US20110190797A1 - Method of restoring blood flow through an obstructed blood vessel of the brain - Google Patents

Method of restoring blood flow through an obstructed blood vessel of the brain Download PDF

Info

Publication number
US20110190797A1
US20110190797A1 US13084880 US201113084880A US20110190797A1 US 20110190797 A1 US20110190797 A1 US 20110190797A1 US 13084880 US13084880 US 13084880 US 201113084880 A US201113084880 A US 201113084880A US 20110190797 A1 US20110190797 A1 US 20110190797A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
revascularization
device
catheter
system
embolus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13084880
Inventor
John Fulkerson
David A. Ferrera
Andrew Cragg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
MINDFRAME Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320725Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/0084Material properties low friction
    • A61B2017/00845Material properties low friction of moving parts with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stending
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0059Additional features; Implant or prostheses properties not otherwise provided for temporary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1095Balloon catheters with special features or adapted for special applications with perfusion means for enabling blood circulation while the balloon is in an inflated state or in a deflated state, e.g. permanent by-pass within catheter shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1097Balloon catheters with special features or adapted for special applications with perfusion means for enabling blood circulation only while the balloon is in an inflated state, e.g. temporary by-pass within balloon

Abstract

An acute stroke recanalization system and processes include catheter-based improved reconstrainable or tethered neurological devices which are deliverable through highly constricted and tortuous vessels, crossing the zone associated with subject thrombi/emboli, where deployment impacts, addresses or bridges the embolus, compacting the same into luminal walls which enables perfusion and lysis of the embolus, while the improved neurological medical device itself remains contiguous with the delivery system acting as a filter, basket or stand alone stenting mechanism, depending on the status of the embolus and other therapeutic aspects of the treatment being offered for consideration.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of U.S. application Ser. No. 12/123,390, filed May 19, 2008, which claims priority to, and incorporates expressly by reference U.S. Provisional Application Ser. No. 60/980,736, filed Oct. 17, 2007; U.S. Provisional Application Ser. No. 61/044,392, filed Apr. 11, 2008; U.S. Provisional Application Ser. No. 61/015,154, filed Dec. 19, 2007; U.S. Provisional Application Ser. No. 60/989,422, filed Nov. 20, 2007; U.S. Provisional Application Ser. No. 60/987,384, filed Nov. 12, 2007; and U.S. Provisional Application Ser. No. 61/019,506, filed Jan. 7, 2008; each as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present disclosure relates to minimally invasive and catheter delivered revascularization systems for use in the vasculature, especially those suited for usage above the juncture of the Subclavian Artery and Common Carotid Artery. In particular, this disclosure relates to revascularization devices for use in treatment of ischemic stroke, including improved neurological medical devices which are tethered or reconstrainable self-expanding neurological medical devices.
  • SUMMARY OF THE INVENTION
  • [0003]
    According to embodiments of the present invention, there are disclosed acute stroke revascularization/recanalization systems comprising, in combination; catheter systems having guidewires to access and emplace improved neurological medical devices into the cerebral vasculature, the systems including proximal stainless steel pushers with distal nitinol devices or one-piece nitinol devices. In some embodiments, the systems comprise a polymeric liner incorporated within the pusher to improve trackability of the guidewire. In some embodiments, the polymeric liner extends beyond the distal tip of the pusher for guiding the guidewire and preventing entanglement in the nitinol device.
  • [0004]
    According to embodiments, there are disclosed one-piece nitinol devices in combination with the above disclosed and/or claimed catheter systems.
  • [0005]
    Briefly stated, according to embodiments a novel enhanced tethered revascularization device is deliverable through highly constricted and tortuous vessels, entering a zone associated with subject thrombi/emboli, where deployment impacts the embolus, compacting the same into luminal walls which enables perfusion and lysis of the embolus, while the revascularization device itself remains continuous with the delivery system acting as a filter, basket or stand alone revascularization mechanism, depending on the status of the embolus and other therapeutic aspects of the treatment being offered for consideration.
  • [0006]
    According to embodiments of the system and processes of the present invention, in certain iterations, once deployed the instant system compacts the embolus against the luminal wall, creating a channel for blood flow which may act like a natural lytic agent to lyse or dissolve the embolus.
  • [0007]
    According to embodiments, there is provided an improved neurological medical device which comprises, in combination, a catheter system effective for delivering a combination radial filter/revascularization device and basket assembly into a desired location in the cerebral vascular system, a self-expanding radial filter/revascularization device and basket assembly detachably tethered to the catheter system which functions in at least three respective modes, wherein the radial filter/revascularization device and basket assembly is attached to the catheter and wherein radial filter/revascularization device and basket assembly further comprises at least two states per mode, a retracted state and an expanded state; and wherein the radial filter/revascularization device and basket assembly may retracted into the retracted state after deployment in an expanded state, in each mode.
  • [0008]
    According to embodiments, there is provided a process comprising in combination providing a revascularization device tethered to a catheter by emplacing the system into a patient for travel to a desired location in a vessel having an obstruction/lesion and deploying the revascularization device by allowing it to move from a first state to a second state across a lesion which compresses the subject embolus into a luminal wall to which it is adjacent whereby creating a channel for blood flow as a lytic agent, and removing the system which the obstruction/lesion is addressed.
  • [0009]
    It is noted that if blood flow does not lyse the blood embolus, lytic agents can be administered via the guidewire lumen, as a feature of the present invention.
  • [0010]
    According to embodiments, there is provided a process whereby the revascularization device tethered to a catheter functions as a radial filter to prevent downstream migration of emboli.
  • [0011]
    The U.S. Food and Drug Administration (FDA) has previously approved a clot retrieval device (The Merci® brand of retriever X4, X5, X6, L4, L5 & L6: Concentric Medical, Mountain View, Calif.). Unfortunately, when used alone, this clot retriever is successful in restoring blood flow in only approximately 50% of the cases, and multiple passes with this device are often required to achieve successful recanalization. IA thrombolytics administered concomitantly enhance the procedural success of this device but may increase the risk of hemorrhagic transformation of the revascularization infarction. There have been several reports of coronary and neuro-stent implantation used for mechanical thrombolysis of recalcitrant occlusions. In summary, stent placement with balloon-mounted or self-expanding coronary and neuro-types of stents has been shown to be an independent predictor for recanalization of both intracranial and extra cranial cerebro-vasculature occlusions. This provides some insight into approaches needed to overcome these longstanding issues.
  • [0012]
    By way of example, self-expanding stents designed specifically for the cerebro-vasculature can be delivered to target areas of intracranial stenosis with a success rate of >95% and an increased safety profile of deliverability because these stents are deployed at significantly lower pressures than balloon-mounted coronary stents. However, systems using this data have yet to become commercial, available or accepted by most practitioners.
  • [0013]
    The use of self-expanding stents is feasible in the setting of symptomatic medium—and large-vessel intracranial occlusions. With stent placement as a first-line mechanical treatment or as a “last-resort” maneuver, TIMI/TICI 2 or 3 revascularization can be successfully obtained, according to clinical data now available.
  • [0014]
    The literature likewise suggests that focal occlusions limited to a single medium or large vessel, particularly solitary occlusions of the MCA or VBA, may be preferentially amenable to stent placement and thus can help clinicians to achieve improved rates of recanalization. In addition, gender may play a role in the success of self-expanding stent implementation. However, systems need to be designed to execute on this.
  • [0015]
    Despite increasing utilization of prourokinase rt-PA (recombinant tissue plasminogen activator) or other antithrombotic agents (e.g., Alteplase® and Reteplase®), recanalization rates remain approximately 60%. The major concerns with pharmacologic thrombolysis (alone) has been the rate of hemorrhage, inability to effectively dissolve fibrin\platelet-rich clots, lengthy times to recanalization, and inability to prevent abrupt reocclusions at the initial site of obstruction. In PROACTII, ICH with neurologic deterioration within 24 hours occurred in 10.9% of the prourokinase group and 3.1% of the control group (P=0.06), without differences in mortality. Abrupt reocclusions or recanalized arteries has been found to occur relatively frequently, even with the addition of angioplasty or snare manipulation for mechanical disruption of thrombus, and seems to be associated with poor clinical outcomes.
  • [0016]
    The use of other mechanical means has been reported to be effective in recanalization of acute occlusions. It makes sense that a combination of mechanical and pharmacologic approaches would yield greater benefit.
  • [0017]
    A known investigation in an animal model has shown, both the Wingspan® brand of self-expanding stent and Liberte® brand of balloon-mounted stent (Boston Scientific, Boston, Mass.) were able to re-establish flow through acutely occluded vessels. The self-expanding stents performed better than the balloon-mounted stents in terms of navigability to the target site. The self-expanding stents incurred lower rates of vasospasm and side-branch occlusions, which suggests superiority of these stents, over balloon-mounted stents, to maintain branch vessel patency during treatment of acute vessel occlusion. In a previous animal studies conducted, intimal proliferation and loss of lumen diameter were seen after the implantation of bare-metal, balloon-expandable stents. The literature further supports this set of issues.
  • [0018]
    These phenomena are believed to be attributable to intimal injury created during the high-pressure balloon angioplasty that is required for stent deployment.
  • [0019]
    Compared with coronary balloon-mounted stents, self-expanding stents designed for use in the intracranial circulation are superior because they are easier to track to the intracranial circulation and safer to deploy in vessels in which the true diameter and degree of intracranial atherosclerotic disease are unclear.
  • [0020]
    Moreover, based on previous experience, currently available self-expanding stents provide enough radial outward force at body temperature to revascularize occluded vessels, with low potential for the negative remodeling and in-stent restenosis that are associated with balloon-mounted stents in nonintracranial vascular beds.
  • [0021]
    Because self-expanding stents are not mounted on balloons, they are the most trackable of the stents currently available for the intracranial circulation. Unlike clot retrievers, which lose access to the target (occlusion site) every time they are retrieved (and often to necessitate multiple passes), self-expanding stents allow for wire access to the occlusion at all times, increasing the safety profile of the procedure by not requiring repeat maneuvers to gain access to the target site (as in the case for the Merci® brand of clot retriever).
  • [0022]
    Self-expanding stent placement of acute intracranial vessel occlusions may provide a novel means of recanalization after failure of clot retrieval, angioplasty, and/or thrombolytic therapy. The patency rates in this series are encouraging, yet issues remain to be addressed.
  • [0023]
    In the setting of acute stroke, restoring flow is of singular importance. In-stent stenosis or delayed stenosis may be treated in a delayed fashion on an elective basis, should the patient achieve a functional recovery from the stroke.
  • [0024]
    Recanalization with self-expanding stents may provide flow through the patent artery, and restore flow to the perforators, or, alternatively, they may remain occluded. Restoring flow to the main artery, however, will reduce the stroke burden. What is needed is a solution leveraging positive aspects of stent-based treatment without the negative outcomes which have been associated with traditional stenting.
  • DRAWINGS OF THE INVENTION
  • [0025]
    The above-mentioned features and objects of the present disclosure will become more apparent with reference to the following description taken in conjunction with the accompanying drawings wherein like reference numerals denote like elements and in which:
  • [0026]
    FIG. 1 is a perspective view of an embodiment of an acute stroke recanalization system according to embodiments of the present disclosure in a first configuration; and
  • [0027]
    FIG. 2 is a perspective view of an embodiment of an acute stroke recanalization system according to embodiments of the present disclosure tailored for use with the neurovasculature in a second configuration, further illustrating modular aspects of the system as used with tethered or reconstrainable self-expanding neurological medical devices.
  • [0028]
    FIG. 2A illustrates a detailed view of the inner catheter of FIG. 2.
  • [0029]
    FIGS. 3A-3D illustrate an embodiment of an inner catheter of the acute stroke recanalization system of FIGS. 1 and 2.
  • [0030]
    FIGS. 4A-4C illustrate a perspective view, a side view, and a front view, respectively, of an embodiment of a self-expanding revascularization device.
  • [0031]
    FIG. 5 illustrates an embodiment of a stroke device.
  • [0032]
    FIG. 6 shows a schematic of a delivery system and exemplary iteration of a temporary tethered stent mechanism according to the present disclosure.
  • [0033]
    FIG. 7 likewise schematically depicts a delivery system with embodiments of a tethered stent for use with an over-the wire guidewire system.
  • [0034]
    FIGS. 8A-8D illustrate an embodiment of a revascularization device configured for eccentric coupling to a pusher.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0035]
    The present inventors have realized that by leveraging a conventional self-expanding revascularization device delivery platform, a poly-modic system can be iterated which impacts, addresses and/or crosses an embolus, radially filters, and either removes the offending embolus or is optionally emplaced to address the same. A paucity of extant systems effective for such combination therapies is noted among the art.
  • [0036]
    Using endovascular techniques self-expandable tethered or reconstrainable self-expanding neurological medical devices offer instant revascularization/recanalization of MCAs and related vessels, without any of the traditional concerns associated with stenting, according to embodiments of the present invention.
  • [0037]
    Expressly incorporated herein by reference are the following U.S. Letters patents and publications, each as if fully set forth herein: 2005/0119684; 2007/0198028; 2007/0208367; U.S. Pat. Nos. 5,449,372; 5,485,450; 5,792,157; 5,928,260; 5,972,019; 6,485,500; 7,147,655; 7,160,317; 7,172,575; 7,175,607; and 7,201,770.
  • [0038]
    The instant system allows for natural lysis, revascularization of the challenged vessels, and importantly radially filters any particulates generated, to obviate the need to be concerned with distal migration of the same, unlike prior systems or applications which include largely “off-label” usages of devices approved only for aneurysms in the brain.
  • [0039]
    The present disclosure relates to revascularization devices used to treat, among other things, ischemic stroke. Naturally, therefore, the revascularization devices of the present disclosure are designed to be used in neuro-type applications, wherein the specifications of the present catheters and revascularization devices may be deployed in the blood vessels of the cerebral vascular system. Similarly contemplated for the revascularization systems and catheters of the present disclosure is deployment in other parts of the body wherein the specifications of the present disclosure may be used in other vessels of the body in a non-invasive manner.
  • [0040]
    According to embodiments, disclosed herein is a catheter-based revascularization system. The revascularization devices of the present disclosure are for revascularization of blood vessels. When the catheter-based revascularization system of the present disclosure is deployed into a blood vessel having an embolus, the revascularization device is expanded thereby opening the vessel so that the vessel can resume proper blood flow.
  • [0041]
    According to the instant teachings, deployment of the system of the present disclosure, establishes immediate 50% of the diameter of the lumen patency of the vessel being addressed. Among the prior art, no system having adequately small profile with flexibility to promote improved access for in-site treatment is known which may be used as a temporary (not implanted) solution. Those skilled in the art readily understand that detachment methods comprising mechanical, electrical, hydraulic, chemical, or thermal, and others are within the scope of the instant teachings.
  • [0042]
    Moreover, as the embolus dissolves, either via blood flow or by infusing lytic agents than the guidewire lumen, the deployed revascularization device radially filters larger embolus particles from traveling downstream, thereby reducing the chances of further complications. Once the blood vessel is revascularized, the revascularization device is modified to be in a removable state together with filtered detritus, and the catheter-revascularization system is removed from the blood vessels of the patient.
  • [0043]
    Likewise, in the event that no resolution of the embolus is noted in the instant revascularization system the inventors contemplate detachment and employment as a stent of the cage-like membrane. Angiographic recanalization has been associated with improvement in clinical outcome in the setting of acute stroke resulting from acute intracranial thrombotic occlusion. Anatomic limitations (tortuous anatomy, length of the occlusion, or location of occlusion) or supply limitations are among the reasons precluding use of prior art systems until the advent of the instant teachings.
  • [0044]
    Stenting has been used successfully to restore flow after abrupt reocclusion occurring after recanalization with other modalities in previous cases. Stenting has also been reported in cases in which other modalities have failed to recanalize vessels. Even if an underlying stenosis is rarely the cause of stroke, stenting may play a role by morselizing the embolic clot or trapping it against the arterial wall. In several embodiments, the present invention comprises an acute stroke revascularization process that comprises providing a reconstrainable self-expanding microstent system, deploying a self-expanding microstent within a neurological vessel; achieving at least one of revascularization and recanalization of a subject vessel; and removing the self-expanding microstent. In some embodiments, at least one supplemental therapy is also provided, and comprises one or more of the following: pharmacological thrombolytic agents, intraarterial thrombolytics, and mechanical manipulation.
  • [0045]
    The use of intracranial stents as a method for arterial recanalization during cerebral ischemia caused by focal occlusion of an intracranial vessel has been demonstrated to have benefits in some cases. Despite the use of available pharmacological and mechanical therapies, angiographic recanalization of occluded vessels has not been adequately achieved before stent placement, in most cases.
  • [0046]
    When SAH and intracranial hematoma occurred in patients in whom balloon-mounted stents were used, they most likely resulted from distal wire perforation. The distal wire purchase needed to navigate a coronary stent into the intracranial circulation may explain the occurrence of these adverse events. Alternatively, multiple manipulations of the Merci® brand of retriever device or expansion of balloon-mounted stents may have induced microdissections in the vessel. Stents designed for intracranial navigation have better navigability and pliability. The Wingspan® brand of stent (Boston Scientific) was designed to have more radial force than the Neuroform® brand of stent and may further improve this technique. However, the act clearly needs to advance further in this area.
  • [0047]
    IA therapy for stroke has evolved during the past decade. Approval of the Merci® brand of retriever device represents a significant step toward achieving better outcomes in acute stroke for patients not suitable for IV tPA. However, recanalization is not always achieved using this device. Therefore, additional treatment options are required, as offered for consideration herein.
  • [0048]
    Spontaneous dissection of the internal carotid artery (ICA) is one of the main causes of ischemic stroke in young and middle-aged patients, representing 10% to 25% of such cases. Because infarct due to dissection is mainly thromboembolic, anticoagulation has been recommended to prevent new stroke in patients with acute dissection, provided they have no contraindications. In the acute phase, intravenous recombinant tissue-type plasminogen activator (IV rtPA) given within 3 hours after onset of stroke due to dissection is reportedly safe and effective. However, this often needs supplemental therapy to be effective.
  • [0049]
    Endovascular treatment with stent deployment for ICA dissection with high-grade stenosis or occlusion may be most appropriate when anticoagulation fails to prevent a new ischemic event. In such cases, the MCA may be patent. However, to compare outcomes of patients with acute stroke consecutive to MCA occlusion due to ICA dissection treated either by stent-assisted endovascular thrombolysis/thrombectomy or by IV rtPA thrombolysis. Stent assisted endovascular thrombolysis/thrombectomy compared favorably with IV rtPA thrombolysis, underscoring the need for the instant device.
  • [0050]
    The main limitation of this procedure is the immediate need for an experienced endovascular therapist. The number of cases of MCA occlusion due to carotid artery dissection was quite small and represented <10% of patients admitted for carotid dissection. However, despite these promising preliminary results, potential drawbacks related to the procedure must be considered. Acute complications such as transient ischemic attack, ischemic stroke, femoral or carotid dissection, and death have been reported. Other potential hazards of endovascular treatment of carotid dissection could have been observed. On balance, the risk-benefit favors solutions like the present invention.
  • [0051]
    Most patients with acute cerebrovascular syndrome with MC occlusion consecutive to ICA dissection have poor outcomes when treated with conventional IV rtPA thrombolysis, whereas most patients treated with stent-assisted endovascular thrombolysis/thrombectomy show dramatic improvements. Further large randomized studies are required to confirm these data, which trends likewise are technical bases for the instant systems.
  • [0052]
    According to embodiments and as illustrated in FIG. 1, catheter-based revascularization system 100 provides a platform for lysing emboli in occluded blood vessels. Accordingly, catheter-based revascularization system 100 generally comprises control end 102 and deployment end 104. According to embodiments, control end 102 is a portion of the device that allows a user, such as a surgeon, to control deployment of the device through the blood vessels of a patient. Included as part of control end 102 is delivery handle 106 and winged apparatus 108, in some embodiments. Those skilled in the art readily understand module 113 (see FIG. 2) is detachable.
  • [0053]
    According to some examples of the instant system during shipping of catheter-revascularization system 100, shipping lock (not shown) is installed between delivery handle 106 and winged apparatus 108 to prevent deployment and premature extension of revascularization device 124 (see FIG. 2) while not in use. Furthermore, by preventing delivery handle 106 from being advanced towards winged apparatus 108, coatings applied to revascularization device 124 are stored in a configuration whereby they will not rub off or be otherwise damaged while catheter-based revascularization system 100 is not in use.
  • [0054]
    According to embodiments, agent delivery device 130 provides a conduit in fluid communication with the lumen of the catheter-based revascularization system 100 enabling users of the system to deliver agents through catheter-revascularization system 100 directly to the location of the embolus. The instant revascularization system delivery device may be made from materials known to artisans, including stainless steel hypotube, stainless steel coil, polymer jackets, and/or radiopaque jackets. In one embodiment, the revascularization systems comprise a plurality of apertures 118 allowing infusable lytic agents to exit radially and distally into at least a subject embolus when transmitted through agent delivery device which is in fluid communication therewith. The revascularization systems according to several embodiments herein can comprise radiopacity for imaging purposes.
  • [0055]
    Accordingly, luer connector 132 or a functional equivalent provides sterile access to the lumen of catheter-based revascularization system 100 to effect delivery of a chosen agent. Artisans will understand that revascularization devices of the present invention include embodiments made essentially of nitinol or spring tempered stainless steel. Revascularization devices likewise may be coated or covered with therapeutic substances in pharmacologically effective amounts or lubricious materials. According to embodiments, coatings include namodopene, vasodialators, sirolamus, and paclitaxel. Additionally, at least heparin and other coating materials of pharmaceutical nature may be used.
  • [0056]
    Deployment end 104 of catheter-based revascularization system 100 comprises proximal segment 110 and distal segment 120. Proximal segment 110, according to embodiments, houses distal segment 120 and comprises outer catheter 112 that is of a suitable length and diameter for deployment into the blood vessel of the neck, head, and cerebral vasculature. For example in some embodiments, proximal segment 110 is from at least about 100 cm to approximately 115 cm long with an outer diameter of at least about 2.5 French to about 4 French.
  • [0057]
    Referring also to FIG. 2, distal segment 120 comprises inner catheter 122 and revascularization device 124 (as shown here in one embodiment having uniform cells, variable cells likewise being within other embodiments of the present invention), which is connected to inner catheter 122. Inner catheter 122, according to embodiments, is made from stainless steel coil, stainless steel wire, or ribbon or laser cut hypotube and is of a suitable length and diameter to move through outer catheter 112 during deployment. For example, inner catheter 122 extends from outer catheter 112 38 cm, thereby giving it a total length of between at least about 143 and 175 cm. The diameter of inner catheter 122 according to the exemplary embodiment is 2.7 French, with an inner diameter of at least about 0.012 to 0.029 inches. The inner diameter of inner catheter 122 may be any suitable diameter provided inner catheter 122 maintains the strength and flexibility to both deploy and retract revascularization device 124. In one embodiment, an inner catheter 122′ comprises a variable-pitch hypotube, as shown in FIGS. 3A-D. In one embodiment, the inner catheter 122′ comprises a laser-cut, variable-pitch hypotube. Region L comprises a laser cut transition region of the variable-pitch hypotube. Regions P1, P2 and P3 comprise three regions of the variable-pitch hypotube having variable pitch. In one embodiment, the pitch decreases from region P1 to region P2 and from region P2 to region P3.
  • [0058]
    Referring to both figures, revascularization device 124 is a self-expanding, reconstrictable retractable device tethered to inner catheter 122. Revascularization device 124 may be made from nitinol, spring tempered stainless steel, or equivalents as known and understood by artisans, according to embodiments. Revascularization device 124, according to embodiments and depending on the particular problem being addressed, may be from at least about 3.5 mm to about 50 mm in its expanded state. In an expanded state, revascularization device 124 is designed to expand in diameter to the luminal wall of blood vessel where it is deployed.
  • [0059]
    As known to artisans, revascularization device 124 may be coated or covered with substances imparting lubricous characteristics or therapeutic substances, as desired. Naturally, the expandable mesh design of revascularization device 124 must be a pattern whereby when revascularization device 124 is retracted, it is able to fully retract into inner catheter 122. The nature of the cell type likewise changes with respect to the embodiment used, and is often determined based upon nature of the clot.
  • [0060]
    In one embodiment, a revascularization device 124′ comprises a plurality of struts 127 and a plurality of open cells 129, as shown in FIGS. 4A-4C. In accordance with some embodiments, recapturability, flexibility and tracking are enabled by the struts of the revascularization device 124′, which permit flexion and extension to navigate through curved vessels. FIG. 5 illustrates a stroke device having a revascularization device 124″ coupled to a distal end of an inner catheter 122″. In one embodiment, a revascularization device 124″ comprises one or more markers 125. The markers 125 can comprise at least one marker material selected from the group consisting essentially of platinum and gold. With reference to FIG. 4B, one or more markers can be pressed into pre-laser cut apertures 126 designed to matingly embrace the same.
  • [0061]
    Catheter-revascularization system 100 is deployed through a patient's blood vessels. Once the user of catheter-revascularization system 100 determines that the embolus to be addressed is crossed, as known and understood well by artisans, revascularization device 124 is deployed by first positioning outer catheter 112 in a location immediately distal to the embolus.
  • [0062]
    Then, to revascularize/reperfuse the occluded blood vessel, distal catheter 120 is deployed in a location whereby revascularization device 124 expands at the location of the embolus, as illustrated by FIG. 2. The embolus is thereby compressed against the luminal wall of the blood vessel and blood flow is restored. Modular detachable segment 113 is known also, and may be swapped out, as needed, if an Rx system is used.
  • [0063]
    As discussed above and claimed below, creating a channel for flow ideally includes making a vessel at least about halfway-patent, or 50% of diameter of a vessel being open. According to other embodiments, the channel created may be a cerebral equivalent of thrombolysis in myocardial infarction TIMI 1, TIMI 2, or TIMI 3.
  • [0064]
    Restoration of blood flow may act as a natural lytic agent and many emboli may begin to dissolve. Revascularization device 124 is designed, according to embodiments, to radially filter larger pieces of the dissolving embolus and prevent them from traveling distal to the device and potentially causing occlusion in another location. Because the revascularization device provides continuous radial pressure at the location of the obstruction, as the embolus dissolves, the blood flow continues to increase.
  • [0065]
    After the embolus is lysed, revascularization device 124 is sheathed into outer catheter 112 and removed from the body. According to embodiments, larger pieces of the thrombus may be retracted with revascularization device 124 after being captured in the radial filtering process. According to embodiments, revascularization device 124 may be detachable whereby the revascularization device 124 may detach from catheter-based revascularization system 100 if it is determined that revascularization device 124 should remain in the patient. As discussed above, illustrated in the Figures, and claimed below according to embodiments, catheter-based revascularization system 100 reconstrainable attachment or attachment by tether may be optionally detachable. Revascularization device detachment methods comprise mechanical, electrical hydraulic, chemical, thermal, and those other uses known to artisans.
  • [0066]
    According now to FIG. 6, delivery tube 200 deploys tethered cage-like device/temporary stent 201 prior to embolization, using standard over-the-wire (OTW) system 199.
  • [0067]
    According to the disclosure, a temporary tethered cage-like structure/tethered stent 201 is non-detachable in some embodiments but attached either to a hypotube or guide wire 199 allowing it to be navigated into tortuous vasculature in the brain. Device 201 may be attached to guide wire 199 or tube 200.
  • [0068]
    FIG. 7 likewise provides further details of the instant system, with tethered cage-like structure/temporary stent 201 being released from delivery tube 200 using known OTW techniques.
  • [0069]
    The delivery tube 200 is a variable stiffness tube that is able to track to and through the tortuous anatomy or the cerebral vasculature (i.e., internal carotid artery, MCA, ACA, vertebral and basilar).
  • [0070]
    The delivery tube 200 can be one or two pieces but must have greater proximal pushability (stiffness) & greater distal flexibility (softness) to allow tracking to distal cerebral arteries.
  • [0071]
    The delivery tube 200 should also have a lumen that enables tracking over a guide-wire. This feature provides a few benefits; ability to track and be delivered; ability to maintain access in the event different size devices need to be exchanged; provide support to arterial tree during device deployment and recovery. A flexible device may tend to herniate or prolapse into openings. The guide wire provides a pathway (concentric) to the artery and supports the device preventing such technical complications.
  • [0072]
    The delivery tube 200 can be mechanically attached to the tethered stent by soldering, welding or press fitting. Likewise, those skilled in the art readily understand their attachment mechanisms.
  • [0073]
    The cage-like structure/stent is made of nitinol to allow it to be compressed and loaded into an introducer for packaging. Similarly memory-based materials likewise function, in accordance with the instant systems.
  • [0074]
    By attaching it to a delivery wire, the cage-like structure/stent can be placed, retracted, repositioned and recaptured into a microcatheter.
  • [0075]
    FIGS. 8A-8D illustrate an embodiment of a revascularization device 800 configured for eccentric coupling to a pusher. The revascularization device 800 can be tethered to a pusher (e.g., wire or tube) by a plurality of tether lines 802 (also shown, for example, in FIGS. 2 and 2A). In some embodiments, the revascularization device 800 is eccentrically coupled to the pusher (e.g., tethered off-center). In various embodiments, the revascularization device comprises an open proximal end and/or an open distal end and a generally cylindrical body (see, for example, FIGS. 2 and 2A, 4A-4C, and 5-7).
  • [0076]
    While the apparatus and method have been described in terms of what are presently considered to be the most practical and preferred embodiments, it is to be understood that the disclosure need not be limited to the disclosed embodiments. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structures. The present disclosure includes any and all embodiments of the following claims.
  • [0077]
    It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. It should be understood that this disclosure is intended to yield a patent covering numerous aspects of the invention both independently and as an overall system and in both method and apparatus modes.
  • [0078]
    Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these.
  • [0079]
    Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same.
  • [0080]
    Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled.
  • [0081]
    It should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action.
  • [0082]
    Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates.
  • [0083]
    Any patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in at least one of a standard technical dictionary recognized by artisans and the Random House Webster's Unabridged Dictionary, latest edition are hereby incorporated by reference.
  • [0084]
    Finally, all referenced listed in the Information Disclosure Statement or other information statement filed with the application are hereby appended and hereby incorporated by reference; however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s), such statements are expressly not to be considered as made by the applicant(s).
  • [0085]
    In this regard it should be understood that for practical reasons and so as to avoid adding potentially hundreds of claims, the applicant has presented claims with initial dependencies only.
  • [0086]
    Support should be understood to exist to the degree required under new matter laws—including but not limited to United States Patent Law 35 USC 132 or other such laws—to permit the addition of any of the various dependencies or other elements presented under one independent claim or concept as dependencies or elements under any other independent claim or concept.
  • [0087]
    To the extent that insubstantial substitutes are made, to the extent that the applicant did not in fact draft any claim so as to literally encompass any particular embodiment, and to the extent otherwise applicable, the applicant should not be understood to have in any way intended to or actually relinquished such coverage as the applicant simply may not have been able to anticipate all eventualities; one skilled in the art, should not be reasonably expected to have drafted a claim that would have literally encompassed such alternative embodiments.
  • [0088]
    Further, the use of the transitional phrase “comprising” is used to maintain the “open-end” claims herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps.
  • [0089]
    Such terms should be interpreted in their most expansive forms so as to afford the applicant the broadest coverage legally permissible.

Claims (20)

  1. 1. A method of restoring blood flow through an obstructed blood vessel of the cerebral vasculature, comprising:
    identifying an obstructed blood vessel within the cerebral vasculature of a patient, the obstructed blood vessel having an occlusive embolus;
    inserting a catheter-based revascularization system within the obstructed blood vessel;
    wherein the catheter-based revascularization system comprises an outer catheter and an inner catheter longitudinally moveable with respect to each other;
    wherein the inner catheter comprises a pusher and a self-expandable revascularization device eccentrically tethered to a distal end of the pusher;
    wherein the self-expandable revascularization device comprises a generally cylindrical body having an open proximal end, an open distal end, and a plurality of struts that form a plurality of cells between the proximal and distal ends;
    positioning the outer catheter at a location distal to the embolus;
    retracting the outer catheter to deploy the self-expandable revascularization device at the location of the embolus thereby compressing the embolus against a luminal wall of the blood vessel and restoring flow through the blood vessel;
    wherein the restored blood flow facilitates natural lysis of the embolus;
    wherein the natural lysis and compression of the embolus cause fragmentation of at least a portion of the embolus into a plurality of embolic fragments,
    wherein one or more of said embolic fragments pass through the open distal end of the self-expandable revascularization device downstream of the embolus; and
    wherein the self-expandable revascularization device exerts continuous radial pressure at the location of the embolus to further facilitate blood flow through the blood vessel as the embolus lyses;
    resheathing the revascularization device within the outer catheter; and
    removing the revascularization system from the patient.
  2. 2. The method of claim 1, wherein the revascularization device is permanently tethered to a distal end of the pusher.
  3. 3. The method of claim 1, wherein the revascularization device is detachably tethered to a distal end of the pusher.
  4. 4. The method of claim 1, wherein the revascularization device comprises radiopaque markers configured for tracking of the revascularization device.
  5. 5. The method of claim 4, further comprising tracking the revascularization device to confirm proper positioning with respect to the embolus.
  6. 6. The method of claim 1, wherein deploying the self-expandable revascularization device at the location of the embolus comprises creating an immediate flow channel within the blood vessel of at least about 50% of the diameter of the blood vessel of the cerebral vasculature.
  7. 7. The method of claim 1, wherein the pusher comprises a variable-pitch hypotube.
  8. 8. The method of claim 1, wherein the pusher comprises a wire.
  9. 9. The method of claim 1, wherein at least a portion of said inner catheter comprises a flexible material configured to permit flexion and extension to navigate through curved vessels of the cerebral vasculature.
  10. 10. The method of claim 1, further comprising infusing lytic agents to the location of the embolus through the revascularization system.
  11. 11. The method of claim 1, further comprising removing at least a portion of the embolus captured by the revascularization device.
  12. 12. The method of claim 1, wherein the revascularization device comprises a self-expanding microstent.
  13. 13. The method of claim 1, further comprising morselizing at least a portion of the embolus by mechanical manipulation of the revascularization device.
  14. 14. The method of claim 1, wherein inserting the catheter-based revascularization system within the obstructed blood vessel comprises advancing the revascularization system over a guidewire proximate a location of the embolus.
  15. 15. A method of restoring blood flow through an obstructed blood vessel of the brain to treat acute ischemic stroke, comprising:
    identifying an obstructed blood vessel within the cerebral vasculature of a patient, the obstructed blood vessel having an embolus;
    inserting a catheter-based revascularization system within the obstructed blood vessel;
    wherein the catheter-based revascularization system comprises an outer catheter and an inner catheter longitudinally moveable with respect to each other;
    wherein the inner catheter comprises a pusher and a self-expandable revascularization device tethered to a distal end of the pusher;
    wherein the self-expandable revascularization device comprises an open proximal end, an open distal end, and a plurality of struts that form a plurality of cells between the proximal and distal ends;
    positioning the outer catheter at a location distal to the embolus;
    retracting the outer catheter, thereby deploying the self-expandable revascularization device at the location of the embolus, thereby compressing the embolus or lesion against a luminal wall of the obstructed blood vessel and restoring flow through the obstructed blood vessel;
    wherein the restored blood flow facilitates natural lysis of the embolus;
    wherein the natural lysis and compression of the embolus cause fragmentation of at least a portion of the embolus into a plurality of fragments,
    wherein one or more of said fragments pass through the open distal end of the self-expandable revascularization device downstream of the embolus; and
    wherein the self-expandable revascularization device exerts continuous radial pressure at the location of embolus to further facilitate blood flow through the blood vessel as the embolus lyses;
    resheathing the revascularization device within the outer catheter; and
    removing the revascularization system from the patient.
  16. 16. The method of claim 15, wherein the self-expandable revascularization device is generally cylindrical and eccentrically tethered to the distal end of the pusher via a plurality of tethered lines.
  17. 17. The method of claim 15, further comprising morselizing at least a portion of the embolus by mechanical manipulation of the revascularization device.
  18. 18. The method of claim 15, further comprising removing at least a portion of the embolus captured by the revascularization device.
  19. 19. The method of claim 15, wherein deploying the self-expandable revascularization device at the location of the embolus comprises creating an immediate flow channel within the blood vessel of at least about 50% of the diameter of the blood vessel of the cerebral vasculature.
  20. 20. The method of claim 15, wherein inserting a catheter-based revascularization system within the obstructed blood vessel comprises advancing the revascularization system over a guidewire proximate a location of the embolus.
US13084880 2007-10-17 2011-04-12 Method of restoring blood flow through an obstructed blood vessel of the brain Abandoned US20110190797A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US98073607 true 2007-10-17 2007-10-17
US98738407 true 2007-11-12 2007-11-12
US98942207 true 2007-11-20 2007-11-20
US1515407 true 2007-12-19 2007-12-19
US1950608 true 2008-01-07 2008-01-07
US4439208 true 2008-04-11 2008-04-11
US12123390 US9198687B2 (en) 2007-10-17 2008-05-19 Acute stroke revascularization/recanalization systems processes and products thereby
US13084880 US20110190797A1 (en) 2007-10-17 2011-04-12 Method of restoring blood flow through an obstructed blood vessel of the brain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13084880 US20110190797A1 (en) 2007-10-17 2011-04-12 Method of restoring blood flow through an obstructed blood vessel of the brain

Publications (1)

Publication Number Publication Date
US20110190797A1 true true US20110190797A1 (en) 2011-08-04

Family

ID=41065698

Family Applications (4)

Application Number Title Priority Date Filing Date
US12123390 Active US9198687B2 (en) 2007-10-17 2008-05-19 Acute stroke revascularization/recanalization systems processes and products thereby
US12711100 Abandoned US20100217187A1 (en) 2007-10-17 2010-02-23 Rapid perfusion devices and methods
US12835497 Abandoned US20100318097A1 (en) 2007-10-17 2010-07-13 Acute stroke revascularization/recanalization systems processes and products thereby
US13084880 Abandoned US20110190797A1 (en) 2007-10-17 2011-04-12 Method of restoring blood flow through an obstructed blood vessel of the brain

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12123390 Active US9198687B2 (en) 2007-10-17 2008-05-19 Acute stroke revascularization/recanalization systems processes and products thereby
US12711100 Abandoned US20100217187A1 (en) 2007-10-17 2010-02-23 Rapid perfusion devices and methods
US12835497 Abandoned US20100318097A1 (en) 2007-10-17 2010-07-13 Acute stroke revascularization/recanalization systems processes and products thereby

Country Status (7)

Country Link
US (4) US9198687B2 (en)
EP (2) EP2478930A3 (en)
JP (1) JP5504167B2 (en)
CA (1) CA2717790A1 (en)
ES (1) ES2385631T3 (en)
GB (2) GB2463592B (en)
WO (1) WO2009114046A3 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US20100318178A1 (en) * 2009-06-15 2010-12-16 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8715316B1 (en) 2013-07-29 2014-05-06 Insera Therapeutics, Inc. Offset vascular treatment devices
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US9314324B2 (en) 2013-07-29 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986568B1 (en) 2006-02-03 2017-04-05 Covidien LP Methods and devices for restoring blood flow within blocked vasculature
WO2008105959A3 (en) 2006-10-09 2008-12-24 Neurofluidics Inc Cerebrospinal fluid purification system
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
WO2010010545A1 (en) * 2008-07-22 2010-01-28 Neuravi Limited Clot capture systems and associated methods
CN102186427B (en) * 2008-09-22 2013-12-18 浩特斯博尔技术公司 Flow restoration systems
US8529596B2 (en) 2009-07-08 2013-09-10 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8795345B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
KR101680420B1 (en) 2011-02-04 2016-11-28 콘센트릭 메디칼, 인크. Vascular and bodily duct treatment devices and methods
US8795317B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US8357178B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357179B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
EP2523720A4 (en) * 2010-01-11 2017-05-03 Assis Medical Ltd Device system and method for reshaping tissue openings
US8434906B2 (en) * 2010-02-23 2013-05-07 General Electric Company Lighting system with thermal management system
EP2539012B1 (en) * 2010-02-23 2018-01-24 Covidien LP Devices for vascular recanalization
US9463036B2 (en) 2010-10-22 2016-10-11 Neuravi Limited Clot engagement and removal system
US20120101560A1 (en) * 2010-10-26 2012-04-26 Kluck Bryan W Retractable flow maintaining stent wire
US20150073526A1 (en) * 2010-10-26 2015-03-12 Bryan W Kluck Retractable Flow Maintaining Stent
WO2012082453A1 (en) * 2010-12-16 2012-06-21 Cook Medical Technologies Llc Handle control system for a stent delivery system
US9301769B2 (en) 2011-03-09 2016-04-05 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
CA2874586A1 (en) 2011-05-23 2012-11-29 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
JP2016513505A (en) 2013-03-14 2016-05-16 ニューラヴィ・リミテッド Clot retrieval device for removing an obstruction clot from a blood vessel
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
FR3005404B1 (en) 2013-05-13 2016-10-07 Antonino Machi Device and method of endovascular surgery
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
EP2921140A1 (en) * 2014-03-18 2015-09-23 St. Jude Medical, Cardiology Division, Inc. Percutaneous valve anchoring for a prosthetic aortic valve
US9579427B2 (en) 2014-06-28 2017-02-28 Cordis Corporation Thin-film composite retrievable endovascular devices and method of use
US9241699B1 (en) 2014-09-04 2016-01-26 Silk Road Medical, Inc. Methods and devices for transcarotid access
WO2018050262A1 (en) 2016-09-19 2018-03-22 Cti Vascular Ag Catheter system for treating vascular and non-vascular diseases

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993481A (en) * 1988-10-03 1991-02-19 The Agency Of Industrial Science And Technology Thermal storage unit
US4998539A (en) * 1987-12-18 1991-03-12 Delsanti Gerard L Method of using removable endo-arterial devices to repair detachments in the arterial walls
US5718724A (en) * 1994-02-09 1998-02-17 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5800457A (en) * 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US5876376A (en) * 1996-12-09 1999-03-02 Medtronic, Inc Catheter balloon bonding stopper
US6015424A (en) * 1998-04-28 2000-01-18 Microvention, Inc. Apparatus and method for vascular embolization
US6039721A (en) * 1996-07-24 2000-03-21 Cordis Corporation Method and catheter system for delivering medication with an everting balloon catheter
US6051020A (en) * 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US6192944B1 (en) * 1998-08-14 2001-02-27 Prodesco, Inc. Method of forming a textile member with undulating wire
US6217909B1 (en) * 1995-01-09 2001-04-17 Edward Mendell Co., Inc. Pharmaceutical excipient having improved compressibility
US6280413B1 (en) * 1995-06-07 2001-08-28 Medtronic Ave, Inc. Thrombolytic filtration and drug delivery catheter with a self-expanding portion
US20020007210A1 (en) * 2000-01-31 2002-01-17 Chouinard Paul F. Braided endoluminal device having tapered filaments
US20020016564A1 (en) * 2000-05-31 2002-02-07 Courtney Brian K. Embolization protection sytem for vascular procedures
US20020032479A1 (en) * 1995-11-27 2002-03-14 Schneider (Europe) Ag, A/K/A Schneider (Europe) Gmbh Conical stent
US20020038146A1 (en) * 1998-07-29 2002-03-28 Ulf Harry Expandable stent with relief cuts for carrying medicines and other materials
US20020038142A1 (en) * 1998-11-16 2002-03-28 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US20030023299A1 (en) * 2000-03-27 2003-01-30 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US20030023230A1 (en) * 1998-02-03 2003-01-30 Salient Interventional Systems, Inc. Methods and systems for treating ischemia
US20030040772A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Delivery devices
US6537294B1 (en) * 2000-10-17 2003-03-25 Advanced Cardiovascular Systems, Inc. Delivery systems for embolic filter devices
US20030074056A1 (en) * 1998-03-04 2003-04-17 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US6554856B1 (en) * 1997-05-27 2003-04-29 Imperial College Of Science, Technology & Medicine Stents for blood vessels
US6554842B2 (en) * 2000-03-10 2003-04-29 Radius Medical Technologies, Inc. Small diameter snare
US6553810B2 (en) * 1999-09-28 2003-04-29 Gas Research Institute Method for measuring chemical emissions
US6673025B1 (en) * 1993-12-01 2004-01-06 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US20040006381A1 (en) * 2000-05-30 2004-01-08 Jacques Sequin Noncylindrical drug eluting stent for treating vascular bifurcations
US20040006306A1 (en) * 2002-05-14 2004-01-08 Bacchus Vascular Inc. Apparatus and method for removing occlusive material within blood vessels
US20040019322A1 (en) * 2002-07-23 2004-01-29 Hoffmann Gerard Von Intracranial aspiration catheter
US6702843B1 (en) * 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6706010B1 (en) * 1997-10-08 2004-03-16 Kaneka Corporation Balloon catheter and method of production thereof
US6709440B2 (en) * 2001-05-17 2004-03-23 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US20040073300A1 (en) * 2000-01-31 2004-04-15 Chouinard Paul F. Process for manufacturing a braided bifurcated stent
US6840958B2 (en) * 1996-05-24 2005-01-11 Scimed Life Systems, Inc. Shaped woven tubular soft-tissue prostheses and method of manufacturing the same
US20050033334A1 (en) * 2003-05-12 2005-02-10 Swadeshmukul Santra Devices and methods for disruption and removal of luminal occlusions
US20050049676A1 (en) * 2003-06-13 2005-03-03 Patrice Nazzaro One-branch stent-graft for bifurcated lumens
US20050055047A1 (en) * 2003-09-04 2005-03-10 Secant Medical, Llc Endovascular snare for capture and removal of arterial emboli
US20050055039A1 (en) * 2003-07-28 2005-03-10 Polymorfix, Inc. Devices and methods for pyloric anchoring
US6869431B2 (en) * 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US20050075715A1 (en) * 2003-10-07 2005-04-07 Juan Borges Graft material attachment device and method
US20050090857A1 (en) * 1999-03-08 2005-04-28 Ev3 Inc. Minimally invasive medical device deployment and retrieval system
US20060020321A1 (en) * 2004-07-26 2006-01-26 Cook Incorporated Stent delivery system allowing controlled release of a stent
US20060020285A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Method for filtering blood in a vessel with helical elements
US6991641B2 (en) * 1999-02-12 2006-01-31 Cordis Corporation Low profile vascular filter system
US20060025850A1 (en) * 2004-07-28 2006-02-02 Frederick Feller Reduced profile AAA device
US6994723B1 (en) * 2003-05-21 2006-02-07 Advanced Cardiovascular Systems, Inc. Medical device made from self-stiffening composite
US20060058836A1 (en) * 2004-09-10 2006-03-16 Arani Bose System and method for treating ischemic stroke
US7156869B1 (en) * 2003-01-27 2007-01-02 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and delivery system with tapered stent in shoulder region
US7172617B2 (en) * 1998-03-31 2007-02-06 Boston Scientific Scimed, Inc. Stent delivery system
US20070032852A1 (en) * 2003-04-25 2007-02-08 Medtronic Vascular, Inc. Methods and Apparatus for Treatment of Aneurysms Adjacent to Branch Arteries
US20070043425A1 (en) * 2005-08-18 2007-02-22 William A. Cook Australia Pty Ltd. Assembly of stent grafts
US20070055358A1 (en) * 2005-08-22 2007-03-08 Krolik Jeffrey A Axially compressible flared stents and apparatus and methods for delivering them
US20070055360A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent branch arteries including branch artery flow lumen alignment
US20070055365A1 (en) * 2005-04-28 2007-03-08 The Cleveland Clinic Foundation Stent with integrated filter
US20080001333A1 (en) * 2006-06-30 2008-01-03 Klaus Kleine Method of fabricating a stent with features by blow molding
US20080015682A1 (en) * 2006-07-14 2008-01-17 Majercak David C AAA repair device with aneurysm sac access port
US20080015558A1 (en) * 2006-04-04 2008-01-17 The Spectranetics Corporation Laser-assisted guidewire having a variable stiffness shaft
US7326240B1 (en) * 1998-11-30 2008-02-05 Imperial College Of Science, Technology & Medicine Stents for blood vessels
US20080039926A1 (en) * 2006-08-11 2008-02-14 Majercak David C Stent graft sealing zone connecting structure
US20080046072A1 (en) * 1996-06-06 2008-02-21 Jean-Claude Laborde Bifurcation stent and method of positioning in a body lumen
US20080046064A1 (en) * 1996-06-06 2008-02-21 Jacques Sequin Endoprosthesis deployment methods for treating vascular bifurcations
US20080071178A1 (en) * 2006-09-15 2008-03-20 Cardiac Pacemakers, Inc. Anchor for an implantable sensor
US20080269774A1 (en) * 2006-10-26 2008-10-30 Chestnut Medical Technologies, Inc. Intracorporeal Grasping Device
US20090018633A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Protector for an insertable or implantable medical device
US20090018640A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Dual Taper Stent Protector
US20090030502A1 (en) * 2007-07-26 2009-01-29 Jichao Sun Socket For Fenestrated Tubular Prosthesis
US20090036977A1 (en) * 2007-04-17 2009-02-05 Boston Scientific Scimed, Inc. Drug-releasing stent having extension(s) for treating long lesions
US20090036968A1 (en) * 2007-07-30 2009-02-05 Audubon Technologies, Llc Device for maintaining patent paranasal sinus ostia
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US20110009941A1 (en) * 2009-07-08 2011-01-13 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US20110009875A1 (en) * 2009-07-08 2011-01-13 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US8088140B2 (en) * 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US20120016406A1 (en) * 2007-10-17 2012-01-19 Mindframe, Inc. Flow restoration methods
US20120016396A1 (en) * 2007-11-09 2012-01-19 Micrus Endovascular Corporation Tethered coil for treatment of body lumens
US20120014159A1 (en) * 2010-07-15 2012-01-19 Seok-Pyo Song Memory device
US8100935B2 (en) * 1998-05-01 2012-01-24 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US8100918B2 (en) * 2000-02-09 2012-01-24 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
US20120022581A1 (en) * 2002-07-23 2012-01-26 Micrus Corporation Stretch resistant therapeutic device
US8105333B2 (en) * 2002-01-22 2012-01-31 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US20120041474A1 (en) * 2008-08-29 2012-02-16 Rapid Medical Ltd. Device and method for clot engagement
US20120041464A1 (en) * 2005-11-17 2012-02-16 Richard Monetti Three-Dimensional Complex Coil
US20120041411A1 (en) * 2010-04-19 2012-02-16 Micrus Endovascular Llc Low profile guiding catheter for neurovascular applications
US20120041449A1 (en) * 2008-08-29 2012-02-16 Rapid Medical Ltd. Device and method for clot engagement and capture
US20120065660A1 (en) * 2007-10-17 2012-03-15 Mindframe, Inc. Expandable tip assembly for thrombus management
US20120071964A1 (en) * 2008-10-29 2012-03-22 Acandis Gmbh & Co., Kg. Medical implant and method for producing medical implant
US20120078285A1 (en) * 2010-04-01 2012-03-29 Penumbra, Inc. Balloon catheter for intravascular therapies
US20120078140A1 (en) * 2005-06-24 2012-03-29 Penumbra, Inc. Method and Apparatus for Removing Blood Clots and Tissue from the Patient's Head

Family Cites Families (362)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US160763A (en) * 1875-03-16 Improvement in metallic cartridges
US2709999A (en) 1955-06-07 nag el
US23299A (en) * 1859-03-22 Fly-wheel for rolling-mill machinery
US160761A (en) * 1875-03-16 Improvement in processes of obtaining boracic acid from borate of lime
US238106A (en) * 1881-02-22 Machine for capping upholstery-nails
US160760A (en) * 1875-03-16 Improvement in steam-plows
US160742A (en) * 1875-03-16 Improvement in pumps
US160757A (en) * 1875-03-16 Improvement in clamp apparatus for connecting street-cars
US3174851A (en) 1961-12-01 1965-03-23 William J Buehler Nickel-base alloys
US3506171A (en) 1964-12-09 1970-04-14 Hoover Ball & Bearing Co Method and apparatus for trim finishing blow molded containers
US3351463A (en) 1965-08-20 1967-11-07 Alexander G Rozner High strength nickel-base alloys
US3753700A (en) 1970-07-02 1973-08-21 Raychem Corp Heat recoverable alloy
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US5275622A (en) 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4877031A (en) * 1988-07-22 1989-10-31 Advanced Cardiovascular Systems, Inc. Steerable perfusion dilatation catheter
US5035686A (en) 1989-01-27 1991-07-30 C. R. Bard, Inc. Catheter exchange system with detachable luer fitting
US5425739A (en) 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US5344395A (en) 1989-11-13 1994-09-06 Scimed Life Systems, Inc. Apparatus for intravascular cavitation or delivery of low frequency mechanical energy
US5649906A (en) 1991-07-17 1997-07-22 Gory; Pierre Method for implanting a removable medical apparatus in a human body
US6083220A (en) 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5057114A (en) * 1990-09-18 1991-10-15 Cook Incorporated Medical retrieval basket
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5222971A (en) 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5312344A (en) 1991-02-25 1994-05-17 Grinfeld Roberto R Arterial perfusion cannula for extracorporeal circulation and other uses
US5327885A (en) 1991-10-08 1994-07-12 Griffith James M Combination catheter for invasive probe delivery and balloon dilation
US5876445A (en) 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5222964A (en) 1992-03-03 1993-06-29 Cooper William I Intraluminal stent
US5817102A (en) 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
JPH07509633A (en) 1992-08-06 1995-10-26
US5500180A (en) 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5792157A (en) 1992-11-13 1998-08-11 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5643309A (en) 1993-03-25 1997-07-01 Myler; Richard Cardiovascular stent and retrieval apparatus
US5941895A (en) 1996-09-04 1999-08-24 Hemodynamics, Inc. Cardiovascular stent and retrieval apparatus
US5456667A (en) 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
US5370653A (en) * 1993-07-22 1994-12-06 Micro Therapeutics, Inc. Thrombectomy method and apparatus
US7455646B2 (en) 1997-06-04 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer coated guide wire
US7494474B2 (en) 1997-06-04 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
EP1229957B1 (en) 1999-11-16 2008-08-06 Abbott Cardiovascular Systems, Inc. Polymer coated guidewire
CA2189006A1 (en) 1994-04-29 1995-11-09 David L. Sandock Medical prosthetic stent and method of manufacture
US6168622B1 (en) 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
JP2002537943A (en) 1999-03-08 2002-11-12 マイクロベナ コーポレーション Placement and recovery system minimum invasive medical device
US5653743A (en) 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5527282A (en) 1994-12-09 1996-06-18 Segal; Jerome Vascular dilatation device and method
NL9500171A (en) 1995-01-31 1996-09-02 Pacques Bv A process for aerobic treatment of waste water.
WO1996025970A1 (en) * 1995-02-24 1996-08-29 C.R. Bard, Inc. Reinforced monorail balloon catheter
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US6605057B2 (en) 1996-10-24 2003-08-12 Medtronic Ave, Inc. Reinforced monorail balloon catheter
US5795322A (en) 1995-04-10 1998-08-18 Cordis Corporation Catheter with filter and thrombus-discharge device
US20080247943A1 (en) 1999-09-24 2008-10-09 Gregory Lanza Blood Clot-Targeted Nanoparticles
US5676685A (en) 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US6168604B1 (en) 1995-10-06 2001-01-02 Metamorphic Surgical Devices, Llc Guide wire device for removing solid objects from body canals
US6348066B1 (en) 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US5972157A (en) 1995-11-20 1999-10-26 Alliedsignal Inc. Joining of rough carbon-carbon composites with high joint strength
US20030139803A1 (en) 2000-05-30 2003-07-24 Jacques Sequin Method of stenting a vessel with stent lumenal diameter increasing distally
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US6066158A (en) 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US6096034A (en) 1996-07-26 2000-08-01 Target Therapeutics, Inc. Aneurysm closure device assembly
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US6007573A (en) 1996-09-18 1999-12-28 Microtherapeutics, Inc. Intracranial stent and method of use
US8257425B2 (en) 1999-01-13 2012-09-04 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US20020169458A1 (en) 1997-02-06 2002-11-14 Connors John J. ICA angioplasty with cerebral protection
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
CA2280117A1 (en) * 1997-02-12 1998-08-13 Prolifix Medical, Inc. Apparatus for removal of material from stents
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US5827324A (en) 1997-03-06 1998-10-27 Scimed Life Systems, Inc. Distal protection device
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US5853419A (en) 1997-03-17 1998-12-29 Surface Genesis, Inc. Stent
US5972016A (en) 1997-04-22 1999-10-26 Advanced Cardiovascular Systems, Inc. Stent crimping device and method of use
US6451049B2 (en) 1998-04-29 2002-09-17 Sorin Biomedica Cardio, S.P.A. Stents for angioplasty
US5976120A (en) 1997-05-05 1999-11-02 Micro Therapeutics, Inc. Single segment microcatheter
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
WO1998055173A1 (en) 1997-06-04 1998-12-10 Advanced Cardiovascular Systems, Inc. Steerable guidewire with enhanced distal support
US5947995A (en) 1997-06-06 1999-09-07 Samuels; Shaun Lawrence Wilkie Method and apparatus for removing blood clots and other objects
JP3645399B2 (en) 1997-06-09 2005-05-11 住友金属工業株式会社 Intravascular stent
US5951599A (en) 1997-07-09 1999-09-14 Scimed Life Systems, Inc. Occlusion system for endovascular treatment of an aneurysm
US5928260A (en) 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
EP1003422B1 (en) 1997-08-05 2006-06-14 Boston Scientific Limited Detachable aneurysm neck bridge
US6063070A (en) 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US5916235A (en) 1997-08-13 1999-06-29 The Regents Of The University Of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
US5968013A (en) 1997-08-21 1999-10-19 Scimed Life Systems, Inc. Multi-function dilatation catheter
US6596267B1 (en) 1997-08-27 2003-07-22 California Institute Of Technology Methods and compositions to prevent formation of adhesions in biological tissues
US6283940B1 (en) 1997-08-29 2001-09-04 S. Grant Mulholland Catheter
EP1017336B1 (en) 1997-09-24 2007-08-15 Med Institute, Inc. Radially expandable stent
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US7491216B2 (en) * 1997-11-07 2009-02-17 Salviac Limited Filter element with retractable guidewire tip
US5938671A (en) 1997-11-14 1999-08-17 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US6010521A (en) 1997-11-25 2000-01-04 Advanced Cardiovasular Systems, Inc. Catheter member with bondable layer
US6159165A (en) 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
US6063111A (en) 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US5935148A (en) 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6217609B1 (en) 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US6093199A (en) 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6238432B1 (en) 1998-08-25 2001-05-29 Juan Carlos Parodi Stent graft device for treating abdominal aortic aneurysms
US7118600B2 (en) 1998-08-31 2006-10-10 Wilson-Cook Medical, Inc. Prosthesis having a sleeve valve
US7410482B2 (en) 1998-09-04 2008-08-12 Boston Scientific-Scimed, Inc. Detachable aneurysm neck bridge
DE69936869T2 (en) 1998-09-04 2008-05-15 Boston Scientific Ltd., St. Michael Detachable system for closing an aneurysm neck
US6358276B1 (en) 1998-09-30 2002-03-19 Impra, Inc. Fluid containing endoluminal stent
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6723112B2 (en) 1998-11-10 2004-04-20 Scimed Life Systems, Inc. Bioactive three loop coil
US6569179B2 (en) 1998-11-10 2003-05-27 Scimed Life Systems, Inc. Bioactive three loop coil
US6322585B1 (en) 1998-11-16 2001-11-27 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
EP1135185B1 (en) 1998-12-01 2010-09-01 Abbott Cardiovascular Systems Inc. Guidewire having linear change in stiffness
DE60027999T2 (en) 1999-01-22 2007-04-26 Gore Enterprise Holdings, Inc., Newark coated endoprosthesis
US6248122B1 (en) * 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
US6146396A (en) 1999-03-05 2000-11-14 Board Of Regents, The University Of Texas System Declotting method and apparatus
US6319275B1 (en) 1999-04-07 2001-11-20 Medtronic Ave, Inc. Endolumenal prosthesis delivery assembly and method of use
US6245101B1 (en) 1999-05-03 2001-06-12 William J. Drasler Intravascular hinge stent
US6375668B1 (en) 1999-06-02 2002-04-23 Hanson S. Gifford Devices and methods for treating vascular malformations
US6458139B1 (en) * 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels
US6312459B1 (en) * 1999-06-30 2001-11-06 Advanced Cardiovascular Systems, Inc. Stent design for use in small vessels
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US20030150821A1 (en) 1999-07-16 2003-08-14 Bates Mark C. Emboli filtration system and methods of use
US6569193B1 (en) 1999-07-22 2003-05-27 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
WO2001008743A1 (en) 1999-07-30 2001-02-08 Incept Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6325815B1 (en) 1999-09-21 2001-12-04 Microvena Corporation Temporary vascular filter
DE10010840A1 (en) 1999-10-30 2001-09-20 Dendron Gmbh Device for implanting occlusion coils uses coils electrolytically corrodable at several points at intervals so variable sized lengths can be separated by electrolysis
US8048104B2 (en) * 2000-10-30 2011-11-01 Dendron Gmbh Device for the implantation of occlusion spirals
US6425909B1 (en) 1999-11-04 2002-07-30 Concentric Medical, Inc. Methods and devices for filtering fluid flow through a body structure
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US6575997B1 (en) 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6695813B1 (en) 1999-12-30 2004-02-24 Advanced Cardiovascular Systems, Inc. Embolic protection devices
WO2001055151A1 (en) 2000-01-26 2001-08-02 Japan Science And Technology Corporation Polymeric micellar structure
JP4898993B2 (en) 2000-01-28 2012-03-21 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc Intravascular medical device comprising a plurality of wires
US6629953B1 (en) 2000-02-18 2003-10-07 Fox Hollow Technologies, Inc. Methods and devices for removing material from a vascular site
US6485500B1 (en) 2000-03-21 2002-11-26 Advanced Cardiovascular Systems, Inc. Emboli protection system
US7201770B2 (en) 2000-03-21 2007-04-10 Cordis Corporation Everting balloon stent delivery system having tapered leading edge
US6514273B1 (en) * 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US6632241B1 (en) 2000-03-22 2003-10-14 Endovascular Technologies, Inc. Self-expanding, pseudo-braided intravascular device
US20010031981A1 (en) 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
US6652576B1 (en) 2000-06-07 2003-11-25 Advanced Cardiovascular Systems, Inc. Variable stiffness stent
US20070208371A1 (en) 2000-06-29 2007-09-06 Concentric Medical, Inc. Devices and methods for removing obstructions from a patient and methods for making obstruction removing devices
US6730104B1 (en) 2000-06-29 2004-05-04 Concentric Medical, Inc. Methods and devices for removing an obstruction from a blood vessel
US7727243B2 (en) 2000-06-29 2010-06-01 Concentric Medical., Inc. Systems, methods and devices for removing obstructions from a blood vessel
US6824545B2 (en) 2000-06-29 2004-11-30 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US7727242B2 (en) 2000-06-29 2010-06-01 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US6773454B2 (en) 2000-08-02 2004-08-10 Michael H. Wholey Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US20020068968A1 (en) 2000-08-16 2002-06-06 Thomas Hupp Virtual stent making process based upon novel enhanced plate tectonics derived from endoluminal mapping
US6558405B1 (en) 2000-08-29 2003-05-06 Advanced Cardiovascular Systems, Inc. Embolic filter
US6908477B2 (en) 2000-10-13 2005-06-21 Rex Medical, L.P. Methods of implanting covered stents with side branch
US20060135947A1 (en) 2000-10-27 2006-06-22 Pulmonx Occlusal stent and methods for its use
US6589265B1 (en) 2000-10-31 2003-07-08 Endovascular Technologies, Inc. Intrasaccular embolic device
US6893451B2 (en) 2000-11-09 2005-05-17 Advanced Cardiovascular Systems, Inc. Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire
US20020091355A1 (en) 2000-11-17 2002-07-11 Ascend Medical, Inc. Compliant delivery catheter
US20080086196A1 (en) 2002-06-05 2008-04-10 Dfine,Inc. Polymer matrix devices for treatment of vascular malformations
US7169165B2 (en) 2001-01-16 2007-01-30 Boston Scientific Scimed, Inc. Rapid exchange sheath for deployment of medical devices and methods of use
US20040068314A1 (en) 2002-01-16 2004-04-08 Jones Donald K. Detachable self -expanding aneurysm cover device
US6936059B2 (en) 2001-01-16 2005-08-30 Scimed Life Systems, Inc. Endovascular guidewire filter and methods of use
US6610077B1 (en) 2001-01-23 2003-08-26 Endovascular Technologies, Inc. Expandable emboli filter and thrombectomy device
US6562066B1 (en) 2001-03-02 2003-05-13 Eric C. Martin Stent for arterialization of the coronary sinus and retrograde perfusion of the myocardium
EP2158875A1 (en) 2001-03-13 2010-03-03 Yoram Richter Stent and kit comprising a stent and a balloon for improving blood flow
US20020143387A1 (en) 2001-03-27 2002-10-03 Soetikno Roy M. Stent repositioning and removal
US7160318B2 (en) 2001-03-28 2007-01-09 Cook Incorporated Modular stent graft assembly and use thereof
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
US6837901B2 (en) 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US6645223B2 (en) 2001-04-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Deployment and recovery control systems for embolic protection devices
US6716178B1 (en) 2001-05-31 2004-04-06 Advanced Cardiovascular Systems, Inc. Apparatus and method for performing thermal and laser doppler velocimetry measurements
US6821291B2 (en) 2001-06-01 2004-11-23 Ams Research Corporation Retrievable stent and method of use thereof
US6551341B2 (en) 2001-06-14 2003-04-22 Advanced Cardiovascular Systems, Inc. Devices configured from strain hardened Ni Ti tubing
US20030181927A1 (en) 2001-06-21 2003-09-25 Wallace Michael P. Aneurysm neck obstruction device
US6454780B1 (en) 2001-06-21 2002-09-24 Scimed Life Systems, Inc. Aneurysm neck obstruction device
US6638245B2 (en) 2001-06-26 2003-10-28 Concentric Medical, Inc. Balloon catheter
US20030125751A1 (en) 2001-06-27 2003-07-03 Patrick Griffin Catheter
US7338510B2 (en) 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
JP4567918B2 (en) 2001-07-02 2010-10-27 テルモ株式会社 For removing an intravascular foreign body wire and medical instrument
US8252040B2 (en) 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
US8715312B2 (en) 2001-07-20 2014-05-06 Microvention, Inc. Aneurysm treatment device and method of use
US20030032941A1 (en) * 2001-08-13 2003-02-13 Boyle William J. Convertible delivery systems for medical devices
US6551342B1 (en) 2001-08-24 2003-04-22 Endovascular Technologies, Inc. Embolic filter
US6638294B1 (en) 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US6811560B2 (en) 2001-09-20 2004-11-02 Cordis Neurovascular, Inc. Stent aneurysm embolization method and device
US6802851B2 (en) 2001-09-20 2004-10-12 Gordia Neurovascular, Inc. Stent aneurysm embolization method using collapsible member and embolic coils
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US20030073146A1 (en) 2001-10-11 2003-04-17 Imam S. Ashraf Methods for diagnosis of low grade astrocytoma
US7052500B2 (en) 2001-10-19 2006-05-30 Scimed Life Systems, Inc. Embolus extractor
US7749243B2 (en) 2001-10-19 2010-07-06 Boston Scientific Scimed, Inc. Embolus extractor
US6755813B2 (en) 2001-11-20 2004-06-29 Cleveland Clinic Foundation Apparatus and method for performing thrombolysis
US6830578B2 (en) * 2001-11-26 2004-12-14 Neosurg Technologies, Inc. Trocar
US6837898B2 (en) 2001-11-30 2005-01-04 Advanced Cardiovascular Systems, Inc. Intraluminal delivery system for an attachable treatment device
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
EP1467679B1 (en) 2001-12-20 2015-11-04 TriVascular, Inc. Advanced endovascular graft
US7160317B2 (en) * 2002-01-04 2007-01-09 Boston Scientific Scimed, Inc. Multiple-wing balloon catheter to reduce damage to coated expandable medical implants
US7037329B2 (en) 2002-01-07 2006-05-02 Eric C. Martin Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6893413B2 (en) 2002-01-07 2005-05-17 Eric C. Martin Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US20070141036A1 (en) 2002-01-09 2007-06-21 Alberto Gorrochategui Barrueta Composition and procedure for tissue creation, regeneration and repair by a cell-bearing biological implant enriched with platelet concentrate and supplements
US7192434B2 (en) * 2002-03-08 2007-03-20 Ev3 Inc. Vascular protection devices and methods of use
CA2422392A1 (en) 2002-03-12 2003-09-12 Bombardier Inc. Cold-weather helmet with breathing mask breathing air from inside the helmet
CA2486363A1 (en) 2002-05-28 2003-12-04 The Cleveland Clinic Foundation Minimally invasive treatment system for aortic aneurysms
US7549974B2 (en) 2002-06-01 2009-06-23 The Board Of Trustees Of The Leland Stanford Junior University Device and method for medical interventions of body lumens
US6833003B2 (en) 2002-06-24 2004-12-21 Cordis Neurovascular Expandable stent and delivery system
US20040002752A1 (en) 2002-06-26 2004-01-01 Scimed Life Systems, Inc. Sacrificial anode stent system
US20050119684A1 (en) 2002-07-12 2005-06-02 Guterman Lee R. Aneurysm buttress arrangement
DE10233085B4 (en) 2002-07-19 2014-02-20 Dendron Gmbh Stent with guidewire
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US20040034407A1 (en) 2002-08-16 2004-02-19 John Sherry Covered stents with degradable barbs
US20040034386A1 (en) 2002-08-19 2004-02-19 Michael Fulton Aneurysm stent
WO2004017867A1 (en) 2002-08-23 2004-03-04 William A. Cook Australia Pty. Ltd. Composite prosthesis
US6780183B2 (en) 2002-09-16 2004-08-24 Biosense Webster, Inc. Ablation catheter having shape-changing balloon
US7056328B2 (en) 2002-09-18 2006-06-06 Arnott Richard J Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire
US7001422B2 (en) 2002-09-23 2006-02-21 Cordis Neurovascular, Inc Expandable stent and delivery system
GB0225427D0 (en) * 2002-11-01 2002-12-11 Baig Mirza K Stent retrieval device
JP3993818B2 (en) 2002-12-16 2007-10-17 松下電器産業株式会社 Reproduced signal processor
US20030176914A1 (en) 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US7323001B2 (en) 2003-01-30 2008-01-29 Ev3 Inc. Embolic filters with controlled pore size
US6878291B2 (en) 2003-02-24 2005-04-12 Scimed Life Systems, Inc. Flexible tube for cartridge filter
US7172575B2 (en) * 2003-03-05 2007-02-06 Advanced Cardiovascular Systems, Inc. Catheter balloon having a lubricious coating
US7175607B2 (en) * 2003-03-06 2007-02-13 Advanced Cardiovascular Systems, Inc. Catheter balloon liner with variable thickness and method for making same
US20040193246A1 (en) 2003-03-25 2004-09-30 Microvention, Inc. Methods and apparatus for treating aneurysms and other vascular defects
US20040199201A1 (en) 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Embolectomy devices
US7279003B2 (en) 2003-04-24 2007-10-09 Medtronic Vascular, Inc. Stent graft tapered spring
JP4081522B2 (en) * 2003-05-23 2008-04-30 株式会社北村製作所 Stents and stent-grafts of the temporary indwelling
JP2007526020A (en) 2003-05-29 2007-09-13 セコー メディカル, エルエルシー Filament-based prosthesis
US7722634B2 (en) 2003-07-03 2010-05-25 Regents Of The University Of Minnesota Medical device and method of intravenous filtration
US7309345B2 (en) 2003-07-25 2007-12-18 Boston Scientific-Scimed, Inc. Method and system for delivering an implant utilizing a lumen reducing member
US7316692B2 (en) * 2003-08-12 2008-01-08 Boston Scientific Scimed, Inc. Laser-cut clot puller
US20050060017A1 (en) 2003-09-15 2005-03-17 Fischell Robert E. Means and method for the treatment of cerebral aneurysms
WO2005032340A3 (en) 2003-09-29 2006-08-03 Secant Medical Llc Integral support stent graft assembly
EP1689481A4 (en) 2003-10-07 2008-04-02 Ford Henry Health System Platform catheter
DE602004013352T2 (en) 2003-10-10 2009-05-07 Cook Inc., Bloomington Stent implants with windows
US7344550B2 (en) 2003-10-21 2008-03-18 Boston Scientific Scimed, Inc. Clot removal device
US20050090888A1 (en) 2003-10-28 2005-04-28 Hines Richard A. Pleated stent assembly
US7144421B2 (en) 2003-11-06 2006-12-05 Carpenter Judith T Endovascular prosthesis, system and method
US20050107823A1 (en) 2003-11-19 2005-05-19 Leone Jim E. Anchored stent and occlusive device for treatment of aneurysms
US20050177228A1 (en) 2003-12-16 2005-08-11 Solem Jan O. Device for changing the shape of the mitral annulus
US20050131515A1 (en) 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US7089218B1 (en) 2004-01-06 2006-08-08 Neuric Technologies, Llc Method for inclusion of psychological temperament in an electronic emulation of the human brain
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US7766951B2 (en) 2004-03-04 2010-08-03 Y Med, Inc. Vessel treatment devices
US7780715B2 (en) 2004-03-04 2010-08-24 Y Med, Inc. Vessel treatment devices
US20050209673A1 (en) 2004-03-04 2005-09-22 Y Med Inc. Bifurcation stent delivery devices
DE102004012351A1 (en) 2004-03-11 2005-09-29 pfm Produkte für die Medizin AG Device for recanalization of a cavity, organ or vessel path
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
WO2005094725A1 (en) 2004-03-31 2005-10-13 Merlin Md Pte Ltd A method for treating aneurysms
EP1761178B1 (en) * 2004-05-21 2010-12-08 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
DE602004007630T2 (en) 2004-05-25 2008-06-05 Cook Inc., Bloomington Stent and stent removal device
US20050267570A1 (en) 2004-05-27 2005-12-01 Shadduck John H Endovascular occlusion devices and methods of use
US20050277978A1 (en) 2004-06-09 2005-12-15 Secant Medical, Llc Three-dimensional coils for treatment of vascular aneurysms
US20060025852A1 (en) 2004-08-02 2006-02-02 Armstrong Joseph R Bioabsorbable self-expanding endolumenal devices
US7240516B2 (en) 2004-08-03 2007-07-10 Medtronic Vascular, Inc. Flexible resheathable stent design
US20060029645A1 (en) * 2004-08-04 2006-02-09 Nutritech Solutions Ltd. Acid-containing feed supplements for ruminants and methods of manufacturing same
CN100352406C (en) 2004-08-17 2007-12-05 微创医疗器械(上海)有限公司 Combined membrane-covered stent capable of being bent in any direction
DE102004040868A1 (en) 2004-08-23 2006-03-09 Miloslavski, Elina An apparatus for removing thrombi
EP1827250B1 (en) 2004-08-31 2018-05-16 Cook Medical Technologies LLC Device for treating an aneurysm
US7780721B2 (en) 2004-09-01 2010-08-24 C. R. Bard, Inc. Stent and method for manufacturing the stent
US7927346B2 (en) * 2004-09-10 2011-04-19 Stryker Corporation Diversion device to increase cerebral blood flow
WO2006034153A3 (en) 2004-09-17 2006-07-27 Cordis Dev Corp Thin film metallic devices for plugging aneurysms or vessels
US8845676B2 (en) 2004-09-22 2014-09-30 Micro Therapeutics Micro-spiral implantation device
JP4324535B2 (en) 2004-09-28 2009-09-02 朝日インテック株式会社 Medical treatment tool
US7875044B2 (en) 2004-10-15 2011-01-25 Codman & Shurtleff, Inc. Remodeling device for aneurysms
EP1827306B1 (en) 2004-10-25 2011-01-26 Merit Medical Systems, Inc. Stent removal and repositioning aid
WO2006047748A3 (en) 2004-10-26 2007-08-16 Cordis Neurovascular Inc Method of delivering embolic particles to an aneurysm
US20060106421A1 (en) 2004-11-16 2006-05-18 Clifford Teoh Expansible neck bridge
US8262720B2 (en) 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US20110054511A1 (en) 2005-01-26 2011-03-03 Micrus Endovascular Corporation Adding microscopic porosity to the surface of a microcoil to be used for medical implantation
US7632296B2 (en) 2005-03-03 2009-12-15 Boston Scientific Scimed, Inc. Rolling membrane with hydraulic recapture means for self expanding stent
US20060200048A1 (en) 2005-03-03 2006-09-07 Icon Medical Corp. Removable sheath for device protection
US8475487B2 (en) 2005-04-07 2013-07-02 Medrad, Inc. Cross stream thrombectomy catheter with flexible and expandable cage
WO2006113501A1 (en) 2005-04-13 2006-10-26 The Cleveland Clinic Foundation Endoluminal prosthesis
WO2006119144A1 (en) 2005-05-04 2006-11-09 Wilson-Cook Medical Inc. Expandable and retrievable stent
EP1885289B1 (en) 2005-06-01 2013-01-09 William A. Cook Australia Pty. Ltd. Side branch stent graft
US20060276883A1 (en) 2005-06-01 2006-12-07 Cook Incorporated Tapered and distally stented elephant trunk stent graft
US8109962B2 (en) * 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US7473272B2 (en) * 2005-08-17 2009-01-06 Medtronic Vascular, Inc. Recapturable stent with minimum crossing profile
WO2007047851A3 (en) 2005-10-19 2009-03-26 Pulsar Vascular Inc Methods and systems for endovascularly clipping and repairing lumen and tissue defects
US8545530B2 (en) 2005-10-19 2013-10-01 Pulsar Vascular, Inc. Implantable aneurysm closure systems and methods
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
EP1957006A2 (en) 2005-12-07 2008-08-20 C.R.Bard, Inc. Vena cava filter with stent
WO2007076480A3 (en) 2005-12-23 2007-11-22 Elad I Levy Bifurcated aneurysm treatment arrangement
US20070156228A1 (en) 2006-01-03 2007-07-05 Majercak David C Prosthetic stent graft for treatment of abdominal aortic aneurysm
US20070162109A1 (en) 2006-01-11 2007-07-12 Luis Davila Intraluminal stent graft
US8052640B2 (en) * 2006-02-01 2011-11-08 The Cleveland Clinic Foundation Method and apparatus for increasing blood flow through an obstructed blood vessel
EP1986568B1 (en) 2006-02-03 2017-04-05 Covidien LP Methods and devices for restoring blood flow within blocked vasculature
US8501156B2 (en) 2006-02-07 2013-08-06 Lers Surgical, Llc Method for non-invasive detection and treatment of cerebral aneurysms
US7914572B2 (en) 2006-02-13 2011-03-29 William A. Cook Australia Pty. Ltd. Side branch stent graft construction
JP4493608B2 (en) 2006-03-06 2010-06-30 テルモ株式会社 Atherectomy catheter
DE602007003871D1 (en) 2006-03-06 2010-02-04 Terumo Corp atherectomy
US8303569B2 (en) 2006-04-19 2012-11-06 Medtronic Vascular, Inc. Composite laminated catheter with flexible segment and method of making same
US8308712B2 (en) 2006-04-19 2012-11-13 Medronic Vascular, Inc. Composite laminated catheter with flexible segment and method of making same
US20070266542A1 (en) 2006-05-08 2007-11-22 Cook Incorporated Radiopaque marker for intraluminal medical device
US20070288083A1 (en) 2006-05-12 2007-12-13 Hines Richard A Exclusion Device and System For Delivery
US8535368B2 (en) 2006-05-19 2013-09-17 Boston Scientific Scimed, Inc. Apparatus for loading and delivering a stent
US20070288034A1 (en) 2006-06-07 2007-12-13 Maccollum Michael W Stent Expanding device
US20070288080A1 (en) 2006-06-07 2007-12-13 Maccollum Michael W Stent expanding device
US7837693B2 (en) 2006-06-09 2010-11-23 Boston Scientific Scimed, Inc. Retrieval device with laser cut basket
US7708704B2 (en) * 2006-07-31 2010-05-04 Codman & Shurtleff, Pc Interventional medical device component having an interrupted spiral section and method of making the same
US8080053B2 (en) * 2006-08-01 2011-12-20 Merit Medical Systems, Inc. Stent, stent removal and repositioning device, and associated methods
CA2660851A1 (en) 2006-08-17 2008-02-21 Nfocus Neuromedical, Inc. Isolation devices for the treatment of aneurysms
JP2010504820A (en) 2006-09-28 2010-02-18 クック・インコーポレイテッドCook Incorporated Apparatus and method for repairing thoracic aortic aneurysms
EP2079397B1 (en) 2006-10-24 2010-03-24 Cook Incorporated Stent member
US20080167708A1 (en) 2006-11-17 2008-07-10 Doug Molland Stent having reduced passage of emboli and stent delivery system
US8834515B2 (en) 2006-11-20 2014-09-16 Boston Scientific Scimed, Inc. Mechanically detachable vaso-occlusive device
EP2088936A2 (en) 2006-11-20 2009-08-19 Boston Scientific Scimed, Inc. Mechanically detachable vaso-occlusive device
US20080140107A1 (en) 2006-12-06 2008-06-12 Advanced Cardiovascular Systems, Inc. Highly trackable balloon catheter system and method for collapsing an expanded medical device
US20080195140A1 (en) 2006-12-08 2008-08-14 Cook Incorporated Delivery system for an embolic protection device
US20080281350A1 (en) 2006-12-13 2008-11-13 Biomerix Corporation Aneurysm Occlusion Devices
US8333783B2 (en) 2007-02-16 2012-12-18 Reverse Medical Corporation Occlusion device and method of use
WO2008109228A3 (en) 2007-03-05 2009-04-30 Boston Scient Ltd Deploying embolic coils
US8623070B2 (en) 2007-03-08 2014-01-07 Thomas O. Bales Tapered helical stent and method for manufacturing the stent
CN101677821B (en) 2007-03-13 2014-05-14 泰科保健集团有限合伙公司 Implant and mandrel
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
WO2008117257A3 (en) 2007-03-27 2009-02-05 Intratech Medical Ltd Spiral balloon catheter
US8118861B2 (en) 2007-03-28 2012-02-21 Boston Scientific Scimed, Inc. Bifurcation stent and balloon assemblies
US8241344B2 (en) 2007-04-09 2012-08-14 Tyco Healthcare Group Lp Stretchable stent and delivery system
US20080255678A1 (en) 2007-04-13 2008-10-16 Cully Edward H Medical apparatus and method of making the same
US8535334B2 (en) 2007-04-17 2013-09-17 Lazarus Effect, Inc. Complex wire formed devices
US7792738B2 (en) 2007-04-20 2010-09-07 Yahoo! Inc. Displaying financial information based on location
US8187284B2 (en) 2007-04-23 2012-05-29 Boston Scientific Scimed, Inc. Intraluminary stent relocating apparatus
US7776080B2 (en) 2007-04-25 2010-08-17 Abbott Cardiovascualr Systems Inc. Stent delivery catheter system and method of implanting a self-expanding stent with embolic protection
WO2009017855A3 (en) 2007-04-27 2009-08-13 Wendy C Crone Aneurysm occlusion device containing bioactive and biocompatible copolymer shell and a liquid embolic agent and a biocompatible metallic frame member
WO2008136999A1 (en) 2007-04-30 2008-11-13 The Board Of Trustees Of The Leland Stanford Junior University Prevention of displacement of prosthetic devices within aneurysms
US8221483B2 (en) 2007-05-18 2012-07-17 Stryker Corporation Medical implant detachment systems and methods
CN101808686B (en) 2007-06-12 2012-11-28 贝克顿·迪金森公司 Syringe with disabling mechanism
US20080319533A1 (en) 2007-06-22 2008-12-25 Neurovasx, Inc. Aneurysm occlusion assist device
JP5734650B2 (en) 2007-06-25 2015-06-17 マイクロベンション インコーポレイテッド The self-expanding prosthesis
US20090024157A1 (en) 2007-07-18 2009-01-22 Abbott Laboratories Embolic protection device with open cell design
US8361138B2 (en) 2007-07-25 2013-01-29 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
JP5580737B2 (en) 2007-08-17 2014-08-27 ミクラス エンドバスキュラー エルエルシー For vascular treatment twist primary wind coil and its formation method, the secondary wind coil
US20090069828A1 (en) 2007-09-10 2009-03-12 Lazarus Effect, Inc. Articulating retrieval devices
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US8066715B2 (en) 2007-10-03 2011-11-29 Cook Medical Technologies Llc Magnetic stent removal
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US20100174309A1 (en) 2008-05-19 2010-07-08 Mindframe, Inc. Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20110319917A1 (en) 2007-10-17 2011-12-29 Mindframe, Inc. Methods of managing neurovascular obstructions
US20090105644A1 (en) 2007-10-22 2009-04-23 Abbott Cardiovascular Systems Inc. Intravascular medical device having a readily collapsible covered frame
WO2009086482A1 (en) 2007-12-26 2009-07-09 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
US20090192455A1 (en) 2008-01-07 2009-07-30 David Ferrera Novel enhanced ptna rapid exchange type of catheter system
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
DE102008010507B3 (en) 2008-02-22 2009-08-20 Acandis Gmbh & Co. Kg Stent and methods for manufacturing such stents
JP2011516183A (en) 2008-04-04 2011-05-26 リバース メディカル コーポレイションReverse Medical Corporation Multi Utility microcatheter system and method of use
WO2009126747A1 (en) 2008-04-08 2009-10-15 Reverse Medical Corporation Occlusion device and method of use
CN101977650A (en) 2008-04-11 2011-02-16 曼德弗雷姆公司 Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
WO2010010545A1 (en) 2008-07-22 2010-01-28 Neuravi Limited Clot capture systems and associated methods
US20110152920A1 (en) 2008-12-02 2011-06-23 Rapid Medical Ltd. Embolectomy device
EP2288300A2 (en) 2008-08-29 2011-03-02 Rapid Medical Ltd. Embolectomy device
CN102186427B (en) 2008-09-22 2013-12-18 浩特斯博尔技术公司 Flow restoration systems
EP2349027A1 (en) 2008-10-24 2011-08-03 Rapid Medical Ltd. Embolectomy device containing a distal and proximal effecter
DE102008053635A1 (en) 2008-10-29 2010-05-12 Acandis Gmbh & Co. Kg A medical device for recanalization of thrombi
US20100114135A1 (en) 2008-10-31 2010-05-06 Scott Wilson Devices and methods for temporarily opening a blood vessel
EP2403583B1 (en) 2009-03-06 2016-10-19 Lazarus Effect, Inc. Retrieval systems
US20100256600A1 (en) 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
DE102009017050B4 (en) 2009-04-09 2016-09-01 Acandis Gmbh & Co. Kg An apparatus for removing concretions from body vessels
CN102481436B (en) 2009-04-15 2016-06-01 微排放器公司 The implant delivery system
CA2758511C (en) 2009-04-15 2017-06-27 Microvention, Inc. Implant delivery system
US20100299911A1 (en) 2009-05-13 2010-12-02 Abbott Cardiovascular Systems, Inc. Methods for manufacturing an endoprosthesis
US9278201B2 (en) 2009-06-15 2016-03-08 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
US8357179B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
DE102009052002B4 (en) 2009-11-05 2012-09-27 Acandis Gmbh & Co. Kg A medical device for recanalization of body cavities and set comprising such a device
US8801748B2 (en) 2010-01-22 2014-08-12 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
DE102010025661A1 (en) 2010-02-05 2011-08-11 Acandis GmbH & Co. KG, 76327 A medical device for dissolving concrements method of manufacturing such a device, the treatment system with such a device and method for producing a treatment system
CA2795740C (en) 2010-04-14 2018-03-13 Microvention, Inc. Implant delivery device
US20130184739A1 (en) 2010-04-28 2013-07-18 Eamon Brady Clot engagement and removal systems
DE102010045367A1 (en) 2010-05-18 2011-11-24 Acandis Gmbh & Co. Kg A medical device for removing concrements
DE102010021947A1 (en) 2010-05-28 2011-12-01 Phenox Gmbh implant replacement
WO2012009675A3 (en) 2010-07-15 2014-03-27 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
DE102011053018A1 (en) 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg Electrode for medical applications, the system having an electrode and method for producing an electrode
DE102010035543A1 (en) 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg The medical device and system with such a device

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998539A (en) * 1987-12-18 1991-03-12 Delsanti Gerard L Method of using removable endo-arterial devices to repair detachments in the arterial walls
US4993481A (en) * 1988-10-03 1991-02-19 The Agency Of Industrial Science And Technology Thermal storage unit
US6673025B1 (en) * 1993-12-01 2004-01-06 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US6051020A (en) * 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5718724A (en) * 1994-02-09 1998-02-17 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US6217909B1 (en) * 1995-01-09 2001-04-17 Edward Mendell Co., Inc. Pharmaceutical excipient having improved compressibility
US6280413B1 (en) * 1995-06-07 2001-08-28 Medtronic Ave, Inc. Thrombolytic filtration and drug delivery catheter with a self-expanding portion
US20020032479A1 (en) * 1995-11-27 2002-03-14 Schneider (Europe) Ag, A/K/A Schneider (Europe) Gmbh Conical stent
US6840958B2 (en) * 1996-05-24 2005-01-11 Scimed Life Systems, Inc. Shaped woven tubular soft-tissue prostheses and method of manufacturing the same
US20080046064A1 (en) * 1996-06-06 2008-02-21 Jacques Sequin Endoprosthesis deployment methods for treating vascular bifurcations
US20080046072A1 (en) * 1996-06-06 2008-02-21 Jean-Claude Laborde Bifurcation stent and method of positioning in a body lumen
US6039721A (en) * 1996-07-24 2000-03-21 Cordis Corporation Method and catheter system for delivering medication with an everting balloon catheter
US5876376A (en) * 1996-12-09 1999-03-02 Medtronic, Inc Catheter balloon bonding stopper
US5800457A (en) * 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US6554856B1 (en) * 1997-05-27 2003-04-29 Imperial College Of Science, Technology & Medicine Stents for blood vessels
US6869431B2 (en) * 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6706010B1 (en) * 1997-10-08 2004-03-16 Kaneka Corporation Balloon catheter and method of production thereof
US20030023230A1 (en) * 1998-02-03 2003-01-30 Salient Interventional Systems, Inc. Methods and systems for treating ischemia
US20030074056A1 (en) * 1998-03-04 2003-04-17 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US7172617B2 (en) * 1998-03-31 2007-02-06 Boston Scientific Scimed, Inc. Stent delivery system
US6015424A (en) * 1998-04-28 2000-01-18 Microvention, Inc. Apparatus and method for vascular embolization
US8100935B2 (en) * 1998-05-01 2012-01-24 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US20020038146A1 (en) * 1998-07-29 2002-03-28 Ulf Harry Expandable stent with relief cuts for carrying medicines and other materials
US6192944B1 (en) * 1998-08-14 2001-02-27 Prodesco, Inc. Method of forming a textile member with undulating wire
US7179284B2 (en) * 1998-11-16 2007-02-20 Endotex Interventional Systems, Inc. Stretchable anti-buckling coiled-sheet stent
US20040049258A1 (en) * 1998-11-16 2004-03-11 Farhad Khosravi Stretchable anti-buckling coiled-sheet stent
US20020038142A1 (en) * 1998-11-16 2002-03-28 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US20040030378A1 (en) * 1998-11-16 2004-02-12 Farhad Khosravi Coiled-sheet stent-graft with slidable exo-skeleton
US7326240B1 (en) * 1998-11-30 2008-02-05 Imperial College Of Science, Technology & Medicine Stents for blood vessels
US20030040771A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Methods for creating woven devices
US7018401B1 (en) * 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US20030040772A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Delivery devices
US6991641B2 (en) * 1999-02-12 2006-01-31 Cordis Corporation Low profile vascular filter system
US20050090857A1 (en) * 1999-03-08 2005-04-28 Ev3 Inc. Minimally invasive medical device deployment and retrieval system
US6553810B2 (en) * 1999-09-28 2003-04-29 Gas Research Institute Method for measuring chemical emissions
US20040073300A1 (en) * 2000-01-31 2004-04-15 Chouinard Paul F. Process for manufacturing a braided bifurcated stent
US6685738B2 (en) * 2000-01-31 2004-02-03 Scimed Life Systems, Inc. Braided endoluminal device having tapered filaments
US20020007210A1 (en) * 2000-01-31 2002-01-17 Chouinard Paul F. Braided endoluminal device having tapered filaments
US8100918B2 (en) * 2000-02-09 2012-01-24 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
US6554842B2 (en) * 2000-03-10 2003-04-29 Radius Medical Technologies, Inc. Small diameter snare
US20030023299A1 (en) * 2000-03-27 2003-01-30 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US6702843B1 (en) * 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US20040006381A1 (en) * 2000-05-30 2004-01-08 Jacques Sequin Noncylindrical drug eluting stent for treating vascular bifurcations
US7344556B2 (en) * 2000-05-30 2008-03-18 Devax, Inc. Noncylindrical drug eluting stent for treating vascular bifurcations
US20020016564A1 (en) * 2000-05-31 2002-02-07 Courtney Brian K. Embolization protection sytem for vascular procedures
US6537294B1 (en) * 2000-10-17 2003-03-25 Advanced Cardiovascular Systems, Inc. Delivery systems for embolic filter devices
US6709440B2 (en) * 2001-05-17 2004-03-23 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US8105333B2 (en) * 2002-01-22 2012-01-31 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US20040006306A1 (en) * 2002-05-14 2004-01-08 Bacchus Vascular Inc. Apparatus and method for removing occlusive material within blood vessels
US20120035648A1 (en) * 2002-07-23 2012-02-09 Micrus Corporation Stretch resistant therapeutic device
US20120022581A1 (en) * 2002-07-23 2012-01-26 Micrus Corporation Stretch resistant therapeutic device
US20040019322A1 (en) * 2002-07-23 2004-01-29 Hoffmann Gerard Von Intracranial aspiration catheter
US20120046686A1 (en) * 2002-07-23 2012-02-23 Micrus Corporation Stretch resistant therapeutic device
US7156869B1 (en) * 2003-01-27 2007-01-02 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and delivery system with tapered stent in shoulder region
US20070032852A1 (en) * 2003-04-25 2007-02-08 Medtronic Vascular, Inc. Methods and Apparatus for Treatment of Aneurysms Adjacent to Branch Arteries
US20050033334A1 (en) * 2003-05-12 2005-02-10 Swadeshmukul Santra Devices and methods for disruption and removal of luminal occlusions
US6994723B1 (en) * 2003-05-21 2006-02-07 Advanced Cardiovascular Systems, Inc. Medical device made from self-stiffening composite
US20050049676A1 (en) * 2003-06-13 2005-03-03 Patrice Nazzaro One-branch stent-graft for bifurcated lumens
US20050055039A1 (en) * 2003-07-28 2005-03-10 Polymorfix, Inc. Devices and methods for pyloric anchoring
US20050055047A1 (en) * 2003-09-04 2005-03-10 Secant Medical, Llc Endovascular snare for capture and removal of arterial emboli
US20050075715A1 (en) * 2003-10-07 2005-04-07 Juan Borges Graft material attachment device and method
US20060020285A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Method for filtering blood in a vessel with helical elements
US20060020321A1 (en) * 2004-07-26 2006-01-26 Cook Incorporated Stent delivery system allowing controlled release of a stent
US20060025850A1 (en) * 2004-07-28 2006-02-02 Frederick Feller Reduced profile AAA device
US20060058836A1 (en) * 2004-09-10 2006-03-16 Arani Bose System and method for treating ischemic stroke
US20060058838A1 (en) * 2004-09-10 2006-03-16 Arani Bose System and method for treating ischemic stroke
US20070055365A1 (en) * 2005-04-28 2007-03-08 The Cleveland Clinic Foundation Stent with integrated filter
US20120078140A1 (en) * 2005-06-24 2012-03-29 Penumbra, Inc. Method and Apparatus for Removing Blood Clots and Tissue from the Patient's Head
US20070043425A1 (en) * 2005-08-18 2007-02-22 William A. Cook Australia Pty Ltd. Assembly of stent grafts
US20070073376A1 (en) * 2005-08-22 2007-03-29 Krolik Jeffrey A Steep-taper flared stents and apparatus and methods for delivering them
US20070055358A1 (en) * 2005-08-22 2007-03-08 Krolik Jeffrey A Axially compressible flared stents and apparatus and methods for delivering them
US20070067011A1 (en) * 2005-08-22 2007-03-22 Krolik Jeffrey A Steep-taper flared stents and apparatus and methods for delivering them
US20070055360A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent branch arteries including branch artery flow lumen alignment
US20120041464A1 (en) * 2005-11-17 2012-02-16 Richard Monetti Three-Dimensional Complex Coil
US20080015558A1 (en) * 2006-04-04 2008-01-17 The Spectranetics Corporation Laser-assisted guidewire having a variable stiffness shaft
US20080001333A1 (en) * 2006-06-30 2008-01-03 Klaus Kleine Method of fabricating a stent with features by blow molding
US20080015682A1 (en) * 2006-07-14 2008-01-17 Majercak David C AAA repair device with aneurysm sac access port
US20080039926A1 (en) * 2006-08-11 2008-02-14 Majercak David C Stent graft sealing zone connecting structure
US20080071178A1 (en) * 2006-09-15 2008-03-20 Cardiac Pacemakers, Inc. Anchor for an implantable sensor
US20080269774A1 (en) * 2006-10-26 2008-10-30 Chestnut Medical Technologies, Inc. Intracorporeal Grasping Device
US20090036977A1 (en) * 2007-04-17 2009-02-05 Boston Scientific Scimed, Inc. Drug-releasing stent having extension(s) for treating long lesions
US20090018640A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Dual Taper Stent Protector
US20090018634A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Dual taper stent protector
US20090018633A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Protector for an insertable or implantable medical device
US20090030502A1 (en) * 2007-07-26 2009-01-29 Jichao Sun Socket For Fenestrated Tubular Prosthesis
US20090036968A1 (en) * 2007-07-30 2009-02-05 Audubon Technologies, Llc Device for maintaining patent paranasal sinus ostia
US20120065660A1 (en) * 2007-10-17 2012-03-15 Mindframe, Inc. Expandable tip assembly for thrombus management
US20120041460A1 (en) * 2007-10-17 2012-02-16 Mindframe, Inc. Thrombus management system
US20120016406A1 (en) * 2007-10-17 2012-01-19 Mindframe, Inc. Flow restoration methods
US20120022576A1 (en) * 2007-10-17 2012-01-26 Mindframe, Inc. Revascularization devices
US20120041475A1 (en) * 2007-10-17 2012-02-16 Mindframe, Inc. Thrombus management device
US20120016396A1 (en) * 2007-11-09 2012-01-19 Micrus Endovascular Corporation Tethered coil for treatment of body lumens
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US8088140B2 (en) * 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US20120041474A1 (en) * 2008-08-29 2012-02-16 Rapid Medical Ltd. Device and method for clot engagement
US20120041449A1 (en) * 2008-08-29 2012-02-16 Rapid Medical Ltd. Device and method for clot engagement and capture
US20120071964A1 (en) * 2008-10-29 2012-03-22 Acandis Gmbh & Co., Kg. Medical implant and method for producing medical implant
US20110009941A1 (en) * 2009-07-08 2011-01-13 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US20110009875A1 (en) * 2009-07-08 2011-01-13 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US20120078285A1 (en) * 2010-04-01 2012-03-29 Penumbra, Inc. Balloon catheter for intravascular therapies
US20120041411A1 (en) * 2010-04-19 2012-02-16 Micrus Endovascular Llc Low profile guiding catheter for neurovascular applications
US20120014159A1 (en) * 2010-07-15 2012-01-19 Seok-Pyo Song Memory device

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8070791B2 (en) 2007-10-17 2011-12-06 Mindframe, Inc. Multiple layer embolus removal
US8945172B2 (en) 2007-10-17 2015-02-03 Covidien Lp Devices for restoring blood flow and clot removal during acute ischemic stroke
US8197493B2 (en) 2007-10-17 2012-06-12 Mindframe, Inc. Method for providing progressive therapy for thrombus management
US8945143B2 (en) 2007-10-17 2015-02-03 Covidien Lp Expandable tip assembly for thrombus management
US8574262B2 (en) 2007-10-17 2013-11-05 Covidien Lp Revascularization devices
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US9320532B2 (en) 2007-10-17 2016-04-26 Covidien Lp Expandable tip assembly for thrombus management
US9387098B2 (en) 2007-10-17 2016-07-12 Covidien Lp Revascularization devices
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US9161766B2 (en) 2008-02-22 2015-10-20 Covidien Lp Methods and apparatus for flow restoration
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US9510855B2 (en) 2009-06-15 2016-12-06 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
US20100318178A1 (en) * 2009-06-15 2010-12-16 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
US9278201B2 (en) 2009-06-15 2016-03-08 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
US8882797B2 (en) 2013-03-15 2014-11-11 Insera Therapeutics, Inc. Methods of embolic filtering
US8753371B1 (en) 2013-03-15 2014-06-17 Insera Therapeutics, Inc. Woven vascular treatment systems
US9833251B2 (en) 2013-03-15 2017-12-05 Insera Therapeutics, Inc. Variably bulbous vascular treatment devices
US8783151B1 (en) 2013-03-15 2014-07-22 Insera Therapeutics, Inc. Methods of manufacturing vascular treatment devices
US9750524B2 (en) 2013-03-15 2017-09-05 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US8789452B1 (en) 2013-03-15 2014-07-29 Insera Therapeutics, Inc. Methods of manufacturing woven vascular treatment devices
US9592068B2 (en) 2013-03-15 2017-03-14 Insera Therapeutics, Inc. Free end vascular treatment systems
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8715315B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment systems
US9179995B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Methods of manufacturing slotted vascular treatment devices
US9179931B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US8721677B1 (en) 2013-03-15 2014-05-13 Insera Therapeutics, Inc. Variably-shaped vascular devices
US8852227B1 (en) 2013-03-15 2014-10-07 Insera Therapeutics, Inc. Woven radiopaque patterns
US8721676B1 (en) 2013-03-15 2014-05-13 Insera Therapeutics, Inc. Slotted vascular treatment devices
US9901435B2 (en) 2013-03-15 2018-02-27 Insera Therapeutics, Inc. Longitudinally variable vascular treatment devices
US8733618B1 (en) 2013-03-15 2014-05-27 Insera Therapeutics, Inc. Methods of coupling parts of vascular treatment systems
US8910555B2 (en) 2013-03-15 2014-12-16 Insera Therapeutics, Inc. Non-cylindrical mandrels
US8904914B2 (en) 2013-03-15 2014-12-09 Insera Therapeutics, Inc. Methods of using non-cylindrical mandrels
US8747432B1 (en) 2013-03-15 2014-06-10 Insera Therapeutics, Inc. Woven vascular treatment devices
US8895891B2 (en) 2013-03-15 2014-11-25 Insera Therapeutics, Inc. Methods of cutting tubular devices
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US8870901B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Two-way shape memory vascular treatment systems
US8872068B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Devices for modifying hypotubes
US8870910B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Methods of decoupling joints
US8863631B1 (en) 2013-07-29 2014-10-21 Insera Therapeutics, Inc. Methods of manufacturing flow diverting devices
US8932321B1 (en) 2013-07-29 2015-01-13 Insera Therapeutics, Inc. Aspiration systems
US8932320B1 (en) 2013-07-29 2015-01-13 Insera Therapeutics, Inc. Methods of aspirating thrombi
US8728117B1 (en) 2013-07-29 2014-05-20 Insera Therapeutics, Inc. Flow disrupting devices
US8866049B1 (en) 2013-07-29 2014-10-21 Insera Therapeutics, Inc. Methods of selectively heat treating tubular devices
US8728116B1 (en) 2013-07-29 2014-05-20 Insera Therapeutics, Inc. Slotted catheters
US8859934B1 (en) 2013-07-29 2014-10-14 Insera Therapeutics, Inc. Methods for slag removal
US8735777B1 (en) 2013-07-29 2014-05-27 Insera Therapeutics, Inc. Heat treatment systems
US8845679B1 (en) 2013-07-29 2014-09-30 Insera Therapeutics, Inc. Variable porosity flow diverting devices
US8828045B1 (en) 2013-07-29 2014-09-09 Insera Therapeutics, Inc. Balloon catheters
US8845678B1 (en) 2013-07-29 2014-09-30 Insera Therapeutics Inc. Two-way shape memory vascular treatment methods
US8813625B1 (en) 2013-07-29 2014-08-26 Insera Therapeutics, Inc. Methods of manufacturing variable porosity flow diverting devices
US8715317B1 (en) 2013-07-29 2014-05-06 Insera Therapeutics, Inc. Flow diverting devices
US9314324B2 (en) 2013-07-29 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods
US8715316B1 (en) 2013-07-29 2014-05-06 Insera Therapeutics, Inc. Offset vascular treatment devices
US8816247B1 (en) 2013-07-29 2014-08-26 Insera Therapeutics, Inc. Methods for modifying hypotubes
US8803030B1 (en) 2013-07-29 2014-08-12 Insera Therapeutics, Inc. Devices for slag removal
US8795330B1 (en) 2013-07-29 2014-08-05 Insera Therapeutics, Inc. Fistula flow disruptors
US8790365B1 (en) 2013-07-29 2014-07-29 Insera Therapeutics, Inc. Fistula flow disruptor methods
US8784446B1 (en) 2013-07-29 2014-07-22 Insera Therapeutics, Inc. Circumferentially offset variable porosity devices
US8869670B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Methods of manufacturing variable porosity devices

Also Published As

Publication number Publication date Type
EP2217315A4 (en) 2010-12-08 application
GB0922251D0 (en) 2010-02-03 grant
EP2478930A2 (en) 2012-07-25 application
CA2717790A1 (en) 2009-09-17 application
ES2385631T3 (en) 2012-07-27 grant
JP2011502655A (en) 2011-01-27 application
US20100217187A1 (en) 2010-08-26 application
GB2463592A (en) 2010-03-24 application
US9198687B2 (en) 2015-12-01 grant
JP5504167B2 (en) 2014-05-28 grant
US20100318097A1 (en) 2010-12-16 application
WO2009114046A3 (en) 2009-12-17 application
EP2478930A3 (en) 2012-12-26 application
GB201008683D0 (en) 2010-07-07 grant
EP2217315A2 (en) 2010-08-18 application
GB2463592B (en) 2010-08-04 grant
US20090105737A1 (en) 2009-04-23 application
EP2217315B1 (en) 2012-05-16 grant
WO2009114046A2 (en) 2009-09-17 application

Similar Documents

Publication Publication Date Title
US7780696B2 (en) Distal protection device and method
US6837898B2 (en) Intraluminal delivery system for an attachable treatment device
US6616679B1 (en) Rapid exchange vascular device for emboli and thrombus removal and methods of use
US6001118A (en) Distal protection device and method
US6656203B2 (en) Integral vascular filter system
US6645223B2 (en) Deployment and recovery control systems for embolic protection devices
US7097651B2 (en) Embolic protection basket
US7097440B2 (en) Embolic protection systems
US5569197A (en) Drug delivery guidewire
US7172621B2 (en) Method of performing protected angioplasty and stenting at a carotid bifurcation
US20040068314A1 (en) Detachable self -expanding aneurysm cover device
US7004956B2 (en) Embolic basket
US20030212361A1 (en) Embolic protection devices
US6635070B2 (en) Apparatus and methods for capturing particulate material within blood vessels
US6575996B1 (en) Filter device for embolic protection system
US6383205B1 (en) Mechanical clot treatment device with distal filter
US6656351B2 (en) Embolic protection devices one way porous membrane
US7252675B2 (en) Embolic filtering devices
US20070149996A1 (en) Low profile filter
US8052640B2 (en) Method and apparatus for increasing blood flow through an obstructed blood vessel
US7344549B2 (en) Expandable cages for embolic filtering devices
US6890340B2 (en) Apparatus for temporary intraluminal protection
US6913612B2 (en) Snare
US7399307B2 (en) Apparatus and method for removing occlusive material within blood vessels
US20100318178A1 (en) Method and apparatus for allowing blood flow through an occluded vessel

Legal Events

Date Code Title Description
AS Assignment

Owner name: MINDFRAME, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FERRERA, DAVID A.;FULKERSON, JOHN;CRAGG, ANDREW;SIGNING DATES FROM 20080701 TO 20081112;REEL/FRAME:029048/0588

AS Assignment

Owner name: MINDFRAME LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:MINDFRAME, INC.;REEL/FRAME:029093/0835

Effective date: 20120926

AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MINDFRAME LLC;REEL/FRAME:029160/0235

Effective date: 20121010