consequently, Utility companies are beginning to charge higher rates during peak demand. If peak demand can be lowered, then a potential cost savings can be achieved and the peak load that the Utility company has to accommodate is lessened.
  • One proposed third party solution is to provide a system where a controller “switches” the actual energy supply to the appliance or control unit on and off. However, there is no active control beyond the mere on/off switching. It is believed that others in the industry cease some operations of certain appliances during on-peak time.
  • Additionally, some electrical Utility companies are moving to an Advanced Metering Infrastructure (AMI) system which needs to communicate with appliances, HVAC, water heaters, etc., in a home or office building. All electrical Utility companies (more than 3,000 in the US) will not be using the same communication method to signal in the AMI system. Similarly, known systems do not communicate directly with the appliance using a variety of communication methods and protocols, nor is a modular and standard method created for communication devices to interface and to communicate operational modes to the main controller of the appliance.
  • Home energy management (HEM) systems are becoming a key to reducing energy consumption in homes and buildings, in a consumer friendly manner. Existing HEMs are commonly placed in one of two general categories:
      • In the first category, the HEM is in the form of a special custom configured computer with an integrated display, which communicates to devices in the home and stores data, and also has simple algorithms to enable energy reduction. This type of device may also include a keypad for data entry or the display may be a touch screen. In either arrangement, the display, computer and key pad (if used) are formed as a single unit. This single unit is either integrated in a unitary housing, or if the display is not in the same housing, the display and computer are otherwise connected/associated upon delivery from the factory and/or synchronized or tuned to work as a single unit.
      • In the second category, the HEM is in the form of a low cost router/gateway device in a home that collects information from devices within the home and sends it to a remote server and in return receives control commands from the remote server and transmits it to energy consuming devices in the home. In this category, again, as in the first, the HEM may be a custom configured device including a computer and integrated/associated display (and keypad, if used) designed as a single unit. Alternately, the HEM maybe implemented as home computer such as lap top or desk top operating software to customize the home computer this use.
  • Both of the current existing types have significant disadvantages due to higher consumer cost, low flexibility and increased system complexity.
  • The first category requires a large upfront cost to the consumer, because the cost of providing an integrated display on the HEM very expensive. In addition, the electronics required to drive the display is complex and expensive. Further, from a consumer point of view, they are forced to add one more display screen to their home in addition to the home computer, smart phones, televisions and the displays on pre-existing home devices such as thermostats, appliance displays etc.
  • The second category of HEM involves a substantial cost to provide the server infrastructure and data transfer. In addition, this type of HEM must be connected continuously with a remote server otherwise energy data logging and energy saving commands for the devices in the home will be lost during service disruptions. In addition, this configuration requires connection to the Internet to access and view data. Therefore this second configuration is very limiting in areas where Internet penetration is very low
  • To be commercially practical a HEM should result in a payback of less than a year for the consumer through energy savings. Current HEM systems result in payback of about 3-5 years at best. Therefore, since the standard life of an electronic device is about 5 years, the consumer is never paid back for their investment; as they will need to procure a new device before the investment payback period is reached.
  • Key functions of a HEM include:
      • Creates a network of energy consuming devices within the home,
      • Measures the consumption of the whole home/building or individual devices,
      • Records and stores energy consumption information in a database, and
      • Enables consumer interface with all energy consuming devices in a home to:
        • view consumption data of individual devices
        • set preferences for operation of energy consuming devices at different times
        • during the day or at different energy pricing levels
        • control/program energy consuming devices.
  • For a HEM to achieve its intended function, all energy consuming, energy generating and energy measuring devices must communicate with the HEM through a network. The network of energy consuming devices usually employs a communication design which has very low power and low energy with a high degree of reliability. The data bandwidth required to support a network of energy consuming devices is much smaller than the data bandwidth required for the networking of consumer electronics products, which is usually high bandwidth and high speed. The networking standards, including the physical layer, networking layer and application layers are optimized for the end use.
  • Consumers want to view and control energy consumption information available thru the HEM, through a variety of consumer electronic devices available in the home. To enable this it is required that energy consumption and control information must be easily transferrable from the networks of energy consuming devices to networks of consumer electronics devices. In addition, consumers are more used to interacting with consumer electronics devices. So the consumer interaction data on a consumer electronics device should be able to flow into the network for energy consuming devices and to enable command and control of the energy consuming devices.
  • SUMMARY OF THE DISCLOSURE
  • The device disclosed herein is a home energy gateway (HEG) that enables all the key functions of the HEM described above, and enables the flow of data between networks having different physical, link, network, transport and/or application layers, provides a lowest cost product to the consumer with the flexibility to interface with the HEM from any consumer electronics product already available in the home and/or replace any HEM in a home energy management network.
  • The HEG is a single board computer with a variety of communication interfaces combined with sufficient memory and computing resources to enable energy management of a home or building. This device does not have a dedicated display either on the device or in the system. It transmits the data stored within its memory to other display devices, to enable a consumer interface to the HEG.
  • In one embodiment, the HEG hardware comprises of a single board computer with the following specification:
      • Samsung S3C2450 32 bit RISC Miuoproccssor ARM926EJS, 400 MH
      • DDR2 SDRAM (32 MB)
      • NAND Flash Memory for Embedded Linux & HEG Software B)
      • NAND Flash Memory for Database Storage (16 MB)
  • The single board computer has three co unication interfaces with different physical, networking and application layers.
  • The HEG it has an Ethernet and Wifi interface with the following specification:
      • IEEE 802.11 big Wi-Fi
      • WPA, WPA2, WEP-40, WEP-104, 802.1x, PEAP, LEAP, TLS, TTLS, FAST
      • MAC Address Filtering
      • 1011 00 Base-T Ethernet Connectivity
        This interface is referred to as the first interface or first network throughout this document.
  • The HEG of one embodiment also has two Zigbee Interfaces of the following specification:
      • IEEE 802.15.4 Compliant 2.4 GHz Wireless Interface
      • Smart Energy Profile, Home Automation Profile
      • Transmit Power: 20 dBm, Receive Sensitivity. 0˜−100 dBm
      • AES 128-bit Encryption
      • Install Code using 128-bit Oseas Hash Function
      • ECC Key Exchange using Certicom Certificates
      • SEP 1.0 Security Requirements
      • CBKE ZigBee Link Key Security
      • ZigBee Pro Feature Set
  • Two Zigbee communication interfaces are provided so that HEG can talk to two separate energy networks.
  • Using one Zigbee interface, (referred to as the second interface or second network) the HEG communicates with the smart meter network. This interface reads the smart meter, an energy-metering device, and records the data in the database of the HEG.
  • The HEG communicates to the devices within the home using the other Zigbee communication interface (referred to as the third interface or third network). Using this interface, the HEG reads the consumption of the individual energy consuming devices and records it in the database.
  • Utility communications such as price signals, demand response signals and text messages are received through the second interface, recorded in the database, and communicated to the devices in the home through the third interface. The command and control information of the energy consuming devices and their response to Utility signals is received through the third communication interface, recorded in a database, and communicated to the Utility company via the second interface, the communication being routed through the Utility smart meter.
  • The HEG can also be programmed to vary the response of energy consuming devices to utility communication based on consumer preferences. The consumer may, if desired, program the schedule, mode of operation and create unique device response to utility messages. This programming is communicated through the first interface.
  • The stored events, energy data, utility messages and consumer setting preferences are accessed also accessed through the first communication interface, which operates at a higher bandwidth and uses a consumer electronics friendly communication protocol. For example, in some embodiments this communication could be over Wifi or Ethernet.
  • The user interface is an application that resides in one of the consumer electronics products in a home or the home computer. These home devices communicate to the HEG through a predefined communication protocol. The user interface may request specific data from the HEG like historical electricity consumption information and the HEG can push information to devices in the Local Area Network (LAN), like price changes or utility messages, with all communication exchanges occurring thru commands based on this communication protocol. In addition, the energy consuming devices can be controlled or interfaced through the HEG, the user interface communicating with the HEG using this communication protocol over the first interface and the HEG communicating with the energy consuming devices with a low bandwidth protocol using a different physical communication layer.
  • The term communication protocol refers to three aspects language, transport, and session. The term language is defined as what is used to communicate data or commands such as XML, JSON-RPC, XML-RPC, SOAP, bit stream, or line terminated string. The term transport is defined as the protocol used to deliver the data or commands such as UDP, TCP, HTTP. Session is defined as terms such as, the Device pushing data via a socket based connection, or the Device sending data in response to being polled. Examples of data being pushed are TCP socket streams, and examples of polling are the restful create, read, update, and delete methods.
  • The HEG plays a key role for the Utility company in registering and communicating with devices within the home. Typical devices that have to work with the smart grid thru the smart meter need to be registered with the smart meter. This means that for every energy consuming device that is installed in a consumer's home, the consumer has to contact the Utility and provide them an install code to register the device, which requires time and resources for both the Utility Company and the consumer. Once the HEG is registered to the smart meter, the HEG then acts as a single point gateway for the Utility Company. In this way all other devices in the home are registered with the HEG and communicate with the HEG. The HEG then summarizes device actions, responses and status and communicates a single message to the Utility Company. This saves resources and infrastructure for the Utility Company's meter system as there is only one device communicating from the home, rather than 10 to 15 devices receiving messages, which would otherwise require a large amount of bandwidth.
  • With communication protocols in a home converging to common standards, the HEG can also be used to network other devices within the home and store data. For example it could monitor the health of consumers living in a home. A bathroom weighing scale can be enabled with a communication interface, and the weight of a person can be automatically read off the HEG and stored in the data base with a time stamp, every time a person steps on the scale. The device could similarly read other health parameters like blood pressure, glucose, temperature etc.
  • In the same way, energy and water consumption in a home is an indicator of daily life in a home. It can indicate activity in a home, the number of people in a home, the health of people in a home, safety and intrusion in a home.
  • The HEG could also operate with home automation and home security systems over open standards. This would coordinate the devices trying to control lighting, pool pumps, and other devices. They could also share information in new ways. The appliances could act as additional occupancy or intruder detection systems. For example, if the home security is in the away mode, and the refrigerator door opens, this could be passed to the security system, just like a motion sensor.
  • In accordance with another aspect, an energy consuming device comprises at least one energy consuming component, a sensor for collecting data from a power supplying conductor delivering power to the device, the sensor configured to collect data relating to electrical usage of the at least one component and/or properties of power provided to the device via the power supplying conductor, and a communication interface for communicating the data (e.g., to a remote energy management system device). The sensor can collect data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power. The sensor can include at least one of a current transformer, Rogowski coil, shunt resistor, or hall effect sensor. The communication interface can include a display for displaying the collected data to user, and a control board for controlling at least one aspect of operation of the energy consuming device. The sensor can be included on the control board. The energy consuming device can be at least one of a washer, a dryer, a refrigerator, a cooking product, a dishwasher, a dehumidifier, and HVAC equipment.
  • In accordance with yet another aspect, a sub-meter device for monitoring usage of an energy consuming device in a residential energy management system comprises a sensor for collecting data from a power supplying conductor delivering power directly to the energy consuming device, and a communication interface for communicating the data to a remote energy management system device. The sensor is configured to collect data relating to electrical usage of the device and/or properties of power provided to the device via the power supplying conductor.
  • The sensor can collect data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power. The at least one sensor and communication interface can be contained in a common housing. The sub-meter device can further comprise a second communication interface for communicating with the energy consuming device. The sensor and communication interface can be contained in a modular housing having at least two prongs designed to be plugged into a wall outlet for receiving power, and having a socket for receiving the power supplying conductor for transmitting power to the energy consuming device, whereby the common housing can be plugged into a wall socket and the energy consuming device can be plugged into the socket of the housing. The sensor can include at least one of a current transformer, Rogowski coil, shunt resistor, and/or hall effect sensor. The sub-meter can include a display for displaying the collected data to a user. The sensor can be integrated into a power supply cord of the energy consuming device.
  • In accordance with still another aspect a residential energy management system comprises an energy consuming device, a power supplying conductor connected to the energy consuming device for delivering power thereto, a sub-meter device, and an energy management controller configured to control at least one aspect of operation of the energy consuming device. The at least one sub-meter device includes a communication interface for communicating the collected data to the energy management controller for use by the energy management controller in controlling the energy consuming device.
  • In accordance with still yet another aspect, an energy management controller for a residential energy management system comprises a processor, and a communication interface for communicating with the sub-meter device.
  • In accordance with another aspect, a method of managing a residential energy consuming device comprises using a sensor to collect data from a power supplying conductor delivering power to the energy consuming device, communicating the collected data to an energy management controller remote from the sensor, and controlling at least one aspect of the operation of the energy consuming device in response to the collected data, wherein the sensor is configured to collect data relating to electrical usage of the device and/or properties of power provided to the device via the power supplying conductor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a system in which the concepts of the present application are implemented.
  • FIG. 2 is a block diagram of a Home Energy Gateway (HE of the present application.
  • FIG. 3 is a hardware block diagram of the HEG.
  • FIGS. 4A-4P illustrates views of the physical HEG device.
  • FIG. 5 is a flow diagram or connecting the HEG.
  • FIG. 6 is a graphical illustration of a step in setting up the HEG.
  • FIG. 7 is a graphical illustration of a step of connecting the HEG to a WiFi access point.
  • FIG. 8 is a graphical illustration of a step of connecting the HEG to the Internet.
  • FIG. 9 is a graphical illustration of a step of connecting the HEG and a smart meter.
  • FIG. 10 is a graphical illustration of a step of making connections to appliances.
  • FIG. 11 illustrates remote agent data access.
  • FIG. 12 is an example message payload to update a schedule.
  • FIG. 13 is a block diagram of a home energy management system including an exemplary sub-meter for measuring power properties of an associated device.
  • FIG. 14 is another block diagram a home energy management system including another exemplary sub-meter integrated into an energy consuming device.
  • FIG. 15 is a block diagram illustrating the details of an exemplary sub-meter device.
  • FIG. 16 is a flow chart us rating a method of performing diagnostics on an energy consuming device.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is an exemplary implementation of the energy management system 100 according to the present application.
  • The main source of information flow for the home is shown as smart electric meter 102 acting as trust center, coordinator, and/or and energy service portal (ESP), and which is configured to communicate with a home energy gateway (HEG) 104.
  • It is well known that these functions of smart meter 102 may be separated into different devices. For example, if the home does not have a smart meter 102—so the electric meter functions only as a meter to provide consumption information—other components can be used to provide the additional capabilities. For example, homes without smart meter 102, can have the metering functionality of smart meter 102 replaced with a simple radio and CT configuration. Also, there are devices that can be placed on the outside of the meter to communicate its consumption by reading pulse counts or the rotating disk of the meter. In this embodiment, smart meter 102 is shown with an IEEE 802.15.4 (ZigBee) radio, but the meter could also communicate by a number of other standards such as IEEE 1901 (Home Plug Green Phy or Home Plug A V), among others.
  • FIG. 1 is a computer 106 (such as a desk top, lap top of other computing device) attached to a modem/router 108, a common manner of attaching computers to the internet 110. In FIG. 1, a computer connected to the router by a wired IEEE 802.3 (Ethernet) connection 111. However, it is to be appreciated the connection could be made by other known connections such as an IEEE 802.11 (Witi) connection, power line communication or power line carrier (PLC) connection, among others. In one embodiment, the PLC connection is made using an adaptor such as sold by Netgear or other manufacturer for that purpose. Although a modem/router arrangement is shown in system 100, it is not essential, and the system would function for its primary purpose of monitoring and displaying energy consumption information without them. In that case computer 106 would connect directly to HEG 104 via a wired or wireless connection.
  • A web enabled smart phone 112 is configured to connect to HEG 104 for displaying data and configuring accessories (such as home appliances 114 a-114 k), except that only a wireless connection is available.
  • Accessories 114 a-114 k fall into two categories sensors and devices (where, depending on how they are used, some accessories fall into both categories). Examples of sensors include solar meters 114 a, gas meters 114 b, temperature sensors 114 c, motion sensors 114 d, and appliances reporting their power consumption (such as dishwashers 114 e, refrigerators 114 f, stoves 114 g, washers/dryers 114 h, etc.). Devices include thermostats 114 i, alarms 114 j and simple switches 114 k, along with the appliances (e.g., dishwashers 114 e, etc.), when performing their normal functions. The foregoing are just some examples of accessories to which the concepts of the present application will apply.
  • The HEG 102 is constructed with computational capabilities and multiple communication technologies. In contrast to existing controllers (such as an HEM) used in home energy systems, the special purpose HEG 102 is significantly smaller, cheaper, and consumes less power. The HEG 102 also has the capability of operating over multiple communication networks, which allows HEG 102 to acquire and manipulate data of one communication network (e.g., that which monitors/controls the home appliances) and to supply that manipulated data to another communication network (e.g., to the consumer electronics network, such as to a home computer, smart phone, web-enabled TV, etc.), even though these networks are not generally compatible. As another example, the HEG 102 is connected to system loads (e.g., the home appliances, etc.) over one type of communication network, to the Utility company over a different communication network, and to a display over a third different communication network.
  • In one particular embodiment connection to the display is via a WiFi communication network, connection to the Utility Company (over the meter) is via a ZigBee communication network, and connection to the home device/appliance network is over the third. Alternatively, in a home where the devices and Utility Company's rules are different, the data could be structured differently. For example, the whole home consumption could be available over the Internet (as it is in Allentown, Pa. pilot project), or via a ZigBee meter on the second network. Further, in addition to the display, several home automation devices including pool controllers, emergency generators, and storage batteries are designed to be accessed over Ethernet using Internet Protocol (IP).
  • Turning to FIG. 2 depicted is a block diagram 200 illustrating one embodiment of the HEG 102. On the left hand side of the figure outside of block diagram 200 is remote configuration and data acquisition block 202 (which is not part of HEG block diagram 200). The external data and remote configuration requests are received into block 200 via WiFi radio block 204, which in turn accesses energy and event database 206. The external data and remote configuration requests of block 202 could also enter block diagram 200 via Ethernet port 208 in order to access the energy and event database 206. In still a further embodiment a power line communication (PLC) adapter 210 (dotted lines) may be used with or as an alternative to the Ethernet port 208, in order to input the external data and remote configuration requests 202 into the energy and event database 206.
  • On the right hand side of FIG. 2 is a first data interface block 212 (such as a 802.15.4 Zigbee radio) and a second data interface block 214 (such as a 802.15.4 Zigbee radio). The first data interface block 214 is configured to send and receive data and configuration messages to/from utility meter Zigbee network 216, and second data interface block 214 is configured to send and receive data and configuration messages to/from the internal HAN (e.g., data from appliances in the system) 218. The data and messages from these sources also connect to the energy and event database 206, via internal HAN smart energy block 220. The database functions will be covered in more detail later. In still a further embodiment power line interfaces 222, 224 (dotted lines) may be included with or as an alternative to the interfaces 212, 218.
  • FIG. 3 shows a more detailed hardware block diagram 300 of HEG 102. Of specific interest is input/output (I/O) block 302 at the bottom of the figure. The I/O block 302 consists of chip LEDs 304,306, and 308 which are used to convey network status for the three individual networks of the HEG 102. The LEDs convey status from off (no network), flashing (network available), to solid lit (joined network) for each network. Optionally an additional LED (not shown) may be provided to identify power availability. Also if additional networks are incorporated into the HEG 102 an additional LED may be add for the additional communication network. These simple status lights allow a user to confirm the HEG is working. By this design if there is an issue, a user may connect with an display device for more detailed investigation of the problem and to correct the Issue. Also depicted is a reset push button 312 which (as will be shown below) may be assessed by a user externally on the HEG unit itself.
  • FIGS. 4A-4P illustrates various views of HEG 102. Not requiring a display or input keys on HEG 102 allows the HEG 102 to be configured in a very compact design. In one embodiment, this results in the HEG having dimensions of 53(W)×72(H)×55(D) mm (2.09(W)×2.83(H)×2.16(D) inches). With a depth (D) of 37 mm (1.45 inches) minus the prongs of the plug. The volume of the HEG being 160 cm̂3 and the weight of the HEG being 100 g. It is therefore small enough to be plugged into a standard wall outlet, and does not need space on a counter, tabletop and does not need to be attached to a wall or other surface with screws or adhesive. Because it does not have a separate display or keyboard, there are no wires to add to clutter or get caught on items. Having the power supply embedded and/or integrated in the HEG helps keep it small. It also allows access to the power lines for PLC communication. A small power supply can also be tuned to exactly the needs of the HEG, instead of selecting from a standard plug transformer, and avoid the risk of a consumer plugging in the wrong wall adaptor. The design also includes additional flame retardant materials in the housing, and securely attaches the outlet prongs to the housing.
  • FIG. 4C shows reset button 400 (corresponding to block 312 of FIG. 3) and Ethernet input 402 (e.g., 208 of FIG. 3).
  • Turning now to the setup of the HEG, the consumer will need to configure HEG 102 to monitor energy consumption. Prior to starting to commission the HEG, the consumer will need to load specific Client Application Software (CAS) onto his computer or smartphone. Typically this software would be downloaded over the Internet or purchased from the phone provider. The software may be a general purpose Java application that will run on any PC, or it may be tailored specifically to the physical limitations and operating system of the device, which is common in the cellular phone business. Alternatively a Web CAS could also be used.
  • FIG. 5 is a flow diagram 500 which illustrates, for one embodiment, the steps undertaken to achieve such configuration. An expanded discussion of FIG. 5 is set forth in later sections of this disclosure. After starting 502, a user connects to the HEG 504 by providing the HEG with power (e.g., plugging it into a home outlet) and accessing the HEG via the CAS. The CAS allows the user to provide the HEG with a name so it may be identified in the network (see FIG. 6). Once connected, if there is a home wireless network (such as WiFi) 506, the user may optionally connect the HEG to that network 508 (see FIG. 7). Next, if the user has a home Internet connection 510, the HEG can be connected to this network 512 (see FIG. 8). Once these steps are accomplished, the user connects the HEG to the energy supplier (e.g., Utility company) network 514 (see FIG. 9). Finally, the user connects the appliances (and other systems) to the HEG 516 (see FIG. 10).
  • 1. Connecting to the Device. (FIG. 6)
  • Turning now to FIG. 6, as mentioned above, a particular beneficial aspect of the HEG 102 is the value and flexibility obtained by not having a dedicated, integrated user interface display. Not having such a display does require initial steps in the configuration of the HEG into the home energy network (or HAN) in order to connect the HEG to the network. These steps include:
      • a. Connect the HEG to its power source (e.g., a common home power outlet). This will power the LEDs (304-308) causing them to light.
      • b. Connect an Ethernet cable from computer to device to Ethernet input (208), or attempt peer-to-peer wireless connection (e.g., wireless input 204).
      • c. Install software on a smart phone, computer or other device capable of operating software.
      • d. Use the software which employs zero-configuration networking (such as the Apple Corps Bonjour from Apple Corp) to detect the HEG. Once the HEG is detected, the user provides the HEG with a name and password to prevent others from modifying their personal settings.
    2. Connecting to Home Network (FIG. 7)
  • As mentioned above, step 508 of FIG. 5 is optional. However, for homes with WiFi network and where the HEG is attached via an Ethernet connection, step 508 is available. In this case, the Ethernet cable would be disconnected and the HEG moved to an out of the way home electrical outlet. By this action the consumer will still have access to the HEG over their home network but the HEG would not need a prime electrical outlet. If the HEG is replacing an HEM or other type of controller which has a built in or otherwise connected display and is therefore mounted on a wall for viewing of the display, the HEG in the wireless environment would of course not be mounted on a wall and could, again be, located in an out of the way electrical outlet. If the consumer does not have a home wireless network, they may continue to have the HEG connected to a router to share their Internet connection or remain directly connected to their computer if they do not have an Internet connection. If connected over WiFi the WiFi LED on the HEG will illuminate.
  • 3. Connecting to Home Internet (FIG. 8)
  • This step is also optional, and is not required for the device to work. No special configuration is required on the HEG. Depending on the security implemented on the consumer's Internet connection, some modification to their router and/or firewall may be required. In some instances the use of the HEG may be advantageous over a “Cloud Computing” model for home energy control, as that the data storage for the HEG is local.
  • 4. Connecting to Energy Supplier Network (FIG. 9)
  • Connection steps for connecting in a typical smart meter environment and for connecting in an Internet environment are now described.
  • a. The following describes the steps to take for a typical smart meter application.
      • i. For a smart meter, either wired or wireless, the HEG will connect to the smart meter over a second network, The customer locates their install code that is displayed in their CAS. Alternatively the install code can be written on the HEG or supplied with its documentation. The customer then takes that install code and depending on their Utility either enters the install code into a browser window or they call their Utility's Customer Service Center.
      • ii. Also they will add identifying information on the home that the HEG is in. Depending on the sophistication of the utility network, they may need to enter their address, account number off their bill, or they may need to call and get a special code to identify them.
      • iii. Once this is complete, a command is sent from the CAS (e.g., of the software added to the homeowner's computing device) to the HEG over the IP Network to have the HEG start the joining process on the Utility network.
      • iv. Once the appropriate security has been negotiated, the HEG will send a confirmation back to the CAS over the first IP network to indicate that the connection has been made.
      • v. The HEG will also turn the Utility Network LED ON to notify the customer that it is connected. This allows for the customer to determine the state of the network just by glancing at the HEG, without connecting an I/O device.
      • vi. The HEM will determine which of the devices on the Utility network is the homes billing meter. Multiple devices could say that they are a meter.
        • 1. This is simplest if there is only one meter on the Utility network, but there may be more (i.e., there may be sub-meters).
        • 2. Typically if there is a single device that is a meter and a Utility Services Interface (USI), the source of energy information (price load control commands etc.). That is the billing meter, although in some areas there is a separate device that acts as the Utility Services Interface (USI).
        • 3. If there are two devices that both are meters and neither is the USI, the HEG has to dig deeper. For example a plug-in hybrid electric vehicle (PHEV) charger could be on the Utility network as a meter and as a load control device, so it could be turned off during a grid emergency. Then the HEG would assign the one that is not a load control device as the Utility meter. It is noted some meters have disconnect switches installed inside of them, even in this case, the utility typically does not provide control of that switch to the HAN, but only on its backhaul network.
      • vii. Any devices that are found by the HEG that are not the Utilities (revenue) meter are saved for configuring as part of the home network.
  • b. For Internet based energy supplier information.
      • i. In this case the install code will typically not be required, since the Utility network is not being used. The customer will start by entering identifying information on the home that the HEG is in into a CAS window. Depending on the sophistication of the utility network, they may need to enter their address, account number off their bill, or they may need to call and get a special code to identify them. The may also have to enter a specific URI that indicates where to get the pricing information.
      • ii. Once this is complete, an XML message command will be sent from the CAS to the HEG over the IP Network to have the HEG contact the utility information page over the internet.
      • iii. Once the appropriate security has been negotiated, the HEG will send a confirmation back to the CAS over the first IP network to indicate that the connection has been made.
    5. Connecting Appliances to Network. (FIG. 10)
  • Typically appliances will be installed on a second network that is entirely maintained by the homeowner. The ZigBee network is used for this purpose in the exemplar, but that is not critical to the invention. Some devices, such as a Thermostat, or PHEV charger may be tied directly to the Utility network in the same manner as the HEG, if for instance, the PHEV qualifies for a different rate or the customer is getting a credit for allowing the Utility to control their HVAC. In this case the consumer can skip directly to step vi.
      • i. The customer will enter the install code of the device into a CAS window: the CAS will then transfer this message to the HEG over the first IP network.
      • ii. The HEG will create the third network and look for a device that is attempting to join. The third (3rd) network LED will flash.
      • iii. The customer will then be asked to press a button or take similar action on the device to tell it to join the network. The precise action to take is dependent on the devices instructions.
      • iv. The HEG will exchange security information over the third network with the device and compare it with the information received over the first network. If the information indicated the device is to be trusted, it is let onto the network. In this case the third (3rd) network LED will be lit.
      • v. The HEM will detect that there is a device on the network and will gain basic information about the device. The device will provide some configuration data, for example that it is a washer, a water heater, or that it is a load control device or a meter.
      • vi. The HEM will bring up a list of devices that it has found. For ease of identifying the devices, it is easiest if the consumer adds all the devices individually and fills in the identifying information on each as it is found. The consumer can also add a user-friendly name to his device at this time to make it easier to identify in the future.
        • 1. For a device with a device type of appliance, the consumer may need to add a name like refrigerator, or dryer.
        • 2. If there are multiple thermostats, the consumer may label one as upstairs and one as downstairs so that they can control them independently.
        • 3. Some devices will be added just as a meter. For example one such device may be a meter on a solar or wind generation panel. The customer will have the opportunity to select the identity of the device from a list. Based on this selection the HEG will identify the device as a load or source. This is important later when creating reports, because loads are a subset of the revenue meter, but the sources are additions to the revenue meter.
        • 4. Storage batteries will need to be identified as such so that the HEM can read a field to indicate direction of power flow. While current standards have this field as optional, it is assumed that a storage device would support it.
      • vii. The above steps can be completed as many times as the consumer desires, to add all of the devices they desire to the network. In addition to devices mentioned above, a whole host of home automation devices can be added, including but not being limited to motion sensors, door sensors, lighting controls, switches, smart plugs, bathroom scales. Anything which can function by turning on/off, adjusting up or down, or provides information on the amount of something can be easily integrated into the data structures of the HEG.
    6. Connecting to an External Server.
  • Just because the consumer does not have to use a cloud-computing device, does not mean that it cannot be done. For example, Google Inc. has a Google Power Meter (GPM) service. On the consumers CAS, they could select connect to GPM, and the data could be ported to the cloud server. Either the consumer or the cloud server may select only to accept a portion of the data. For example, the consumer may select to pass the utility power meter to the cloud server, so he can access it from work, or the cloud server may limit the consumer to two devices with 15 minute increments between points.
  • 7. Connecting Zigbee Device
  • Numerous commercial devices are available for measuring and controlling plug loads and larger loads, as well as ZigBee home automation for controlling lights, security and comfort. One such example is the ZBLC30-Dual (30/15A) Relay with energy meter. This ZigBee 110/220V Dual-relay (30/15A) describes itself as a controller with energy meter which remotely controls high current heavy loads such as water heaters, pool pumps, pool heaters, electric vehicle charges, air conditioners, etc. Using the wireless ZigBee protocol allows the switch to constantly measure the power delivered to the load and report various parameters such as real and apparent power based on high accuracy industry standards. This makes possible the intelligent management of large appliances. Provided with both normally open (NO) and normally closed (NC) contacts for maximum flexibility including fail-safe configurations.
  • 8. Connecting an External Device.
  • There are numerous devices available to consumers which have Ethernet or WiFi capabilities. For example a Pentair pool controller from Pentair Water Pool and Spa, or an alarm system controller from Smart Home, are just two examples.
  • By use of a special purpose application program “APP” these and other such devices can communicate with the consumer's energy management system so that they can make adjustments to all of the systems in one place and set their own priorities. These apps are loaded by the same update program which manages the HEG software.
  • Turning now to the operation of the HEG, set out below are examples of various data flows which can be obtained by use of the HEG.
  • 1. Power Consumption Data from Meter to Database.
      • a. HEG sets up a timer.
      • b. Periodically pings meter for consumption on 2nd network.
      • c. Stores consumption data in data base.
    2. Price Signal to an Appliance Using.
      • a. HEG receives a price schedule or price change from Utility over 2nd network.
      • b. HEG stores price data in table in memory for future use in calculating cost reports.
      • c. HEG reviews scheduling priorities received from consumer over 1st interface.
      • d. HEG sends load shed command to appliance or system (e.g, pool pump disconnect box) over 3rd network.
    3. Utility Direct Load Control Command to Load Control Box on a Pool Pump.
      • a. HEG receives a price schedule or price change from Utility over 2nd network.
      • b. HEG reviews scheduling priorities received from consumer over 1st interface.
      • c. HEG sends load shed command to pool pump disconnect box over 3rd network.
        4. Power Consumption from a Smart Appliance to Database a. HEG sets up a timer.
      • b. Periodically pings meter for consumption on 2nd network.
      • c. Stores consumption data in data base.
    5. Daily Power Consumption Cost Chart to Hand Held Device. (FIG. 11)
      • a. Handheld contacts HEG over 1st Interface (WiFi), sending scripted request for data.
      • b. HEG reviews database and assembles data requested. Either the HEG could retain cost data in a single table, or it could pull consumption and price data from separate tables and combine into cost data.
      • c. HEG formats data for report using open scripting commands such as XML
      • d. HEG sends requested information to Handheld over 1st interface.
        6. Power Consumption Data from HEG to External Server.
      • a. Consumer sets up conditions for transmitting data to external server over 1st interface.
        • i. Consumer selects server from list or types in URL
        • ii. Consumer selects how frequently data is to be ported
        • iii. Consumer selects which data is to be ported
      • b. HEG sets up timer to meet consumer's request.
      • c. HEG assembles the subset of data requested by the consumer and formats for transmission on Internet.
      • d. HEG posts data to webserver that consumer has selected.
        7. Message from Utility to Computer Display.
      • a. HEG receives text message from Utility over 2nd interface.
      • b. HEG reviews instructions from consumer on where Utility messages should go (Computer screen, They inostat Screen, TV Set, Hand Held, Dedicated energy display) received over 1st interface.
      • c. HEG formats message appropriately for Interface and pushes message to appropriate display device.
  • Once the consumer has the HEG connected to meters and devices and collecting data they can start to take advantage of its capabilities. A particular benefit of this system, which uses the HEG without a dedicated or integrated display, is the ability to use a high quality display to view data and interact with appliances without having to pay for it separately. Many consumers already have large displays of 17″, 35″, even 52″ diagonals that they use for entertainment systems. Many of these devices already are provided with Web CASs. Accessing the electricity consumption of a home on a TV screen will provide a more readable display of their consumption habits to the consumer than the small monochrome in-home displays that Utilities have been using in pilots. In addition being able to look at the change in energy consumption when you turn on a range or dryer, the present design provides consumers with an increased awareness of where there energy dollar is going. Because the consumer displays (e.g., TVs, computers, smart phones) are adapted to graphical display, they are well suited to display this type of information.
  • This improved interface also allows the consumer to fine tune their response for different appliances with more detail than was possible over a typical appliance control screen. This customization can be done either in conjunction with energy prices, weather information, time of day, occupancy or other external parameter, or just as a user defined rule without any outside parameters.
  • A First Example
  • A dishwasher cycle is delayed because of high energy costs. However the water heater is not heating either. The HEG provides the consumer with the option of waiting until the water heater has caught up before starting the dishwasher.
  • Another dishwasher option: The consumer can determine to not allow (or always require) heated dry, extra pre-washes, or extra heat on a dishwasher at any time, despite what is selected at the controls of the dishwasher. This feature may be valuable for people whose children are assisting with meal clean up.
  • A Second Example
  • The consumer starts their dryer in a delay start mode, but before the delay time is completed energy price goes up. The consumer will be asked if they still want the dryer to start when scheduled.
  • An additional dryer example is to limit the maximum heat regardless of the energy level selected. This balance of saving energy at the expense of drying time could be made at any time, or could be done to prevent children or spouse from damaging garments by drying at too high a temperature.
  • An example of using weather is to prohibit dryer operation when the external temperature was above 80 degrees to avoid competing with the air conditioning, or to prohibit dryer use if the sun was shining and line-dry clothes instead.
  • A Third Example
  • The consumer can automate the decision for which of various modes he would like his water heater to operate in. Depending on the water heater, the modes that can be selected from include: Electric Resistive Heaters Cal Rod, Electric Heat Pump, Gas, Solar, and Off. He can use electric price, weather, gas price and home occupancy to select from.
  • A washing machine example. The consumer could use this feature to control which temperatures can be selected, or prohibit using the washer at certain electric costs.
  • The improved user interface is also an advantage when programming devices. Programmable thermostats are often hard to program via their limited user interfaces. For example, you have to push the menu button twice, then the left button, then the down button to set the hour, then the left button, until a full schedule of 7 days with 4-6 events per day have been loaded. The user interface on the HEG with a computer or smartphone can display it graphically. Because the consumer is familiar with the interface, the commands are more intuitive. They can drag and drop changes of times, and copy and paste of one days schedule to a different day. Once they are happy with the schedule, they can save the whole schedule and then send it to the HEG over a high data rate Ethernet/WiFi connection. The HEG will save the schedule internally. A customer can build a number of schedules. Winter (Heating), Summer (Cooling), Summer Vacation (Home empty, cool just slightly, circulate outside air at night); Summer Kids Home (Cool During the day) etc. After the customer selects one to load, the BEG loads the schedule to the thermostat. Thereafter the customer can change schedules and return to the original schedule without needing to reenter information.
  • Turning now to FIG. 12 shown is an example of the data portion of a message payload that could be used to send a schedule to a thermostat. Appropriate headers and checksum fields can be added based on the exact communication protocol established.
  • The row Bytes is the size of the field. The Data Type and Field Name describe the type of data in each field. The schedule consists of a series of Transition times, high set points, and low set points. Each set point is scheduled to be in effect until the next transition. The variable field can contain multiple transitions until a final (nth) transition for a given day. At midnight the schedule will continue the prior days last transition until the first transition of the new day. The Day of Week field identities the day that is being scheduled. Where Day 0 is Sunday, Day 1 is Monday, Day 2 is Tuesday etc. Alternatively a bitmap field could be used to set the same schedule into multiple days simultaneously. The variable field can contain repeated Transitions.
  • The example of a thermostat programming is not limited to a thermostat, but could be included with anything that normally runs on a schedule. A different example could be a pool pump and spa controller, where high set point is spa temp and low set point is the pool temp.
  • Another application is setting pool pump run times, where the high and low set points can be set at 0 and 100 to control off and on. A variable speed controller could use 1-99 to indicate a percentage of full run.
  • This on off scheduling could also be used with a water heater controller so it would not maintain water temperature when the homeowner is scheduled to be at work.
  • The HEG relies on a number of different software sets. There is software on the HEG itself. There is a second piece of software on the desktop or laptop computer used to configure the HEG and gather data from it. There is a third piece of software on the smart phone. The phone and computer may be further defined by the operating system, or may take advantage of a platform like Java that allows the programs to operate on multiple operating systems. Each of these can be upgraded independently of each other. The desktop (or laptop) and smart phone Apps also have a service for the HEG. They can ping a server (e.g., if from General Electric, a GE server) every day checking for the latest software release. As new software becomes available, either to correct issues or add features, they can down load the newest HEG software and the push it down to the HEG. This way the software sets can be upgraded independently of each other.
  • Once the HEG knows which appliances are on the network, it can also check the server for updates for those devices, and download that software if needed.
  • In addition, the present system allows for provisioning (i.e., preparing the system to accept new services) whereby special purpose software can be downloaded. When the customer buys a new washer, and enters its model. The software can contact the GE server, and be given an app to download. This app allows the consumer to set more detailed control of the appliance. It would know for instance this particular washer has five wash temperatures. It would then provide the customer with the opportunity to customize their wash experience. For example the customer could set the washer to not ever allow sanitation cycles and only allow hot wash when electric prices are at or below a threshold price (e.g., <$0.15 a kWhr). Alternatively the customer may decide that since they are on a gas water heater, the HEG should not control water temp when electric price changes. Another function that the washer could have is a delayed start feature. If the washer is in the delayed start, the customer could (through the HEG) either tell the washer to start now, or to delay its start even longer.
  • Another specific example of software that can be downloaded is monitoring software. This software could be loaded as part of registering the appliance, or the consumer could download and run as part of troubleshooting an issue before deciding to schedule a service call. Either on a preventative basis or in response to a service issue, specific software could be used that checks for issues in the appliance. A fairly simple implementation would be to have the software check for service error codes and present them. Most major appliances with electronic controls have fault code embedded. Fault codes can include things like “excessive fill time” on a clothes washer, “detergent tank empty” on a dishwasher, etc.
  • A more elaborate appliance can be provided with power monitoring features that would have the appliance check different components and determine if the power draw characteristics are correct. Such power monitoring could be performed by a sub-meter device having a sensor for collecting data from a power supplying conductor delivering power to the appliance. The sensor can be configured to collect data relating to electrical usage of the appliances components and/or properties of the power provided to the device via the power supplying conductor.
  • With reference to FIG. 13, a home energy management system 700 includes an energy consuming device, in the form of an appliance 702, a sub-meter device 704 and an HEG 706. Power is supplied to the appliance 702 via a power supplying conductor 710 that delivers power from a power source 712, such as a residential distribution panel (for hardwired appliances) or an electrical outlet, for example. Each of the components can be configured to communicate with the HEG 706 as described previously. As will be appreciated, the power supplying conductor 710 supplies power directly to the appliance 702 and is an end-of-line (i.e., terminal) conductor such that power delivered by the power supplying conductor 710 is only used by the appliance 702 (in atypical installation). In FIG. 13, the sub-meter device 704 is a module that can be added to a home energy management network. In this regard, the sub-meter 704 can be a plug module (e.g., a wall-wort) that plugs into a wall outlet and includes an outlet for receiving a plug from the appliance (or other device.) Alternatively, the sub-meter can be included as part of a device's power supply cord, or as a stand-alone unit. With further reference to FIG. 14, the sub-meter 704 can also be integrated into a control panel 716 of the appliance 702, or provided on a daughter panel acting as a slave to the control panel.
  • Turning now to FIG. 15, the details of the exemplary sub-meter 704 will be described. The sub-meter device 704 includes at least one sensor 724 for collecting data relating regarding the supply of power delivered to the appliance/energy consuming components, including real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power. The sensor 724 can be at least one of a current transformer, Rogowski coil, shunt resistor, or hall effect sensor, for example. The data collected by the sensor 724 is read by a processor 728 which is configured to then display the information on a display 734 of the device 704 and/or communicate the data via a communication interface 738 to another device (typically the HEG) for use by that device in connection with the control of the appliance within the home energy management system. As will be appreciated, the sub-meter 704 may also include additional hardware such as memory, additional communication interfaces (e.g., wi-fi, Bluetooth, Ethernet, etc) for communicating with additional devices or the appliance itself, a controller, etc.
  • Since the sub-meter 704 can collect real-time data relating to the operation of the appliance, it is uniquely positioned to perform diagnostics on the appliance or other device to which it is attached. For example a refrigerator “knows” that it has a 600 W defrost heater. During defrost, the sub-meter measures the power consumption of just the defrost circuit and reads 0 watts. This would be an indication that potentially the defrost heater had failed open. The sub-meter could similarly be configured to measure operation of various energy consuming components and/or functions of the refrigerator (e.g., lights, icemaker, ice crusher, etc.) to detect other potential problems with the unit.
  • As will be appreciated, rather than measuring each circuit within the refrigerator, another method would be to install a sub-meter that measures only the entire circuit of the appliance. A reading of 620 W could be interpreted as normal, a reading of 800 W could indicate that the defrost heater was on and the compressor was running, a condition that should not occur under normal operation. A reading of 800 W could also indicate that the wrong heater (e.g., from a different model) was installed. While a sub-meter that could monitor each circuit within the refrigerator could distinguish between these two possibilities, since the end result is a service technician needs to visit the machine it may be an appropriate cost trade off.
  • An appliance could also rely on the network for these power consumption measurement. For example the appliance (or appliance communication module) could ask the meter (or the HEG) for the whole home power consumption before starting the cycle. Again after the motor has started, and then again when the heater was turned on. If it received 2.03 kW, 2.67 kW, 6.72 kW it could assume that everything was OK. Other devices in the house transitioning at the same time would influence this measurement, for example a 5.1 kW, 5.7 kW, 6.7 kW could either mean that the heater was only drawing 1 kW or that it was drawing the correct 4 kW, but that the 3 kW air conditioner shut off at the same time. Repeated measurements over multiple cycles would be necessary to check this.
  • By sending the data from the sub-meter to the HEG, the HEG can perform such calculations. Performing the calculations in the HEG would provide an additional benefit in that if it is tracking the thermostat (which control HVAC on/off), dryer, range, and electric water heater, for example, it would be able to resolve more easily the situation where multiple devices come on and off.
  • Turning to FIG. 16, a flow chart illustrating an exemplary method of performing diagnostics using the sub-meter 704 (or other sensor) is illustrated. The method begins with process step 802 wherein a function of the device that draws an electrical load is activated. Activating a function of the device can include switching the device on, varying a speed, varying an intensity, varying a brightness, and varying a duty cycle, etc. This step can be performed by a controller associated with the device, or can be the result of a user being prompted to activate the feature (e.g., opening a refrigerator door). In process step 804, the electrical load is measured with the sub-meter device. In process step 806, the measured electrical load is then compared to a predetermined value corresponding to normal operation of the function of the device to determine if the device is operating normally. If the difference between the measured load and the predetermined value is greater than a prescribed amount, a report identifying the device and/or function, etc., is generated in process step 808. Otherwise, the method terminates. As will be appreciated, the process may repeat until all functions are tested.
  • For major appliance, the predetermined value can be stored in memory for each component or state of each component of the appliance. For a complex device, such as an inverter, the predetermined value can be calculated continually based on RPM, Phase angles, drive voltages, frequencies and other parameters which are well known to an inverter designer. Such method works well for devices with a fixed number of configurations that ship from the factory. For a thermostat that can control a number of different HVAC units, or a pool controller that can control a number of different pumps, the most effective solution may be to load the model number of the power-consuming device into the HEG. The HEG can then use its Wifi or Ethernet interface to download the expected wattage from a remote database over the internet.
  • For some devices such as fans, pumps, and compressors, the expected value is even more difficult to obtain. These devices, among others, are affected by their ambient environment. Fans and pumps are impacted by the head losses or pressure drops in the system. A washer pumping to an 8′ standpipe draws more current than a washer pumping into a 4′ standpipe. A clothes dryer attached directly to an outside wall has very low losses and is pushing a lot of air, generating a high power draw, while one with an extended duct has more losses and lower airflow resulting in a lower current draw. To some degree this change in power also depends on the design of the motor. For compressors, the power draw is dependent on the temperatures of the evaporator and condenser.
  • For a pool pump, in addition to the nameplate the pipe size is important. After the pump is installed, the HEG and/or sub-meter can measure a number of pump on/off cycles and determine a baseline power draw. As the filter gathers debris, the flow rate will decrease and the power consumption will change in predictable way. When the power consumption has changed enough, the consumer can be given an indication to backwash their filter or change the filter element. Over time the HEG can monitor the health of the appliances, either passively by looking at performance or actively by getting health, maintenance, and diagnostic info from the appliance.
  • An example of passive operation is the monitoring a dryer. The HEG can notice that the dryer says it is in high heat, but never goes over 3 kW. If this occurs on a single occasion this may be a loading or airflow condition, but if it happens repeatedly, it may be a failed open heater. In a more active role, the HEG could ping a dishwasher, and ask it for all of its error codes. The HEG can then send that information to the dishwasher manufacturer, either automatically or upon the customer's request, or make it available to the customer on a display when they call for service, thereby assisting the manufacturer in troubleshooting the unit. Alternatively, the customer could download more detailed analytical software if they were having issues with a specific appliance that could run diagnostics on the appliance and sends the results back to the manufacturer so the technician could arrive with the correct part.
  • In addition to monitoring for service, the monitoring software can also keep the consumer up to date on the status of their home. For example the time remaining on an oven self-clean, the end of cycle on a dishwasher, or the current hot water tank temperatures could be communicated to the HEG by appliances over a the low bandwidth third network. This info can then be sent to the consumer via the first interface to a WiFi enabled smart phone or Web enabled television, or possibly a Bluetooth device. It could also be sent to him outside of the hoe by email, SMS text message or similar method.
  • Another option during provisioning is to download a software set that customizes the display so that it essentially duplicates the features of the appliance, but uses large font and improved colors for people with poor visual acuity. People with vision impairment could use a 17″ screen with black numbers on a yellow background to set the temperatures on the refrigerator or schedule the self clean on an oven.
  • Other special purpose software may be offered in conjunction with a Utility company. The customer may have a special code from their Utility company which downloads a software set that tracks air conditioner thermostat setpoints and passes that information back to a Utility company server. The customer then gets a bonus for maintaining certain target temps, and by not overriding setpoint changes during grid emergencies.
  • Another set of specialty software is for commercially available devices. If the customer buys a device from a third party, they can log on and download the software that blends that device into their network. It may be lighting controls, the pool controller mentioned earlier, or a third party thermostat.
  • As mentioned in the foregoing discussion, the HEG of the present application is particularly useful in a home energy management network and may receive communication from existing controllers (such as HEMs) and/or replace the controllers (HEMS) in such networks. For example in the following Exhibit A (U.S. Ser. No. 12/559,703), which is considered part of this disclosure, describes a home energy management system having a controller which may be replaced by the HEG described above.
  • The foregoing discussion has described various aspects of the software set-up of the HEG and various operations related thereto, as for example set out in connection with the text associated with FIGS. 5-12. Exhibit B, which is considered part of this disclosure continues and expands upon that discussion.

Claims (20)

1. An energy consuming device comprising;
at least one energy consuming component;
a sensor for collecting data from a power supplying conductor delivering power to the device, the sensor configured to collect data relating to electrical usage of the at least one component and/or properties of power provided to the device via the power supplying conductor; and
a communication interface for communicating the data.
2. An energy consuming device as set forth in claim 1, wherein the sensor collects data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power.
3. An enemy consuming device as set forth in claim 1, wherein the sensor and communication interface are included in a sub-meter module.
4. An energy consuming device as out forth in claim 1, wherein the sensor includes at least one of a current transformer, Rogowski coil, shunt resistor, or hall effect sensor.
5. An energy consuming device as set forth in claim 1, wherein the communication interface further comprises a display for displaying the collected data to a user.
6. An energy consuming device as set forth in claim 1, further comprising a control board for controlling at least one aspect of operation of the energy consuming device, wherein the sensor is included on the control board, or as a daughter board in communication with the control board.
7. An energy consuming device as set forth in claim 1, wherein the energy consuming device is at least one of a washer, a dryer, a refrigerator, a freezer, a cooking product, range, a water heater, dishwasher, dehumidifier, and HVAC equipment.
8. A sub-meter device for monitoring usage of an energy consuming device in a residential energy management system comprising:
a sensor for collecting data from a dedicated power supplying conductor delivering power directly to the energy consuming device; and
a communication interface for communicating the data to a remote energy management system device;
wherein the sensor is configured to collect data relating to electrical usage of the device and/or properties of power provided to the device via the power supplying conductor.
9. A sub-meter device as set forth in claim 8, wherein the sensor collects data relating to at least one of real power consumption, reactive power consumption, line frequency, line voltage, power factor, leading/lagging voltage-current comparison, and apparent power.
10. A sub-meter device as set forth in claim 8, wherein the at least one sensor and communication interface are contained in a common housing.
11. A sub-meter device as set forth in claim 8, further comprising a second communication interface for communicating with the energy consuming device.
12. A sub-meter device as set forth in claim 8, wherein the sensor and communication interface are contained in a modular housing having at least two prongs designed to be plugged into a wall outlet for receiving power, and having a socket for receiving the power supplying conductor for transmitting power to the energy consuming device, whereby the common housing can be plugged into a wall socket and the energy consuming device can be plugged into the socket of the housing.
13. A sub-meter device as set forth in claim 8, wherein the sensor includes at least one of a current transformer, Rogowski coil, shunt resistor, or hall effect sensor.
14. A sub-meter device as set forth in claim 8, further comprising a display for displaying the collected data to a user.
15. A sub-meter device as set forth in claim 8, wherein the sensor is integrated into a power supply cord of the energy consuming device.
16. A residential energy management system comprising:
an energy consuming device;
a power supplying conductor connected to the energy consuming device for delivering power thereto;
a sub-meter device as set forth in claim 8;
an energy management controller configured to control at least one aspect of operation of the energy consuming device;
wherein the at least one sub-meter device includes a communication interface for communicating the collected data to the energy management controller for use by the energy management controller in controlling the energy consuming device.
17. A residential energy management system as set forth in claim 16, wherein the energy consuming device is an appliance, and the sub-meter device is integral with the appliance.
18. An energy management controller for a residential energy management system comprising:
a processor; and
a communication interface for communicating with a sub-meter device as set forth in claim 8.
19. An energy management controller as set forth in claim 18, wherein the processor is configured to control at least one aspect of operation of the energy consuming device in response to data received from the sub-meter device.
20. A method of managing a residential energy consuming device comprising:
using a sensor to collect data from a power supplying conductor delivering power to the energy consuming device;
communicating the collected data to an energy manage ent controller remote from the sensor; and
controlling at least one aspect of the operation of the energy consuming device in response to the collected data;
wherein the sensor is configured to collect data relating to electrical usage of the device and/or properties of power provided to the device via the power supplying conductor.
US12/853,342 2010-02-15 2010-08-10 Sub-metering hardware for measuring energy data of an energy consuming device Abandoned US20110202194A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/853,342 US20110202194A1 (en) 2010-02-15 2010-08-10 Sub-metering hardware for measuring energy data of an energy consuming device
AU2011205065A AU2011205065A1 (en) 2010-08-10 2011-07-28 Sub-metering hardware for measuring energy data of an energy consuming device
CA2747459A CA2747459A1 (en) 2010-08-10 2011-07-28 Sub-metering hardware for measuring energy data of an energy consuming device
EP11175691A EP2418462A1 (en) 2010-08-10 2011-07-28 Sub-metering hardware for measuring energy data of an energy consuming device
CN2011102577429A CN102435870A (en) 2010-08-10 2011-08-10 Sub-metering hardware for measuring energy data of an energy consuming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30471210P 2010-02-15 2010-02-15
US12/853,342 US20110202194A1 (en) 2010-02-15 2010-08-10 Sub-metering hardware for measuring energy data of an energy consuming device

Publications (1)

Publication Number Publication Date
US20110202194A1 true US20110202194A1 (en) 2011-08-18

Family

ID=44370209

Family Applications (9)

Application Number Title Priority Date Filing Date
US12/853,342 Abandoned US20110202194A1 (en) 2010-02-15 2010-08-10 Sub-metering hardware for measuring energy data of an energy consuming device
US12/853,334 Abandoned US20110202293A1 (en) 2010-02-15 2010-08-10 Diagnostics using sub-metering device
US12/893,139 Abandoned US20110202195A1 (en) 2010-02-15 2010-09-29 Low cost home energy manager adaptor
US12/983,425 Active 2031-03-27 US8621097B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system
US12/983,446 Active 2031-06-05 US8295990B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system with a scheduling capability
US12/983,471 Active US8977731B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system providing user control arrangement in a plurality of modes
US12/983,512 Active US8565928B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system and method for transmitting messages among a plurality of communication networks
US12/983,533 Active 2031-02-15 US8775848B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system configured in a unitary housing having a displayless configuration
US12/983,488 Active US9218631B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system defined in a single unitary housing

Family Applications After (8)

Application Number Title Priority Date Filing Date
US12/853,334 Abandoned US20110202293A1 (en) 2010-02-15 2010-08-10 Diagnostics using sub-metering device
US12/893,139 Abandoned US20110202195A1 (en) 2010-02-15 2010-09-29 Low cost home energy manager adaptor
US12/983,425 Active 2031-03-27 US8621097B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system
US12/983,446 Active 2031-06-05 US8295990B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system with a scheduling capability
US12/983,471 Active US8977731B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system providing user control arrangement in a plurality of modes
US12/983,512 Active US8565928B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system and method for transmitting messages among a plurality of communication networks
US12/983,533 Active 2031-02-15 US8775848B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system configured in a unitary housing having a displayless configuration
US12/983,488 Active US9218631B2 (en) 2010-02-15 2011-01-03 Low cost and flexible energy management system defined in a single unitary housing

Country Status (2)

Country Link
US (9) US20110202194A1 (en)
CA (6) CA2752946C (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110264286A1 (en) * 2010-04-27 2011-10-27 Jong Soo Park Smart control device
US20110299684A1 (en) * 2010-06-03 2011-12-08 Digi International Inc. Smart energy network configuration using an auxiliary gateway
US20120029713A1 (en) * 2010-08-02 2012-02-02 General Electric Company Load shed system for demand response without ami/amr system
US20120065806A1 (en) * 2011-05-06 2012-03-15 General Electric Company Method for measuring energy usage in an appliance
US8170722B1 (en) * 2010-12-09 2012-05-01 Elbex Video Ltd. Method and apparatus for coding and linking electrical appliances for control and status report
US20120116597A1 (en) * 2010-11-09 2012-05-10 General Electric Company Gateway mirroring of metering data between zigbee networks
US20120131217A1 (en) * 2009-06-02 2012-05-24 Schneider Electric USA, Inc. Methods of integrating multiple management domains
CN102692076A (en) * 2012-06-13 2012-09-26 广东志高空调有限公司 Air source heat pump water heater with cloud function
US20120330472A1 (en) * 2011-06-21 2012-12-27 General Electric Company Power consumption prediction systems and methods
WO2013066068A1 (en) * 2011-11-03 2013-05-10 주식회사 우암코퍼레이션 Integrated terminal and method for controlling an ami system
US20130178990A1 (en) * 2011-07-13 2013-07-11 Bradley Kayton Triangulated Rules Engine
WO2013118133A1 (en) * 2012-02-07 2013-08-15 Logica Private Limited System and apparatus for managing product storage devices
WO2013182226A1 (en) * 2012-06-05 2013-12-12 Abb Ab Electricity meter and method performed in such electricity meter
US9031702B2 (en) 2013-03-15 2015-05-12 Hayward Industries, Inc. Modular pool/spa control system
US9341390B2 (en) 2012-07-05 2016-05-17 A. O. Smith Water Products Company B.V. Tap water device for storing and heating tap water
WO2017004246A1 (en) * 2015-06-29 2017-01-05 Iotas, Inc Multi-factor provisioning of wireless devices
WO2017004386A1 (en) * 2015-06-30 2017-01-05 Cross Country Home Services, Inc. Systems and methods for efficiently handling appliance warranty service events
US9647495B2 (en) 2012-06-28 2017-05-09 Landis+Gyr Technologies, Llc Power load control with dynamic capability
US20170213451A1 (en) 2016-01-22 2017-07-27 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
WO2017209915A1 (en) * 2016-06-02 2017-12-07 Elbex Video Ltd. Apparatus and method for powering a coil of latching relays and hybrid switches
US9980352B2 (en) 2013-03-15 2018-05-22 Kortek Industries Pty Ltd Wireless light pairing, dimming and control
US10122171B2 (en) 2013-05-31 2018-11-06 Kortek Industries Pty Ltd Wireless power control and metrics
US10466277B1 (en) 2018-02-01 2019-11-05 John Brooks Scaled and precise power conductor and current monitoring
US10770918B2 (en) 2017-07-20 2020-09-08 Tennessee Technological University Foundation Apparatus, system, and method for integrated real time low-cost automatic load disaggregation, remote monitoring, and control
US20200319621A1 (en) 2016-01-22 2020-10-08 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US20210270876A1 (en) * 2018-07-12 2021-09-02 Source to Site Accessories Limited System for identifying electrical devices

Families Citing this family (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080074285A1 (en) * 2006-08-31 2008-03-27 Guthrie Kevin D Interface between meter and application (IMA)
ATE553629T1 (en) * 2007-06-14 2012-04-15 Siemens Ag METHOD AND SYSTEM FOR OPERATING A COMMUNICATIONS NETWORK
US9092047B2 (en) * 2010-06-04 2015-07-28 Broadcom Corporation Method and system for content aggregation via a broadband gateway
US9818073B2 (en) 2009-07-17 2017-11-14 Honeywell International Inc. Demand response management system
US9137050B2 (en) 2009-07-17 2015-09-15 Honeywell International Inc. Demand response system incorporating a graphical processing unit
US9124535B2 (en) 2009-07-17 2015-09-01 Honeywell International Inc. System for using attributes to deploy demand response resources
US8626344B2 (en) 2009-08-21 2014-01-07 Allure Energy, Inc. Energy management system and method
US9813383B2 (en) * 2009-08-18 2017-11-07 Control4 Corporation Systems and methods for re-commissioning a controlled device in a home area network
US9209652B2 (en) 2009-08-21 2015-12-08 Allure Energy, Inc. Mobile device with scalable map interface for zone based energy management
US8498749B2 (en) 2009-08-21 2013-07-30 Allure Energy, Inc. Method for zone based energy management system with scalable map interface
US9838255B2 (en) 2009-08-21 2017-12-05 Samsung Electronics Co., Ltd. Mobile demand response energy management system with proximity control
US9367825B2 (en) 2009-10-23 2016-06-14 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model
US8457802B1 (en) 2009-10-23 2013-06-04 Viridity Energy, Inc. System and method for energy management
US9159042B2 (en) 2009-10-23 2015-10-13 Viridity Energy, Inc. Facilitating revenue generation from data shifting by data centers
US9159108B2 (en) 2009-10-23 2015-10-13 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets
US8892264B2 (en) * 2009-10-23 2014-11-18 Viridity Energy, Inc. Methods, apparatus and systems for managing energy assets
WO2011087164A1 (en) * 2010-01-14 2011-07-21 엘지전자 주식회사 Customer service system of home appliances using smart grid
US9065668B1 (en) * 2010-02-02 2015-06-23 Qualcomm Incorporated Distributed bandwidth control in a communication network
EP2536063B1 (en) * 2010-02-11 2018-06-20 LG Electronics Inc. Power management network system
US20110202194A1 (en) * 2010-02-15 2011-08-18 General Electric Company Sub-metering hardware for measuring energy data of an energy consuming device
EP3800407A1 (en) * 2010-03-15 2021-04-07 Klatu Networks, Inc. Method for monitoring, inferring state of health, and optimizing efficiency of refrigeration systems and corresponding system
US9056212B2 (en) * 2010-03-25 2015-06-16 David H. C. Chen Systems and methods of property security
EP2375527B1 (en) * 2010-04-12 2018-09-19 Samsung Electronics Co., Ltd. Demand Response Method and Demand Response System
DE102010028638A1 (en) * 2010-05-05 2011-11-10 BSH Bosch und Siemens Hausgeräte GmbH A method for supplying a household electrical appliance from a low voltage power supply
US20110276289A1 (en) * 2010-05-07 2011-11-10 Samsung Electronics Co., Ltd. Power monitoring apparatus for household appliance
FR2961647B1 (en) * 2010-06-16 2014-09-05 Actility METHOD FOR MANAGING AN OBJECT USING A MANAGEMENT BRIDGE USING A TELECOMMUNICATIONS NETWORK
EP2584791B1 (en) * 2010-06-18 2016-12-14 Panasonic Intellectual Property Management Co., Ltd. Communication apparatus and communication method
EP2587731B1 (en) * 2010-06-26 2016-09-28 LG Electronics Inc. Method for controlling component for network system
US20130204449A1 (en) * 2010-06-26 2013-08-08 Lg Electronics Inc. Network system
US20120021770A1 (en) 2010-07-21 2012-01-26 Naqvi Shamim A System and method for control and management of resources for consumers of information
US9232046B2 (en) 2010-07-21 2016-01-05 Tksn Holdings, Llc System and method for controlling mobile services using sensor information
US9210528B2 (en) 2010-07-21 2015-12-08 Tksn Holdings, Llc System and method for control and management of resources for consumers of information
WO2012148597A1 (en) 2011-04-29 2012-11-01 Electric Transportation Engineering Corporation, D/B/A Ecotality North America Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same
WO2012148596A1 (en) * 2011-04-29 2012-11-01 Electric Transportation Engineering Corporation, D/B/A Ecotality North America System for measuring electricity and method of providing and using the same
US8599008B2 (en) * 2010-07-26 2013-12-03 General Electric Company Appliance monitoring system and method
AU2011284745A1 (en) * 2010-07-26 2013-03-14 Blue Line Innovations Inc. System and method for on-location resource consumption monitoring and management
DE102010039834A1 (en) * 2010-08-26 2012-03-01 BSH Bosch und Siemens Hausgeräte GmbH household appliance
US8847783B2 (en) * 2010-08-27 2014-09-30 Digi International Inc. High speed utility backhaul communication system
US8688280B2 (en) * 2010-08-30 2014-04-01 Watkins Manufacturing Corporation Internet based spa networking system having wireless spa nodes
US20120083934A1 (en) * 2010-09-30 2012-04-05 Sharp Laboratories Of America, Inc. Monitoring and controlling energy in an office environment
KR101820738B1 (en) * 2010-10-05 2018-01-23 삼성전자주식회사 Method and system for provisioning energy profile in home area network
KR101729019B1 (en) * 2010-10-12 2017-04-21 삼성전자주식회사 Power management apparatus, power management system having power management apparatus and method for controlling the same
JP2012094077A (en) * 2010-10-28 2012-05-17 Toshiba Corp Household energy management system
DE102010043752A1 (en) * 2010-11-11 2012-05-16 Robert Bosch Gmbh Method for operating a local energy network
US8774143B2 (en) * 2010-11-18 2014-07-08 General Electric Company System and method of communication using a smart meter
US9542203B2 (en) 2010-12-06 2017-01-10 Microsoft Technology Licensing, Llc Universal dock for context sensitive computing device
US9470727B2 (en) * 2010-12-08 2016-10-18 Landis+Gyr Inc. Detection of magnetic fields using leading power factor
US8923770B2 (en) 2010-12-09 2014-12-30 Microsoft Corporation Cognitive use of multiple regulatory domains
US8792429B2 (en) 2010-12-14 2014-07-29 Microsoft Corporation Direct connection with side channel control
US8948382B2 (en) 2010-12-16 2015-02-03 Microsoft Corporation Secure protocol for peer-to-peer network
US9294545B2 (en) 2010-12-16 2016-03-22 Microsoft Technology Licensing, Llc Fast join of peer to peer group with power saving mode
US8971841B2 (en) 2010-12-17 2015-03-03 Microsoft Corporation Operating system supporting cost aware applications
US20120171955A1 (en) * 2010-12-29 2012-07-05 General Electric Company Active rf channel assignment
US20120173857A1 (en) * 2010-12-29 2012-07-05 General Electric Company Over the air appliance firmware update
WO2012093897A2 (en) * 2011-01-06 2012-07-12 엘지전자 주식회사 Laundry treating apparatus and remote controller
US9153001B2 (en) 2011-01-28 2015-10-06 Honeywell International Inc. Approach for managing distribution of automated demand response events in a multi-site enterprise
US9736789B2 (en) 2011-02-22 2017-08-15 Asoka Usa Corporation Power line communication-based local hotspot with wireless power control capability
US9257842B2 (en) 2011-02-22 2016-02-09 Asoka Usa Corporation Set-top-box having a built-in master node that provides an external interface for communication and control in a power-line-based residential communication system
US8364326B2 (en) 2011-02-22 2013-01-29 Asoka Usa Corporation Set of sensor units for communication enabled for streaming media delivery with monitoring and control of power usage of connected appliances
US8755946B2 (en) * 2011-02-22 2014-06-17 Asoka Usa Corporation Method and apparatus for using PLC-based sensor units for communication and streaming media delivery, and for monitoring and control of power usage of connected appliances
US8644166B2 (en) 2011-06-03 2014-02-04 Asoka Usa Corporation Sensor having an integrated Zigbee® device for communication with Zigbee® enabled appliances to control and monitor Zigbee® enabled appliances
US9454217B1 (en) * 2011-03-03 2016-09-27 Hannext, LLC Monitoring, controlling and reducing vampire power using a central controller in a network of power switch routers
US8830039B1 (en) * 2011-04-19 2014-09-09 Marvell International Ltd. Method and apparatus for providing communications between an electric vehicle and a charging station
KR101894389B1 (en) * 2011-04-21 2018-10-05 삼성전자주식회사 Method and apparatus for connecting between devices
US8924540B2 (en) * 2011-04-26 2014-12-30 Telect, Inc. Telecommunication energy management system
US8837338B2 (en) 2011-04-26 2014-09-16 Telect, Inc. Telecommunication wireless control system
US20150045977A1 (en) * 2011-06-17 2015-02-12 Mingyao XIA Method and apparatus for using plc-based sensor units for communication and streaming media delivery, and for monitoring and control of power usage of connected appliances
WO2013003813A1 (en) 2011-06-30 2013-01-03 Lutron Electronics Co., Inc. Device and method of optically transmitting digital information from a smart phone to a load control device
US9544977B2 (en) 2011-06-30 2017-01-10 Lutron Electronics Co., Inc. Method of programming a load control device using a smart phone
WO2013012547A1 (en) 2011-06-30 2013-01-24 Lutron Electronics Co., Inc. Load control device having internet connectivity, and method of programming the same using a smart phone
WO2013033257A1 (en) 2011-08-29 2013-03-07 Lutron Electronics Co., Inc. Two-part load control system mountable to a single electrical wallbox
WO2013033469A1 (en) 2011-08-30 2013-03-07 Allure Energy, Inc. Resource manager, system, and method for communicating resource management information for smart energy and media resources
GB201115181D0 (en) * 2011-09-02 2011-10-19 Univ Abertay Dundee Domestic utility monitoring apparatus
US20130066482A1 (en) * 2011-09-13 2013-03-14 Samsung Electronics Co., Ltd. Apparatus and method for executing energy demand response process in an electrical power network
US20130073705A1 (en) * 2011-09-20 2013-03-21 Honeywell International Inc. Managing a home area network
EP2759161B1 (en) * 2011-09-24 2016-03-09 Kool Koncepts Limited Energy management system
US8478450B2 (en) 2011-10-04 2013-07-02 Advanergy, Inc. Power control system and method
US8649883B2 (en) * 2011-10-04 2014-02-11 Advanergy, Inc. Power distribution system and method
US10200476B2 (en) * 2011-10-18 2019-02-05 Itron, Inc. Traffic management and remote configuration in a gateway-based network
FR2981517B1 (en) * 2011-10-18 2015-02-13 2Linku MODULAR POWER SUPPLY SYSTEM FOR ELECTRICAL APPLIANCES
WO2013058967A1 (en) * 2011-10-21 2013-04-25 Nest Labs, Inc. Automated control-schedule acquisition within an intelligent controller
US9479847B2 (en) * 2011-11-03 2016-10-25 Schneider Electric USA, Inc. Wireless home energy monitoring system
CN102427469B (en) * 2011-11-07 2015-07-22 上海网达软件股份有限公司 System and method for using handheld electronic device to control target equipment
US8515383B2 (en) 2011-11-10 2013-08-20 General Electric Company Utility powered communications gateway
US9156368B2 (en) 2011-11-11 2015-10-13 San Diego Gas & Electric Company Method for detection of plug-in electric vehicle charging via interrogation of smart meter data
US20140330399A1 (en) * 2011-11-28 2014-11-06 Kyocera Corporation Power control apparatus, power control system, and power control method
US9264238B2 (en) 2011-11-29 2016-02-16 At&T Intellectual Property I, Lp Facilitating virtual personal area networks
DE102011087277A1 (en) * 2011-11-29 2013-05-29 BSH Bosch und Siemens Hausgeräte GmbH Energy management system for household appliances with a communication bridge by means of a power grid as required, as well as the associated process
TWM426233U (en) * 2011-12-06 2012-04-01 Tuton Technology Co Ltd Smart TV with built-in network sharing module
KR101844211B1 (en) * 2011-12-28 2018-05-15 삼성전자주식회사 Network system of home appliance and network set up method the same
US20130178994A1 (en) * 2012-01-11 2013-07-11 Nagaraju Valluri Power metering and load control device
US20130181839A1 (en) * 2012-01-12 2013-07-18 Zhiheng Cao Method and Apparatus for Energy Efficient and Low Maintenance Cost Wireless Monitoring of Physical Items and Animals from the Internet
US9292013B2 (en) * 2012-01-12 2016-03-22 Enerallies, Inc. Energy management computer system
AU2013210745A1 (en) * 2012-01-20 2014-08-21 Neurio Technology Inc. System and method of compiling and organizing power consumption data and converting such data into one or more user actionable formats
EP2807591B1 (en) * 2012-01-23 2018-09-26 Tata Consultancy Services Limited A method and system for monitoring the health status of electronic appliances
US20130191659A1 (en) * 2012-01-23 2013-07-25 General Electric Company Load Control of Demand Response Network Devices
US8981930B2 (en) 2012-02-07 2015-03-17 Scott Andrew Horstemeyer Appliance monitoring systems and methods
US10013677B2 (en) 2012-02-07 2018-07-03 Whirlpool Corporation Appliance monitoring systems and methods
US10817848B2 (en) 2012-02-07 2020-10-27 Whirlpool Corporation Appliance monitoring systems
WO2013123441A1 (en) * 2012-02-17 2013-08-22 Tt Government Solutions, Inc. Method and system for packet acquisition, analysis and intrusion detection in field area networks
WO2013128906A1 (en) * 2012-02-29 2013-09-06 パナソニック株式会社 Child node device for power management system and power management system
US9083811B2 (en) * 2012-03-05 2015-07-14 Qualcomm Incorporated Method and apparatus to dynamically enable and control communication link optimizations on a communication device
US9143904B2 (en) 2012-03-05 2015-09-22 Qualcomm Incorporated Method and systems to dynamically enable and control communication link optimizations on a communication device
US10452084B2 (en) * 2012-03-14 2019-10-22 Ademco Inc. Operation of building control via remote device
WO2013142432A1 (en) * 2012-03-19 2013-09-26 Emmoco, Inc. Resourcelimited device interactivity with cloud-based systems
WO2013140279A1 (en) * 2012-03-20 2013-09-26 Koninklijke Philips N.V. A system and method for creating intelligent energy billing
US9927819B2 (en) 2012-03-27 2018-03-27 Honeywell International Inc. Home energy management devices, systems, and methods
US9106631B2 (en) * 2012-03-28 2015-08-11 Honeywell International Inc. Smart meter trust center switch
US9014868B2 (en) * 2012-03-29 2015-04-21 International Business Machines Corporation Power factor
US9198204B2 (en) 2012-04-11 2015-11-24 Google Inc. Apparatus and method for seamless commissioning of wireless devices
US10075334B1 (en) * 2012-04-11 2018-09-11 Google Llc Systems and methods for commissioning a smart hub device
US10142122B1 (en) * 2012-04-11 2018-11-27 Google Llc User interfaces, systems and methods for configuring smart devices for interoperability with a smart hub device
US10397013B1 (en) * 2012-04-11 2019-08-27 Google Llc User interfaces, systems and methods for configuring smart devices for interoperability with a smart hub device
US9748771B2 (en) 2012-04-12 2017-08-29 International Business Machines Corporation Plug arrangements for alleviating peak loads
US9411323B2 (en) * 2012-04-18 2016-08-09 Tekpea, Inc. Home energy management system
US10305699B2 (en) 2012-04-18 2019-05-28 Tekpea, Inc. Device management system
KR20150004863A (en) * 2012-04-24 2015-01-13 웹튜너 코포레이션 Television adapter
TWI548996B (en) * 2012-06-01 2016-09-11 宏碁股份有限公司 Computer device
WO2013184601A1 (en) * 2012-06-04 2013-12-12 Advanergy, Inc. Power distribution system and method
WO2013184250A1 (en) * 2012-06-04 2013-12-12 Advanergy, Inc. Power control system and method
US10069332B2 (en) * 2012-06-05 2018-09-04 Centurylink Intellectual Property Llc Electrical power status indicator
TW201351107A (en) * 2012-06-07 2013-12-16 Askey Computer Corp Electronic device having heat-dissipating structure
US9123082B2 (en) * 2012-06-30 2015-09-01 At&T Intellectual Property I, L.P. Providing resource consumption recommendations
US9406094B2 (en) 2012-08-14 2016-08-02 Stem Inc. Method and apparatus for delivering power using external data
US20140081704A1 (en) 2012-09-15 2014-03-20 Honeywell International Inc. Decision support system based on energy markets
KR102010295B1 (en) * 2012-09-20 2019-10-21 엘지전자 주식회사 System for managing home appliances and method for providing push messages thereof
US9002531B2 (en) 2012-09-28 2015-04-07 Sharp Laboratories Of America, Inc. System and method for predictive peak load management via integrated load management
GB201218021D0 (en) * 2012-10-08 2012-11-21 Tayeco Ltd System interface
CN102946650A (en) * 2012-10-23 2013-02-27 华为技术有限公司 Power display method for external device, terminal and external device
US8487765B1 (en) 2012-10-24 2013-07-16 State Farm Mutual Automobile Insurance Company Method and system for a power strip with automatic equipment disconnect
CN103823539A (en) * 2012-11-19 2014-05-28 鸿富锦精密工业(深圳)有限公司 Power-off method and electronic device using same
US9389850B2 (en) * 2012-11-29 2016-07-12 Honeywell International Inc. System and approach to manage versioning of field devices in a multi-site enterprise
US9338411B2 (en) 2012-12-12 2016-05-10 King Fahd University Of Petroleum And Minerals System and method for remote utility meter reading
US9117251B2 (en) * 2012-12-18 2015-08-25 ThinkEco, Inc. Systems and methods for plug load control and management
US9375125B2 (en) 2012-12-20 2016-06-28 Whirlpool Corporation Household appliance having antennas
US9413171B2 (en) 2012-12-21 2016-08-09 Lutron Electronics Co., Inc. Network access coordination of load control devices
US10019047B2 (en) 2012-12-21 2018-07-10 Lutron Electronics Co., Inc. Operational coordination of load control devices for control of electrical loads
US20140176340A1 (en) * 2012-12-21 2014-06-26 Jetlun Corporation Method and system for powerline to meshed network for power meter infra-structure
US10244086B2 (en) 2012-12-21 2019-03-26 Lutron Electronics Co., Inc. Multiple network access load control devices
CN103093565B (en) * 2012-12-28 2015-06-03 四川九洲电器集团有限责任公司 Door magnetic anti-theft alarming device based on Zigbee
US9716530B2 (en) 2013-01-07 2017-07-25 Samsung Electronics Co., Ltd. Home automation using near field communication
WO2014108209A1 (en) * 2013-01-14 2014-07-17 Abb Ag Energy management gateway
ITBA20130006A1 (en) * 2013-01-25 2014-07-26 Cupersafety S A S Di Montanaro Giu Seppe & C HOME AUTOMATION SYSTEM CONSTITUTED BY A PLURALITY OF WIRELESS EQUIPMENT INTERCONNECTED IN A TYPE OF A SHIRT NETWORK.
US9785902B1 (en) * 2013-02-06 2017-10-10 Leidos, Inc. Computer-implemented engineering review of energy consumption by equipment
EP2954656A1 (en) * 2013-02-07 2015-12-16 Koninklijke Philips N.V. Configuring interaction control in multi-controller network
US10001790B2 (en) * 2013-02-26 2018-06-19 Honeywell International Inc. Security system with integrated HVAC control
US10063499B2 (en) 2013-03-07 2018-08-28 Samsung Electronics Co., Ltd. Non-cloud based communication platform for an environment control system
US9426603B2 (en) * 2013-03-13 2016-08-23 Silicon Laboratories Inc. System and method for using a device to operate on multiple networks
US9677907B2 (en) * 2013-03-14 2017-06-13 Itron Inc Intelligent receptacle
JP6111757B2 (en) * 2013-03-14 2017-04-12 株式会社リコー Communication system, communication terminal, and terminal program
AU2014229237C1 (en) * 2013-03-14 2016-02-11 Kool Koncepts Limited Energy management system
US10135629B2 (en) 2013-03-15 2018-11-20 Lutron Electronics Co., Inc. Load control device user interface and database management using near field communication (NFC)
US20140266592A1 (en) * 2013-03-15 2014-09-18 Digi International Inc. Network gateway system and method
CA2902474A1 (en) 2013-03-15 2014-09-18 Vivint, Inc. Using a control panel as a wireless access point
US20140304381A1 (en) * 2013-04-05 2014-10-09 Nokia Corporation Method and apparatus for communicating with smart objects
JP6073179B2 (en) * 2013-04-25 2017-02-01 京セラ株式会社 Control system, information device, and control method
US9922580B2 (en) 2013-04-30 2018-03-20 Google Llc Apparatus and method for the virtual demonstration of a smart phone controlled smart home using a website
WO2014178603A1 (en) * 2013-04-30 2014-11-06 인텔렉추얼디스커버리 주식회사 Apparatus and system for data mirror device
US9098876B2 (en) 2013-05-06 2015-08-04 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model
US9171276B2 (en) 2013-05-06 2015-10-27 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets using an engineering-based model
KR101492528B1 (en) * 2013-06-10 2015-02-12 주식회사 하이메틱스 Method for monitoring photovoltaic power generation by using rtu and wireless rtu device therefor
US20140373074A1 (en) 2013-06-12 2014-12-18 Vivint, Inc. Set top box automation
US9191209B2 (en) 2013-06-25 2015-11-17 Google Inc. Efficient communication for devices of a home network
US9531704B2 (en) * 2013-06-25 2016-12-27 Google Inc. Efficient network layer for IPv6 protocol
US9294469B2 (en) * 2013-07-03 2016-03-22 General Electric Company Systems and methods for establishing a connection between an appliance and a home energy management device
US10346931B2 (en) 2013-07-11 2019-07-09 Honeywell International Inc. Arrangement for communicating demand response resource incentives
US9691076B2 (en) 2013-07-11 2017-06-27 Honeywell International Inc. Demand response system having a participation predictor
US9989937B2 (en) 2013-07-11 2018-06-05 Honeywell International Inc. Predicting responses of resources to demand response signals and having comfortable demand responses
US10962248B1 (en) * 2013-07-15 2021-03-30 EnTouch Controls Inc. Method of auto association of HVAC energy with control signal for self diagnostics of the HVAC system
US9989265B2 (en) 2013-08-12 2018-06-05 Lawrence Halff Hot water recirculation system technologies
US9353956B2 (en) 2013-08-12 2016-05-31 Lawrence Halff Hot water recirculation system technologies
US10036572B1 (en) 2013-08-12 2018-07-31 Lawrence Halff Hot water recirculation system technologies
US9883257B2 (en) * 2013-08-14 2018-01-30 Atmel Corporation Smart grid appliance control
US9369169B2 (en) * 2013-08-19 2016-06-14 Mbit Wireless, Inc. Method and apparatus for an add-on communication device
US9965007B2 (en) * 2013-08-21 2018-05-08 N2 Global Solutions Incorporated System and apparatus for providing and managing electricity
US9306963B2 (en) 2013-08-28 2016-04-05 Empire Technology Development Llc Smart power background to validate user
US20150088442A1 (en) * 2013-09-20 2015-03-26 Panduit Corp. Systems and methods for utility usage monitoring and management
WO2015044990A1 (en) * 2013-09-27 2015-04-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information provision method, information management system, and information-terminal device
JP6259830B2 (en) * 2013-09-27 2018-01-10 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Information providing method, information management system, and information terminal device
WO2015044992A1 (en) * 2013-09-27 2015-04-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information provision method, information management system, and information-terminal device
CN105745636B (en) * 2013-11-28 2019-03-12 惠普发展公司,有限责任合伙企业 Data sharing based on cloud
US10088818B1 (en) 2013-12-23 2018-10-02 Google Llc Systems and methods for programming and controlling devices with sensor data and learning
CN106464551A (en) 2014-01-06 2017-02-22 魅力能源公司 System, device, and apparatus for coordinating environments using network devices and remote sensory information
MX363254B (en) 2014-01-06 2019-03-19 Samsung Electronics Co Ltd Star System, device, and apparatus for coordinating environments using network devices and remote sensory information.
KR101729971B1 (en) * 2014-01-23 2017-05-11 한국전자통신연구원 Apparatus and Method for Managing Energy Information Profile of Home Based on Smart Plug
EP3114410B1 (en) * 2014-02-12 2022-09-07 Taco, Inc. Residential building with hot water recirculation pump and external control
KR101859994B1 (en) * 2014-03-04 2018-05-23 한국전자통신연구원 Apparatus and method for interworking between devices without configuring, and distributed home network system using the same
CA2942104A1 (en) * 2014-03-13 2015-09-17 Kortek Industries Pty Ltd Wireless and power line light pairing, dimming and control
US9665078B2 (en) 2014-03-25 2017-05-30 Honeywell International Inc. System for propagating messages for purposes of demand response
DE102014104658B4 (en) * 2014-04-02 2016-11-24 Eaton Electrical Ip Gmbh & Co. Kg Display equipped with a wireless interface for the operating state of a switching device
US9920855B2 (en) 2014-04-04 2018-03-20 Dresser Inc. Method for transmitting data for device diagnostics and implementations thereof
US10733671B1 (en) 2014-04-25 2020-08-04 State Farm Mutual Automobile Insurance Company Systems and methods for predictively generating an insurance claim
CN104008434A (en) * 2014-06-06 2014-08-27 上海交通大学 Flexible constraint optimization method of electric power system
US9037161B1 (en) 2014-06-10 2015-05-19 Emmanuel Azih Device and methods for signal-broadcasting sockets
US9420331B2 (en) 2014-07-07 2016-08-16 Google Inc. Method and system for categorizing detected motion events
US9552587B2 (en) 2014-07-11 2017-01-24 Sensoriant, Inc. System and method for mediating representations with respect to preferences of a party not located in the environment
US10390289B2 (en) 2014-07-11 2019-08-20 Sensoriant, Inc. Systems and methods for mediating representations allowing control of devices located in an environment having broadcasting devices
ES2533198B2 (en) * 2014-09-18 2016-02-10 Universidad Politécnica de Madrid Symbiotic and intelligent system for energy saving in buildings
US9924849B2 (en) * 2014-10-07 2018-03-27 Whirlpool Corporation Dishwasher with integrated closure element having an antenna
US10515372B1 (en) 2014-10-07 2019-12-24 State Farm Mutual Automobile Insurance Company Systems and methods for managing building code compliance for a property
US9756477B2 (en) 2014-10-25 2017-09-05 Emmanuel Azih Device, methods, and systems for proximity localization using beacon switches
CN104767950B (en) * 2014-11-08 2019-01-08 晶晨半导体(上海)股份有限公司 Card insert type TV
US10601604B2 (en) 2014-11-12 2020-03-24 Google Llc Data processing systems and methods for smart hub devices
US9746998B2 (en) 2014-12-31 2017-08-29 Ebay Inc. Collaborative data based device maintenance
US20160198536A1 (en) * 2015-01-06 2016-07-07 Kiban Labs, Inc. Internet-of-things (iot) hub apparatus and method
US9774497B2 (en) 2015-01-06 2017-09-26 Afero, Inc. System and method for implementing internet of things (IOT) remote control applications
US9729340B2 (en) 2015-01-06 2017-08-08 Afero, Inc. System and method for notifying a user of conditions associated with an internet-of-things (IoT) hub
US9774507B2 (en) 2015-01-06 2017-09-26 Afero, Inc. System and method for collecting and utilizing user behavior data within an IoT system
US9933768B2 (en) 2015-01-06 2018-04-03 Afero, Inc. System and method for implementing internet of things (IOT) remote control applications
US9860681B2 (en) 2015-01-06 2018-01-02 Afero, Inc. System and method for selecting a cell carrier to connect an IOT hub
US10816944B2 (en) 2015-01-06 2020-10-27 Afero, Inc. System and method for using data collected from internet-of-things (IoT) sensors to disable IoT-enabled home devices
US10534414B2 (en) 2015-02-12 2020-01-14 International Business Machines Corporation Disaggregated mobile client
FR3034273B1 (en) * 2015-03-25 2018-05-11 Ecomesure UNIVERSAL COMMUNICATION SYSTEM FOR MEASURING APPARATUS, COMMUNICATION METHOD RELATING THERETO
JP6569946B2 (en) * 2015-04-08 2019-09-04 パナソニックIpマネジメント株式会社 Storage battery pack, storage battery pack control method, and information terminal control method
WO2016179042A1 (en) * 2015-05-01 2016-11-10 Cnry Inc. Systems and methods for smart connection, communication, and power conversion
US10162785B2 (en) 2015-05-21 2018-12-25 Acceltex Solutions Wireless electronic device controller
US11221596B2 (en) 2015-06-26 2022-01-11 Electrolux Home Products, Inc. Hub for managing networked household appliances
CN105141634A (en) * 2015-09-22 2015-12-09 江西飞尚科技有限公司 Intelligent gateway module possessing remote wireless transmission function
WO2017053707A1 (en) 2015-09-23 2017-03-30 Sensoriant, Inc. Method and system for using device states and user preferences to create user-friendly environments
US11064271B2 (en) * 2015-10-16 2021-07-13 Mueller International, Llc Selective delivery state change of valve of remote metering device
US10353360B2 (en) 2015-10-19 2019-07-16 Ademco Inc. Method of smart scene management using big data pattern analysis
US20170170979A1 (en) 2015-12-15 2017-06-15 Pentair Flow Technologies, Llc Systems and Methods for Wireless Control and Monitoring of Residential Devices
WO2017106855A1 (en) * 2015-12-18 2017-06-22 Noid Tech, Llc Control system, method and apparatus for utillity delivery subsystems
CN105741521B (en) * 2016-01-29 2017-09-12 国网山东省电力公司荣成市供电公司 A kind of intelligent remote wireless meter reading charge system
US20210264525A1 (en) * 2016-03-11 2021-08-26 State Farm Mutual Automobile Insurance Company Using standby generator data for providing residential insurance coverage
CN105785783A (en) * 2016-03-30 2016-07-20 佛山市蓝天网络科技有限公司 Intelligent household control system
US10425248B2 (en) * 2016-04-26 2019-09-24 Hunter Industries, Inc. Authentication systems and methods for controllers
CN105954578A (en) * 2016-04-29 2016-09-21 邹平县供电公司 Meter reading system capable of data integrity, timely response and information safety
US10338624B2 (en) 2016-06-16 2019-07-02 Alexander Templeton System and method for monitoring and reducing energy usage in the home
CN106019978A (en) * 2016-08-11 2016-10-12 广州成潮智能科技有限公司 Control system of smart home
US10819533B2 (en) * 2016-09-23 2020-10-27 TNBI, Inc. Communication networks for payment, operation, and control of appliances, and methods of using the same
CA3077403C (en) * 2016-09-30 2021-06-22 Mountain Vector Energy, Llc Systems for real-time analysis and reporting of utility usage and spend
WO2018081568A1 (en) * 2016-10-28 2018-05-03 Insight Energy Ventures, Llc Method of automatically mating a gateway device with an energy measurement device
JP6508537B2 (en) 2016-11-29 2019-05-08 日本テクノ株式会社 Energy saving promotion results evaluation device
CN108401004A (en) * 2017-02-08 2018-08-14 广东交通职业技术学院 A kind of agricultural intelligent networking gateway design method
US10715354B2 (en) * 2017-02-20 2020-07-14 Lutron Technology Company Llc Integrating and controlling multiple load control systems
US10541556B2 (en) 2017-04-27 2020-01-21 Honeywell International Inc. System and approach to integrate and manage diverse demand response specifications for multi-site enterprises
US10983753B2 (en) * 2017-06-09 2021-04-20 International Business Machines Corporation Cognitive and interactive sensor based smart home solution
US10461562B2 (en) * 2017-06-27 2019-10-29 Rosemount Inc. Field device charging power regulation
US11088865B2 (en) * 2017-08-03 2021-08-10 Dartpoint Tech. Co., Ltd. System, device and method for terminal product usable time management
DE102017223226A1 (en) * 2017-12-19 2019-06-19 Henkel Ag & Co. Kgaa Use of external information when operating a household appliance
CN108445271A (en) * 2018-03-28 2018-08-24 合肥云智物联科技有限公司 A kind of home intelligent ammeter based on Internet of Things
KR102535063B1 (en) * 2018-04-06 2023-05-22 엘지전자 주식회사 Device and cloud server providing safty service by distinguishing electrothermic device
US11094180B1 (en) 2018-04-09 2021-08-17 State Farm Mutual Automobile Insurance Company Sensing peripheral heuristic evidence, reinforcement, and engagement system
US11196258B2 (en) 2018-08-03 2021-12-07 Sacramento Municipal Utility District Energy control and storage system for controlling power based on a load shape
CN109856476B (en) * 2018-12-19 2021-08-03 四川虹美智能科技有限公司 Household appliance state monitoring method and system
RU191691U1 (en) * 2019-05-15 2019-08-15 Александр Николаевич Беляев Power consumption data concentrator in medium and low voltage networks of the digital district of electric networks
IT201900012846A1 (en) * 2019-07-25 2021-01-25 Dab Pumps Spa PERFECTED DEVICE FOR THE CONTROL AND MANAGEMENT OF ONE OR MORE ELECTRIC PUMPS
IT201900012879A1 (en) * 2019-07-25 2021-01-25 Dab Pumps Spa DEVICE FOR DETECTION OF THE LEVEL OF A WELL / TANK AND IMMERSION ELECTRIC PUMP WITH THIS DEVICE
CN112462624A (en) * 2020-12-17 2021-03-09 泉州市嘉鑫信息服务有限公司 Intelligent home control and regulation system based on Internet
AT524816A3 (en) * 2021-03-03 2023-02-15 Josef Geider user device
US11575536B2 (en) 2021-06-17 2023-02-07 Bank Of America Corporation System and method using one or more smart devices to determine individual consumption through network monitoring
DE102022202509A1 (en) 2022-03-14 2023-09-14 Siemens Aktiengesellschaft Measuring device and method for operating a measuring device

Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644320A (en) * 1984-09-14 1987-02-17 Carr R Stephen Home energy monitoring and control system
US4924404A (en) * 1988-04-11 1990-05-08 K. Reinke, Jr. & Company Energy monitor
US5436510A (en) * 1992-07-03 1995-07-25 Euro Cp S.A.R.L. Method and a system for globally managing electric power in a network within a dwelling or the like
US5650711A (en) * 1994-12-28 1997-07-22 Samsung Display Devices Co., Ltd. Apparatus for measuring internal pressure of battery
US5862391A (en) * 1996-04-03 1999-01-19 General Electric Company Power management control system
US6029092A (en) * 1996-11-21 2000-02-22 Intellinet, Inc. System and method for providing modular control and for managing energy consumption
US20010010032A1 (en) * 1998-10-27 2001-07-26 Ehlers Gregory A. Energy management and building automation system
US20020097851A1 (en) * 2000-06-19 2002-07-25 Wolfgang Daum Methods and apparatus for appliance communication interface
US20020130652A1 (en) * 2001-03-14 2002-09-19 Bessler Warren Frank System and method for scheduling and monitoring electrical device usage
US20030014521A1 (en) * 2001-06-28 2003-01-16 Jeremy Elson Open platform architecture for shared resource access management
US20030176952A1 (en) * 1999-01-02 2003-09-18 Collins Daniel J. Energy information and control system
US20030233201A1 (en) * 2002-06-13 2003-12-18 Horst Gale Richard Total home energy management
US20040024717A1 (en) * 1998-04-03 2004-02-05 Enerwise Global Technologies, Inc. Computer assisted and/or implemented process and architecture for web-based monitoring of energy related usage, and client accessibility therefor
US20040174071A1 (en) * 2000-06-22 2004-09-09 Stonewater Control Systems, Inc. System and method for monitoring and controlling energy distribution
US20040215763A1 (en) * 1996-07-23 2004-10-28 Server Technology, Inc. Remote power control system
US20050128078A1 (en) * 2003-12-11 2005-06-16 Pfleging Gerald W. X10 communication of one or more messages between one or more mobile communication devices and one or more module components
US20060031180A1 (en) * 2004-08-03 2006-02-09 Uscl Corporation Integrated metrology systems and information and control apparatus for interaction with integrated metrology systems
US20060045105A1 (en) * 2004-08-25 2006-03-02 Dobosz Paul J System and method for using a utility meter
US7010363B2 (en) * 2003-06-13 2006-03-07 Battelle Memorial Institute Electrical appliance energy consumption control methods and electrical energy consumption systems
US7079967B2 (en) * 2001-05-11 2006-07-18 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20060195229A1 (en) * 2002-04-01 2006-08-31 Programmable Control Services, Inc. Electrical power distribution control systems and processes
US7130719B2 (en) * 2002-03-28 2006-10-31 Robertshaw Controls Company System and method of controlling an HVAC system
US20060259199A1 (en) * 2003-06-05 2006-11-16 Gjerde Jan O Method and a system for automatic management of demand for non-durables
US20070021874A1 (en) * 2005-07-22 2007-01-25 Roger Rognli Load shedding control for cycled or variable load appliances
US20070192486A1 (en) * 2006-02-14 2007-08-16 Sbc Knowledge Ventures L.P. Home automation system and method
US20070222636A1 (en) * 2006-03-09 2007-09-27 Sony Corporation System and method for a networked utility meter
US7352756B2 (en) * 2002-09-04 2008-04-01 Fujitsu Limited Gateway card, gateway apparatus, gateway control method, and computer product
US20080094210A1 (en) * 2006-10-17 2008-04-24 Massachusetts Institute Of Technology Platform for Ubiquitous Sensor Deployment in Occupational and Domestic Environments
US20080122585A1 (en) * 2005-06-09 2008-05-29 Whirlpool Corporation Network for changing resource consumption in an appliance
US20080167756A1 (en) * 2007-01-03 2008-07-10 Gridpoint, Inc. Utility console for controlling energy resources
US20080221715A1 (en) * 2002-06-27 2008-09-11 Openpeak Inc. Method, system, and computer program product for managing controlled residential or non-residential environments
US20080219186A1 (en) * 2007-03-05 2008-09-11 Grid Net, Inc. Energy switch router
US20080221737A1 (en) * 2007-03-08 2008-09-11 Kurt Josephson Networked electrical interface
US20080255782A1 (en) * 2007-04-12 2008-10-16 Siemens Energy & Automation, Inc. Devices, Systems, and Methods for Monitoring Energy Systems
US20080315000A1 (en) * 2007-06-21 2008-12-25 Ravi Gorthala Integrated Controller And Fault Indicator For Heating And Cooling Systems
US20090019152A1 (en) * 2007-07-12 2009-01-15 Sextant Navigation, Inc. Apparatus and Method for Real-Time Monitoring and Controlling of Networked Appliances Using an Intermediate Server
US20090062970A1 (en) * 2007-08-28 2009-03-05 America Connect, Inc. System and method for active power load management
US20090057424A1 (en) * 2007-08-27 2009-03-05 Honeywell International Inc. Remote hvac control with user privilege setup
US20090083167A1 (en) * 2007-09-24 2009-03-26 Budderfly Ventures, Llc Computer based energy management
US20090088907A1 (en) * 2007-10-01 2009-04-02 Gridpoint, Inc. Modular electrical grid interface device
US20090150977A1 (en) * 2002-06-13 2009-06-11 Engedi Technologies, Inc. Secure remote management appliance
US20090206059A1 (en) * 2008-02-19 2009-08-20 Kiko Frederick J Intelligent circuit breaker apparatus and methods
US20090234512A1 (en) * 2007-12-28 2009-09-17 Server Technology, Inc. Power distribution, management, and monitoring systems and methods
US20090295226A1 (en) * 2007-10-18 2009-12-03 Hammerhead International, Llc System and Method for Load Control
US20090307178A1 (en) * 2006-05-26 2009-12-10 Hampden Kuhns Utility monitoring systems and methods of use
US20100023865A1 (en) * 2005-03-16 2010-01-28 Jim Fulker Cross-Client Sensor User Interface in an Integrated Security Network
US20100070217A1 (en) * 2008-09-18 2010-03-18 Adapta Strategy System and method for monitoring and management of utility usage
US20100070091A1 (en) * 2008-09-15 2010-03-18 General Electric Company Energy management of household appliances
US20100076615A1 (en) * 2008-09-13 2010-03-25 Moixa Energy Holdings Limited Systems, devices and methods for electricity provision, usage monitoring, analysis, and enabling improvements in efficiency
US20100145542A1 (en) * 2007-03-14 2010-06-10 Zonit Structured Solutions, Llc Smart electrical outlets and associated networks
US20100161149A1 (en) * 2008-12-23 2010-06-24 Samsung Electronics Co., Ltd. Adaptive and user location-based power saving system
US20100174419A1 (en) * 2009-01-07 2010-07-08 International Business Machines Corporation Consumer Electronic Usage Monitoring and Management
US20100177750A1 (en) * 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Wireless Diplay sensor communication network
US20100217549A1 (en) * 2009-02-26 2010-08-26 Galvin Brian R System and method for fractional smart metering
US20100217452A1 (en) * 2009-02-26 2010-08-26 Mccord Alan Overlay packet data network for managing energy and method for using same
US20100238003A1 (en) * 2009-03-17 2010-09-23 Jetlun Corporation Method and system for intelligent energy network management control system
US7809386B2 (en) * 2005-06-29 2010-10-05 Nokia Corporation Local network proxy for a remotely connected mobile device operating in reduced power mode
US20100262312A1 (en) * 2009-04-09 2010-10-14 Sony Corporation Electric storage apparatus and power control system
US20100293045A1 (en) * 2009-05-14 2010-11-18 James Moeller Burns Centralized Renewable Energy System With Fractional Ownership and a Method of Disaggregated Net Metering of its Renewable Energy Output Among Utility Customers Who Are Fractional Owners
US7844699B1 (en) * 2004-11-03 2010-11-30 Horrocks William L Web-based monitoring and control system
US20110010016A1 (en) * 2009-07-07 2011-01-13 Giroti Sudhir K Enterprise Smart Grid and Demand Management Platform and Methods for Application Development and Management
US20110015797A1 (en) * 2009-07-14 2011-01-20 Daniel Gilstrap Method and apparatus for home automation and energy conservation
US20110040785A1 (en) * 2008-05-07 2011-02-17 PowerHouse dynamics, Inc. System and method to monitor and manage performance of appliances
US20110082599A1 (en) * 2009-10-06 2011-04-07 Makarand Shinde Optimizing Utility Usage by Smart Monitoring
US7930118B2 (en) * 2006-06-13 2011-04-19 Vinden Jonathan Philip Electricity energy monitor
US20110106328A1 (en) * 2009-11-05 2011-05-05 General Electric Company Energy optimization system
US20110128378A1 (en) * 2005-03-16 2011-06-02 Reza Raji Modular Electronic Display Platform
US20110140906A1 (en) * 2009-12-10 2011-06-16 General Electric Company Use of one led to represent various utility rates and system status by varying frequency and/or duty cycle of led
US7965174B2 (en) * 2008-02-28 2011-06-21 Cisco Technology, Inc. Integrated building device monitoring network
US20110153100A1 (en) * 2009-12-22 2011-06-23 General Electric Company Demand response appliance power consumption feedback
US20110185196A1 (en) * 2010-01-25 2011-07-28 Tomoyuki Asano Power Management Apparatus, Electronic Appliance, and Method of Managing Power
US20110183733A1 (en) * 2010-01-25 2011-07-28 Asami Yoshida Power management apparatus, and method of providing game contents
US20110184581A1 (en) * 2008-08-27 2011-07-28 Herman Miller, Inc. Energy Distribution Management System
US20110216697A1 (en) * 2010-03-04 2011-09-08 Chung-Chiu Lai Wireless network system and related wireless routing circuit
US8024073B2 (en) * 2009-08-21 2011-09-20 Allure Energy, Inc. Energy management system
US8080972B2 (en) * 2008-06-02 2011-12-20 Goal Zero Llc System and method for storing and releasing energy
US20120004871A1 (en) * 2010-07-02 2012-01-05 National Chiao Tung University Power monitoring device for identifying state of electric appliance and power monitoring method thereof
US8095340B2 (en) * 1992-11-17 2012-01-10 Health Hero Network, Inc. Home power management system
US20120053740A1 (en) * 2010-09-01 2012-03-01 General Electric Company Energy smart system
US20120061480A1 (en) * 2010-09-10 2012-03-15 Energate Inc. Portable information display dockable to a base thermostat
US8295990B2 (en) * 2010-02-15 2012-10-23 General Electric Company Low cost and flexible energy management system with a scheduling capability
US20130158735A1 (en) * 2010-09-06 2013-06-20 BSH Bosch und Siemens Hausgeräte GmbH Method for switching to a more favorable consumption tariff for a domestic appliance, and domestic appliance suitable for said method
US20130197709A1 (en) * 2010-10-07 2013-08-01 Bsh Bosch Und Siemens Hausgerate Gmbh Household appliance having a controller for an electrical energy supply network having an associated data network and method for operating a controller of a household appliance on said energy supply network
US20130297087A1 (en) * 2010-11-10 2013-11-07 Koninklijke Philips Electronics N.V. Resource metering system and method using such a system for smart energy consumption

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106146A1 (en) 2004-11-02 2008-05-08 Lg Electronics Inc. Management System for In-House Power Quantity Consumed
CA2611527A1 (en) * 2005-06-09 2006-12-21 Whirlpool Corporation Software architecture system and method for communication with, and management of, at least one component within a household appliance
US7447002B2 (en) 2006-01-11 2008-11-04 Server Technology, Inc. Fuse module with movable fuse holder for fused electrical device
AU2007254482A1 (en) 2006-03-24 2007-11-29 Rtp Controls Method and apparatus for controlling power consumption
GB0711770D0 (en) 2007-06-18 2007-07-25 Domia Ltd Off site monitoring/control of electrical equipment
DE102009011665A1 (en) 2008-08-13 2010-02-18 Ralf Scherber Arrangement for measuring current yield and / or consumption variables in a low-voltage network
EP2169700B1 (en) 2008-09-26 2011-11-09 Siemens Aktiengesellschaft Method and device for monitoring a switching procedure and relay component group
CN101752833A (en) 2008-12-19 2010-06-23 上海瑞视仪表电子有限公司 State monitoring protection device
US9813383B2 (en) * 2009-08-18 2017-11-07 Control4 Corporation Systems and methods for re-commissioning a controlled device in a home area network
US20110153101A1 (en) * 2009-12-22 2011-06-23 General Electric Company Household energy management system and method for one or more appliances
US8310370B1 (en) * 2009-12-23 2012-11-13 Southern Company Services, Inc. Smart circuit breaker with integrated energy management interface

Patent Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644320A (en) * 1984-09-14 1987-02-17 Carr R Stephen Home energy monitoring and control system
US4924404A (en) * 1988-04-11 1990-05-08 K. Reinke, Jr. & Company Energy monitor
US5436510A (en) * 1992-07-03 1995-07-25 Euro Cp S.A.R.L. Method and a system for globally managing electric power in a network within a dwelling or the like
US8095340B2 (en) * 1992-11-17 2012-01-10 Health Hero Network, Inc. Home power management system
US5650711A (en) * 1994-12-28 1997-07-22 Samsung Display Devices Co., Ltd. Apparatus for measuring internal pressure of battery
US5862391A (en) * 1996-04-03 1999-01-19 General Electric Company Power management control system
US20040215763A1 (en) * 1996-07-23 2004-10-28 Server Technology, Inc. Remote power control system
US6029092A (en) * 1996-11-21 2000-02-22 Intellinet, Inc. System and method for providing modular control and for managing energy consumption
US20040024717A1 (en) * 1998-04-03 2004-02-05 Enerwise Global Technologies, Inc. Computer assisted and/or implemented process and architecture for web-based monitoring of energy related usage, and client accessibility therefor
US20010010032A1 (en) * 1998-10-27 2001-07-26 Ehlers Gregory A. Energy management and building automation system
US20030176952A1 (en) * 1999-01-02 2003-09-18 Collins Daniel J. Energy information and control system
US20020097851A1 (en) * 2000-06-19 2002-07-25 Wolfgang Daum Methods and apparatus for appliance communication interface
US20040174071A1 (en) * 2000-06-22 2004-09-09 Stonewater Control Systems, Inc. System and method for monitoring and controlling energy distribution
US7088014B2 (en) * 2000-06-22 2006-08-08 Stonewater Control Systems, Inc. System and method for monitoring and controlling energy distribution
US20020130652A1 (en) * 2001-03-14 2002-09-19 Bessler Warren Frank System and method for scheduling and monitoring electrical device usage
US7079967B2 (en) * 2001-05-11 2006-07-18 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20030014521A1 (en) * 2001-06-28 2003-01-16 Jeremy Elson Open platform architecture for shared resource access management
US7949615B2 (en) * 2002-03-28 2011-05-24 Robertshaw Controls .Company System and method of controlling delivery and/or usage of a commodity
US7516106B2 (en) * 2002-03-28 2009-04-07 Robert Shaw Controls Company System and method for controlling usage of a commodity
US20090157529A1 (en) * 2002-03-28 2009-06-18 Ehlers Gregory A System and Method of Controlling Delivery and/or Usage of a Commodity
US7130719B2 (en) * 2002-03-28 2006-10-31 Robertshaw Controls Company System and method of controlling an HVAC system
US20060195229A1 (en) * 2002-04-01 2006-08-31 Programmable Control Services, Inc. Electrical power distribution control systems and processes
US20090150977A1 (en) * 2002-06-13 2009-06-11 Engedi Technologies, Inc. Secure remote management appliance
US7561977B2 (en) * 2002-06-13 2009-07-14 Whirlpool Corporation Total home energy management system
US20030233201A1 (en) * 2002-06-13 2003-12-18 Horst Gale Richard Total home energy management
US20080221715A1 (en) * 2002-06-27 2008-09-11 Openpeak Inc. Method, system, and computer program product for managing controlled residential or non-residential environments
US7352756B2 (en) * 2002-09-04 2008-04-01 Fujitsu Limited Gateway card, gateway apparatus, gateway control method, and computer product
US20060259199A1 (en) * 2003-06-05 2006-11-16 Gjerde Jan O Method and a system for automatic management of demand for non-durables
US7010363B2 (en) * 2003-06-13 2006-03-07 Battelle Memorial Institute Electrical appliance energy consumption control methods and electrical energy consumption systems
US20050128078A1 (en) * 2003-12-11 2005-06-16 Pfleging Gerald W. X10 communication of one or more messages between one or more mobile communication devices and one or more module components
US20060031180A1 (en) * 2004-08-03 2006-02-09 Uscl Corporation Integrated metrology systems and information and control apparatus for interaction with integrated metrology systems
US7379791B2 (en) * 2004-08-03 2008-05-27 Uscl Corporation Integrated metrology systems and information and control apparatus for interaction with integrated metrology systems
US20060045105A1 (en) * 2004-08-25 2006-03-02 Dobosz Paul J System and method for using a utility meter
US7844699B1 (en) * 2004-11-03 2010-11-30 Horrocks William L Web-based monitoring and control system
US20110128378A1 (en) * 2005-03-16 2011-06-02 Reza Raji Modular Electronic Display Platform
US20100023865A1 (en) * 2005-03-16 2010-01-28 Jim Fulker Cross-Client Sensor User Interface in an Integrated Security Network
US20080122585A1 (en) * 2005-06-09 2008-05-29 Whirlpool Corporation Network for changing resource consumption in an appliance
US7809386B2 (en) * 2005-06-29 2010-10-05 Nokia Corporation Local network proxy for a remotely connected mobile device operating in reduced power mode
US20070021874A1 (en) * 2005-07-22 2007-01-25 Roger Rognli Load shedding control for cycled or variable load appliances
US20070192486A1 (en) * 2006-02-14 2007-08-16 Sbc Knowledge Ventures L.P. Home automation system and method
US20070222636A1 (en) * 2006-03-09 2007-09-27 Sony Corporation System and method for a networked utility meter
US20090307178A1 (en) * 2006-05-26 2009-12-10 Hampden Kuhns Utility monitoring systems and methods of use
US7930118B2 (en) * 2006-06-13 2011-04-19 Vinden Jonathan Philip Electricity energy monitor
US20080094210A1 (en) * 2006-10-17 2008-04-24 Massachusetts Institute Of Technology Platform for Ubiquitous Sensor Deployment in Occupational and Domestic Environments
US20080167756A1 (en) * 2007-01-03 2008-07-10 Gridpoint, Inc. Utility console for controlling energy resources
US20080219186A1 (en) * 2007-03-05 2008-09-11 Grid Net, Inc. Energy switch router
US7983795B2 (en) * 2007-03-08 2011-07-19 Kurt Josephson Networked electrical interface
US20080221737A1 (en) * 2007-03-08 2008-09-11 Kurt Josephson Networked electrical interface
US20100145542A1 (en) * 2007-03-14 2010-06-10 Zonit Structured Solutions, Llc Smart electrical outlets and associated networks
US20080255782A1 (en) * 2007-04-12 2008-10-16 Siemens Energy & Automation, Inc. Devices, Systems, and Methods for Monitoring Energy Systems
US20080315000A1 (en) * 2007-06-21 2008-12-25 Ravi Gorthala Integrated Controller And Fault Indicator For Heating And Cooling Systems
US20090019152A1 (en) * 2007-07-12 2009-01-15 Sextant Navigation, Inc. Apparatus and Method for Real-Time Monitoring and Controlling of Networked Appliances Using an Intermediate Server
US20090057424A1 (en) * 2007-08-27 2009-03-05 Honeywell International Inc. Remote hvac control with user privilege setup
US20090062970A1 (en) * 2007-08-28 2009-03-05 America Connect, Inc. System and method for active power load management
US20100161148A1 (en) * 2007-08-28 2010-06-24 Forbes Jr Joseph W Method and apparatus for actively managing consumption of electric power supplied by an electric utility
US20090083167A1 (en) * 2007-09-24 2009-03-26 Budderfly Ventures, Llc Computer based energy management
US20090088907A1 (en) * 2007-10-01 2009-04-02 Gridpoint, Inc. Modular electrical grid interface device
US20090295226A1 (en) * 2007-10-18 2009-12-03 Hammerhead International, Llc System and Method for Load Control
US20090234512A1 (en) * 2007-12-28 2009-09-17 Server Technology, Inc. Power distribution, management, and monitoring systems and methods
US20090206059A1 (en) * 2008-02-19 2009-08-20 Kiko Frederick J Intelligent circuit breaker apparatus and methods
US7965174B2 (en) * 2008-02-28 2011-06-21 Cisco Technology, Inc. Integrated building device monitoring network
US20110040785A1 (en) * 2008-05-07 2011-02-17 PowerHouse dynamics, Inc. System and method to monitor and manage performance of appliances
US8080972B2 (en) * 2008-06-02 2011-12-20 Goal Zero Llc System and method for storing and releasing energy
US20110184581A1 (en) * 2008-08-27 2011-07-28 Herman Miller, Inc. Energy Distribution Management System
US20100076615A1 (en) * 2008-09-13 2010-03-25 Moixa Energy Holdings Limited Systems, devices and methods for electricity provision, usage monitoring, analysis, and enabling improvements in efficiency
US20100070091A1 (en) * 2008-09-15 2010-03-18 General Electric Company Energy management of household appliances
US20100070217A1 (en) * 2008-09-18 2010-03-18 Adapta Strategy System and method for monitoring and management of utility usage
US20100161149A1 (en) * 2008-12-23 2010-06-24 Samsung Electronics Co., Ltd. Adaptive and user location-based power saving system
US20100174419A1 (en) * 2009-01-07 2010-07-08 International Business Machines Corporation Consumer Electronic Usage Monitoring and Management
US20100177750A1 (en) * 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Wireless Diplay sensor communication network
US20100217452A1 (en) * 2009-02-26 2010-08-26 Mccord Alan Overlay packet data network for managing energy and method for using same
US20100217549A1 (en) * 2009-02-26 2010-08-26 Galvin Brian R System and method for fractional smart metering
US20100238003A1 (en) * 2009-03-17 2010-09-23 Jetlun Corporation Method and system for intelligent energy network management control system
US20100262312A1 (en) * 2009-04-09 2010-10-14 Sony Corporation Electric storage apparatus and power control system
US20100293045A1 (en) * 2009-05-14 2010-11-18 James Moeller Burns Centralized Renewable Energy System With Fractional Ownership and a Method of Disaggregated Net Metering of its Renewable Energy Output Among Utility Customers Who Are Fractional Owners
US20110010016A1 (en) * 2009-07-07 2011-01-13 Giroti Sudhir K Enterprise Smart Grid and Demand Management Platform and Methods for Application Development and Management
US20110015797A1 (en) * 2009-07-14 2011-01-20 Daniel Gilstrap Method and apparatus for home automation and energy conservation
US8024073B2 (en) * 2009-08-21 2011-09-20 Allure Energy, Inc. Energy management system
US20110082599A1 (en) * 2009-10-06 2011-04-07 Makarand Shinde Optimizing Utility Usage by Smart Monitoring
US20110106328A1 (en) * 2009-11-05 2011-05-05 General Electric Company Energy optimization system
US20110140906A1 (en) * 2009-12-10 2011-06-16 General Electric Company Use of one led to represent various utility rates and system status by varying frequency and/or duty cycle of led
US20110153100A1 (en) * 2009-12-22 2011-06-23 General Electric Company Demand response appliance power consumption feedback
US20110183733A1 (en) * 2010-01-25 2011-07-28 Asami Yoshida Power management apparatus, and method of providing game contents
US20110185196A1 (en) * 2010-01-25 2011-07-28 Tomoyuki Asano Power Management Apparatus, Electronic Appliance, and Method of Managing Power
US8295990B2 (en) * 2010-02-15 2012-10-23 General Electric Company Low cost and flexible energy management system with a scheduling capability
US20110216697A1 (en) * 2010-03-04 2011-09-08 Chung-Chiu Lai Wireless network system and related wireless routing circuit
US20120004871A1 (en) * 2010-07-02 2012-01-05 National Chiao Tung University Power monitoring device for identifying state of electric appliance and power monitoring method thereof
US20120053740A1 (en) * 2010-09-01 2012-03-01 General Electric Company Energy smart system
US20130158735A1 (en) * 2010-09-06 2013-06-20 BSH Bosch und Siemens Hausgeräte GmbH Method for switching to a more favorable consumption tariff for a domestic appliance, and domestic appliance suitable for said method
US20120061480A1 (en) * 2010-09-10 2012-03-15 Energate Inc. Portable information display dockable to a base thermostat
US20130197709A1 (en) * 2010-10-07 2013-08-01 Bsh Bosch Und Siemens Hausgerate Gmbh Household appliance having a controller for an electrical energy supply network having an associated data network and method for operating a controller of a household appliance on said energy supply network
US20130297087A1 (en) * 2010-11-10 2013-11-07 Koninklijke Philips Electronics N.V. Resource metering system and method using such a system for smart energy consumption

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10429804B2 (en) 2009-06-02 2019-10-01 Schneider Electric USA, Inc. Methods of integrating multiple management domains
US9076111B2 (en) * 2009-06-02 2015-07-07 Schneider Electric USA, Inc. Methods of integrating multiple management domains
US20120131217A1 (en) * 2009-06-02 2012-05-24 Schneider Electric USA, Inc. Methods of integrating multiple management domains
US11188040B2 (en) 2009-06-02 2021-11-30 Schneider Electric USA, Inc. Methods of integrating multiple management domains
US20110264286A1 (en) * 2010-04-27 2011-10-27 Jong Soo Park Smart control device
US8868248B2 (en) * 2010-04-27 2014-10-21 Lg Electronics Inc. Smart control device
US8391496B2 (en) * 2010-06-03 2013-03-05 Digi International Inc. Smart energy network configuration using an auxiliary gateway
US20110299684A1 (en) * 2010-06-03 2011-12-08 Digi International Inc. Smart energy network configuration using an auxiliary gateway
US20120029713A1 (en) * 2010-08-02 2012-02-02 General Electric Company Load shed system for demand response without ami/amr system
US8386087B2 (en) * 2010-08-02 2013-02-26 General Electric Company Load shed system for demand response without AMI/AMR system
US20120116597A1 (en) * 2010-11-09 2012-05-10 General Electric Company Gateway mirroring of metering data between zigbee networks
US8718798B2 (en) * 2010-11-09 2014-05-06 General Electric Company Gateway mirroring of metering data between zigbee networks
US8170722B1 (en) * 2010-12-09 2012-05-01 Elbex Video Ltd. Method and apparatus for coding and linking electrical appliances for control and status report
US20120065806A1 (en) * 2011-05-06 2012-03-15 General Electric Company Method for measuring energy usage in an appliance
US20120330472A1 (en) * 2011-06-21 2012-12-27 General Electric Company Power consumption prediction systems and methods
US20130178990A1 (en) * 2011-07-13 2013-07-11 Bradley Kayton Triangulated Rules Engine
WO2013066068A1 (en) * 2011-11-03 2013-05-10 주식회사 우암코퍼레이션 Integrated terminal and method for controlling an ami system
WO2013118133A1 (en) * 2012-02-07 2013-08-15 Logica Private Limited System and apparatus for managing product storage devices
WO2013182226A1 (en) * 2012-06-05 2013-12-12 Abb Ab Electricity meter and method performed in such electricity meter
CN102692076A (en) * 2012-06-13 2012-09-26 广东志高空调有限公司 Air source heat pump water heater with cloud function
US9647495B2 (en) 2012-06-28 2017-05-09 Landis+Gyr Technologies, Llc Power load control with dynamic capability
US9341390B2 (en) 2012-07-05 2016-05-17 A. O. Smith Water Products Company B.V. Tap water device for storing and heating tap water
US9285790B2 (en) 2013-03-15 2016-03-15 Hayward Industries, Inc. Modular pool/spa control system
US10976713B2 (en) 2013-03-15 2021-04-13 Hayward Industries, Inc. Modular pool/spa control system
US9980352B2 (en) 2013-03-15 2018-05-22 Kortek Industries Pty Ltd Wireless light pairing, dimming and control
US9031702B2 (en) 2013-03-15 2015-05-12 Hayward Industries, Inc. Modular pool/spa control system
US11822300B2 (en) 2013-03-15 2023-11-21 Hayward Industries, Inc. Modular pool/spa control system
US10122171B2 (en) 2013-05-31 2018-11-06 Kortek Industries Pty Ltd Wireless power control and metrics
US20170086143A1 (en) * 2015-06-29 2017-03-23 Iotas, Inc. Multi-factor provisioning of wireless devices
US9706499B2 (en) * 2015-06-29 2017-07-11 Iotas, Inc. Multi-factor provisioning of wireless devices
WO2017004246A1 (en) * 2015-06-29 2017-01-05 Iotas, Inc Multi-factor provisioning of wireless devices
WO2017004386A1 (en) * 2015-06-30 2017-01-05 Cross Country Home Services, Inc. Systems and methods for efficiently handling appliance warranty service events
US10219975B2 (en) 2016-01-22 2019-03-05 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10363197B2 (en) 2016-01-22 2019-07-30 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11096862B2 (en) 2016-01-22 2021-08-24 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11720085B2 (en) 2016-01-22 2023-08-08 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11129256B2 (en) 2016-01-22 2021-09-21 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US20200319621A1 (en) 2016-01-22 2020-10-08 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US11122669B2 (en) 2016-01-22 2021-09-14 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US20170213451A1 (en) 2016-01-22 2017-07-27 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US11000449B2 (en) 2016-01-22 2021-05-11 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10272014B2 (en) 2016-01-22 2019-04-30 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
WO2017209915A1 (en) * 2016-06-02 2017-12-07 Elbex Video Ltd. Apparatus and method for powering a coil of latching relays and hybrid switches
EA037502B1 (en) * 2016-06-02 2021-04-05 Элбекс Видио Лтд. Apparatus and method for powering a coil of latching relays and hybrid switches
CN109155219A (en) * 2016-06-02 2019-01-04 埃尔贝克斯视象株式会社 For the device and method to bolt-lock relay and the coil power supply of hybrid switch
US10770918B2 (en) 2017-07-20 2020-09-08 Tennessee Technological University Foundation Apparatus, system, and method for integrated real time low-cost automatic load disaggregation, remote monitoring, and control
US11626751B2 (en) 2017-07-20 2023-04-11 Tennessee Technological University Research Foundation Apparatus, system, and method for integrated real time low-cost automatic load disaggregation, remote monitoring, and control
US10466277B1 (en) 2018-02-01 2019-11-05 John Brooks Scaled and precise power conductor and current monitoring
US20210270876A1 (en) * 2018-07-12 2021-09-02 Source to Site Accessories Limited System for identifying electrical devices

Also Published As

Publication number Publication date
US8295990B2 (en) 2012-10-23
US8621097B2 (en) 2013-12-31
US20110202198A1 (en) 2011-08-18
US20110202190A1 (en) 2011-08-18
US20110202783A1 (en) 2011-08-18
CA2752987A1 (en) 2012-07-03
US9218631B2 (en) 2015-12-22
CA2753003C (en) 2018-11-06
CA2753003A1 (en) 2012-07-03
CA2752977A1 (en) 2012-07-03
CA2752993A1 (en) 2012-07-03
US20110202293A1 (en) 2011-08-18
CA2752946C (en) 2018-11-06
US20110202195A1 (en) 2011-08-18
US20110202189A1 (en) 2011-08-18
US8775848B2 (en) 2014-07-08
US8565928B2 (en) 2013-10-22
US8977731B2 (en) 2015-03-10
CA2752946A1 (en) 2012-07-03
CA2752993C (en) 2018-11-06
CA2752994C (en) 2019-10-22
CA2752987C (en) 2018-10-09
US20110202196A1 (en) 2011-08-18
US20110202910A1 (en) 2011-08-18
CA2752994A1 (en) 2012-07-03
CA2752977C (en) 2019-08-20

Similar Documents

Publication Publication Date Title
US20110202194A1 (en) Sub-metering hardware for measuring energy data of an energy consuming device
EP2418462A1 (en) Sub-metering hardware for measuring energy data of an energy consuming device
US10996702B2 (en) Energy management system and method, including auto-provisioning capability
US20120053739A1 (en) Home energy manager system
AU2011205064B2 (en) Diagnostics using sub-metering device
US20130009788A1 (en) Utility Electric Meter Web Server
US8718798B2 (en) Gateway mirroring of metering data between zigbee networks
US8606423B2 (en) HEG—single primary network to multiple secondary network energy management
CA2752414A1 (en) Low cost home energy manager adaptor

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBRAEI, HENRY;BESORE, JOHN;BULTMAN, ROBERT;AND OTHERS;SIGNING DATES FROM 20100721 TO 20100723;REEL/FRAME:024811/0672

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION