US20110192468A1 - Under dispenser containment system with integral penetration fittings and separate fitting support structure - Google Patents

Under dispenser containment system with integral penetration fittings and separate fitting support structure Download PDF

Info

Publication number
US20110192468A1
US20110192468A1 US12/658,494 US65849410A US2011192468A1 US 20110192468 A1 US20110192468 A1 US 20110192468A1 US 65849410 A US65849410 A US 65849410A US 2011192468 A1 US2011192468 A1 US 2011192468A1
Authority
US
United States
Prior art keywords
wall
sump
containment system
support rack
under dispenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/658,494
Inventor
Mark L. Kravis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/658,494 priority Critical patent/US20110192468A1/en
Publication of US20110192468A1 publication Critical patent/US20110192468A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/32Arrangements of safety or warning devices; Means for preventing unauthorised delivery of liquid
    • B67D7/3209Arrangements of safety or warning devices; Means for preventing unauthorised delivery of liquid relating to spillage or leakage, e.g. spill containments, leak detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/04Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring fuels, lubricants or mixed fuels and lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/78Arrangements of storage tanks, reservoirs or pipe-lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/5762With leakage or drip collecting

Definitions

  • the present invention relates to an under dispenser containment system (“UDC”) for use under a fuel dispenser such as the kind used to dispense gasoline, diesel or aviation fuel.
  • UDC under dispenser containment system
  • the system includes quasi-integral penetration fittings and a shear valve support structure separate from the sump portion of the UDC.
  • the UDC is double-walled and made of polyethylene.
  • Fuel such as gasoline, diesel and aviation fuel is typically stored in large underground storage tanks (“USTs”) and transported by a pump through underground piping to the area below above-ground fuel dispensers. At that point, the underground piping makes a turn to run vertically upward toward the fuel dispenser.
  • USTs underground storage tanks
  • a shear valve is located near the base of the dispenser. The shear valve closes off the fuel pipe to prevent massive fuel leaks in the event that the fuel pipe above the shear valve is broken which can occur, for example, if the fuel dispenser is hit by a car.
  • UST's are typically double-walled with an inner wall that contains the fuel and an outer wall intended to contain any fuel that may leak through openings in the inner wall.
  • Underground piping also is typically double-walled with an inner pipe that contains the fuel and an outer pipe intended to contain any fuel that may leak from the inner pipe.
  • the interstitial space between the inner and outer wall of the UST and the underground piping may be monitored to detect leaks in either the inner or outer wall. Such monitoring may be accomplished by placing the interstitial space under vacuum and monitoring the vacuum pressure or filling the interstitial space with inert fluid and monitoring the level of the inert fluid.
  • the underground piping typically is constructed from either fiberglass or polyethylene (“PE”).
  • PE piping offers certain advantages over fiberglass piping in that PE is more flexible while fiberglass is more brittle. Fiberglass, however, is easier to bond with other materials making it easier to obtain solid connections that do not leak.
  • the secondary containment is typically provided by an under dispenser containment (“UDC”) system.
  • UDC under dispenser containment
  • the shear valves are typically located within the sump portion of the UDC.
  • the internal piping of the dispenser is located above the sump such that any leaks from the internal piping will fall into and be contained within the sump. Examples of UDCs are shown in U.S. Pat. Nos. 4,842,163, 5,246,044 and 5,301,722.
  • UDCs have presented several challenges.
  • the piping that carries the fuel must pass through the UDC.
  • the penetration apertures in the sump are cut at the installation site to allow the apertures to be placed in the proper locations with respect to the underground pipes. Cutting the apertures at the installation site increases the time and complexity of the installation.
  • such penetrations are difficult to seal against leaks.
  • the penetrations are usually located on the side of the sump rather than the bottom so that if the penetration is not sealed properly, no liquid fuel will leak through the penetration unless the liquid fuel fills the sump to at or above the level of the penetrations.
  • the underground piping in a fuel facility is made from fiberglass, many jurisdictions require a four-foot run of pipe from the exterior of the sump before a fitting may be placed on the pipe.
  • fittings might include an angled fitting to change the direction of the pipe or a straight connection to connect to a second length of underground pipe. If a four-foot run is required, the penetration is typically made in the side of the sump to avoid having to excavate to a depth of four feet below the bottom of the sump and run the fuel piping connecting to the USTs at an excessive depth.
  • Robertson discloses a fiberglass UDC with integral fiberglass couplings that penetrate the bottom of the UDC.
  • the most common method of sealing a penetration fitting is a bulkhead style penetration fitting.
  • Use of bulkhead style fittings requires the UDC to be relatively large to allow the installer easy access to the interior of the UDC to install the portion of the bulkhead fitting located inside the UDC. With such larger UDCs, PE's flexibility presents a problem. If a relatively larger UDC is made of PE, the pressure from the surrounding dirt and concrete once the UDC is installed can cause the UDC to bend, buckle or collapse.
  • a second function of the UDC is to assist with providing support and bracing for the shear valves and internal piping of the dispenser.
  • the support for the shear valves is connected to the sump portion of the UDC.
  • U.S. Pat. No. 4,842,163 discloses a “U” shaped brace that connects the shear valve to the side of the UDC.
  • Robertson discloses shear valve support members connected to brackets attached to the UDC.
  • One disadvantage of a connection between the shear valve and the UDC is that damage to the shear valve or internal piping, such as an impact by a car, usually results in damage to the UDC. That problem is particularly prevalent if the UDC is made of fiberglass because of its rigid properties. Thus, after such damage the entire UDC has to be replaced. Such replacement usually requires excavation, usually including breaking and re-pouring concrete surrounding the UDC.
  • the present invention presents a UDC system that overcomes many of problems addressed above.
  • the sump portion of the UDC is double-walled and made of PE.
  • the penetration apertures are pre-molded in the inner and outer walls at the bottom of the sump portion of the UDC. Lips are provided around the edge of the apertures in both the internal wall and the external wall.
  • double-walled PE pipes are placed in the penetration apertures and fittings are applied that fuse the outer wall of the pipe to the lips around the aperture providing what is essentially an integral penetration fitting.
  • the lip around the penetration aperture in the internal wall reduces the chance that liquid fuel will leak out of the interior of the UDC in the event of a fuel spill and a failure of the fusion fitting.
  • the exterior end of the penetration pipe is connected to the underground fuel piping.
  • the interior end of the penetration fitting is connected to a shear valve.
  • the UDC system also is provided with a support rack for the shear valves and internal piping that is independent from sump portion of the UDC system.
  • Anchors for the support rack are embedded in the concrete next to the upper lip of the UDC.
  • a collar is connected to the anchors.
  • the shear valves are held by the collar.
  • the combination of a PE sump and a shear valve support rack independent from the sump in the disclosed system provides important advantages over the current state of the art. In the event of trauma to the dispenser, such as the dispenser being struck by a car, the internal piping of the dispenser will likely be damaged along with the mechanism providing support for the shear valves. In the current state of the art, the shear valve support structures are integral with the sump portion of the UDC.
  • the support structure for the shear valves of the disclosed UDC system is completely independent from the sump portion of the UDC.
  • the sump portion of the UDC is made of PE which is flexible.
  • the support structure usually can be removed and replaced without the need to break and re-pour concrete.
  • the flexible properties of the PE sump portion typically allow the sump to absorb any trauma by flexing and springing back into position without any damage to the sump.
  • the disclosed sump has no “shoulders” but rather straight sides and a lip that is intended to be located at ground level.
  • the sump can be lifted out after cutting the bottom of the sump around the penetration pipes.
  • a new sump with openings appropriately sized to accommodate the existing penetration pipes and attached portions of the previous sump may be lowered into the existing hole and the joints sealed by hand welding or other known method. Such replacement may be done without the need to break and re-pour the surrounding concrete.
  • the present UDC system presents an additional advantage over the state of the art.
  • conventional practice when installing a UDC is to drill the penetration apertures at the location of installation and to install penetration fittings, such as bulkhead fittings, to seal the penetration points.
  • the penetrations are pre-installed with PE double-walled pipes extending through the sump and downward from the bottom of the sump portion.
  • the UDC systems may be delivered in a frame that may be buried. Thus, installation may involve simply excavating a hole of an appropriate size and dropping the UDC system including the support structure into the hole.
  • the underground piping is connected to the double-walled penetration pipes of the disclosed UDC system with conventional fittings that are used to connect one piece of underground pipe to another such as elbow or angle fittings.
  • the disclosed UDC system greatly simplifies the installation process and reduces the chances of human error during the installation resulting in savings of time and money.
  • the double-walled PE pipes of the present UDC system are easily attached to underground piping made of PE.
  • the flexible properties of PE make it a preferable material for underground piping as compared with fiberglass underground piping.
  • FIG. 1 is a front view of a fuel dispenser and a cut-away front view of one embodiment of the UDC system installed beneath the fuel dispenser;
  • FIG. 2 is a front view of one embodiment of the UDC system
  • FIG. 3 is a side cut-away view of one embodiment of the UDC system along line 3 - 3 of FIG. 2 ;
  • FIG. 4 is a plan view of one embodiment of the UDC system
  • FIG. 5 is a side cut-away view of one embodiment of the UDC system along line 5 - 5 of FIG. 4 ;
  • FIG. 6 is an enlarged detailed view of one embodiment of the penetration fitting as indicated in FIG. 5 ;
  • FIG. 7 is a perspective view showing one embodiment of the UDC system including the support structure installed in earth and concrete;
  • FIG. 8 is a front view of a fuel dispenser and a cut-away front view of a prior art sump installed beneath the fuel dispenser.
  • the UDC system is shown installed beneath fuel dispenser 12 .
  • Support rack 14 is connected to anchors 16 by bolts 18 .
  • Anchors 16 are embedded in concrete 20 poured on top of earth 22 .
  • Sump, indicated generally as 24 rests on earth 22 and is encased in concrete 20 .
  • UDC 10 is installed so that lip 60 of sump 24 is approximately level with the top of concrete 20 .
  • Fuel pipes 26 connect to penetration pipes 28 that pass through penetration fittings 30 .
  • Shear valves 32 are connected to the upper end of penetration pipes 28 and connected to rack 14 by brackets 34 . Additional views of the foregoing components of the UDC system are shown in FIGS. 2 and 3 .
  • sump portion 24 has an outer wall 36 and an inner wall 38 creating an interstitial space 40 that may be monitored for leaks in walls 36 and 38 .
  • support rack 14 may comprise two main L-shaped beams running either side of shear valves 32 .
  • Support rack 14 is connected to anchors 16 by bolts 18 .
  • Shear valves 32 are connected to support rack 14 by brackets 34 .
  • bolts 18 may be removed, brackets 34 disconnected and rack 14 replaced without the need to remove and replace sump 24 .
  • FIG. 6 shows a detail view of a penetration fitting 30 .
  • Penetration pipe designated generally as 28 , has an inner wall 42 and an outer wall 44 defining an interstitial space 46 that may be monitored for leaks in walls 42 or 44 .
  • the outer wall 36 of sump 24 is formed into an annular lip 48 that surrounds an aperture in outer wall 36 through which penetration pipe 28 passes.
  • inner wall 38 of sump 24 is formed into an annular lip 50 that surrounds an aperture in inner wall 38 .
  • Cuff 52 is placed over and contains lip 48 and penetration pipe 28 where penetration pipe 28 passes through the aperture formed by lip 48 .
  • Cuff 52 contains internal heating elements that, when activated, partially melt those portions of cuff 52 that contact the outer wall 44 of penetration pipe 28 and lip 48 forming a permanent sealed bond with outer wall 44 and lip 48 .
  • cuff 54 is placed over and contains lip 50 and penetration pipe 28 where penetration pipe 28 passes through the aperture formed by lip 50 .
  • Cuff 54 contains internal heating elements that, when activated, partially melt those portions of cuff 54 that contact the outer wall 44 of penetration pipe 28 and lip 50 forming a permanent sealed bond with outer wall 44 and lip 50 .
  • lip 50 provides a sealed interior bottom surface of sump 24 that will catch and hold any fuel that may escape from the shear valves 32 or internal piping of the dispenser. Furthermore, in the event cuff 54 fails to bond completely to lip 50 and outer wall 44 or such bond fails at some point in time, lip 50 provides some protection against leaks as any fluid would need to build up in the bottom of sump 24 to a height above lip 50 before such fluid could leak through the aperture defined by lip 50 . In such an event, the fluid would still be contained within sump 24 in the interstitial space 40 . Monitoring of interstitial space 40 by known means would alert interested parties to any failure at any point in penetration 30 .
  • FIG. 7 shows the UDC system 10 installed in a typical fueling station environment and illustrates the convenient installation of the UDC system.
  • Anchors 16 are partially embedded in concrete 20 .
  • Support rack 14 is connected to anchors 16 by bolts 18 .
  • Sump 24 is supported by support frame 56 and, after concrete 20 is poured, lip 60 .
  • a hole is dug in earth 22 that is large enough and deep enough to accommodate sump 24 , support frame 56 and the portion of penetration pipes 28 that extend below sump 24 .
  • anchors 16 and connected support rack 14 may be held in place at the appropriate level with respect to sump 24 by bands 58 that connect anchors 16 to support frame 56 .
  • UDC system 10 and support frame 56 are lowered into the hole and penetration pipes 28 are connected to fuel pipes 26 by conventional means. The hole is then backfilled and concrete 20 is poured.
  • support rack 14 may be disconnected from anchors 16 by removing bolts 18 .
  • Shear valves 32 are disconnected from brackets 34 and support rack 14 may be removed and replaced.
  • annular cut may be made in inner wall 38 around each penetration pipe 28 .
  • a second annular cut may be made in outer wall 36 around each penetration pipe 28 .
  • typical prior art sumps such as sump 64 have shoulders 62 that are covered with concrete 20 which must be removed and repoured if the sump 64 is to be replaced.
  • the replacement of sump 24 and support rack 14 in the disclosed UDC system 10 may be accomplished without the need to break and re-pour the concrete 20 surrounding UDC system 10 which greatly simplifies the replacement process saving both time and money and allowing the dispenser 12 to be put back into service much more quickly than is possible in the case of prior art UDC systems.

Abstract

An under dispenser containment system with integral penetration fitting and a fitting support structure separate from the sump. The containment system is adapted for use under fuel dispensers. The containment system comprises a double-walled sump with apertures and lips surrounding the apertures molded into the inner and outer walls. The containment system also comprises a fitting support structure that is not attached to the sump to allow replacement of the support structure without having to replace the sump.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an under dispenser containment system (“UDC”) for use under a fuel dispenser such as the kind used to dispense gasoline, diesel or aviation fuel. The system includes quasi-integral penetration fittings and a shear valve support structure separate from the sump portion of the UDC. The UDC is double-walled and made of polyethylene.
  • BACKGROUND OF THE INVENTION
  • Fuel such as gasoline, diesel and aviation fuel is typically stored in large underground storage tanks (“USTs”) and transported by a pump through underground piping to the area below above-ground fuel dispensers. At that point, the underground piping makes a turn to run vertically upward toward the fuel dispenser. Typically, a shear valve is located near the base of the dispenser. The shear valve closes off the fuel pipe to prevent massive fuel leaks in the event that the fuel pipe above the shear valve is broken which can occur, for example, if the fuel dispenser is hit by a car.
  • Many jurisdictions, require the fuel to be secondarily contained to reduce the possibility of fuel leaking from the fuel handling equipment into the environment. Thus, UST's are typically double-walled with an inner wall that contains the fuel and an outer wall intended to contain any fuel that may leak through openings in the inner wall. Underground piping also is typically double-walled with an inner pipe that contains the fuel and an outer pipe intended to contain any fuel that may leak from the inner pipe. The interstitial space between the inner and outer wall of the UST and the underground piping may be monitored to detect leaks in either the inner or outer wall. Such monitoring may be accomplished by placing the interstitial space under vacuum and monitoring the vacuum pressure or filling the interstitial space with inert fluid and monitoring the level of the inert fluid. The underground piping typically is constructed from either fiberglass or polyethylene (“PE”). PE piping offers certain advantages over fiberglass piping in that PE is more flexible while fiberglass is more brittle. Fiberglass, however, is easier to bond with other materials making it easier to obtain solid connections that do not leak.
  • Under the fuel dispenser, the secondary containment is typically provided by an under dispenser containment (“UDC”) system. The shear valves are typically located within the sump portion of the UDC. The internal piping of the dispenser is located above the sump such that any leaks from the internal piping will fall into and be contained within the sump. Examples of UDCs are shown in U.S. Pat. Nos. 4,842,163, 5,246,044 and 5,301,722.
  • Historically, UDCs have presented several challenges. The piping that carries the fuel must pass through the UDC. In most UDC systems, the penetration apertures in the sump are cut at the installation site to allow the apertures to be placed in the proper locations with respect to the underground pipes. Cutting the apertures at the installation site increases the time and complexity of the installation. In addition, such penetrations are difficult to seal against leaks. Thus, the penetrations are usually located on the side of the sump rather than the bottom so that if the penetration is not sealed properly, no liquid fuel will leak through the penetration unless the liquid fuel fills the sump to at or above the level of the penetrations. If the underground piping in a fuel facility is made from fiberglass, many jurisdictions require a four-foot run of pipe from the exterior of the sump before a fitting may be placed on the pipe. Examples of such fittings might include an angled fitting to change the direction of the pipe or a straight connection to connect to a second length of underground pipe. If a four-foot run is required, the penetration is typically made in the side of the sump to avoid having to excavate to a depth of four feet below the bottom of the sump and run the fuel piping connecting to the USTs at an excessive depth.
  • One example of an attempt to deal with the propensity of such penetrations to leak is found in U.S. Pat. No. 5,246,044 (“Robertson”). Robertson discloses a fiberglass UDC with integral fiberglass couplings that penetrate the bottom of the UDC. The most common method of sealing a penetration fitting is a bulkhead style penetration fitting. One example of such a fitting is disclosed in U.S. Pat. No. 5,285,829. Use of bulkhead style fittings requires the UDC to be relatively large to allow the installer easy access to the interior of the UDC to install the portion of the bulkhead fitting located inside the UDC. With such larger UDCs, PE's flexibility presents a problem. If a relatively larger UDC is made of PE, the pressure from the surrounding dirt and concrete once the UDC is installed can cause the UDC to bend, buckle or collapse.
  • A second function of the UDC is to assist with providing support and bracing for the shear valves and internal piping of the dispenser. Typically, the support for the shear valves is connected to the sump portion of the UDC. For example, U.S. Pat. No. 4,842,163 discloses a “U” shaped brace that connects the shear valve to the side of the UDC. Robertson discloses shear valve support members connected to brackets attached to the UDC. One disadvantage of a connection between the shear valve and the UDC is that damage to the shear valve or internal piping, such as an impact by a car, usually results in damage to the UDC. That problem is particularly prevalent if the UDC is made of fiberglass because of its rigid properties. Thus, after such damage the entire UDC has to be replaced. Such replacement usually requires excavation, usually including breaking and re-pouring concrete surrounding the UDC.
  • SUMMARY OF THE INVENTION
  • The present invention presents a UDC system that overcomes many of problems addressed above. The sump portion of the UDC is double-walled and made of PE. The penetration apertures are pre-molded in the inner and outer walls at the bottom of the sump portion of the UDC. Lips are provided around the edge of the apertures in both the internal wall and the external wall. In the preferred embodiment, double-walled PE pipes are placed in the penetration apertures and fittings are applied that fuse the outer wall of the pipe to the lips around the aperture providing what is essentially an integral penetration fitting. In addition, the lip around the penetration aperture in the internal wall reduces the chance that liquid fuel will leak out of the interior of the UDC in the event of a fuel spill and a failure of the fusion fitting.
  • The exterior end of the penetration pipe is connected to the underground fuel piping. The interior end of the penetration fitting is connected to a shear valve. The provision of the penetration pipes already installed in the sump portion of the UDC means that the total size of the sump can be smaller than those currently in use as there is no need to have easy access to the interior of the UDC to install bulkhead style fittings. The smaller size allows the UDC to maintain structural integrity even though it is made from PE. The provision of the penetration pipes and smaller size also allows the sump portion of the UDC to be replaced without the need to break and repour concrete.
  • The UDC system also is provided with a support rack for the shear valves and internal piping that is independent from sump portion of the UDC system. Anchors for the support rack are embedded in the concrete next to the upper lip of the UDC. A collar is connected to the anchors. The shear valves are held by the collar. The combination of a PE sump and a shear valve support rack independent from the sump in the disclosed system provides important advantages over the current state of the art. In the event of trauma to the dispenser, such as the dispenser being struck by a car, the internal piping of the dispenser will likely be damaged along with the mechanism providing support for the shear valves. In the current state of the art, the shear valve support structures are integral with the sump portion of the UDC. Thus, damage to the shear valve support structure frequently causes damage to the sump requiring replacement of both the sump and the support structure. Sumps in current use typically have a relatively narrow opening in the top and a wider body to allow room for workmen to work inside the sump. That structure results in the sump having “shoulders” that are typically covered with concrete. Thus, replacement of the sump usually requires excavation including breaking and re-pouring concrete.
  • In contrast to the current state of the art, the support structure for the shear valves of the disclosed UDC system is completely independent from the sump portion of the UDC. In addition, the sump portion of the UDC is made of PE which is flexible. Thus, in the event of trauma to the dispenser and damage to the shear valve support structure, the support structure usually can be removed and replaced without the need to break and re-pour concrete. In addition, the flexible properties of the PE sump portion typically allow the sump to absorb any trauma by flexing and springing back into position without any damage to the sump. Finally, the disclosed sump has no “shoulders” but rather straight sides and a lip that is intended to be located at ground level. Thus, should the sump portion need to be replaced, the sump can be lifted out after cutting the bottom of the sump around the penetration pipes. A new sump with openings appropriately sized to accommodate the existing penetration pipes and attached portions of the previous sump may be lowered into the existing hole and the joints sealed by hand welding or other known method. Such replacement may be done without the need to break and re-pour the surrounding concrete.
  • The present UDC system presents an additional advantage over the state of the art. As discussed, conventional practice when installing a UDC is to drill the penetration apertures at the location of installation and to install penetration fittings, such as bulkhead fittings, to seal the penetration points. In the preferred embodiment of the present UDC system, the penetrations are pre-installed with PE double-walled pipes extending through the sump and downward from the bottom of the sump portion. The UDC systems may be delivered in a frame that may be buried. Thus, installation may involve simply excavating a hole of an appropriate size and dropping the UDC system including the support structure into the hole. The underground piping is connected to the double-walled penetration pipes of the disclosed UDC system with conventional fittings that are used to connect one piece of underground pipe to another such as elbow or angle fittings. Thus, the disclosed UDC system greatly simplifies the installation process and reduces the chances of human error during the installation resulting in savings of time and money. The double-walled PE pipes of the present UDC system are easily attached to underground piping made of PE. The flexible properties of PE make it a preferable material for underground piping as compared with fiberglass underground piping.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front view of a fuel dispenser and a cut-away front view of one embodiment of the UDC system installed beneath the fuel dispenser;
  • FIG. 2 is a front view of one embodiment of the UDC system;
  • FIG. 3 is a side cut-away view of one embodiment of the UDC system along line 3-3 of FIG. 2;
  • FIG. 4 is a plan view of one embodiment of the UDC system;
  • FIG. 5 is a side cut-away view of one embodiment of the UDC system along line 5-5 of FIG. 4;
  • FIG. 6 is an enlarged detailed view of one embodiment of the penetration fitting as indicated in FIG. 5;
  • FIG. 7 is a perspective view showing one embodiment of the UDC system including the support structure installed in earth and concrete; and
  • FIG. 8 is a front view of a fuel dispenser and a cut-away front view of a prior art sump installed beneath the fuel dispenser.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In accordance with the preferred embodiment of the present invention, as shown in FIG. 1, the UDC system, indicated generally as 10, is shown installed beneath fuel dispenser 12. Support rack 14 is connected to anchors 16 by bolts 18. Anchors 16 are embedded in concrete 20 poured on top of earth 22. Sump, indicated generally as 24, rests on earth 22 and is encased in concrete 20. UDC 10 is installed so that lip 60 of sump 24 is approximately level with the top of concrete 20. Fuel pipes 26 connect to penetration pipes 28 that pass through penetration fittings 30. Shear valves 32 are connected to the upper end of penetration pipes 28 and connected to rack 14 by brackets 34. Additional views of the foregoing components of the UDC system are shown in FIGS. 2 and 3.
  • As shown in FIGS. 3 and 5, sump portion 24 has an outer wall 36 and an inner wall 38 creating an interstitial space 40 that may be monitored for leaks in walls 36 and 38.
  • As shown in FIGS. 3, 4 and 5, support rack 14 may comprise two main L-shaped beams running either side of shear valves 32. Support rack 14 is connected to anchors 16 by bolts 18. Shear valves 32 are connected to support rack 14 by brackets 34. In the event of damage to support rack 14, such as might occur should dispenser 12 be hit by a car, bolts 18 may be removed, brackets 34 disconnected and rack 14 replaced without the need to remove and replace sump 24.
  • FIG. 6 shows a detail view of a penetration fitting 30. Penetration pipe, designated generally as 28, has an inner wall 42 and an outer wall 44 defining an interstitial space 46 that may be monitored for leaks in walls 42 or 44. The outer wall 36 of sump 24 is formed into an annular lip 48 that surrounds an aperture in outer wall 36 through which penetration pipe 28 passes. Similarly, inner wall 38 of sump 24 is formed into an annular lip 50 that surrounds an aperture in inner wall 38.
  • Cuff 52 is placed over and contains lip 48 and penetration pipe 28 where penetration pipe 28 passes through the aperture formed by lip 48. Cuff 52 contains internal heating elements that, when activated, partially melt those portions of cuff 52 that contact the outer wall 44 of penetration pipe 28 and lip 48 forming a permanent sealed bond with outer wall 44 and lip 48. Similarly, cuff 54 is placed over and contains lip 50 and penetration pipe 28 where penetration pipe 28 passes through the aperture formed by lip 50. Cuff 54 contains internal heating elements that, when activated, partially melt those portions of cuff 54 that contact the outer wall 44 of penetration pipe 28 and lip 50 forming a permanent sealed bond with outer wall 44 and lip 50. The bonding of lip 50, cuff 54 and outer wall 44 provides a sealed interior bottom surface of sump 24 that will catch and hold any fuel that may escape from the shear valves 32 or internal piping of the dispenser. Furthermore, in the event cuff 54 fails to bond completely to lip 50 and outer wall 44 or such bond fails at some point in time, lip 50 provides some protection against leaks as any fluid would need to build up in the bottom of sump 24 to a height above lip 50 before such fluid could leak through the aperture defined by lip 50. In such an event, the fluid would still be contained within sump 24 in the interstitial space 40. Monitoring of interstitial space 40 by known means would alert interested parties to any failure at any point in penetration 30.
  • FIG. 7 shows the UDC system 10 installed in a typical fueling station environment and illustrates the convenient installation of the UDC system. Anchors 16 are partially embedded in concrete 20. Support rack 14 is connected to anchors 16 by bolts 18. Sump 24 is supported by support frame 56 and, after concrete 20 is poured, lip 60. To install UDC system 10, a hole is dug in earth 22 that is large enough and deep enough to accommodate sump 24, support frame 56 and the portion of penetration pipes 28 that extend below sump 24. Before and during installation, anchors 16 and connected support rack 14 may be held in place at the appropriate level with respect to sump 24 by bands 58 that connect anchors 16 to support frame 56. UDC system 10 and support frame 56 are lowered into the hole and penetration pipes 28 are connected to fuel pipes 26 by conventional means. The hole is then backfilled and concrete 20 is poured.
  • Should it become necessary to replace support rack 14, support rack 14 may be disconnected from anchors 16 by removing bolts 18. Shear valves 32 are disconnected from brackets 34 and support rack 14 may be removed and replaced.
  • With reference to FIG. 6, should it become necessary to replace sump 24, support rack 14 is removed as described above, an annular cut may be made in inner wall 38 around each penetration pipe 28. A second annular cut may be made in outer wall 36 around each penetration pipe 28. Once the penetration pipes 28 have been separated from the walls of sump 24, sump 24 may be lifted out. A new sump 24 with holes in its inner wall 38 and outer wall 36 sized appropriately to accommodate penetration pipes 28 may be dropped into the hole. Penetration pipes 28 may be connected to outer wall 36 and inner wall 38 with annular patches and hand welding.
  • As shown in FIG. 8, typical prior art sumps such as sump 64 have shoulders 62 that are covered with concrete 20 which must be removed and repoured if the sump 64 is to be replaced. The replacement of sump 24 and support rack 14 in the disclosed UDC system 10 may be accomplished without the need to break and re-pour the concrete 20 surrounding UDC system 10 which greatly simplifies the replacement process saving both time and money and allowing the dispenser 12 to be put back into service much more quickly than is possible in the case of prior art UDC systems.

Claims (20)

1. A sump for a under dispenser containment system comprising:
an inner wall and an outer wall defining an interstitial space;
at least one lip provided in said inner wall defining an aperture in said inner wall;
at least one lip provided in said outer wall defining an aperture in said outer wall; and
said lips and said apertures approximately aligned with respect to each other.
2. A sump for a under dispenser containment system according to claim 1 further comprising:
said inner wall having a bottom surface;
said inner-wall lip located on said inner wall bottom surface;
said outer wall having a bottom surface; and
said outer-wall lip located on said outer wall bottom surface.
3. A sump for a under dispenser containment system according to claim 1 further comprising said inner wall and said outer wall made from polyethylene.
4. A sump for an under dispenser containment system according to claim 1 further comprising a pipe passing through said apertures; and
the exterior of said pipe bonded to said lips.
5. A sump for an under dispenser containment system according to claim 2 further comprising a pipe passing through said apertures; and
the exterior of said pipe bonded to said lips.
6. An under dispenser containment system comprising:
a sump having a bottom face and at least one side face;
said at least one side face defining an open top;
a support rack for supporting and positioning one or more shear valves positioned such that at least some portion of the support rack extends across said open top; and
said support rack not being connected to said sump.
7. An under dispenser containment system according to claim 6 with said support rack further comprising at least one anchor for positioning and securing said support rack with respect to said sump.
8. An under dispenser containment system according to claim 6 with said sump further comprising:
an inner wall and an outer wall defining an interstitial space;
at least one lip provided in said inner wall defining an aperture in said inner wall;
at least one lip provided in said outer wall defining an aperture in said outer wall; and
said lips and said apertures approximately aligned with respect to each other.
9. An under dispenser containment system according to claim 8 with said sump further comprising:
said inner wall having a bottom surface;
said inner-wall lip located on said inner wall bottom surface;
said outer wall having a bottom surface; and
said outer-wall lip located on said outer wall bottom surface.
10. An under dispenser containment system according to claim 6 further comprising said sump made from polyethylene.
11. An under dispenser containment system according to claim 8 with said sump further comprising a pipe passing through said apertures; and
the exterior of said pipe bonded to said lips.
12. An under dispenser containment system according to claim 9 with said sump further comprising a pipe passing through said apertures; and
the exterior of said pipe bonded to said lips.
13. An under dispenser containment system comprising:
a sump;
said sump having an inner wall and an outer wall defining an interstitial space;
said inner and outer walls having a bottom surface and at least one side surface;
said at least one side surfaces extending approximately perpendicular from said bottom surfaces;
the top edge of said at least one side surface of said inner wall defining a top opening of approximately equal size to said bottom surface of said inner wall;
at least one lip provided in said inner wall defining an aperture in said inner wall;
at least one lip provided in said outer wall defining an aperture in said outer wall; and
said lips and said apertures approximately aligned with respect to each other.
14. An under dispenser containment system according to claim 13 further comprising:
a pipe passing through said apertures; and
the exterior of said pipe bonded to said lips.
15. An under dispenser containment system according to claim 13 further comprising:
said inner-wall lip located on said inner wall bottom surface; and
said outer-wall lip located on said outer wall bottom surface.
16. An under dispenser containment system according to claim 15 further comprising:
a pipe passing through said apertures; and
the exterior of said pipe bonded to said lips.
17. An under dispenser containment system according to claim 13 further comprising:
a support rack for supporting and positioning one or more shear valves positioned such that at least some portion of the support rack extends across said top opening; and
said support rack not being connected to said sump.
18. An under dispenser containment system according to claim 17 with said support rack further comprising at least one anchor for positioning and securing said support rack with respect to said sump.
19. An under dispenser containment system according to claim 14 further comprising:
a support rack for supporting and positioning one or more shear valves positioned such that at least some portion of the support rack extends across said top opening; and
said support rack not being connected to said sump.
20. An under dispenser containment system according to claim 19 with said support rack further comprising at least one anchor for positioning and securing said support rack with respect to said sump.
US12/658,494 2010-02-09 2010-02-09 Under dispenser containment system with integral penetration fittings and separate fitting support structure Abandoned US20110192468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/658,494 US20110192468A1 (en) 2010-02-09 2010-02-09 Under dispenser containment system with integral penetration fittings and separate fitting support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/658,494 US20110192468A1 (en) 2010-02-09 2010-02-09 Under dispenser containment system with integral penetration fittings and separate fitting support structure

Publications (1)

Publication Number Publication Date
US20110192468A1 true US20110192468A1 (en) 2011-08-11

Family

ID=44352724

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/658,494 Abandoned US20110192468A1 (en) 2010-02-09 2010-02-09 Under dispenser containment system with integral penetration fittings and separate fitting support structure

Country Status (1)

Country Link
US (1) US20110192468A1 (en)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615362A (en) * 1985-04-25 1986-10-07 Standard Oil Company (Indiana) Overfill and spillage protection device
US4842163A (en) * 1986-09-19 1989-06-27 Bravo Sergio M Gasoline collector pit box and submersible unit box
US5246044A (en) * 1991-02-20 1993-09-21 Environmental Protection Products, Inc. Fuel dispenser pump containment apparatus
US5285829A (en) * 1992-02-14 1994-02-15 Bravo Sergio M Gasoline containment systems with leak-resistant plastic fittings
US5301722A (en) * 1991-12-26 1994-04-12 Dresser Industries, Inc. Under-dispenser containment apparatus
US5676183A (en) * 1992-02-14 1997-10-14 Bravo; Sergio M. Gasoline containment systems with fire protective collar
US5800143A (en) * 1996-09-20 1998-09-01 Bravo; Sergio M. Anchoring frame for containment box
US5813797A (en) * 1996-10-08 1998-09-29 Dover Corp. Unitary sump frame
US5826919A (en) * 1996-09-16 1998-10-27 S. Bravo Systems, Inc. Flexible penetration fitting
US5927762A (en) * 1994-09-15 1999-07-27 Environ Products, Inc. Pipe coupling assembly system and method
US5988698A (en) * 1997-07-08 1999-11-23 Sergio M. Bravo Flexible penetration fitting
US6006773A (en) * 1997-09-24 1999-12-28 Bravo; Sergio M. Installation method for pipe layout with opposing incline
US6182679B1 (en) * 1998-10-06 2001-02-06 Delaware Capital Formation, Inc. Sump stabilizer bar
US20030047211A1 (en) * 2001-09-13 2003-03-13 S. Bravo Systems, Inc. Dispenser containment
US6886388B1 (en) * 2002-04-24 2005-05-03 Mcgill M. Daniel Contiguous double containment underground storage tank fueling system and methods for detecting leaks therein
US7043965B2 (en) * 2003-02-12 2006-05-16 Schneider William A Double-walled containment enclosure
US7171994B1 (en) * 2005-09-28 2007-02-06 O'brien Patrick E Spillage containment system and kit for underground storage tanks
US20070057504A1 (en) * 2003-11-25 2007-03-15 Boudry John A Connection between a pipe and a wall
US20070137703A1 (en) * 2005-02-18 2007-06-21 Ingram Thomas L Double-walled flexible dispenser sump connection system
US20080246276A1 (en) * 2006-05-22 2008-10-09 Bravo Sergio M Sump Wall Penetration Fitting
WO2008139158A2 (en) * 2007-05-09 2008-11-20 Petrotechnik Limited Sump for fuel dispenser
US7503205B2 (en) * 2005-04-26 2009-03-17 Veeder-Root Company Redundant vacuum source for secondary containment monitoring and leak detection system and method
US20090199927A1 (en) * 2008-02-08 2009-08-13 Delaware Capital Formation, Inc. Tank entry fitting for use in a fuel dispensing system
US7575015B2 (en) * 2004-04-22 2009-08-18 Gilbarco, Inc. Secondarily contained in-dispenser sump/pan system and method for capturing and monitoring leaks
US20090212057A1 (en) * 2008-02-20 2009-08-27 Bravo Sergio M Electrical Offset

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615362A (en) * 1985-04-25 1986-10-07 Standard Oil Company (Indiana) Overfill and spillage protection device
US4842163A (en) * 1986-09-19 1989-06-27 Bravo Sergio M Gasoline collector pit box and submersible unit box
US5246044A (en) * 1991-02-20 1993-09-21 Environmental Protection Products, Inc. Fuel dispenser pump containment apparatus
US5301722A (en) * 1991-12-26 1994-04-12 Dresser Industries, Inc. Under-dispenser containment apparatus
US5529098A (en) * 1992-02-14 1996-06-25 Bravo; Sergio M. Gasoline containment systems with leak-resistant plastic fittings
US5341857A (en) * 1992-02-14 1994-08-30 Bravo Sergio M Gasoline containment systems with leak-resistant plastic fittings
US5285829A (en) * 1992-02-14 1994-02-15 Bravo Sergio M Gasoline containment systems with leak-resistant plastic fittings
US5676183A (en) * 1992-02-14 1997-10-14 Bravo; Sergio M. Gasoline containment systems with fire protective collar
US5927762A (en) * 1994-09-15 1999-07-27 Environ Products, Inc. Pipe coupling assembly system and method
US5826919A (en) * 1996-09-16 1998-10-27 S. Bravo Systems, Inc. Flexible penetration fitting
US5800143A (en) * 1996-09-20 1998-09-01 Bravo; Sergio M. Anchoring frame for containment box
US5813797A (en) * 1996-10-08 1998-09-29 Dover Corp. Unitary sump frame
US5988698A (en) * 1997-07-08 1999-11-23 Sergio M. Bravo Flexible penetration fitting
US6006773A (en) * 1997-09-24 1999-12-28 Bravo; Sergio M. Installation method for pipe layout with opposing incline
US6182679B1 (en) * 1998-10-06 2001-02-06 Delaware Capital Formation, Inc. Sump stabilizer bar
US6823886B2 (en) * 2001-09-13 2004-11-30 S. Bravo Systems, Inc. Dispenser containment
US20030047211A1 (en) * 2001-09-13 2003-03-13 S. Bravo Systems, Inc. Dispenser containment
US6886388B1 (en) * 2002-04-24 2005-05-03 Mcgill M. Daniel Contiguous double containment underground storage tank fueling system and methods for detecting leaks therein
US7043965B2 (en) * 2003-02-12 2006-05-16 Schneider William A Double-walled containment enclosure
US20070057504A1 (en) * 2003-11-25 2007-03-15 Boudry John A Connection between a pipe and a wall
US7575015B2 (en) * 2004-04-22 2009-08-18 Gilbarco, Inc. Secondarily contained in-dispenser sump/pan system and method for capturing and monitoring leaks
US7527065B2 (en) * 2005-02-18 2009-05-05 Flex-Ing, Inc. Double-walled flexible dispenser sump connection system
US20070137703A1 (en) * 2005-02-18 2007-06-21 Ingram Thomas L Double-walled flexible dispenser sump connection system
US20090211646A1 (en) * 2005-02-18 2009-08-27 Flex-Ing, Inc. Double-walled flexible dispenser sump connection system
US7681586B2 (en) * 2005-02-18 2010-03-23 Ingram Thomas L Double-walled flexible dispenser sump connection system
US7946309B2 (en) * 2005-04-26 2011-05-24 Veeder-Root Company Vacuum-actuated shear valve device, system, and method, particularly for use in service station environments
US7503205B2 (en) * 2005-04-26 2009-03-17 Veeder-Root Company Redundant vacuum source for secondary containment monitoring and leak detection system and method
US7555935B2 (en) * 2005-04-26 2009-07-07 Veeder-Root Company End-of-line zone integrity detection for a piping network in a secondary containment monitoring and leak detection system
US8291928B2 (en) * 2005-04-26 2012-10-23 Veeder-Root Company Vacuum-actuated shear valve device, system, and method, particularly for use in service station environments
US7171994B1 (en) * 2005-09-28 2007-02-06 O'brien Patrick E Spillage containment system and kit for underground storage tanks
US20080246276A1 (en) * 2006-05-22 2008-10-09 Bravo Sergio M Sump Wall Penetration Fitting
WO2008139158A2 (en) * 2007-05-09 2008-11-20 Petrotechnik Limited Sump for fuel dispenser
US20100139807A1 (en) * 2007-05-09 2010-06-10 John Alexandre Boudry Sump for fuel dispenser
US20090199927A1 (en) * 2008-02-08 2009-08-13 Delaware Capital Formation, Inc. Tank entry fitting for use in a fuel dispensing system
US20090212057A1 (en) * 2008-02-20 2009-08-27 Bravo Sergio M Electrical Offset

Similar Documents

Publication Publication Date Title
EP0464027B1 (en) Flexible double-containment piping system
US5590981A (en) Double-containment underground piping system
US4672366A (en) Subterranean tank leak containment and detection system
US4110947A (en) Storage tank installation
US4682911A (en) Secondary containment systems especially well suited for hydrocarbon storage and delivery systems
EP2311774B1 (en) Spill containment system
CA2142107A1 (en) Connecting device for pipe assemblies
US4912966A (en) Total containment means for storage tank systems
US4818151A (en) Secondary containment systems especially well suited for hydrocarbon storage and delivery systems
US4934866A (en) Secondary fluid containment method and apparatus
US9228690B2 (en) Apparatus and method for repairing an existing spill containment manhole
US5167470A (en) Fuel collection pan for gasoline dispenser
US8353142B2 (en) System and method for sealing sump covers
US4778310A (en) Means for installing membranes in containment pits for tanks storing liquids
JP2010525998A (en) Fuel dispenser sump
US20110192468A1 (en) Under dispenser containment system with integral penetration fittings and separate fitting support structure
US5664696A (en) Installation of tanks for storing fuel or chemical products in service stations and the like
US5052216A (en) Containment means for storage tank systems
US8770889B2 (en) Method of waterproofing a containment sump
US4921115A (en) Method and system for secondary containment
CA1316579C (en) Subterranean tank leak containment and detection system and method
US11208318B2 (en) Adjustable spill containment system
US20050169710A1 (en) Containment system
JP2933094B2 (en) Flexible double containment piping system for underground storage tanks.
US10239687B1 (en) Above ground water tank fill/drain system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION