US20110188597A1 - Apparatus for generating at least one diverse signal based on at least one aspect of at least two received signals - Google Patents

Apparatus for generating at least one diverse signal based on at least one aspect of at least two received signals Download PDF

Info

Publication number
US20110188597A1
US20110188597A1 US13/010,629 US201113010629A US2011188597A1 US 20110188597 A1 US20110188597 A1 US 20110188597A1 US 201113010629 A US201113010629 A US 201113010629A US 2011188597 A1 US2011188597 A1 US 2011188597A1
Authority
US
United States
Prior art keywords
network
node
diverse
nodes
antennae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/010,629
Inventor
Brian G. Agee
Matthew C. Bromberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comcast Cable Communications LLC
Original Assignee
CPU Consultants Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/878,789 external-priority patent/US7248841B2/en
Priority to US13/010,629 priority Critical patent/US20110188597A1/en
Application filed by CPU Consultants Inc filed Critical CPU Consultants Inc
Publication of US20110188597A1 publication Critical patent/US20110188597A1/en
Assigned to BOETHIAN TECHNOLOGY, LLC reassignment BOETHIAN TECHNOLOGY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CPU CONSULTANTS, INC.
Assigned to ALOFT MEDIA, LLC reassignment ALOFT MEDIA, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOETHIAN TECHNOLOGY, LLC
Assigned to CPU CONSULTANTS, INC. reassignment CPU CONSULTANTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AGEE, BRIAN G., BROMBERG, Matthew C.
Assigned to COMCAST CABLE COMMUNICATIONS, LLC reassignment COMCAST CABLE COMMUNICATIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALOFT MEDIA, LLC
Priority to US14/309,332 priority patent/US9106286B2/en
Priority to US14/480,542 priority patent/US9209871B2/en
Priority to US14/480,535 priority patent/US9197297B2/en
Priority to US14/734,667 priority patent/US10349332B2/en
Priority to US14/961,542 priority patent/US9344233B2/en
Priority to US14/961,559 priority patent/US9356666B1/en
Priority to US14/961,445 priority patent/US9515788B2/en
Priority to US15/042,280 priority patent/US9391745B2/en
Priority to US15/076,770 priority patent/US9401783B1/en
Priority to US15/078,603 priority patent/US9722842B2/en
Priority to US15/369,393 priority patent/US9654323B2/en
Priority to US15/595,432 priority patent/US9820209B1/en
Priority to US15/811,087 priority patent/US10257765B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • H04B7/0443Power distribution using multiple eigenmodes utilizing "waterfilling" technique
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to MIMO devices, and more particularly to MIMO devices capable of being utilized in point-to-multipoint and mesh networks.
  • the primary problem solved through the invention is communication of short, intermittent packets, in particular Voice over IP (VoIP) communication signals, over communication networks subject to significant time-and-frequency co-incident (“co-channel”) interference from other network users and external emissions.
  • VoIP Voice over IP
  • a secondary problem solved through the invention is efficient physical routing of packets over multiple network nodes, e.g., using multihop relay techniques, in order to improve rate, robustness (immunity to interference and information warfare measures), reliability, and availability of communications between Source and Destination nodes in the network.
  • a tertiary problem solved through the invention is means for rapid configuration and scalability of transceiver capabilities in highly dynamic environments where the density and severity of interferers, numbers and capabilities/requirements of communication nodes, and nature of channel propagation may change rapidly and dynamically between communication opportunities and/or over the course of a single communication opportunity.
  • FIG. 1 illustrates a Point-To-Point or PTP network; each pentagon indicates a node, or transmission and reception (a.k.a. transceiver) station, and each arrow indicates a link along which communication flows between nodes.
  • FIG. 2 illustrates a Point-To-Multipoint network.
  • the large pentagon indicates a Base Station (BS) capable of communicating with many individual Subscriber Units (SU), indicated by the small pentagons.
  • BS Base Station
  • SU Subscriber Unit
  • FIG. 3 illustrates a more complex PMP network with multiple BS and SU nodes, and multiple links.
  • the solid lines indicate one diversity channel and the dotted lines a second diversity channel.
  • FIG. 4 illustrates a multipath environment, where a single BS with a complex antenna radiates multiple beams to a single SU (the car), wherein the beams also arrive from reflections off the surrounding features.
  • FIG. 5 illustrates a null-steering effort by a single node (Item 101 ), possessing at least three antennae, which is capable of directing towards two unintended recipients (Item 102 ) null transmissions (Item 105 ) and directing a focused beam (Item 104 ) towards an intended recipient (Item 103 ).
  • FIG. 6A illustrates a more complex multipoint network, where the BSs communicate with each other and with individual SUs, even if a BS to BS link may risk interfering with communications between the BSs and a particular SU.
  • FIG. 6B illustrates a more effective use of the existing diversity of channels, whereby the BS to BS signal passes through a (possible multiplicity of) channel(s) from one BS to the intervening SUs thence to the second BS.
  • FIGS. 7A and 7B illustrate a capacity problem that may arise with a prior art PMP network when a new node attempts to enter and existing nodes are not capable of dynamically adapting diversity channels to form the new subsets.
  • nodes C and E can readily talk with D, by substituting their direct link to each other for intervening links with D, nodes D, A, and B, being limited to 3 existing channels, cannot adapt to connect with each other by dropping either E or C depending on traffic needs.
  • FIG. 8 illustrates a Time-Division Duplex communications protocol, whereby alternating uplink and downlink, or transmission and reception, slices of network activity take place at a node.
  • FIG. 9 illustrates an asymmetric network where nodes C and D have greater capacity than nodes A and B, which in turn have greater capacity than node D, but where the network cannot dynamically allocate this capacity to meet signal density needs to differing subsets of nodes.
  • FIG. 10 illustrates a multipath network, where transmissions between node 1 and node 2 are both direct and reflected off environmental features both near and far.
  • FIG. 11 illustrates a data flow diagram in a PTP MIMO link, where signal flows from one CODEC in node 2 through all of node 2 's antennae, thence into all of node 1 's antennae, and finally into one CODEC of node 1 .
  • FIG. 12 illustrates a physical PTP multipath, consisting of one direct and two reflective links, using all of node 1 's antennae and transceivers, and all of node 2 's antennae and receivers.
  • FIG. 13A illustrates a network of MIMO-capable nodes, that is, nodes with multiple antennae, multitone transceivers with DSP capability ( FIG. 13B ), wherein the network has two subsets with preferentially reciprocal uplinks and downlinks and diversity channel capacity between the subsets.
  • FIG. 14 illustrates MIMO-capable nodes wherein each node transmits and receives signal energy during alternating time slots (or sequences of time slots in TDD-TDMA systems).
  • FIG. 15 illustrates more details of the MIMO-capable node, including on the receiving side: receiving spatially and/or polarization diverse antennae in a multiple antennae array (Item 110 ), a vector OFDM transceiver switch (Item 112 ), a LNA bank (Item 113 ), an AGC (Item 114 ), a Frequency translator (Item 115 ), a LOs ((Item 116 ), an ADC bank (Item 117 ), a MultiTone Demodulator Bank (Item 118 ), means for mapping received data over each diversity channel, on each frequency channel and receive time slot (Item 119 ), and a transceiver controller (Item 120 ); and including on the transmitting side means for mapping transmitted data for each frequency channel and transmit time slot (Item 121 ), a MultiTone Modulator bank (Item 122 ), a DAC bank (Item 123 ), the transceiver switch, a PA bank (Item 124 ), and transmit
  • FIG. 16 illustrates a MIMO-capable network of the preferred embodiment, wherein an originating transceiver Node 2 in an uplink transmit set (Item 200 ) distributes a signal through multiple antennae (Items 204 A and 204 B), which goes over the channel matrix of diversity channels available (Items 206 A,B,C, and D) to a uplink receive set node, which receives the signals over its multiple antennae and combines them (Items 208 A and B) to the desired recipient (Item 202 ); leaving all other transmissions and channel diversity available (Item 212 ) for other network communications.
  • an originating transceiver Node 2 in an uplink transmit set distributes a signal through multiple antennae (Items 204 A and 204 B), which goes over the channel matrix of diversity channels available (Items 206 A,B,C, and D) to a uplink receive set node, which receives the signals over its multiple antennae and combines them (Items 208 A and B) to the
  • FIG. 17 illustrates a PTP MIMO node layout employing TDD, but one using a guard-time prefix (Item 220 ) and a 10 ms content frame period (Item 222 ), where the uplink Tx for Node 2 is at the time for the Uplink Rx for Node 1 .
  • a guard-time prefix Item 220
  • a 10 ms content frame period Item 222
  • FIG. 18 illustrates a MIMO network in a star topology, where the uplink relay node (Node 1 , Set 2 ) talks to 4 edge nodes (Nodes 1 - 4 , set 1 ) with distinct channels for uplinks and downlinks.
  • FIG. 19 illustrates a complex network topology with multiple BSs (Items 260 , 262 ), SUs (Items 264 , 266 , 268 , and 270 ), and a potentially interfering non-network node (Item 275 ), with transmissions amongst the network ( 280 , 282 , 284 , 290 , 292 ) competing with transmissions from outside the network which are perceived as interference at BS 1 (Item 260 ) and SU 1 (Item 270 ).
  • BSs Items 260 , 262
  • SUs Items 264 , 266 , 268 , and 270
  • Item 275 potentially interfering non-network node
  • FIG. 20 illustrates a MIMO network in a ring configuration with reciprocity at the network level.
  • FIG. 21 illustrates the means for generating the pilot tone mask with network code mask pseudodelay (Item 170 ), originating node index mask element (Item 172 ), and Recipient node index mask element (Item 174 ) being combined by two element-wise MUX units (Items 176 , 178 ), to create the final pilot tone signal (Item 180 ).
  • FIG. 22 illustrates a time-frequency mapping pattern of an acquisition channel (Item 340 , 342 ), control channel (Item 344 ), 32 Data channels (Item 346 , not shown for D 1 through D 31 ), with cyclic prefixes (Items 322 , 318 , 314 ) and a guard time (Item 310 ) with 100 ⁇ s acquisition symbols (Item 320 ), control symbols (Item 316 ), and then 32 data symbols (Item 312 , again not shown for D 1 -D 31 ).
  • FIG. 23 illustrates an alternative time-frequency mapping pattern for high-mobility situations, where the acquisition, control, and data elements are repeated (Items 362 , 366 , and 370 ), but the number of data-bearing channels is halved to allow the duplication within the same bandwidth and time.
  • FIG. 24 illustrates one embodiment of the MIMO transceiver, with the RF feeds (Item 130 ), the Frequency channel bank (Item 132 ), the mapping element (Item 134 ), the Multilink Rx weight adaptation algorithm (Item 136 ), the Multilink diversity Rx weights combining element (Item 138 ), the equalization algorithm (Item 140 ) and Delay/ITI/pilot gating removal bank (Item 142 ), symbol decoder bank (Item 144 ), multimode power management, symbol coding assignment algorithm element (Item 146 ), the synchronization elements (Items 162 , 164 ), and T/R comp. Algorithm (Item 156 ) and element (Item 158 ), and multilink diversity distribution of Tx Gains element (Item 152 ).
  • FIG. 25 illustrates in more detail the frequency translator, detailing the Band Pass Filters, element wise multiplier, sinusoids, SAW BPF, and LPF elements.
  • FIGS. 26 and 27 illustrate tone-mapping to frequency bins approaches for low and high mobility situations, respectively.
  • FIG. 28 illustrates in more detail the implementation of the Delay/ITI preemphasis, pilot-gating bank, tying the details of FIG. 21 into the mapping element (Item 474 ), the Trellis encryption and encoding element (Item 472 ), the pilot signal and information signal MUX (Item 480 ), leading to the final Tx data symbols signals (Item 490 ).
  • FIGS. 29 and 30 illustrate the antennae feeds ( 502 , 512 ) across diversity modes and multilinks through the Multilink Adaptation Algorithm element ( 500 ) to and from the Link and multitone symbol distributor/combiner inputs and outputs ( 506 , 508 ; and 516 , 518 respectively).
  • FIG. 31 illustrates the incorporation of the preferred embodiment of the Multilink LEGO gain adaptation algorithm and element (Item 530 ) into the diversity combining and distribution elements of the MIMO transceiver hardware.
  • FIG. 32 illustrates the LEGO optimization function for a target capacity objective ⁇ .
  • FIG. 33 illustrates the network LEGO optimization function for a network controller, using constraint R 1q and target objective ⁇ , to determine for the network or node which should be incremented or decremented.
  • FIG. 34 illustrates two nodes using dynamic, feedback driven information from transmissions and receptions to perform a particular LEGO optimization, involving observed interference power from non-subset or non-network BSs ( 528 ) or SUs ( 580 ).
  • FIGS. 35 and 36 illustrate the FFT-based LS algorithm used in the preferred embodiment that adapt ⁇ W 1 (k, 1 ; n 2 , n i ) ⁇ and ⁇ w 2 (k, 1 ; n 1 , n 2 ) ⁇ to values that minimize the mean-square error (MSE) between the combiner output data and a known segment of transmitted pilot data.
  • MSE mean-square error
  • FIG. 37 illustrate the FFT-based LS algorithm used in the preferred embodiment for the normalized MMSE or, in an alternative embodiment, the Gauss-Newton algorithm.
  • FIGS. 38A and 38B illustrate a MIMO network with null-steering and pilot-tone transmissions, with the overall transmission shown as the Extraction SINR, and the mask-fitted transmissions perceived at 702 A and 702 B which correctly account through the imposed pilot pseudodelay for the intended transmission peaks.
  • FIGS. 39 and 40 illustrate alternative topological layouts for proper uplink receive and uplink transmit subsets with links and expected attenuation.
  • FIG. 41 illustrates, for a TDD MIMO network as in the preferred embodiment, an algorithm for any node entering the network.
  • FIG. 42 shows MIMO-capable hardware transceiver means for, and the processing steps performed, in the baseline two-channel transceiver used in the invention.
  • FIG. 43 shows enhanced MIMO-capable hardware means for, and the processing steps in combining, baseline two-channel transceivers to provide additional degrees of freedom (receive combining and transmit distribution) in larger networks.
  • FIG. 44 shows an exemplary MIMO networking routing scenario in which four transceivers with four spatial degrees of freedom are used to route data around a four-node network in the presence of a strong jammer.
  • FIG. 45 shows the baseline symbol and timing structure for each transmission, when transceivers are operated in a symmetric time-division duplex (TDD) multinode network.
  • TDD time-division duplex
  • FIG. 46 shows an exemplary deployment and instantiation of the invention in a communication over a TDD mesh network topology
  • FIG. 47 shows the baseline symbol and timing structure for each transmission, when transceivers are operated in a ad-hoc multinode network.
  • FIG. 48 shows an exemplary deployment and instantiation of the invention in a communication over an ad hoc mesh network topology.
  • FIG. 49 shows multiport PHY transmit operations and processing performed at transceivers using the invention.
  • FIG. 50 shows multiport PHY receive operations and processing performed at transceivers using the invention.
  • FIG. 51 shows multiport PHY receive adaptation operations and processing performed in the primary embodiment of the invention.
  • FIG. 52 shows receive packet detection, address association, and link SINR estimation processing performed in the preferred embodiment of the invention.
  • FIG. 53 describes transmit adaptation algorithms operations and processing performed in the preferred embodiment of the invention.
  • a third is to simultaneously resolve the interplay between transmission power and network capacity by considering and using the interplay between one local node's transmissions as a signal and other nodes' reception of the same as either a signal (if the receiving node is an intended target) or as environmental noise (if the receiving node is an unintended target).
  • a secondary objective under this third objective is to provide methods which improve signal quality received by a targeted recipient node while simultaneously reducing interference energy received by other untargeted recipient nodes, so as to enable improved capacity amongst existing nodes, adding more nodes, increasing coverage area, and improving communications quality, or any sub-combination thereof.
  • Another secondary objective under this third objective is to provide an adaptive method which accounts for multipath interaction amongst the nodes and network, and minimizes unwanted effects while maximizing potential useful effects thereof.
  • Another secondary object under this is to provide improved load balancing amongst nodes and communication paths or links within the network with a minimum of overall control.
  • Another secondary object under this is to enable improved access to new nodes to the network.
  • Another secondary object under this is to enable multiple, competing, yet cooperating sub-networks that are mutually and automatically adaptive and responsive.
  • a second of the principal objects of the invention is to simultaneously resolve the interplay between local optimization, which demands detailed consideration of the immediate environmental details that affect each link between that node and others over which communications are flowing, and global optimization, which demands a minimum of control information be exchanged across the network and amongst the nodes in lieu of otherwise usable signal capacity.
  • a secondary object under this is to use the reception of signal information from other nodes, both those targeting the recipient and those not targeting the recipient, to enhance both reception and transmission quality to and from the receiving node while minimizing the explicit and separate feedback signals that must be exchanged amongst the nodes and network.
  • Another secondary object under this is to provide methods for optimization that can use or be independent of antenna array geometry, array calibration, or explicit feedback control signals from other nodes, whether the same are continuous, regular, or reactive to environmental changes affecting the link between the receiving node and the other nodes.
  • a third of the principal objects of the invention is to maximize the communications capacity and minimize the power usage both locally and globally across the network for any given set of hardware, software, and protocols.
  • a secondary object under this is to provide higher content throughput in underloaded networks, thereby providing faster perceived access or usage.
  • a secondary object under this is to provide higher reliability for any given hardware and software implementation.
  • a fourth of the principal objects of the invention is to provide a method for network optimization that can be extended to mixed networks, whether such mixing is amongst wireless and fixed links, or amongst electromagnetic spectra, or amongst types of nodes (BSs, dumb terminals, single- or limited-purpose appliances, or human-interactive input/output), and across both access schema and communications protocols with a minimum of particularization.
  • BSs wireless and fixed links
  • electromagnetic spectra or amongst types of nodes
  • nodes dumb terminals, single- or limited-purpose appliances, or human-interactive input/output
  • a fifth of the principal objects of the invention is to provide relatively simple and powerful methods for approximation which enable improvement that rapidly converges to the best solution for any optimization.
  • a secondary object under this is to provide a computationally efficient mechanization for cross-correlation operations that takes maximal advantage of multiport signals on particular single channels.
  • a sixth of the principle objects of the invention is to maximize the use of local information and minimize the use of global information that is required for approximation and approach to the best solution for any optimization.
  • MIMO multiple-input, multiple-output
  • point-to-point links can incorporate as lesser, special cases, point-to-point links, point-to-multipoint networks, and disjoint (e.g., cellular) point-to-point links and point-to-multipoint networks.
  • disjoint e.g., cellular point-to-point links and point-to-multipoint networks.
  • SDMA spatial, temporal, or frequency-based access schemes
  • TDMA TDMA
  • FDMA frequency-based access schemes
  • One key to this approach is employment of spatially (or more generally diversity) adaptive transmit and receive processing to substantively reduce interference in general multipoint links, thereby optimizing capacity and/or other measures of network quality in multiply connected networks.
  • a second key to this approach is the minimization of secondary consequences of signaling, and a second is using internalized feedback, so that the signaling process itself conveys information crucial to the optimization. Rapid, dynamic, adaptation reactive to the changing environment and communications within and surrounding each node and the entire network is used to promote both local and global efficiency. Unlike Varanesi, the feedback is neither limited to BSs only, nor effectively independent of the continual, real-world, signal and network environmental adaptation.
  • the present embodiment of the invention exploits and makes use of spectral, temporal, polarization, and spatial diversity available at each node, as well as and route (location based) diversity provided over the network of nodes.
  • the network of nodes uses MIMO-capable nodes, that is, nodes with multiple antennae, multitone transceivers and preferentially reciprocal uplinks and downlinks ( FIG. 13A and FIG. 13B ).
  • each node transmits and receives signal energy during alternating time slots (or sequences of time slots in TDD-TDMA systems) ( FIG.
  • a spatially and/or polarization diverse multiple-antenna array has a spatially and/or polarization diverse multiple-antenna array, a vector OFDM transceiver that downconverts, A/D converts, and frequency channelizes data induced on each antenna (or other diversity channel) during receive time slots, and inverse channelizes, D/A converts, and upconverts data intended for each antenna (or diversity channel) during transmit time slots; linearly combines data received over each diversity channel, on each frequency channel and receive time slot; redundantly distributes data intended for each diversity channel, on each frequency channel and transmit time slots; and computes combiner and distributor weights that exploit the, narrowband, MIMO channels response on each frequency channel and time slot ( FIG. 15 ).
  • the concept of a ‘diversity channel’ is introduced to permit a distinction to be made between “channels” that data is redundantly distributed across during receive (or transmit) operations, from “channels” that data is transported over (e.g., frequency channels or time slots).
  • Data is redundantly transported over diversity channels, i.e., the same data is transported on each diversity channel with weighting determined by the methods described in detail below, while independent data is generally transported over the second flavor of channel.
  • the present embodiment of the invention can maximize its ability to attain Rank 2 capacities, since multiple redundant transmissions can be made over the plurality resources, whether that plurality comes from different frequencies, multipaths, time slots, spatially separable antennae, or polarizing antennae.
  • the signal flow between the multiplicity of nodes in the network comprises a multiplicity of information channels, emanating from and being received by a set of antennae at each node ( FIG. 16 ).
  • the physical channel flow in a network with M(n) diversity channels e.g., M(n) antennae per node, at each node n in the network
  • the preferred embodiment performs complex digital signal manipulation that includes a linear combining and linear distribution of the transmit and receive weights, the generation of piloting signals containing origination and destination node information, as well as interference-avoiding pseudorandom delay timing ( FIG. 17 ), and both symbol and multitone encoding, to gain the benefit of substantive orthogonality at the physical level without requiring actual substantive orthogonality at the physical level.
  • the network is designed such that a subset of its nodes are MIMO-capable nodes, and that each such node can simultaneously communicate with up to as many nodes in its field of view as it has antennae.
  • the network is further designed such that it comprises two or more proper subsets, each proper subset containing members who cannot communicate directly with other members of the same proper subset. So if the network contained only two proper subsets, First and Second, the members of First could transmit only to, and receive only from, the members of Second, and the members of Second could transmit only to, and receive only from, the members of First. Independent information is then transmitted from every member of First and is independently processed by each member of Second. (See FIG. 18 , exemplifying one such topology, a ‘Star’ topology; and FIG. 19 , exemplifying another such topology.)
  • a non-MIMO-capable node may belong to any subset containing at least one MIMO-capable node that has at least one antenna available to that non-MIMO-capable node that has the non-MIMO-capable node in its field of view.
  • Diversity channels rather than antennae, limits the number of non-set members a MIMO-capable node may communicate with simultaneously, that is, the number with which it may hold time/frequency coincident communications. Also, this limiting number is a function of number of users attempting to communicate over the same diversity channels—users on different time-frequency channels do not affect this limit.
  • the internode channel response to a given user has rank 1 (e.g., if antennas are on same polarization and multipath is absent), then only a single link can be established to that user on each time-frequency channel, e.g., 128 separate links (one on each time-frequency channel) in the example given above.
  • Higher internode channel rank allows more channels to be established; for example if nodes are polarization diverse, then the internode channel response has rank 2 and 256 channels (2 per time-frequency channel) can be established.
  • the MIMO channel response equation determines power on each channel—depending on needs of network and pathloss to user, some or most of channels nominally available may be turned off to optimize the overall network capacity.
  • a significant element is that the diversity channel distribution need not be equal; one recipient node may have half the channels, if the traffic density requires it, while the transmitting node may divide its remaining channels evenly amongst the remaining nodes. Therefore the more users that have rank 2 or better capacity, the greater the available channels for those who have only capacity 1. This supports incremental optimization as improvement for the network is not dependent upon global replacement of every lesser-capacity node, but results from any local replacement.
  • each link in the network possesses reciprocal symmetry, such that:
  • H 12 ( k;n 1 ,n 2 ) H T 21 ( k;n 2 ,n 1 ), EQ. 1
  • H 12 (k;n 1 ,n 2 ) is the M 1 (n 2 ) ⁇ M 2 (n 1 ) MIMO transfer function for the data downlinked from node 1 to node 2 over channel k, less possible observed timing and carrier offset between uplink and downlink paths
  • ( ) T denotes the matrix transpose operation.
  • this is effected by using the TDD protocol, and by sharing antennas during transmit and receive operations and performing appropriate transceiver calibration and compensation to remove substantive differences between transmit and receive system responses (this can include path gain-and-phase differences after the transmit/receive switch, but does not in general require compensation of [small] unequal observed timing and carrier offset between uplink and downlink paths).However, simplex, random-access packet, and other alternative methods are also disclosed and incorporated herein.
  • the network is further designed such that at each MIMO-capable node n with M(n) antennae, no more than M(n) other actively transmitting nodes are in node n's field of view, enabling node n to effect a substantively null-steering solution as part of its transmissions, such that each node belonging to a downlink receive set can steer independent nulls to every uplink receive node in its field of view during transmit and receive operations, and such that each node belonging to an uplink receive set can steer independent nulls to every downlink receive node in its field of view during transmit and receive operations.
  • the preferred embodiment also has means for incorporation of pilot data during transmission operations, and means for computationally efficient exploitation of that pilot data during subsequent reception operations.
  • This is to enable transmitting nodes to unambiguously direct information to intended recipient nodes in the network; to enable receiving nodes to unambiguously identify information intended for them to receive; to enable nodes to rapidly develop substantively null-steering receive weights that maximize the signal-to-interference-and-noise ratio (SINR) attainable by the link, to enable nodes to reject interference intended for other nodes in the network, to enable nodes to remove effects of observed timing offset in the link, and to enable the nodes and network to develop quality statistics for use in subsequent decoding, error detection, and transmit power management operations.
  • SINR signal-to-interference-and-noise ratio
  • the preferred embodiment prefers a network designed to create and support a condition of network reciprocity, where the uplink and downlink criteria are reciprocal at the network level. ( FIG. 19 ).
  • the present form of the invention further exploits the reciprocity to attain both local and global optimization, of both capacity and power, through locally enabled global optimization of the network (LEGO).
  • LEGO is enabled by exploiting substantive reciprocity of the internode channel responses, together with appropriate normalization of transmit power measures, to design uplink and downlink network quality metrics D 21 (W 2 ,G 1 ) and D 12 (W 1 ,G 2 ) that satisfy network reciprocity property:
  • ⁇ g 2 (k,q), w 1 (k,q) ⁇ are the linear transmit and receive weights to transmit data d 2 (k,q) from node n 2 (q) to node n 1 (q) over channel k in the downlink
  • ⁇ g 1 (k,q),w 2 (k,q) ⁇ are the linear transmit and receive weights used to transmit data d 1 (k,q) from node n 1 (q) back to node n 2 (q) over equivalent channel k in the uplink; thereby allowing Eq. 1 to be satisfied for such links.
  • the invention further iteratively optimizes network quality (as defined by D 12 and D 21 ) over multiple frames, by first adapting combiner weights to locally optimize link (and therefore network) performance during receive operations, and then using Eq. 1A and the reciprocity property (Eq. 1) to further optimize network quality in the reverse direction over subsequent transmit operations.
  • the invention further improves on this approach by using Eq. 1 to scale each transmit vector, based on a partial linearization of the network quality metrics, to either minimize the total transmit power in the entire network subject to a network quality constraint, preferentially capacity, or maximize network quality, preferentially capacity, subject to a total transmit power constraint.
  • This constraint is defined and managed as a control parameter that is updated by the network. The total transmit power at a given node is then reported as an output to the network.
  • this invention enables flexibility and stability for any given hardware and software combination that underlies a wireless electromagnetic communications network and improves, for the entire network and at each particular node thereof, the communication capacity and power requirements. Furthermore, the present form of the invention does not ignore but rather directly addresses and resolves both the overhead vs. content and the power vs. capacity conundrums which otherwise limit present-day state of the art approaches to optimization. It does this using the experienced environment as part of the direct feedback, rather than requiring additional control information or signaling that reduces content capacity.
  • the network power requirement for clear communication drops as the links effectively decouple; that is, the ‘other’ channels, since they are being null-steered, do not form part of the background noise against which the intended signal's power must be boosted to be accurately received by the intended recipient. (See FIG. 7 .)
  • the LEGO power optimization and null-steering then feed back (reciprocally) into the requirements for the network and network's hardware at each node, inasmuch as the minimization of unused and unintentional interaction (or interference) reduces the precision and power necessary for frequency and other differentiation means at the node's transceiver, and reduces the number of antennae in each array by increasing the effective bandwidth within each multipath channel, by reducing the amount of bandwidth, frequency, time, or channel, or all of the above, that must be devoted to error avoidance or correction. That in turn simplifies the codec and other element designs for each node and lowers the cost of the transceiver front-ends.
  • the preferred embodiment of the invention employs a network of fully-adaptive PHY-IA MIMO Network Capable Transceivers, in which each transceiver implementing an upper PHY that performs transmit and receive TRANSEC, node signaling/detection protocol, transmit/receive beamforming, and receive-side node discovery and adaptation algorithms, and a lower PHY that can meet the needs of intermittent, burst packet communications such as VoIP.
  • Communication between source and destination nodes is accomplished by routing traffic packets over at least one and possibly several routes or collections of sequential links between the source and destination node.
  • Means for partitioning traffic data into individual data packets at the source node, and collecting data packets into traffic packets at the destination node, are accomplished in this invention using existing network routing protocols. For each combination of a transmitting node, a receiving node, and a communication channel (diversity link), the unique link address and identifying transmit node address and receive node address for the respective nodes are used as part of the messaging context.
  • Packet-specific, structural and origin/destination network information into a unified overhead allows implementation of orthogonal transformations of that overhead, through the use of specific power-of-two integer number of lower PHY (LPHY) symbols (which are preferably an OFDM waveform or PAM signal); and using a unique and identifying link address for each node-to-node link currently instantiated, which incorporates source, destination, and channel rank information, enables informational efficiency for short transmissions where otherwise structural and routing information might overweigh content, e.g. in each packet.
  • LPHY lower PHY
  • the use of MIMO transformations and reciprocity-based pilot or signal weighting calculations for the correct weighting of signals transmitted and received enables the individual packets and messages to adapt, in a bottom-up, flexible, and responsive fashion to the real-world dynamics of a continuously varying EM flux.
  • the method and system can rapidly take advantage of reciprocity between each node pairings' transmit and receive channels to distinguish the desired signal from the general noise and potential interference.
  • downconversion and ADC operations on the diversity channels passes the incoming signal(s) through a set of inverting transformations that, for the desired incoming signal(s), strip off known structural elements and continuously updates the combiner weights to reflect the dynamically varying environmental and signal context, thereby continuously matching necessitated signal and waveform transformations to the environmental and signal effects and sources.
  • each node can have its transceiver adapt its multiport combiner and distribution weights to the eigenmodes (left and right eigenvectors) of their MIMO internode channel response, so that the resultant fully adaptive link can approach the Shannon capacity of the MIMO communication channel, regardless of the rank or distribution of the eigenvalues of that channel.
  • the fully adaptive system provides an automatic power control mechanism (LEGO Algorithm) that can be used to maximize capacity (high throughput applications) or minimize transmit power (LPD applications), depending on the requirements of the system at any point during a mission.
  • LGO Algorithm automatic power control mechanism
  • the resultant network is able to pass data with high spectral efficiency relative to non-MIMO networks, or to meet specified packet transmission rates at much lower power levels relative to non-MIMO networks, due to its ability to pass data over multiple time-and-frequency coincident links and routes, and to exploit the much lower pathloss between intermediate nodes in the network. Moreover, the network is able to provide this performance in the complete lack of any opportunistic multipath (although that multipath can be exploited if it is available).
  • Groundwork the Network as a Dynamic Connected Set
  • a network is generally viewed as the combination of a set of nodes (where transmissions originate and are received) and the connections between those nodes through which the information is flowing.
  • FIGS. 1A , 1 B, and 1 C are graphical representation of a simple network of five nodes (A through E) and a varying number of channels, indicated by the lines drawn between pairs of nodes.
  • all five nodes are active and able to communicate with all or most of their neighbors.
  • node D is inactive and unable to communicate.
  • the two-step channel, from C to D and from D to E, in FIG. 1A is replaced by a one-step channel from C to E in FIG. 1B , and co-exists with the two-step channel in FIG. 1C .
  • a connection between any two nodes without any intervening nodes is also known as a ‘link’.
  • each node may both transmit (send) and receive, and because the connections amongst the set of nodes may change over time, the network is best thought of as a dynamic structure, i.e. one that is constantly shifting yet which still occupies the same general ‘space’ in the communications world.
  • a MIMO network begins with the presumption that the communications are dynamically allocated amongst the nodes and throughout the network.
  • diversity in spatial, spectral, temporal, or polarization attributes of the potential channels are not seen as variations that must be controlled or limited, but as opportunities for enhancing performance.
  • Spatially distributed networks overcome this particular limitation by exploiting the inherent diversity between internode channel responses in the network. This diversity exists regardless of any multipath present on any individual path in the network, i.e. it does not require high levels of opportunistic multipath to be exploitable by the system. Moreover, such spatial diversity can be designed into the network by careful choice of topologies for the nodes during the deployment process, in order to provide linear growth in capacity as transceivers are added to the network. As a side benefit, the network can spatially excise transmissions from compromised nodes and emitters, allowing secure, high quality service in environments with external interference.
  • a downside to such an approach is its obvious weakness to unexpected growth, dynamic changes in topology (from mobile, transitory, or transient nodes), or dramatic changes in relative channel densities. Unlike the present form of the invention, such an approach does not handle well unplanned-for competition, environmental changes, or readily exploit opportunities arising from surprisingly (i.e. unplanned for) good network performance.
  • the complex MIMO environment and multiple dimensions of differentiation create a diversity explosion.
  • the preferred embodiment creates a network topology that enforces a constraint where each node with M(n) antennae has ⁇ M(n) other nodes in its view with whom it communicates at any particular interval of time.
  • This may take the form of a ring (see FIG. 16 ), star ( FIG. 18 ), mesh ( FIGS. 39 , 40 ), or combination thereof, depending on the individual nodes' hardware and geographic specifics. Moreover, this may dictate the placement of nodes, geographically or in uplink or downlink transmission subsets. This enables the creation of reciprocal subspaces for each sub-set of the network and therefore for the network as an entirety.
  • the approach in the preferred embodiment can manage with other network shapes and spaces, just as it can manage with the hardware or protocol or software constraints inherent in particular nodes.
  • While the preferred embodiment works with reciprocal subspaces, wherein the network maintains reciprocity according to Eq. 1 between nodes over all links joining them, some parameters may be allowed to vary and create asymmetric spaces. For example, in a carrier offset case, the channel responses are actually invariant but for the complex scalar sinusoid which creates the frequency offset; physically, this is a non-reciprocal link but logically it remains (assuming signal content density on both sides is kept equal) a substantively reciprocal link. Other adaptation means are permissible as long as the network design rule of Eq. 1 is kept as a high priority.
  • One major difference in the present embodiment of the invention from prior art is that by making the control and feedback aspects part of the signal encoding process, and thereby eliminating or at least reducing the need for a separate channel(s) for control and feedback, the network content overhead is reduced and an additional range within the signal dimension is available for signal content.
  • the LEGO reduction to single, or small, bit sized power management signals can be similarly echoed for other network management, depending on the target objective the network elects.
  • the MIMO and LEGO approach described herein is usable in any network topology, and with existing protocols and schema (PSK/QAM; FDD; CDMA, including modulation-on-symbol, or synchronous, CDMA; TDMA; SDMA, etc.) the network can adapt to a diverse environment of users rather than requiring all to have the identical hardware, software, and standards.
  • the diversity of transmission and reception at all nodes in the network means that every node can use in its local environment any redundancy in transmission or reception of data over multiple channels, whether they be spatial, polarization, spectral, temporal, or any combination thereof.
  • the maximum use can be made of all available (i.e. unused by others) signaling lacunae, with the nodes adaptively adjusting to the traffic and external environmental conditions according to the objectives set by the network.
  • the present embodiment of the invention does not require a preliminary calibration of the transceiver array, the communications channel, or geographic site as do many approaches used in the prior art.
  • the continuous feedback and rapid convergence of the approach allow for flexibility and adaptivity that will permit correction of miscalibrated data, when the miscalibration represents a no-longer valid model of the environment for the receiving node.
  • the MIMO network of the present embodiment is adaptive to channel response changes due to network point failures. This includes: the ability to survive element failure at individual nodes (i.e. one antenna, or transceiver, fails) without loss of communication to that node (though it may incur possible loss of capacity); the ability to survive failure of links without loss of communication to that node (e.g., by routing data through other paths); the ability to survive failure of node (all links terminating at that node) without unduly affecting connectivity or capacity of network; and the ability to achieve network reliability that is higher than reliability of any node in that network.
  • the network will automatically adjust itself to optimal performance in event of any of these failures; potentially by rerouting active links based on available SINR experienced at that link.
  • control and feedback signal as part of the process rather than as discrete, separate, and particular parts of the signal, can decrease the complexity of apparatus by removing the need for a separate channel for network control. It also can decrease the complexity of the processing by removing the need for particular dedication of a time aspect of the reception, or by removing the need for additional detection and interpretation of control signal from other content through either software or hardware. Moreover, such incorporation also integrates the entire aspect of power management and control into the signaling process rather than artificially and needlessly separating it from the network dynamics.
  • This integration allows both capacity and power control to cooperatively handle packet acknowledgment, signal synchronization, and transmit/receive functionality at each node, and to optimize their conjoined functionality to the needs of the environment, the user, or the node rather than being constrained to disparate, pre-set and non-dynamic dictates by network administration that are only responsive to the real world environment to the extent that the system designers' assumptions accurately modeled the real-world and unknowable complexities.
  • the present form of the invention does not impose overhead constraints or capacity demands upon the network to nearly the same degree as the prior art does. For a given infrastructure and environment, therefore, the present form of the invention provides increased capacity and performance through dynamic, and self-moderating signal processing algorithms, with a minimal overhead.
  • the method does not require a strict hierarchical division between Base Station and Subscriber Unit nodes, but rather adapts to the diversity of reception and transmission at each particular node depending on its then-current environmental context, the method allows for rapid and responsive deployment of mixed hardware units being conditioned by factors external to the network, such as user choice or economic limitations.
  • the present form of the invention will work with each of CDMA, FDD, TDMA, SDMA, and PSK/QAM implementations, and with any combination thereof. Because the present form of the invention will work with diverse environments, where the diversity may come from within the network (rather than from sources external to it), this protects users and companies' investments in prior infrastructure and avoids creating either a ‘captive service market’ subject to crippling and sudden innovation, or creating a network which will suffer when a Christiansen-style disruptive technology advance arrives. Moreover, diversity reception, which is the redundant transmission and reception of data over multiple channels (whether the diversity comes in spatial, polarization, spectral, or temporal form, or any combination thereof), permits successful operation in environmental conditions which would otherwise block any particular channel or perfect subset of channels. This means that the present form of the invention will continue to operate in dirty, bursty, or difficult conditions, whether the impact of the negative force is on the nodes or the external environment.
  • the three-layer pilot signal network mask plus originator mask plus recipient mask
  • This allows users to communicate both on an unsecured overall network and a separately secure sub-network, on discrete (possibly encrypted) subnets through a subnet mask.
  • This also allows network establishment and alteration of any subnet through designation and adaptation of shared subnet masks, wherein layers of encryption become algorithmically establishable.
  • the present form of the invention also allows the fast detection, acquisition, interference excision, and reception of originators attempting to talk with the recipient, prioritizing the same according to their match to any set of subnet masks (highly secured signals presumably taking priority over less secured or open signals).
  • origination masks or recipient masks allow dual-natured communication priorities and the ability to suppress unintended recipients via the imposition of either origination or recipient masks, the secure transmission through interim nodes not provided with either mask, and the ability to determine and remove group delay as a fundamental part of the FLS algorithm.
  • the present form of the invention will also allow for optional specialization (e.g. in transmission, reception, flow-through channelization) at any particular node in a dynamic fashion, thereby allowing the network as a whole to adapt to transient environmental fluctuations without concomitant alteration in on-the-ground hardware or in-the-system software alterations.
  • optional specialization e.g. in transmission, reception, flow-through channelization
  • Such ready adaptivity increases the total cost-effectiveness, as well as the dynamic stability for the entire network.
  • the present form of the invention supports diversity reception and transmission at all nodes in the network. This creates a level of flexibility, adaptivity to environmental or network changes, and dynamic stability which increases the ready scalability over multiple distinct approaches simultaneously or serially accepted by the network. Since the core reciprocity and protocols can be used by distinctly different hardware and signals, the present form of the invention permits local accretive growth rather than demanding top-down, network-wide initial standardization, thereby decreasing the capital and planning cost for implementing or changing a network.
  • Another advantage of the present form of the invention is that it permits shared antenna usage amongst multiple nodes, thereby decreasing the number of antenna necessary for any given node to attain a particular capacity, and thereby decreasing for the network as a whole the cost and complexity required for that same level of capacity. Furthermore, it also permits any set of nodes to use a diversity of channels without requiring an increase in the antenna or internal complexity (in both hardware and software) at every node in said set of nodes.
  • a further advantage of the present form of the invention is the ability to adaptively select and use ad-hoc, single-frequency networks on all or part of the network, under conditions when network traffic is ‘bursty’, that is, when there are significant disparities between the high and low content volumes of traffic being communicated amongst that part of the network.
  • a particularly significant advantage of the present form of the invention is that using the reciprocity equation equalizes the processing or duty cycle for message transmission and reception across both directions of a link, thereby lowering the processing imbalance which otherwise might be created between transmission and reception modes. This in turn reduces the average complexity which must be built into each particular node by decreasing the maximal capacity it must be created to handle for an overall network minimal capacity average.
  • Another advantage of the present form of the invention is that, unlike much of the prior art, the present form of the invention will work in uncalibrated areas where the environmental context is either previously unknown or altered from previous conditions. This allows for rapid, uniphase adoption and expansion in any given area without requiring prior to the adoption the precise calculation of all environmental effects upon transmissions and receptions within said area at all planned or possible node locations. This further allows the adoption and use for transient, or mobile, nodes in areas without requiring all possible combinations of channel responses amongst said nodes first being calibrated and then said channel responses matched to current conditions, or constrained to pre-set limitations.
  • Another advantage of the present form of the invention is that it provides rapid correction for miscalibrated data, thereby reducing the cost of inaccurate measurement, human or other measurement error, or incorrect calibration calculations. This in turn reduces the overhead and planning required for adaptation for any given network to a particular environment, either initially or as the environment changes over time, as the channel responses in the real world can be readily adapted to.
  • a concomitant advantage of the present form of the invention is the rapid and dynamic adaptation to channel response changes when a network failure, at any particular node or sub-set of nodes, occurs. This greatly increases the stability and durability of any network incorporating the present form of the invention without the level of cost, complexity, or duplication required by the present state of the art.
  • the advantages conveyed are the ability for the network to survive partial failure at any particular node without being forced to drop or lose that node (i.e. maintaining maximal attainable capacity between that node and all others to which is can communicate), the ability to survive the total lose of any particular node, by sharing the signal traffic amongst alternative channels.
  • the present form of the invention also permits the rerouting of active links around ‘lost’ or ‘damaged’ nodes without human intervention by adherence to the new reciprocity measurements. And the increase in network stability to exceed not just the reliability of each particular node, but the average reliability of all nodes for, while any subset of nodes still remains operable, the maximal network capacity for that set can be maintained. This is unlike the present state of the art, where if 50% of the nodes of a network fail then the average network communication drops to zero, as all the channels lose one half of their pairs. Furthermore, the present form of the invention enables the network to automatically adjust itself and its optimal performance in the event of any partial failure without requiring human intervention, thereby decreasing the cost and increasing the responsiveness of the network. Even more important is the fact that, upon incremental re-instatement or restoration of particular node or channel function, network optimization continually advances without manual re-establishment.
  • Another advantage of the present form of the invention is that it minimizes the complexity, and increases the accuracy, of the signal weight update operation at each particular node and for the network as a whole.
  • Another advantage of the present form of the invention is that it provides a computationally efficient mechanization of cross-correlation operations for both nodes and channels across and within the network.
  • the marginal complexity increase caused by addition of those signals drops, for fast adaptation methods such as autocorrelation approaches, e.g. inverse-based or least-squares).
  • DSP Digital Signal Processing
  • the fast techniques become less complex than the current conventional approaches such as Least-Mean-Squares or stochastic gradient, wherein the overhead remains indifferent to the increasing complexity of the signals being processed.
  • the number of signals that must be processed is equal to one-half the number of combiner weights used at an adaptive receiver, for example, then the crossover in overhead complexity vs. speed occurs between least squares and least mean squares.
  • the present form of the invention is dynamically adaptive, it can use any subordinate portion (in time, channels, or network subset) of the process wherein a ‘reciprocal subspace’ exists to implement its full value.
  • the parameters of the signal processing may vary between the uplink (transmission) and downlink (reception) phases between any two nodes on any given channel or link, to the extent that they overlap such a reciprocal subspace can be effectuated and used.
  • a reciprocal subspace can be created where there is a carrier offset, where the channel responses are distinguished solely by a scalar complex sinusoid (e.g. a frequency offset), between the two nodes, regardless of which is, at any particular moment, transmitting or receiving.
  • the present form of the invention with its non-orthogonal multitone capability allows the addition of mobile, transient, or temporary nodes to any network, it creates a system that can manage and provision any combination of fixed, portable, low mobility, and high mobility nodes and links.
  • the capacity constraints being node and channel specific rather than network delimited also permits the heterogeneous combination of differing capacities, thereby allowing peripheral distinctiveness, creating the potential for a system with a hierarchy of nodes including high-function, base-function, and limited-function or even single-function (e.g. appliance) nodes.
  • the present form of the invention permits the ability to achieve nearly linear increases in capability, even superlinear increases (in dirty environments) for increases in infrastructure, namely the RF transceiver capacities within the network. This is a significant advance over the prior state of the art for PTP networks which achieve sublinear capacity growth with network infrastructure growth.
  • the MIMO connectivity can provide sharply higher data rates to individual channels or nodes where the additional information flow, to the maximal capacity of the particular nodes, is routed through nodes which have intended reception or transmission capacity available.
  • This is a ‘water balancing’ approach to traffic maximization available only when multiple rather than single path capabilities are established through a network, or any network structure that instantiates fixed bottlenecks (e.g. ‘star’ or ‘hub’ topologies, BS PMP networks, or fixed-channel PTP networks).
  • the reciprocity approach enables an automatic and dynamic load sharing amongst the channels and nodes which minimizes bottlenecks or, in the military or security environment, desirable targets of opportunity for ‘hot centers’ of traffic.
  • this is more valuable by reducing the power and complexity requirements of what in PTP and PMP networks are BSs to attain a given network capacity and power efficiency.
  • the preferred embodiment of the present form of the invention includes a number of interacting and synergistic elements, both in hardware and in operational software.
  • the preferred embodiment as a network, will incorporate particular functional elements at individual nodes, as well as overall systemic features which may not be shared by or incorporated in the hardware of each particular node (i.e. there may exist specialization amongst the nodes).
  • each node preferentially has an antennae array; multiple, multitone, transceivers (one per antenna); and constrains itself to reciprocal uplinks and downlinks ( FIGS. 13 A and 13 B).
  • the antennae array is spatially and/or polarization diverse and transmits and receives signal energy during alternating time slots (or sequences of time slots in TDD-TDMA systems).
  • Each transceiver is a vector OFDM transceiver, with digital signal processing elements, that downconverts, A/D converts, and frequency channelizes data induced on each antenna (or other diversity channel) during receive time slots, and inverse channelizes, D/A converts, and upconverts data intended for each antenna (or diversity channel) during transmit time slots; linearly combines data received over each diversity channel, on each frequency channel and receive time slot; redundantly distributes data intended for each diversity channel, on each frequency channel and transmit time slots; and computes combiner and distributor weights that exploit the, narrowband, MIMO channels response on each frequency channel and time slot ( FIG. 15 ).
  • the preferred embodiment of the invention allows individual nodes to vary greatly in their capacities, a set of nodes preferentially will incorporate the hardware capabilities detailed in the following paragraphs.
  • the first preference is that the transmission element be a multi-tone front end, using OFDM with cyclic prefixes at fixed terminals (generally, BS) ( FIG. 22 , Items 314 , 318 , 322 ,) and generalized multitone with guard-time gaps ( FIG. 22 , Item 310 ) at mobile terminals (generally, SU).
  • BS fixed terminals
  • Item 310 generalized multitone with guard-time gaps
  • the system uses tone grouping into narrowband frequency channels ( FIG. 22 , Item 348 ).
  • the OFDM can be readily implemented in hardware using Fixed-Fourier Transform enabling chips; it also simplified the equalization procedure, eliminated decision feedback, and provides a synergistic blend with adaptive arrays.
  • An alternative uses frequency-channelized PSK/QAM with modulation-on-symbol CDMA (that is, synchronous CDMA).
  • Each node of the network incorporates a MIMO transceiver.
  • FIG. 24 displays a functional representation of such, and the hardware and processing is detailed over the next several paragraphs.
  • Each MIMO transceiver possesses an antennae array where the antennae are spatially separated and the antennae array itself is preferentially circularly symmetric ( FIG. 15 , Item 110 ).
  • This provides 1-to-M modes (RF feeds) for the signals to be transmitted or received over, maximizes the separability of transmission links, enables a scalable DSP backend, and renders the MIMO transceiver fault-tolerant to LNA failures.
  • the transceiver sends the transmission signal through Butler Mode Forming circuitry ( FIG. 25 , Item 380 ), which includes in a further embodiment a Band Pass Filter ( FIG. 25 . Item 382 ) where the transmission is reciprocally formed with the shared Receiver feeds, and the number of modes out equals the numbers of antennae, established as an ordered set with decreasing energy.
  • the Butler Mode Forming circuitry also provides the spatial signal separation adaptation, preferentially with a FFT-LS algorithm that integrates the link separation operation with the pilot/data sorting, link detection, multilink combination, and equalizer weight calculation operations.
  • This Butler Mode Forming approach means that the transmission forming is readily reciprocal with the receiver feeds (also shared), makes the transmission fault tolerant for PA (Phase-Amplitude) failures, and enables a readily scalable DSP front end; it also enables the transceiver to ratchet the number of antennae used for a particular transmission or reception up or down.
  • PA Phase-Amplitude
  • the transmission is then sent through the transmission switch ( FIG. 15 , Item 112 ), with the uplink frequencies being processed by the LNA bank( FIG. 15 , Item 113 ), moderated by an AGC( FIG. 15 , Item 114 ), and the downlink frequencies being processed by a PA bank( FIG. 15 , Item 124 ).
  • the LNA bank also instantiates the low noise characteristics for the outgoing signal and communicates the characteristics to the PA bank to properly manage the power amplification of the incoming signals to moderate the transmission overlap.
  • Further transmission switch processing then hands off the transmission to the frequency translator ( FIG. 15 , Item 115 ), which is itself governed in part by the Los circuit( FIG. 15 , Item 116 ).
  • the transmission switch throughout is controlled by a controller ( FIG. 15 , Item 120 ) such that basebank link distribution of the outgoing signals takes place such that energy is distributed over the multiple RF feeds on each channel, steering up to K feed beams and nulls independently on each FDMA channel in order to enhance node and network capacity and coverage. This control further greatly reduces the link fade margin and that node's PA requirements.
  • the transmission goes to an ADC bank( FIG. 15 , Item 117 ), while a received signal will come from a DAC bank ( FIG. 15 , Item 123 ), the complexity of the analog/digital/analog conversion determining the circuit mix within the banks.
  • the transmission flows through a Multitone Demodulator Bank ( FIG. 15 , Item 118 ), which splits it into 1 through K FDMA channels, where K is the number of feeds.
  • the now separated tones (1 through M for each channel) in aggregate forms the entire baseband for the transmission, which combines spatial, polarization, either, or both, feeds across the FDMA channels or even combines up to K FDMA channels as transmission data density requires. This combination enables steering a greater number of beams and nulls than the RF feeds, up to the number of feeds times the number of FDMA channels.
  • the Rx data is passed to circuitry for mapping the received broadband multitone signal into separated, narrowband frequency channels and time slots ( FIG. 15 , Item 119 ).
  • An outgoing transmission signal experiences the reverse of the above process; having been mapped to tones and RF feeds ( FIG. 15 , Item 121 ), it passes into a Multitone Modulator bank ( FIG. 15 , Item 122 ), an DAC bank ( FIG. 15 Item 123 ), the transceiver switch, the Frequency Translator, the transceiver switch, the PA bank element ( FIG. 15 , Item 124 ), the transceiver switch, and thence in the preferred embodiment through the Butler Mode Form and on to the RF T/R feeds ( FIG. 24 , Item 130 ) and to the antennae array and the particular transmission antennae therein ( FIG. 15 , Item 125 )
  • the transmission switch throughout is controlled such that baseband link distribution of the outgoing signals takes place such that energy is distributed over the multiple RF feeds on each channel, steering up to K feed beams and nulls independently on each FDMA channel in order to enhance node and network capacity and coverage. This control further greatly reduces the link fade margin and that node's PA requirements.
  • the particular Multitone MOD and DEMOD elements ( FIG. 15 , Item 118 and 119 ) in a node vary according to whether it will be handling Fixed, Portable, Low-Mobility, and/or High-Mobility Nodes.
  • a signal passing into the MT DEMOD may be passed through a comb filter, where a 128-bit sample is run through a 2:1 comb; then passed through an FFT element, preferably with a 1,024 real-IF function; and then mapped to the data using 426 active receive ‘bins’.
  • Each bin covers a bandwidth of 5.75 MHz with an inner 4.26 MHz passband, so each of the 426 bins has 10 MHz.
  • the middle frequency, bin 256 will be at 2.56 MHz, leaving a buffer of 745 kHz on either side of the content envelope.
  • FIG. 22 , Items 314 , 3181 , 322 . presuming that only a cyclic prefix is needed, the system can either double the size of the prefix ( FIG. 22 , Item 310 ) or add the suffix to the signal time.
  • the reverse processing as appropriate i.e. stripping off the cyclic prefix and suffix buffers) is not shown but is well known to the art.
  • the 426 bins form 13 channels and 426 tones, ( FIG. 26 , Item 430 ), with each Channel forming 320 kHz and 32 tons ( FIG. 26 , Item 432 ), being further organized with an upper and lower guard tone ( FIG. 26 , Items 438 and 436 , respectively) and 30 information bearing tones ( FIG. 26 , Item 440 ).
  • An alternative embodiment for a high-mobility environment halves the numbers of tones and doubles the MHz, so there are only 213 bins (and tones) for 4.26 MHz ( FIG. 27 , Item 442 ), and each channel only carries 16 tones ( FIG. 27 , Item 446 ), with 1 being an guard tone ( FIG. 27 , Item 448 ) and fifteen being information-carrying tones ( FIG. 27 , Item 450 ).
  • the timing modifications may be varied.
  • the signal being processed is handed first to a MUX where an element-multiply with a Tx or Rx (for transmit or receive, respectively) window is performed.
  • the guard time is retained to serve as dead time between signals, effectively punctuating them.
  • the high-mobility embodiment halves the number of bins, doubling the average bin size, and uses duplication to increase QoS within the multitone. ( FIG. 26 .)
  • the next stage through the MIMO transceiver is the incorporation (on the transmission side) or interpretation (on the reception side) of the QAM/PSK symbols, prior to the signal's passing through the MIMO transceiver exits (if being transmitted) or enters (if being received) through a Link codec.
  • Each FDMA channel will separate through the codec into 1 through M links, and each Link codec will incorporate tone equalization and ITI remove as necessary.
  • the Link codec also includes SOVA bit recovery, error coding and error detection, and package fragment retransmission methodologies.
  • An optional alternative embodiment would at this point further include tone/slot interleaving (for the reception) or deleaving (for the transmission).
  • a further optional alternative embodiment would replace the TCM codec and SOVA decoder with a Turbo codec.
  • Another optional alternative will incorporate dual-polarization. (See FIG. 25 .) Fundamentally, this halves the modes and complexity of the transmissions and receptions, while doubling the capacity for any particular link/PA power constraint.
  • the antennae array provides 1-to-(M/2) modes (RF feeds) for downconversion and demodularization.
  • the Butler Mode Forming splits the modes into positive and negative polarities, where the negative polarization has the opposite, and normally orthogonal, polarization to the positive path. Preferentially the Butler Mode Forming works with circular polarizations.
  • This alternative embodiment enables scalable DSP transmission and reception paths and renders the entirety fault tolerant to LNA/PA failures.
  • the signal passes through a dual-polarized Link codec. That links the nodes over the dual polarizations, doubles the capacity under any particular link/PA power constraint, greatly reduces the codec complexity (and thus cost), and the link/PA power requirement for any particular link rate constant.
  • the Transceiver DSP backend for the preferred embodiment is detailed in FIG. 15 .
  • the Butler Mode Forming element with its RF transmission and reception leads is controlled by the T/R switch control, which in turn is subject to the system clock and synchronization subsystem.
  • An transmission signal (which can be continuous, periodic, triggered, human-determined, reactive, context-sensitive, data quality or quantity sensitive) that forms a Tx link message passes through a symbol encoder bank and into the circuitry where Delay/ITI/pilot gating are imposed, said circuitry being linked to its reciprocal for received signals.
  • the transmission next is mapped over diversity modes and FFT bins, then handed to the transmission/reception compensation bank
  • the transmission is passed to the inverse frequency channel bank and, finally, into the Butler Mode Forming element.
  • This Transceiver DSP backend also passes the information about the transmission signal from the compensation bank element to the synchronization subsystem.
  • FIG. 32 discloses the fundamental form of the algorithm used.
  • a capacity objective ⁇ for a particular node 2 receiving from another node 1 is set as the target to be achieved by node 2 .
  • Node 2 solves the constrained local optimization problem:
  • ⁇ 1 (q) is the SU (user 1 node) transmit power for link number q
  • ⁇ (q) is the signal to interference noise ratio (SINR) seen at the output of the beamformer
  • ⁇ 1 is a vector whose q th element is p 1 (q).
  • the aggregate set Q(m) contains a set of links that are grouped together for the purpose of measuring capacity flows through those links.
  • the BSs are represented by circles and the SUs by triangles. Each arrow represents a communication link.
  • the BSs and SUs can be dynamically combined into proper subsets of transmit uplink and receive uplink.
  • the choice of aggregate sets can be arbitrary, provided no link is in multiple aggregate sets. However in a preferred embodiment, the aggregate sets are links that share a common node and hence common, readily available channel parameters.
  • the downlink objective function can be written as:
  • the capacity constraints ⁇ (m) are determined in advance for each aggregate set, based on known QoS requirements for given nodes or group of nodes.
  • the objective function then seeks to minimize the total power in the network as suggested by EQ. 4.
  • W r (q) is a receiver weight vector for link q
  • g t (j) is the transmit weight vector for link.
  • ⁇ ⁇ ( q ) P rt ⁇ ( q , q ) ⁇ ⁇ t ⁇ ( q ) 1 + ⁇ j ⁇ q ⁇ ⁇ P rt ⁇ ( q , j ) ⁇ ⁇ t ⁇ ( j ) EQ . ⁇ 8
  • ⁇ t has a feasible, that is non-negative solution, if and only if:
  • ⁇ (M) is the spectral radius of a matrix M
  • the non-negative power transfer matrix P rt has qj'th element given in EQ. 7
  • ⁇ ( ⁇ ) is a diagonal matrix whose q′th element is ⁇ (q)
  • ⁇ (P rt ) is a diagonal matrix with the same diagonal as P rt .
  • the weight normalization in EQ. 52, and the assumption of reciprocal channel matrices leads to the reciprocity equation (EQ. 1), and the fact that the uplink and downlink objective functions in EQ. 3 and EQ. 4 are identical for the same target SINRs.
  • Another embodiment assumes effectively that the denominator in Eq. 8 remains approximately constant even after changes to the power levels in other nodes in the network (hence the local optimization approach), because the beamformer weights in the network (transmit and receive) in the MIMO approach will attempt to cancel the co-channel interference in the network, making it insensitive to power level changes of the interferers.
  • the node can solve EQ. 3 in closed form using classic water filling arguments based on Lagrange multipliers. A similar equation is established for the downlink.
  • Eq. 11 An alternative embodiment of Eq. 11 is to measure, provide, and use actual information for additional, available, or important terms in the denominator of Eq. 8 and to incorporate them into Eq. 12, and then rather than closed form use successive applications thereof to the modified problem using local data.
  • Another alternative embodiment is to solve, at each node, the constrained optimization problem:
  • Eq. 11 is a water-filling solution similar to that described above for Eq. 3.
  • This solution requires a high-level network optimizer to control the power constraints, R 1 (q), to drive the network to a max-min solution.
  • the preferred embodiment solves the local problem by attempting to minimize the total power as a function of the target output SINR.
  • the output SINR will be the ratio of square of the channel transfer gain times the transmit power, divided by the interference power seen at the output of the beamformer, where:
  • ⁇ 1 (q) is the transmit power for link q during the reverse link or uplink transmission
  • ⁇ 2 (q) is the transmit power for link q during forward link or downlink transmission
  • i 1 (q) is the interference power seen at the output of the beamformer used by the SU associated with link q
  • i 2 (q) is the interference power seen at the output of the beamformer used by the BD associated with link q.
  • ⁇ 2 F 2 ( ⁇ ) is the mapping between the SINRs and the BS transmit powers.
  • each node uses the above as it defines and generates its local model as follows:
  • L( ⁇ ,g, ⁇ ) is a linearized model of the objective function
  • g T ⁇ is an inner product between the gradient of the objective function and a set of target SINRs
  • the new ⁇ ⁇ is updated from
  • the constant ⁇ is chosen between 0 and 1 and dampens the update step of the algorithm. This determines a target SINR that the algorithm adapts to.
  • the update for the transmit power for link q becomes,
  • i 1 (q) and i 2 (q) are the post beamforming interference power seen at the SU and the BS respectively for link q.
  • the transmit power update relationship in Eq. 25 and Eq. 26 can be applied repeatedly for a fixed feasible ⁇ ⁇ and the convergence of ⁇ 1 ⁇ F 1 ( ⁇ ⁇ ) is guaranteed. In fact some assert this convergence will be guaranteed if we optimize the receive weights at each iteration. (See Visotsky, E; Madhow, U, “Optimum Beamforming Using Transmit Antenna Arrays”, Vehicular Technology Conference, 1999 IEEE 4 th , Volume 1, pp 851-856, though he only considered the effects in a Rank 1 channel, that is a single narrowband rather than a MIMO channel.) A similar statement holds for ⁇ 2 ⁇ F 2 ( ⁇ ⁇ ).
  • a suitably long block of N samples is used to establish the relationship, where N is either 4 times the number of antennae or 128, whichever is larger, with the result being used to update the receive weights at each end of the link, optimize the local model in Eq. 23 and Eq. 24, and then apply Eq. 25 and Eq. 26.
  • the algorithm used in the preferred embodiment enables the network, and local nodes thereof, to attain several important results.
  • the optimization of the local model(s) at each node(s) completely decouples the network optimization problem to an independent (set) of local problem(s) that is solved among the aggregate set links. Accordingly, within a given aggregate set, we inherit the network objective function model:
  • L m ( ⁇ ,g, ⁇ ) is the sum of the separable, linearized, objective functions corresponding to the aggregate set number m, where each localized objective function depends only on variables that pertain to the given aggregate set,
  • g q ⁇ (q) is the product of the q′th element of the gradient vector with the SINR for link q,
  • g q is the q′th element of the gradient vector
  • this approach eliminates matrix channel estimation as a necessary step, as solving the local problem only requires that an estimate of the post beamforming interference power, a single real number for each link, be transmitted to the other end of the link, or in another embodiment to the node assigned to computing the transmit powers for a given aggregate set. For each link, a single real number, the transmit power, is then propagated back to the transmitter. This is true even for networks with large rank MIMO channel matrices.
  • the algorithm rapidly converges; in the preferred embodiment, where all parameters are updated after every receive block, it converges to a fixed point within the vicinity of the optimal solution; and in an alternative embodiment, where the ⁇ ⁇ vector is held fixed until ⁇ 1 ⁇ F 1 ( ⁇ ⁇ ) and ⁇ 2 ⁇ F 2 ( ⁇ ⁇ ) before updating the weights and updating ⁇ ⁇ again.
  • FIG. 34 A figure illustrating the computational tasks at the BS and the SU for a given link q is shown in FIG. 34 . It is assumed that the BS is assigned the task of computing the transmit gains for this particular example. The figure shows that only two numbers are transferred from the BS to the SU and from the SU to the BS. The basic computational tasks at each node are also shown.
  • the estimation of the transfer gains and the post beamforming interference power is done efficiently in the preferred embodiment with simple least squares estimation techniques.
  • w r (q) is the receive weight vector for link q
  • g t (q) is transmit weight vector for link q
  • g is the square root of the transmit power ⁇ t (q), s(n) is the transmitted complex symbol at time sample n,
  • ⁇ (n) represents all of the remaining co-channel interference and noise. (Indexing is dropped to avoid clutter.) Then y(n) is defined as the output after applying the unit normalized despread weights to the received data. This is simply the usual beamformer output divided by the norm of the despread weights with respect to the noise covariance matrix; and for many applications, this will be a scaled multiple of the identity matrix.
  • h is the channel transfer gain
  • s*(n) is the conjugate of s(n)
  • y(n) is the output of the beamformer at the time sample n
  • s(n) is the transmitted complex symbol at time sample n.
  • gh is the product of the transmit gain and the post-beamforming channel gain.
  • the knowledge of the transmitted data symbols s(n) in the preferred embodiment comes from using remodulated symbols at the output of the codec.
  • Alternative embodiments use the output of a property restoral algorithm used in a blind beamforming algorithm such as constant modulus or constellation restoral, or by using a training sequence explicitly transmitted to train beamforming weights and asset the power management algorithms, or other means known to the art.
  • This information, and the knowledge of the data transmit power values ⁇ 1 (q) will be at the receiver and can be transmitted to the transmitter as part of a data link layer message; and if the processing occurs over fairly large blocks of data the transfer consumes only a small portion of the available bandwidth.
  • Means for handling the case when a transmit mode is shut off, so that one of the ⁇ 1 (q) 0, include removing the index (q) from the optimization procedure and making no channel measurements.
  • a link level optimizer and decision algorithm (See FIGS. 32A and 32B ) is incorporated in each node; its inputs include the target and the bounds for that node, and its outputs include the new transmit powers and indications to the network as to how the node is satisfying the constraints.
  • FIG. 33 indicates a decision algorithm used by the link level optimizer.
  • the solution to Eq. 3 is implemented by using a variety of Lagrange multiplier techniques.
  • the solution to Eq. 3 is implemented by using a variety of penalty function techniques. All of these embody techniques known to the art for solving the local problem.
  • One such alternative takes the derivative of ⁇ (q) with respect to ⁇ 1 and uses the Kronecker-Delta function and the weighted background noise; in separate alternative embodiments, the noise term can be neglected or normalized to one.
  • An approximation uses the receive weights, particularly when null-steering efforts are being made, and as the optimal solution will have weights that approach the singular vectors of the interference-whitened MIMO channel response.
  • adaptation of the power is done in a series of measured and quantized descent steps and ascent steps, to minimize the amount of control bits that need to be supported by the network.
  • a node may use more bits of control information to signal for and quantize large steps.
  • Another alternative embodiment develops the local mode by matching function values and gradients between the current model and the actual function. And another develops the model as a solution to the least squares fit, evaluated over several points.
  • a finer embodiment reduces the cross-coupling effect by allowing only a subset of links to update at any one particular time, wherein the subset members are chosen as those which are more likely to be isolated from one another.
  • Node 2 optimizes the receiver weights during the uplink (when sending) using a MMSE function; then measures the SINR over all paths k for a particular channel q, and informs the sending node 1 both of the measured capacity for channel q, that is, (D 12 (q)) and, if the measured capacity experienced for that channel is too high, to lower the power, or, if the measured capacity for that channel is too low, to increase the power, with the power increase or decrease being done by small, discrete increments. Node 2 then sets, for that channel, the transmit weights to the receive weights and repeats this sub-process for the downlink case. By successive, rapid iteration node 2 rapidly informs node 1 of the precise transmission power needed at node 1 to communicate over channel q with node 2 .
  • This process is performed for every channel q which is active at node 2 , until either the target capacity is attained, or the capacity cannot be improved further. It is also repeated at every node in the network, so node 1 will be telling node 2 whether node 2 must increase or decrease the power for node 2 's transmissions to node 1 over channel q.
  • the network contains one or more network controllers, each of whom govern a subset of the network.
  • the network controller initiates, monitors, and changes the target objective (in the preferred alternative embodiment, capacity) for the set of nodes it governs and communicates the current objective to those nodes and the rest of the network as necessary.
  • target objective in the preferred alternative embodiment, capacity
  • Different sub-networks can use different capacity objectives depending on each network's localized environment (both external and internal, i.e. traffic density).
  • the network controller once it has initialized the reciprocal set and objective continually monitors the network of nodes it governs, continually compares if the desired capacity has been reached, and for each node n, perform a fitting function. (See FIG. LE 2 ) If a node n is compliant with the power constraints and capacity bound, then R 1 (n) should be reduced by a small amount; but if node n has both power constraints and capacity violations than R 1 (n) should be incremented for that node. These increments and decrements are preferably quantized to fixed small numbers. In an alternative embodiment of the invention the scalar and history of the increments and decrements are recorded to feed into experientially modified approximations, effectively embodying a real-world adaptation learning for each node.
  • received signals are first passed through the frequency channel bank, then mapped to the FDMA channels.
  • the received data on channel k will be passed through both the Multilink Receive weight adaptation algorithm and the Multilink diversity combining, Receive weights W(k) element, which in turn both feed into the Multilink LEGO gain adaptation algorithm and thus feed-back into the multilink diversity distribution element for outgoing transmissions.
  • the Multilink Receive weight adaptation algorithm passes the adapted data from channel k over to the Multilink Diversity combining, Receive Weights W(k) element passes on the signal to both the circuits for the Equalization algorithm and the Delay/ITI/pilot-gating removal bank, that strips out the channel-coordinating information and passes the now combined signal to the symbol decoder bank to be turned into the information which had been sent out from the originating transceiver, the inverse process, generally, from the symbol encoding at the transmission end.
  • a given signal such as an IP datagram
  • MUX element Any signal which can be equated to or converted into an IP datagram, for example an ATM, would either be converted prior to this point or handled similarly.
  • the desired MAC header data which in one alternative embodiment is optionally time-stamped, is also fed into the same MUX element where the two combine.
  • This combined signal now passes through a CRC generator as well as feeding into a second MUX that combines the CRC output with it.
  • the signal passes into an encryption element that also performs trellis encoding.
  • an encryption element that also performs trellis encoding.
  • one or both of these operations are eliminated, which reduces the transceiver's hardware and software complexity but decreases the network's security and reliability.
  • Trellis coded modulation see, Boulle, et al., “An Overview of Trellis Coded Modulation Research in COST 231”, IEEE PIMRC '94, pp.
  • the now-encoded signal is next passed to the element where it is mapped to the individual tones and the MT symbols, and where buffer tones and time and frequency interleaving is done.
  • This MUX may use the first two slots for a pilot without modulation by the information tones, using the remaining slots for the pilot modulated by the information tones to further harden the pilot/signal combination.
  • An alternative embodiment would at this point further pass the transmission signal through an ITI pre-distortion element; otherwise, the now-encoded, piloted, and mapped transmission signal is ready.
  • Pilot tone generation is further detailed in FIG. 28 .
  • Information concerning one or more of the originating node, recipient node, and network or group channel organization flow into a pilot signal generator, and the resulting pilot signal is further modified by a network code mask.
  • This multilayer mask then is used to form a signal with a pseudorandom sequence that is shared by all nodes in the same network or group, though the sequence may vary over channels and MT symbols to allow further coordination amongst them at the receiving end.
  • Passing on the signal is modified in an element-wise multiplication (typically a matrix operation, embedded in hardware) by a signal that indexes on the originating node, which in an optional variation includes a nodal pseudodelay, unique to that node in the network or group, which overlay again may vary over channels and frames to improve security.
  • the originating node index overlay is a complex, exponential phase ramping.
  • the combined signal now mixes with a recipient node index, another pseudorandom sequence that is unique to the recipient node, modifying the whole in a second element-wise multiplication.
  • the final pilot tone reflects the content signal, modified to uniquely identify both the originating node and its context, and the receiving node and its context, effecting a signal composition that allows the network to pilot the communication through the network from origin to destination regardless of the intervening channels it takes.
  • Received data passes through both a Multilink weight adaptation algorithm and (to which that part is combined) a Multilink diversity combining of the Reception weights.
  • This reweighted transmission now passes through the equalization algorithm and (to which that is combined) a Delay/ITI/pilot-gating removal bank stage. These sort out the properly weighted tones, perform the recombinations, and undo the pilot-gating distortion to effectively reassemble at the reception end the symbol pattern of the original signal.
  • the functional and firmware processing (fixed logic hardware, limited purpose firmware, or combined software, processors and circuitry).
  • the received symbol X(i,1) comprising a matrix combination of L Link and M multitone elements, is first modified by the pilot tone generator that sends the recipient node, network, and group modifications for an element-wise reverse multiplication, to strip off that component of the signal and identify if the received symbol is from any originating source trying to send to this particular recipient. If the recipient pilot signal matches, then the signal passed on to a circuit that separates the pilot signal elements from the data signal elements.
  • the pilot signal elements are passed through a link detection circuit that preferentially uses a FFT-LS algorithm to produce link quality statistics for that particular received transmission, identifies the weighting elements that were contained in the pilot signal and passes those over to the multilink combination circuit, and sends the pilot weights over to the circuit for equalizing weight calculations.
  • the re-refined traffic data passes through a link demodulator to produce the original channel-by-channel link streams of data.
  • the first channel which has been reserved for decryption, decoding, and error detection signalling, not passes through the ITI correction circuitry and thence to the instantiated decryption, decoding, or retransmission circuitry as indicated by the data elements of the first channel signal; meanwhile, the remaining data channel elements are available, having been refined from the combined received elements.
  • a MIMO transceiver contains and uses simultaneously a multiple of single RF feeds.
  • a signal passes between the Butler Mode Forming element and a Band Pass Filter, or preselection, element, and then between the Band Pass Filter element and the Transceiver switch. If the signal is being transmitted, it goes through a Low Noise Amplifier element and then back into the Transceiver switch; if the signal is being received, it goes through a Phase Amplifier and back into the Transceiver switch. The signal passes between the Transceiver switch and the Frequency translator, and then back into the Transceiver switch.
  • the signal passes through a second Band Pass Filter with a Surface Acoustic Wave (SAW) Frequency greater than three, then between that second Band Pass Filter and a first mixer, where it will be mixed (or unmixed, depending on direction) with (or by) another waveform which has come from the timing element(s), which may be any of the system clock, synchronization subsystem, and GPS time transfer, or their combination.
  • the combined timing and content signal passes between the first mixer and a SAW element where it is combined (or separated) with a saw frequency of less than or equal to 1.35 times that of the signal.
  • the SAW-modified signal passes between the SAW element and a second mixer, where the saw-modified signal is mixed (or unmixed, depending on direction) by the waveform which also has come from the timing element(s) mentioned above.
  • the signal passes between the second mixer and the LPF element with a SAW Frequency greater than three; the next transition is between the frequency translator and the Transceiver switch.
  • the Transceiver switch and the ADC element or the DAC element the ADC and DAC together are ‘the converter elements’
  • the Transceiver switch and between the ADC element and the FFT/IFFT element or between the FFT/IFFT element and the DAC element.
  • Both the DAC and ADC elements are linked to and governed by the system clock, while the signal's passage through the Transceiver switch and the other elements (LNA or PA, Frequency Translator, and between the Transceiver switch and the converter elements, is governed by the Switch Controller element.
  • This approach is used because the Frequency Translator can be implemented as a single piece of hardware which lowers the cost of the overall unit and lessens the signal correction necessary.
  • Different multitone formats are used at different transceivers, thereby enabling ready distinction by and amongst the receivers of the transmitter frequency tone set.
  • rectangular windows with cyclic prefixes and/or buffers are used; for mobile transceivers, non-rectangular windows and guard times are used. This provides the network with a capacity fall-back as the network environment and traffic dynamics vary.
  • the guard times are matched to the cyclic prefixes and buffers, the multitone QAM symbols are matched at all windows, and the different windows and capacity are used in different modes.
  • the multitone (multifrequency) transmission that occurs between every pair of nodes when they form a communications link exploits the multipath phenomena to achieve high QoS results.
  • Each node when it is acting as a receiver, optimizes the receive weights, using the MMSE technique. This goes directly against Varanesi's assessment that “de-correlative and even linear MMSE strategies are ill-advised for such channels because they either do not exist, and even if they do, they are plagued by large noise-enhancement factors”.
  • An alternative embodiment uses the Max SINR technique, and any combination of these and other industry-standard receiver optimization algorithms are feasible alternative implementations. Then the transmit weights for that node in its reply are optimized by making them proportional to the receive weights. Finally, the transmit gains (gain multipliers that multiply the transmit weights) are optimized according to a max-min capacity criterion for that node, such as the max-min sum of link capacities for that transceiver node at that particular time.
  • An alternative embodiment includes as part of the network one or more network controllers that assist in tuning the local nodes' maximum capacity criterion to network constraints, e.g. by enforcing a balancing that reflects an intermediate nodes' current capacity which is lower than the local, originating node's current capacity.
  • downlink network channel model within frequency-time channel (k,l) (e.g., tone k within OFDM symbol l) transmitted and received at uplink frequency f 21 (k) and time t 21 (l) and downlink frequency f 12 (k) and time t 12 (l), where
  • H 21 (k, l; n 2 , n 1 ) and H 12 (k, l; n 1 , n 2 ) can be further approximated by rank 1 matrices:
  • ⁇ 12 (n 1 , n 2 ) models the observed downlink timing offset between transmit node n 2 and receive node n 1 ;
  • v 21 (n 2 , n 1 ) models the observed uplink carrier offset between transmit node n 1 and receive node n 2 ;
  • channel response vector a 1 (f,t; n 2 , n 1 ) can be characterized by the observed (possibly time-varying) azimuth and elevation ⁇ 1 (t; n 2 , n 1 ), ⁇ 1 (f,t; n 2 , n 1 ) ⁇ of node n 2 observed at n 1 .
  • a 1 (f,t; n 2 , n 1 ) can be characterized as a superposition of direct-path and near-field reflection path channel responses, e.g., due to scatterers in the vicinity of n 1 , such that each element of a 1 (f,t; n 2 , n 1 ) can be modeled as a random process, possibly varying over time and frequency. Similar properties hold for a 2 (f,t; n 1 , n 2 ).
  • a 1 (f,t; n 2 , n 1 ) and a 1 (f,t; n 1 , n 2 ) can be substantively frequency invariant over significant breadths of frequency, e.g., bandwidths commensurate with frequency channelization used in 2G and 2.5 G communication systems.
  • a 1 (f,t; n 2 , n 1 ) and a 2 (f,t; n 1 , n 2 ) can be substantively time invariant over significant time durations, e.g., large numbers of OFDM symbols or TDMA time frames. In these cases, the most significant frequency and time variation is induced by the observed timing and carrier offset on each link.
  • ⁇ 21 (n 2 , n 1 ) ⁇ 12 (n 1 , n 2 ), ⁇ 21 (n 2 , n 1 ) ⁇ 12 (n 1 , n 2 ), and v 21 (n 1 , n 2 ) ⁇ v 12 (n 2 , n 1 ), for example, by synchronizing each node to an external, universal time and frequency standard such as Global Position System Universal Time Coordinates (GPS UTC), then ⁇ 21 (k, l; n 1 , n 2 ) 1 can be obtained and the network channel response becomes truly reciprocal, H 21 (k,l) ⁇ H T 12 (k,l). However, this more stringent level of reciprocity is not required to obtain the primary benefit of the invention.
  • GPS UTC Global Position System Universal Time Coordinates
  • each node in the network must possess means for compensating local differences between transmit and reception paths. Methods for accomplishing this using probe antennas are described in Agee, et. al. (U.S. patent application Ser. No. 08/804,619, referenced above).
  • a noteworthy advantage of this invention is that substantive reciprocity can be obtained using only local transmit/receive compensation means.
  • the channel model described above is extendable to applications where the internode channel responses possess substantive multipath, such that H 21 (k, l; n 2 , n 1 ) and H 12 (k, l; n 2 , n 1 ) have rank greater than unity.
  • This channel response can also be made substantively reciprocal, such that the primary benefit of the invention can be obtained here.
  • the preferred embodiment uses a substantively null-steering network wherein each node transmits baseband data (complex symbols provided by a multirate codec) through the multiplicity of reciprocal linear matrix operations prior to transmission into the antenna array during transmit operations, and after reception by the antenna array during receive operations, in a manner that physically separates messages intended for separate recipients. This is accomplished by
  • d 1 ( k,l;n 1 ) [ d 1 ( k,l;n 2 (1), n 1 ) . . . d 1 ( k,l;n 2 ( N 2 ), n 1 )] T
  • d 2 ( k,l;n 2 ) [ d 2 ( k,l;n 1 (1), n 2 ) . . . d 2 ( k,l;n 1 ( N 1 ), n 2 )] T
  • G 1 ( k,l;n 1 ) [ g 1 ( k,l;n 2 (1), n 1 ) . . . g 1 ( k,l;n 2 ( N 2 ), n 1 )]
  • G 2 ( k,l;n 2 ) [ g 2 ( k,l;n 1 (1), n 2 ) . . . g 2 ( k,l;n 1 ( N 1 ), n 2 )]
  • y 1 ( k,l;n 1 ) [ y 1 ( k,l;n 2 (1), n 1 ) . . . y 1 ( k,l;n 2 ( N 2 ), n 1 )] T
  • y 2 ( k,l;n 2 ) [ y 2 ( k,l;n 1 (1), n 2 ) . . . y 2 ( k,l;n 1 ( N 1 ), n 2 )] T
  • W 1 ( k,l;n 1 ) [ w 1 ( k,l;n 2 (1), n 1 ) . . . w 1 ( k,l;n 2 ( N 2 ), n 1 )]
  • W 2 ( k,l;n 2 ) [ w 2 ( k,l;n 1 (1), n 2 ) . . . w 2 ( k,l;n 1 ( N 1 ), n 2 )]
  • OFDM modulation formats is used to instantiate the invention, and substantively similar distribution and combining weights are computed and applied over as broad a range of tones (frequency channels k) and OFDM symbols (time slots l) as is practical.
  • the range of practical use is determined by the frequency selectivity (delay spread) and time selectivity (Doppler spread) of the communications channel, which determines the degree of invariance of the channel response vectors a 1 and a 2 on (k,l); the dynamics of interference i 1 and i 2 ; latency requirements of the communications network; and dimensionality of linear combiners used at each node in the network, which determine the number of frequency-time channels needed to determine reliable substantively null-steering distribution and combining weights.
  • substantively nulling combiner weights are formed using an FFT-based least-squares algorithms that adapt ⁇ w 1 (k, l; n 2 , n 1 ) ⁇ and ⁇ w 2 (k, l; n 1 , n 2 ) ⁇ to values that minimize the mean-square error (MSE) between the combiner output data and a known segment of transmitted pilot data.
  • MSE mean-square error
  • FIGS. 35 and 36 Operations used to implement this technique during receive and transmit operations are shown in FIGS. 35 and 36 , respectively.
  • the preferred pilot data is applied to an entire OFDM symbol at the start of an adaptation frame comprising a single OFDM symbol containing pilot data followed by a stream of OFDM symbols containing information data.
  • the pilot data transmitted over the pilot symbol is preferably given by
  • the “pseudodelays” ⁇ 1 (n 1 ) and ⁇ 2 (n 2 ) can be unique to each transmit node (in small networks), or provisioned at the beginning of communication with any given recipient node (in which case each will be a function of n 1 and n 2 ). In either case, the minimum spacing between any pseudodelays used to communicate with a given recipient node should be larger than the maximum expected timing offset observed at that recipient node. This spacing should also be an integer multiple of 1/K, where K is the number of tones used in a single FFT-based LS algorithm.
  • K is not large enough to provide a sufficiency of pseudodelays, additional OFDM symbols can be used for transmission of pilot symbols, either lengthening the effective value of K, or reducing the maximum number of originating nodes transmitting pilot symbols over the same OFDM symbol (for example, the recipient node can direct 4 originators to transmit their pilot symbols over the first OFDM symbol in each adaptation frame, and 4 other originators to transmit their pilot symbols over the next OFDM symbol, allowing the recipient node to construct combiner weights for 8 originators).
  • K should also be large enough to allow effective combiner weights to be constructed from the pilot symbols alone. The remaining information-bearing symbols in the adaptation frame are then given by
  • d 1 ( k,l;n 2 ,n i ) p 1 ( k;n 2 ,n 1 ) d 01 ( k,l;n 2 ,n 1 ) EQ. 46
  • d 01 (k, l; n 2 , n 1 ) and d 02 (k, l; n 1 , n 2 ) are the uplink and downlink data symbols provided by prior encoding, encryption, symbol randomization, and channel preemphasis stages.
  • the adaptation frame is tied to the TDD frame, such that the TDD frame comprises an integer number of adaptation frames transmitted in one link direction, followed by an integer number of adaptation frames transmitted in the reverse link direction.
  • the OFDM symbols in the adaptation frame may be interleaved to some degree or any degree.
  • the pilot data may also be allowed to pseudorandomly vary between adaptation frames, providing an additional layer of “physical layer” encryption in secure communication networks.
  • the pseudorandom pilot components are first removed from the received data by multiplying each tone and symbol by the pseudorandom components of the pilot signals
  • x 02 ( k,l;n 2 ) c 01 ( k;n 2 ) x 2 ( k,l;n 2 ) EQ. 48
  • This operation transforms each pilot symbol authorized and intended for the recipient node into a complex sinusoid with a slope proportional to the sum of the pseudodelay used during the pilot generation procedure, and the actual observed timing offset for that link (observed pseudodelay). (See FIGS. 21 , 28 .) Unauthorized pilot symbols, and symbols intended for other nodes in the network, are not so transformed and continue to appear as random noise at the recipient node (See FIG. 38A , 38 B).
  • the FFT-based LS algorithm is shown in FIG. 37 .
  • the pilot symbol notionally denoted X 0 ( k, 1) in this Figure (i.e., with reference to uplink/downlink set and node index suppressed), is multiplied by a unit-norm FFT window function, and passed to a QR decomposition algorithm, preferably a block modified-Gram-Schmidt Orthogonalization (MGSO), and used to compute orthogonalized data ⁇ q(k) ⁇ and upper-triangular Cholesky statistics matrix R.
  • MGSO block modified-Gram-Schmidt Orthogonalization
  • IFFT inverse Fast Fourier Transform
  • MSE mean-square-error
  • the pilot symbol notionally denoted X 0 (k,1) in this Figure (i.e., with reference to uplink/downlink set and node index suppressed), is multiplied by a unit-norm FFT window function, and passed to a QR decomposition algorithm, preferably a block modified-Gram-Schmidt Orthogonalization (MGSO), and used to compute orthogonalized data ⁇ q(k) ⁇ and upper-triangular Cholesky statistics matrix R.
  • MGSO block modified-Gram-Schmidt Orthogonalization
  • IFFT inverse Fast Fourier Transform
  • the IFFT windowing function is dependent on the minimum spacing between pseudodelays, and is designed to minimize interlag interference (“picket fence” effect) between pilot signal features in the pseudodelay indicator function. In the preferred embodiment, and for a node capable of forming four links, a Kaiser-Bessel window with parameter 3 is preferred.
  • a valley (or peak) finding algorithm is then used to detect each of these valleys (or peaks), estimate the location of the observed pseudodelays to sub-lag accuracy, and determine additional ancillary statistics such as combiner output SINR, input SINR, etc., that are useful to subsequent processing steps (e.g., LEGO).
  • additional ancillary statistics such as combiner output SINR, input SINR, etc., that are useful to subsequent processing steps (e.g., LEGO).
  • the Q lowest valleys (highest peaks), or all valleys below a designated MSE threshold peaks above a designated SINR threshold
  • spatially whitened weights U are interpolated from weights near the valleys (peaks).
  • Items 702 A, 704 , 702 B, 706 , and FIG. 38B Item 710 , for illustration of the overall signal and the signal modified by the correct origination, target, and pilot mask.
  • the pseudodelay estimation is refined using a Gauss-Newton recursion using the approximation
  • This algorithm first estimates ⁇ , providing an initial sublag estimate of pseudodelay, before estimating the lag position to further accuracy.
  • the resultant algorithm can reduce the padding factor P, and reduces interpolation errors in the receive combination weights.
  • it requires estimation of an additional IFFT using a modified FFT window, and is therefore not preferred in applications where DSP complexity is of overriding importance.
  • the optimized combiner weights are substantively null-steering, in that the combiner weights associated with each originating signal will (notionally, in absence of multipath) form a composite antenna pattern that steers nulls in the direction of all other time-and-frequency coincident signals (signals transmitting on the same time slot and frequency channel) impinging on the array.
  • the weights will also (notionally, in absence of multipath) form a beam in the direction of the originating signal, further improving performance of the overall network.
  • a clear gain pattern of this sort may not necessarily form; however, the effect of this processing will be the same, and is typically be improved due the added diversity provided by multipath.
  • the combiner weights can be further refined by exploiting known or added structure of the information bearing symbols using blind property-restoral algorithms. Algorithms of this sort are described in Agee (U.S. Pat. No. 6,118,276) and Agee, et. al., (U.S. patent application Ser. No. 08/804,619, referenced above) as well as other disclosures in the public domain. These alternate embodiments can reduce the size of K, or allow the airlink to be extended into more complex systems where the linear combiner dimensionalities are too large to allow computation of effective weights given the value of K employed in an existing system.
  • the resultant network has several useful attributes over prior art. It is computationally efficient, especially for nodes receiving data from large numbers of originating nodes, since the complex operations employed in the FFT-LS algorithm can be amortized over multiple links. It is also rapidly convergent, allowing computation of 4-element diversity combiner weights to attain nearly the maximum SINR obtainable by the combiner using 8-to-16 pilot data tones. It automatically detects and reconstructs data from nodes that have been authorized to communicate with the network, or with recipient nodes within the network, and rejects nodes that are not so authorized, allowing the network to adjust and control its topology and information flow at the physical layer, and providing an important level of security by rejecting signals that do not possess appropriate network or recipient pilots. It also provides an additional level of data scrambling to prevent occurrence of correlated interlink symbol streams that can cause severe misadjustment in conventional linear combiner adaptation algorithms.
  • the linear combiner weights provided during receive operations can be used to simply construct linear distribution weights during subsequent transmit operations, by setting distribution weight g 1 (k, l; n 2 , n 1 ) proportional to w* 1 (k, l; n 2 , n 1 ) during uplink transmit operations, and g 2 (k, l; n 1 , n 2 ) proportional to w* 2 (k, l; n 1 , n 2 ) during downlink transmit operations.
  • the transmit weights will be substantively nulling in this system, allowing each node to form frequency and time coincident two-way links to every node in its field of view, with which it is authorized (through establishment of link set and transfer of network/recipient node information) to communicate.
  • this capability allows nodes to independently adjust transmit power directed to other nodes in the network, for example, to optimize capacity achievable at that node given the total power available to it, or to minimize power emitted into the network by that node given an aggregate power requirement.
  • This capability also allows the node to adjust its contribution to the overall network, for example, to maximize the total aggregate (max-sum) capacity of the network, or to minimize network power subject to a network-level capacity constraint.
  • this capability can allow the node to provide two-way communication to authorized nodes, or in defined subnets, in the presence of other nodes or subnets that it is not authorized to communicate with, for example, adjacent cells in CMRS networks, and adjacent (even interpenetrating), and virtual private nets. In wireless LAN's and MAN's.
  • FIGS. 39 and 40 This capability is illustrated in FIGS. 39 and 40 , the latter being for a hexagonal network of six nodes arranged in a ring network, with an additional direct connect between nodes A and D.
  • each node has been provided with a recipient pilot for its adjacent node, e.g., node B has been provided with recipient pilots for nodes A and C, facilitating time-frequency coincident communication with those adjacent nodes.
  • Node A has been provided with recipient pilots for node D, i.e., node A can communicate with nodes B, D, or F.
  • the pseudodelay indicator functions (provided as a function of SINR, i.e., with peaks at observed pseudodelays) are shown for each of the nodes.
  • Indicator functions generated at nodes B, C, E, and F have two strong peaks, corresponding to pseudodelays used at their connecting nodes, plus a 10 microsecond time-of-flight delay (assuming all nodes are synchronized to GPS UTC).
  • nodes A and D have a third peak at their respective delays, plus a 20 microsecond time-of-flight delay.
  • the pseudodelays are minimally separated by 25 microseconds for each of the originating nodes (12.5 microsecond minimal separation between all nodes), which is easily wide enough to allow peaks from different originators to be discerned.
  • the receive and transmit weights form beam and null patterns that allow independent links to be formed between authorized nodes, and that allow unauthorized signals to be screened at the points or reception and transmission.
  • the aperture estimates A will (also notionally, in absence of multipath) form beams in the direction of the originating node; however; they will ignore all other nodes in the network. For this reason, they cannot be used in general to sustain independent links.
  • the aperture estimates can be used to allow rapid reentry into the network, for example, in packet data systems where users may quickly begin and end signal transmissions over brief time periods (e.g., such that the channel response has not changed substantively between transmissions).
  • the aperture estimates can also be combined with combiner/distribution weights to form rapid nulls again other links or nodes in the network.
  • the primary application area for the fully adaptive MIMO arrays of the preferred embodiment will be below 10 GHz, where the abilities to achieve non-LOS and to exploit multipath are still possible, and where pathloss, weather effects, and channel dynamics can be handled by adaptive arrays.
  • the preferred embodiment's MIMO network will provide a strong advantage over conventional MIMO links, by not requiring antenna separation of 10 wavelengths to provide effective capacity gain.
  • the present state of the art considers 10 wavelengths to be the rule of thumb for the distance between antennas that provides spatially independent antenna feeds due to disparate multipath at each antenna. This rule has greatest applicability in worst-case mobile environments subject to Rayleigh fading, i.e., where the (typically much stronger) direct path is obscured, and propagation occurs over many equal-power reflection paths.
  • the MIMO network of the preferred embodiment exploits route diversity due to reception of signals from widely separated nodes, and does not need multipath to provide the capacity gains cited for MIMO links in the present state of the art.
  • This enables the preferred embodiment to employ antennas with much smaller separation, e.g., circular arrays with half-to-full wavelength diameter, to provide effective capacity or QoS gains.
  • the preferred embodiment's exploitation of multipath can further improve performance, by providing additional differences between gain and phase induced at each antenna in the array. In this regards, a smaller aperture is also better, as it reduces frequency selectivity across individual frequency channels.
  • Polarization diversity can also be employed between antennas with arbitrary spacing (e.g., in “zero aperture” arrays), as well as “gain diversity” if the antennas have distinct gain patterns.
  • the MIMO network of the preferred embodiment has application in the 10-100 GHz region (for example, LMDS bands around 25-35 GHz where mesh networks are of increasing interest), even though these networks are likely to employ nonadaptive directional antennas, or partially adaptive antennas, e.g., arrays in focal plane of directional dish antennas, that direct high gain or “pencil” beams at other ends of the link, rather than fully adaptive beam-and-null steering networks. This is due to small form factor of such antennas, as well as pathloss, atmospheric absorption, and weather effects prevalent above the 10 GHz band.
  • the next preference is that for each channel that is dynamically established, the uplink and downlink share a common frequency (that is, the transmission and reception are on the same frequency).
  • CR channel reciprocity
  • the network advantages include the use of ad hoc, single-frequency networks in bursty (data-intensive) networks, such as packet-switched networks, random-access networks, or at the network “edges” (where the SINR level threatens to overcome the network capacity).
  • This also allows the establishment of a two-layer time-division duplex schema in persistent networks or channels (e.g.
  • the network uses a frequency division duplex (FDD) protocol, preferably in combination with channel-based transmission and reception weights.
  • FDD frequency division duplex
  • the network advantage to the preferred embodiment is that, instead of the network serving as a Procrustean bed to which the communications links must be fitted out of the combination of its environmental SINR, established protocols, and channel approach, each communications link can use the environmental SINR, protocols, and channel approach to dynamically adapt the network's functioning to maximize capacity and minimize power consumption.
  • the second preference is that the network uses and exploits diversity frequency transmission and reception at all nodes in the network.
  • This particular aspect of the preferred embodiment carries the complexity and hardware cost of requiring that each node incorporate spatially separated and shared receive/transmit antennae, although the separation need only be measured in tens of lambdas of the lowest frequency (longest wavelength) used by that particular node.
  • This pragmatically can create a situation where BS nodes are equipped with larger antennae which are spatially separated by feet or meters, and thus use far lower frequencies for ‘backhaul’ or BS to BS transmissions; this also carries, however, the advantage that SU nodes lacking such spatial separation will be intrinsically deaf to such frequencies. (Care must be taken to consider harmonics between BS backbone frequencies and SU channel frequencies.)
  • the network would include and make use of frequency polarization, spectral diversity, or any combination thereof, at any subset (including a proper subset) of the network's nodes to provide further coding and differentiation potential.
  • the network would employ Butler RF networks to provide common RF front-end and scalable and expandable transceiver DSP backends in peer-to-peer network implementations.
  • the nodes include a multitone QAM encoder, whereby individual tones would be multiplied by Quadrature-Amplitude-Modulated symbols to further differentiate the signals between nodes, even those using the same frequencies.
  • Alternative QAM approaches would include PSK, ⁇ /4 QPSK, and ⁇ /4-DQPSK symbols to increase the variation potentialities. These symbols would be generated using Trellis-Coded-Modulation (TM) encoding over individual frequency channels and would include several-to-one multitone symbols.
  • TM Trellis-Coded-Modulation
  • One alternative embodiment would use Reed-Solomon codes and direct mapping to symbols; other alternatives would use Turbo encoding, either at the baseband or as part of the TM, or any combination thereof.
  • the ‘tail-biting approach would be used at the edge of the symbol blocks.
  • the network would use variable information bits per frequency channel rather than a fixed set of information bits per frequency channel, in a method analogous to the Digital MultiTone, Digital Signal Loss (DMT DSL) approach, trading the need for information density encoding as part of the signal overhead for the need for all channels to be constrained to the minimum guaranteed capacity of any environmentally or hardware constrained channel, to avoid pathloss for the most tightly constrained link or channel.
  • DMT DSL Digital MultiTone, Digital Signal Loss
  • the network would include the capability to shift to a constant bits per frequency channel approach with appropriate LEGO power management, to enable and support the minimum-power solution for the network when either power or capacity constraints determine this is preferable.
  • the fourth preference is that the network adds pseudorandom modulation to the symbols after encoding. This is to eliminate the need to increase the signaling overhead by runs of correlated symbols, as it aids in the receive adaptation algorithms, provides discrete link encryption, thereby greatly increasing both channel and network security, and enables pilot-gated fast acquisition and timing recovery algorithms.
  • An extension to the pseudorandom modulation is the analysis and elimination of certain detectable features by the network in one alternate embodiment.
  • a distinct extension is the embedding of invariance for exploiting broader modulation, using gated SCORE.
  • a third extension combines the two extensions just described.
  • the fifth preference is the addition of an error detection syndrome, or CRC block to transmissions to detect bit errors, which would enable the initiation of a retransmission request at the end of a packet's reception when an error is signaled.
  • CE&FC RWA computationally efficient and fast-converging receive weight algorithm
  • Variations of such CE&FC RWA that would be used include any one, subcombination, or combination, of the following: Least-Squares Like (LS), which are also known as matrix-inversion; Block-Update implementations (on a per-packet basis) that amortize matrix operations over multiple data snapshots (using tones and/or multitone symbols); and recursive single-snapshot algorithms.
  • LS Least-Squares Like
  • Block-Update implementations on a per-packet basis
  • amortize matrix operations over multiple data snapshots using tones and/or multitone symbols
  • recursive single-snapshot algorithms recursive single-snapshot algorithms.
  • the preferred embodiment may use one, more than one, or all of the following for the same purposes: calculation of autocorrelation statistics in voltage domain (e.g.
  • the network may vary between uncalibrated techniques which are not dependent upon knowledge or calculation of channel information (e.g.
  • non-blind and blind weight adaptation techniques such as pilot-based initial weight acquisition signaling, blind and/or pilot-aided decision-direction weighting in persistent links, and blind embedded-invariance techniques such as gated SCORE, in an alternative embodiment.
  • pilot-aided and gated SCORE techniques the network would preferentially use the computationally efficient mechanization of cross-correlation operations employing fast transform (and in a specific embodiment, FFT) methods.
  • the network may use combined channel sounding, channel-based weight estimation, or any combination of the foregoing.
  • the seventh preference is using post-combining in-channel tone equalization to remove timing and carrier offset.
  • This could include multiplication by constant modulus weights, as the first preference, to remove timing and/or delay offsets; alternatively, it could include low-complexity intertone filtering to remove carrier offset and Doppler errors; and, of course, a combination of both could be employed depending on the environmental and hardware complexity needs, constraints, and costs.
  • each node of the network be capable of employing and employ retrodirective transmission and reception modulation, wherein the transmit gains are set proportional to the actually experienced reception weights for the frequencies used. For single frequency links, this exploits their potential reciprocity (especially for TDD or ad-hoc networks).
  • TDD time division duplex
  • each data frame is encapsulated in smaller guard frames, and the entire transmission occupies a smaller portion of the available bandwidth to similarly encapsulate it in the available bandwidth.
  • the signal for a one-way frame duration is further broken down to incorporate a guard time, a data symbol, an encapsulating cyclic prefix, a control symbol, a cyclic prefix separation the control symbol from the acquisition symbol, and a final encapsulating cyclic prefix.
  • the frequency channels that occupy the bandwidth carry bearer data fragments over fractional subfragments.
  • One embodiment for low-mobility, fixed or portable TDD uses a 120 B Bearer Data Fragment which is comprised of eight 15 B subfragments, 8 differentiating and coordinating multitone symbols, and of 5.75 MHz available only 4.26 MHz bandwidth, said bandwidth being divided into 13 frequency channels, each with 320 kHz, to provide 2 fragments per frame per link, or 6.24 Mbytes each frame, or 4.608 Mbps as one channel (Channel 0) is reserved for fragment resends, thereby providing the equivalent in wireless transmission of 3 land-based T1 lines with, thanks to the reservation and resend provision, a 10 ⁇ 4 BER.
  • Bearer Data Fragment which is comprised of eight 15 B subfragments, 8 differentiating and coordinating multitone symbols, and of 5.75 MHz available only 4.26 MHz bandwidth, said bandwidth being divided into 13 frequency channels, each with 320 kHz, to provide 2 fragments per frame per link, or 6.24 Mbytes each frame, or 4.608 Mbps as one channel (Channe
  • This embodiment further uses for each 15 B subfragment a MAC header providing 2 B CRC and 13 B MAC data, providing 52 MAC channels and at full duplex 10.4 kbps per channel.
  • the acquisition symbols have 30 B pilot or synchronization data per 320 kHz frequency channel, 32 to 64 pilot tones per channel, and thereby provide fast acquisition for up to 32 Degrees of Freedom; and if the area is sparsely populated or for other reasons (downtime, occupied by other transmissions) less than 17 Degrees of Freedom were needed, the excess DOF could be reused and reprovisioned to enable dynamic channels and thereby further increase the local flexibility.
  • the high-mobility TDD link replaces the cyclic prefixes with nulls on the uplink and CP on the downlink, halves the number of tones and doubles the separation of tones (from 426 to 213 tones, from 10 kHz to 20 kHz separation), and provides half the DOF, but doubles the amount of overlap that can be tolerated for the same QOS.
  • the tone layout divides the 4.26 MHz into 426 ‘bins’, each of 10 kHz separation; these are then shared such that thirteen channels, each with 32 tones covering 320 kHz, from Channel 0 to Channel 12 are formed, with each channel further carrying of the 32 tones a network-information-bearing tone at the bottom and top of the channel (T0 and T31) that encapsulate the content-carrying tones T1 through T30.
  • Each channel is modulated by a 32-tone pilot to facilitate the acquisition and fine time synchronization.
  • the 10 kHz tone separation controls reasonable levels of time selective Multipath (+/ ⁇ 100 MHz), with a cyclic buffer being added at channel edges.
  • the network can, should environmental or network conditions suggest, ‘step down’ the overall frequency spread to 160 kHz BW without affecting the fundamental stability of the traffic algorithms or network. (See FIG. 26 )
  • Preferentially transmit gains are set proportionally to the conjugate of the receive weights for that particular node and channel.
  • An alternative approach uses channel-based retrodirective transmit gains (more for SU than BS); a second alternative uses channel-based directive (beam-pointing) transmit gains (more for BS than SU); a third applies retrodirection to in-channel preemphasis gains; and any combination of these alternative approaches may be employed.
  • the transmitting node breaks periodically (in one particular alternative embodiment every 5 msec) to collect ACKs, NACKs, or RTSs, that is, to monitor the link performance as perceived by the receiving node.
  • This approach though it provides all the capacity in a particular link to a user as needed, is very compatible with small, stationary networks but less compatible with LEGO network management due to the effects of nonstationary network fields.
  • the ninth preference is that the network employs Locally-Enabled Network Optimization (LEGO) to manage the transmit power for each node (BS and SU) operating, dynamically.
  • LGO Locally-Enabled Network Optimization
  • This requires that relatively complex computational operations (e.g. receive weight and transmit gain calculations, multitone, QAM, TCM, and the above-mentioned signal/symbol/weight/frequency calculations) be carried out autonomously at each node in the network, rather than limited to one class of nodes.
  • This further requires that as part of the network overhead simple, network-level control parameters be passed to, or shared by (for certain time intervals, though such may either be hard-set invariances in the hardware, subject to change signal, or network-alterable) all nodes in the network.
  • each node would implement its power-management algorithm to minimize transmit power and manage its links, thereby indirectly optimizing performance over the entire network.
  • An alternative embodiment would effect network-level optimization; and a third would combine node-driven local determined optimization with network-level
  • LEGO algorithms could be employed. For example, if power shortfalls or constraints on any part of the network are anticipated, then a capacity maximization subject to that power constraint algorithm could be used.
  • a third alternative presuming that the network capacity (as opposed to the power) is the guiding constraint, sets the power minimization subject to the capacity attainment to the limit possible over the entire network. And a fourth, which is better, sets the power minimization at each particular node in the network subject to the capacity constraint at that particular node.
  • the preferred embodiment incorporates into each node a multitone QAM decoder, with a soft-optimized, Viterbi algorithm (SOVA) embodied in the decoder, such that the network can effect changes in the decoder at its nodes by a software or information transmission that re-sets the hardware (EEPROM, FPGA, PAL, or other semiconductor chip) and software at that node for the new decoding scheme.
  • SOVA soft-optimized, Viterbi algorithm
  • An alternative embodiment with lesser cost and complexity at each node, but lesser flexibility, is to use hard-optimized, Viterbi or Reed-Solomon, decoders at each node in the network.
  • a third alternative is to combine both SOVA and HOVA decoders in the network and establish hierarchies wherein the more flexible stations moderate as needed to communicate with their less flexible but simple contacts.
  • the preferred embodiment of the present form of the invention also incorporates synchronization means for its communications, which encompass timing estimation, carrier estimation, and synchronization operations as part of the network communication and control methodologies.
  • the preferred synchronization is to a single, universal, and commonly observable timing signal such as that used in GPS operations, and occurs as part of the carrier signal (also known as ‘UPS Sync’).
  • UPS Sync also known as ‘UPS Sync’.
  • An alternative embodiment would use synchronization to a timing, carrier, or mutual offset which would be observed at the transmission or master node during the reception process, wherein the slaved receiver synchronization would introduce a x2 delay and carrier error at the slaved transmitter, to avoid interference with the master transmission.
  • Another alternative embodiment would use precompensation (in timing, carrier advancement, or both), to equalize any timing or carrier offset observed at both ends of the link (a means to synchronize the slaved node's transmission). Combinations of universal, offset, or precompensation synchronization methods would be yet further alternative embodiments.
  • Synchronization would be performed by including in the transmission dedicated multitone signals (such forming part of the set of QAM symbols used by the preferred embodiment), or by using dedicated tones in each multitone symbol, or most preferentially, by combinations of dedicated tones and slots to maximize the synchronization possible for the minimal transmission density.
  • Coarse synchronization would be performed prior to the multitone demodulation, using the envelope features of the waveform.
  • Fine synchronization would be performed after multitone demodulation, using dedicated QAM synchronization symbols and tones. For embodiments using universal observed timing through GPS synchronization, or using slaved transmission synchronization, these would be performed using control or MAC channels.
  • An alternative embodiment would bypass the synchronization operation entirely by using GPS-based timing and carrier acquisition methods.
  • a separate alternative embodiment would use blind, data-based synchronization methods, minimizing the use of specific synchronization data.
  • Transmit/Receive (T/R) compensation means are employed to remove nonreciprocal channels after shared transmit or receive operations. These would be employed intermittently on an ‘as-needed’ basis through transmission of specialized T/R compensation packets to initiate the compensation processing.
  • An alternative embodiment would use dedicated T/R compensation channels to initiate the compensation processing. And the network would employ loops back of the received signal data to provide the initial transmitter with the T/R channel differences.
  • the preferred embodiment further includes methods for datagram network instantiations, particularly applicable for conditions such as edge networks (e.g. where the wireless electromagnetic communications network is connecting to the Internet) and entirely interior networks (e.g. the ‘backhaul’, dedicated, data-heavy, and often fiber-optic networks of other carriers).
  • edge networks e.g. where the wireless electromagnetic communications network is connecting to the Internet
  • entirely interior networks e.g. the ‘backhaul’, dedicated, data-heavy, and often fiber-optic networks of other carriers.
  • the preferred embodiment mechanizes the process by incorporating, or enabling, both TCP/IP and FTP protocols, and further uses fragment-level CRC's, error detection, and retransmission protocols to provide Zero-error, Uncommitted Bit-Rate (ZE-UBR) services.
  • ZE-UBR Zero-error, Uncommitted Bit-Rate
  • the preferred embodiment can also provide Committed Bit-Rate (CBR) service.
  • CBR Committed Bit-Rate
  • the preferred embodiment also incorporates means for resolving scheduling and capacity problems, preferentially the soft-contention and Demand-Assigned, Multiple-Access (DAMA) scheduling means.
  • DAMA Demand-Assigned, Multiple-Access
  • These would primarily be employed at network edges, though they also can serve at ‘bursty’ edge networks or handle ‘unconcentrated’ data streams.
  • the soft contention means minimize the effects of data collisions and the latency due to retransmissions and/or backoff network effects; the DAMA scheduling is principally employed over longer sessions to maximize the network efficiency.
  • the topology of the wireless electromagnetic communications network affects the local details of implementation of the preferred embodiment, as different constraints and needs dictate how the best adaptation occurs. For small network embodiments where most, if not all of the nodes are in a common field of view, it is not important whether the network be in a star, ring, bus, or mesh topology. Under these conditions the preferred embodiment matches each transceiver's Degrees of Freedom (DOF) to the nodes in the possible link directions and equalizes them to provide node-equivalent uplink and downlink capacity.
  • DOF Degrees of Freedom
  • An alternative embodiment may also be used, depending on network traffic or user payment/preferences, wherein asymmetric transceiver assignments reflect the desired capacity weighting.
  • each node adapts the Receive Weights to form a hard (max-SINR, null-steered) or soft (max SINR) solution for multipath resolution for transmissions to that node.
  • explicit interference whitening for in-network nodes, or implicit data whitening for soft nulling of out-of-network interferers are employed for conditions, e.g. as in Part 15 applications.
  • retrodirective transmit gains are used during subsequent transmission operations during a channel communication.
  • the Receive Weights are directive, whitened, channel-based, or a combination thereof.
  • the fundamental conditions are different and thus a different implementation and adaptation strategy is usually required. These include mesh extensions of star, ring, and bus networks (see FIG. 4 ); and the principal difference is that most nodes are not in a common field of view. A greater amount of network ‘passing over’ is required and nodes must more often serve as intermediary rather than terminal transceivers. Under these conditions, for each node the transceiver DOF is matched to those nodes that are observable during the Receive operation, and then performs the symmetric equalization (or alternative, asymmetric equalization) and other operations (and alternatives) as described in the preceding paragraph. Under these conditions the LEGO parameters used for management of the network are disseminated throughout the network.
  • a third possible topology and concomitant operating conditions occurs when the network is cellular, or has overlapping subordinate or coordinating networks. Under these conditions, which are particularly likely to occur under competition, not all the nodes will be connected to the same wireless electromagnetic communications network. A greater potential for signal interference which is beyond the network's control results and the preferred embodiment adapts to this constraint. Furthermore, there may be some minimal transmissions of control, network health, or network OAMP data through a disparate infrastructure (wired or wireless), or even a high-rate connection through a wired infrastructure in an alternative embodiment.
  • the nodes in the preferred embodiment direct nulls (hard or soft) at all observed Transmission nodes in other networks, to minimize the interference from and with the other network's signals.
  • nulls hard or soft
  • This same approach may be used, in an alternative embodiment, to enforce a ‘lock out’ of unauthorized nodes in a secure network.
  • the nulls are further enabled using network-wide scrambling, gating, or encryption means as described elsewhere, to differentiate the two networks' internal signals.
  • An alternative embodiment incorporates one or more broadcast modes from network master controllers, that would enforce common timing standards and provide broadcast, i.e. network common information, without requiring two-way bandwidth for such effort.
  • the working target capacity objective for any given set of nodes may be rapidly reached by iterating from an initial approximation to an acceptably-constrained solution with many fewer iterations overall; (2) the power levels that solve the local target capacity objective minimize the transmitted energy at the local node, thereby minimizing the co-channel interference to other uses in the network; and (3) the quantities needed for the local solution only require local information to solve, thereby reducing substantially the ratio between ‘control’ and ‘content’ information, thus further enhancing the overall capacity of the network.
  • the problem of network optimization becomes a hierarchical one, where the overall problem is reduced to a series of subproblems.
  • the preferred embodiment's implementation as described above, is then generalized to handle both the power constrained unconstrained (negligible noise) objective functions.
  • the network performs the optimization
  • U(m) is a collection of links in a given aggregate set m
  • k is a transmission mode index, reflecting the fact that a single link may transmit over multiple diversity channels
  • ⁇ 1 (k,q) is the transmit power for mode k and link q
  • ⁇ (k,q) is the post beamforming signal to interference noise ration
  • R 1 (m) is the total allowed transmit power for aggregate set m
  • the means used to solve D 21 optimization are chosen to minimize the amount of auxiliary channel information, or network control information that displaces network content.
  • a necessary condition of optimality is that all of the links over each link index q achieve the same capacity.
  • the objective function that is solved at each aggregate set m becomes:
  • the preferred embodiment linearizes this objective function as a function of ⁇ (q) and optimizes it using the formulation in EQ 28, EQ 29 and EQ 30.
  • the network now attempts to achieve the given capacity objective, ⁇ , by (1) optimizing the receive beamformers, using simple MMSE processing, to simultaneously optimize the SINR; (2) based on the individual measured SINR for each q index, attempt to incrementally increase or lower its capacity as needed to match the current target; and (3) step the power by a quantized small step in the appropriate direction.
  • the network can either increase the target capacity ⁇ , or add additional users (opportunistically or by signal) to exploit the now-known excess capacity.
  • the network controller of the preferred embodiment is computationally extremely simple and requires a very small feedback channel, or portion of the control channel otherwise unused, to accomplish its tasks.
  • each independent channel is assigned a variable rate codec optimized for the currently achieved SINR for that link, whereby a code and associated rate are chosen to achieve the desired bit error using any of the Trellis Codes, interleavers, and/or Reed-Solomon codes known to the literature.
  • Good network performance includes, generally, a measure of uniform minimum performance level for all links assigned the same quality of service (QoS).
  • QoS quality of service
  • the preferred embodiment uses Max-Min capacity criterion as disclosed above to attain this, as it is generalizable to a wide variety of network configurations. Minimizing the total power subject to arbitrary capacity constraints ⁇ (m), as in EQ 3 and EQ 4 is also an embodiment of interest and is easily accommodated by the current invention. The addition of reciprocity as a feature of the preferred embodiment allows us to state the decoupled objective function:
  • D rt max ⁇ 1 ⁇ ( k , q ) ⁇ min m ⁇ D rt ⁇ ( m ) ⁇ ⁇ where ⁇ ⁇ D rt ⁇ ( m ) ⁇ ⁇ q ⁇ U ⁇ ( m ) ⁇ ⁇ k ⁇ log ⁇ ( 1 + ⁇ ⁇ ( k , q ) ) EQ . ⁇ 51
  • the reciprocity equation, Eq. 2 establishes that the network's uplink capacity will equal its downlink capacity provided that the receive weights are used to transmit and the transmit weights to receive.
  • Implementing the network optimization in this fashion provides the following benefits: (1) transmit weights can be obtained from receive weights; (2) transmit and receive weights require only local information at each node, thereby eliminating the ‘network God’ and ‘common knowledge’ problems; and (3) local optimization done using this optimizes the entire network, both making it stable and converging.
  • the reciprocity equation is used particularly to tell each node how to choose its transmit weights optimally.
  • Alternative embodiments of the network controller include having it set the entire network target capacity objective ( ⁇ ), using the network controller to add a node, drop a node, or change the target capacity objective for the nodes it governs or the network.
  • FIG. 41 illustrates one feasible algorithm whereby a new node (or a node which had earlier dropped out of the network) enters the network.
  • Further embodiments include using a network control element that may, either in addition to or in replacement for altering ⁇ , add, drop, or change channels between nodes, frequencies, coding, security, or protocols, polarizations, or traffic density allocations usable by a particular node or channel.
  • the network control element selects and manages differing constraints, not being limited just to power and capacity, but also QoS, the amount of frequency spread between channels, the multipath density allocated to any particular pairing of nodes, or to any particular user, or any combination and subcombination of all of the above.
  • FIG. 42 depicts the baseline transceiver employed in the primary embodiment.
  • the radio consists of a pair of antennas and RF transceivers (frequency up/down converters and PA's); a digital ASIC, FPGA, or software radio component to implement lower-PHY (LPHY) symbol modulation/demodulation operations, linear combining of LPHY modem output signals during receive operations and corresponding linear weighting and distribution of LPHY model input signals during transmit operations; an LO employing a GPS disciplined oscillator (GPS-DO); and a software computer to implement optional higher-layer codec and collaborative radio applications.
  • LPHY lower-PHY
  • Typical commercially available GPS-DO's can provide ⁇ 100 ns relative node-to-node timing error (well within the 800 ns delay error budget provided by the lower PHY modulation format) and ⁇ 1 Hz carrier offset error (separate from Doppler shift between nodes), stable to within 300 ns over periods of >1 hour in event of GPS outage, e.g., due to foliage or man-made obstructions. In TDD network instantiations, this can allow fast (1.25 ms) node entry to the network without the need for detailed and distributed timing synchronization mechanisms.
  • the baseline transceiver can to employ two degrees of freedom during receive and subsequent transmit operations, to set up independent ports to up to two other transceivers in the network during transmit or receive operations, or to null one external interferer during receive operations.
  • Antennas in the network can be polarization diverse (transmitting and receiving on linearly independent, preferably orthogonal polarizations), spatially diverse (deployed at spatially separated locations), or combinations of polarization and spatially diverse. It is also possible to have a single channel transceiver capable of communicating with the network, or any number of ad-hoc combinations of transceivers of varying capabilities, likewise.
  • FIG. 43 depicts means for extending the baseline transceiver to larger numbers of antenna channels.
  • the baseline transceiver and adaptation algorithm include provisions for routing of transmit and receive data and a modified Gram-Schmidt orthogonalization (MGSO) statistics between boards, in order to allow the radio to be scaled up to as many as 8 antennas by combining 2, 3, or 4 Transceiver boards together.
  • MGSO Gram-Schmidt orthogonalization
  • a transceiver employing L baseline transceivers can employ up to 2L degrees of freedom during receive and subsequent transmit operations, to establish independent channels to up to 2L separate transceivers in a network, or to excise up to 2L ⁇ 1 external interference during receive operations.
  • FIG. 44 depicts an exemplary MIMO networking routing scenario in which four transceivers with four spatial degrees of freedom are used to route data around a four-node network in the presence of a strong jammer.
  • Each transceiver employs two of its four available degrees of freedom to establish connections with its neighboring transceivers. The remaining degrees of freedom are then used to excise the jammer in the center of the network, and to increase signal-to-noise ratio (SNR) in the direction of its neighboring transceivers.
  • SNR signal-to-noise ratio
  • TDD time-division duplex
  • these connections can be used to simultaneously route data in clockwise and counter-clockwise directions to form a counter rotating ring network.
  • this can double the capacity available to any node in the network; moreover, this can greatly increase availability of the network to each node, by providing a redundant path for transmission of data between network ports.
  • FIG. 45 depicts the baseline symbol and timing structure allowing transceivers to connect with each other in a symmetric time-division duplex (TDD) multinode network.
  • Packets are transmitted to and from uplink receive nodes and downlink receive nodes during alternating time slots, with an appropriate guard time, e.g., for switching between transmit and receive modes, transmission of signaling/control and network maintenance/provision packets, computation of receiver CRC's and decoding algorithms, and operation of higher-layer data routing procedures.
  • an integer number of lower PHY (LPHY) symbols is transmitted. The number of symbols is chosen to have a value that allows implementation of efficient orthogonal transformations over the symbol time index.
  • this number is set equal to a power-of-two, e.g., 256 symbols, in order to use of fast Hadamard transform (FHT) operations; however, other embodiments can employ different numbers of symbols, e.g., allowing implementation of mixed-radix fast Fourier transforms (FFT's) or other linear orthogonal operations.
  • FHT fast Hadamard transform
  • Each LPHY symbol is assumed to possess a base symbol and a cyclic prefix that is discarded during the LPHY symbol demodulation operation, allowing the transceivers to be insensitive to delay and multipath with maximum substantive value that is less than the cyclic prefix.
  • the cyclic prefix and base symbol is set to 800 ns and 3.2 ⁇ s, commensurate with the 802.11 OFDM traffic PHY, and may include additional synchronization and signaling symbols (external to symbols carrying traffic information) in order to maximize commonality with 802.11 hardware, and/or promote eventual coexistence and/or integration of the invention into 802.11 networks.
  • the LPHY symbol is also either an OFDM waveform comprising multiple subcarriers (modulated OFDM tones) or a PAM signal equivalent to a single carrier of an OFDM waveform, e.g., for low-rate applications.
  • the invention is compatible with many different LPHY modulation formats besides OFDM or PAM, including spread spectrum modulation formats that spread the signal over wide bandwidth, and LPI/LPD modulation formats that reduce or eliminate cyclic features of the waveform.
  • FIG. 46 depicts exemplary means for deploying the preferred embodiment in a TDD mesh network topology, in order to transmit data between a widely separated source and destination node.
  • the network nodes are first separated into uplink transmit nodes (downlink receive nodes), depicted with light interiors in FIG. 46 , which transmit data over even time slots and receive data over odd time slots, and uplink receive nodes (downlink transmit nodes), depicted with dark interiors in FIG. 46 , which receive data over even time slots and transmit data over odd time slots.
  • Each transceiver is assumed to possess sufficient spatial channels to allow it to communicate simultaneously with at least two of its nearest neighbors over each time interval, i.e., to form two links between its nearest neighbors in the network, suppress any network or external interference impinging on the nodes, and close each individual link under channel propagation conditions observed by that node.
  • each node may require as many as eight antennas, or four baseline transceivers, to support MIMO networking communication.
  • each transceiver could operate with as few as two diversity channels, or a single baseline transceiver, to support needs of the network.
  • Each link is given a unique link address (LA), defined by the transmit node address (TNA) and receive node address (RNA), i.e., the node address (NA) of the nodes originating and terminating that link, and the channel rank of that particular link if a true multirank MIMO link exists and is exploited by those nodes.
  • LA link address
  • RNA receive node address
  • NA node address
  • uplinks instantiated over odd time-slots and passing data from uplink transmit nodes to downlink receive nodes are depicted as solid arrows, and downlinks instantiated over even time slots and passing data from downlink transmit nodes to downlink receive nodes are depicted as dashed arrows.
  • packets can be transported across the entire network in 7 time slots (3.5 TDD frames).
  • FIG. 47 describes the baseline symbol and timing structure for the invention, when transceivers are operated in an ad-hoc multinode network.
  • traffic data is transmitted over a preset numbers of LPHY symbols, e.g., determined at the beginning of data communications, which is larger than a minimum number of signals N embed determined by the overhead structure set aside to implement receive adaptation algorithms at each transceiver, and which is a convenient number, e.g., power-of-two, allowing implementation of efficient data transformations in subsequent processing steps.
  • the preferred ad hoc embodiment employs an overhead structure that allows implementation of alternate methods that do not require exact knowledge of the full packet length to implement receive adaptation algorithms, and that can allow transmission of packets of different length to different nodes in the network.
  • the traffic packet may be followed by an acknowledgment packet sent from the receive node(s) back to the transmit node, comprising N embed LPHY symbols.
  • the traffic and acknowledgement packets are separated by a guard time interval; however, the time interval between traffic and acknowledgement packets may be very short, e.g., on the order of the Short Interframe Space (SIFS) in 802.11 communications.
  • SIFS Short Interframe Space
  • FIG. 48 depicts exemplary means for deploying the invention in an ad hoc mesh network topology.
  • any node can communicate with any other node in its field of view, allowing the source node to simultaneously transmit packets to any available node in the network.
  • the source node transmits packets to five separate intermediate (relay) receive nodes over a first traffic time slot, and directs those nodes to transmit packets directly to the destination node over a subsequent traffic time slot.
  • each of the relay nodes receive independent data, e.g., one of five subsets of data, from the source nodes, similar to the approach employed in the TDD embodiment.
  • the invention supports an additional macrodiverse mode in which the source node transmits identical traffic data to each intermediate node.
  • the intermediate nodes will form a macrodiverse transmitter that can exploit the full network transfer function between the source node and intermediate nodes during the first traffic time slot, and the full network transfer function between the relay nodes and the destination node over the second traffic time slot.
  • FIG. 49 describes multiport PHY transmit operations performed at transceivers using the invention; and these are described in detail below.
  • operations are shown for a single-carrier LPHY modulation format, e.g., a PAM format employing a cyclic prefix as shown in FIG. 45 and FIG. 47 , or for a single subcarrier of an OFDM LPHY.
  • a single-carrier LPHY modulation format e.g., a PAM format employing a cyclic prefix as shown in FIG. 45 and FIG. 47
  • all operations are replicated across subcarriers, with possible exception of subcarriers that may be reserved for synchronization purposes or for compatibility with existing wireless air interfaces, e.g., 802.11ag, and additional variations that may be introduced to increase security of the network.
  • data bits intended for each of M port receive node are first encoded into N data complex traffic data symbols, e.g., complex QPSK or QAM symbols, using conventional encoder technology. These symbols are then multiplexed onto the upper N data input bins of an efficient orthogonal transform operator such as a fast Hadamard transform (FHT), such that at least N embed bins of the transformation are not modulated by data during the subsequent transform operation.
  • FHT fast Hadamard transform
  • This bin location is chosen based on the node address of the transmit node, and a network-wide (e.g., time-of-day based) Transmission Security (TRANSEC) operation known to each node in the network, e.g., by modulo-N embed adding the TNA to a common TRANSEC word, such that each node is modulating a unique bin during any given traffic or acknowledgement time slot.
  • TRANSEC Transmission Security
  • Each port of transformed output symbols are then multiplied by a second, pseudorandom constant modulus TRANSEC receive code based on the node address of the receive node that the transmit node is attempting to communicate with over that port and time slot, and other information known only to the network users.
  • the resultant symbols are then multiplied by the M port ⁇ M ant transmit diversity weights employed at the transmitter, where M ant is the number of antennas employed at the transmitter. If those weights are determined adaptively, e.g., using knowledge of reciprocity of the communication channel, this data is further multiplied by a set of transmit-receive compensation weights that enforce reciprocity between the transmit and receive channels at the node.
  • FIG. 50 describes multiport PHY receive operations performed at transceivers using the invention; and these are described in detail below.
  • operations are shown for a single-carrier LPHY modulation format, e.g., a PAM format employing a cyclic prefix as shown in FIG. 45 and FIG. 47 , or for a single subcarrier of an OFDM LPHY.
  • a single-carrier LPHY modulation format e.g., a PAM format employing a cyclic prefix as shown in FIG. 45 and FIG. 47
  • all operations are replicated across subcarriers, with possible exception of subcarriers that may be reserved for synchronization purposes or for compatibility with existing wireless air interfaces, e.g., 802.11ag, and additional variations that may be introduced to increase security of the network.
  • N FHT ⁇ .M ant complex matrix representation M ant columns of N FHT ⁇ 1 complex data
  • Each N FHT ⁇ 1 complex data vector is then multiplied by the conjugate of the TRANSEC receive code for that node, which removes that TRANSEC receive code added at the transmitter for that port (and only for ports that were intended to pass data to that receive node).
  • This data is then passed through the inverse of the orthogonal transformation employed at the transmitter, e.g., an inverse FHT, and separated into the lower N embed output bins (an N embed ⁇ M ant complex pilot data matrix) corresponding to the pilot signal(s) employed at each transmit node attempting to communicate with that receive node, and N data output bins (an N data ⁇ M ant complex traffic data matrix) corresponding to the traffic data transmitted to the receive node, as well as interference generated by other nodes in the network or external emitters.
  • N embed output bins an N embed ⁇ M ant complex pilot data matrix
  • N data output bins an N data ⁇ M ant complex traffic data matrix
  • the N embed ⁇ M ant complex pilot data matrix is then passed to an adaptation algorithm that detects bins modulated by the transmitters attempting to communicate with the receiver; identifies those transmitters based on the detected bins and the TRANSEC transmit code algorithm employed in the network, determines quality of the received pilot symbols and (by extension) traffic data, and develops combining weights that can extract the traffic data from the N data ⁇ M ant complex traffic data matrix at the maximum signal-to-interference-and-noise ratio (max-SINR) achievable by the transceiver.
  • max-SINR maximum signal-to-interference-and-noise ratio
  • these combiner weights are then applied to the traffic data matrix, and the extracted data is then passed to a traffic decoder that decodes the traffic data back into bits and performs additional operations employed by the communication link, e.g., bit-level data decryption and error detection operations.
  • each transmitter uses an orthogonal transformation of the same length during its transmit operation, generating packets of the same time duration as well.
  • different transmitters may transmit signals with different numbers of traffic data symbols.
  • the first N embed symbols (or a multiple of the first N embed symbols) can be used in the receive adaptation algorithm.
  • This can allow the invention to be used in fully adhoc networks where nodes can transmit packets of arbitrary length.
  • receive combiner weights obtained through this process may exhibit misadjustment relative to optimal weights for the traffic data, as the pilot symbols may not experience the full processing gain of the FHT.
  • FIG. 51 describes multiport PHY receive adaptation operations performed in the primary embodiment of the invention; and these are described in detail below.
  • MGSO modified Gram-Schmidt orthogonalization
  • QRD QR decomposition
  • the Q matrix is then analyzed (across multiple subcarriers for OFDM LPHY's) to detect all of the modulated pilot bins. This information is used to unambiguously determine the TNA of each node attempting to communicate with the receiver. Once this determination has been made, the link SINR, whitened linear combiner weights, and subsequent unwhitened combiner weights are computed for each transmitted signal (and subcarrier for OFDM LPHY's).
  • FIG. 52 describes receive packet detection, address association, and link SINR estimation performed in the primary embodiment of the invention; and these are described in detail below.
  • the adaptation algorithms are uncalibrated, i.e., they do not exploit knowledge of the shaping, polarization, or physical placement of antennas used by the transceiver, and can be used to instantiate arbitrary network topologies, including point-to-point links, star networks, ring networks, or full mesh networks.
  • successive iterations of the transmit and receive adaptation algorithm causes each transceiver to adapt its multiport combiner and distribution weights to the eigenmodes (left and right eigenvectors) of their MIMO internode channel response, typically in 2-to-4 TDD frames (5-10 ms).
  • the resultant fully adaptive link can approach the Shannon capacity of the MIMO communication channel, regardless of the rank or distribution of the eigenvalues of that channel
  • FIG. 53 describes transmit adaptation algorithms performed in the primary embodiment of the invention.
  • the baseline system employs network-wide collaborative link optimization rules referred to in [2] as locally enabled global optimization (LEGO), which optimize network-wide measures of network quality using retrodirective transmit weight adaptation and local (link layer) power management instructions.
  • LEGO locally enabled global optimization
  • the approach exploits the ability to form nulls during transmit operations to intelligently manage interference presented to other nodes transmitting or communicating in the same frequency channel. This includes other nodes operating on the same network, and nodes operating on disconnected networks, without the need for higher-layer cross-communication between interference nodes or networks.
  • the adaptive receive combining weights are adapted to completely separate intended links with maximum signal-to-interference ratio rather than SIR, i.e., to direct “hard nulls” at each transmitter attempting to communicate with the node during the receive time slot so that interlink interference is completely removed during the receive operation, and to direct corresponding hard nulls back at the intended links during subsequent transmission opportunities.
  • SIR signal-to-interference ratio
  • this algorithm does introduce some misadjustment (particularly during receive operations), it can improve the stability of the LEGO transmit adaptation algorithms in highly dynamic communication networks.
  • the resultant fully-adaptive system provides a much more versatile solution than competing multilayer receive-adaptive techniques such as BLAST and STP, which only approaches the Shannon capacity in full-rank (i.e., high multipath) channels.
  • the fully-adaptive system can use its diversity degrees of freedom (DoF's) to provide substantive transmit gain in low-rank channels found in airborne and rural conditions.
  • DoF's degrees of freedom
  • the fully-adaptive system can also use these DoF's to excise interference impinging on either end of the link due to other nodes operating in the same frequency band, hostile jamming of the link.
  • the fully adaptive system provides an automatic power control mechanism (LEGO Algorithm) that can be used to maximize capacity (high throughput applications) or minimize transmit power (LPD applications), depending on the requirements of the system at any point during a mission.
  • LGO Algorithm automatic power control mechanism
  • LPD applications minimize transmit power
  • the weight adaptation procedure is decoupled from operations used to encode data onto each transmitter port (channel eigenmode) and decode data taken from the corresponding receive port at the other side of the link, without expensive multilayer decoding, encoding, and cancellation procedures employed in receive-adaptive methods. This greatly reduces the complexity and reaction time of the transceiver, by allowing the transmit/receive weights to quickly adjust to highly dynamic environments encountered in military use scenarios.
  • each transceiver employs the same multiport linear processor structure to form simultaneous links to multiple neighbors in multinode networks.
  • the resultant MIMO networking strategy exploits the additional inherent route diversity of star, ring, or mesh networks, to provide the benefits of MIMO processing in a network setting.
  • the MIMO network illustrated in FIG. 44 displays a minimalist-model, four-node, network that is operating in the presence of a jammer.
  • nodes employ the multiport linear receive and transmit operations discussed above, to establish multiple simultaneous links with their neighbors.
  • point-to-point link diversity high-rank MIMO channel response between communicators
  • nodes may establish multiple connections between their neighbors.
  • link diversity high-rank MIMO channel response between communicators
  • the nodes may alternately establish simultaneous connections with their neighbors. These connections can be used to directly source data to these neighbors, or transmit data through these neighbors to more distant destination nodes.
  • FIG. 44 displays a minimalist-model, four-node, network that is operating in the presence of a jammer.
  • nodes employ the multiport linear receive and transmit operations discussed above, to establish multiple simultaneous links with their neighbors.
  • point-to-point link diversity high-rank MIMO channel response between communicators
  • nodes may establish multiple connections between their neighbors.
  • the nodes may alternately establish simultaneous connections with their neighbors. These connections can
  • this strategy doubles the amount of data transportable to or from any node in the network—even if no link diversity exists on any of the internode channels (rank-1 internode channel response). More generally, this strategy allows the capacity of each node to grow linearly with the number of antennas at that node, even in nondiverse communication scenarios such as airborne systems, desert combat scenarios, and ship-to-ship/shore naval communication networks, while maintaining the ability to provide superlinear throughput increases at low power levels. Moreover, this strategy allows unused DoFs to be used for other purposes, including excision of strong jamming likely to be encountered in battlefield conditions.
  • the symbol and timing structure for the baseline Phase 1 Lower-PHY (LPHY) is illustrated in FIG. 45 .
  • the method and system can employ a linear PAM LPHY with a 250 kHz symbol rate (4 ⁇ s lower PHY symbol period).
  • the PAM symbol shape is assumed to be a 4 ⁇ s rectangle comprising a 3.2 .mu.s base pulse, used during demodulation operations, and an 800 ns cyclic prefix that is discarded during demodulation operations.
  • the resulting LPHY modem can be consequently be modeled as a single subcarrier of an 802.11g-like OFDM symbol, allowing the radio to be easily scaled to much wider bandwidths in later program phases.
  • many other linear-PAM LPHY's are also consistent, including spread spectrum modulation formats that spread the signal over wide bandwidth, and LPI/LPD modulation formats that reduce or eliminate cyclic features of the waveform.
  • the nominal ADC and DAC rates for the transceivers can be 5 Msps, well within the capability of low SWaP/cost systems.
  • the multiport PHY transmit/receive operations are illustrated in FIG. 47 .
  • a frame of data intended for each transmit port is encoded to QAM using forward error correcting (FEC) encoding, organized into blocks of 240 QAM symbols, multiplexed with a transmit pilot that is unique to each node or transmit node address (TNA) in the network, and spread over the frame and PHY subcarriers using a fast Hadamard transform (FHT).
  • FEC forward error correcting
  • the transmit pilot is designed to allow implementation of computationally efficient adaptive detection and reception algorithms at the intended receiver(s) in the network, without the need for prior knowledge of that pilot at the receiver.
  • pilot bins Sixteen Hadamard bins (software provisionable at each node based on the number of antennas employed by that node) set aside for pilot transmission add only 6.25% ( 16/256) overhead to the communications network, allowing effective node detection, receive adaptation, and node data extraction in one TDD slot (1.25 ms), with as many as eight antennas per transceiver.
  • the number of pilot bins can be easily modified in software, or even provisioned on a dynamic basis, e.g., to improve the performance of receive adaptation algorithms when more complex transceivers enter the network, or to increase link throughput as those radios leave the environment.
  • the combined information and transmit pilot are modulated by a pseudorandom receive TRANSEC pilot, unique to the intended receiver or receive node address (RNA) in the network. If needed, the TRANSEC pilot is also frequency compensated to remove Doppler shift anticipated at the intended receiver, allowing the link to operate effectively velocities much higher than those anticipated in the Phase I demo.
  • the TRANSEC output data is then passed through a linear distribution network (transmit beamformer) that can place beams in the direction of up to M ANT targeted receive nodes for a transceiver with M ANT transmit antennas. Alternately, the transmit beamformer can place up to 20 log 10 (M ANT ) energy in the direction of a single targeted receive node, allowing effective data transfer at a much lower power and consequent intercept footprint.
  • transmit beamformer can place up to 20 log 10 (M ANT ) energy in the direction of a single targeted receive node, allowing effective data transfer at a much lower power and consequent intercept footprint.
  • the processor strips off the receive TRANSEC pilot, simultaneously scrambling signals from any unauthorized user, and revealing the unique transmit pilots from each authorized user attempting to contact the receiver during that receive frame.
  • the resultant data is passed to a computationally efficient, Modified Graham-Schmidt Orthogonalization (MGOS) based joint detection and signal extraction processor, which simultaneously detects each authorized pilot in the environment, and develops multiport receive combiner weights that excise interference in the communication channel (including self-interference from other authorized users). These weights are dewhitened and applied to the information-bearing signal after the inverse FHT (IFHT), and used to adapt retrodirective distribution weights used during subsequent transmit operations.
  • IFHT inverse FHT
  • the baseline system employs network-wide collaborative link optimization rules referred to as locally enabled global optimization (LEGO), which optimize network-wide measures of network quality using retrodirective transmit weight adaptation and local (link layer) power management instructions.
  • LEGO locally enabled global optimization
  • the approach exploits the ability to form nulls during transmit operations to intelligently manage interference presented to other nodes transmitting or communicating in the same frequency channel. This includes other nodes operating on the same network, and nodes operating on disconnected networks, without the need for higher-layer cross-communication between interference nodes or networks.
  • This capability originally developed for optimization of point-to-multipoint cellular networks in wireless local-loop (AT&T Wireless Project Angel) and wireless metropolitan area networks (IEEE 802.16), cannot be employed in systems that do not perform transmit adaptation.
  • This method and system can extend the LEGO approach to game theoretic methods that may perform this network optimization over a wider range of applications, networks, and optimization criteria.
  • System complexity can be divided into two components: an FPGA coreware component, comprising regular operations that are easily implemented using field-programmable gate arrays or ASIC's, and a DSP software component.
  • FPGA coreware operations can include the lower PHY modem, transmit and receive beamforming (linear distribution and combining operations), transmit/receive TRANSEC operations, and FHT/IFHT operations.
  • the DSP software operations can include the MGSO operation, node discovery, and weight dewhitening operation. In both such cases, complexity is calculated in DSP clock cycles per second, for a hypothetical DSP hardware element that can compute a simultaneous real add and a real multiply in 4/3 clock cycle (1 clock cycle with 33% derating for memory transfer operations). Complexity is further divided by the number of transceiver ports (simultaneous transmit and receive channels), to provide a measure of the DSP cost of each link used accessed by the transceiver.
  • the overall complexity of the DSP component of transceiver operations is less than 200 kcps for the phase 1 system, or well within the capabilities of a low-cost DSP components.
  • the overall complexity of the FPGA component of transceiver operations is less than 30 Mcps, which easily fits on the commercially available FPGA and in fact can be implemented using moderate cost DSP components.
  • the resultant system can provide a PHY throughput (data rate into the MAC layer) of 96 kbps (192 kbps full duplex), or establish 12 simultaneous 48 kbps full-duplex data links (576 kbps network transfer rate) between each node-pair in a four-node ring network, using a single two-channel transceiver at each node in that network and a simple 250 ksps PAM lower PHY. Assuming an active bandwidth of 250 kHz, this corresponds to a spectral network efficiency of over 2 bps/Hz. This efficiency and bandwidth scales linearly with the number bits/symbol employed in the QAM encoding operation. Because the ring network establishes a counterrotating ring that can transfer data over two simultaneous routes, the reliability of the collaborative network increases dramatically—by over 2 nines if each node in the network as a two nines reliability!
  • ⁇ TNA (m LA ) TDD wubframe used by link m LA ( ⁇ TNA (m LA ) (1.1.15) transmits over TDD subframe ⁇ TDD (m LA ))
  • ⁇ LA (m TNA, m RNA ) Address of link connecting TNA m TNA (1.1.16) to RNA m RNA (0 if no LA)
  • N codec Maximum data encoding rate (can be noninteger) 8 (1.2.01)
  • N FHT Hadamard bins per frame 256 (1.2.02)
  • N embed Hadamard bins reserved for adaptation ( ⁇ N FHT ) 16 (1.2.04)
  • M embed Modulated bins per port ( ⁇ N FHT /N port ) 16 (1.2.05)
  • N data Hadamard bins reserved for data ( ⁇ N FHT ⁇ N embed ) 240 (1.2.03)
  • M data Hadamard bins modulated by data ( ⁇ N data ) 240 (1.2.03a)
  • N sub Subcarriers per OFDM symbol 64 (1.2.06)
  • M sub Modulated subcarriers per OFDM symbol 52 (1.2.07)
  • M QAM QAM data symbols per physical data frame 12,480 (1.2.08)
  • N OFDM OFDM symbols per physical data frame 312 (1.2.09)
  • M OFDM Modulated OFDM symbols per PPDU 256 (1.2.10)
  • TDD Data frames (TDD
  • ⁇ port (m LA ) Logical transmit or receive port (as appropriate) (1.2.50) providing data for link address m LA .
  • m port (m LA ) v port (m RLA )
  • m RLA ⁇ RLA (m LA ).
  • ⁇ LA (m port ) LA serviced by port m port . Inverse of ⁇ port (m LA ). (1.2.51)
  • B TNA (m frame ) Transmitted bits transmitted, frame m frame , M bit xM port (1.3.1)
  • B TNA (m frame ) [b TNA (1; m frame ) . . .
  • h TRC (m sub ) Transmit-receive compensation weights, equalizes M ant x1 (1.3.10) path differences between the RF switch and the DAC (transmit path) and ADC (receive path) at each node in the network. Computed during scheduled Transmit/receive compensation events.
  • Receive data arrays: X RNA (m sub , m frame ) OFDM demod output data, subcarrier m sub , frame M OFDM xM ant (1.3.11) m frame .
  • Y RNA (m sub , m frame ) TRANSEC-descrambled FHT output data, subcarrier M FHT xM ant (1.3.12) m sub , frame m frame .
  • Y RNA ⁇ ( m sub , m frame ) [ y RNA H ⁇ ( 1 ; m sub , m frame ) ⁇ y RNA H ⁇ ( M OFDM ; m sub , m frame ) ]
  • P RNA (m sub , m frame ) Deembeded pilot data, subcarrier m sub , frame m frame .
  • RNA ⁇ ( m sub , m frame ) [ p RNA H ⁇ ( 1 ; m sub , m frame ) ⁇ p RNA H ⁇ ( M embed ; m sub , m frame ) ]
  • Z RNA (m sub , m frame ) Deembeded QAM data, subcarrier m sub , frame m frame .
  • Q RNA (m sub , m frame ) Demodulated QAM data, subcarrier m sub , frame m frame .
  • RNA (m sub , m frame ) NA TRANSEC code, subcarrier m sub , frame m frame .
  • M OFDM x1 (1.3.17) Used at node m RNA during receive operations, and at nodes attempting to communicate with node m RNA during their transmit operations.
  • W RNA (m sub , m frame ) Rx combiner weights, subcarrier m sub , frame m frame .
  • a Rx (m sub , m frame ) Rx spatial signature estimates, subcarrier m sub , frame M ant xM port (1.3.19) m frame .
  • ⁇ LA (m sub , m frame ) Estimated link SINR's, subcarrier m sub , frame m frame . 1xM port (1.3.20)
  • FHT Unitary Walsh transformation matrix M FHT xM FHT (1.3.22)
  • S data Shift matrix, maps logical data bins to FHT input bins M FHT xM data (1.3.23)
  • S pilot Shift matrix, maps logical pilot bins to FHT input bins M FHT xM pilot (1.3.24) Shift matrix, maps logical bins to physical FHT input M FHT xM FHT (1.3.25)
  • Step RP1 Remove the receive pilot, and inverse-FHT descrambled data
  • Y RNA ( m sub ,m frame ) C FHT H (( r RNA *( m sub ,m frame )1 M ant (m RNA ) T ).* X RNA ( m sub ,m frame )) (2.2.1)
  • Step RP2 Separate pilot & data components
  • X RNA ( m sub ,m frame ) S data T Y RNA ( m sub ,m frame ) (2.2.3)
  • Step RA1 Compute QRD of P RNA (m sub ,m frame )
  • Step RA2 Detect candidate TNA transmit pilots and spatially whitened adaptation weights
  • ⁇ det ( m sub ) [ ⁇ ( m embed (1); m sub ) . . . ⁇ ( m embed ( m det ); m sub )] (3.1.12)
  • ⁇ det ( m sub ) [ ⁇ ( m embed (1); m sub ) . . . ⁇ ( m embed ( m det ); m sub )] (3.1.13)
  • Step RA3 If spatial signature estimates A port (m sub ) are available, where A port (m sub ) is the import column of A RNA (m sub ) (see Step RA6), associate detected transmit pilots with receive ports and link addresses.
  • Step RA4 Drop and add ports, based on the port matching statistic c match (m det ,m port ).
  • Step RA5 Assign receive ports and link statistics ⁇ LA (m sub ) and ⁇ LA (m sub ).
  • Step RA6 Estimate spatial steering matrices ⁇ A RNA (m sub ,m frame ) ⁇ .
  • a RNA ( m sub ,m frame ) C H ( m sub ) U ( m sub ) (3.1.26)
  • Step RA7 Compute combiner weights ⁇ W RNA (m sub ,m frame ) ⁇ .
  • Step TA1 Scale whitened transmit weights
  • ⁇ RLA ⁇ ( m port ) ⁇ RLA ⁇ ( m RLA ) 1 + ⁇ RLA ⁇ ( m RLA )
  • Step TA2 Compute distribution weights ⁇ G TNA (m sub ,m frame ) ⁇ .
  • the target SINR's can also be derived from rate targets based on performance of the codec's used in the system, or from capacity targets ⁇ C RLA (m RLA ) ⁇ or spectral efficiency targets ⁇ c RLA (m RLA ) ⁇ , via the formula
  • ⁇ RLA ( m RLA ) ⁇ gap (2 c RLA (m RLA ) ⁇ 1) c RLA ( m RLA ) (3.2.5)
  • ⁇ gap is the SNR coding gap of the QAM codec.
  • Target SINR, rate, or capacity can be set at either end of the link, i.e., as a transmitter design goal or as a control parameter passed from the link or network. In the first two cases, this adaptation is referred to here as locally enabled network optimization (LEGO).
  • LEGO locally enabled network optimization
  • steps (3.2.1)-(3.2.3) adjust output power to meet a link SINR (or link rate or capacity) criterion. That is, the system will attempt to adjust transmit power at each node to meet this criterion. Also note that steps (3.2.1)-(3.2.3) require no information from other links in the network, including links originating from the same node. While this can be a highly desirable attribute in many applications, it has some drawbacks in practice. In particular, if the target SINR's are set too high, the resultant network can fail to converge and drive its transmitters into saturation. This event can be detected by computing the conducted power into each antenna,
  • the convergence time of the LEGO algorithm can be slow, especially during initial acquisition of multiple links.
  • This performance can be improved by employing a max-SIR algorithm that forms hard nulls during the initial link acquisition period. This algorithm is easily implemented as an extension of the max-SINR algorithm described above.
  • X Px (m sub ,m frame ) (referred to as X Px (m sub ) or X Px as appropriate to simplify arguments) received and OFDM-demodulated over logical subcarrier m sub and logical frame m frame , perform the following operations.
  • Step TA1 Compute ⁇ RLA (m port ) using (3.2.1). Step Compute power scaling ⁇ (m port ; m sub ) using
  • ⁇ ( m port ;m sub ) ⁇ RLA ( m port ) ⁇ LA ( m port ;m sub ), ( ⁇ LA ( m port ;m sub ) given in (3.1.22)) (4.2.1)
  • Step TA2 Compute combiner weights ⁇ G RNA (m sub ,m frame ) ⁇ using 3.2.3
  • the target SINR's can also be derived from rate targets based on performance of the codec's used in the system, or from capacity targets ⁇ C RLA (m RLA ) ⁇ or spectral efficiency targets ⁇ c RLA (m RLA ) ⁇ , using (3.2.4)-(3.2.5), and conducted power can be monitored using (3.2.6).
  • the SINR and SIR estimates given by (3.1.23 and (4.1.3) can be used to detect “overloaded network” conditions where the max-SIR solution is misadjusting significantly from the max-SINR result.

Abstract

An apparatus for generating at least one signal based on at least one aspect of at least two received signals is provided. The apparatus comprises: a diverse antennae array of M antennae, where M is greater than or equal to two; at least one multiple-input and multiple-output capable transceiver in communication with each antenna in the diverse antennae array of M antennae; encoding circuitry capable of causing first data to be encoded; decoding circuitry capable of causing second data to be decoded; and processing circuitry capable of causing diversity combining, where the processing circuitry is in communication with the multiple-input and multiple-output capable transceiver, the encoding circuitry, and the decoding circuitry. In operation, the processing circuitry is capable of causing the apparatus to: receive at least two first signals, combine at least two of the at least two first signals, generate at least two second signals based on at least one aspect of the at least two first signals, and simultaneously transmit the at least two second signals. Additionally, the apparatus is configured such that at least one of the at least two second signals is capable of being received by a multiple-input capable node.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of and claims priority to U.S. patent application Ser. No. 11/880,825, filed Jul. 23, 2007, which is a continuation in part of and claims priority to patent application Ser. No. 09/878,789, filed on Jun. 10, 2001, issued as U.S. Pat. No. 7,248,841 on Jul. 24, 2007, which are incorporated herein by reference in their entirety for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates to MIMO devices, and more particularly to MIMO devices capable of being utilized in point-to-multipoint and mesh networks.
  • BACKGROUND
  • The field of wireless communication networks has challenged implementers with continuously discovered synergies, both positive and negative. The sea of signaling has long grown from scattered and isolated sparks of Morse code to the modern-day roar of intermingling transmissions. The simplicity of the directional link (Point to Point) was replaced by the broadcast (Point to Multipoint) and is being replaced by the mesh (Multipoint to Multipoint) and even the relaying, multi-hop, interactive mesh; also, the continuous-transmission format is being replaced by short and varying packets. The complexities of variations in real world conditions—constantly changing topography, overlapping wave signals, and unpredictable and intermittent faults or blockages—all challenge the existing methods and systems. Further description of some of these problems can be found in the parent application's text and will not be repeated here. This invention is concerned with the problems described below.
  • PROBLEMS FORMING THE OPPORTUNITY FOR THE INVENTION
  • The primary problem solved through the invention is communication of short, intermittent packets, in particular Voice over IP (VoIP) communication signals, over communication networks subject to significant time-and-frequency co-incident (“co-channel”) interference from other network users and external emissions. A secondary problem solved through the invention is efficient physical routing of packets over multiple network nodes, e.g., using multihop relay techniques, in order to improve rate, robustness (immunity to interference and information warfare measures), reliability, and availability of communications between Source and Destination nodes in the network. A tertiary problem solved through the invention is means for rapid configuration and scalability of transceiver capabilities in highly dynamic environments where the density and severity of interferers, numbers and capabilities/requirements of communication nodes, and nature of channel propagation may change rapidly and dynamically between communication opportunities and/or over the course of a single communication opportunity.
  • ADVANTAGES OF THE INVENTION
  • The invention provides the following capabilities and advantages:
      • Common, scalable transceiver blocks that can be implemented at individual nodes in the communication network (allowing phased addition of hardware and software without immediately rendering obsolete the previous infrastructure).
      • Integration into a signal's waveform structure (“overhead structure”) of overhead bits associated with point-to-point links in the network, e.g., Transmit and Receive Node Addresses (TNA's and RNA's), and then use of the resulting unified waveform structure both to securely identify nodes attempting to communicate with a receiver, and to develop linear combiner weights that can extract those signals from co-channel interference incident on that receiver (including interference from other nodes attempting to communicate with that receiver). This approach thereby eliminates bits needed for transmission of TNA and RNA in headers attached to data packets transmitted over each link in the network, as well as overhead needed for transmission of pilot tones/sequences, training signals, preambles/midambles, Unique Words, etc., typically used to train receivers in the network; thus reducing the transmission overhead and improving information-transmission efficiency.
      • Ability to further exploit overhead structure to increase transmit power and data rate, or to allow same-rate communication at reduced power to nodes in the network, thereby regaining link capacity lost by that overhead structure, with the most capacity regained at low receive signal-to-interference-and-noise-ratio (SINR).
      • Optional integration of overhead bits associated with multipoint routes in the network, e.g., Source and Destination Node Addresses (SNA's and DNA's) into the waveform structure used for adaptation of the communication transceivers (“overhead structure”), further reducing bits needed for transmission of SNA and DNA in headers attached to data packets transmitted in multihop networks, and allowing the use of macrodiverse relay networks in which data is coherently transmitted over multiple geographically separated nodes in a network.
      • Rapid (single packet) node detection/discovery and join/leave algorithms, allowing individual transceivers to enter or exit the network quickly to exchange traffic, update security codes, etc., and to allow rapid and/or ad hoc configuration of the network as users encounter dynamic changes in multipath, fading, or interference.
      • Information assurance (IA) measures, e.g., antijamming and antispoofing capability, at the node and network level, including spreading means that defeat denial-of-service measures in which the frequencies and/or time periods containing synchronization and training bits are selectively jammed by an adversary.
      • Adaptive power management and cyclic feature reduction at node, link, and network levels, in order to minimize transmitted power and/or detectable features of emitters in the network.
      • Extreme low complexity (<200 kcps DSP software operations, <30 Mcps ASIC or FPGA coreware operations) for communications commensurate with VoIP communication, allowing maintenance of a collaborative networking information commensurate with pedestrian networking applications.
  • Collaborative communication applications that can be additionally handled by these transceivers include the following:
      • Distributed Kalman state circulation to enable wide-baseline network geolocation algorithms.
      • Internode channel measurement and range/timing/carrier offset estimation algorithms used to enable wide-baseline network geolocation algorithms.
      • Collaborative interference avoidance methods during transmission and reception operations, e.g., allowing wide-area communications in presence of jammers in military communication systems, or incumbent broadcast emitters in commercial communication systems (e.g., 802.22).
      • Collaborative communication over long-range to out-of-theatre nodes, e.g., reachback nodes in military communication networks, or LEO/MEO/GEO satellites in commercial satellite communication networks.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is depicted in the Figures below.
  • FIG. 1 illustrates a Point-To-Point or PTP network; each pentagon indicates a node, or transmission and reception (a.k.a. transceiver) station, and each arrow indicates a link along which communication flows between nodes.
  • FIG. 2 illustrates a Point-To-Multipoint network. The large pentagon indicates a Base Station (BS) capable of communicating with many individual Subscriber Units (SU), indicated by the small pentagons.
  • FIG. 3 illustrates a more complex PMP network with multiple BS and SU nodes, and multiple links. The solid lines indicate one diversity channel and the dotted lines a second diversity channel.
  • FIG. 4 illustrates a multipath environment, where a single BS with a complex antenna radiates multiple beams to a single SU (the car), wherein the beams also arrive from reflections off the surrounding features.
  • FIG. 5 illustrates a null-steering effort by a single node (Item 101), possessing at least three antennae, which is capable of directing towards two unintended recipients (Item 102) null transmissions (Item 105) and directing a focused beam (Item 104) towards an intended recipient (Item 103).
  • FIG. 6A illustrates a more complex multipoint network, where the BSs communicate with each other and with individual SUs, even if a BS to BS link may risk interfering with communications between the BSs and a particular SU.
  • FIG. 6B illustrates a more effective use of the existing diversity of channels, whereby the BS to BS signal passes through a (possible multiplicity of) channel(s) from one BS to the intervening SUs thence to the second BS.
  • FIGS. 7A and 7B illustrate a capacity problem that may arise with a prior art PMP network when a new node attempts to enter and existing nodes are not capable of dynamically adapting diversity channels to form the new subsets. Although nodes C and E can readily talk with D, by substituting their direct link to each other for intervening links with D, nodes D, A, and B, being limited to 3 existing channels, cannot adapt to connect with each other by dropping either E or C depending on traffic needs.
  • FIG. 8 illustrates a Time-Division Duplex communications protocol, whereby alternating uplink and downlink, or transmission and reception, slices of network activity take place at a node.
  • FIG. 9 illustrates an asymmetric network where nodes C and D have greater capacity than nodes A and B, which in turn have greater capacity than node D, but where the network cannot dynamically allocate this capacity to meet signal density needs to differing subsets of nodes.
  • FIG. 10 illustrates a multipath network, where transmissions between node 1 and node 2 are both direct and reflected off environmental features both near and far.
  • FIG. 11 illustrates a data flow diagram in a PTP MIMO link, where signal flows from one CODEC in node 2 through all of node 2's antennae, thence into all of node 1's antennae, and finally into one CODEC of node 1. Existing multipath potential of either or both reflectors, and dynamic allocation of less or more of the possible diversity modes, is ignored.
  • FIG. 12 illustrates a physical PTP multipath, consisting of one direct and two reflective links, using all of node 1's antennae and transceivers, and all of node 2's antennae and receivers.
  • FIG. 13A illustrates a network of MIMO-capable nodes, that is, nodes with multiple antennae, multitone transceivers with DSP capability (FIG. 13B), wherein the network has two subsets with preferentially reciprocal uplinks and downlinks and diversity channel capacity between the subsets.
  • FIG. 14 illustrates MIMO-capable nodes wherein each node transmits and receives signal energy during alternating time slots (or sequences of time slots in TDD-TDMA systems).
  • FIG. 15 illustrates more details of the MIMO-capable node, including on the receiving side: receiving spatially and/or polarization diverse antennae in a multiple antennae array (Item 110), a vector OFDM transceiver switch (Item 112), a LNA bank (Item 113), an AGC (Item 114), a Frequency translator (Item 115), a LOs ((Item 116), an ADC bank (Item 117), a MultiTone Demodulator Bank (Item 118), means for mapping received data over each diversity channel, on each frequency channel and receive time slot (Item 119), and a transceiver controller (Item 120); and including on the transmitting side means for mapping transmitted data for each frequency channel and transmit time slot (Item 121), a MultiTone Modulator bank (Item 122), a DAC bank (Item 123), the transceiver switch, a PA bank (Item 124), and transmitting spatially and/or polarization diverse antennae in a multiple antennae array (Item 125) which may be distinct from those used in receiving (Item 110).
  • FIG. 16 illustrates a MIMO-capable network of the preferred embodiment, wherein an originating transceiver Node 2 in an uplink transmit set (Item 200) distributes a signal through multiple antennae ( Items 204A and 204B), which goes over the channel matrix of diversity channels available (Items 206A,B,C, and D) to a uplink receive set node, which receives the signals over its multiple antennae and combines them (Items 208A and B) to the desired recipient (Item 202); leaving all other transmissions and channel diversity available (Item 212) for other network communications.
  • FIG. 17 illustrates a PTP MIMO node layout employing TDD, but one using a guard-time prefix (Item 220) and a 10 ms content frame period (Item 222), where the uplink Tx for Node 2 is at the time for the Uplink Rx for Node 1.
  • FIG. 18 illustrates a MIMO network in a star topology, where the uplink relay node (Node 1, Set 2) talks to 4 edge nodes (Nodes 1-4, set 1) with distinct channels for uplinks and downlinks.
  • FIG. 19 illustrates a complex network topology with multiple BSs (Items 260, 262), SUs ( Items 264, 266, 268, and 270), and a potentially interfering non-network node (Item 275), with transmissions amongst the network (280, 282, 284, 290, 292) competing with transmissions from outside the network which are perceived as interference at BS 1 (Item 260) and SU1 (Item 270).
  • FIG. 20 illustrates a MIMO network in a ring configuration with reciprocity at the network level.
  • FIG. 21 illustrates the means for generating the pilot tone mask with network code mask pseudodelay (Item 170), originating node index mask element (Item 172), and Recipient node index mask element (Item 174) being combined by two element-wise MUX units (Items 176, 178), to create the final pilot tone signal (Item 180).
  • FIG. 22 illustrates a time-frequency mapping pattern of an acquisition channel (Item 340, 342), control channel (Item 344), 32 Data channels (Item 346, not shown for D1 through D31), with cyclic prefixes ( Items 322, 318, 314) and a guard time (Item 310) with 100 μs acquisition symbols (Item 320), control symbols (Item 316), and then 32 data symbols (Item 312, again not shown for D1-D31).
  • FIG. 23 illustrates an alternative time-frequency mapping pattern for high-mobility situations, where the acquisition, control, and data elements are repeated ( Items 362, 366, and 370), but the number of data-bearing channels is halved to allow the duplication within the same bandwidth and time.
  • FIG. 24 illustrates one embodiment of the MIMO transceiver, with the RF feeds (Item 130), the Frequency channel bank (Item 132), the mapping element (Item 134), the Multilink Rx weight adaptation algorithm (Item 136), the Multilink diversity Rx weights combining element (Item 138), the equalization algorithm (Item 140) and Delay/ITI/pilot gating removal bank (Item 142), symbol decoder bank (Item 144), multimode power management, symbol coding assignment algorithm element (Item 146), the synchronization elements (Items 162, 164), and T/R comp. Algorithm (Item 156) and element (Item 158), and multilink diversity distribution of Tx Gains element (Item 152).
  • FIG. 25 illustrates in more detail the frequency translator, detailing the Band Pass Filters, element wise multiplier, sinusoids, SAW BPF, and LPF elements.
  • FIGS. 26 and 27 illustrate tone-mapping to frequency bins approaches for low and high mobility situations, respectively.
  • FIG. 28 illustrates in more detail the implementation of the Delay/ITI preemphasis, pilot-gating bank, tying the details of FIG. 21 into the mapping element (Item 474), the Trellis encryption and encoding element (Item 472), the pilot signal and information signal MUX (Item 480), leading to the final Tx data symbols signals (Item 490).
  • FIGS. 29 and 30 illustrate the antennae feeds (502, 512) across diversity modes and multilinks through the Multilink Adaptation Algorithm element (500) to and from the Link and multitone symbol distributor/combiner inputs and outputs (506, 508; and 516, 518 respectively).
  • FIG. 31 illustrates the incorporation of the preferred embodiment of the Multilink LEGO gain adaptation algorithm and element (Item 530) into the diversity combining and distribution elements of the MIMO transceiver hardware.
  • FIG. 32 illustrates the LEGO optimization function for a target capacity objective β.
  • FIG. 33 illustrates the network LEGO optimization function for a network controller, using constraint R1q and target objective β, to determine for the network or node which should be incremented or decremented.
  • FIG. 34 illustrates two nodes using dynamic, feedback driven information from transmissions and receptions to perform a particular LEGO optimization, involving observed interference power from non-subset or non-network BSs (528) or SUs (580).
  • FIGS. 35 and 36 illustrate the FFT-based LS algorithm used in the preferred embodiment that adapt {W1(k, 1; n2, ni)} and {w2 (k, 1; n1, n2)} to values that minimize the mean-square error (MSE) between the combiner output data and a known segment of transmitted pilot data.
  • FIG. 37 illustrate the FFT-based LS algorithm used in the preferred embodiment for the normalized MMSE or, in an alternative embodiment, the Gauss-Newton algorithm.
  • FIGS. 38A and 38B illustrate a MIMO network with null-steering and pilot-tone transmissions, with the overall transmission shown as the Extraction SINR, and the mask-fitted transmissions perceived at 702A and 702B which correctly account through the imposed pilot pseudodelay for the intended transmission peaks.
  • FIGS. 39 and 40 illustrate alternative topological layouts for proper uplink receive and uplink transmit subsets with links and expected attenuation.
  • FIG. 41 illustrates, for a TDD MIMO network as in the preferred embodiment, an algorithm for any node entering the network.
  • FIG. 42 shows MIMO-capable hardware transceiver means for, and the processing steps performed, in the baseline two-channel transceiver used in the invention.
  • FIG. 43 shows enhanced MIMO-capable hardware means for, and the processing steps in combining, baseline two-channel transceivers to provide additional degrees of freedom (receive combining and transmit distribution) in larger networks.
  • FIG. 44 shows an exemplary MIMO networking routing scenario in which four transceivers with four spatial degrees of freedom are used to route data around a four-node network in the presence of a strong jammer.
  • FIG. 45 shows the baseline symbol and timing structure for each transmission, when transceivers are operated in a symmetric time-division duplex (TDD) multinode network.
  • FIG. 46 shows an exemplary deployment and instantiation of the invention in a communication over a TDD mesh network topology
  • FIG. 47 shows the baseline symbol and timing structure for each transmission, when transceivers are operated in a ad-hoc multinode network.
  • FIG. 48 shows an exemplary deployment and instantiation of the invention in a communication over an ad hoc mesh network topology.
  • FIG. 49 shows multiport PHY transmit operations and processing performed at transceivers using the invention.
  • FIG. 50 shows multiport PHY receive operations and processing performed at transceivers using the invention.
  • FIG. 51 shows multiport PHY receive adaptation operations and processing performed in the primary embodiment of the invention.
  • FIG. 52 shows receive packet detection, address association, and link SINR estimation processing performed in the preferred embodiment of the invention.
  • FIG. 53 describes transmit adaptation algorithms operations and processing performed in the preferred embodiment of the invention.
  • OBJECTS
  • Resolving many of the prior art's weaknesses by enabling true, opportunistic, MIMO networks is one of the principle objects of the invention. Creating a truly adaptive, flexible, multi-protocol wireless electromagnetic communications network is a second of the principle objects of the invention. A third is to simultaneously resolve the interplay between transmission power and network capacity by considering and using the interplay between one local node's transmissions as a signal and other nodes' reception of the same as either a signal (if the receiving node is an intended target) or as environmental noise (if the receiving node is an unintended target).
  • A secondary objective under this third objective is to provide methods which improve signal quality received by a targeted recipient node while simultaneously reducing interference energy received by other untargeted recipient nodes, so as to enable improved capacity amongst existing nodes, adding more nodes, increasing coverage area, and improving communications quality, or any sub-combination thereof.
  • Another secondary objective under this third objective is to provide an adaptive method which accounts for multipath interaction amongst the nodes and network, and minimizes unwanted effects while maximizing potential useful effects thereof. Another secondary object under this is to provide improved load balancing amongst nodes and communication paths or links within the network with a minimum of overall control.
  • Another secondary object under this is to enable improved access to new nodes to the network.
  • Another secondary object under this is to enable multiple, competing, yet cooperating sub-networks that are mutually and automatically adaptive and responsive.
  • A second of the principal objects of the invention is to simultaneously resolve the interplay between local optimization, which demands detailed consideration of the immediate environmental details that affect each link between that node and others over which communications are flowing, and global optimization, which demands a minimum of control information be exchanged across the network and amongst the nodes in lieu of otherwise usable signal capacity.
  • A secondary object under this is to use the reception of signal information from other nodes, both those targeting the recipient and those not targeting the recipient, to enhance both reception and transmission quality to and from the receiving node while minimizing the explicit and separate feedback signals that must be exchanged amongst the nodes and network.
  • Another secondary object under this is to provide methods for optimization that can use or be independent of antenna array geometry, array calibration, or explicit feedback control signals from other nodes, whether the same are continuous, regular, or reactive to environmental changes affecting the link between the receiving node and the other nodes.
  • A third of the principal objects of the invention is to maximize the communications capacity and minimize the power usage both locally and globally across the network for any given set of hardware, software, and protocols.
  • A secondary object under this is to provide higher content throughput in underloaded networks, thereby providing faster perceived access or usage.
  • A secondary object under this is to provide higher reliability for any given hardware and software implementation.
  • A fourth of the principal objects of the invention is to provide a method for network optimization that can be extended to mixed networks, whether such mixing is amongst wireless and fixed links, or amongst electromagnetic spectra, or amongst types of nodes (BSs, dumb terminals, single- or limited-purpose appliances, or human-interactive input/output), and across both access schema and communications protocols with a minimum of particularization.
  • A fifth of the principal objects of the invention is to provide relatively simple and powerful methods for approximation which enable improvement that rapidly converges to the best solution for any optimization.
  • A secondary object under this is to provide a computationally efficient mechanization for cross-correlation operations that takes maximal advantage of multiport signals on particular single channels.
  • A sixth of the principle objects of the invention is to maximize the use of local information and minimize the use of global information that is required for approximation and approach to the best solution for any optimization.
  • SUMMARY OF THE INVENTION
  • The multiple-input, multiple-output (MIMO) network approach summarized here can incorporate as lesser, special cases, point-to-point links, point-to-multipoint networks, and disjoint (e.g., cellular) point-to-point links and point-to-multipoint networks. It can also be applied to spatial, temporal, or frequency-based access schemes (SDMA, TDMA, FDMA) employing combinations of spectral, temporal, spatial or polarization diversity, and to fixed, mixed, and mobile communications, as its focus is on the network in context rather than on the signal differentiation methodology, access determinations, or basing structure. One key to this approach is employment of spatially (or more generally diversity) adaptive transmit and receive processing to substantively reduce interference in general multipoint links, thereby optimizing capacity and/or other measures of network quality in multiply connected networks. A second key to this approach is the minimization of secondary consequences of signaling, and a second is using internalized feedback, so that the signaling process itself conveys information crucial to the optimization. Rapid, dynamic, adaptation reactive to the changing environment and communications within and surrounding each node and the entire network is used to promote both local and global efficiency. Unlike Varanesi, the feedback is neither limited to BSs only, nor effectively independent of the continual, real-world, signal and network environmental adaptation.
  • Instead of avoiding diversity, or fighting diversity, the present embodiment of the invention exploits and makes use of spectral, temporal, polarization, and spatial diversity available at each node, as well as and route (location based) diversity provided over the network of nodes. The network of nodes uses MIMO-capable nodes, that is, nodes with multiple antennae, multitone transceivers and preferentially reciprocal uplinks and downlinks (FIG. 13A and FIG. 13B). In the preferred embodiment each node transmits and receives signal energy during alternating time slots (or sequences of time slots in TDD-TDMA systems) (FIG. 14); has a spatially and/or polarization diverse multiple-antenna array, a vector OFDM transceiver that downconverts, A/D converts, and frequency channelizes data induced on each antenna (or other diversity channel) during receive time slots, and inverse channelizes, D/A converts, and upconverts data intended for each antenna (or diversity channel) during transmit time slots; linearly combines data received over each diversity channel, on each frequency channel and receive time slot; redundantly distributes data intended for each diversity channel, on each frequency channel and transmit time slots; and computes combiner and distributor weights that exploit the, narrowband, MIMO channels response on each frequency channel and time slot (FIG. 15).
  • The concept of a ‘diversity channel’ is introduced to permit a distinction to be made between “channels” that data is redundantly distributed across during receive (or transmit) operations, from “channels” that data is transported over (e.g., frequency channels or time slots). Data is redundantly transported over diversity channels, i.e., the same data is transported on each diversity channel with weighting determined by the methods described in detail below, while independent data is generally transported over the second flavor of channel. Effectively exploiting available diversity dimensions, the present embodiment of the invention can maximize its ability to attain Rank 2 capacities, since multiple redundant transmissions can be made over the plurality resources, whether that plurality comes from different frequencies, multipaths, time slots, spatially separable antennae, or polarizing antennae. This is distinct from prior art approaches which required multiple redundant transmissions over a plurality of frequencies to attain Rank 2 capacities. Because the signal flow between nodes is not limited to a particular dimension of substantive differentiation the preferred embodiment of the network can at every point in time, and for every node in the network, exploit any and all diversity opportunities practicable and attainable for the network's communication channels.
  • The signal flow between the multiplicity of nodes in the network comprises a multiplicity of information channels, emanating from and being received by a set of antennae at each node (FIG. 16). The physical channel flow in a network with M(n) diversity channels (e.g., M(n) antennae per node, at each node n in the network) means that for each transmitting node's pair of antennae, as many as M distinguishable receptions are feasible at each receiving node it can communicate with (FIG. 15, M=4, for a PTP link example).
  • The preferred embodiment performs complex digital signal manipulation that includes a linear combining and linear distribution of the transmit and receive weights, the generation of piloting signals containing origination and destination node information, as well as interference-avoiding pseudorandom delay timing (FIG. 17), and both symbol and multitone encoding, to gain the benefit of substantive orthogonality at the physical level without requiring actual substantive orthogonality at the physical level.
  • The network is designed such that a subset of its nodes are MIMO-capable nodes, and that each such node can simultaneously communicate with up to as many nodes in its field of view as it has antennae. The network is further designed such that it comprises two or more proper subsets, each proper subset containing members who cannot communicate directly with other members of the same proper subset. So if the network contained only two proper subsets, First and Second, the members of First could transmit only to, and receive only from, the members of Second, and the members of Second could transmit only to, and receive only from, the members of First. Independent information is then transmitted from every member of First and is independently processed by each member of Second. (See FIG. 18, exemplifying one such topology, a ‘Star’ topology; and FIG. 19, exemplifying another such topology.)
  • A non-MIMO-capable node may belong to any subset containing at least one MIMO-capable node that has at least one antenna available to that non-MIMO-capable node that has the non-MIMO-capable node in its field of view.
  • Diversity channels, rather than antennae, limits the number of non-set members a MIMO-capable node may communicate with simultaneously, that is, the number with which it may hold time/frequency coincident communications. Also, this limiting number is a function of number of users attempting to communicate over the same diversity channels—users on different time-frequency channels do not affect this limit. Thus a node with 128 time frequency channels (8 TDMA time slots×16 FDMA frequency channels) and a 4 antennas (4 diversity channels per time-frequency channel) can support up to 4×128=512 links, to as many users. If the internode channel response to a given user has rank 1 (e.g., if antennas are on same polarization and multipath is absent), then only a single link can be established to that user on each time-frequency channel, e.g., 128 separate links (one on each time-frequency channel) in the example given above. Higher internode channel rank allows more channels to be established; for example if nodes are polarization diverse, then the internode channel response has rank 2 and 256 channels (2 per time-frequency channel) can be established. The MIMO channel response equation determines power on each channel—depending on needs of network and pathloss to user, some or most of channels nominally available may be turned off to optimize the overall network capacity.
  • A significant element is that the diversity channel distribution need not be equal; one recipient node may have half the channels, if the traffic density requires it, while the transmitting node may divide its remaining channels evenly amongst the remaining nodes. Therefore the more users that have rank 2 or better capacity, the greater the available channels for those who have only capacity 1. This supports incremental optimization as improvement for the network is not dependent upon global replacement of every lesser-capacity node, but results from any local replacement.
  • The preferred embodiment details the means for handling the two alternative cases where the interference is, or is not, spatially white in both link directions, the means for handling interference that is temporally white over the signal passband. Preferentially, each link in the network possesses reciprocal symmetry, such that:

  • H 12(k;n 1 ,n 2)=H T 21(k;n 2 ,n 1),  EQ. 1
  • Where H12 (k;n1,n2) is the M1(n2)×M2(n1) MIMO transfer function for the data downlinked from node 1 to node 2 over channel k, less possible observed timing and carrier offset between uplink and downlink paths,
    and,
    H21(k;n2,n1)s the M2(n2)×M1(n1) MIMO transfer function for the data uplink from node 2 to node 1 over channel k, and where ( )T denotes the matrix transpose operation.
  • In the preferred embodiment, this is effected by using the TDD protocol, and by sharing antennas during transmit and receive operations and performing appropriate transceiver calibration and compensation to remove substantive differences between transmit and receive system responses (this can include path gain-and-phase differences after the transmit/receive switch, but does not in general require compensation of [small] unequal observed timing and carrier offset between uplink and downlink paths).However, simplex, random-access packet, and other alternative methods are also disclosed and incorporated herein.
  • The network is further designed such that at each MIMO-capable node n with M(n) antennae, no more than M(n) other actively transmitting nodes are in node n's field of view, enabling node n to effect a substantively null-steering solution as part of its transmissions, such that each node belonging to a downlink receive set can steer independent nulls to every uplink receive node in its field of view during transmit and receive operations, and such that each node belonging to an uplink receive set can steer independent nulls to every downlink receive node in its field of view during transmit and receive operations.
  • The preferred embodiment also has means for incorporation of pilot data during transmission operations, and means for computationally efficient exploitation of that pilot data during subsequent reception operations. This is to enable transmitting nodes to unambiguously direct information to intended recipient nodes in the network; to enable receiving nodes to unambiguously identify information intended for them to receive; to enable nodes to rapidly develop substantively null-steering receive weights that maximize the signal-to-interference-and-noise ratio (SINR) attainable by the link, to enable nodes to reject interference intended for other nodes in the network, to enable nodes to remove effects of observed timing offset in the link, and to enable the nodes and network to develop quality statistics for use in subsequent decoding, error detection, and transmit power management operations.
  • The preferred embodiment prefers a network designed to create and support a condition of network reciprocity, where the uplink and downlink criteria are reciprocal at the network level. (FIG. 19). The present form of the invention further exploits the reciprocity to attain both local and global optimization, of both capacity and power, through locally enabled global optimization of the network (LEGO).
  • LEGO is enabled by exploiting substantive reciprocity of the internode channel responses, together with appropriate normalization of transmit power measures, to design uplink and downlink network quality metrics D21 (W2,G1) and D12(W1,G2) that satisfy network reciprocity property:

  • D 12(W,G)=D 21(G*,W*)  EQ. 2
  • where (W2,G1) and (W1,G2) represent the receive and transmit weights employed by all nodes in the network during uplink and downlink operations, respectively. If equation 1 holds, then equal network quality can be achieved in each link direction by setting G1=W1* and G2=w2*, such that each node use the receive combiner weights as transmit distribution weights during subsequent transmission operations, i.e., the network is preferentially designed and constrained such that each link is substantially reciprocal, such that the ad hoc network capacity measure can be made equal in both link directions by setting at both ends of the link:

  • g2(k,q)∝w2*(k,q) and g1(k,q)∝w1*(k,q)
  • where {g2(k,q), w1(k,q)} are the linear transmit and receive weights to transmit data d2(k,q) from node n2(q) to node n1(q) over channel k in the downlink, and where {g1(k,q),w2(k,q)} are the linear transmit and receive weights used to transmit data d1(k,q) from node n1(q) back to node n2(q) over equivalent channel k in the uplink; thereby allowing Eq. 1 to be satisfied for such links.
  • The invention further iteratively optimizes network quality (as defined by D12 and D21) over multiple frames, by first adapting combiner weights to locally optimize link (and therefore network) performance during receive operations, and then using Eq. 1A and the reciprocity property (Eq. 1) to further optimize network quality in the reverse direction over subsequent transmit operations.
  • The invention further improves on this approach by using Eq. 1 to scale each transmit vector, based on a partial linearization of the network quality metrics, to either minimize the total transmit power in the entire network subject to a network quality constraint, preferentially capacity, or maximize network quality, preferentially capacity, subject to a total transmit power constraint. This constraint is defined and managed as a control parameter that is updated by the network. The total transmit power at a given node is then reported as an output to the network.
  • By using target criteria such as (1) for a cellular network, a max-min capacity criterion subject to a power constraint, or (2) for a wireless LAN, a max-sum capacity that is subject to a power constraint, and using simple comparative operations in feedback for the network to optimize towards those criteria, this invention enables flexibility and stability for any given hardware and software combination that underlies a wireless electromagnetic communications network and improves, for the entire network and at each particular node thereof, the communication capacity and power requirements. Furthermore, the present form of the invention does not ignore but rather directly addresses and resolves both the overhead vs. content and the power vs. capacity conundrums which otherwise limit present-day state of the art approaches to optimization. It does this using the experienced environment as part of the direct feedback, rather than requiring additional control information or signaling that reduces content capacity.
  • When combined with the substantively null-steering approach described here, which helps to minimize the generated noise from all other signals sent from a node, the network power requirement for clear communication drops as the links effectively decouple; that is, the ‘other’ channels, since they are being null-steered, do not form part of the background noise against which the intended signal's power must be boosted to be accurately received by the intended recipient. (See FIG. 7.)
  • The LEGO power optimization and null-steering then feed back (reciprocally) into the requirements for the network and network's hardware at each node, inasmuch as the minimization of unused and unintentional interaction (or interference) reduces the precision and power necessary for frequency and other differentiation means at the node's transceiver, and reduces the number of antennae in each array by increasing the effective bandwidth within each multipath channel, by reducing the amount of bandwidth, frequency, time, or channel, or all of the above, that must be devoted to error avoidance or correction. That in turn simplifies the codec and other element designs for each node and lowers the cost of the transceiver front-ends.
  • The preferred embodiment of the invention employs a network of fully-adaptive PHY-IA MIMO Network Capable Transceivers, in which each transceiver implementing an upper PHY that performs transmit and receive TRANSEC, node signaling/detection protocol, transmit/receive beamforming, and receive-side node discovery and adaptation algorithms, and a lower PHY that can meet the needs of intermittent, burst packet communications such as VoIP.
  • Communication between source and destination nodes, defined by unique two-hex port addresses comprising the source and destination node addresses (SNA's and DNA's) for the packet transmission, is accomplished by routing traffic packets over at least one and possibly several routes or collections of sequential links between the source and destination node. Means for partitioning traffic data into individual data packets at the source node, and collecting data packets into traffic packets at the destination node, are accomplished in this invention using existing network routing protocols. For each combination of a transmitting node, a receiving node, and a communication channel (diversity link), the unique link address and identifying transmit node address and receive node address for the respective nodes are used as part of the messaging context.
  • Combining packet-specific, structural and origin/destination network information into a unified overhead allows implementation of orthogonal transformations of that overhead, through the use of specific power-of-two integer number of lower PHY (LPHY) symbols (which are preferably an OFDM waveform or PAM signal); and using a unique and identifying link address for each node-to-node link currently instantiated, which incorporates source, destination, and channel rank information, enables informational efficiency for short transmissions where otherwise structural and routing information might overweigh content, e.g. in each packet. Working within bounds (time intervals, frequency ranges, or transmission strengths) that guard against intrasystemic interference, the use of MIMO transformations and reciprocity-based pilot or signal weighting calculations for the correct weighting of signals transmitted and received, enables the individual packets and messages to adapt, in a bottom-up, flexible, and responsive fashion to the real-world dynamics of a continuously varying EM flux. Using adaptively-derived diversity weighting, the method and system can rapidly take advantage of reciprocity between each node pairings' transmit and receive channels to distinguish the desired signal from the general noise and potential interference. Upon RF reception at any node, downconversion and ADC operations on the diversity channels passes the incoming signal(s) through a set of inverting transformations that, for the desired incoming signal(s), strip off known structural elements and continuously updates the combiner weights to reflect the dynamically varying environmental and signal context, thereby continuously matching necessitated signal and waveform transformations to the environmental and signal effects and sources. By successive iterations of the transmit and receive adaptation algorithm each node can have its transceiver adapt its multiport combiner and distribution weights to the eigenmodes (left and right eigenvectors) of their MIMO internode channel response, so that the resultant fully adaptive link can approach the Shannon capacity of the MIMO communication channel, regardless of the rank or distribution of the eigenvalues of that channel.
  • In addition, the fully adaptive system provides an automatic power control mechanism (LEGO Algorithm) that can be used to maximize capacity (high throughput applications) or minimize transmit power (LPD applications), depending on the requirements of the system at any point during a mission.
  • The resultant network is able to pass data with high spectral efficiency relative to non-MIMO networks, or to meet specified packet transmission rates at much lower power levels relative to non-MIMO networks, due to its ability to pass data over multiple time-and-frequency coincident links and routes, and to exploit the much lower pathloss between intermediate nodes in the network. Moreover, the network is able to provide this performance in the complete lack of any opportunistic multipath (although that multipath can be exploited if it is available).
  • DETAILED DESCRIPTION OF THE DRAWINGS Glossary And Definitions
  • ACK Acknowledgement
    ADC Analog-to-Digital Conversion
    ADSL Asynchronous Digital Subscriber Line
    AGC Automatic Gain Control
    BS Base Station
    BER Bit Error Rate
    BW Bandwidth
    CBR Committed Bit-Rate service
    CDMA Code Division Multiple Access
    CE&FC RWA Computationally Efficient And Fast-Converging Receive
    Weight Algorithm
    CMRS Cellular Mobile Radio Systems
    CODEC Encoder-decoder, particularly when used for channel
    coding
    CPU Central Processing Unit
    CR Channel Reciprocity
    DAC Digital-to-Analog Conversion
    DEMOD Demodulator
    DMT Digital MultiTone,
    DSL Digital Signal Loss
    DMX De-multiplexer
    DOF Degrees of Freedom
    DSP Digital Signal Processing
    EDB Error-Detection Block
    EEPROM Electronically Erasable, Programmable Read Only
    Memory
    FDD Frequency Division Duplex
    FDMA Frequency Division Multiple Access
    FFT Fast Fourier Transform(s)
    FPGA Freely Programmable Gate Array
    GPS Global Positioning Satellites
    GSM Global System for Mobile Communications
    LEGO Locally Enabled Global Optimization
    LMS Least Mean-Square
    LNA Low Noise Amplifier
    LS Least-Squares (An alternative form can be ‘matrix
    inversion’)
    MAC Media Access Control
    MGSO Modified Gram-Schmidt Orthogonalization (most popular
    means for taking QRD)
    MOD Modulator
    MIMO Multiple-Input, Multiple-Output
    MMSE Minimum Mean-Square Error
    MSE Mean-Square Error
    MT Multitone
    MUX Multiplex, Multiplexer
    NACK Negative acknowledgement & request for retransmission
    NAK Negative Acknowledgement
    OFDM Orthogonal Frequency Division Multiplexing
    PAL Programmable Array Logic
    PDA Personal Data Assistant
    PHS Personal Handiphone System
    PHY Physical layer
    PMP Point-to-Multipoint (An alternative form can be
    ‘broadcast’)
    PSTN Public Switched Telephone Network
    PSK Phase-Shift Key
    π/4 QPSK (pi/4) - Quadrature Phase Shift Key
    π/4 DQPSK (pi/4) - Digital Quadrature Phase Shift Key
    PTP Point-to-Point
    QAM Quadrature Amplitude Modulation
    QoS Quality of Service
    QRD Matric {Q, R} decomposition (see, MGSO)
    RF Radio Frequency
    RTS Request To Send, recipient ready for traffic
    SDMA Spatial Division Multiple Access
    SINR Signal to Noise Ration (An alternative form can be S/N)
    SOVA Soft-Optimized, Viterbi Algorithm
    SU Subscriber Unit
    TCM Trellis-Coded-Modulation
    TCP/IP Transmission Control Protocol/Internet Protocol
    TDMA Time Division Multiple Access
    TDD Time Division Duplex
    T/R Transmit/Receive (also Tx/Rx)
    UBR Uncommitted Bit-Rate (services)
    ZE-UBR Zero-error, Uncommitted Bit-Rate (services)
  • Groundwork: the Network as a Dynamic Connected Set
  • A network is generally viewed as the combination of a set of nodes (where transmissions originate and are received) and the connections between those nodes through which the information is flowing. FIGS. 1A, 1B, and 1C are graphical representation of a simple network of five nodes (A through E) and a varying number of channels, indicated by the lines drawn between pairs of nodes. In FIGS. 1A and 1C, all five nodes are active and able to communicate with all or most of their neighbors. In FIG. 1B, node D is inactive and unable to communicate. The two-step channel, from C to D and from D to E, in FIG. 1A is replaced by a one-step channel from C to E in FIG. 1B, and co-exists with the two-step channel in FIG. 1C. A connection between any two nodes without any intervening nodes is also known as a ‘link’.
  • Because each node may both transmit (send) and receive, and because the connections amongst the set of nodes may change over time, the network is best thought of as a dynamic structure, i.e. one that is constantly shifting yet which still occupies the same general ‘space’ in the communications world. While traditional broadcast networks, or PTP or PMP networks generally tried to ‘fix’ at least the originating node, a MIMO network begins with the presumption that the communications are dynamically allocated amongst the nodes and throughout the network. In the present embodiment of the invention, diversity in spatial, spectral, temporal, or polarization attributes of the potential channels are not seen as variations that must be controlled or limited, but as opportunities for enhancing performance.
  • Limitations of Existing Art
  • The approaches currently described in the field, especially in Raleigh and Cioffi, G. Raleigh, J. Cioffi, “Spatio-Temporal Coding for Wireless Communications,” in Proc. 1996 Global Telecommunications Conf., November 1996, pp 1809-1814), and in Foschini and Gans (G. Foschini, M. Gans, “On Limits of Wireless Communication in a Fading Environment When Using Multiple Antennas”, Wireless Personal Comm., March 1998, Vol. 6, Nol. 3, pp. 311-355), require additional hardware at each node comprising one end of a channel per diversity path to exploit that diversity path. This creates a geometric growth in the hardware complexity for each particular node, and a linear growth in cost for each diverse path exploited by a given network, that rapidly renders any network attempting to exploit such diversity uneconomic. Moreover, such an approach ‘muddies its own stream’ in that it reduces the capacity increase by the power increase needed to power the more complex transceiver. Exploitation of this multipath approach requires both high power (to permit data transport over the relatively weaker additional diversity path) and complex codecs (to permit data transports at high rates on the dominant path by filtering out the diversity path transmissions). To the extent that the nodes differ in their antennae mix, this approach complicates the administration and management of the network by constraining the potential path exploitation to previously-known or approved channels where the required equipment for each diverse path is known to exist.
  • Spatially distributed networks overcome this particular limitation by exploiting the inherent diversity between internode channel responses in the network. This diversity exists regardless of any multipath present on any individual path in the network, i.e. it does not require high levels of opportunistic multipath to be exploitable by the system. Moreover, such spatial diversity can be designed into the network by careful choice of topologies for the nodes during the deployment process, in order to provide linear growth in capacity as transceivers are added to the network. As a side benefit, the network can spatially excise transmissions from compromised nodes and emitters, allowing secure, high quality service in environments with external interference.
  • A downside to such an approach is its obvious weakness to unexpected growth, dynamic changes in topology (from mobile, transitory, or transient nodes), or dramatic changes in relative channel densities. Unlike the present form of the invention, such an approach does not handle well unplanned-for competition, environmental changes, or readily exploit opportunities arising from surprisingly (i.e. unplanned for) good network performance.
  • MIMO Networks: Shapes and Spaces
  • The complex MIMO environment and multiple dimensions of differentiation (spatial, frequency, time, code), the physical geography of any network (ring, star, mesh), the physical geographies of the surrounding terrain (creating the multipaths) and the other wireless signals from outside the network, and the internal network environment (of traffic patterns and node differences) create a diversity explosion.
  • To create and manage optimal network capacity, the preferred embodiment creates a network topology that enforces a constraint where each node with M(n) antennae has ≦M(n) other nodes in its view with whom it communicates at any particular interval of time. This may take the form of a ring (see FIG. 16), star (FIG. 18), mesh (FIGS. 39, 40), or combination thereof, depending on the individual nodes' hardware and geographic specifics. Moreover, this may dictate the placement of nodes, geographically or in uplink or downlink transmission subsets. This enables the creation of reciprocal subspaces for each sub-set of the network and therefore for the network as an entirety. However, the approach in the preferred embodiment can manage with other network shapes and spaces, just as it can manage with the hardware or protocol or software constraints inherent in particular nodes.
  • While the preferred embodiment works with reciprocal subspaces, wherein the network maintains reciprocity according to Eq. 1 between nodes over all links joining them, some parameters may be allowed to vary and create asymmetric spaces. For example, in a carrier offset case, the channel responses are actually invariant but for the complex scalar sinusoid which creates the frequency offset; physically, this is a non-reciprocal link but logically it remains (assuming signal content density on both sides is kept equal) a substantively reciprocal link. Other adaptation means are permissible as long as the network design rule of Eq. 1 is kept as a high priority.
  • One major difference in the present embodiment of the invention from prior art is that by making the control and feedback aspects part of the signal encoding process, and thereby eliminating or at least reducing the need for a separate channel(s) for control and feedback, the network content overhead is reduced and an additional range within the signal dimension is available for signal content. The LEGO reduction to single, or small, bit sized power management signals can be similarly echoed for other network management, depending on the target objective the network elects.
  • Furthermore, because the MIMO and LEGO approach described herein is usable in any network topology, and with existing protocols and schema (PSK/QAM; FDD; CDMA, including modulation-on-symbol, or synchronous, CDMA; TDMA; SDMA, etc.) the network can adapt to a diverse environment of users rather than requiring all to have the identical hardware, software, and standards.
  • The diversity of transmission and reception at all nodes in the network, rather than just at a subset of hub nodes or BSs, means that every node can use in its local environment any redundancy in transmission or reception of data over multiple channels, whether they be spatial, polarization, spectral, temporal, or any combination thereof. The maximum use can be made of all available (i.e. unused by others) signaling lacunae, with the nodes adaptively adjusting to the traffic and external environmental conditions according to the objectives set by the network.
  • Furthermore, the present embodiment of the invention does not require a preliminary calibration of the transceiver array, the communications channel, or geographic site as do many approaches used in the prior art. The continuous feedback and rapid convergence of the approach allow for flexibility and adaptivity that will permit correction of miscalibrated data, when the miscalibration represents a no-longer valid model of the environment for the receiving node.
  • Additionally, the MIMO network of the present embodiment is adaptive to channel response changes due to network point failures. This includes: the ability to survive element failure at individual nodes (i.e. one antenna, or transceiver, fails) without loss of communication to that node (though it may incur possible loss of capacity); the ability to survive failure of links without loss of communication to that node (e.g., by routing data through other paths); the ability to survive failure of node (all links terminating at that node) without unduly affecting connectivity or capacity of network; and the ability to achieve network reliability that is higher than reliability of any node in that network. The network will automatically adjust itself to optimal performance in event of any of these failures; potentially by rerouting active links based on available SINR experienced at that link.
  • Application Areas and Advantages: MIMO
  • The incorporation of the control and feedback signal as part of the process rather than as discrete, separate, and particular parts of the signal, can decrease the complexity of apparatus by removing the need for a separate channel for network control. It also can decrease the complexity of the processing by removing the need for particular dedication of a time aspect of the reception, or by removing the need for additional detection and interpretation of control signal from other content through either software or hardware. Moreover, such incorporation also integrates the entire aspect of power management and control into the signaling process rather than artificially and needlessly separating it from the network dynamics. This integration allows both capacity and power control to cooperatively handle packet acknowledgment, signal synchronization, and transmit/receive functionality at each node, and to optimize their conjoined functionality to the needs of the environment, the user, or the node rather than being constrained to disparate, pre-set and non-dynamic dictates by network administration that are only responsive to the real world environment to the extent that the system designers' assumptions accurately modeled the real-world and unknowable complexities.
  • Because the control and feedback signaling is incorporated into the process, the present form of the invention does not impose overhead constraints or capacity demands upon the network to nearly the same degree as the prior art does. For a given infrastructure and environment, therefore, the present form of the invention provides increased capacity and performance through dynamic, and self-moderating signal processing algorithms, with a minimal overhead.
  • Additionally, because the method does not require a strict hierarchical division between Base Station and Subscriber Unit nodes, but rather adapts to the diversity of reception and transmission at each particular node depending on its then-current environmental context, the method allows for rapid and responsive deployment of mixed hardware units being conditioned by factors external to the network, such as user choice or economic limitations.
  • Unlike prior art, the present form of the invention will work with each of CDMA, FDD, TDMA, SDMA, and PSK/QAM implementations, and with any combination thereof. Because the present form of the invention will work with diverse environments, where the diversity may come from within the network (rather than from sources external to it), this protects users and companies' investments in prior infrastructure and avoids creating either a ‘captive service market’ subject to crippling and sudden innovation, or creating a network which will suffer when a Christiansen-style disruptive technology advance arrives. Moreover, diversity reception, which is the redundant transmission and reception of data over multiple channels (whether the diversity comes in spatial, polarization, spectral, or temporal form, or any combination thereof), permits successful operation in environmental conditions which would otherwise block any particular channel or perfect subset of channels. This means that the present form of the invention will continue to operate in dirty, bursty, or difficult conditions, whether the impact of the negative force is on the nodes or the external environment.
  • As such, there are a number of potential implementations which immediately become feasible for a dynamically adaptive network, in the military and security fields. These include military and civilian applications where individual unit or node failure can be anticipated and therefore must not bring down the network, and where environmental conditions can become disruptive for particular nodes or links. These would also include support and exploration applications where the external environment (including node location) and network internal environment (traffic, connectivity) may change over time, as the component nodes move and change capabilities and capacities.
  • Among the effects which enhance the ready establishment and dynamic use of security advantages through the present form of the invention are the three-layer pilot signal (network mask plus originator mask plus recipient mask) detailed below (See FIG. 21). This allows users to communicate both on an unsecured overall network and a separately secure sub-network, on discrete (possibly encrypted) subnets through a subnet mask. This also allows network establishment and alteration of any subnet through designation and adaptation of shared subnet masks, wherein layers of encryption become algorithmically establishable. The present form of the invention also allows the fast detection, acquisition, interference excision, and reception of originators attempting to talk with the recipient, prioritizing the same according to their match to any set of subnet masks (highly secured signals presumably taking priority over less secured or open signals). Alternative uses of origination masks or recipient masks allow dual-natured communication priorities and the ability to suppress unintended recipients via the imposition of either origination or recipient masks, the secure transmission through interim nodes not provided with either mask, and the ability to determine and remove group delay as a fundamental part of the FLS algorithm.
  • Unlike the prior art, the present form of the invention will also allow for optional specialization (e.g. in transmission, reception, flow-through channelization) at any particular node in a dynamic fashion, thereby allowing the network as a whole to adapt to transient environmental fluctuations without concomitant alteration in on-the-ground hardware or in-the-system software alterations. Such ready adaptivity increases the total cost-effectiveness, as well as the dynamic stability for the entire network.
  • Unlike prior art, the present form of the invention supports diversity reception and transmission at all nodes in the network. This creates a level of flexibility, adaptivity to environmental or network changes, and dynamic stability which increases the ready scalability over multiple distinct approaches simultaneously or serially accepted by the network. Since the core reciprocity and protocols can be used by distinctly different hardware and signals, the present form of the invention permits local accretive growth rather than demanding top-down, network-wide initial standardization, thereby decreasing the capital and planning cost for implementing or changing a network.
  • Another advantage of the present form of the invention is that it permits shared antenna usage amongst multiple nodes, thereby decreasing the number of antenna necessary for any given node to attain a particular capacity, and thereby decreasing for the network as a whole the cost and complexity required for that same level of capacity. Furthermore, it also permits any set of nodes to use a diversity of channels without requiring an increase in the antenna or internal complexity (in both hardware and software) at every node in said set of nodes.
  • A further advantage of the present form of the invention is the ability to adaptively select and use ad-hoc, single-frequency networks on all or part of the network, under conditions when network traffic is ‘bursty’, that is, when there are significant disparities between the high and low content volumes of traffic being communicated amongst that part of the network.
  • A particularly significant advantage of the present form of the invention is that using the reciprocity equation equalizes the processing or duty cycle for message transmission and reception across both directions of a link, thereby lowering the processing imbalance which otherwise might be created between transmission and reception modes. This in turn reduces the average complexity which must be built into each particular node by decreasing the maximal capacity it must be created to handle for an overall network minimal capacity average.
  • Another advantage of the present form of the invention is that, unlike much of the prior art, the present form of the invention will work in uncalibrated areas where the environmental context is either previously unknown or altered from previous conditions. This allows for rapid, uniphase adoption and expansion in any given area without requiring prior to the adoption the precise calculation of all environmental effects upon transmissions and receptions within said area at all planned or possible node locations. This further allows the adoption and use for transient, or mobile, nodes in areas without requiring all possible combinations of channel responses amongst said nodes first being calibrated and then said channel responses matched to current conditions, or constrained to pre-set limitations.
  • Another advantage of the present form of the invention is that it provides rapid correction for miscalibrated data, thereby reducing the cost of inaccurate measurement, human or other measurement error, or incorrect calibration calculations. This in turn reduces the overhead and planning required for adaptation for any given network to a particular environment, either initially or as the environment changes over time, as the channel responses in the real world can be readily adapted to.
  • A concomitant advantage of the present form of the invention is the rapid and dynamic adaptation to channel response changes when a network failure, at any particular node or sub-set of nodes, occurs. This greatly increases the stability and durability of any network incorporating the present form of the invention without the level of cost, complexity, or duplication required by the present state of the art. Amongst the advantages conveyed are the ability for the network to survive partial failure at any particular node without being forced to drop or lose that node (i.e. maintaining maximal attainable capacity between that node and all others to which is can communicate), the ability to survive the total lose of any particular node, by sharing the signal traffic amongst alternative channels. The present form of the invention also permits the rerouting of active links around ‘lost’ or ‘damaged’ nodes without human intervention by adherence to the new reciprocity measurements. And the increase in network stability to exceed not just the reliability of each particular node, but the average reliability of all nodes for, while any subset of nodes still remains operable, the maximal network capacity for that set can be maintained. This is unlike the present state of the art, where if 50% of the nodes of a network fail then the average network communication drops to zero, as all the channels lose one half of their pairs. Furthermore, the present form of the invention enables the network to automatically adjust itself and its optimal performance in the event of any partial failure without requiring human intervention, thereby decreasing the cost and increasing the responsiveness of the network. Even more important is the fact that, upon incremental re-instatement or restoration of particular node or channel function, network optimization continually advances without manual re-establishment.
  • Another advantage of the present form of the invention is that it minimizes the complexity, and increases the accuracy, of the signal weight update operation at each particular node and for the network as a whole.
  • Another advantage of the present form of the invention is that it provides a computationally efficient mechanization of cross-correlation operations for both nodes and channels across and within the network. As the number of signals simultaneously processed on a single time-frequency channel grows, the marginal complexity increase caused by addition of those signals drops, for fast adaptation methods such as autocorrelation approaches, e.g. inverse-based or least-squares). This is because the Digital Signal Processing (DSP) cycles needed for high-complexity operations in fast techniques, such as matrix computations, QR decompositions, or data whitening operations common to DSP processing, can be amortized over the larger number of signals. The higher overhead of hardware and software complexity needed to handle signal complexity thereby is lowered on a per-signal basis the greater the complexity actually used by the system. For certain techniques such as pilot-based or least-squares signal weighting, the fast techniques become less complex than the current conventional approaches such as Least-Mean-Squares or stochastic gradient, wherein the overhead remains indifferent to the increasing complexity of the signals being processed. When the number of signals that must be processed is equal to one-half the number of combiner weights used at an adaptive receiver, for example, then the crossover in overhead complexity vs. speed occurs between least squares and least mean squares.
  • Because the present form of the invention is dynamically adaptive, it can use any subordinate portion (in time, channels, or network subset) of the process wherein a ‘reciprocal subspace’ exists to implement its full value. Even though the parameters of the signal processing may vary between the uplink (transmission) and downlink (reception) phases between any two nodes on any given channel or link, to the extent that they overlap such a reciprocal subspace can be effectuated and used. For example, a reciprocal subspace can be created where there is a carrier offset, where the channel responses are distinguished solely by a scalar complex sinusoid (e.g. a frequency offset), between the two nodes, regardless of which is, at any particular moment, transmitting or receiving.
  • Since the present form of the invention with its non-orthogonal multitone capability allows the addition of mobile, transient, or temporary nodes to any network, it creates a system that can manage and provision any combination of fixed, portable, low mobility, and high mobility nodes and links. The capacity constraints being node and channel specific rather than network delimited also permits the heterogeneous combination of differing capacities, thereby allowing peripheral distinctiveness, creating the potential for a system with a hierarchy of nodes including high-function, base-function, and limited-function or even single-function (e.g. appliance) nodes.
  • The present form of the invention permits the ability to achieve nearly linear increases in capability, even superlinear increases (in dirty environments) for increases in infrastructure, namely the RF transceiver capacities within the network. This is a significant advance over the prior state of the art for PTP networks which achieve sublinear capacity growth with network infrastructure growth.
  • In non-fully loaded networks using the present form of the invention, the MIMO connectivity can provide sharply higher data rates to individual channels or nodes where the additional information flow, to the maximal capacity of the particular nodes, is routed through nodes which have intended reception or transmission capacity available. This is a ‘water balancing’ approach to traffic maximization available only when multiple rather than single path capabilities are established through a network, or any network structure that instantiates fixed bottlenecks (e.g. ‘star’ or ‘hub’ topologies, BS PMP networks, or fixed-channel PTP networks).
  • Additionally, the reciprocity approach enables an automatic and dynamic load sharing amongst the channels and nodes which minimizes bottlenecks or, in the military or security environment, desirable targets of opportunity for ‘hot centers’ of traffic. Commercially this is more valuable by reducing the power and complexity requirements of what in PTP and PMP networks are BSs to attain a given network capacity and power efficiency.
  • The preferred embodiment of the present form of the invention includes a number of interacting and synergistic elements, both in hardware and in operational software. The preferred embodiment, as a network, will incorporate particular functional elements at individual nodes, as well as overall systemic features which may not be shared by or incorporated in the hardware of each particular node (i.e. there may exist specialization amongst the nodes). As stated in the summary, each node preferentially has an antennae array; multiple, multitone, transceivers (one per antenna); and constrains itself to reciprocal uplinks and downlinks (FIGS. 13 A and 13B). The antennae array is spatially and/or polarization diverse and transmits and receives signal energy during alternating time slots (or sequences of time slots in TDD-TDMA systems). Each transceiver is a vector OFDM transceiver, with digital signal processing elements, that downconverts, A/D converts, and frequency channelizes data induced on each antenna (or other diversity channel) during receive time slots, and inverse channelizes, D/A converts, and upconverts data intended for each antenna (or diversity channel) during transmit time slots; linearly combines data received over each diversity channel, on each frequency channel and receive time slot; redundantly distributes data intended for each diversity channel, on each frequency channel and transmit time slots; and computes combiner and distributor weights that exploit the, narrowband, MIMO channels response on each frequency channel and time slot (FIG. 15). Although the preferred embodiment of the invention allows individual nodes to vary greatly in their capacities, a set of nodes preferentially will incorporate the hardware capabilities detailed in the following paragraphs.
  • The first preference is that the transmission element be a multi-tone front end, using OFDM with cyclic prefixes at fixed terminals (generally, BS) (FIG. 22, Items 314, 318, 322,) and generalized multitone with guard-time gaps (FIG. 22, Item 310) at mobile terminals (generally, SU). To minimize aperture blur, the system uses tone grouping into narrowband frequency channels (FIG. 22, Item 348). The OFDM can be readily implemented in hardware using Fixed-Fourier Transform enabling chips; it also simplified the equalization procedure, eliminated decision feedback, and provides a synergistic blend with adaptive arrays. An alternative uses frequency-channelized PSK/QAM with modulation-on-symbol CDMA (that is, synchronous CDMA).
  • Each node of the network incorporates a MIMO transceiver. FIG. 24 displays a functional representation of such, and the hardware and processing is detailed over the next several paragraphs.
  • Each MIMO transceiver possesses an antennae array where the antennae are spatially separated and the antennae array itself is preferentially circularly symmetric (FIG. 15, Item 110). This provides 1-to-M modes (RF feeds) for the signals to be transmitted or received over, maximizes the separability of transmission links, enables a scalable DSP backend, and renders the MIMO transceiver fault-tolerant to LNA failures.
  • In an alternative embodiment the transceiver sends the transmission signal through Butler Mode Forming circuitry (FIG. 25, Item 380), which includes in a further embodiment a Band Pass Filter (FIG. 25. Item 382) where the transmission is reciprocally formed with the shared Receiver feeds, and the number of modes out equals the numbers of antennae, established as an ordered set with decreasing energy. The Butler Mode Forming circuitry also provides the spatial signal separation adaptation, preferentially with a FFT-LS algorithm that integrates the link separation operation with the pilot/data sorting, link detection, multilink combination, and equalizer weight calculation operations. This Butler Mode Forming approach means that the transmission forming is readily reciprocal with the receiver feeds (also shared), makes the transmission fault tolerant for PA (Phase-Amplitude) failures, and enables a readily scalable DSP front end; it also enables the transceiver to ratchet the number of antennae used for a particular transmission or reception up or down.
  • Having passed through the Butler Mode Forming circuitry, the transmission is then sent through the transmission switch (FIG. 15, Item 112), with the uplink frequencies being processed by the LNA bank(FIG. 15, Item 113), moderated by an AGC(FIG. 15, Item 114), and the downlink frequencies being processed by a PA bank(FIG. 15, Item 124). The LNA bank also instantiates the low noise characteristics for the outgoing signal and communicates the characteristics to the PA bank to properly manage the power amplification of the incoming signals to moderate the transmission overlap.
  • Further transmission switch processing then hands off the transmission to the frequency translator (FIG. 15, Item 115), which is itself governed in part by the Los circuit(FIG. 15, Item 116). The transmission switch throughout is controlled by a controller (FIG. 15, Item 120) such that basebank link distribution of the outgoing signals takes place such that energy is distributed over the multiple RF feeds on each channel, steering up to Kfeed beams and nulls independently on each FDMA channel in order to enhance node and network capacity and coverage. This control further greatly reduces the link fade margin and that node's PA requirements.
  • From the transmission switch the transmission goes to an ADC bank(FIG. 15, Item 117), while a received signal will come from a DAC bank (FIG. 15, Item 123), the complexity of the analog/digital/analog conversion determining the circuit mix within the banks.
  • Then from the ADC bank the transmission flows through a Multitone Demodulator Bank (FIG. 15, Item 118), which splits it into 1 through K FDMA channels, where K is the number of feeds. The now separated tones (1 through M for each channel) in aggregate forms the entire baseband for the transmission, which combines spatial, polarization, either, or both, feeds across the FDMA channels or even combines up to K FDMA channels as transmission data density requires. This combination enables steering a greater number of beams and nulls than the RF feeds, up to the number of feeds times the number of FDMA channels. It also separates up to Kfeed links per FDMA channel, improves overall transmission link error and/or retransmission rates, improves overall network capacity and coverage, and reduces the link fade margins, reduces the PA cost, and reduces battery consumption at the other ends of the link.
  • From the Multitone Demodulator Bank the Rx data is passed to circuitry for mapping the received broadband multitone signal into separated, narrowband frequency channels and time slots (FIG. 15, Item 119).
  • An outgoing transmission signal experiences the reverse of the above process; having been mapped to tones and RF feeds (FIG. 15, Item 121), it passes into a Multitone Modulator bank (FIG. 15, Item 122), an DAC bank (FIG. 15 Item 123), the transceiver switch, the Frequency Translator, the transceiver switch, the PA bank element (FIG. 15, Item 124), the transceiver switch, and thence in the preferred embodiment through the Butler Mode Form and on to the RF T/R feeds (FIG. 24, Item 130) and to the antennae array and the particular transmission antennae therein (FIG. 15, Item 125)
  • The transmission switch throughout is controlled such that baseband link distribution of the outgoing signals takes place such that energy is distributed over the multiple RF feeds on each channel, steering up to Kfeed beams and nulls independently on each FDMA channel in order to enhance node and network capacity and coverage. This control further greatly reduces the link fade margin and that node's PA requirements.
  • The particular Multitone MOD and DEMOD elements (FIG. 15, Item 118 and 119) in a node vary according to whether it will be handling Fixed, Portable, Low-Mobility, and/or High-Mobility Nodes. Generally, a signal passing into the MT DEMOD may be passed through a comb filter, where a 128-bit sample is run through a 2:1 comb; then passed through an FFT element, preferably with a 1,024 real-IF function; and then mapped to the data using 426 active receive ‘bins’. Each bin covers a bandwidth of 5.75 MHz with an inner 4.26 MHz passband, so each of the 426 bins has 10 MHz. The middle frequency, bin 256, will be at 2.56 MHz, leaving a buffer of 745 kHz on either side of the content envelope. Within the transmission, when it passes through the MT MOD, presuming each link is 100 μs, 12.5 μs at each end of the transmission is added as a cyclic prefix buffer and cyclic suffix buffer, to allow for timing error. (FIG. 22, Items 314, 3181, 322.) In an alternative embodiment, presuming that only a cyclic prefix is needed, the system can either double the size of the prefix (FIG. 22, Item 310) or add the suffix to the signal time. The reverse processing as appropriate (i.e. stripping off the cyclic prefix and suffix buffers) is not shown but is well known to the art.
  • The 426 bins form 13 channels and 426 tones, (FIG. 26, Item 430), with each Channel forming 320 kHz and 32 tons (FIG. 26, Item 432), being further organized with an upper and lower guard tone (FIG. 26, Items 438 and 436, respectively) and 30 information bearing tones (FIG. 26, Item 440). An alternative embodiment for a high-mobility environment halves the numbers of tones and doubles the MHz, so there are only 213 bins (and tones) for 4.26 MHz (FIG. 27, Item 442), and each channel only carries 16 tones (FIG. 27, Item 446), with 1 being an guard tone (FIG. 27, Item 448) and fifteen being information-carrying tones (FIG. 27, Item 450).
  • For non-fixed embodiments, the timing modifications may be varied. The signal being processed is handed first to a MUX where an element-multiply with a Tx or Rx (for transmit or receive, respectively) window is performed. The guard time is retained to serve as dead time between signals, effectively punctuating them. The high-mobility embodiment halves the number of bins, doubling the average bin size, and uses duplication to increase QoS within the multitone. (FIG. 26.)
  • The next stage through the MIMO transceiver is the incorporation (on the transmission side) or interpretation (on the reception side) of the QAM/PSK symbols, prior to the signal's passing through the MIMO transceiver exits (if being transmitted) or enters (if being received) through a Link codec. Each FDMA channel will separate through the codec into 1 through M links, and each Link codec will incorporate tone equalization and ITI remove as necessary. The Link codec also includes SOVA bit recovery, error coding and error detection, and package fragment retransmission methodologies.
  • An optional alternative embodiment would at this point further include tone/slot interleaving (for the reception) or deleaving (for the transmission). A further optional alternative embodiment would replace the TCM codec and SOVA decoder with a Turbo codec.
  • Another optional alternative will incorporate dual-polarization. (See FIG. 25.) Fundamentally, this halves the modes and complexity of the transmissions and receptions, while doubling the capacity for any particular link/PA power constraint. In this alternative embodiment, the antennae array provides 1-to-(M/2) modes (RF feeds) for downconversion and demodularization. The Butler Mode Forming splits the modes into positive and negative polarities, where the negative polarization has the opposite, and normally orthogonal, polarization to the positive path. Preferentially the Butler Mode Forming works with circular polarizations. This alternative embodiment enables scalable DSP transmission and reception paths and renders the entirety fault tolerant to LNA/PA failures. At the last stage (for transmission; the first stage, for reception) the signal passes through a dual-polarized Link codec. That links the nodes over the dual polarizations, doubles the capacity under any particular link/PA power constraint, greatly reduces the codec complexity (and thus cost), and the link/PA power requirement for any particular link rate constant.
  • The Transceiver DSP backend for the preferred embodiment is detailed in FIG. 15. The Butler Mode Forming element with its RF transmission and reception leads, is controlled by the T/R switch control, which in turn is subject to the system clock and synchronization subsystem. An transmission signal (which can be continuous, periodic, triggered, human-determined, reactive, context-sensitive, data quality or quantity sensitive) that forms a Tx link message passes through a symbol encoder bank and into the circuitry where Delay/ITI/pilot gating are imposed, said circuitry being linked to its reciprocal for received signals. The transmission data symbols, over k channels, now pass through the multilink diversity distribution circuitry, where for each channel k transmission gains G(k) are adapted to the proper weighting, as determined by the multilink, LEGO gain adaptation element (with both algorithms and circuitry). From the multilink diversity distribution the transmission next is mapped over diversity modes and FFT bins, then handed to the transmission/reception compensation bank Here, according to the perceived environment of transmissions and reception and the particular Transmission/Reception compensation algorithm used, the transmission is passed to the inverse frequency channel bank and, finally, into the Butler Mode Forming element. This Transceiver DSP backend also passes the information about the transmission signal from the compensation bank element to the synchronization subsystem.
  • The LEGO gain adaptation element at each node enables the network to optimally balance the power use against capacity for each channel, link, and node, and hence for the network as a whole. FIG. 32 discloses the fundamental form of the algorithm used.
  • A capacity objective β for a particular node 2 receiving from another node 1 is set as the target to be achieved by node 2. Node 2 solves the constrained local optimization problem:
  • min π 1 ( q ) q π 1 ( q ) = 1 T π 1 such that EQ . 3
    Σq∈Q(m)log(1+γ(q))≧β(m),  EQ. 4
  • where π1 (q) is the SU (user 1 node) transmit power for link number q,
  • γ(q) is the signal to interference noise ratio (SINR) seen at the output of the beamformer,
  • Figure US20110188597A1-20110804-P00001
    is a vector of all 1s,
  • and
  • π1 is a vector whose qth element is p1(q).
  • The aggregate set Q(m) contains a set of links that are grouped together for the purpose of measuring capacity flows through those links.
  • An example of this would be if SU had connections to multiple BSs, and we were primarily concerned with the total information flow into and out of a given node. In this case all of the links that connected to that node would be in the same aggregate set. Also in this description, we have adopted the convention that each transmit path from a transmitter to a receiver for a given narrow-band frequency channel is given a separate link number, even if the BS and SU are the same. Thus multiple transmit modes, that say exploit multipath or polarization diversity, are each given different link numbers, even though the source and destination nodes might be identical. Moreover, if a BS/SU pair transmit over multiple frequency channels, then each channel is given a separate link number. (This simplifies notation considerably.)
  • An example of this is shown in FIG. 19. The BSs are represented by circles and the SUs by triangles. Each arrow represents a communication link. The BSs and SUs can be dynamically combined into proper subsets of transmit uplink and receive uplink. The choice of aggregate sets can be arbitrary, provided no link is in multiple aggregate sets. However in a preferred embodiment, the aggregate sets are links that share a common node and hence common, readily available channel parameters.
  • The downlink objective function can be written as:

  • min Σqπ2(q)=1Tπ2 such that  EQ. 5

  • Σq∈Q(m)log(1+γ(q))≧β(m)  EQ. 6
  • The required feasibility condition, that Σq∈Q(m) π1(q)≦R1(m) is reported to the network, and in the preferred embodiment, reported to a network controller, so that β(m) can be modified as needed to stay within the constraints.
  • In an alternative embodiment, the capacity constraints β(m) are determined in advance for each aggregate set, based on known QoS requirements for given nodes or group of nodes. The objective function then seeks to minimize the total power in the network as suggested by EQ. 4.
  • By defining the noise normalized power transfer matrix by:

  • P rt(q,j)=|w H r(q)H rt(q,j)g t(j)|2,  EQ. 7
  • where Wr(q) is a receiver weight vector for link q, and,
    gt(j) is the transmit weight vector for link.
    By unit normalizing the receive and transmit weights with respect to the background interference autocorrelation matrix, the local model can state:

  • w r H(q)R i r ,i r (q)w r(q)=1, and g t T(q)R i r ,i r (q)g t*(q)=1  EQ 52
  • enabling the nodal model to express the SINR equation as:
  • γ ( q ) = P rt ( q , q ) π t ( q ) 1 + j q P rt ( q , j ) π t ( j ) EQ . 8
  • Accordingly, a matrix condition can be defined on the range of possible output SINRs; and from this, πt has a feasible, that is non-negative solution, if and only if:

  • ρ(δ(γ)(P rt−δ(P rt)<1,  EQ. 9
  • where ρ(M) is the spectral radius of a matrix M,
    the non-negative power transfer matrix Prt has qj'th element given in EQ. 7,
    δ(γ) is a diagonal matrix whose q′th element is γ(q)
  • and
  • δ(Prt) is a diagonal matrix with the same diagonal as Prt.
    The weight normalization in EQ. 52, and the assumption of reciprocal channel matrices leads to the reciprocity equation (EQ. 1), and the fact that the uplink and downlink objective functions in EQ. 3 and EQ. 4 are identical for the same target SINRs.
  • Various means for solving the optimization in EQ. 3 exist; the preferred embodiment uses a very simple approximation for γ(q), as very weak constraints to the transmit powers are all that are needed to yield objective functions which satisfy the reciprocity equation (EQ. 2).
  • Another approach can take advantage of the case where all the aggregate sets contains a single link, and we have non-negligible environmental noise or interference. For smaller networks, all the channel transfer gains in the matrices P12 and P21 are estimated and the transmit powers are computed as Perron vectors from:
  • D 21 = log ( 1 + 1 p ( p 21 ) - 1 ) = log ( 1 + 1 p ( p 12 T ) - 1 ) = D 12 EQ . 10
  • In this case a simple power constraint is imposed upon the transmit powers, so that they remain feasible. The optimization is alternating directions, first the weights are optimized, then the powers are obtained from the Perron vectors, and the process is repeated.
  • Another embodiment assumes effectively that the denominator in Eq. 8 remains approximately constant even after changes to the power levels in other nodes in the network (hence the local optimization approach), because the beamformer weights in the network (transmit and receive) in the MIMO approach will attempt to cancel the co-channel interference in the network, making it insensitive to power level changes of the interferers. The denominator in Eq. 8 represents the post beamforming interference seen by the receiver associated with link q for the forward link (downlink) if r=1, and the reverse link if r=2.
  • With this approximation, and a rewriting of Eq. 8 (for the uplink) to:
  • γ ( q ) P 21 ( q , q ) π 1 ( q ) i 2 ( q ) EQ . 11
  • where

  • i 2(q)=1+Σj≠q P 21(q,j1(j)  EQ 12
  • is the post beamforming interference energy, and is assumed constant for the adjustment interval for current transmit power values, the node can solve EQ. 3 in closed form using classic water filling arguments based on Lagrange multipliers. A similar equation is established for the downlink.
  • An alternative embodiment of Eq. 11 is to measure, provide, and use actual information for additional, available, or important terms in the denominator of Eq. 8 and to incorporate them into Eq. 12, and then rather than closed form use successive applications thereof to the modified problem using local data.
  • Another alternative embodiment is to solve, at each node, the constrained optimization problem:
  • max m q Q ( m ) log ( 1 + γ ( q ) ) , such that EQ . 13 q Q ( m ) π 1 ( q ) R 1 ( m ) , γ ( q ) 0 EQ . 14
  • using the approximation in Eq. 11, which is a water-filling solution similar to that described above for Eq. 3. This solution requires a high-level network optimizer to control the power constraints, R1(q), to drive the network to a max-min solution.
  • The preferred embodiment, however, solves the local problem by attempting to minimize the total power as a function of the target output SINR. The output SINR will be the ratio of square of the channel transfer gain times the transmit power, divided by the interference power seen at the output of the beamformer, where:

  • γ(q)=|h 2(q)|π1(q)/i 2(q)  EQ. 15

  • γ(q)=|h 2(q)|π2(q)/i 1(q)  EQ. 16
  • where
  • |h(q)2 is the square of the channel transfer gain,
  • π1(q) is the transmit power for link q during the reverse link or uplink transmission,
  • π2(q) is the transmit power for link q during forward link or downlink transmission,
  • i1(q) is the interference power seen at the output of the beamformer used by the SU associated with link q,
      • and,
  • i2(q) is the interference power seen at the output of the beamformer used by the BD associated with link q.
  • This makes the output SINR a function of all the transmit powers at all the other SUs in the network. Additionally, by normalizing the beamforming weights with respect to the background interference, it is possible to maintain the reciprocity equation even in the presence of arbitrary interference and noise, due to non-cooperative signal sources, such as jammers or co-channel communication devices. Maximizing the SINR yields optimal receiver weights that can remove the effect of jammers and co-channel interferers. The reciprocity equation insures that the optimal transmit weights puts substantive nulls in the direction of these same co-channel interferers. For military applications, this implies that the network reduces it's probability of detection and interception, and for co-channel communication systems, it reduces it's transmitted interference, and is effectively a ‘good neighbor’ permitting system deployment in otherwise unacceptable environments. Commercially, this allows a network employing the present embodiment of this invention to cope with competitive, impinging, wireless network nodes and transmissions.
  • It can be shown that there is a 1-1 mapping between all the transmit powers and all of the output SINRs, i.e. there exists a vector valued function F1 such that F1(γ)=π1.
  • The function has an inverse so that F1 −11)=γ. A key result that is exploited by this embodiment is the fact that if the channels are reciprocal, then the objective functions, and the constraint set imposed by (1) is identical as a function of γ for both the uplink and downlink objective functions. Mathematically this means these objective functions can be stated in general terms as:

  • f(γ)=1T F 1(γ)=1T F 2(γ),  EQ. 17
  • where π2=F2(γ) is the mapping between the SINRs and the BS transmit powers.
  • In the preferred embodiment, each node uses the above as it defines and generates its local model as follows:
  • Given an initial γ0 generate the model,

  • L(γ,g,β)=g Tγ  EQ. 20

  • Σq∈Q(m)log(1+γ(q))≧β(m)  EQ. 21

  • g=∇ γ f0)  EQ. 22
  • where
  • L(γ,g,β) is a linearized model of the objective function,
  • gTγ is an inner product between the gradient of the objective function and a set of target SINRs,
  • Σq∈Q(m)log(1+γ(q))≧β(m). is the capacity constraint for aggregate set m,
      • and,
  • g=∇γf(γ0) is the gradient of the objective function (the total transmit power) as a function of the target SINRs.
  • The new γα is updated from

  • γ*=arg minγ L(γ,g,β)  EQ. 23

  • γα0+α(γ*−γ0)  EQ. 24
  • The constant α is chosen between 0 and 1 and dampens the update step of the algorithm. This determines a target SINR that the algorithm adapts to. The update for the transmit power for link q becomes,

  • π2(q)=γα i 1(q)/h(q)2  EQ. 25

  • π1(q)=γα i 2(q)//h(q)2  EQ. 26
  • Where i1(q) and i2(q) are the post beamforming interference power seen at the SU and the BS respectively for link q.
  • The present embodiment of this invention uses advantageously the fact that the qth element of the gradient of the objective function can be written as the product of the interference powers divided by the square of the transfer gain:

  • {∇γ f0)}q =i 1(q)i 2(q)//|h(q)|2.  EQ. 27
  • The transmit power update relationship in Eq. 25 and Eq. 26 can be applied repeatedly for a fixed feasible γα and the convergence of π1→F1α) is guaranteed. In fact some assert this convergence will be guaranteed if we optimize the receive weights at each iteration. (See Visotsky, E; Madhow, U, “Optimum Beamforming Using Transmit Antenna Arrays”, Vehicular Technology Conference, 1999 IEEE 4th, Volume 1, pp 851-856, though he only considered the effects in a Rank 1 channel, that is a single narrowband rather than a MIMO channel.) A similar statement holds for π2→F2α). In an alternative embodiment where the proper relationship is unknown, or dynamically changing, then a suitably long block of N samples is used to establish the relationship, where N is either 4 times the number of antennae or 128, whichever is larger, with the result being used to update the receive weights at each end of the link, optimize the local model in Eq. 23 and Eq. 24, and then apply Eq. 25 and Eq. 26.
  • The algorithm used in the preferred embodiment enables the network, and local nodes thereof, to attain several important results. First, for each aggregate set m, the optimization of the local model(s) at each node(s) completely decouples the network optimization problem to an independent (set) of local problem(s) that is solved among the aggregate set links. Accordingly, within a given aggregate set, we inherit the network objective function model:

  • Lm(γ,g,β)≡Σq∈Q(m)gqγ(q)  EQ. 28

  • Σq∈Q(m)log(1+γ(q))≧β(m)  EQ. 29

  • g q =i 1(q)i 2(q)//|h(q)|2  EQ. 30
  • where
  • Lm (γ,g,β) is the sum of the separable, linearized, objective functions corresponding to the aggregate set number m, where each localized objective function depends only on variables that pertain to the given aggregate set,
  • gqγ(q) is the product of the q′th element of the gradient vector with the SINR for link q,
  • gq is the q′th element of the gradient vector,
  • and,
  • |h(q)|2 is the square of the channel transfer gain from the transmit beamformer, through the channel to the output beamformer (not including the transmit power).
  • Second, this approach eliminates matrix channel estimation as a necessary step, as solving the local problem only requires that an estimate of the post beamforming interference power, a single real number for each link, be transmitted to the other end of the link, or in another embodiment to the node assigned to computing the transmit powers for a given aggregate set. For each link, a single real number, the transmit power, is then propagated back to the transmitter. This is true even for networks with large rank MIMO channel matrices.
  • Third, the optimization problem, which is stated in general terms in Eq. 17, when you plug in a formula for π as a function of γ into the objective function, i.e. 1TFr(γ) for the SINR to power mapping Fr(γ), is reduced from a complex and potentially unsolvable problem to one that has a simple closed form solution, and thus can use a well known water filling problem seen in classical information theory (see T. Cover, T. Joy, Elements of Information Theory, Wiley; 1991); Matthew Bromberg and Brian Agee, “The LEGO approach for achieving max-min capacity in reciprocal multipoint networks,” in Proceedings of the Thirty Fourth Asilomar Conf. Signals, Systems, and Computers, October 2000.
  • Fourth, even when starting from non-feasible starting points, the algorithm rapidly converges; in the preferred embodiment, where all parameters are updated after every receive block, it converges to a fixed point within the vicinity of the optimal solution; and in an alternative embodiment, where the γα vector is held fixed until π1→F1α) and π2→F2α) before updating the weights and updating γα again.
  • A figure illustrating the computational tasks at the BS and the SU for a given link q is shown in FIG. 34. It is assumed that the BS is assigned the task of computing the transmit gains for this particular example. The figure shows that only two numbers are transferred from the BS to the SU and from the SU to the BS. The basic computational tasks at each node are also shown.
  • In the preferred embodiment, only one side of the link need perform the power management computations. One of the principle advantages and strengths of the present embodiment of the invention is that it replaces half of the prior art's explicit, dual computations with an implicit computation that is performed by the physical transmission of data, which generates the real-world interference (and thus interference values) used by the power control algorithm.
  • The estimation of the transfer gains and the post beamforming interference power is done efficiently in the preferred embodiment with simple least squares estimation techniques.
  • The problem of estimating the transfer gains and the post beamforming interference power (in the preferred embodiment, by using a least squares algorithm) is equivalent to solving for the transfer gain h as follows:

  • y(n)=hgs(n)+ε(n)  EQ. 31
  • where y(n) is the output of the beamformer at the time sample,
    h≈wH r(q)H21(q,q)gt(q), whose square modulus is Prt(q,q),
  • wr(q) is the receive weight vector for link q,
  • gt(q) is transmit weight vector for link q,
  • g is the square root of the transmit power πt(q),
    s(n) is the transmitted complex symbol at time sample n,
  • and
  • ε(n) represents all of the remaining co-channel interference and noise. (Indexing is dropped to avoid clutter.) Then y(n) is defined as the output after applying the unit normalized despread weights to the received data. This is simply the usual beamformer output divided by the norm of the despread weights with respect to the noise covariance matrix; and for many applications, this will be a scaled multiple of the identity matrix.
  • Using a block of N samples of data, h is then estimated as:
  • h = n = 1 N ( n ) γ ( n ) n = 1 N s ( n ) 2 g EQ . 32
  • where h is the channel transfer gain,
    s*(n) is the conjugate of s(n),
    y(n) is the output of the beamformer at the time sample n,
    and,
  • s(n) is the transmitted complex symbol at time sample n.
  • From this an estimation of the residual interference power, Rε, which is identified with i1(q) in Eq. 11 by:
  • R ɛ = ɛ ( n ) 2 = 1 N n = 1 N ( y ( n ) 2 - ghs ( n ) 2 ) . EQ . 33
  • where
  • gh is the product of the transmit gain and the post-beamforming channel gain.
  • The knowledge of the transmitted data symbols s(n) in the preferred embodiment comes from using remodulated symbols at the output of the codec. Alternative embodiments use the output of a property restoral algorithm used in a blind beamforming algorithm such as constant modulus or constellation restoral, or by using a training sequence explicitly transmitted to train beamforming weights and asset the power management algorithms, or other means known to the art. This information, and the knowledge of the data transmit power values π1(q) will be at the receiver and can be transmitted to the transmitter as part of a data link layer message; and if the processing occurs over fairly large blocks of data the transfer consumes only a small portion of the available bandwidth. Means for handling the case when a transmit mode is shut off, so that one of the π1(q)=0, include removing the index (q) from the optimization procedure and making no channel measurements.
  • In the preferred embodiment, a link level optimizer and decision algorithm (See FIGS. 32A and 32B) is incorporated in each node; its inputs include the target and the bounds for that node, and its outputs include the new transmit powers and indications to the network as to how the node is satisfying the constraints. FIG. 33 indicates a decision algorithm used by the link level optimizer.
  • In an alternative embodiment, the solution to Eq. 3 is implemented by using a variety of Lagrange multiplier techniques. In other alternative embodiments, the solution to Eq. 3 is implemented by using a variety of penalty function techniques. All of these embody techniques known to the art for solving the local problem. One such alternative takes the derivative of γ(q) with respect to π1 and uses the Kronecker-Delta function and the weighted background noise; in separate alternative embodiments, the noise term can be neglected or normalized to one. An approximation uses the receive weights, particularly when null-steering efforts are being made, and as the optimal solution will have weights that approach the singular vectors of the interference-whitened MIMO channel response. In the situation where the links of a given aggregate set Q(m) are all connected to a single node in the network, all information pertaining to the subchannels and propagation modes of the MIMO channel associated with that node are available, hence the norm squared transfer gain P21(q,q) is available for all q∈Q(m) from the processing used to obtain the MMSE receive beamforming weights.
  • In the preferred embodiment, adaptation of the power is done in a series of measured and quantized descent steps and ascent steps, to minimize the amount of control bits that need to be supported by the network. However, in an alternative embodiment, a node may use more bits of control information to signal for and quantize large steps.
  • Various alternative methods can be used to develop the local model for each node. The preferred embodiment's use of measured data (e.g. function values or gradients) to develop the local model valid in vicinity of the current parameter values, is only one approach; it can, however, be readily optimized within the node and network. The usual model of choice in prior art has been the quadratic model, but this was inadequate as elements of the functions are monotic. One alternative embodiment is to use a log-linear fractional model:
  • β q log ( a π 1 ( q ) + a 0 b π 1 ( q ) + b 0 ) = β ^ q ( π 1 ( q ) ) EQ . 34
  • where βq is the achievable bit capacity as a function of the transmit gains π1(q);
    and to characterize the inequality

  • {circumflex over (β)}q1(q))≧β  EQ. 35
  • with a linear half-subspace, and then solving the approximation problem with a simple low dimensional linear program.
  • Another alternative embodiment develops the local mode by matching function values and gradients between the current model and the actual function. And another develops the model as a solution to the least squares fit, evaluated over several points.
  • Because of the isolating effect of the transmit and receive weights the fact that the transmit weights for the other nodes in the network may change mitigates the effect on the local model for each node. Yet another alternative broadens the objective function to include the effect of other links in the network, viewing them as responding to some extent to the transmit values of the current link q. A finer embodiment reduces the cross-coupling effect by allowing only a subset of links to update at any one particular time, wherein the subset members are chosen as those which are more likely to be isolated from one another.
  • In the preferred embodiment, and as shown in the figures, Node 2 optimizes the receiver weights during the uplink (when sending) using a MMSE function; then measures the SINR over all paths k for a particular channel q, and informs the sending node 1 both of the measured capacity for channel q, that is, (D12(q)) and, if the measured capacity experienced for that channel is too high, to lower the power, or, if the measured capacity for that channel is too low, to increase the power, with the power increase or decrease being done by small, discrete increments. Node 2 then sets, for that channel, the transmit weights to the receive weights and repeats this sub-process for the downlink case. By successive, rapid iteration node 2 rapidly informs node 1 of the precise transmission power needed at node 1 to communicate over channel q with node 2.
  • This process is performed for every channel q which is active at node 2, until either the target capacity is attained, or the capacity cannot be improved further. It is also repeated at every node in the network, so node 1 will be telling node 2 whether node 2 must increase or decrease the power for node 2's transmissions to node 1 over channel q.
  • In an alternative embodiment, the network contains one or more network controllers, each of whom govern a subset of the network. The network controller initiates, monitors, and changes the target objective (in the preferred alternative embodiment, capacity) for the set of nodes it governs and communicates the current objective to those nodes and the rest of the network as necessary. (See FIG. 33.) Different sub-networks can use different capacity objectives depending on each network's localized environment (both external and internal, i.e. traffic density).
  • The network controller, once it has initialized the reciprocal set and objective continually monitors the network of nodes it governs, continually compares if the desired capacity has been reached, and for each node n, perform a fitting function. (See FIG. LE2) If a node n is compliant with the power constraints and capacity bound, then R1(n) should be reduced by a small amount; but if node n has both power constraints and capacity violations than R1(n) should be incremented for that node. These increments and decrements are preferably quantized to fixed small numbers. In an alternative embodiment of the invention the scalar and history of the increments and decrements are recorded to feed into experientially modified approximations, effectively embodying a real-world adaptation learning for each node.
  • One important consequence of this approach is that compliance with any network constraint or objective can be conveyed with a single bit, and increment or decrement with two bits, thereby reducing the control overhead to a minimum.
  • From the Butler Mode Forming element received signals are first passed through the frequency channel bank, then mapped to the FDMA channels. The received data on channel k will be passed through both the Multilink Receive weight adaptation algorithm and the Multilink diversity combining, Receive weights W(k) element, which in turn both feed into the Multilink LEGO gain adaptation algorithm and thus feed-back into the multilink diversity distribution element for outgoing transmissions. The Multilink Receive weight adaptation algorithm passes the adapted data from channel k over to the Multilink Diversity combining, Receive Weights W(k) element passes on the signal to both the circuits for the Equalization algorithm and the Delay/ITI/pilot-gating removal bank, that strips out the channel-coordinating information and passes the now combined signal to the symbol decoder bank to be turned into the information which had been sent out from the originating transceiver, the inverse process, generally, from the symbol encoding at the transmission end.
  • These Signal Encoding Operations are graphically displayed in FIG. 21. (Because the decoding is both the inverse and well enough known, given a particular encoding, to be within the state of the art for any practitioner in the field, there is not a for the inverse, Symbol Decoding Operations.) A given signal, such as an IP datagram, is formed into a fragment and passed along to a MUX element. (Any signal which can be equated to or converted into an IP datagram, for example an ATM, would either be converted prior to this point or handled similarly.) The desired MAC header data, which in one alternative embodiment is optionally time-stamped, is also fed into the same MUX element where the two combine. This combined signal now passes through a CRC generator as well as feeding into a second MUX that combines the CRC output with it. Next, the signal passes into an encryption element that also performs trellis encoding. (In an alternative embodiment one or both of these operations are eliminated, which reduces the transceiver's hardware and software complexity but decreases the network's security and reliability.) (For more information on the alternative use of Trellis coded modulation, see, Boulle, et al., “An Overview of Trellis Coded Modulation Research in COST 231”, IEEE PIMRC '94, pp. 105-109.) The now-encoded signal is next passed to the element where it is mapped to the individual tones and the MT symbols, and where buffer tones and time and frequency interleaving is done. A second, optional, delay preemphasis signal element, and a third signal element from a pilot generator, taking input from the originating node, recipient node, group, or network, or any combination or sub-combination thereof, now are combined with the signal from the mapping element in a MUX. This MUX may use the first two slots for a pilot without modulation by the information tones, using the remaining slots for the pilot modulated by the information tones to further harden the pilot/signal combination. An alternative embodiment would at this point further pass the transmission signal through an ITI pre-distortion element; otherwise, the now-encoded, piloted, and mapped transmission signal is ready.
  • Pilot tone generation, summarily disclosed on FIG. 21, is further detailed in FIG. 28. Information concerning one or more of the originating node, recipient node, and network or group channel organization flow into a pilot signal generator, and the resulting pilot signal is further modified by a network code mask. This multilayer mask then is used to form a signal with a pseudorandom sequence that is shared by all nodes in the same network or group, though the sequence may vary over channels and MT symbols to allow further coordination amongst them at the receiving end. Passing on the signal is modified in an element-wise multiplication (typically a matrix operation, embedded in hardware) by a signal that indexes on the originating node, which in an optional variation includes a nodal pseudodelay, unique to that node in the network or group, which overlay again may vary over channels and frames to improve security. The originating node index overlay is a complex, exponential phase ramping. The combined signal now mixes with a recipient node index, another pseudorandom sequence that is unique to the recipient node, modifying the whole in a second element-wise multiplication. Thus the final pilot tone reflects the content signal, modified to uniquely identify both the originating node and its context, and the receiving node and its context, effecting a signal composition that allows the network to pilot the communication through the network from origin to destination regardless of the intervening channels it takes.
  • When a communication is transmitted, it will be received; and the MIMO reception is, like the transmission, adaptive. See FIG. 30, detailing the logical processing involved. Received data passes through both a Multilink weight adaptation algorithm and (to which that part is combined) a Multilink diversity combining of the Reception weights. This reweighted transmission now passes through the equalization algorithm and (to which that is combined) a Delay/ITI/pilot-gating removal bank stage. These sort out the properly weighted tones, perform the recombinations, and undo the pilot-gating distortion to effectively reassemble at the reception end the symbol pattern of the original signal. That now passes through a symbol decoder bank to recover the message from the symbolic representation and the whole now is joined with the other received and linked messages for final reassembly. The functional and firmware processing (fixed logic hardware, limited purpose firmware, or combined software, processors and circuitry). The received symbol X(i,1), comprising a matrix combination of L Link and M multitone elements, is first modified by the pilot tone generator that sends the recipient node, network, and group modifications for an element-wise reverse multiplication, to strip off that component of the signal and identify if the received symbol is from any originating source trying to send to this particular recipient. If the recipient pilot signal matches, then the signal passed on to a circuit that separates the pilot signal elements from the data signal elements. The pilot signal elements are passed through a link detection circuit that preferentially uses a FFT-LS algorithm to produce link quality statistics for that particular received transmission, identifies the weighting elements that were contained in the pilot signal and passes those over to the multilink combination circuit, and sends the pilot weights over to the circuit for equalizing weight calculations. The data signal, combined with the pilot weighting elements, now is combined with the equalizer calculated factors to strip off all pilot information from the traffic data. Next, the re-refined traffic data passes through a link demodulator to produce the original channel-by-channel link streams of data. In an alternative embodiment, the first channel, which has been reserved for decryption, decoding, and error detection signalling, not passes through the ITI correction circuitry and thence to the instantiated decryption, decoding, or retransmission circuitry as indicated by the data elements of the first channel signal; meanwhile, the remaining data channel elements are available, having been refined from the combined received elements.
  • A MIMO transceiver contains and uses simultaneously a multiple of single RF feeds. A signal passes between the Butler Mode Forming element and a Band Pass Filter, or preselection, element, and then between the Band Pass Filter element and the Transceiver switch. If the signal is being transmitted, it goes through a Low Noise Amplifier element and then back into the Transceiver switch; if the signal is being received, it goes through a Phase Amplifier and back into the Transceiver switch. The signal passes between the Transceiver switch and the Frequency translator, and then back into the Transceiver switch.
  • In the Frequency translator (FIG. 25), the signal passes through a second Band Pass Filter with a Surface Acoustic Wave (SAW) Frequency greater than three, then between that second Band Pass Filter and a first mixer, where it will be mixed (or unmixed, depending on direction) with (or by) another waveform which has come from the timing element(s), which may be any of the system clock, synchronization subsystem, and GPS time transfer, or their combination. The combined timing and content signal passes between the first mixer and a SAW element where it is combined (or separated) with a saw frequency of less than or equal to 1.35 times that of the signal. The SAW-modified signal passes between the SAW element and a second mixer, where the saw-modified signal is mixed (or unmixed, depending on direction) by the waveform which also has come from the timing element(s) mentioned above. The signal passes between the second mixer and the LPF element with a SAW Frequency greater than three; the next transition is between the frequency translator and the Transceiver switch. Depending on the direction of the signal, it passes between the Transceiver switch and the ADC element or the DAC element (the ADC and DAC together are ‘the converter elements’) and the Transceiver switch, and between the ADC element and the FFT/IFFT element or between the FFT/IFFT element and the DAC element. Both the DAC and ADC elements are linked to and governed by the system clock, while the signal's passage through the Transceiver switch and the other elements (LNA or PA, Frequency Translator, and between the Transceiver switch and the converter elements, is governed by the Switch Controller element. This approach is used because the Frequency Translator can be implemented as a single piece of hardware which lowers the cost of the overall unit and lessens the signal correction necessary.
  • Different multitone formats are used at different transceivers, thereby enabling ready distinction by and amongst the receivers of the transmitter frequency tone set. For fixed transceivers (BS or fixed SU), rectangular windows with cyclic prefixes and/or buffers are used; for mobile transceivers, non-rectangular windows and guard times are used. This provides the network with a capacity fall-back as the network environment and traffic dynamics vary. In the preferred embodiment the guard times are matched to the cyclic prefixes and buffers, the multitone QAM symbols are matched at all windows, and the different windows and capacity are used in different modes.
  • The multitone (multifrequency) transmission that occurs between every pair of nodes when they form a communications link exploits the multipath phenomena to achieve high QoS results. Each node, when it is acting as a receiver, optimizes the receive weights, using the MMSE technique. This goes directly against Varanesi's assessment that “de-correlative and even linear MMSE strategies are ill-advised for such channels because they either do not exist, and even if they do, they are plagued by large noise-enhancement factors”.
  • An alternative embodiment uses the Max SINR technique, and any combination of these and other industry-standard receiver optimization algorithms are feasible alternative implementations. Then the transmit weights for that node in its reply are optimized by making them proportional to the receive weights. Finally, the transmit gains (gain multipliers that multiply the transmit weights) are optimized according to a max-min capacity criterion for that node, such as the max-min sum of link capacities for that transceiver node at that particular time. An alternative embodiment includes as part of the network one or more network controllers that assist in tuning the local nodes' maximum capacity criterion to network constraints, e.g. by enforcing a balancing that reflects an intermediate nodes' current capacity which is lower than the local, originating node's current capacity.
  • The MIMO network model for the aggregate data transmitted between N1 Set 1 nodes” {ni(1), . . . , n1(N1)},receiving data over downlink time slots and transmitting data over uplink time slots, and N2 Set 2 nodes” {n2(1), . . . , n2(N2)} receiving data over uplink time slots and transmitting data over downlink time slots, can be approximated by

  • x2(k,l)≈i2(k,l)+H21(k,l)s1(k,l)  EQ. 36
  • (uplink network channel model)

  • x1(k,l)≈i1(k,l)+H12(k,l)s2(k,l)  EQ. 37
  • (downlink network channel model)
    within frequency-time channel (k,l) (e.g., tone k within OFDM symbol l) transmitted and received at uplink frequency f21(k) and time t21(l) and downlink frequency f12(k) and time t12(l), where
      • s1(k,l)=[sT 1(k, l; n1(1)) . . . sT 1(k, l; n1(N1))]T represents the network signal vector transmitted from nodes {n1(p)} within uplink channel (k,l);
      • s2(k,l)=[sT 2(k, l; n2(1)) . . . sT 2(k, l; n2(N2))]T represents the network signal vector transmitted from nodes {n2 (q)} within downlink channel (k,l);
      • x1(k,l)=[xT 1(k, l; n1(1)) . . . xT 1(k, l; n1(N1))]T represents the network signal vector received at nodes {n1(p)} within downlink channel (k,l);
      • x2(k,l)=[xT 2(k, l; n2(1)) . . . xT 2(k, l; n2(N2))]T represents the network signal vector received at nodes {n2(q)} within uplink channel (k,l);
      • i1(k,l)=[iT 1(k, l; n1(1)) . . . iT 1(k, l; n1(N1))]T models the network interference vector received at nodes {n1(p)} within downlink channel (k,l);
      • i2(k,l)=[iT 2(k, l; n2(1)) . . . 1 T 2(k, l; n2(N2))]T models the network interference vector received at nodes {n2(q)} within uplink channel (k,l);
      • H21(k,l)=[H21(k, l; n2(q),n1((p))] models the channel response between transmit nodes {n1(p)} and receive nodes {n2(q)} within uplink channel (k,l); and
      • H12(k,l)=[H12(k, l; n1(p),n2(q))] models the channel response between transmit nodes {n2 (q)} and receive nodes {n1(p)} within downlink channel (k,l);
        and ( )T denotes the matrix transpose operation, and where
      • s1(k, l; n1) represents the M1(n1)×1 node n1 signal vector transmitted over M1(n1) diversity channels (e.g., antenna feeds) within uplink frequency-time channel (k,l);
      • s2(k, l; n2) represents the M2(n2)×1 node n2 signal vector transmitted over M2(n2) diversity channels within downlink frequency-time channel (k,l);
      • x1(k, l; n1) represents the node n1 signal vector received over M1(n1) diversity channels within downlink frequency-time channel (k,l);
      • x2(k, l; n2) represents the M2(n2)×1 node n2 signal vector received over M2(n2) diversity channels within uplink frequency-time channel (k,l);
      • i1 (k, l; n1) models the M1(n1)×1 node n1 interference vector received over M1(n1) diversity channels within downlink frequency-time channel (k,l);
      • i2(k, l; n2) models the M2(n2)×1 node n2 interference vector received over M2(n2) diversity channels within uplink frequency-time channel (k,l);
      • H21(k, l; n2,n1) models the M2(n2)×M1(n1) channel response matrix between transmit node n1 and receive node n2 diversity channels, within uplink channel (k,l); and
      • H12(k, l; n1, n2) models the M1(n1)×M2(n2) channel response matrix between transmit node n2 and receive node n1 diversity channels, within downlink channel (k,l).
  • In the absence of far-field multipath between individual nodes, H21(k, l; n2, n1) and H12(k, l; n1, n2) can be further approximated by rank 1 matrices:

  • H21(k,l;n2,n1)≈λ21(n1,n2)a2(f21(k),t21(l);n1,n2)aT 1(f21(k),t21(l);n2,n1)×exp{−j2π(τ21(n2,n1)f21(k)−v21(n2,n1)t12(l))}]  EQ. 38

  • H12(k,l;n1,n2)≈λ12(n2,n1)a1(f12(k),t12(l);n2,n1)aT 2(f12(k),t12(l);n1,n2)×exp{−j2π(τ12(n1,n2)f12(k)−v12(n1,n2)t12(l))}  EQ. 39
  • where
      • λ21(n2, n1) models the observed uplink pathloss and phase shift between transmit node n1 and receive node n2;
      • λ12(n1, n2) models the observed downlink pathloss and phase shift between transmit node n2 and receive node n1;
      • τ21 (n2, n1) models the observed uplink timing offset (delay) between transmit node n1 and receive node n2;
  • τ12 (n1, n2) models the observed downlink timing offset between transmit node n2 and receive node n1;
  • v21 (n2, n1) models the observed uplink carrier offset between transmit node n1 and receive node n2;
      • v12(n1, n2) models the observed downlink carrier offset between transmit node n2 and receive node n1;
      • a1(f,t; n2, n1) models the M1(n1)×1 node n1 channel response vector, between node n2 and each diversity channel used at node n1, at frequency f and time t; and
      • a2(f,t; n1, n2) models the M2(n2)×1 node n2 channel response vector, between node n1 and each diversity channel used at node n2, at frequency f and time t.
  • In many applications, for example, many airborne and satellite communication networks, channel response vector a1 (f,t; n2, n1) can be characterized by the observed (possibly time-varying) azimuth and elevation {θ1(t; n2, n1), φ1(f,t; n2, n1)} of node n2 observed at n1. In other applications, for example, many terrestrial communication systems, a1(f,t; n2, n1) can be characterized as a superposition of direct-path and near-field reflection path channel responses, e.g., due to scatterers in the vicinity of n1, such that each element of a1(f,t; n2, n1) can be modeled as a random process, possibly varying over time and frequency. Similar properties hold for a2(f,t; n1, n2).
  • In either case, a1(f,t; n2, n1) and a1(f,t; n1, n2) can be substantively frequency invariant over significant breadths of frequency, e.g., bandwidths commensurate with frequency channelization used in 2G and 2.5 G communication systems. Similarly, a1(f,t; n2, n1) and a2(f,t; n1, n2) can be substantively time invariant over significant time durations, e.g., large numbers of OFDM symbols or TDMA time frames. In these cases, the most significant frequency and time variation is induced by the observed timing and carrier offset on each link.
  • In many networks of practical interest, e.g., TDD networks, the transmit and receive frequencies are identical (f21(k)=f12(k)=f(k)) and the transmit and receive time slots are separated by short time intervals (t21(l)=t12((l)+Δ21≈t(l)), and H21(k,l) and H21(k,l) become substantively reciprocal, such that the subarrays comprising H21(k,l) and H21(k,l) satisfy H21(k, l; n2, n1)≈δ21(k, l; n1, n2) HT 12(k, l; n1, n2), where δ21(k, l; n1, n2) is a unit-magnitude, generally nonreciprocal scalar.
  • If the observed timing offsets, carrier offsets, and phase offsets are also equalized, such that λ21(n2, n1)≈λ12(n1, n2), τ21(n2, n1)≈τ12(n1, n2), and v21(n1, n2)≈v12(n2, n1), for example, by synchronizing each node to an external, universal time and frequency standard such as Global Position System Universal Time Coordinates (GPS UTC), then δ21(k, l; n1, n2)=1 can be obtained and the network channel response becomes truly reciprocal, H21(k,l)≈HT 12(k,l). However, this more stringent level of reciprocity is not required to obtain the primary benefit of the invention.
  • In order to obtain substantive reciprocity, each node in the network must possess means for compensating local differences between transmit and reception paths. Methods for accomplishing this using probe antennas are described in Agee, et. al. (U.S. patent application Ser. No. 08/804,619, referenced above). A noteworthy advantage of this invention is that substantive reciprocity can be obtained using only local transmit/receive compensation means.
  • The channel model described above is extendable to applications where the internode channel responses possess substantive multipath, such that H21(k, l; n2, n1) and H12(k, l; n2, n1) have rank greater than unity. This channel response can also be made substantively reciprocal, such that the primary benefit of the invention can be obtained here.
  • The preferred embodiment uses a substantively null-steering network wherein each node transmits baseband data (complex symbols provided by a multirate codec) through the multiplicity of reciprocal linear matrix operations prior to transmission into the antenna array during transmit operations, and after reception by the antenna array during receive operations, in a manner that physically separates messages intended for separate recipients. This is accomplished by
  • (1) forming uplink and downlink transmit signals using the matrix formula

  • s 1(k,l;n 1)=G 1(k,l;n 1)d 1(k,l;n 1)

  • s 2(k,l;n 1)=G 2(k,l;n 2)d 2(k,l;n 2)  EQ. 40
  • where

  • d 1(k,l;n 1)=[d 1(k,l;n 2(1),n 1) . . . d 1(k,l;n 2(N 2),n 1)]T
      • represents the vector of complex data symbols transmitted from node ni and intended for each of nodes {n2(q)}, respectively, within uplink channel (k, l);

  • d 2(k,l;n 2)=[d 2(k,l;n 1(1),n 2) . . . d 2(k,l;n 1(N 1),n 2)]T
      • represents the vector of complex data symbols transmitted from node n2 and intended for each of nodes {n1(q)}, respectively, within downlink channel (k, l);

  • G 1(k,l;n 1)=[g 1(k,l;n 2(1),n 1) . . . g 1(k,l;n 2(N 2),n 1)]
      • represents the complex distribution weights used to redundantly distribute symbol vector d1(k, l; n1) onto each diversity channel employed at node n1 within uplink channel (k, l); and

  • G 2(k,l;n 2)=[g 2(k,l;n 1(1),n 2) . . . g 2(k,l;n 1(N 1),n 2)]
      • represents the complex distribution weights used to redundantly distribute symbol vector d2(k, l; n2) onto each diversity channel employed at node n2 within downlink channel (k, l);
        (2) reconstructing the data intended for each receive node using the matrix formula

  • y 1(k,l;n 1)=W H 1(k,l;n 1)x 1(k,l;n 1)

  • y 2(k,l;n 2)=W H 2(k,l;n 2)x 2(k,l;n 2)  EQ. 41
  • where ( )H denotes the conjugate-transpose (Hermitian transpose) operation, and where

  • y 1(k,l;n 1)=[y 1(k,l;n 2(1),n 1) . . . y 1(k,l;n 2(N 2),n 1)]T
      • represents the vector of complex data symbols intended for node n1 and transmitted from each of nodes {n2 (q)}, respectively, within downlink channel (k, l);

  • y 2(k,l;n 2)=[y 2(k,l;n 1(1),n 2) . . . y 2(k,l;n 1(N 1),n 2)]T
      • represents the vector of complex data symbols intended for node n2 and transmitted from each of nodes {n1(p)}, respectively, within uplink channel (k, l);

  • W 1(k,l;n 1)=[w 1(k,l;n 2(1),n 1) . . . w 1(k,l;n 2(N 2),n 1)]
      • represents the complex combiner weights used at node ni to recover symbol symbols {d1(k, l; n2(q), n1)} intended for node n1 and transmitted from nodes {n2(q)} within uplink channel (k, l); and

  • W 2(k,l;n 2)=[w 2(k,l;n 1(1),n 2) . . . w 2(k,l;n 1(N 1),n 2)]
      • represents the complex combiner weights used at node n2 to recover symbol symbols {d2(k, l; n1(p), n2)} intended for node n2 and transmitted from nodes {n1(p)} within uplink channel (k, l).
        (3) developing combiner weights that {w1(k, l; n2, n1)} and {w2(k, l; n1, n2)} that substantively null data intended for recipients during the symbol recovery operation, such that for n1≠n2:

  • |w H 1(k,l;n 2 ,n 1)a 1(f 12(k),t 12(l);n 2 ,n 1)|<<|w H 1(k,l;n 1 ,n 1)a 1(f 12(k)t 12(l);n 1 ,n 1)|  EQ. 42

  • and

  • |w H 2(k,l;n 1 ,n 2)a 2(f 21(k),t 21(l);n 1 ,n 2)|<<|w H 2(k,l;n 2 ,n 2)a 2(f 21(k),t 21(l);n 2 ,n 2)|  EQ. 43
  • (4) developing distribution weights {g1(k, l; n2, n1)} and {g2(k, l; n1, n2)} that perform equivalent substantive nulling operations during transmit signal formation operations;
    (5) scaling distribution weights to optimize network capacity and/or power criteria, as appropriate for the specific node topology and application addressed by the network;
    (6) removing residual timing and carrier offset remaining after recovery of the intended network data symbols; and
    (7) encoding data onto symbol vectors based on the end-to-end SINR obtainable between each transmit and intended recipient node, and decoding that data after symbol recovery operations, using channel coding and decoding methods develop in prior art.
  • In the preferred embodiment, OFDM modulation formats is used to instantiate the invention, and substantively similar distribution and combining weights are computed and applied over as broad a range of tones (frequency channels k) and OFDM symbols (time slots l) as is practical. The range of practical use is determined by the frequency selectivity (delay spread) and time selectivity (Doppler spread) of the communications channel, which determines the degree of invariance of the channel response vectors a1 and a2 on (k,l); the dynamics of interference i1 and i2; latency requirements of the communications network; and dimensionality of linear combiners used at each node in the network, which determine the number of frequency-time channels needed to determine reliable substantively null-steering distribution and combining weights.
  • In the preferred embodiment, substantively nulling combiner weights are formed using an FFT-based least-squares algorithms that adapt {w1(k, l; n2, n1)} and {w2(k, l; n1, n2)} to values that minimize the mean-square error (MSE) between the combiner output data and a known segment of transmitted pilot data. Operations used to implement this technique during receive and transmit operations are shown in FIGS. 35 and 36, respectively. The preferred pilot data is applied to an entire OFDM symbol at the start of an adaptation frame comprising a single OFDM symbol containing pilot data followed by a stream of OFDM symbols containing information data. The pilot data transmitted over the pilot symbol is preferably given by
  • p 1 ( k ; n 2 , n 1 ) = d 1 ( k , 1 ; n 2 , n 1 ) = p 01 ( k ) p 21 ( k ; n 2 ) p 11 ( k ; n 1 ) EQ . 44 p 2 ( k ; n 1 , n 2 ) = d 2 ( k , 1 ; n 1 , n 2 ) = p 02 ( k ) p 12 ( k ; n 1 ) p 22 ( k ; n 2 ) EQ . 45
  • where symbol index l is referenced to the start of the adaptation frame, and where
      • p01(k) is a pseudorandom, constant modulus uplink “network” or “subnet” pilot that is known and used at each node in a network or subnet;
      • p02(k) is a pseudorandom, constant modulus downlink “network” or “subnet” pilot that known and used at each node in the network;
      • p21(k; n2) is a pseudorandom, constant modulus uplink “recipient” pilot that is known and used by every node intending to transmit data to node n2 during uplink transmission intervals;
      • p12(k; n1) is a pseudorandom, constant modulus downlink “recipient” pilot that is known and used by every node intending to transmit data to node ni during downlink transmission intervals;
      • p11(k; n1)=exp{j2πδ1(n1)k} is a sinusoidal uplink “originator” pilot that is used by node n1 during uplink transmission intervals;
      • p22(k; n2)=exp{j2πδ2(n2)k} is a sinusoidal downlink “originator” pilot that is used by node n2 during downlink transmission intervals;
  • The “pseudodelays” δ1(n1) and δ2(n2) can be unique to each transmit node (in small networks), or provisioned at the beginning of communication with any given recipient node (in which case each will be a function of n1 and n2). In either case, the minimum spacing between any pseudodelays used to communicate with a given recipient node should be larger than the maximum expected timing offset observed at that recipient node. This spacing should also be an integer multiple of 1/K, where K is the number of tones used in a single FFT-based LS algorithm. If K is not large enough to provide a sufficiency of pseudodelays, additional OFDM symbols can be used for transmission of pilot symbols, either lengthening the effective value of K, or reducing the maximum number of originating nodes transmitting pilot symbols over the same OFDM symbol (for example, the recipient node can direct 4 originators to transmit their pilot symbols over the first OFDM symbol in each adaptation frame, and 4 other originators to transmit their pilot symbols over the next OFDM symbol, allowing the recipient node to construct combiner weights for 8 originators). In the preferred embodiment, K should also be large enough to allow effective combiner weights to be constructed from the pilot symbols alone. The remaining information-bearing symbols in the adaptation frame are then given by

  • d 1(k,l;n 2 ,n i)=p 1(k;n 2 ,n 1)d 01(k,l;n 2 ,n 1)  EQ. 46

  • d 2(k,l;n 1 ,n 2)=p 2(k;n 1 ,n 2)d 02(k,l;n 1 ,n 2)  EQ. 47
  • where d01(k, l; n2, n1) and d02(k, l; n1, n2) are the uplink and downlink data symbols provided by prior encoding, encryption, symbol randomization, and channel preemphasis stages.
  • Preferably, the adaptation frame is tied to the TDD frame, such that the TDD frame comprises an integer number of adaptation frames transmitted in one link direction, followed by an integer number of adaptation frames transmitted in the reverse link direction. However, the OFDM symbols in the adaptation frame may be interleaved to some degree or any degree. The pilot data may also be allowed to pseudorandomly vary between adaptation frames, providing an additional layer of “physical layer” encryption in secure communication networks.
  • At the recipient node, the pseudorandom pilot components are first removed from the received data by multiplying each tone and symbol by the pseudorandom components of the pilot signals

  • x 01(k,l;n 1)=c 02(k;n 1)x 1(k,l;n 1)  EQ. 53

  • x 02(k,l;n 2)=c 01(k;n 2)x 2(k,l;n 2)  EQ. 48
  • where c02(k; n1)=[p02(k)p12(k; n1)]* and c01(k; n2)=[p01(k)p21(k; n2)]* are the derandomizing code sequences.
  • This operation transforms each pilot symbol authorized and intended for the recipient node into a complex sinusoid with a slope proportional to the sum of the pseudodelay used during the pilot generation procedure, and the actual observed timing offset for that link (observed pseudodelay). (See FIGS. 21, 28.) Unauthorized pilot symbols, and symbols intended for other nodes in the network, are not so transformed and continue to appear as random noise at the recipient node (See FIG. 38A, 38B).
  • The FFT-based LS algorithm is shown in FIG. 37. The pilot symbol, notionally denoted X 0(k,1) in this Figure (i.e., with reference to uplink/downlink set and node index suppressed), is multiplied by a unit-norm FFT window function, and passed to a QR decomposition algorithm, preferably a block modified-Gram-Schmidt Orthogonalization (MGSO), and used to compute orthogonalized data {q(k)} and upper-triangular Cholesky statistics matrix R. Each vector element of {q(k)} is then multiplied by the same window function, and passed through a zero-padded inverse Fast Fourier Transform (IFFT) with output length PK, with padding factor P, preferably P=4, to form uninterpolated, spatially whitened processor weights {u(m)}, where lag index m is proportional to target pseudodelay δ(m)=m/PK. The whitened processor weights are then used to estimate the mean-square-error (MSE) obtaining for a signal received at each target pseudodelay, ε(m)=1−∥u(m)∥2, yielding a detection statistic (pseudodelay indicator function) with a minimum (valley) at IFFT lags commensurate with the observed pseudodelay (alternately, combiner output SINR γ(m)=ε−1(m)−1 can be measured at each target pseudodelay, yielding a detection statistic (peak) at FFT lags commensurate with that pseudodelay. The pilot symbol, notionally denoted X0(k,1) in this Figure (i.e., with reference to uplink/downlink set and node index suppressed), is multiplied by a unit-norm FFT window function, and passed to a QR decomposition algorithm, preferably a block modified-Gram-Schmidt Orthogonalization (MGSO), and used to compute orthogonalized data {q(k)} and upper-triangular Cholesky statistics matrix R. Each vector element of {q(k)} is then multiplied by the same window function, and passed through a zero-padded inverse Fast Fourier Transform (IFFT) with output length PK, with padding factor P, preferably P=4, to form uninterpolated, spatially whitened processor weights {u(m)}, where lag index m is proportional to target pseudodelay δ(m)=m/PK. The whitened processor weights are then used to estimate the mean-square-error (MSE) obtaining for a signal received at each target pseudodelay, ε(m)=1−∥u(m)∥2, yielding a detection statistic (pseudodelay indicator function) with a minimum (valley) at IFFT lags commensurate with the observed pseudodelay (alternately, combiner output SINR γ(m)=ε−1(m)−1 can be measured at each target pseudodelay. The IFFT windowing function is dependent on the minimum spacing between pseudodelays, and is designed to minimize interlag interference (“picket fence” effect) between pilot signal features in the pseudodelay indicator function. In the preferred embodiment, and for a node capable of forming four links, a Kaiser-Bessel window with parameter 3 is preferred.
  • A valley (or peak) finding algorithm is then used to detect each of these valleys (or peaks), estimate the location of the observed pseudodelays to sub-lag accuracy, and determine additional ancillary statistics such as combiner output SINR, input SINR, etc., that are useful to subsequent processing steps (e.g., LEGO). Depending on the system application, either the Q lowest valleys (highest peaks), or all valleys below a designated MSE threshold (peaks above a designated SINR threshold) are selected, and spatially whitened weights U are interpolated from weights near the valleys (peaks). The whitened combiner weights U are then used to calculate both unwhitened combiner weights W=R−1U, used in subsequent data recovery operations, and to estimate the received channel aperture matrix A=RHU, to facilitate ancillary signal quality measurements and fast network entry in future adaptation frames. Lastly, the estimated and optimized pseudodelay vector δ* is used to generate c1(k)=exp{−j2πδ*k} (conjugate of {p11(k; n1)} during uplink receive operations, and {p22(k; n2)} during downlink receive operations), which is then used to remove the residual observed pseudodelay from the information bearing symbols. (See FIG. 38A, Items 702A, 704, 702B, 706, and FIG. 38B, Item 710, for illustration of the overall signal and the signal modified by the correct origination, target, and pilot mask.)
  • In an alternate embodiment, the pseudodelay estimation is refined using a Gauss-Newton recursion using the approximation

  • exp{−j2πΔ(k−k0)/PK}≈1−j2πΔ(k−k0)/PK
  • This algorithm first estimates Δ, providing an initial sublag estimate of pseudodelay, before estimating the lag position to further accuracy. The resultant algorithm can reduce the padding factor P, and reduces interpolation errors in the receive combination weights. However, it requires estimation of an additional IFFT using a modified FFT window, and is therefore not preferred in applications where DSP complexity is of overriding importance.
  • The optimized combiner weights are substantively null-steering, in that the combiner weights associated with each originating signal will (notionally, in absence of multipath) form a composite antenna pattern that steers nulls in the direction of all other time-and-frequency coincident signals (signals transmitting on the same time slot and frequency channel) impinging on the array. However, the weights will also (notionally, in absence of multipath) form a beam in the direction of the originating signal, further improving performance of the overall network. In the presence of multipath, a clear gain pattern of this sort may not necessarily form; however, the effect of this processing will be the same, and is typically be improved due the added diversity provided by multipath.
  • In additional alternate embodiments, the combiner weights can be further refined by exploiting known or added structure of the information bearing symbols using blind property-restoral algorithms. Algorithms of this sort are described in Agee (U.S. Pat. No. 6,118,276) and Agee, et. al., (U.S. patent application Ser. No. 08/804,619, referenced above) as well as other disclosures in the public domain. These alternate embodiments can reduce the size of K, or allow the airlink to be extended into more complex systems where the linear combiner dimensionalities are too large to allow computation of effective weights given the value of K employed in an existing system.
  • The resultant network has several useful attributes over prior art. It is computationally efficient, especially for nodes receiving data from large numbers of originating nodes, since the complex operations employed in the FFT-LS algorithm can be amortized over multiple links. It is also rapidly convergent, allowing computation of 4-element diversity combiner weights to attain nearly the maximum SINR obtainable by the combiner using 8-to-16 pilot data tones. It automatically detects and reconstructs data from nodes that have been authorized to communicate with the network, or with recipient nodes within the network, and rejects nodes that are not so authorized, allowing the network to adjust and control its topology and information flow at the physical layer, and providing an important level of security by rejecting signals that do not possess appropriate network or recipient pilots. It also provides an additional level of data scrambling to prevent occurrence of correlated interlink symbol streams that can cause severe misadjustment in conventional linear combiner adaptation algorithms.
  • In reciprocal channels, the linear combiner weights provided during receive operations can be used to simply construct linear distribution weights during subsequent transmit operations, by setting distribution weight g1(k, l; n2, n1) proportional to w*1(k, l; n2, n1) during uplink transmit operations, and g2(k, l; n1, n2) proportional to w*2(k, l; n1, n2) during downlink transmit operations. The transmit weights will be substantively nulling in this system, allowing each node to form frequency and time coincident two-way links to every node in its field of view, with which it is authorized (through establishment of link set and transfer of network/recipient node information) to communicate.
  • Among other advantages, this capability allows nodes to independently adjust transmit power directed to other nodes in the network, for example, to optimize capacity achievable at that node given the total power available to it, or to minimize power emitted into the network by that node given an aggregate power requirement. This capability also allows the node to adjust its contribution to the overall network, for example, to maximize the total aggregate (max-sum) capacity of the network, or to minimize network power subject to a network-level capacity constraint. In addition, this capability can allow the node to provide two-way communication to authorized nodes, or in defined subnets, in the presence of other nodes or subnets that it is not authorized to communicate with, for example, adjacent cells in CMRS networks, and adjacent (even interpenetrating), and virtual private nets. In wireless LAN's and MAN's.
  • This capability is illustrated in FIGS. 39 and 40, the latter being for a hexagonal network of six nodes arranged in a ring network, with an additional direct connect between nodes A and D. In this example, each node has been provided with a recipient pilot for its adjacent node, e.g., node B has been provided with recipient pilots for nodes A and C, facilitating time-frequency coincident communication with those adjacent nodes. In addition, Node A has been provided with recipient pilots for node D, i.e., node A can communicate with nodes B, D, or F.
  • The pseudodelay indicator functions (provided as a function of SINR, i.e., with peaks at observed pseudodelays) are shown for each of the nodes. Indicator functions generated at nodes B, C, E, and F have two strong peaks, corresponding to pseudodelays used at their connecting nodes, plus a 10 microsecond time-of-flight delay (assuming all nodes are synchronized to GPS UTC). In addition, nodes A and D have a third peak at their respective delays, plus a 20 microsecond time-of-flight delay. The pseudodelays are minimally separated by 25 microseconds for each of the originating nodes (12.5 microsecond minimal separation between all nodes), which is easily wide enough to allow peaks from different originators to be discerned. In addition, the peak values (near 20 dB SINR for all links except the A-to-D link) are detectable with a 0 dB threshold. As Figure ## shows, the receive and transmit weights form beam and null patterns that allow independent links to be formed between authorized nodes, and that allow unauthorized signals to be screened at the points or reception and transmission.
  • The aperture estimates A will (also notionally, in absence of multipath) form beams in the direction of the originating node; however; they will ignore all other nodes in the network. For this reason, they cannot be used in general to sustain independent links. However, the aperture estimates can be used to allow rapid reentry into the network, for example, in packet data systems where users may quickly begin and end signal transmissions over brief time periods (e.g., such that the channel response has not changed substantively between transmissions). The aperture estimates can also be combined with combiner/distribution weights to form rapid nulls again other links or nodes in the network.
  • The primary application area for the fully adaptive MIMO arrays of the preferred embodiment will be below 10 GHz, where the abilities to achieve non-LOS and to exploit multipath are still possible, and where pathloss, weather effects, and channel dynamics can be handled by adaptive arrays. The preferred embodiment's MIMO network will provide a strong advantage over conventional MIMO links, by not requiring antenna separation of 10 wavelengths to provide effective capacity gain. The present state of the art considers 10 wavelengths to be the rule of thumb for the distance between antennas that provides spatially independent antenna feeds due to disparate multipath at each antenna. This rule has greatest applicability in worst-case mobile environments subject to Rayleigh fading, i.e., where the (typically much stronger) direct path is obscured, and propagation occurs over many equal-power reflection paths.
  • The MIMO network of the preferred embodiment, however, exploits route diversity due to reception of signals from widely separated nodes, and does not need multipath to provide the capacity gains cited for MIMO links in the present state of the art. This enables the preferred embodiment to employ antennas with much smaller separation, e.g., circular arrays with half-to-full wavelength diameter, to provide effective capacity or QoS gains. The preferred embodiment's exploitation of multipath can further improve performance, by providing additional differences between gain and phase induced at each antenna in the array. In this regards, a smaller aperture is also better, as it reduces frequency selectivity across individual frequency channels. Polarization diversity can also be employed between antennas with arbitrary spacing (e.g., in “zero aperture” arrays), as well as “gain diversity” if the antennas have distinct gain patterns.
  • The MIMO network of the preferred embodiment has application in the 10-100 GHz region (for example, LMDS bands around 25-35 GHz where mesh networks are of increasing interest), even though these networks are likely to employ nonadaptive directional antennas, or partially adaptive antennas, e.g., arrays in focal plane of directional dish antennas, that direct high gain or “pencil” beams at other ends of the link, rather than fully adaptive beam-and-null steering networks. This is due to small form factor of such antennas, as well as pathloss, atmospheric absorption, and weather effects prevalent above the 10 GHz band.
  • The next preference is that for each channel that is dynamically established, the uplink and downlink share a common frequency (that is, the transmission and reception are on the same frequency). This enables the establishment and exploitation of channel reciprocity (CR) between pairs of nodes, the sharing of antennae and diversity channels in transmit and receive operations in particular nodes, and other network advantages. The network advantages include the use of ad hoc, single-frequency networks in bursty (data-intensive) networks, such as packet-switched networks, random-access networks, or at the network “edges” (where the SINR level threatens to overcome the network capacity). This also allows the establishment of a two-layer time-division duplex schema in persistent networks or channels (e.g. ones that are circuit-switched, or perform connectionless datagram backhaul functions), where there is an equal duty cycle in both directions. An alternative embodiment will permit asymmetric duty cycles, and yet a third configurable balancing of duty cycles. Additionally, in the multitone case of dual-frequency approach (uplink and downlink using distinct frequencies), the network uses a frequency division duplex (FDD) protocol, preferably in combination with channel-based transmission and reception weights.
  • The network advantage to the preferred embodiment is that, instead of the network serving as a Procrustean bed to which the communications links must be fitted out of the combination of its environmental SINR, established protocols, and channel approach, each communications link can use the environmental SINR, protocols, and channel approach to dynamically adapt the network's functioning to maximize capacity and minimize power consumption.
  • The second preference is that the network uses and exploits diversity frequency transmission and reception at all nodes in the network. This particular aspect of the preferred embodiment carries the complexity and hardware cost of requiring that each node incorporate spatially separated and shared receive/transmit antennae, although the separation need only be measured in tens of lambdas of the lowest frequency (longest wavelength) used by that particular node. This pragmatically can create a situation where BS nodes are equipped with larger antennae which are spatially separated by feet or meters, and thus use far lower frequencies for ‘backhaul’ or BS to BS transmissions; this also carries, however, the advantage that SU nodes lacking such spatial separation will be intrinsically deaf to such frequencies. (Care must be taken to consider harmonics between BS backbone frequencies and SU channel frequencies.)
  • Optionally, in an enhancement to the preferred embodiment, the network would include and make use of frequency polarization, spectral diversity, or any combination thereof, at any subset (including a proper subset) of the network's nodes to provide further coding and differentiation potential. And in another, further enhancement, the network would employ Butler RF networks to provide common RF front-end and scalable and expandable transceiver DSP backends in peer-to-peer network implementations.
  • The third preference is that the nodes include a multitone QAM encoder, whereby individual tones would be multiplied by Quadrature-Amplitude-Modulated symbols to further differentiate the signals between nodes, even those using the same frequencies. Alternative QAM approaches would include PSK, π/4 QPSK, and π/4-DQPSK symbols to increase the variation potentialities. These symbols would be generated using Trellis-Coded-Modulation (TM) encoding over individual frequency channels and would include several-to-one multitone symbols. One alternative embodiment would use Reed-Solomon codes and direct mapping to symbols; other alternatives would use Turbo encoding, either at the baseband or as part of the TM, or any combination thereof. To aid the Viterbi decoding at the receiver the ‘tail-biting approach would be used at the edge of the symbol blocks. To assist the maximum capacity solution for each frequency channel, the network would use variable information bits per frequency channel rather than a fixed set of information bits per frequency channel, in a method analogous to the Digital MultiTone, Digital Signal Loss (DMT DSL) approach, trading the need for information density encoding as part of the signal overhead for the need for all channels to be constrained to the minimum guaranteed capacity of any environmentally or hardware constrained channel, to avoid pathloss for the most tightly constrained link or channel. However, rather than insist upon this approach, the network would include the capability to shift to a constant bits per frequency channel approach with appropriate LEGO power management, to enable and support the minimum-power solution for the network when either power or capacity constraints determine this is preferable.
  • The fourth preference is that the network adds pseudorandom modulation to the symbols after encoding. This is to eliminate the need to increase the signaling overhead by runs of correlated symbols, as it aids in the receive adaptation algorithms, provides discrete link encryption, thereby greatly increasing both channel and network security, and enables pilot-gated fast acquisition and timing recovery algorithms. An extension to the pseudorandom modulation is the analysis and elimination of certain detectable features by the network in one alternate embodiment. A distinct extension is the embedding of invariance for exploiting broader modulation, using gated SCORE. And a third extension combines the two extensions just described.
  • The fifth preference is the addition of an error detection syndrome, or CRC block to transmissions to detect bit errors, which would enable the initiation of a retransmission request at the end of a packet's reception when an error is signaled.
  • The sixth preference is using a computationally efficient and fast-converging receive weight algorithm (CE&FC RWA) to reduce the computational and hardware overhead for each channel's transmission and node. Variations of such CE&FC RWA that would be used include any one, subcombination, or combination, of the following: Least-Squares Like (LS), which are also known as matrix-inversion; Block-Update implementations (on a per-packet basis) that amortize matrix operations over multiple data snapshots (using tones and/or multitone symbols); and recursive single-snapshot algorithms. Furthermore, the preferred embodiment may use one, more than one, or all of the following for the same purposes: calculation of autocorrelation statistics in voltage domain (e.g. using QRD, MGSO) to minimize the complexity and increase the accuracy of the weight-update operation; multiport adaptation (simultaneous processing of multiple co-channel links) on each frequency channel to amortize autocorrelation operations over multiple users (more at BS than SU nodes); or single-step, single-port adaptations (more at SUs than BSs). Depending on the network constancy and dynamic state, or static constancy, the network may vary between uncalibrated techniques which are not dependent upon knowledge or calculation of channel information (e.g. the emitter location, or the elevation/azimuth separating transmitter and receiver), non-blind and blind weight adaptation techniques such as pilot-based initial weight acquisition signaling, blind and/or pilot-aided decision-direction weighting in persistent links, and blind embedded-invariance techniques such as gated SCORE, in an alternative embodiment. For pilot-aided and gated SCORE techniques the network would preferentially use the computationally efficient mechanization of cross-correlation operations employing fast transform (and in a specific embodiment, FFT) methods. In yet other alternative embodiments the network may use combined channel sounding, channel-based weight estimation, or any combination of the foregoing.
  • The seventh preference is using post-combining in-channel tone equalization to remove timing and carrier offset. This could include multiplication by constant modulus weights, as the first preference, to remove timing and/or delay offsets; alternatively, it could include low-complexity intertone filtering to remove carrier offset and Doppler errors; and, of course, a combination of both could be employed depending on the environmental and hardware complexity needs, constraints, and costs.
  • The eighth, and most important preference for the preferred embodiment is that each node of the network be capable of employing and employ retrodirective transmission and reception modulation, wherein the transmit gains are set proportional to the actually experienced reception weights for the frequencies used. For single frequency links, this exploits their potential reciprocity (especially for TDD or ad-hoc networks). When a TDD approach is used each data frame is encapsulated in smaller guard frames, and the entire transmission occupies a smaller portion of the available bandwidth to similarly encapsulate it in the available bandwidth. The signal for a one-way frame duration is further broken down to incorporate a guard time, a data symbol, an encapsulating cyclic prefix, a control symbol, a cyclic prefix separation the control symbol from the acquisition symbol, and a final encapsulating cyclic prefix. The frequency channels that occupy the bandwidth carry bearer data fragments over fractional subfragments. One embodiment for low-mobility, fixed or portable TDD uses a 120 B Bearer Data Fragment which is comprised of eight 15B subfragments, 8 differentiating and coordinating multitone symbols, and of 5.75 MHz available only 4.26 MHz bandwidth, said bandwidth being divided into 13 frequency channels, each with 320 kHz, to provide 2 fragments per frame per link, or 6.24 Mbytes each frame, or 4.608 Mbps as one channel (Channel 0) is reserved for fragment resends, thereby providing the equivalent in wireless transmission of 3 land-based T1 lines with, thanks to the reservation and resend provision, a 10−4 BER. This embodiment further uses for each 15 B subfragment a MAC header providing 2 B CRC and 13 B MAC data, providing 52 MAC channels and at full duplex 10.4 kbps per channel. The acquisition symbols have 30 B pilot or synchronization data per 320 kHz frequency channel, 32 to 64 pilot tones per channel, and thereby provide fast acquisition for up to 32 Degrees of Freedom; and if the area is sparsely populated or for other reasons (downtime, occupied by other transmissions) less than 17 Degrees of Freedom were needed, the excess DOF could be reused and reprovisioned to enable dynamic channels and thereby further increase the local flexibility.
  • The high-mobility TDD link replaces the cyclic prefixes with nulls on the uplink and CP on the downlink, halves the number of tones and doubles the separation of tones (from 426 to 213 tones, from 10 kHz to 20 kHz separation), and provides half the DOF, but doubles the amount of overlap that can be tolerated for the same QOS.
  • In the preferred embodiment for fixed, portable, and low-mobility links, the tone layout divides the 4.26 MHz into 426 ‘bins’, each of 10 kHz separation; these are then shared such that thirteen channels, each with 32 tones covering 320 kHz, from Channel 0 to Channel 12 are formed, with each channel further carrying of the 32 tones a network-information-bearing tone at the bottom and top of the channel (T0 and T31) that encapsulate the content-carrying tones T1 through T30. Each channel is modulated by a 32-tone pilot to facilitate the acquisition and fine time synchronization. The 10 kHz tone separation controls reasonable levels of time selective Multipath (+/−100 MHz), with a cyclic buffer being added at channel edges. The network can, should environmental or network conditions suggest, ‘step down’ the overall frequency spread to 160 kHz BW without affecting the fundamental stability of the traffic algorithms or network. (See FIG. 26)
  • However, for high-mobility TDD links the number of bins, pilot size, and information-bearing tones per channel are halved, while the tone separation is doubled. This will permit high levels of Doppler shift (+/−5 kHz) without sacrificing QoS or content integrity; and again, the network can step down the overall frequency spread and thus the bandwidth per bin can be halved (from 320 kHz to 160 kHz) without affecting the fundamental stability of the traffic algorithms or network. (See FIG. 27)
  • Preferentially transmit gains are set proportionally to the conjugate of the receive weights for that particular node and channel. An alternative approach uses channel-based retrodirective transmit gains (more for SU than BS); a second alternative uses channel-based directive (beam-pointing) transmit gains (more for BS than SU); a third applies retrodirection to in-channel preemphasis gains; and any combination of these alternative approaches may be employed. For any such single-frequency link the transmitting node breaks periodically (in one particular alternative embodiment every 5 msec) to collect ACKs, NACKs, or RTSs, that is, to monitor the link performance as perceived by the receiving node. This approach, though it provides all the capacity in a particular link to a user as needed, is very compatible with small, stationary networks but less compatible with LEGO network management due to the effects of nonstationary network fields.
  • The ninth preference is that the network employs Locally-Enabled Network Optimization (LEGO) to manage the transmit power for each node (BS and SU) operating, dynamically. This requires that relatively complex computational operations (e.g. receive weight and transmit gain calculations, multitone, QAM, TCM, and the above-mentioned signal/symbol/weight/frequency calculations) be carried out autonomously at each node in the network, rather than limited to one class of nodes. This further requires that as part of the network overhead simple, network-level control parameters be passed to, or shared by (for certain time intervals, though such may either be hard-set invariances in the hardware, subject to change signal, or network-alterable) all nodes in the network. Additionally, each node would implement its power-management algorithm to minimize transmit power and manage its links, thereby indirectly optimizing performance over the entire network. An alternative embodiment would effect network-level optimization; and a third would combine node-driven local determined optimization with network-level optimization.
  • Although the preferred embodiment uses an algorithm that presumes that power capacity will vary over the network, and that establishes local maxima by favoring capacity maximization for the power constraint at each particular node in the network (i.e. a goal driven minimization algorithm), various alternative LEGO algorithms could be employed. For example, if power shortfalls or constraints on any part of the network are anticipated, then a capacity maximization subject to that power constraint algorithm could be used. A third alternative, presuming that the network capacity (as opposed to the power) is the guiding constraint, sets the power minimization subject to the capacity attainment to the limit possible over the entire network. And a fourth, which is better, sets the power minimization at each particular node in the network subject to the capacity constraint at that particular node.
  • The preferred embodiment incorporates into each node a multitone QAM decoder, with a soft-optimized, Viterbi algorithm (SOVA) embodied in the decoder, such that the network can effect changes in the decoder at its nodes by a software or information transmission that re-sets the hardware (EEPROM, FPGA, PAL, or other semiconductor chip) and software at that node for the new decoding scheme. An alternative embodiment with lesser cost and complexity at each node, but lesser flexibility, is to use hard-optimized, Viterbi or Reed-Solomon, decoders at each node in the network. A third alternative is to combine both SOVA and HOVA decoders in the network and establish hierarchies wherein the more flexible stations moderate as needed to communicate with their less flexible but simple contacts.
  • The preferred embodiment of the present form of the invention also incorporates synchronization means for its communications, which encompass timing estimation, carrier estimation, and synchronization operations as part of the network communication and control methodologies. The preferred synchronization is to a single, universal, and commonly observable timing signal such as that used in GPS operations, and occurs as part of the carrier signal (also known as ‘UPS Sync’). An alternative embodiment would use synchronization to a timing, carrier, or mutual offset which would be observed at the transmission or master node during the reception process, wherein the slaved receiver synchronization would introduce a x2 delay and carrier error at the slaved transmitter, to avoid interference with the master transmission. Another alternative embodiment would use precompensation (in timing, carrier advancement, or both), to equalize any timing or carrier offset observed at both ends of the link (a means to synchronize the slaved node's transmission). Combinations of universal, offset, or precompensation synchronization methods would be yet further alternative embodiments.
  • Synchronization would be performed by including in the transmission dedicated multitone signals (such forming part of the set of QAM symbols used by the preferred embodiment), or by using dedicated tones in each multitone symbol, or most preferentially, by combinations of dedicated tones and slots to maximize the synchronization possible for the minimal transmission density. Coarse synchronization would be performed prior to the multitone demodulation, using the envelope features of the waveform. Fine synchronization would be performed after multitone demodulation, using dedicated QAM synchronization symbols and tones. For embodiments using universal observed timing through GPS synchronization, or using slaved transmission synchronization, these would be performed using control or MAC channels. An alternative embodiment would bypass the synchronization operation entirely by using GPS-based timing and carrier acquisition methods. A separate alternative embodiment would use blind, data-based synchronization methods, minimizing the use of specific synchronization data.
  • In the preferred embodiment Transmit/Receive (T/R) compensation means are employed to remove nonreciprocal channels after shared transmit or receive operations. These would be employed intermittently on an ‘as-needed’ basis through transmission of specialized T/R compensation packets to initiate the compensation processing. An alternative embodiment would use dedicated T/R compensation channels to initiate the compensation processing. And the network would employ loops back of the received signal data to provide the initial transmitter with the T/R channel differences.
  • The preferred embodiment further includes methods for datagram network instantiations, particularly applicable for conditions such as edge networks (e.g. where the wireless electromagnetic communications network is connecting to the Internet) and entirely interior networks (e.g. the ‘backhaul’, dedicated, data-heavy, and often fiber-optic networks of other carriers). These enable the transmission of data in discrete datagrams, or fragments of datagrams, over multiple routes, such as neighboring nodes, according to the availability of transmission channel capacities. The recipient nodes would then reconstitute the original data stream from the received and re-ordered datagrams or datagram fragments. The preferred embodiment mechanizes the process by incorporating, or enabling, both TCP/IP and FTP protocols, and further uses fragment-level CRC's, error detection, and retransmission protocols to provide Zero-error, Uncommitted Bit-Rate (ZE-UBR) services. By using reservation protocols such as VoIP RSVP common to the industry, the preferred embodiment can also provide Committed Bit-Rate (CBR) service.
  • The preferred embodiment also incorporates means for resolving scheduling and capacity problems, preferentially the soft-contention and Demand-Assigned, Multiple-Access (DAMA) scheduling means. These would primarily be employed at network edges, though they also can serve at ‘bursty’ edge networks or handle ‘unconcentrated’ data streams. The soft contention means minimize the effects of data collisions and the latency due to retransmissions and/or backoff network effects; the DAMA scheduling is principally employed over longer sessions to maximize the network efficiency.
  • The topology of the wireless electromagnetic communications network affects the local details of implementation of the preferred embodiment, as different constraints and needs dictate how the best adaptation occurs. For small network embodiments where most, if not all of the nodes are in a common field of view, it is not important whether the network be in a star, ring, bus, or mesh topology. Under these conditions the preferred embodiment matches each transceiver's Degrees of Freedom (DOF) to the nodes in the possible link directions and equalizes them to provide node-equivalent uplink and downlink capacity. An alternative embodiment may also be used, depending on network traffic or user payment/preferences, wherein asymmetric transceiver assignments reflect the desired capacity weighting. After the DOF matching is completed, each node adapts the Receive Weights to form a hard (max-SINR, null-steered) or soft (max SINR) solution for multipath resolution for transmissions to that node. Then explicit interference whitening for in-network nodes, or implicit data whitening for soft nulling of out-of-network interferers are employed for conditions, e.g. as in Part 15 applications. Finally, retrodirective transmit gains (whitened or unwhitened as above) are used during subsequent transmission operations during a channel communication. In an alternative embodiments, the Receive Weights are directive, whitened, channel-based, or a combination thereof.
  • For large network embodiments the fundamental conditions are different and thus a different implementation and adaptation strategy is usually required. These include mesh extensions of star, ring, and bus networks (see FIG. 4); and the principal difference is that most nodes are not in a common field of view. A greater amount of network ‘passing over’ is required and nodes must more often serve as intermediary rather than terminal transceivers. Under these conditions, for each node the transceiver DOF is matched to those nodes that are observable during the Receive operation, and then performs the symmetric equalization (or alternative, asymmetric equalization) and other operations (and alternatives) as described in the preceding paragraph. Under these conditions the LEGO parameters used for management of the network are disseminated throughout the network.
  • A third possible topology and concomitant operating conditions occurs when the network is cellular, or has overlapping subordinate or coordinating networks. Under these conditions, which are particularly likely to occur under competition, not all the nodes will be connected to the same wireless electromagnetic communications network. A greater potential for signal interference which is beyond the network's control results and the preferred embodiment adapts to this constraint. Furthermore, there may be some minimal transmissions of control, network health, or network OAMP data through a disparate infrastructure (wired or wireless), or even a high-rate connection through a wired infrastructure in an alternative embodiment.
  • When these conditions occur and networks are in view of each other, they can experience signal or physical overlapping; in many situations, such as urban areas, there may be heavy interpenetration. In principle there will be physical separation of the disparate networks' nodes, at least as to their geographic identity (two mobile phones generally do not share the exact, same physical location and continue to work when so crushed together); in practice, however, all the networks' nodes share the same physical layer of the electromagnetic spectrum and the real world geography and hardware. What ensures the continued separation of the networks is and enforced separation at the non-physical, information and communication layer. Alternative embodiments may allow low-rate communication, or means for limited, or even allowable full inter-network communication, depending on the differing networks' contract agreement as to communications and provisioning sharing.
  • Under these conditions the nodes in the preferred embodiment direct nulls (hard or soft) at all observed Transmission nodes in other networks, to minimize the interference from and with the other network's signals. This same approach may be used, in an alternative embodiment, to enforce a ‘lock out’ of unauthorized nodes in a secure network. The nulls are further enabled using network-wide scrambling, gating, or encryption means as described elsewhere, to differentiate the two networks' internal signals.
  • An alternative embodiment incorporates one or more broadcast modes from network master controllers, that would enforce common timing standards and provide broadcast, i.e. network common information, without requiring two-way bandwidth for such effort.
  • Advantages: LEGO
  • Among the advantages of the preferred embodiment's solution of the local optimizations to obtain global optimization are the following: (1) the working target capacity objective for any given set of nodes may be rapidly reached by iterating from an initial approximation to an acceptably-constrained solution with many fewer iterations overall; (2) the power levels that solve the local target capacity objective minimize the transmitted energy at the local node, thereby minimizing the co-channel interference to other uses in the network; and (3) the quantities needed for the local solution only require local information to solve, thereby reducing substantially the ratio between ‘control’ and ‘content’ information, thus further enhancing the overall capacity of the network.
  • Additional advantages of the preferred embodiment's LEGO approach are (1) that it can be solved at each node using a very simple but powerful approximation technique that converges rapidly to the correct solution; (2) the power levels, at each respective node, that solve Eq. 3 actually minimize the transmitted energy at each respective node, hence (3) minimizing co-channel interference to other users (nodes) in the network while achieving the targeted capacity rates; and (4) most of the quantities required for the optimization only require local information.
  • Further advantages of the preferred embodiment include the lack of any need for estimating any channel matrices., and substantial lessening of detailed and fine calculation and recalculation of both (1) the initial SINR ratios and (2) the effect on each node of changing the power usage of any other node in the network. This latter has a secondary effect of reducing the amount of ‘control’ information that needs to be sent across the network, and reduces the amount of work or complexity that has to be managed by the network controller.
  • LEGO Effect on the MIMO Network
  • By solving the optimization at the local level for each node of the network, the problem of network optimization becomes a hierarchical one, where the overall problem is reduced to a series of subproblems. The preferred embodiment's implementation as described above, is then generalized to handle both the power constrained unconstrained (negligible noise) objective functions.
  • For the channel capacity value D21, the network performs the optimization

  • D21=max β such that
  • β q U ( m ) k log ( 1 + γ ( k , q ) ) , γ ( k , q ) 0 , m R 1 ( m ) R , π 1 ( k , q ) 0 , q U ( m ) k π 1 ( k , q ) R 1 ( m ) EQ . 49
  • where U(m) is a collection of links in a given aggregate set m, k is a transmission mode index, reflecting the fact that a single link may transmit over multiple diversity channels, π1(k,q) is the transmit power for mode k and link q, γ(k,q) is the post beamforming signal to interference noise ration, and R1(m) is the total allowed transmit power for aggregate set m; by solving first the reverse link power control problem; then treating the forward link problem in an identical fashion, substituting the subscripts 2 for 1. The solution for the link-level optimization as described above is then implemented at each node, and the network solution derived therefrom.
  • The means used to solve D21 optimization are chosen to minimize the amount of auxiliary channel information, or network control information that displaces network content. For most of the max-min objective functions described herein, a necessary condition of optimality is that all of the links over each link index q achieve the same capacity. We can therefore require the constraint in Eq. 49 to be an equality For this embodiment, the objective function that is solved at each aggregate set m, becomes:
  • min π r ( q ) q Q ( m ) π r ( q ) ,
  • such that

  • β=Σq∈Q(m)log(1+γ(q))  EQ. 50
  • The preferred embodiment linearizes this objective function as a function of γ(q) and optimizes it using the formulation in EQ 28, EQ 29 and EQ 30.
    For each aggregate set m, the network now attempts to achieve the given capacity objective, β, by (1) optimizing the receive beamformers, using simple MMSE processing, to simultaneously optimize the SINR; (2) based on the individual measured SINR for each q index, attempt to incrementally increase or lower its capacity as needed to match the current target; and (3) step the power by a quantized small step in the appropriate direction. When all aggregate sets have achieved the current target capacity, then the network can either increase the target capacity β, or add additional users (opportunistically or by signal) to exploit the now-known excess capacity. The network controller of the preferred embodiment is computationally extremely simple and requires a very small feedback channel, or portion of the control channel otherwise unused, to accomplish its tasks.
  • As the network evolves each independent channel is assigned a variable rate codec optimized for the currently achieved SINR for that link, whereby a code and associated rate are chosen to achieve the desired bit error using any of the Trellis Codes, interleavers, and/or Reed-Solomon codes known to the literature.
  • Good network performance includes, generally, a measure of uniform minimum performance level for all links assigned the same quality of service (QoS). The preferred embodiment uses Max-Min capacity criterion as disclosed above to attain this, as it is generalizable to a wide variety of network configurations. Minimizing the total power subject to arbitrary capacity constraints β(m), as in EQ 3 and EQ 4 is also an embodiment of interest and is easily accommodated by the current invention. The addition of reciprocity as a feature of the preferred embodiment allows us to state the decoupled objective function:
  • D rt = max π 1 ( k , q ) min m D rt ( m ) where D rt ( m ) q U ( m ) k log ( 1 + γ ( k , q ) ) EQ . 51
  • as the largest possible mutual information that can be obtained, as the one to be used to obtain network optimality.
  • The reciprocity equation, Eq. 2, establishes that the network's uplink capacity will equal its downlink capacity provided that the receive weights are used to transmit and the transmit weights to receive. Implementing the network optimization in this fashion provides the following benefits: (1) transmit weights can be obtained from receive weights; (2) transmit and receive weights require only local information at each node, thereby eliminating the ‘network God’ and ‘common knowledge’ problems; and (3) local optimization done using this optimizes the entire network, both making it stable and converging. The reciprocity equation is used particularly to tell each node how to choose its transmit weights optimally.
  • An improvement over blindly substituting transmit and receive weights, however, is in using the proper form of the objective function that satisfies the reciprocity equation, for that determines how to optimally adjust and select the gain over multiple outputs and multiple inputs. The choice of the objective function specified above dictates the algorithmic procedure that is also specified above to optimize the network.
  • Alternative embodiments of the network controller include having it set the entire network target capacity objective (β), using the network controller to add a node, drop a node, or change the target capacity objective for the nodes it governs or the network. FIG. 41 illustrates one feasible algorithm whereby a new node (or a node which had earlier dropped out of the network) enters the network. Further embodiments include using a network control element that may, either in addition to or in replacement for altering β, add, drop, or change channels between nodes, frequencies, coding, security, or protocols, polarizations, or traffic density allocations usable by a particular node or channel. In yet another embodiment the network control element selects and manages differing constraints, not being limited just to power and capacity, but also QoS, the amount of frequency spread between channels, the multipath density allocated to any particular pairing of nodes, or to any particular user, or any combination and subcombination of all of the above.
  • Although the present invention has been described chiefly in terms of the presently preferred embodiment, it is to be understood that the disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after having read the above disclosure. Such modifications may involve other features which are already known in the design, manufacture and use of wireless electromagnetic communications networks, systems and MIMO networks and systems therefore, and which may be used instead of or in addition to features already described herein. The algorithms and equations herein are not limiting but instructive of the embodiment of the invention, and variations which are readily derived through programming or mathematical transformations which are standard or known to the appropriate art are not excluded by omission. Accordingly, it is intended that the appended claims are interpreted as covering all alterations and modifications as fall within the true spirit and scope of the invention in light of the prior art.
  • Additionally, although claims have been formulated in this application to particular combinations of elements, it should be understood that the scope of the disclosure of the present application also includes any single novel element or any novel combination of elements disclosed herein, either explicitly or implicitly, whether or not it relates to the same invention as presently claimed in any claim and whether or not it mitigates any or all of the same technical problems as does the present invention. The applicants hereby give notice that new claims may be formulated to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.
  • FIG. 42 depicts the baseline transceiver employed in the primary embodiment. The radio consists of a pair of antennas and RF transceivers (frequency up/down converters and PA's); a digital ASIC, FPGA, or software radio component to implement lower-PHY (LPHY) symbol modulation/demodulation operations, linear combining of LPHY modem output signals during receive operations and corresponding linear weighting and distribution of LPHY model input signals during transmit operations; an LO employing a GPS disciplined oscillator (GPS-DO); and a software computer to implement optional higher-layer codec and collaborative radio applications. Typical commercially available GPS-DO's can provide <100 ns relative node-to-node timing error (well within the 800 ns delay error budget provided by the lower PHY modulation format) and <1 Hz carrier offset error (separate from Doppler shift between nodes), stable to within 300 ns over periods of >1 hour in event of GPS outage, e.g., due to foliage or man-made obstructions. In TDD network instantiations, this can allow fast (1.25 ms) node entry to the network without the need for detailed and distributed timing synchronization mechanisms. In absence of GPS-DO's collaborative means can be implemented to allow the radios to synchronize to a common shared time reference by monitoring broadcast signals transmitted from adjacent transceivers, or to synchronize to GPS time and frequency standards if just one of the transceivers in the network possesses a GPS-DO, allowing the transceivers to be implemented at greatly reduced cost. The baseline transceiver can to employ two degrees of freedom during receive and subsequent transmit operations, to set up independent ports to up to two other transceivers in the network during transmit or receive operations, or to null one external interferer during receive operations. Antennas in the network can be polarization diverse (transmitting and receiving on linearly independent, preferably orthogonal polarizations), spatially diverse (deployed at spatially separated locations), or combinations of polarization and spatially diverse. It is also possible to have a single channel transceiver capable of communicating with the network, or any number of ad-hoc combinations of transceivers of varying capabilities, likewise.
  • FIG. 43 depicts means for extending the baseline transceiver to larger numbers of antenna channels. The baseline transceiver and adaptation algorithm include provisions for routing of transmit and receive data and a modified Gram-Schmidt orthogonalization (MGSO) statistics between boards, in order to allow the radio to be scaled up to as many as 8 antennas by combining 2, 3, or 4 Transceiver boards together. A transceiver employing L baseline transceivers can employ up to 2L degrees of freedom during receive and subsequent transmit operations, to establish independent channels to up to 2L separate transceivers in a network, or to excise up to 2L−1 external interference during receive operations.
  • FIG. 44 depicts an exemplary MIMO networking routing scenario in which four transceivers with four spatial degrees of freedom are used to route data around a four-node network in the presence of a strong jammer. Each transceiver employs two of its four available degrees of freedom to establish connections with its neighboring transceivers. The remaining degrees of freedom are then used to excise the jammer in the center of the network, and to increase signal-to-noise ratio (SNR) in the direction of its neighboring transceivers. In a time-division duplex (TDD) communication network, these connections can be used to simultaneously route data in clockwise and counter-clockwise directions to form a counter rotating ring network. In lightly loaded networks, this can double the capacity available to any node in the network; moreover, this can greatly increase availability of the network to each node, by providing a redundant path for transmission of data between network ports.
  • FIG. 45 depicts the baseline symbol and timing structure allowing transceivers to connect with each other in a symmetric time-division duplex (TDD) multinode network. Packets are transmitted to and from uplink receive nodes and downlink receive nodes during alternating time slots, with an appropriate guard time, e.g., for switching between transmit and receive modes, transmission of signaling/control and network maintenance/provision packets, computation of receiver CRC's and decoding algorithms, and operation of higher-layer data routing procedures. Within each slot, an integer number of lower PHY (LPHY) symbols is transmitted. The number of symbols is chosen to have a value that allows implementation of efficient orthogonal transformations over the symbol time index. In the primary embodiment, this number is set equal to a power-of-two, e.g., 256 symbols, in order to use of fast Hadamard transform (FHT) operations; however, other embodiments can employ different numbers of symbols, e.g., allowing implementation of mixed-radix fast Fourier transforms (FFT's) or other linear orthogonal operations. Each LPHY symbol is assumed to possess a base symbol and a cyclic prefix that is discarded during the LPHY symbol demodulation operation, allowing the transceivers to be insensitive to delay and multipath with maximum substantive value that is less than the cyclic prefix. In the preferred embodiment, the cyclic prefix and base symbol is set to 800 ns and 3.2 μs, commensurate with the 802.11 OFDM traffic PHY, and may include additional synchronization and signaling symbols (external to symbols carrying traffic information) in order to maximize commonality with 802.11 hardware, and/or promote eventual coexistence and/or integration of the invention into 802.11 networks. In the preferred embodiment, the LPHY symbol is also either an OFDM waveform comprising multiple subcarriers (modulated OFDM tones) or a PAM signal equivalent to a single carrier of an OFDM waveform, e.g., for low-rate applications. However, the invention is compatible with many different LPHY modulation formats besides OFDM or PAM, including spread spectrum modulation formats that spread the signal over wide bandwidth, and LPI/LPD modulation formats that reduce or eliminate cyclic features of the waveform.
  • FIG. 46 depicts exemplary means for deploying the preferred embodiment in a TDD mesh network topology, in order to transmit data between a widely separated source and destination node. In this embodiment, the network nodes are first separated into uplink transmit nodes (downlink receive nodes), depicted with light interiors in FIG. 46, which transmit data over even time slots and receive data over odd time slots, and uplink receive nodes (downlink transmit nodes), depicted with dark interiors in FIG. 46, which receive data over even time slots and transmit data over odd time slots. Each transceiver is assumed to possess sufficient spatial channels to allow it to communicate simultaneously with at least two of its nearest neighbors over each time interval, i.e., to form two links between its nearest neighbors in the network, suppress any network or external interference impinging on the nodes, and close each individual link under channel propagation conditions observed by that node. At high spectral efficiency, e.g., in applications where the nodes must transmit data at high rate, each node (and especially internal nodes) may require as many as eight antennas, or four baseline transceivers, to support MIMO networking communication. Conversely, in applications where the nodes must transmit data at modest rates, e.g., VoIP communications, each transceiver could operate with as few as two diversity channels, or a single baseline transceiver, to support needs of the network.
  • Each link is given a unique link address (LA), defined by the transmit node address (TNA) and receive node address (RNA), i.e., the node address (NA) of the nodes originating and terminating that link, and the channel rank of that particular link if a true multirank MIMO link exists and is exploited by those nodes. In the sixteen-node network shown in FIG. 46, each LA is defined as a two-hex address comprising the (RNA,TNA) for that link, with a third hex number (equal to zero in every LA shown in the Figure) reserved to capture the mode index (0=dominant rank) of that link. In FIG. 46, uplinks instantiated over odd time-slots and passing data from uplink transmit nodes to downlink receive nodes are depicted as solid arrows, and downlinks instantiated over even time slots and passing data from downlink transmit nodes to downlink receive nodes are depicted as dashed arrows. In this Figure, packets can be transported across the entire network in 7 time slots (3.5 TDD frames).
  • FIG. 47 describes the baseline symbol and timing structure for the invention, when transceivers are operated in an ad-hoc multinode network. In the preferred ad hoc embodiment, traffic data is transmitted over a preset numbers of LPHY symbols, e.g., determined at the beginning of data communications, which is larger than a minimum number of signals Nembed determined by the overhead structure set aside to implement receive adaptation algorithms at each transceiver, and which is a convenient number, e.g., power-of-two, allowing implementation of efficient data transformations in subsequent processing steps. However, the preferred ad hoc embodiment employs an overhead structure that allows implementation of alternate methods that do not require exact knowledge of the full packet length to implement receive adaptation algorithms, and that can allow transmission of packets of different length to different nodes in the network.
  • For certain levels of quality-of-service, the traffic packet may be followed by an acknowledgment packet sent from the receive node(s) back to the transmit node, comprising Nembed LPHY symbols. As in the TDD instantiation, the traffic and acknowledgement packets are separated by a guard time interval; however, the time interval between traffic and acknowledgement packets may be very short, e.g., on the order of the Short Interframe Space (SIFS) in 802.11 communications.
  • FIG. 48 depicts exemplary means for deploying the invention in an ad hoc mesh network topology. In this network, any node can communicate with any other node in its field of view, allowing the source node to simultaneously transmit packets to any available node in the network. In FIG. 48, for example, the source node transmits packets to five separate intermediate (relay) receive nodes over a first traffic time slot, and directs those nodes to transmit packets directly to the destination node over a subsequent traffic time slot. In the preferred ad hoc embodiment, each of the relay nodes receive independent data, e.g., one of five subsets of data, from the source nodes, similar to the approach employed in the TDD embodiment. However, the invention supports an additional macrodiverse mode in which the source node transmits identical traffic data to each intermediate node. In this case, the intermediate nodes will form a macrodiverse transmitter that can exploit the full network transfer function between the source node and intermediate nodes during the first traffic time slot, and the full network transfer function between the relay nodes and the destination node over the second traffic time slot.
  • FIG. 49 describes multiport PHY transmit operations performed at transceivers using the invention; and these are described in detail below. In order to minimize complexity of the Figure, operations are shown for a single-carrier LPHY modulation format, e.g., a PAM format employing a cyclic prefix as shown in FIG. 45 and FIG. 47, or for a single subcarrier of an OFDM LPHY. In the latter case, all operations are replicated across subcarriers, with possible exception of subcarriers that may be reserved for synchronization purposes or for compatibility with existing wireless air interfaces, e.g., 802.11ag, and additional variations that may be introduced to increase security of the network.
  • On the traffic path, data bits intended for each of Mport receive node are first encoded into Ndata complex traffic data symbols, e.g., complex QPSK or QAM symbols, using conventional encoder technology. These symbols are then multiplexed onto the upper Ndata input bins of an efficient orthogonal transform operator such as a fast Hadamard transform (FHT), such that at least Nembed bins of the transformation are not modulated by data during the subsequent transform operation. On the overhead or “pilot” path, at least one of Nembed bins is modulated. This bin location is chosen based on the node address of the transmit node, and a network-wide (e.g., time-of-day based) Transmission Security (TRANSEC) operation known to each node in the network, e.g., by modulo-Nembed adding the TNA to a common TRANSEC word, such that each node is modulating a unique bin during any given traffic or acknowledgement time slot. Each port of modulated traffic and pilot symbols are then passed through the fast orthogonal transformation, yielding NFHT transformed output symbols. Each port of transformed output symbols are then multiplied by a second, pseudorandom constant modulus TRANSEC receive code based on the node address of the receive node that the transmit node is attempting to communicate with over that port and time slot, and other information known only to the network users. The resultant symbols are then multiplied by the Mport×Mant transmit diversity weights employed at the transmitter, where Mant is the number of antennas employed at the transmitter. If those weights are determined adaptively, e.g., using knowledge of reciprocity of the communication channel, this data is further multiplied by a set of transmit-receive compensation weights that enforce reciprocity between the transmit and receive channels at the node. These symbols are then passed through the LPHY symbol modulator (in combination with symbols corresponding to other subcarriers if the transceiver employs an OFDM LPHY), and onto the subsequent DAC, upconversion, power amplification, and RF transmission operations.
  • FIG. 50 describes multiport PHY receive operations performed at transceivers using the invention; and these are described in detail below. In order to minimize complexity of the Figure, operations are shown for a single-carrier LPHY modulation format, e.g., a PAM format employing a cyclic prefix as shown in FIG. 45 and FIG. 47, or for a single subcarrier of an OFDM LPHY. In the latter case, all operations are replicated across subcarriers, with possible exception of subcarriers that may be reserved for synchronization purposes or for compatibility with existing wireless air interfaces, e.g., 802.11ag, and additional variations that may be introduced to increase security of the network.
  • After RF reception, downconversion, and ADC operations on Mant spatial or polarization diverse antennas, data received at each antenna is passed through an LPHY demodulator that converts that data to NFHT×.Mant complex matrix representation (Mant columns of NFHT×1 complex data), on each subcarrier if the transceiver is employing an OFDM LPHY. Each NFHT×1 complex data vector is then multiplied by the conjugate of the TRANSEC receive code for that node, which removes that TRANSEC receive code added at the transmitter for that port (and only for ports that were intended to pass data to that receive node). This data is then passed through the inverse of the orthogonal transformation employed at the transmitter, e.g., an inverse FHT, and separated into the lower Nembed output bins (an Nembed×Mant complex pilot data matrix) corresponding to the pilot signal(s) employed at each transmit node attempting to communicate with that receive node, and Ndata output bins (an Ndata×Mant complex traffic data matrix) corresponding to the traffic data transmitted to the receive node, as well as interference generated by other nodes in the network or external emitters.
  • On the pilot path, the Nembed×Mant complex pilot data matrix is then passed to an adaptation algorithm that detects bins modulated by the transmitters attempting to communicate with the receiver; identifies those transmitters based on the detected bins and the TRANSEC transmit code algorithm employed in the network, determines quality of the received pilot symbols and (by extension) traffic data, and develops combining weights that can extract the traffic data from the Ndata×Mant complex traffic data matrix at the maximum signal-to-interference-and-noise ratio (max-SINR) achievable by the transceiver. On the training path, these combiner weights are then applied to the traffic data matrix, and the extracted data is then passed to a traffic decoder that decodes the traffic data back into bits and performs additional operations employed by the communication link, e.g., bit-level data decryption and error detection operations.
  • In the preferred TDD and ad hoc embodiments, each transmitter uses an orthogonal transformation of the same length during its transmit operation, generating packets of the same time duration as well. However, in some alternate embodiments different transmitters may transmit signals with different numbers of traffic data symbols. In this case, if an appropriate orthogonal transformation is employed at the transmitters, e.g., a radix-2 FHT, and the pilot symbols are restricted to an appropriate subset of input bins in that transformation, e.g., the first Nembed=2p bins of an FHT, then the first Nembed symbols (or a multiple of the first Nembed symbols) can be used in the receive adaptation algorithm. This can allow the invention to be used in fully adhoc networks where nodes can transmit packets of arbitrary length. However, receive combiner weights obtained through this process may exhibit misadjustment relative to optimal weights for the traffic data, as the pilot symbols may not experience the full processing gain of the FHT.
  • FIG. 51 describes multiport PHY receive adaptation operations performed in the primary embodiment of the invention; and these are described in detail below. On each subcarrier, the Nembed×Mant complex pilot data matrix is first passed to a whitening operation such as a modified Gram-Schmidt orthogonalization (MGSO) or other QR decomposition (QRD) that separates the pilot data X into an Nembed×Mant whitened data set satisfying QHQ=I, and an Mant×Mant statistic vector R that captures the autocorrelation of X, e.g., the Cholesky decomposition of XHX. The Q matrix is then analyzed (across multiple subcarriers for OFDM LPHY's) to detect all of the modulated pilot bins. This information is used to unambiguously determine the TNA of each node attempting to communicate with the receiver. Once this determination has been made, the link SINR, whitened linear combiner weights, and subsequent unwhitened combiner weights are computed for each transmitted signal (and subcarrier for OFDM LPHY's).
  • FIG. 52 describes receive packet detection, address association, and link SINR estimation performed in the primary embodiment of the invention; and these are described in detail below. The adaptation algorithms are uncalibrated, i.e., they do not exploit knowledge of the shaping, polarization, or physical placement of antennas used by the transceiver, and can be used to instantiate arbitrary network topologies, including point-to-point links, star networks, ring networks, or full mesh networks. When deployed in point-to-point links, successive iterations of the transmit and receive adaptation algorithm causes each transceiver to adapt its multiport combiner and distribution weights to the eigenmodes (left and right eigenvectors) of their MIMO internode channel response, typically in 2-to-4 TDD frames (5-10 ms). The resultant fully adaptive link can approach the Shannon capacity of the MIMO communication channel, regardless of the rank or distribution of the eigenvalues of that channel
  • FIG. 53 describes transmit adaptation algorithms performed in the primary embodiment of the invention. The baseline system employs network-wide collaborative link optimization rules referred to in [2] as locally enabled global optimization (LEGO), which optimize network-wide measures of network quality using retrodirective transmit weight adaptation and local (link layer) power management instructions. The approach exploits the ability to form nulls during transmit operations to intelligently manage interference presented to other nodes transmitting or communicating in the same frequency channel. This includes other nodes operating on the same network, and nodes operating on disconnected networks, without the need for higher-layer cross-communication between interference nodes or networks.
  • Also described below is also describe an alternate embodiment in which the adaptive receive combining weights are adapted to completely separate intended links with maximum signal-to-interference ratio rather than SIR, i.e., to direct “hard nulls” at each transmitter attempting to communicate with the node during the receive time slot so that interlink interference is completely removed during the receive operation, and to direct corresponding hard nulls back at the intended links during subsequent transmission opportunities. Although this algorithm does introduce some misadjustment (particularly during receive operations), it can improve the stability of the LEGO transmit adaptation algorithms in highly dynamic communication networks.
  • The resultant fully-adaptive system provides a much more versatile solution than competing multilayer receive-adaptive techniques such as BLAST and STP, which only approaches the Shannon capacity in full-rank (i.e., high multipath) channels. In particular, the fully-adaptive system can use its diversity degrees of freedom (DoF's) to provide substantive transmit gain in low-rank channels found in airborne and rural conditions. The fully-adaptive system can also use these DoF's to excise interference impinging on either end of the link due to other nodes operating in the same frequency band, hostile jamming of the link. In addition, the fully adaptive system provides an automatic power control mechanism (LEGO Algorithm) that can be used to maximize capacity (high throughput applications) or minimize transmit power (LPD applications), depending on the requirements of the system at any point during a mission. These attributes greatly increase the flexibility, range of operation, and application of the approach.
  • Moreover, the weight adaptation procedure is decoupled from operations used to encode data onto each transmitter port (channel eigenmode) and decode data taken from the corresponding receive port at the other side of the link, without expensive multilayer decoding, encoding, and cancellation procedures employed in receive-adaptive methods. This greatly reduces the complexity and reaction time of the transceiver, by allowing the transmit/receive weights to quickly adjust to highly dynamic environments encountered in military use scenarios.
  • The fully adaptive point-to-point link seamlessly extends to collaborative multimode networks. In particular, each transceiver employs the same multiport linear processor structure to form simultaneous links to multiple neighbors in multinode networks. The resultant MIMO networking strategy (first disclosed in [1]) exploits the additional inherent route diversity of star, ring, or mesh networks, to provide the benefits of MIMO processing in a network setting.
  • The MIMO network illustrated in FIG. 44 displays a minimalist-model, four-node, network that is operating in the presence of a jammer. In this figure, nodes employ the multiport linear receive and transmit operations discussed above, to establish multiple simultaneous links with their neighbors. In the presence of point-to-point link diversity (high-rank MIMO channel response between communicators), e.g., polarization or multipath diversity, nodes may establish multiple connections between their neighbors. In the absence of such link diversity, or if desired by the network, the nodes may alternately establish simultaneous connections with their neighbors. These connections can be used to directly source data to these neighbors, or transmit data through these neighbors to more distant destination nodes. In the example shown in FIG. 46, this strategy doubles the amount of data transportable to or from any node in the network—even if no link diversity exists on any of the internode channels (rank-1 internode channel response). More generally, this strategy allows the capacity of each node to grow linearly with the number of antennas at that node, even in nondiverse communication scenarios such as airborne systems, desert combat scenarios, and ship-to-ship/shore naval communication networks, while maintaining the ability to provide superlinear throughput increases at low power levels. Moreover, this strategy allows unused DoFs to be used for other purposes, including excision of strong jamming likely to be encountered in battlefield conditions.
  • The symbol and timing structure for the baseline Phase 1 Lower-PHY (LPHY) is illustrated in FIG. 45. In order to simplify the Phase I lower PHY and requisite RF transceiver hardware, the method and system can employ a linear PAM LPHY with a 250 kHz symbol rate (4 μs lower PHY symbol period). In FIG. 45, the PAM symbol shape is assumed to be a 4 μs rectangle comprising a 3.2 .mu.s base pulse, used during demodulation operations, and an 800 ns cyclic prefix that is discarded during demodulation operations. The resulting LPHY modem can be consequently be modeled as a single subcarrier of an 802.11g-like OFDM symbol, allowing the radio to be easily scaled to much wider bandwidths in later program phases. In addition, many other linear-PAM LPHY's are also consistent, including spread spectrum modulation formats that spread the signal over wide bandwidth, and LPI/LPD modulation formats that reduce or eliminate cyclic features of the waveform. The nominal ADC and DAC rates for the transceivers can be 5 Msps, well within the capability of low SWaP/cost systems.
  • The multiport PHY transmit/receive operations are illustrated in FIG. 47. At the transmitter, a frame of data intended for each transmit port is encoded to QAM using forward error correcting (FEC) encoding, organized into blocks of 240 QAM symbols, multiplexed with a transmit pilot that is unique to each node or transmit node address (TNA) in the network, and spread over the frame and PHY subcarriers using a fast Hadamard transform (FHT). The transmit pilot is designed to allow implementation of computationally efficient adaptive detection and reception algorithms at the intended receiver(s) in the network, without the need for prior knowledge of that pilot at the receiver. Sixteen Hadamard bins (software provisionable at each node based on the number of antennas employed by that node) set aside for pilot transmission add only 6.25% ( 16/256) overhead to the communications network, allowing effective node detection, receive adaptation, and node data extraction in one TDD slot (1.25 ms), with as many as eight antennas per transceiver. However, the number of pilot bins can be easily modified in software, or even provisioned on a dynamic basis, e.g., to improve the performance of receive adaptation algorithms when more complex transceivers enter the network, or to increase link throughput as those radios leave the environment.
  • After the FHT, the combined information and transmit pilot are modulated by a pseudorandom receive TRANSEC pilot, unique to the intended receiver or receive node address (RNA) in the network. If needed, the TRANSEC pilot is also frequency compensated to remove Doppler shift anticipated at the intended receiver, allowing the link to operate effectively velocities much higher than those anticipated in the Phase I demo. The TRANSEC output data is then passed through a linear distribution network (transmit beamformer) that can place beams in the direction of up to MANT targeted receive nodes for a transceiver with MANT transmit antennas. Alternately, the transmit beamformer can place up to 20 log10(MANT) energy in the direction of a single targeted receive node, allowing effective data transfer at a much lower power and consequent intercept footprint.
  • At the receiver, the processor strips off the receive TRANSEC pilot, simultaneously scrambling signals from any unauthorized user, and revealing the unique transmit pilots from each authorized user attempting to contact the receiver during that receive frame. The resultant data is passed to a computationally efficient, Modified Graham-Schmidt Orthogonalization (MGOS) based joint detection and signal extraction processor, which simultaneously detects each authorized pilot in the environment, and develops multiport receive combiner weights that excise interference in the communication channel (including self-interference from other authorized users). These weights are dewhitened and applied to the information-bearing signal after the inverse FHT (IFHT), and used to adapt retrodirective distribution weights used during subsequent transmit operations. The combined receive TRANSEC and IFHT spreading operations guarantees that the receive algorithm will apply equal interference rejection to the pilot and data symbols, for any interferer impinging on a node during its receive time slot.
  • The baseline system employs network-wide collaborative link optimization rules referred to as locally enabled global optimization (LEGO), which optimize network-wide measures of network quality using retrodirective transmit weight adaptation and local (link layer) power management instructions. The approach exploits the ability to form nulls during transmit operations to intelligently manage interference presented to other nodes transmitting or communicating in the same frequency channel. This includes other nodes operating on the same network, and nodes operating on disconnected networks, without the need for higher-layer cross-communication between interference nodes or networks. This capability, originally developed for optimization of point-to-multipoint cellular networks in wireless local-loop (AT&T Wireless Project Angel) and wireless metropolitan area networks (IEEE 802.16), cannot be employed in systems that do not perform transmit adaptation. This method and system can extend the LEGO approach to game theoretic methods that may perform this network optimization over a wider range of applications, networks, and optimization criteria.
  • The complexity of the method and system are shown in FIGS. 49-53. System complexity can be divided into two components: an FPGA coreware component, comprising regular operations that are easily implemented using field-programmable gate arrays or ASIC's, and a DSP software component. FPGA coreware operations can include the lower PHY modem, transmit and receive beamforming (linear distribution and combining operations), transmit/receive TRANSEC operations, and FHT/IFHT operations. The DSP software operations can include the MGSO operation, node discovery, and weight dewhitening operation. In both such cases, complexity is calculated in DSP clock cycles per second, for a hypothetical DSP hardware element that can compute a simultaneous real add and a real multiply in 4/3 clock cycle (1 clock cycle with 33% derating for memory transfer operations). Complexity is further divided by the number of transceiver ports (simultaneous transmit and receive channels), to provide a measure of the DSP cost of each link used accessed by the transceiver.
  • The overall complexity of the DSP component of transceiver operations (adaptive algorithm) is less than 200 kcps for the phase 1 system, or well within the capabilities of a low-cost DSP components. Similarly, the overall complexity of the FPGA component of transceiver operations is less than 30 Mcps, which easily fits on the commercially available FPGA and in fact can be implemented using moderate cost DSP components.
  • Assuming low power rate-1 BPSK QAM encoding on each link, the resultant system can provide a PHY throughput (data rate into the MAC layer) of 96 kbps (192 kbps full duplex), or establish 12 simultaneous 48 kbps full-duplex data links (576 kbps network transfer rate) between each node-pair in a four-node ring network, using a single two-channel transceiver at each node in that network and a simple 250 ksps PAM lower PHY. Assuming an active bandwidth of 250 kHz, this corresponds to a spectral network efficiency of over 2 bps/Hz. This efficiency and bandwidth scales linearly with the number bits/symbol employed in the QAM encoding operation. Because the ring network establishes a counterrotating ring that can transfer data over two simultaneous routes, the reliability of the collaborative network increases dramatically—by over 2 nines if each node in the network as a two nines reliability!
  • DETAILED EMBODIMENT DESCRIPTION Parameter Definitions, Equations and Glossary Network Parameters:
  • Network parameters: Defaut Index #
    MNA = Number of node addresses (active nodes) in the Variable (1.1.01)
    network
    MLA = Number of link addresses (active links) in the Variable (1.1.02)
    network
    MPA = Number of network-layer port addresses in the MNA(MNA-1) (1.1.03)
    network
    MRA = Number of network-layer route addresses in the Variable (1.1.04)
    network
    Range
    Network addresses:
    mNA = Node address (NA) 1: MNA (1.1.05)
    mTNA = Transmit Node address (TNA) 1: MNA (1.1.06)
    mRNA = Receive Node address (RNA) 1: MNA (1.1.07)
    mSNA = Source Node address (SNA) 1: MNA (1.1.08)
    mDNA = Destination Node address (DNA) 1: MNA (1.1.09)
    mLA = Link address (LA) 1: MLA (1.1.10)
    mRLA = Return link address (RLA) 1: MLA (1.1.11)
    mPA = Network-layer port address (PA) 1: MPA (1.1.12)
    mRA = Network-layer route address (PA) 1: MPA (1.1.13)
    Network mappings:
    μNA(mLA) = [mTNA mRNA] connected by link mLA. (1.1.14)
    Alternate notation μTNA(mLA),
    μRNA(mLA) can also be used to refer
    to individual elements of μNA.
    μTDD(mLA) = TDD wubframe used by link mLA TNA(mLA) (1.1.15)
    transmits over TDD subframe
    μTDD(mLA))
    μLA(mTNA, mRNA) = Address of link connecting TNA mTNA (1.1.16)
    to RNA mRNA (0 if no LA)
    μNA(mLA) = [mTNA mRNA] 
    Figure US20110188597A1-20110804-P00002
    μLA(mRNA, mTNA) = mLA
    μRLA(mLA) = Return link address (RLA) for link mLA: (1.1.17)
    μNA(mLA) = [mTNA mRNA] 
    Figure US20110188597A1-20110804-P00002
    μNARLA(mLA)) = [mRNA mTNA]
    kTNA(mframe) = Adapt bin used by TNA mTNA (same for all (1.1.18)
    links emanating from mTNA) over frame mframe.
    Same for all links emanating from mTNA.
  • Datalink Parameters:
  • Default
    Address-independent datalink parameters:
    Ncodec = Maximum data encoding rate (can be noninteger) 8 (1.2.01)
    NFHT = Hadamard bins per frame 256 (1.2.02)
    Nembed = Hadamard bins reserved for adaptation (≦NFHT) 16 (1.2.04)
    Membed = Modulated bins per port (≦Nembed/Nport) 16 (1.2.05)
    Ndata = Hadamard bins reserved for data (≦NFHT − Nembed) 240 (1.2.03)
    Mdata = Hadamard bins modulated by data (≦Ndata) 240 (1.2.03a)
    Nsub = Subcarriers per OFDM symbol 64 (1.2.06)
    Msub = Modulated subcarriers per OFDM symbol 52 (1.2.07)
    MQAM = QAM data symbols per physical data frame 12,480 (1.2.08)
    NOFDM = OFDM symbols per physical data frame 312 (1.2.09)
    MOFDM = Modulated OFDM symbols per PPDU 256 (1.2.10)
    NTDD = Data frames (TDD subframes) per TDD frame 2 (1.2.11)
    TFFT(μs) = Duration of OFDM FFT in microseconds (μs) 3.2 μs (1.2.12)
    Tsymbol(μs) = Duration of OFDM symbol in μs 4 μs (1.2.13)
    Tprefix(μs) = Duration of OFDM cyclic prefix (guard interval) in μs 0.8 μs (1.2.14)
    TPPDU(μs) = Duration of data PPDU in μs 1,024 μs (1.2.15)
    Tframe(μs) = Duration of data frame in μs 1,250 μs (1.2.16)
    TTxRx(μs) = Duration of TxRx turnaround time in μs 2 μs (1.2.17)
    TIFS(μs) = Duration of interframe space (guard time interval) in 226 μs (1.2.18)
    μs, inclusive of TTxRx
    TTDD(μs) = Duration of OFDM cyclic prefix (guard interval) μs 2,500 μs (1.2.19)
    fsub(MHz) = Subcarriers spacing in MHz (OFDM LPHY) 0.3125 MHz (1.2.20)
    Wactive(MHz) = Active bandwith of signal in MHz 16.25 MHz (1.2.21)
    Node-address dependent datalink parameters:
    Nant = Antennas available at node Variable (1.2.22)
    Mant = Antennas used at node (≦Nant) Variable (1.2.23)
    Nport = Physical ports supportable at node (≦Nant) Variable (1.2.24)
    Mport = Physical ports used at node (≦Nport) Variable (1.2.25)
    Link-address dependent datalink parameters:
    Mcodec = Codec rate employed on link (0 
    Figure US20110188597A1-20110804-P00002
     no data
    Variable (1.2.26)
    transported)
    Mbit = Bits/frame Tx″d over the link (Mbit* Mcodec), 0 
    Figure US20110188597A1-20110804-P00002
    Variable (1.2.27)
    none
    Range
    Node-address independent datalink indices:
    nFHT = Physical FHT input bin index 1: NFHT (1.2.28)
    mFHT = Logical FHT input bin index 1: MFHT (1.2.29)
    mdata = Logical data bin index 1: Mdata (1.2.30)
    membed = Logical adaptation bin index 1: Membed (1.2.31)
    nsub = Physical subcarrier index 1: Nsub (1.2.32)
    msub = Logical subcarrier index 1: Msub (1.2.33)
    mQAM = Logical QAM data index 1: MQAM (1.2.34)
    nOFDM = Physical OFDM symbol index 1: NOFDM (1.2.35)
    mOFDM = Logical OFDM symbol index 1: MOFDM (1.2.36)
    nTDD = TDD subframe index (TDD instantiations) 1: NTDD (1.2.37)
    nframe Data frame index (ignores TDD framing) (1.2.38)
    Node-address dependent datalink indices:
    nant = Physical antenna index 1: Nant (1.2.39)
    mant = Logical antenna index 1: Mant (1.2.40)
    nport = Physical port index 1: Nport (1.2.41)
    mport = Logical port index 1: Mport (1.2.42)
    mframe = Logical frame index, shared by consecutive node ≧0 (1.2.43)
    receive and transmit frames
    Link-address dependent datalink indices:
    mbit = Logical data bit (codes input) index 1: Mbit (1.2.44)
    Datalink mappings:
    vembed(membed) = Physical Hadamard bin modulated by logical transmit pilot (1.2.45)
    bin membed
    vdata(mdata) = Physical Hadamard bin modulated by logical data bin mdata (1.2.46)
    vsub(msub) = Physical subcarrier modulated by logical subcarrier msub (1.2.47)
    fsub(msub) = Physical baseband link frequency of logical subcarrier msub (1.2.48)
    vframe(mframe, mTDD) = Physical frame carrying PPDU with frame index mframe, TDD (1.2.49)
    subframe index mframe.
    μport(mLA) = Logical transmit or receive port (as appropriate) (1.2.50)
    providing data for link address mLA. By convention, the
    same logical port is used on the return path,
    mport(mLA) = vport(mRLA), mRLA = μRLA(mLA).
    μLA(mport) = LA serviced by port mport. Inverse of μport(mLA). (1.2.51)
  • Data and Parameter Arrays:
  • Dimensions
    Transmit data arrays:
    BTNA(mframe) = Transmitted bits transmitted, frame mframe, MbitxMport (1.3.1)
    BTNA(mframe) = [bTNA(1; mframe) . . .
    bTNA(Mport; mframe)],
    bTNA(mport; mframe) = bits Tx'd from node mTNA over
    port mport
      mport = μport(mLA), where μTNA(mLA) = mTNA
    QTNA(msub, mframe) = QAM data transmitted, subcarrier msub, frame mframe, MdataxMport (1.3.2)
    Q TNA ( m sub , m frame ) = [ q TNA H ( 1 ; m sub , m frame ) q TNA H ( M data ; m sub , m frame ) ]
    qTNA(mdata; msub, mframe) = QAM data Tx'd on data bin
    mdata
    DTNA(msub, mframe) = FHT input data, subcarrier msub, frame mframe, MOFDMxMport (1.3.3)
    D TNA ( m sub , m frame ) = [ d TNA H ( 1 ; m sub , m frame ) d TNA H ( M FHT ; m sub , m frame ) ]
    CTNA(msub, mframe) = TRANSEC-scrambled FHT output data, subcarrier MOFDMxMport (1.3.4)
    msub, frame mframe,
    C TNA ( m sub , m frame ) = [ c TNA H ( 1 ; m sub , m frame ) c TNA H ( M OFDM ; m sub , m frame ) ]
    STNA(msub, mframe) = OFDM modulator input data, subcarrier msub, frame MOFDMxMant (1.3.5)
    mframe,
    S TNA ( m sub , m frame ) = [ s TNA H ( 1 ; m sub , m frame ) s TNA H ( M OFDM ; m sub , m frame ) ]
    Transmit parameter arrays:
    RRNA(msub, mframe) = RNA TRANSEC code, subcarrier msub, frame mframe; MOFDMxMport (1.3.6)
    row mport = receive code for node mRNA =
    μRNALA (mport))
    rRNA(mport; msub, mframe) =
    r(msub, mframe; μRNALA(mport))),
    GTNA(msub, mframe) = TNA distribution weights, subcarrier msub, frame mframe. MantxMport (1.3.7)
    γRLA(mframe) = Target return-link SINR's, frame mframe. 1xMport (1.3.8)
    hTx(msub) = Transmit subcarrier mask (OFDM LPHY), Mantx1 (1.3.9)
    h TX ( m sub ) = ( πf sub ( m sub ) T DAC sin ( πf sub ( m sub ) T DAC ) ) h TRC ( m sub )
    where TDAC = 1/fDAC is the (node-specific) DAC output
    sample period.
    hTRC(msub) = Transmit-receive compensation weights, equalizes Mantx1 (1.3.10)
    path differences between the RF switch and the DAC
    (transmit path) and ADC (receive path) at each node in
    the network. Computed during scheduled
    Transmit/receive compensation events.
    Receive data arrays:
    XRNA(msub, mframe) = OFDM demod output data, subcarrier msub, frame MOFDMxMant (1.3.11)
    mframe.
    YRNA(msub, mframe) = TRANSEC-descrambled FHT output data, subcarrier MFHTxMant (1.3.12)
    msub, frame mframe.
    Y RNA ( m sub , m frame ) = [ y RNA H ( 1 ; m sub , m frame ) y RNA H ( M OFDM ; m sub , m frame ) ]
    PRNA(msub, mframe) = Deembeded pilot data, subcarrier msub, frame mframe. MembedxMant (1.3.13)
    P RNA ( m sub , m frame ) = [ p RNA H ( 1 ; m sub , m frame ) p RNA H ( M embed ; m sub , m frame ) ]
    ZRNA(msub, mframe) = Deembeded QAM data, subcarrier msub, frame mframe. MdataxMant (1.3.14)
    QRNA(msub, mframe) = Demodulated QAM data, subcarrier msub, frame mframe. MdataxMport (1.3.15)
    BRNA(mframe) = Decoded bits, frame mframe MbitxMport (1.3.16)
    Receive parameter arrays:
    rRNA(msub, mframe) = NA TRANSEC code, subcarrier msub, frame mframe. MOFDMx1 (1.3.17)
    Used at node mRNA during receive operations, and at
    nodes attempting to communicate with node mRNA
    during their transmit operations.
    WRNA(msub, mframe) = Rx combiner weights, subcarrier msub, frame mframe. MantxMport (1.3.18)
    ARx(msub, mframe) = Rx spatial signature estimates, subcarrier msub, frame MantxMport (1.3.19)
    mframe.
    γLA(msub, mframe) = Estimated link SINR's, subcarrier msub, frame mframe. 1xMport (1.3.20)
    Conceptual parameter arrays (not generated, but referred to in operations):
    tTNA(mframe) = [Sparse] NA transmit pilot, subcarrier msub, frame Membedxl (1.3.21)
    mframe.
    tTNA(mframe) = {square root over (Membed)}e(kTNA(mframe))
    CFHT = Unitary Walsh transformation matrix MFHTxMFHT (1.3.22)
    Sdata = Shift matrix, maps logical data bins to FHT input bins MFHTxMdata (1.3.23)
    Spilot = Shift matrix, maps logical pilot bins to FHT input bins MFHTxMpilot (1.3.24)
    Shift matrix, maps logical bins to physical FHT input MFHTxMFHT (1.3.25)
    SFHT = bins,
      SFHT = [Spilot Sdata]
  • Upper-PHY Signal Processing Operations: Transmit Operations
  • Starting with the transmit bits BTNA(mframe) to be transmitted over logical subcarrier msub and logical frame mframe, perform the following operations.
    • Step TP1: Separately encode each row of transmitted bits BTNA(mframe) into QAM symbols, and map to subcarriers to form QAM transmit data QTNA(msub,mframe). The bit-to-QAM encoder is not specified here. However, the default encoder will be operations cited in the 802.11a standards specification.
    • Step TP2: Embed the transmit pilot, and map pilot & data to FHT input bins
  • D TNA ( m sub , m frame ) = S FHT [ t TNA ( m frame ) 1 M port T Q TNA ( m sub , m frame ) ] = S pilot ( t TNA ( m frame ) 1 M port T ) + S data Q Tx ( m sub , m frame ) ( 2.1 .1 ) ( 2.1 .2 )
    • Step TP3: Embed receive pilot for RNA's communicating with the node.

  • C TNA(m sub ,m frame)=R RNA(m sub ,m frame).*(C FHT D TNA(m sub ,m frame))  (2.1.3)
    • Step TP4: Distribute the embedded data over the output antennas.

  • S TNA(m sub ,m frame)=(1M OFDM h Tx T(m sub)).*(C TNA(m sub ,m frame)G TNA R(m sub ,m frame)),  (2.1.4)
  • where “.*” denotes the element-wise multiply operation, and 1M is the Mx1 all-ones vector.
  • Two algorithms are specified here to adapt transmit distribution weights {GTNA(msub,mframe)},
      • A retrodirective max-SINR approach that sets {GTNA(msub,mframe)} proportional to the receive weights that maximize signal-to-interference-and-noise ratio (SINR) on the return path, and
      • A retrodirective max-SIR approach that sets {GTNA(msub,mframe)} proportional to the receive weights that maximize signal-to-interference ratio (SIR), i.e., that provide hard transmit nulls, on the return path.
        The max-SIR approach is recommended for initialization of new links; the max-SINR approach is recommended for steady state operation and tracking The max-SINR transmit weight adaptation algorithm is described in Section 3.2. The max-SIR transmit weight adaptation algorithm is described in Section 4.2.
    Receive Processing Operations
  • Starting with the multiantenna data XRNA(msub,mframe) received and OFDM-demodulated over logical subcarrier msub and logical frame mframe, perform the following operations.
    Step RP1: Remove the receive pilot, and inverse-FHT descrambled data

  • Y RNA(m sub ,m frame)=C FHT H((r RNA*(m sub ,m frame)1M ant (m RNA ) T).*X RNA(m sub ,m frame))  (2.2.1)
  • Step RP2: Separate pilot & data components

  • P RNA(m sub ,m frame)=S pilot T Y RNA(m sub ,m frame)  (2.2.2)

  • X RNA(m sub ,m frame)=S data T Y RNA(m sub ,m frame)  (2.2.3)
  • Steps RA, Detect transmit pilots and estimate their SINR's γLA(msub,mframe) (Sections 3.1, 4.1).
  • TA:
      • Compute combiner weights {WRNA(msub,mframe)} (Sections 3.1, 4.1).
      • Compute distribution weights {GTNA(msub,mframe)} to be used on the return path (Sections 3.2, 4.2).
        Step RP3: Recover the QAM link data:

  • Q RNA(m sub ,m frame)=Z RNA(m sub ,m frame)W RNA(m sub ,m frame)  (2.2.4)
  • Two algorithms are specified here to adapt receive combiner weights {WRNA(msub,mframe)},
      • A retrodirective max-SINR approach that adapts {WRNA(msub,mframe)} to maximize signal-to-interference-and-noise ratio (SINR) of the received pilot data, and
      • A retrodirective max-SIR approach that adapts {WRNA(msub,mframe)} to maximize signal-to-interference ratio (SIR) of the received pilot data, i.e., that provide hard receive nulls to separate the signals of interest to the node.
        The max-SIR approach is recommended for initialization of new links; the max-SINR approach is recommended for steady state operation and tracking The max-SINR transmit weight adaptation algorithm is described in Section 3.2. The max-SIR transmit weight adaptation algorithm is described in Section 4.2.
    Max-SINR Adaptation Algorithm Adaptive Receive Algorithm
  • Starting with the multiantenna received and deembedded pilot data (referred to as PRNA(msub) or PRNA as appropriate to simplify arguments) received and OFDM-demodulated over logical subcarrier msub and logical frame mframe, perform the following operations
    Step RA1: Compute QRD of PRNA(msub,mframe)

  • {Q(m sub),R(m sub)}=QRD{P RNA(m sub ,m frame)}, such that  (3.1.1)
  • R ( m sub ) } = chol { P RNA H ( m sub , m frame ) P RNA ( m sub , m frame ) } = chol { P RNA H P RNA ( m sub , m frame ) } ( 3.1 .2 ) ( 3.1 .3 )
    C(m sub)=R −1(m sub)  (3.1.4)
  • Q ( m sub ) = P RNA ( m sub , m frame ) C ( m sub ) , ( Q H ( m sub ) Q ( m sub ) = I M ant ) = [ q H ( 1 ; m sub ) q H ( M embed ; m sub ) ] ( 3.1 .5 ) ( 3.1 .6 )
  • Step RA2: Detect candidate TNA transmit pilots and spatially whitened adaptation weights

  • η(m embed ;m sub)=∥q(m embed ;m sub)∥2  (3.1.7)
  • γ ( m embed ; m sub ) = η ( m embed ; m sub ) 1 - η ( m embed ; m sub ) ( 3.1 .8 ) c det ( m embed ) = 1 M sub m sub = 1 M sub log 2 ( 1 + γ ( m embed ; m sub ) ) ( 3.1 .9 ) { m embed ( m ) } m = 1 M det = m embed ( m ) satisfying { c det ( m embed ( m ) ) c thresh , and c det ( m embed ( m ) ) c det ( m embed ( m + 1 ) ) ( 3.1 .10 )
    U det(m sub)=√{square root over (M embed)}[q(m embed(1);m sub) . . . q(m embed(m det);m sub)]  (3.1.11)

  • ηdet(m sub)=[η(m embed(1);m sub) . . . η(m embed(m det);m sub)]  (3.1.12)

  • γdet(m sub)=[γ(m embed(1);m sub) . . . γ(m embed(m det);m sub)]  (3.1.13)
  • Step RA3: If spatial signature estimates Aport(msub) are available, where Aport(msub) is the import column of ARNA(msub) (see Step RA6), associate detected transmit pilots with receive ports and link addresses.

  • U port(m det ,m sub)=C H(m sub)a port(m port ;m sub)  (3.1.14)
  • ρ ( m det , m port ; m sub ) = u det H ( m det ; m sub ) u port ( m port ; m sub ) 2 M embed ; η det ( m det ; m sub ) u port ( m port ; m sub ) 2 1 ( 3.1 .15 ) c match ( m det , m port ) = 1 M sub m sub = 1 M sub log 2 ( 1 + γ ( m det ; m sub ) ρ ( m det , m port ; m sub ) ) ( 3.1 .16 ) { m det ( m port ) } m port = 1 M port = arg max m det { c match ( m det ; m port ) } ( 3.1 .17 )
  • Step RA4: Drop and add ports, based on the port matching statistic cmatch(mdet,mport).
  • { m drop } 1 M drop = arg max m port { max m det { c match ( m det ; m port ) } < c thresh } ( 3.1 .18 )
    {m add}1 M add =m det ∉{m det(m port)}m port=1 M port   (3.1.19)

  • M port ←M port −M drop +M add  (3.1.20)

  • {m det(m port)}m port=1 M port ←({m det(m port)}\{m det(m drop)})∪{m add}  (3.1.21)
  • Step RA5: Assign receive ports and link statistics ηLA(msub) and γLA(msub).

  • ηLA(m port ;m sub)=ηdet(m det(m port);m sub)  (3.1.22)

  • γLA(m port ;m sub)=γdet(m det(m port);m sub)  (3.1.23)

  • u(m port ;m sub)=u det(m det(m port);m sub)  (3.1.24)

  • U(m sub)=[u(1;m sub) . . . u(M port ;m sub)]  (3.1.25)
  • Step RA6: Estimate spatial steering matrices {ARNA(msub,mframe)}.

  • A RNA(m sub ,m frame)=C H(m sub)U(m sub)  (3.1.26)
  • Step RA7: Compute combiner weights {WRNA(msub,mframe)}.

  • W RNA(m sub ,m frame)=C(m sub)U(m sub)  (3.1.27)
  • Adaptive Transmit Algorithm
  • Starting with the receive weights WRNA(msub,mframe) given in (3.1.27) and target SINR's γRLA for the return link, perform the following operations.
  • Step TA1: Scale whitened transmit weights,
  • η RLA ( m port ) = γ RLA ( m RLA ) 1 + γ RLA ( m RLA ) , m port = μ port ( m RLA ) = μ port ( m RLA ) ( 3.2 .1 ) π RLA ( m port ; m sub ) η RLA ( m port ) η LA ( m port ; m sub ) , ( η LA ( m port ; m sub ) given in ( 3.1 .22 ) ) ( 3.2 .2 )
  • Step TA2: Compute distribution weights {GTNA(msub,mframe)}.

  • G TNA(m sub ,m frame)[√{square root over (π(1,m sub))}w RNA(1,m sub) . . . √{square root over (π(M port ,m sub))}w RNA(M port ,m sub)]  (3.2.3)
  • The target SINR's can also be derived from rate targets based on performance of the codec's used in the system, or from capacity targets {CRLA(mRLA)} or spectral efficiency targets {cRLA(mRLA)}, via the formula

  • c RLA(m RLA)=1.63C RLA(m RLA)/W active  (3.2.4)

  • γRLA(m RLA)=λgap(2c RLA (m RLA )−1)c RLA(m RLA)  (3.2.5)
  • Where 1.63=1/0.6144 is the inverse efficiency of the airlink, which includes overhead for transmit pilots (0.9375 efficiency), the OFDM cyclic prefix (0.80 efficiency) and TDD framing (0.8192 efficiency), and where λgap is the SNR coding gap of the QAM codec. Target SINR, rate, or capacity can be set at either end of the link, i.e., as a transmitter design goal or as a control parameter passed from the link or network. In the first two cases, this adaptation is referred to here as locally enabled network optimization (LEGO).
  • Note that steps (3.2.1)-(3.2.3) adjust output power to meet a link SINR (or link rate or capacity) criterion. That is, the system will attempt to adjust transmit power at each node to meet this criterion. Also note that steps (3.2.1)-(3.2.3) require no information from other links in the network, including links originating from the same node. While this can be a highly desirable attribute in many applications, it has some drawbacks in practice. In particular, if the target SINR's are set too high, the resultant network can fail to converge and drive its transmitters into saturation. This event can be detected by computing the conducted power into each antenna,
  • P RLA ( m ant ) = M sub m port = 1 M port g ( m ant , m port ) 2 ( 3.2 .6 )
  • and monitoring PRLA(mant) to ensure compliance with conducted power requirements.
  • In addition, the convergence time of the LEGO algorithm can be slow, especially during initial acquisition of multiple links. This performance can be improved by employing a max-SIR algorithm that forms hard nulls during the initial link acquisition period. This algorithm is easily implemented as an extension of the max-SINR algorithm described above.
  • Max-SIR Adaptation Algorithm Adaptive Receive Algorithm
  • Starting with the multiantenna received and deembedded pilot data XPx(msub,mframe) (referred to as XPx(msub) or XPx as appropriate to simplify arguments) received and OFDM-demodulated over logical subcarrier msub and logical frame mframe, perform the following operations.
    • Step RA1: Compute QRD of PRNA(msub,mframe), using (3.1.1)-(3.1.6).
    • Step RA2: Detect candidate TNA transmit pilots and spatially-whitened max-SINR adaptation weights using (3.1.7)-(3.1.13).
    • Step RA3: If spatial signature estimates ARNA(msub) are available (see Step RA7), associate detected transmit pilots with receive ports and link addresses, using (3.1.14)-(3.1.17).
    • Step RA4: Drop and add ports using (3.1.18)-(3.1.21).
    • Step RA5: Assign max-SINR whitened transmit/receive weights and link statistics using (3.1.22)-(3.1.25).
    • Step RA6: Estimate spatial steering matrices {ARNA(msub,mframe)} using 3.1.26.
    • Step RA7: Compute combiner weights {WRNA(msub,mframe)}, using (3.1.27).
    • Step RA7.1: Compute null-steering receive weights and SINR's

  • C (m sub)=(U H(m sub)U(m sub))−1  (4.1.1)

  • ηLA(m posrt ,m sub)←1/diag{C (m sub)} (replaces ηLA(m posrt ,m sub) provided by (3.1.22))  (4.1.2)
  • γ LA ( m posrt , m sub ) η LA ( m port ; m sub ) 1 - η LA ( m port ; m sub ) ( replaces γ LA ( m port , m sub ) provided by ( 3.1 .22 ) ) ( 4.1 .3 )

  • w RNA(m sub ,m frame)←w RNA(m sub ,m sub)C (m sub)  (4.1.4)
  • Adaptive Transmit Algorithm
  • Starting with the transmit weights wRNA(msub,mframe) given in (4.1.4) and target SINR's γRLA for the return link, perform the following operations.
  • Step TA1: Compute ηRLA(mport) using (3.2.1).
    Step Compute power scaling π(mport; msub) using
  • TA1.1:

  • π(m port ;m sub)=ηRLA(m portLA(m port ;m sub), (ηLA(m port ;m sub) given in (3.1.22))  (4.2.1)
  • Step TA2: Compute combiner weights {GRNA(msub,mframe)} using 3.2.3
    The target SINR's can also be derived from rate targets based on performance of the codec's used in the system, or from capacity targets {CRLA(mRLA)} or spectral efficiency targets {cRLA(mRLA)}, using (3.2.4)-(3.2.5), and conducted power can be monitored using (3.2.6). In addition, the SINR and SIR estimates given by (3.1.23 and (4.1.3) can be used to detect “overloaded network” conditions where the max-SIR solution is misadjusting significantly from the max-SINR result.
    While this invention has been described with reference to one or more illustrative embodiments, this description is not to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, differing order of the sub-steps (including parallel and partial processing for one or more operations thereof), as well as other embodiments of the invention will be apparent to those skilled in the art upon referencing this disclosure. It is therefore intended this disclosure encompass any combination of the specifics described here and such modifications or embodiments. Furthermore, the scope of this invention includes any combination of the subordinate parts from the different embodiments disclosed in this specification, and is not limited to the specifics of the preferred embodiment or any of the alternative embodiments mentioned above. Individual configurations and embodiments of this invention may contain all, or less than all, of those disclosed in the specification according to the needs and desires of that user. The claims stated herein should further be read as including those elements which are not necessary to the invention yet are in the prior art, particularly that referenced and incorporated herein thereby, and are necessary to the overall function of that particular claim, and should be read as including, to the maximum extent permissible by law, known functional equivalents to the specification's disclosure, even though those functional equivalents are not exhaustively detailed herein or individually claimed below due to the legal preferences for limiting the number of claims and the law's intent to negate any requirement for combinatorial explosion for overly-detailed description and claiming of known and foreseeable alternatives.
  • Although the present invention has been described chiefly in terms of the presently preferred embodiment, it is to be understood that the disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after having read the above disclosure. Such modifications may involve other features which are already known in the design, manufacture and use of adaptive and transitional MIMO systems, both hardware and associated software therefore, and which may be used instead of or in addition to features already described herein. The examples herein are not limiting but instructive of the embodiment of the invention, and variations which are readily derived through programming or embedded hardware transformations which are standard or known to the appropriate art are not excluded by omission. Accordingly, it is intended that the appended claims are interpreted as covering all alterations and modifications as fall within the true spirit and scope of the invention in light of the prior art.
  • Additionally, although claims have been formulated in this application to particular combinations of elements, it should be understood that the scope of the disclosure of the present application also includes any single novel element or any novel combination of elements disclosed herein, either explicitly or implicitly, whether or not it relates to the same invention as presently claimed in any claim and whether or not it mitigates any or all of the same technical problems as does the present invention. The applicants hereby give notice that new claims may be formulated to such features and/or combinations of such features during the prosecution of the present application or of any further application derived there from.

Claims (50)

1. An apparatus, comprising:
a spatially diverse antennae array of M antennae, where M is greater than or equal to two;
at least one multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver in communication with each antenna in the spatially diverse antennae array of M antennae;
encoding circuitry capable of causing first data to be encoded;
decoding circuitry capable of causing second data to be decoded; and
processing circuitry capable of causing diversity combining, the processing circuitry in communication with the multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver, the encoding circuitry, and the decoding circuitry, the processing circuitry capable of causing the apparatus to:
receive at least two first diverse signals,
combine at least two of the at least two first diverse signals,
generate at least two second diverse signals based on at least one aspect of the at least two first diverse signals, and
simultaneously transmit the at least two second diverse signals;
wherein the apparatus is configured such that at least one of the at least two second diverse signals is capable of being received by a multiple-input and multiple-output-capable node.
2. The apparatus of claim 1, wherein the apparatus is configured such that M is equal to 2.
3. The apparatus of claim 1, wherein the apparatus is configured such that M is equal to 4.
4. The apparatus of claim 1, wherein the apparatus is configured such that a first set of the spatially diverse antennae array of M antennae are capable of receiving the at least two first diverse signals.
5. The apparatus of claim 4, wherein the apparatus is configured such that a second set of the spatially diverse antennae array of M antennae are capable of simultaneously transmitting the at least two second diverse signals.
6. The apparatus of claim 5, wherein the apparatus is configured such that the first set of the spatially diverse antennae array of M antennae capable of receiving the at least two first diverse signals is distinct from the second set of the spatially diverse antennae array of M antennae capable of simultaneously transmitting the at least two second diverse signals.
7. The apparatus of claim 6, wherein the apparatus is configured such that the first set of the spatially diverse antennae array of M antennae capable of receiving the at least two first diverse signals is the same as the second set of the spatially diverse antennae array of M antennae capable of simultaneously transmitting the at least two second diverse signals.
8. The apparatus of claim 1, wherein the apparatus is configured such that the spatially diverse antennae array of M antennae is circularly symmetric.
9. The apparatus of claim 1, wherein the apparatus is configured such that the processing circuitry includes digital signal processing circuitry capable of performing digital signal processing to convert analog radio signals into digital signals and digital signals into analog radio signals.
10. The apparatus of claim 1, wherein the apparatus is configured such that the at least one multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver includes a multitone transmission element.
11. The apparatus of claim 10, wherein the apparatus is configured such that the at least one multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver including the multitone transmission element is capable of multitone transmitting a first multitone format capable of being used by a first transceiver that is different than a second multitone format capable of being used by a second transceiver.
12. The apparatus of claim 1, wherein the apparatus is configured such that the processing circuitry includes a transceiver controller.
13. The apparatus of claim 1, wherein the apparatus is configured such that the at least one multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver includes at least one Fixed-Fourier Transform enabling chip.
14. The apparatus of claim 13, wherein the apparatus is configured such that the at least one multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver is capable of implementing orthogonal frequency division multiplexing utilizing the at least one Fixed-Fourier Transform enabling chip.
15. The apparatus of claim 1, wherein the apparatus is configured such that the at least one multiple-input and multiple-output/orthogonal frequency division multiplexing-capable transceiver is a vector orthogonal frequency division multiplexing transceiver.
16. The apparatus of claim 15, wherein the apparatus is configured such that the vector orthogonal frequency division multiplexing transceiver is capable of linearly combining data received over each antenna in the spatially diverse antennae array of M antennae.
17. The apparatus of claim 1, wherein the apparatus is configured such that the encoding circuitry is capable of incorporating QAM or PSK symbols prior to transmission.
18. The apparatus of claim 1, wherein the apparatus is configured such that the decoding circuitry is capable of interpreting QAM or PSK symbols.
19. The apparatus of claim 1, wherein the apparatus is configured such that the encoding circuitry is capable of performing trellis encoding.
20. The apparatus of claim 1, wherein the apparatus is configured such that the at least one of the at least two second diverse signals is capable of being received by a node located in a point to multipoint network.
21. The apparatus of claim 1, wherein the apparatus is configured such that the at least one of the at least two second diverse signals is capable of being received by a node located in a mesh network.
22. The apparatus of claim 21, wherein the apparatus is further configured such that the node located in the mesh network includes a non-multiple-input and non-multiple-output capable node.
23. The apparatus of claim 21, wherein the apparatus is configured such that the at least one of the at least two second diverse signals is capable of being received by a node located in a star network.
24. The apparatus of claim 1, wherein the apparatus is configured such that the at least two second diverse signals are capable of being simultaneously transmitted as frequency coincident communications.
25. The apparatus of claim 1, wherein the apparatus is configured such that the at least two second diverse signals are capable of being transmitted as time and frequency coincident communications.
26. The apparatus of claim 1, wherein the apparatus is configured such that generating the at least two second diverse signals includes generating spatially diverse signals.
27. The apparatus of claim 26, wherein the apparatus is configured such that generating the spatially diverse signals includes transmitting the spatially diverse signals from the spatially diverse antennae array of M antennae.
28. The apparatus of claim 1, wherein the apparatus is configured such that generating the at least two second diverse signals includes generating polarization diverse signals.
29. The apparatus of claim 28, wherein the apparatus is configured such that generating the polarization diverse signals includes transmitting the spatially diverse signals from a polarization diverse antennae array.
30. The apparatus of claim 1, wherein the apparatus is configured such that generating the at least two second diverse signals includes generating route diverse signals.
31. The apparatus of claim 30, wherein the apparatus is configured such that generating the route diverse signals includes transmitting the spatially diverse signals to a node in a location separate than a location of the apparatus.
32. The apparatus of claim 1, wherein the apparatus is configured such that simultaneously transmitting the at least two second diverse signals includes transmitting such that at least two of the at least two second diverse signals are capable of being received by a multiple-input and multiple-output capable node.
33. The apparatus of claim 1, wherein the apparatus is configured such that simultaneously transmitting the at least two second diverse signals includes transmitting such that at least two of the at least two second diverse signals are capable of being received by a non-multiple-input and non-multiple-output capable node.
34. The apparatus of claim 1, wherein the apparatus is configured to perform transmit beamforming.
35. The apparatus of claim 34, wherein the apparatus is configured such that the transmit beamforming includes constructing linear distribution weights.
36. The apparatus of claim 1, wherein the apparatus is configured such that linear combiner weights obtained during a receive operation are capable of being used to construct linear distribution weights for a subsequent transmit operation.
37. The apparatus of claim 1, wherein the apparatus is configured such that linear combiner weights obtained during a receive operation are capable of being used to construct linear distribution weights for a subsequent transmit operation by setting transmission gains proportional to the distribution weights.
38. The apparatus of claim 1, wherein the apparatus is configured such that the at least two second diverse signals include at least one cyclic prefix.
39. The apparatus of claim 1, wherein the processing circuitry is further capable of causing the apparatus to calculate weights associated with the least two first diverse signals.
40. The apparatus of claim 39, wherein the processing circuitry is further capable of causing the apparatus to apply the calculated weights to transmit data.
41. The apparatus of claim 40, wherein the processing circuitry is further capable of causing the apparatus to add a cyclic prefix to the transmit data; and
wherein the apparatus is configured such that the spatially diverse antennae array of M antennae is capable of transmitting the at least two second diverse signals of data including the transmit data.
42. The apparatus of claim 1, wherein the apparatus is configured such that generating the at least two second diverse signals based on the at least one aspect of the at least two first diverse signals includes constructing linear distribution weights based on the at least two first diverse signals.
43. The apparatus of claim 1, wherein the apparatus is configured such that generating the at least two second diverse signals based on the at least one aspect of the at least two first diverse signals includes utilizing linear combiner weights obtained during a receive operation to construct linear distribution weights for a subsequent transmit operation.
44. The apparatus of claim 1, wherein the apparatus is configured such that generating the at least two second diverse signals based on the at least one aspect of the at least two first diverse signals includes utilizing linear combiner weights obtained during a receive operation to construct linear distribution weights for a subsequent transmit operation by setting transmission gains proportional to the distribution weights.
45. An apparatus, comprising:
an antennae array of M antennae, where M is greater than or equal to two;
at least one multiple-input-capable receiver in communication with each antenna in the antennae array of M antennae;
decoding circuitry capable of causing data to be decoded; and
processing circuitry capable of causing diversity combining, the processing circuitry in communication with the multiple-input-capable receiver and the decoding circuitry, the processing circuitry capable of causing the apparatus to simultaneously receive at least two first diverse signals, the at least two first diverse signals being at least one of time coincident communications or frequency coincident communications.
46. The apparatus of claim 45, wherein the apparatus is configured such that the at least two diverse signals are time coincident communications.
47. The apparatus of claim 45, wherein the apparatus is configured such that the at least two diverse signals are frequency coincident communications.
48. An apparatus, comprising:
at least two antennas;
a multiple-input and multiple-output capable transceiver in communication with each of the at least two antennas;
processing circuitry capable of causing diversity combining, the processing circuitry in communication with the multiple-input and multiple-output capable transceiver, the processing circuitry capable of causing the apparatus to:
receive a first signal,
calculate weights associated with the first signal, and
apply the weights to transmit data, and
wherein the apparatus is configured such that the at least two antennas are capable of transmitting a second signal including the transmit data to a multiple-input capable node.
49. The apparatus of claim 48, wherein the apparatus is configured such that the weights are scaled to provide a normalized response associated with a water filling formula.
50. The apparatus of claim 48, wherein the apparatus is configured to operate utilizing at least one of a CDMA protocol, a TDMA protocol, or an SDMA protocol.
US13/010,629 2000-06-13 2011-01-20 Apparatus for generating at least one diverse signal based on at least one aspect of at least two received signals Abandoned US20110188597A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US13/010,629 US20110188597A1 (en) 2000-06-13 2011-01-20 Apparatus for generating at least one diverse signal based on at least one aspect of at least two received signals
US14/309,332 US9106286B2 (en) 2000-06-13 2014-06-19 Network communication using diversity
US14/480,542 US9209871B2 (en) 2000-06-13 2014-09-08 Network communication using diversity
US14/480,535 US9197297B2 (en) 2000-06-13 2014-09-08 Network communication using diversity
US14/734,667 US10349332B2 (en) 2000-06-13 2015-06-09 Network communication using selected resources
US14/961,445 US9515788B2 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US14/961,559 US9356666B1 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US14/961,542 US9344233B2 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US15/042,280 US9391745B2 (en) 2000-06-13 2016-02-12 Multi-user transmissions
US15/076,770 US9401783B1 (en) 2000-06-13 2016-03-22 Transmission of data to multiple nodes
US15/078,603 US9722842B2 (en) 2000-06-13 2016-03-23 Transmission of data using a plurality of radio frequency channels
US15/369,393 US9654323B2 (en) 2000-06-13 2016-12-05 Data routing for OFDM transmission based on observed node capacities
US15/595,432 US9820209B1 (en) 2000-06-13 2017-05-15 Data routing for OFDM transmissions
US15/811,087 US10257765B2 (en) 2000-06-13 2017-11-13 Transmission of OFDM symbols

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US21146200P 2000-06-13 2000-06-13
US24383100P 2000-10-27 2000-10-27
US09/878,789 US7248841B2 (en) 2000-06-13 2001-06-10 Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US11/880,825 US8363744B2 (en) 2001-06-10 2007-07-23 Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US13/010,629 US20110188597A1 (en) 2000-06-13 2011-01-20 Apparatus for generating at least one diverse signal based on at least one aspect of at least two received signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/880,825 Continuation US8363744B2 (en) 2000-06-13 2007-07-23 Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/309,332 Continuation US9106286B2 (en) 2000-06-13 2014-06-19 Network communication using diversity

Publications (1)

Publication Number Publication Date
US20110188597A1 true US20110188597A1 (en) 2011-08-04

Family

ID=39774550

Family Applications (22)

Application Number Title Priority Date Filing Date
US11/880,825 Ceased US8363744B2 (en) 2000-06-13 2007-07-23 Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US13/010,629 Abandoned US20110188597A1 (en) 2000-06-13 2011-01-20 Apparatus for generating at least one diverse signal based on at least one aspect of at least two received signals
US13/022,622 Expired - Lifetime US8315326B2 (en) 2000-06-13 2011-02-07 Apparatus for generating at least one signal based on at least one aspect of at least two received signals
US13/022,623 Expired - Lifetime US8315327B2 (en) 2000-06-13 2011-02-07 Apparatus for transmitting a signal including transmit data to a multiple-input capable node
US13/022,615 Expired - Lifetime US8451928B2 (en) 2000-06-13 2011-02-07 Apparatus for calculating weights associated with a first signal and applying the weights to a second signal
US13/022,619 Expired - Lifetime US8451929B2 (en) 2000-06-13 2011-02-07 Apparatus for calculating weights associated with a received signal and applying the weights to transmit data
US13/840,630 Abandoned US20140204984A1 (en) 2000-06-13 2013-03-15 Apparatus for calculating weights associated with a received signal and applying the weights to transmit data
US14/253,563 Active 2024-05-10 USRE45775E1 (en) 2000-06-13 2014-04-15 Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US14/253,593 Expired - Lifetime USRE45807E1 (en) 2000-06-13 2014-04-15 Apparatus for transmitting a signal including transmit data to a multiple-input capable node
US14/309,332 Expired - Lifetime US9106286B2 (en) 2000-06-13 2014-06-19 Network communication using diversity
US14/480,542 Expired - Fee Related US9209871B2 (en) 2000-06-13 2014-09-08 Network communication using diversity
US14/480,535 Expired - Fee Related US9197297B2 (en) 2000-06-13 2014-09-08 Network communication using diversity
US14/734,667 Expired - Lifetime US10349332B2 (en) 2000-06-13 2015-06-09 Network communication using selected resources
US14/961,445 Expired - Lifetime US9515788B2 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US14/961,559 Expired - Lifetime US9356666B1 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US14/961,542 Expired - Lifetime US9344233B2 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US15/042,280 Expired - Lifetime US9391745B2 (en) 2000-06-13 2016-02-12 Multi-user transmissions
US15/076,770 Expired - Lifetime US9401783B1 (en) 2000-06-13 2016-03-22 Transmission of data to multiple nodes
US15/078,603 Expired - Lifetime US9722842B2 (en) 2000-06-13 2016-03-23 Transmission of data using a plurality of radio frequency channels
US15/369,393 Expired - Lifetime US9654323B2 (en) 2000-06-13 2016-12-05 Data routing for OFDM transmission based on observed node capacities
US15/595,432 Expired - Lifetime US9820209B1 (en) 2000-06-13 2017-05-15 Data routing for OFDM transmissions
US15/811,087 Expired - Fee Related US10257765B2 (en) 2000-06-13 2017-11-13 Transmission of OFDM symbols

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/880,825 Ceased US8363744B2 (en) 2000-06-13 2007-07-23 Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks

Family Applications After (20)

Application Number Title Priority Date Filing Date
US13/022,622 Expired - Lifetime US8315326B2 (en) 2000-06-13 2011-02-07 Apparatus for generating at least one signal based on at least one aspect of at least two received signals
US13/022,623 Expired - Lifetime US8315327B2 (en) 2000-06-13 2011-02-07 Apparatus for transmitting a signal including transmit data to a multiple-input capable node
US13/022,615 Expired - Lifetime US8451928B2 (en) 2000-06-13 2011-02-07 Apparatus for calculating weights associated with a first signal and applying the weights to a second signal
US13/022,619 Expired - Lifetime US8451929B2 (en) 2000-06-13 2011-02-07 Apparatus for calculating weights associated with a received signal and applying the weights to transmit data
US13/840,630 Abandoned US20140204984A1 (en) 2000-06-13 2013-03-15 Apparatus for calculating weights associated with a received signal and applying the weights to transmit data
US14/253,563 Active 2024-05-10 USRE45775E1 (en) 2000-06-13 2014-04-15 Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US14/253,593 Expired - Lifetime USRE45807E1 (en) 2000-06-13 2014-04-15 Apparatus for transmitting a signal including transmit data to a multiple-input capable node
US14/309,332 Expired - Lifetime US9106286B2 (en) 2000-06-13 2014-06-19 Network communication using diversity
US14/480,542 Expired - Fee Related US9209871B2 (en) 2000-06-13 2014-09-08 Network communication using diversity
US14/480,535 Expired - Fee Related US9197297B2 (en) 2000-06-13 2014-09-08 Network communication using diversity
US14/734,667 Expired - Lifetime US10349332B2 (en) 2000-06-13 2015-06-09 Network communication using selected resources
US14/961,445 Expired - Lifetime US9515788B2 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US14/961,559 Expired - Lifetime US9356666B1 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US14/961,542 Expired - Lifetime US9344233B2 (en) 2000-06-13 2015-12-07 Originator and recipient based transmissions in wireless communications
US15/042,280 Expired - Lifetime US9391745B2 (en) 2000-06-13 2016-02-12 Multi-user transmissions
US15/076,770 Expired - Lifetime US9401783B1 (en) 2000-06-13 2016-03-22 Transmission of data to multiple nodes
US15/078,603 Expired - Lifetime US9722842B2 (en) 2000-06-13 2016-03-23 Transmission of data using a plurality of radio frequency channels
US15/369,393 Expired - Lifetime US9654323B2 (en) 2000-06-13 2016-12-05 Data routing for OFDM transmission based on observed node capacities
US15/595,432 Expired - Lifetime US9820209B1 (en) 2000-06-13 2017-05-15 Data routing for OFDM transmissions
US15/811,087 Expired - Fee Related US10257765B2 (en) 2000-06-13 2017-11-13 Transmission of OFDM symbols

Country Status (1)

Country Link
US (22) US8363744B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130107695A1 (en) * 2011-10-28 2013-05-02 Fci Inc. Odfm receiver
US8571499B1 (en) * 2010-10-12 2013-10-29 Harold Kirkpatrick Wireless terrestrial communications systems using a line-of-sight frequency for inbound data and a non-line-of-sight frequency for outbound data
US20150063211A1 (en) * 2013-08-29 2015-03-05 Samsung Electronics Co., Ltd. Method and apparatus for applying nested network cording in multipath protocol
US20150110230A1 (en) * 2012-03-07 2015-04-23 Hobbit Wave, Inc. Devices and methods using the hermetic transform
US9184498B2 (en) 2013-03-15 2015-11-10 Gigoptix, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through fine control of a tunable frequency of a tank circuit of a VCO thereof
US9275690B2 (en) 2012-05-30 2016-03-01 Tahoe Rf Semiconductor, Inc. Power management in an electronic system through reducing energy usage of a battery and/or controlling an output power of an amplifier thereof
US20160344463A1 (en) * 2014-03-24 2016-11-24 Lg Electronics Inc. Method of performing a hybrid beamforming in a wireless communication system and apparatus therefor
US9509351B2 (en) 2012-07-27 2016-11-29 Tahoe Rf Semiconductor, Inc. Simultaneous accommodation of a low power signal and an interfering signal in a radio frequency (RF) receiver
US9531070B2 (en) 2013-03-15 2016-12-27 Christopher T. Schiller Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through accommodating differential coupling between VCOs thereof
US9531431B2 (en) 2013-10-25 2016-12-27 Hobbit Wave, Inc. Devices and methods employing hermetic transforms for encoding and decoding digital information in spread-spectrum communications systems
US9666942B2 (en) 2013-03-15 2017-05-30 Gigpeak, Inc. Adaptive transmit array for beam-steering
US9716315B2 (en) 2013-03-15 2017-07-25 Gigpeak, Inc. Automatic high-resolution adaptive beam-steering
US9722310B2 (en) 2013-03-15 2017-08-01 Gigpeak, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through frequency multiplication
US9780449B2 (en) 2013-03-15 2017-10-03 Integrated Device Technology, Inc. Phase shift based improved reference input frequency signal injection into a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation to reduce a phase-steering requirement during beamforming
US9800316B2 (en) 2008-02-20 2017-10-24 Hobbit Wave, Inc. Beamforming devices and methods
US9829568B2 (en) 2013-11-22 2017-11-28 VertoCOMM, Inc. Radar using hermetic transforms
US9837714B2 (en) 2013-03-15 2017-12-05 Integrated Device Technology, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through a circular configuration thereof
US9871684B2 (en) 2014-11-17 2018-01-16 VertoCOMM, Inc. Devices and methods for hermetic transform filters
US9998311B2 (en) 2012-03-07 2018-06-12 VertoCOMM, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using OFDM
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US10305717B2 (en) 2016-02-26 2019-05-28 VertoCOMM, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using multi-channel signaling
US10333759B2 (en) * 2012-11-28 2019-06-25 Sony Corporation Receiver for receiving data in a broadcast system
WO2021102478A1 (en) * 2020-06-15 2021-05-27 Zeku, Inc. Approaches to self-clustering resource blocks for improved noise estimation through imbalance detection
US11201692B2 (en) * 2012-11-28 2021-12-14 Saturn Licensing Llc Receiver for receiving data in a broadcast system using redundancy data
US11304661B2 (en) 2014-10-23 2022-04-19 VertoCOMM, Inc. Enhanced imaging devices, and image construction methods and processes employing hermetic transforms
WO2022165150A1 (en) * 2021-01-29 2022-08-04 Trustpoint, Inc. Satellite based positioning navigation and timing system, method and computer program product
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
US11750256B2 (en) * 2002-11-04 2023-09-05 Xr Communications Llc Directed wireless communication
US11843458B2 (en) 2012-11-28 2023-12-12 Saturn Licensing Llc Broadcast system and method for error correction using separately received redundant data and broadcast data

Families Citing this family (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169789B1 (en) * 1996-12-16 2001-01-02 Sanjay K. Rao Intelligent keyboard system
GB0004178D0 (en) * 2000-02-22 2000-04-12 Nokia Networks Oy Integrity check in a communication system
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US7346347B2 (en) * 2001-01-19 2008-03-18 Raze Technologies, Inc. Apparatus, and an associated method, for providing WLAN service in a fixed wireless access communication system
JP4529281B2 (en) * 2000-12-08 2010-08-25 ソニー株式会社 Transmitting apparatus, receiving apparatus, and communication system
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US8929550B2 (en) 2013-02-01 2015-01-06 Department 13, LLC LPI/LPD communication systems
US9818136B1 (en) 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
CA2909150C (en) 2004-10-12 2017-11-07 Tq Delta, Llc Resource sharing in a telecommunications environment
US7573851B2 (en) 2004-12-07 2009-08-11 Adaptix, Inc. Method and system for switching antenna and channel assignments in broadband wireless networks
US8874477B2 (en) 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method
US9084260B2 (en) * 2005-10-26 2015-07-14 Intel Corporation Systems for communicating using multiple frequency bands in a wireless network
US8254865B2 (en) 2006-04-07 2012-08-28 Belair Networks System and method for frequency offsetting of information communicated in MIMO-based wireless networks
CA2647589C (en) * 2006-04-12 2018-08-21 Aware, Inc. Packet retransmission and memory sharing
US8189621B2 (en) 2006-05-12 2012-05-29 Microsoft Corporation Stack signaling to application with lack of requested bandwidth
JP2008154242A (en) * 2006-11-21 2008-07-03 Yokogawa Electric Corp Mimo mesh network
US8144793B2 (en) 2006-12-12 2012-03-27 Microsoft Corporation Cognitive multi-user OFDMA
US20080198837A1 (en) * 2007-02-02 2008-08-21 Samsung Electronics Co., Ltd. System and method for transmitting and receiving signal in communication system
US8254280B2 (en) * 2007-02-09 2012-08-28 Telefonatiebolaget L M Ericsson (Publ) Method and apparatus for composing a set of cells in a radio network
US7970085B2 (en) 2007-05-08 2011-06-28 Microsoft Corporation OFDM transmission and reception for non-OFDMA signals
US8045660B1 (en) 2007-05-23 2011-10-25 Hypres, Inc. Wideband digital spectrometer
US9088907B2 (en) * 2007-06-18 2015-07-21 Xirrus, Inc. Node fault identification in wireless LAN access points
KR101397051B1 (en) * 2007-06-25 2014-05-20 엘지전자 주식회사 digital broadcasting system and data processing method
EP3447941B1 (en) * 2007-08-08 2022-10-05 Godo Kaisha IP Bridge 1 Communication device and method
JP4877197B2 (en) * 2007-11-02 2012-02-15 日本電気株式会社 Radio diversity receiving apparatus and receiving method
US8374130B2 (en) 2008-01-25 2013-02-12 Microsoft Corporation Orthogonal frequency division multiple access with carrier sense
US8913532B1 (en) * 2008-03-31 2014-12-16 Zte (Usa) Inc. Configurable guard time for wireless networks
AT506623A1 (en) * 2008-04-03 2009-10-15 Fts Computertechnik Gmbh PROCESS FOR SAFE DYNAMIC BANDWIDTH ALLOCATION IN TT-ETHERNET
KR20090128988A (en) * 2008-06-12 2009-12-16 삼성전자주식회사 Apparatus and method for transmitting and receiving map information in a broadband wireless communication system
US8249540B1 (en) 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
CN102124666A (en) * 2008-08-18 2011-07-13 新加坡科技研究局 Analog space-time relay method and apparatus for a wireless communication relay channel
US20100195564A1 (en) * 2008-11-26 2010-08-05 Je-Hong Jong Method and system for providing timing and frequency synchronization for satellite diversity
KR101075964B1 (en) * 2009-02-02 2011-10-21 아주대학교산학협력단 Apparatus and method for relaying multiple links in a communication system
US8253774B2 (en) 2009-03-30 2012-08-28 Microsoft Corporation Ambulatory presence features
US20110013603A1 (en) * 2009-07-20 2011-01-20 Qinghua Li Techniques for MIMO beamforming for frequency selective channels in wireless communication systems
US8831073B2 (en) 2009-08-31 2014-09-09 Sony Corporation Wireless transmission system, wireless communication device, and wireless communication method
JP5672683B2 (en) * 2009-09-29 2015-02-18 ソニー株式会社 Wireless transmission system, wireless communication device
JP5585092B2 (en) * 2009-10-22 2014-09-10 ソニー株式会社 Wireless transmission system, wireless communication device
JP5515559B2 (en) * 2009-09-25 2014-06-11 ソニー株式会社 Communication system, base station, and communication apparatus
US8786440B2 (en) * 2009-10-02 2014-07-22 Checkpoint Systems, Inc. Calibration of beamforming nodes in a configurable monitoring device system
US8989033B2 (en) * 2009-10-30 2015-03-24 Blackberry Limited Downlink MCS selection in a type 2 relay network
US8312123B2 (en) * 2009-11-07 2012-11-13 Harris Technology, Llc Address sharing network
US8553660B2 (en) * 2010-01-03 2013-10-08 Mitsubishi Electric Research Laboratories, Inc. Cooperative relay communication in wireless OFDMA star networks
GB201001488D0 (en) * 2010-01-29 2010-03-17 Icera Inc An equalizer for wireless receivers
US8401466B2 (en) * 2010-02-04 2013-03-19 Raytheon Bbn Technologies Corp. Scalable high speed MIMO-satellite communication system
US8958360B2 (en) * 2010-02-08 2015-02-17 Lg Electronics Inc. Coordinated communication method using multiple terminals
KR101764888B1 (en) 2010-02-16 2017-08-16 한국전자통신연구원 Apparatus and method for wideband high frequency short-range wireless communication
US8547901B2 (en) * 2010-03-02 2013-10-01 Nokia Corporation Method and apparatus for ordered partial detection with MIMO cooperation
EP2577938A1 (en) * 2010-06-01 2013-04-10 Radiflow Ltd. Plant communication network
US9014237B2 (en) * 2010-07-29 2015-04-21 Thomson Licensing Multiple-in-multiple-out network-coded amplify-and-forward relaying scheme for three node bidirectional cooperation
US8532047B2 (en) * 2010-08-12 2013-09-10 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control transmit diversity
KR101153970B1 (en) * 2010-11-26 2012-06-08 서울대학교산학협력단 Routing method for wireless mesh networks and wireless mesh network system using the same
KR20180003635A (en) 2010-12-03 2018-01-09 인터디지탈 패튼 홀딩스, 인크 Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
EP2919545B1 (en) 2011-02-11 2016-09-28 Interdigital Patent Holdings, Inc. Device and method for an enhanced control channel (e-pdcch)
US9281924B2 (en) * 2011-04-13 2016-03-08 Qualcomm Incorporated Method and apparatus for generating various transmission modes for WLAN systems
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
US9219616B2 (en) * 2011-05-25 2015-12-22 Cisco Technology, Inc. Supporting multiple IEC-101/IEC-104 masters on an IEC-101/IEC-104 translation gateway
WO2012170102A1 (en) * 2011-06-08 2012-12-13 Xg Technology, Inc. Cognitive receiver architecture
JP5689029B2 (en) * 2011-06-09 2015-03-25 株式会社日立製作所 Distributed antenna system, distributed antenna allocation method, base station apparatus
WO2013023170A1 (en) * 2011-08-11 2013-02-14 Research In Motion Limited Orthogonal resource selection transmit diversity and resource assignment
US9246725B2 (en) * 2011-09-06 2016-01-26 Electronics And Telecommunications Research Institute Method of generating and receiving packets in low energy critical infrastructure monitoring system
US20130142136A1 (en) * 2011-10-21 2013-06-06 Samsung Electronics Co., Ltd. Methods and apparatus for adaptive wireless backhaul and networks
KR20130045169A (en) * 2011-10-24 2013-05-03 주식회사 팬택 Apparatus and method for performing uplink synchronization in multiple component carrier system
US8995361B2 (en) * 2011-11-11 2015-03-31 Itron, Inc. Multi-channel, multi-modulation, multi-rate communication with a radio transceiver
US8682625B2 (en) * 2011-11-11 2014-03-25 Sigrity, Inc. Methods, systems, and computer-readable media for improving accuracy of network parameter in electromagnetic simulation and modeling
WO2013082754A1 (en) * 2011-12-06 2013-06-13 Telefonaktiebolaget L M Ericsson (Publ) Doppler shift compensation apparatus and method
KR102524731B1 (en) 2012-01-27 2023-04-21 인터디지탈 패튼 홀딩스, 인크 Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
US8655288B2 (en) * 2012-01-27 2014-02-18 Blackberry Limited Electronic device with multiple antenna diversity and related methods
US11792782B1 (en) 2012-02-02 2023-10-17 Tybalt, Llc Cooperative and parasitic radio access networks
US10499409B2 (en) 2012-02-02 2019-12-03 Genghiscomm Holdings, LLC Cooperative and parasitic radio access networks
EP2865121B1 (en) * 2012-03-29 2019-03-20 Sckipio Technologies S.i Ltd Framing scheme and method for overhead and latency reduction of digital communications
CN103368583B (en) * 2012-04-11 2016-08-17 华为技术有限公司 The interpretation method of polar code and code translator
US9252908B1 (en) * 2012-04-12 2016-02-02 Tarana Wireless, Inc. Non-line of sight wireless communication system and method
US9094164B2 (en) * 2012-04-17 2015-07-28 Qualcomm Incorporated Methods and apparatus to improve channel estimation in communication systems
WO2014017872A1 (en) * 2012-07-26 2014-01-30 엘지전자 주식회사 Method of supporting communication using two or more radio access technologies and apparatus for same
US9113450B2 (en) 2012-08-23 2015-08-18 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
US9667315B2 (en) * 2012-09-05 2017-05-30 Landis+Gyr Technologies, Llc Power distribution line communications with compensation for post modulation
CN104641661B (en) * 2012-09-21 2018-05-29 三菱电机株式会社 Wireless communication device and wireless communication system
US8873518B2 (en) * 2012-09-24 2014-10-28 Silver Spring Networks, Inc. System and method for broadcasting messages to nodes within a wireless mesh network
RU2533077C2 (en) * 2012-12-10 2014-11-20 Открытое акционерное общество "Российский институт мощного радиостроения" Data transfer method with symbol pseudorandom operating frequency tuning
FI125462B (en) * 2013-01-29 2015-10-15 Inverpolis Oy Procedures and systems for using a phased antenna array
US9544171B2 (en) * 2013-02-12 2017-01-10 Nokia Solutions And Networks Oy Zero insertion for ISI free OFDM reception
US8913701B2 (en) 2013-02-25 2014-12-16 Itron, Inc. Multichannel radio receiver with overlapping channel filters
US8934532B2 (en) 2013-02-25 2015-01-13 Itron, Inc. Simultaneous reception of multiple modulation schemes
US9014307B2 (en) 2013-02-25 2015-04-21 Itron, Inc. Radio to analog-to-digital sample rate decoupled from digital subsystem
US8958506B2 (en) 2013-02-25 2015-02-17 Itron, Inc. FSK/MSK decoder
US9252998B2 (en) 2013-02-25 2016-02-02 Itron, Inc. Radio to detect and compensate for frequency misalignment
US9426680B2 (en) 2013-02-25 2016-08-23 Itron, Inc. Real-time radio spectrum assessment engine
US9104753B2 (en) * 2013-03-01 2015-08-11 Hewlett-Packard Development Company, L.P. Identifying an incident-addressing step
CN103176189A (en) * 2013-03-08 2013-06-26 浙江大学 Near-far effect suppressor for high-flexibility satellite navigation receiver and near-far effect suppressing method thereof
US8923452B2 (en) * 2013-03-18 2014-12-30 Lockheed Martin Corporation Noise-based gain adjustment and amplitude estimation system
EP2984801A1 (en) * 2013-04-09 2016-02-17 Interdigital Patent Holdings, Inc. Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks
US20140307583A1 (en) * 2013-04-12 2014-10-16 Rahul Urgaonkar Channel assignment processes for high density multi-channel multi-radio (mc-mr) wireless networks
US9590744B2 (en) * 2013-05-06 2017-03-07 Alcatel Lucent Method and apparatus for beamforming
JP5982569B2 (en) * 2013-05-29 2016-08-31 Kddi株式会社 Base station system and communication apparatus
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) * 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9641260B2 (en) 2013-06-16 2017-05-02 Siklu Communication ltd. Systems and methods for improving the quality of millimeter-wave communication
GB2517218B (en) 2013-08-16 2017-10-04 Analog Devices Global Communication unit and method of antenna array calibration
GB2517217B (en) * 2013-08-16 2018-03-21 Analog Devices Global Communication unit, integrated circuit and method for generating a plurality of sectored beams
US9461724B1 (en) * 2013-08-19 2016-10-04 Quantenna Communications, Inc. Matrix processing engine for multi-tone MIMO systems
US20160360697A1 (en) * 2013-09-03 2016-12-15 Agco Corporation System and method for automatically changing machine control state
KR102254192B1 (en) * 2013-09-24 2021-05-21 삼성전자주식회사 Apparatus and method for analyzing network topology in wireless communication system
US10341229B2 (en) * 2013-10-04 2019-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for configuring optical network nodes
KR101853671B1 (en) 2013-11-11 2018-06-20 엘지전자 주식회사 Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2015084350A1 (en) * 2013-12-04 2015-06-11 Hitachi, Ltd. A method for ue-assisted antenna parameters optimization
US10412007B1 (en) * 2013-12-13 2019-09-10 Jpmorgan Chase Bank, N.A. Method and system for determining balanced traffic flows for network capacity planning
CN104796243B (en) * 2014-01-22 2018-05-29 电信科学技术研究院 A kind of data transmission, data receiver detection method and base station, user equipment
US9338144B2 (en) 2014-02-19 2016-05-10 Raytheon Bbn Technologies Corp. System and method for operating on streaming encrypted data
US9325671B2 (en) 2014-02-19 2016-04-26 Raytheon Bbn Technologies Corp. System and method for merging encryption data using circular encryption key switching
JP2017098588A (en) * 2014-02-20 2017-06-01 日本電気株式会社 Communication system, radio communication device, and radio communication method
US9461974B2 (en) 2014-02-28 2016-10-04 Raytheon Bbn Technologies Corp. System and method to merge encrypted signals in distributed communication system
US9313181B2 (en) * 2014-02-28 2016-04-12 Raytheon Bbn Technologies Corp. System and method to merge encrypted signals in distributed communication system
US9294927B2 (en) * 2014-03-12 2016-03-22 Verizon Patent And Licensing Inc. Data flow transmission via aggregated bands
US10348394B1 (en) 2014-03-14 2019-07-09 Tarana Wireless, Inc. System architecture and method for enhancing wireless networks with mini-satellites and pseudollites and adaptive antenna processing
US9628163B2 (en) * 2014-03-25 2017-04-18 Marvell International Ltd. Low-complexity communication terminal with enhanced receive diversity
TWI533626B (en) * 2014-04-15 2016-05-11 瑞昱半導體股份有限公司 Wireless receiver and method for wireless reception
US9628450B2 (en) 2014-04-16 2017-04-18 Raytheon Bbn Technologies Corp. System and method for merging encryption data without sharing a private key
US10097321B2 (en) * 2014-05-08 2018-10-09 Qualcomm Incorporated Cooperative techniques between lower-frequency carriers and millimeter-wave channels for discovery and synchronization and beamforming
US10182385B2 (en) 2014-06-09 2019-01-15 Site Pro, LLC Multi-path wireless mesh networks
US10495742B2 (en) * 2014-06-09 2019-12-03 Nec Corporation Target detection device
US9391839B2 (en) 2014-06-11 2016-07-12 Amplisine Labs, LLC Ad hoc wireless mesh network
US9537556B2 (en) * 2014-07-11 2017-01-03 Huawei Technologies Canada Co., Ltd. Systems and methods for optimized beamforming and compression for uplink MIMO cloud radio access networks
CN105453607B (en) * 2014-07-23 2019-04-26 华为技术有限公司 The transmission method and transmission device of WLAN
US9787751B2 (en) 2014-08-06 2017-10-10 At&T Intellectual Property I, L.P. Method and apparatus for delivering media content utilizing segment and packaging information
ES2671558T3 (en) * 2014-09-10 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Radio receiver for carrier aggregation
KR102190919B1 (en) * 2014-09-11 2020-12-14 삼성전자주식회사 Apparatus and method for detecting signal in communication system supporting time division duplexing-code division multiple access scheme
CN109451196B (en) * 2014-09-22 2021-01-26 英国电讯有限公司 Apparatus for creating a channel for transmitting data over a digital subscriber line connection
US9596272B2 (en) 2014-09-25 2017-03-14 Microsoft Technology Licensing, Llc Media session between network endpoints
US10244003B2 (en) 2014-09-25 2019-03-26 Microsoft Technology Licensing, Llc Media session between network endpoints
US10171511B2 (en) 2014-09-25 2019-01-01 Microsoft Technology Licensing, Llc Media session between network endpoints
US10042852B2 (en) * 2014-09-29 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Interference and/or power reduction for multiple relay nodes using cooperative beamforming
US20160097861A1 (en) * 2014-10-01 2016-04-07 Illinois Institute Of Technology Method and apparatus for location determination
WO2016056462A1 (en) * 2014-10-07 2016-04-14 三菱電機株式会社 Wireless communication device and wireless communication method
WO2016071714A1 (en) * 2014-11-06 2016-05-12 Maven Securities Holdings Ltd Data processing and analysis system and method
EP3026835A1 (en) * 2014-11-28 2016-06-01 Gemalto M2M GmbH Method of detecting a jamming transmitter affecting a communication user equipment
CA2973991C (en) * 2015-01-14 2023-02-14 Hughes Network Systems, Llc Determining link conditions of a client lan/wan from measurement point to client devices and application servers of interest
WO2016129821A1 (en) * 2015-02-13 2016-08-18 엘지전자 주식회사 Method for supporting, by communication device using fdr scheme, non-linear self-interference channel estimation of multiple terminals
US9306624B1 (en) 2015-03-31 2016-04-05 Landis+Gyr Technologies, Llc Initialization of endpoint devices joining a power-line communication network
US9985760B2 (en) * 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
CN107534527B (en) * 2015-04-10 2020-07-24 瑞典爱立信有限公司 Method and user equipment for compressing HARQ feedback
WO2016185384A1 (en) * 2015-05-18 2016-11-24 King Abdullah University Of Science And Technology Direct closed-form covariance matrix and finite alphabet constant-envelope waveforms for planar array beampatterns
US9461707B1 (en) 2015-05-21 2016-10-04 Landis+Gyr Technologies, Llc Power-line network with multi-scheme communication
US10412656B2 (en) 2015-06-22 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Path selection in wireless mesh networks
KR102168183B1 (en) * 2015-07-03 2020-10-20 에스케이텔레콤 주식회사 Apparatus for generating beam to trace location of terminal and method for estimating angle of arrival of the terminal
US10306613B2 (en) * 2015-07-08 2019-05-28 Ceragon Networks Ltd. Dynamic channel allocation
US10433337B2 (en) 2015-07-31 2019-10-01 Lg Electronics Inc. Method for transmitting data in wireless communication system and apparatus therefor
US11637612B2 (en) 2015-08-25 2023-04-25 Cellium Technologies, Ltd. Macro-diversity using hybrid transmissions via twisted pairs
US10177832B2 (en) * 2015-08-25 2019-01-08 Cellium Technologies, Ltd. Using a coaxial cable for distributing MIMO signals in-house
US11303346B2 (en) 2015-08-25 2022-04-12 Cellium Technologies, Ltd. Systems and methods for transporting signals inside vehicles
US20170086080A1 (en) * 2015-09-18 2017-03-23 Huawei Technologies Co., Ltd. System and Method for Fast Beamforming Setup
US9832790B2 (en) * 2015-09-23 2017-11-28 At&T Intellectual Property I, L.P. Methods and apparatus to transmit data in a connectionless mode
CN106559371B (en) * 2015-09-24 2021-01-12 索尼公司 Electronic device for wireless communication and wireless communication method
US9992124B2 (en) 2015-10-09 2018-06-05 Itron, Inc. Multi-channel decoder architecture
CN105245269B (en) * 2015-10-26 2018-06-29 西安电子科技大学 Letter energy simultaneous interpretation relay transmission method in safety of physical layer communication
CN105375956B (en) * 2015-10-26 2019-08-27 西安电子科技大学 Queue in safety of physical layer communication caches relay transmission method
US10638479B2 (en) * 2015-11-17 2020-04-28 Futurewei Technologies, Inc. System and method for multi-source channel estimation
US10158679B2 (en) 2015-11-18 2018-12-18 Microsoft Technology Licensing, Llc Media session between network endpoints
US10079863B2 (en) 2015-11-18 2018-09-18 Microsoft Technology Licensing, Llc Media session between network endpoints
WO2017107002A1 (en) * 2015-12-21 2017-06-29 Orange Method and device for beamforming
US10312947B2 (en) * 2016-01-21 2019-06-04 Huawei Technologies Co., Ltd. Concatenated and sliding-window polar coding
US10389424B2 (en) * 2016-02-04 2019-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Method for adapting a beam shape of a beam
CN107046504B (en) * 2016-02-05 2020-08-25 华为技术有限公司 Method and controller for traffic engineering in a communication network
KR102500477B1 (en) 2016-03-14 2023-02-17 한국전자통신연구원 System and method for allocating dynamic code
WO2017161478A1 (en) * 2016-03-21 2017-09-28 中国科学技术大学 Method for transmitting signals to multiple users by using wireless channel reciprocity
US10621041B2 (en) * 2016-03-25 2020-04-14 Intel Corporation Methods and apparatus to assign indices and relocate object fragments in distributed storage systems
US9985352B2 (en) * 2016-04-21 2018-05-29 The Boeing Company Dynamically allocated broadband multi-tap antenna
RU2621181C1 (en) * 2016-06-02 2017-05-31 Олег Станиславович Когновицкий Cycle synchronization method with dynamic addressing recipient
US10775510B2 (en) * 2016-06-06 2020-09-15 Brian G. Agee Blind despreading of civil GNSS signals for resilient PNT applications
CN107517469A (en) * 2016-06-17 2017-12-26 华为技术有限公司 The method and apparatus of cell adjustment
WO2018008780A1 (en) * 2016-07-07 2018-01-11 엘지전자 주식회사 Method for reducing operation for removing self-interference in fdr environment and device therefor
CN106130939B (en) * 2016-07-16 2020-02-21 南京邮电大学 Fast time-varying channel estimation method in iterative MIMO-OFDM system
US9813141B1 (en) * 2016-07-29 2017-11-07 Sprint Communications Company L.P. Dynamic control of automatic gain control (AGC) in a repeater system
CN106452555A (en) * 2016-08-31 2017-02-22 华东师范大学 Multi-path optimization algorithm planning method based on medium and low earth orbit satellite network
TWI642287B (en) * 2016-09-06 2018-11-21 聯發科技股份有限公司 Methods of efficient coding switching and communication apparatus
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
CN107872865B (en) * 2016-09-24 2019-05-17 上海朗帛通信技术有限公司 A kind of method and apparatus of transmission power adjustment in UE, base station
US10200874B2 (en) * 2016-09-29 2019-02-05 Qualcomm Incorporated Signature sequence for system identification in a shared spectrum
EP3520305A1 (en) * 2016-09-30 2019-08-07 Telefonaktiebolaget LM Ericsson (publ) Aperiodic channel state information (csi) and csi-reference signal (rs) resource pooling
CN109923803B (en) * 2016-10-31 2020-12-15 华为技术有限公司 Receiver and data receiving method
US11031990B2 (en) * 2016-11-03 2021-06-08 Nokia Technologies Oy Beamforming
WO2018087104A1 (en) 2016-11-08 2018-05-17 British Telecommunications Public Limited Company Method and apparatus for operating a digital subscriber line arrangement
WO2018087106A1 (en) 2016-11-08 2018-05-17 British Telecommunications Public Limited Company Method and apparatus for operating a digital subscriber line arrangement
US10257715B2 (en) * 2016-11-28 2019-04-09 Dell Products, Lp Method and apparatus for concurrent radio communication in shared spectrum
CN108124263B (en) * 2016-11-30 2021-06-22 中国科学院沈阳自动化研究所 Directional antenna channel converging method based on circulation arbitration set
CN106712820B (en) * 2016-12-12 2020-02-07 西安电子科技大学 Self-interference-suppressed multi-stream diversity BD precoding method and device
US11570725B2 (en) 2016-12-22 2023-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for enabling wireless communication with a wireless device
US10326696B2 (en) 2017-01-02 2019-06-18 Microsoft Technology Licensing, Llc Transmission of messages by acceleration components configured to accelerate a service
US10320677B2 (en) 2017-01-02 2019-06-11 Microsoft Technology Licensing, Llc Flow control and congestion management for acceleration components configured to accelerate a service
US10855435B2 (en) * 2017-01-18 2020-12-01 Sony Interactive Entertainment Inc. Communication apparatus, generated data size controlling method, and program
US10367846B2 (en) 2017-11-15 2019-07-30 Xm Cyber Ltd. Selectively choosing between actual-attack and simulation/evaluation for validating a vulnerability of a network node during execution of a penetration testing campaign
US10686823B2 (en) * 2017-01-30 2020-06-16 Xm Cyber Ltd. Systems and methods for detecting computer vulnerabilities that are triggered by events
US10651915B2 (en) * 2017-02-03 2020-05-12 Ntt Docomo, Inc. User terminal and radio communication method
JP2018152723A (en) * 2017-03-13 2018-09-27 株式会社東芝 Radio communication apparatus and radio communication method
US11368344B2 (en) * 2017-03-15 2022-06-21 Motorola Mobility Llc Method and apparatus having a synchronization signal sequence structure for low complexity cell detection
CN108631826B (en) * 2017-03-21 2022-05-31 中兴通讯股份有限公司 Alternative beam selection method and communication device
CN106973363A (en) * 2017-04-28 2017-07-21 生迪智慧科技有限公司 Audio play control method, system and the sound box lamp of sound box lamp
US10536860B2 (en) * 2017-05-10 2020-01-14 Facebook, Inc. Multi-hop wireless network planning
US10237754B1 (en) * 2017-05-12 2019-03-19 Sprint Spectrum L.P. Minimizing interference in different sectors of wireless networks
US11205842B2 (en) * 2017-05-19 2021-12-21 Starry, Inc. Pointing algorithm for endpoint nodes
CN107332595B (en) * 2017-05-22 2020-09-22 华南理工大学 MIMO wireless energy communication network maximum throughput method
WO2018214032A1 (en) * 2017-05-23 2018-11-29 华为技术有限公司 Data transmission method, device and system
US10181972B1 (en) * 2017-05-25 2019-01-15 L3 Technologies, Inc. Code division multiple access (CDMA) Manet
CN107454648A (en) * 2017-06-15 2017-12-08 中富通股份有限公司 Based on the single domain Ad Hoc that forward direction is approached by finding that algorithm designs in real time
TWI696372B (en) * 2017-06-16 2020-06-11 聯發科技股份有限公司 Method and apparatus for interference measurement
EP3642095A1 (en) * 2017-06-19 2020-04-29 Telefonaktiebolaget LM Ericsson (publ) Micro sleep for network node providing service to user equipment onboard a high speed train
CN107576943B (en) * 2017-08-07 2019-08-06 西安电子科技大学 Adaptive Time and Frequency Synchronization compression method based on Rayleigh entropy
US10644732B2 (en) * 2017-09-05 2020-05-05 Qualcomm Incorporated Systems and methods for signaling incorporating interference avoidance or beam nulling constraints for millimeter wave communication systems
CN109495965B (en) * 2017-09-11 2021-11-12 大唐移动通信设备有限公司 Resource indicating and determining method and device
EP3457617B1 (en) 2017-09-18 2020-06-17 Nokia Technologies Oy Method and apparatus for coordinating fdx and tdd communications in a communication system
CN107634793B (en) * 2017-09-29 2020-02-18 北京空间飞行器总体设计部 Low-overhead flooding method for LEO/MEO double-layer satellite network and satellite node
US11569897B2 (en) 2017-10-17 2023-01-31 Carnegie Mellon University Scalable, multi-layer MIMO transceiver
US10707947B2 (en) * 2017-10-17 2020-07-07 Carnegie Mellon University Reconfigurable hybrid beamforming MIMO receiver with inter-band carrier aggregation and RF-domain LMS weight adaptation
US10681564B2 (en) * 2017-10-20 2020-06-09 Huawei Technologies Co., Ltd. Method and nodes for data transmission over a line of sight channel
US11646894B2 (en) 2017-10-26 2023-05-09 International Business Machines Corporation Single channel multiple access communications system
TWI646793B (en) * 2017-10-30 2019-01-01 財團法人工業技術研究院 Achieving channel reciprocity calibration method and wireless communication device
US10469921B2 (en) * 2017-11-10 2019-11-05 Juniper Networks, Inc. Data center packet optical transport failure protection
CN108429591B (en) * 2017-11-13 2021-05-18 西北工业大学 Multi-carrier underwater acoustic communication method suitable for deep sea channel
US11553499B2 (en) * 2017-11-15 2023-01-10 Lenovo (Beijing) Limited Exchange of UL interference detection related information
US10349411B2 (en) * 2017-11-20 2019-07-09 Hewlett Packard Enterprise Development Lp Assign band modes and channels to wireless nodes
CN108011683B (en) * 2017-11-22 2019-05-17 西南电子技术研究所(中国电子科技集团公司第十研究所) Large-scale synthesis sensing system multistage distributes time-frequency unified approach
US10592309B2 (en) 2017-12-05 2020-03-17 Bank Of America Corporation Using smart data to forecast and track dual stage events
US11509775B2 (en) * 2017-12-18 2022-11-22 Incnetworks, Inc. System, network, device and stacked spectrum method for implementing spectrum sharing of multiple contiguous and non-contiguous spectrum bands utilizing universal wireless access gateways to enable dynamic security and bandwidth policy management
CN108347700B (en) * 2017-12-29 2021-02-26 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) Broadcasting method and broadcasting device for wireless ad hoc network
PL3518576T3 (en) * 2018-01-26 2020-07-27 Deutsche Telekom Ag Data flow manager for distributing data for a data stream of a user equipment, communication system and method
JP7272279B2 (en) * 2018-01-30 2023-05-12 ソニーグループ株式会社 COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL METHOD AND COMPUTER PROGRAM
US11329795B2 (en) * 2018-04-04 2022-05-10 Sony Interactive Entertainment Inc. Communication device, method for controlling size of generated data, and program
JP6927135B2 (en) * 2018-04-24 2021-08-25 日本電信電話株式会社 Traffic estimation device, traffic estimation method and program
US10924164B2 (en) 2018-05-29 2021-02-16 Skyworks Solutions, Inc. Beamforming communication systems with power control based on antenna pattern configuration
CN108770069B (en) * 2018-06-06 2022-05-10 哈尔滨工业大学 Power distribution method for satellite communication network physical layer safety communication
US11102834B2 (en) 2018-07-11 2021-08-24 L3Vel, Llc Systems and methods for improving wireless mesh networks
BR112021000436A8 (en) * 2018-07-11 2023-04-25 Ahsan Naim Muhammad FIRST WIRELESS COMMUNICATION NODE AND COMMUNICATION SYSTEM
US11044617B2 (en) 2018-07-11 2021-06-22 Kevin Ross Systems and methods for improving wireless mesh networks
CN108832964B (en) * 2018-07-19 2019-09-13 中国人民解放军战略支援部队信息工程大学 A kind of FASST signal recognition method and device based on instantaneous frequency
US10951295B2 (en) 2018-10-17 2021-03-16 Carnegie Mellon University Reconfigurable fully-connected bidirectional hybrid beamforming transceiver
TWI783084B (en) * 2018-11-27 2022-11-11 中華電信股份有限公司 Method and system of weight-based usage model for dynamic speech recognition channel selection
US10972886B2 (en) * 2018-12-04 2021-04-06 Cypress Semiconductor Corporation Dynamic antenna array pattern switching in wireless systems
US11240773B2 (en) * 2018-12-07 2022-02-01 Google Llc Managing doppler and framing impacts in networks
US11025321B2 (en) 2019-02-01 2021-06-01 Carnegie Mellon University Reconfigurable, bi-directional, multi-band front end for a hybrid beamforming transceiver
US10778482B2 (en) * 2019-02-12 2020-09-15 Texas Instruments Incorporated Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith
US11283827B2 (en) 2019-02-28 2022-03-22 Xm Cyber Ltd. Lateral movement strategy during penetration testing of a networked system
US11082083B2 (en) * 2019-03-25 2021-08-03 General Dynamics Mission Systems, Inc. Node having a multi-user rake receiver for use in a cooperative broadcast multi-hop network that employs broadcast flood routing and multi-hop transmission with cooperative beamforming
CN109861733B (en) * 2019-03-26 2020-07-03 北京邮电大学 Physical layer secure communication method and device and electronic equipment
CN109962728B (en) * 2019-03-28 2021-01-26 北京邮电大学 Multi-node joint power control method based on deep reinforcement learning
US11533600B2 (en) 2019-05-07 2022-12-20 West Pond Technologies, LLC Methods and systems for detecting and distributing encoded alert data
US11206281B2 (en) 2019-05-08 2021-12-21 Xm Cyber Ltd. Validating the use of user credentials in a penetration testing campaign
WO2020242934A1 (en) * 2019-05-24 2020-12-03 Atc Technologies, Llc Methods and systems of self-organizing satellite-terrestrial networks
KR20220018507A (en) * 2019-06-07 2022-02-15 미셸 파투셰 New high-capacity communication system
CN110212971B (en) * 2019-06-17 2020-06-02 航天科工空间工程发展有限公司 Method for acquiring frequency interference of low-orbit constellation system to geostationary orbit satellite system
CN110266361B (en) * 2019-06-25 2022-03-15 Oppo广东移动通信有限公司 Antenna switching method and related product
US11528077B2 (en) * 2019-06-25 2022-12-13 Ast & Science, Llc Selection, diversity combining or satellite MIMO to mitigate scintillation and/or near-terrestrial multipath to user devices
US10903870B1 (en) 2019-07-15 2021-01-26 Cypress Semiconductor Corporation Angle of propagation estimation in a multipath communication system
US11531080B2 (en) 2019-07-24 2022-12-20 Cypress Semiconductor Corporation Leveraging spectral diversity for machine learning-based estimation of radio frequency signal parameters
RU2731437C1 (en) * 2019-07-29 2020-09-02 Федеральное государственное казенное военное образовательное учреждение высшего образования Академия Федеральной службы охраны Российской Федерации Method, apparatus and system for optimizing unbalanced transport communication network
US10880326B1 (en) 2019-08-01 2020-12-29 Xm Cyber Ltd. Systems and methods for determining an opportunity for node poisoning in a penetration testing campaign, based on actual network traffic
US10993242B1 (en) * 2019-08-12 2021-04-27 Sprint Communications Company L.P. Dynamic antenna calibration scheduling
CN114245966A (en) 2019-08-21 2022-03-25 三菱电机株式会社 Wireless communication device, control circuit, wireless communication method, and storage medium
CN112532342B (en) * 2019-09-17 2023-05-16 华为技术有限公司 Data transmission method and device in back reflection communication
US10791010B1 (en) 2019-10-15 2020-09-29 Rockwell Collins, Inc. System and method for low probability of detection and low probability of intercept waveform
US11005878B1 (en) 2019-11-07 2021-05-11 Xm Cyber Ltd. Cooperation between reconnaissance agents in penetration testing campaigns
CN111106859B (en) * 2019-11-28 2020-11-20 东南大学 Millimeter wave/terahertz network large-scale MIMO wireless transmission method
US11570654B2 (en) * 2019-12-05 2023-01-31 Qualcomm Incorporated Link adaptation using a link quality estimation sequence
US11431434B2 (en) * 2019-12-10 2022-08-30 Electronics And Telecommunications Research Institute Method and apparatus for secure communication in wireless communication system
US11575700B2 (en) 2020-01-27 2023-02-07 Xm Cyber Ltd. Systems and methods for displaying an attack vector available to an attacker of a networked system
US11184950B1 (en) * 2020-02-28 2021-11-23 Rockwell Collins, Inc. Incorporating co-site interference in dynamic spectrum access systems with minimal computational needs
CN111405632A (en) * 2020-03-24 2020-07-10 中国联合网络通信集团有限公司 Routing method, device, terminal equipment and storage medium
US11448722B2 (en) * 2020-03-26 2022-09-20 Intel Corporation Apparatus, system and method of communicating radar signals
US11582256B2 (en) 2020-04-06 2023-02-14 Xm Cyber Ltd. Determining multiple ways for compromising a network node in a penetration testing campaign
TWI714496B (en) * 2020-04-13 2020-12-21 國立清華大學 Communication time allocation method using reinforcement learning for wireless powered communication network and base station
US11025324B1 (en) * 2020-04-15 2021-06-01 Cirrus Logic, Inc. Initialization of adaptive blocking matrix filters in a beamforming array using a priori information
US11206570B2 (en) * 2020-05-21 2021-12-21 Hughes Network Systems, Llc Beamformer accounting for non-homogeneity of offered traffic distribution among cells
US11108429B1 (en) * 2020-06-01 2021-08-31 Raytheon Company Covert acoustic communications through solid propagation channels using spread spectrum coding and adaptive channel pre-distortion
CN111835402A (en) * 2020-06-05 2020-10-27 北京空间飞行器总体设计部 Method and system for verifying performance of data transmission link
CN111726153B (en) * 2020-06-17 2021-09-28 中山大学 Adaptive pre-coding method for aviation communication common channel
US11729092B2 (en) 2020-07-02 2023-08-15 Northrop Grumman Systems Corporation System and method for multi-path mesh network communications
US11481273B2 (en) * 2020-08-17 2022-10-25 Micron Technology, Inc. Partitioned memory having error detection capability
CN111834746B (en) * 2020-09-17 2020-12-04 成都知融科技股份有限公司 Dual-polarization radio frequency front-end system
TWI759870B (en) * 2020-09-21 2022-04-01 國立清華大學 Multi-resolution beam pattern design method of antenna array system
US11809910B2 (en) 2020-10-14 2023-11-07 Bank Of America Corporation System and method for dynamically resizing computational infrastructure to accommodate unexpected demands
CN112636796B (en) * 2020-12-16 2021-11-19 西安交通大学 Uniform circular array design method, system, medium and equipment for LOS MIMO system
CN112735111B (en) * 2020-12-16 2022-04-08 中兴通讯股份有限公司 Intelligent panel regulation and control method, device and system, intelligent panel and storage medium
CN112929060B (en) * 2021-02-03 2022-10-04 中国水产科学研究院南海水产研究所 Fishery ship rescue communication system and method
US20220286166A1 (en) * 2021-03-08 2022-09-08 Govt of the US as rep by the Secy of the Air Force Systems for and methods of ground digital precoding for hybrid terrestrial-satellite mobile netowrks
EP4327524A1 (en) * 2021-04-20 2024-02-28 Brian AGEE Resilient machine-to-machine networks
US11586422B2 (en) * 2021-05-06 2023-02-21 International Business Machines Corporation Automated system capacity optimization
US11652680B1 (en) * 2021-06-14 2023-05-16 Bae Systems Information And Electronic Systems Integration Inc. Waveform independent coarse synchronization method
US11632724B1 (en) * 2021-10-05 2023-04-18 L3Harris Technologies, Inc. Proactive power and rate control algorithm for dynamic platforms in a mesh network
US11791925B2 (en) * 2021-11-08 2023-10-17 Huawei Technologies Co., Ltd. Method, apparatus and system for determining multipath interference (MPI) on an optical link
CN114726425B (en) * 2022-04-14 2023-06-09 哈尔滨工业大学(深圳) Wave beam forming method, device, wireless communication system and storage medium based on phase shifter switch control
US20240040514A1 (en) * 2022-08-01 2024-02-01 Apple Inc. Dynamic activation of network hardware based on real-time conditions
KR102559777B1 (en) * 2022-08-12 2023-07-26 한국해양과학기술원 Underwater acoustic mobile modem based on the direct sequence spread spectrum scheme and receiving method the same
CN116261150B (en) * 2023-03-03 2023-09-15 深圳市云联友科科技有限公司 Wireless network bridge data transmission interference resistance method, device, equipment and medium

Citations (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093781A (en) * 1988-10-07 1992-03-03 Hughes Aircraft Company Cellular network assignment processor using minimum/maximum convergence technique
US5299148A (en) * 1988-10-28 1994-03-29 The Regents Of The University Of California Self-coherence restoring signal extraction and estimation of signal direction of arrival
US5396256A (en) * 1992-10-28 1995-03-07 Atr Optical & Radio Communications Research Laboratories Apparatus for controlling array antenna comprising a plurality of antenna elements and method therefor
US5515378A (en) * 1991-12-12 1996-05-07 Arraycomm, Inc. Spatial division multiple access wireless communication systems
US5592490A (en) * 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US5625880A (en) * 1991-12-12 1997-04-29 Arraycomm, Incorporated Spectrally efficient and high capacity acknowledgement radio paging system
US5634199A (en) * 1993-04-14 1997-05-27 Stanford University Method of subspace beamforming using adaptive transmitting antennas with feedback
US5724666A (en) * 1994-03-24 1998-03-03 Ericsson Inc. Polarization diversity phased array cellular base station and associated methods
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US5870385A (en) * 1994-10-26 1999-02-09 International Business Machines Corporation Allocation method and apparatus for reusing network resources in a wireless communication system
US5875186A (en) * 1993-06-25 1999-02-23 Netwave Technologies Limited Dynamic wireless local area network with interactive communications within the network
US5886988A (en) * 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US5890055A (en) * 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US6016313A (en) * 1996-11-07 2000-01-18 Wavtrace, Inc. System and method for broadband millimeter wave data communication
US6023203A (en) * 1998-10-14 2000-02-08 Arraycomm, Inc. RF test fixture for adaptive-antenna radio systems
US6037898A (en) * 1997-10-10 2000-03-14 Arraycomm, Inc. Method and apparatus for calibrating radio frequency base stations using antenna arrays
US6047189A (en) * 1996-10-11 2000-04-04 Arraycomm, Inc. Adaptive method for channel assignment in a cellular communication system
US6047023A (en) * 1997-05-14 2000-04-04 Hughes Electronics Corporation Swept frequency modulation and demodulation technique
US6061389A (en) * 1993-03-05 2000-05-09 Hitachi, Ltd. Frequency-hopping communication system and communication station
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6069894A (en) * 1995-06-12 2000-05-30 Telefonaktiebolaget Lm Ericsson Enhancement of network operation and performance
US6108565A (en) * 1997-09-15 2000-08-22 Adaptive Telecom, Inc. Practical space-time radio method for CDMA communication capacity enhancement
US6177906B1 (en) * 1999-04-01 2001-01-23 Arraycomm, Inc. Multimode iterative adaptive smart antenna processing method and apparatus
US6185440B1 (en) * 1997-12-10 2001-02-06 Arraycomm, Inc. Method for sequentially transmitting a downlink signal from a communication station that has an antenna array to achieve an omnidirectional radiation
US6219341B1 (en) * 1997-03-20 2001-04-17 University Technology Corporation Method for bandwidth efficient multiple access wireless communication
US20010033622A1 (en) * 2000-03-14 2001-10-25 Joengren George Robust utilization of feedback information in space-time coding
US6317411B1 (en) * 1999-02-22 2001-11-13 Motorola, Inc. Method and system for transmitting and receiving signals transmitted from an antenna array with transmit diversity techniques
US6353604B2 (en) * 1998-05-06 2002-03-05 Terayon Communications Systems, Inc. Apparatus and method for synchronizing an SCDMA upstream or any other type upstream to an MCNS downstream or any other type downstream with a different clock rate than the upstream
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US6362781B1 (en) * 2000-06-30 2002-03-26 Motorola, Inc. Method and device for adaptive antenna combining weights
US6377631B1 (en) * 1996-08-29 2002-04-23 Cisco Systems, Inc. Transmitter incorporating spatio-temporal processing
US6377636B1 (en) * 1999-11-02 2002-04-23 Iospan Wirless, Inc. Method and wireless communications system using coordinated transmission and training for interference mitigation
US6383432B1 (en) * 1999-01-22 2002-05-07 Chisso Corporation High-speed apparatus and method for producing thermoplastic synthetic fibers
US20020062472A1 (en) * 2000-08-03 2002-05-23 Medlock Joel D. Dynamically reconfigurable universal transmitter system
US20020111144A1 (en) * 1998-10-29 2002-08-15 Schiff Leonard N. Variable loop gain in double loop power control systems
US6493331B1 (en) * 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
US6493335B1 (en) * 1996-09-24 2002-12-10 At&T Corp. Method and system for providing low-cost high-speed data services
US6504506B1 (en) * 2000-06-30 2003-01-07 Motorola, Inc. Method and device for fixed in time adaptive antenna combining weights
US6512737B1 (en) * 1997-02-24 2003-01-28 Beamreach Networks, Inc. Stacked carrier discrete multiple tone communication system
US20030086366A1 (en) * 2001-03-06 2003-05-08 Branlund Dale A. Adaptive communications methods for multiple user packet radio wireless networks
US20030087673A1 (en) * 2001-05-16 2003-05-08 Walton Jay R. Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US6564036B1 (en) * 2000-09-29 2003-05-13 Arraycomm, Inc. Mode switching in adaptive array communications systems
US6570527B1 (en) * 2001-09-28 2003-05-27 Arraycomm, Inc. Calibration of differential frequency-dependent characteristics of a radio communications system
US20040012387A1 (en) * 1993-07-23 2004-01-22 Shattil Steve J. Cancellation systems for multicarrier transceiver arrays
US6683915B1 (en) * 2000-12-21 2004-01-27 Arraycomm, Inc. Multi-bit per symbol rate quadrature amplitude encoding
US6684366B1 (en) * 2000-09-29 2004-01-27 Arraycomm, Inc. Multi-rate codec with puncture control
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6690747B2 (en) * 1996-10-11 2004-02-10 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
US6711412B1 (en) * 2000-10-13 2004-03-23 Iospan Wireless, Inc. Interference mitigation in wireless communications by training of interfering signals
US6731705B2 (en) * 2000-12-22 2004-05-04 Arraycomm, Inc. Method and apparatus for mitigating inter-channel interference in adaptive array systems
US6731689B2 (en) * 2000-11-30 2004-05-04 Arraycomm, Inc. Training sequence for a radio communications system
US6735258B1 (en) * 2000-09-29 2004-05-11 Arraycomm, Inc. Moderate rate phase shift keying codec
US20040095907A1 (en) * 2000-06-13 2004-05-20 Agee Brian G. Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US20040100897A1 (en) * 1998-02-12 2004-05-27 Shattil Steve J. Carrier interferometry coding with aplications to cellular and local area networks
US6826240B1 (en) * 2000-03-15 2004-11-30 Motorola, Inc. Method and device for multi-user channel estimation
US6839574B2 (en) * 2000-12-20 2005-01-04 Arraycomm, Inc. Method and apparatus for estimating downlink beamforming weights in a communications system
US6839573B1 (en) * 1999-06-07 2005-01-04 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
US6865377B1 (en) * 2002-06-28 2005-03-08 Arraycomm, Inc. Combined open and closed loop beam forming in a multiple array radio communication system
US6983127B1 (en) * 2001-07-31 2006-01-03 Arraycomm, Inc. Statistical calibration of wireless base stations
US6982968B1 (en) * 2000-09-29 2006-01-03 Arraycomm, Inc. Non-directional transmitting from a wireless data base station having a smart antenna system
US6985466B1 (en) * 1999-11-09 2006-01-10 Arraycomm, Inc. Downlink signal processing in CDMA systems utilizing arrays of antennae
US6987819B2 (en) * 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US6996163B2 (en) * 2003-03-27 2006-02-07 Arraycomm, Inc. Walsh-Hadamard decoder
US6996060B1 (en) * 2001-03-20 2006-02-07 Arraycomm, Inc. Closing a communications stream between terminals of a communications system
US6999794B1 (en) * 2002-06-28 2006-02-14 Arraycomm Llc Transmission of a common pilot channel from a beamforming transmit antenna array
US6999771B1 (en) * 2001-09-28 2006-02-14 Arraycomm Llc Channel assignments in a wireless communication system having spatial channels including grouping existing subscribers in anticipation of a new subscriber
US7003310B1 (en) * 2001-09-28 2006-02-21 Arraycomm Llc. Coupled uplink/downlink power control and spatial processing with adaptive antenna arrays
US7006579B2 (en) * 2000-09-29 2006-02-28 Nokia Corporation ISI-robust slot formats for non-orthogonal-based space-time block codes
US7016429B1 (en) * 2001-09-28 2006-03-21 Arraycomm, Llc Training sequences for peak to average power constrained modulation formats
US7020490B2 (en) * 2001-01-30 2006-03-28 Koninklijke Philips Electronics N.V. Radio communication system
US7020072B1 (en) * 2000-05-09 2006-03-28 Lucent Technologies, Inc. Orthogonal frequency division multiplexing transmit diversity system for frequency-selective fading channels
US7020107B2 (en) * 2003-01-21 2006-03-28 Arraycomm, Llc Methods for reliable user switchback on a PHS spatial division multiple access channel
US7024163B1 (en) * 2001-09-28 2006-04-04 Arraycomm Llc Method and apparatus for adjusting feedback of a remote unit
US7027415B1 (en) * 2001-03-20 2006-04-11 Arraycomm, Inc. Dynamic allocation and de-allocation of multiple communication channels for bandwidth on-demand
US7027837B1 (en) * 2001-09-27 2006-04-11 Arraycomm Llc. Antenna array for point-to-point microwave radio system
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
US7031679B2 (en) * 2002-03-27 2006-04-18 Arraycomm, Llc Estimating power on spatial channels
US7035358B1 (en) * 2001-02-23 2006-04-25 Arraycomm, Inc. Method and apparatus for receiving a wideband signal in the presence of multipath channel imperfections and frequency offset
US7036067B2 (en) * 2003-03-28 2006-04-25 Arraycomm, Llc Error detection for multi-stream communications
US7035661B1 (en) * 1996-10-11 2006-04-25 Arraycomm, Llc. Power control with signal quality estimation for smart antenna communication systems
US7158493B1 (en) * 2000-09-29 2007-01-02 Arraycomm, Llc Radio communications system with a minimal broadcast channel
US20070009012A1 (en) * 1999-08-31 2007-01-11 Broadcom Corporation, A California Corporation Cancellation of interference in a communication system with application to S-CDMA
US7164739B1 (en) * 2002-06-28 2007-01-16 Arraycomm, Llc. Broadcast burst with repeated weights for a radio communications system
US7164726B1 (en) * 2002-06-28 2007-01-16 Arraycomm, Llc. Broadcast burst using spatial diversity for a radio communications system
US7164669B2 (en) * 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US20070042753A1 (en) * 2001-09-28 2007-02-22 Durham Logistics, Llc Wireless network infrastructure
US7206554B1 (en) * 2002-06-28 2007-04-17 Arraycomm Llc Transmit diversity with formed beams in a wireless communications system using a common pilot channel
US7206293B2 (en) * 2001-12-28 2007-04-17 Arraycomm Llc System and related methods for beamforming in a multi-point communications environment
US7336719B2 (en) * 2001-11-28 2008-02-26 Intel Corporation System and method for transmit diversity base upon transmission channel delay spread
US7336626B1 (en) * 2001-09-28 2008-02-26 Arraycomm, Inc Operating time division duplex (TDD) wireless systems in paired spectrum (FDD) allocations
US7339906B1 (en) * 2001-03-20 2008-03-04 Arraycomm, Llc Opening a communications stream between a user terminal and a base station
US7339981B2 (en) * 2002-07-09 2008-03-04 Arraycomm, Llc. Shifted training sequences in a communications system
US7339908B2 (en) * 2001-07-31 2008-03-04 Arraycomm, Llc. System and related methods to facilitate delivery of enhanced data services in a mobile wireless communications environment
US7342912B1 (en) * 2002-06-28 2008-03-11 Arraycomm, Llc. Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
US7349371B2 (en) * 2000-09-29 2008-03-25 Arraycomm, Llc Selecting random access channels
US20080075033A1 (en) * 2000-11-22 2008-03-27 Shattil Steve J Cooperative beam-forming in wireless networks
US7352774B2 (en) * 2002-09-30 2008-04-01 Arraycomm, Llc Multiplexing different types of data sequences
US20080090575A1 (en) * 2006-07-13 2008-04-17 Oz Barak WiMAX ACCESS POINT NETWORK WITH BACKHAUL TECHNOLOGY
US20080088517A1 (en) * 2006-10-17 2008-04-17 Quantenna Communications, Inc. Tunable antenna system
US7363376B2 (en) * 2001-07-31 2008-04-22 Arraycomm Llc Method and apparatus for generating an identifier to facilitate delivery of enhanced data services in a mobile computing environment
US7362799B1 (en) * 2002-06-27 2008-04-22 Arraycomm Llc Method and apparatus for communication signal resolution
US7366223B1 (en) * 2002-06-06 2008-04-29 Arraycomm, Llc Modifying hopping sequences in wireless networks
US20100020907A1 (en) * 2006-05-04 2010-01-28 Quantenna Communications, Inc. Multiple antenna receiver system and method
US7688710B2 (en) * 2000-09-01 2010-03-30 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US20100080317A1 (en) * 2008-10-01 2010-04-01 Quantenna Communications, Inc. Symbol mixing across multiple parallel channels
US20110019608A1 (en) * 2001-06-28 2011-01-27 King's College London Method and system for frequency relaying
US8098568B2 (en) * 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US20130176968A1 (en) * 1999-07-30 2013-07-11 Robert W. Heath, Jr. Spatial Multiplexing in a Cellular Network

Family Cites Families (499)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986124A (en) 1964-12-01 1976-10-12 Page Communications Engineers, Inc. Combiner for diversity receiving systems
US3717814A (en) 1971-09-23 1973-02-20 Bell Telephone Labor Inc Cophasing diversity communication system with pilot feedback
US4210871A (en) 1978-09-01 1980-07-01 The United States Of America As Represented By The Secretary Of The Navy Optimum diversity combining circuit for a plurality of channels
US4369520A (en) 1979-03-22 1983-01-18 Motorola, Inc. Instantaneously acquiring sector antenna combining system
US4519096A (en) 1979-10-15 1985-05-21 Motorola, Inc. Large dynamic range multiplier for a maximal-ratio diversity combiner
US4347498A (en) 1979-11-21 1982-08-31 International Business Machines Corporation Method and means for demand accessing and broadcast transmission among ports in a distributed star network
US4337376A (en) 1979-12-31 1982-06-29 Broadcom, Incorporated Communications system and network
US4328585A (en) 1980-04-02 1982-05-04 Signatron, Inc. Fast adapting fading channel equalizer
US4599720A (en) 1982-07-06 1986-07-08 International Business Machines Corporation Satellite communications system
US4532626A (en) 1982-07-19 1985-07-30 At&T Bell Laboratories Collision avoiding system and protocol for a two path multiple access digital communications system
US4481670A (en) 1982-11-12 1984-11-06 Motorola, Inc. Method and apparatus for dynamically selecting transmitters for communications between a primary station and remote stations of a data communications system
US4550443A (en) 1982-11-12 1985-10-29 Motorola, Inc. Method and apparatus for dynamically selecting transmitters for communications between a primary station and remote stations of a data communications system
US4714923A (en) 1982-11-12 1987-12-22 Motorola, Inc. Method and apparatus for shedding load in a communications controller of a data communications system
IL67379A (en) 1982-12-01 1985-11-29 Tadiran Israel Elect Ind Ltd Real-time frequency management system for hf communication networks
US4587651A (en) 1983-05-04 1986-05-06 Cxc Corporation Distributed variable bandwidth switch for voice, data, and image communications
US4517669A (en) 1983-07-11 1985-05-14 Motorola, Inc. Method and apparatus for coding messages communicated between a primary station and remote stations of a data communications system
US4596986A (en) 1983-08-29 1986-06-24 The United States Of America As Represented By The Secretary Of The Navy Sidelobe canceller with adaptive antenna subarraying using a weighted Butler matrix
US4829554A (en) 1985-01-31 1989-05-09 Harris Corporation Cellular mobile telephone system and method
US4965732A (en) 1985-11-06 1990-10-23 The Board Of Trustees Of The Leland Stanford Junior University Methods and arrangements for signal reception and parameter estimation
US4719591A (en) 1985-11-07 1988-01-12 American Telephone And Telegraph Company, At&T Bell Labs. Optimization network for the decomposition of signals
US4670906A (en) 1986-04-02 1987-06-02 Motorola, Inc. Data communications system transmitter selection method and apparatus
US4721960A (en) 1986-07-15 1988-01-26 Canadian Marconi Company Beam forming antenna system
US4710944A (en) 1986-10-17 1987-12-01 Rca Corporation Dual transmit-receive space diversity communication system
US4920529A (en) 1987-02-27 1990-04-24 Hitachi, Ltd. Network control method and apparatus therefor
US4789983A (en) 1987-03-05 1988-12-06 American Telephone And Telegraph Company, At&T Bell Laboratories Wireless network for wideband indoor communications
DE3714385A1 (en) 1987-04-30 1988-11-10 Philips Patentverwaltung METHOD AND CIRCUIT ARRANGEMENT FOR COUPLING CONTROL IN A SWITCHING SYSTEM
NL8701332A (en) 1987-06-09 1989-01-02 Philips Nv SYSTEM FOR TRANSMISSION OF DATA SIGNALS USING DECISION FEED-BACK EQUALIZATION.
FI79210C (en) 1988-04-18 1989-11-10 Nokia Mobile Phones Ltd Branching network in a chain for a base station in a radio telephone network
US5014219A (en) 1988-05-06 1991-05-07 White James A Mask controled neural networks
US5255210A (en) 1988-10-28 1993-10-19 The Regents Of The University Of California Self-coherence restoring signal extraction apparatus and method
US4983988A (en) 1988-11-21 1991-01-08 E-Systems, Inc. Antenna with enhanced gain
US5084911A (en) 1989-01-10 1992-01-28 Eastman Kodak Company X-ray phototimer
US5815811A (en) 1989-06-29 1998-09-29 Symbol Technologies, Inc. Preemptive roaming in a cellular local area wireless network
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5109390A (en) 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5134715A (en) 1989-11-17 1992-07-28 Sundstrand Corporation Meteor scatter burst communications systems
US5134685A (en) 1990-02-06 1992-07-28 Westinghouse Electric Corp. Neural node, a netowrk and a chaotic annealing optimization method for the network
FR2658017B1 (en) 1990-02-06 1992-06-05 France Etat METHOD FOR BROADCASTING DIGITAL DATA, ESPECIALLY FOR BROADBAND BROADCASTING TO MOBILES, WITH TIME-FREQUENCY INTERLACING AND ASSISTING THE ACQUISITION OF AUTOMATIC FREQUENCY CONTROL, AND CORRESPONDING RECEIVER.
US5553094A (en) 1990-02-15 1996-09-03 Iris Systems, Inc. Radio communication network for remote data generating stations
US5673252A (en) 1990-02-15 1997-09-30 Itron, Inc. Communications protocol for remote data generating stations
FR2661579A1 (en) 1990-04-27 1991-10-31 Trt Telecom Radio Electr DEVICE FOR PHASING SIGNALS IN A DIGITAL DUCT SYSTEM.
FR2661578A1 (en) 1990-04-27 1991-10-31 Trt Telecom Radio Electr DYNAMIC SWITCHING DEVICE FOR ERROR MASKING IN A DUAL DIGITAL DUCT SYSTEM.
US5387885A (en) 1990-05-03 1995-02-07 University Of North Carolina Salphasic distribution of timing signals for the synchronization of physically separated entities
DE59009637D1 (en) 1990-05-31 1995-10-12 Siemens Ag Combination circuit for room diversity reception.
DE4018814A1 (en) 1990-06-12 1992-01-02 Fraunhofer Ges Forschung METHOD AND SYSTEM FOR TRANSMITTING ENERGY AND DATA
WO1991020136A1 (en) 1990-06-18 1991-12-26 Motorola, Inc. Selective call receiver having a variable frequency vibrator
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5271038A (en) 1990-09-10 1993-12-14 Hughes Aircraft Company Distortion suppression using thresholding techniques
US5063351A (en) 1990-09-24 1991-11-05 Bell Communications Research, Inc. Digital signal processing relating to near-end crosstalk cable measurements
JPH04195246A (en) 1990-09-28 1992-07-15 Olympus Optical Co Ltd Optimizing device
US5274841A (en) 1990-10-29 1993-12-28 International Business Machines Corporation Methods for polling mobile users in a multiple cell wireless network
US5239673A (en) 1990-10-29 1993-08-24 International Business Machines Corporation Scheduling methods for efficient frequency reuse in a multi-cell wireless network served by a wired local area network
FR2670969B1 (en) 1990-12-19 1993-04-16 France Etat TIME-FREQUENCY DISTRIBUTION DATA TRANSMISSION SYSTEM, WITH CHANNEL STRUCTURING.
FR2671923B1 (en) 1991-01-17 1993-04-16 France Etat DEVICE FOR CONSISTENT DEMODULATION OF DIGITAL DATA INTERLACED IN TIME AND IN FREQUENCY, WITH ESTIMATION OF THE FREQUENTIAL RESPONSE OF THE TRANSMISSION AND THRESHOLD CHANNEL, AND CORRESPONDING TRANSMITTER.
EP0496570B1 (en) 1991-01-22 1998-06-03 Honeywell Inc. Two-level system identifier apparatus with optimization
US5504936A (en) 1991-04-02 1996-04-02 Airtouch Communications Of California Microcells for digital cellular telephone systems
US5313220A (en) 1991-05-30 1994-05-17 Conifer Corporation Low noise integrated MMDS antenna and down converter
US5202699A (en) 1991-05-30 1993-04-13 Confier Corporation Integrated MMDS antenna and down converter
US5402138A (en) 1991-05-30 1995-03-28 Conifer Corporation Integrated MMDS/MDS antenna and dual band down converter
US5523768A (en) 1991-05-30 1996-06-04 Conifer Corporation Integrated feed and down converter apparatus
US5228113A (en) 1991-06-17 1993-07-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Accelerated training apparatus for back propagation networks
US5229782A (en) 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5548819A (en) 1991-12-02 1996-08-20 Spectraplex, Inc. Method and apparatus for communication of information
US5828658A (en) 1991-12-12 1998-10-27 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems with spatio-temporal processing
US5546090A (en) 1991-12-12 1996-08-13 Arraycomm, Inc. Method and apparatus for calibrating antenna arrays
US5461627A (en) 1991-12-24 1995-10-24 Rypinski; Chandos A. Access protocol for a common channel wireless network
FI100043B (en) 1992-01-23 1997-08-29 Nokia Telecommunications Oy Cellular radio network design method and system
US5345599A (en) 1992-02-21 1994-09-06 The Board Of Trustees Of The Leland Stanford Junior University Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR)
US5267261A (en) 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
US5237586A (en) 1992-03-25 1993-08-17 Ericsson-Ge Mobile Communications Holding, Inc. Rake receiver with selective ray combining
US5282222A (en) 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
USRE37802E1 (en) 1992-03-31 2002-07-23 Wi-Lan Inc. Multicode direct sequence spread spectrum
IL101556A (en) 1992-04-10 1996-08-04 Univ Ramot Multi-channel signal separation using cross-polyspectra
US5295159A (en) 1992-04-17 1994-03-15 Bell Communications Research, Inc. Coordinated coding for digital transmission
US5262789A (en) 1992-04-30 1993-11-16 General Electric Company Source identification system for closely separated spatial sources
US5377230A (en) 1992-05-01 1994-12-27 At&T Corp. Extended bandwidth transmitter for crosstalk channels
US5274844A (en) 1992-05-11 1993-12-28 Motorola, Inc. Beam pattern equalization method for an adaptive array
JPH05327612A (en) 1992-05-21 1993-12-10 Sharp Corp Cordless telephone set
US5621769A (en) 1992-06-08 1997-04-15 Novatel Communications Ltd. Adaptive-sequence-estimation apparatus employing diversity combining/selection
GB2267783B (en) 1992-06-09 1996-08-28 British Aerospace Beam forming
GB2268027B (en) 1992-06-20 1996-08-21 Motorola Inc Trunking radio system with frequency diversity
US5260968A (en) 1992-06-23 1993-11-09 The Regents Of The University Of California Method and apparatus for multiplexing communications signals through blind adaptive spatial filtering
US5317439A (en) 1992-07-17 1994-05-31 At&T Bell Laboratories Automatic on-line monitoring and optimization of optical network switching nodes
US5307459A (en) 1992-07-28 1994-04-26 3Com Corporation Network adapter with host indication optimization
US5627879A (en) 1992-09-17 1997-05-06 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
GB2271246B (en) 1992-10-03 1997-02-12 Motorola Ltd Sectorized cellular radio base station antenna
US5325403A (en) 1992-12-09 1994-06-28 Motorola, Inc. Method and apparatus for dual-channel diversity reception of a radio signal
WO1994014273A1 (en) 1992-12-17 1994-06-23 Voxson International Pty. Limited An information transmission system for increasing the effective rate of transfer of information
US5371734A (en) 1993-01-29 1994-12-06 Digital Ocean, Inc. Medium access control protocol for wireless network
US5371733A (en) 1993-03-04 1994-12-06 International Business Machines Corporation Method and apparatus for centralized determination of virtual transmission delays in networks of counter-synchronized communication devices
FI108975B (en) 1993-03-09 2002-04-30 Nokia Corp Exercise sequence in a digital cellular radio telephone system
US5812542A (en) 1996-03-18 1998-09-22 Motorola, Inc. Method for determining weighting coefficients in a CDMA radio receiver
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
US5437052A (en) 1993-04-16 1995-07-25 Conifer Corporation MMDS over-the-air bi-directional TV/data transmission system and method therefor
US5553062A (en) 1993-04-22 1996-09-03 Interdigital Communication Corporation Spread spectrum CDMA interference canceler system and method
US5479447A (en) 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5668717A (en) 1993-06-04 1997-09-16 The Johns Hopkins University Method and apparatus for model-free optimal signal timing for system-wide traffic control
US5388097A (en) 1993-06-29 1995-02-07 International Business Machines Corporation System and method for bandwidth reservation for multimedia traffic in communication networks
ATE208109T1 (en) 1993-07-30 2001-11-15 Ibm METHOD AND DEVICE FOR AUTOMATICALLY DISTRIBUTING A NETWORK TOPOLOGY INTO MAIN AND SUBJECT TOPOLOGY
US5564070A (en) 1993-07-30 1996-10-08 Xerox Corporation Method and system for maintaining processing continuity to mobile computers in a wireless network
US5459873A (en) 1993-08-21 1995-10-17 Motorola, Inc. Method and communication system for improved channel scanning and link establishment determinations
GB9317604D0 (en) 1993-08-24 1993-10-06 Philips Electronics Uk Ltd Receiver for ds-cdma signals
TW351886B (en) 1993-09-27 1999-02-01 Ericsson Telefon Ab L M Using two classes of channels with different capacity
US5440319A (en) 1993-10-01 1995-08-08 California Amplifier Integrated microwave antenna/downconverter
US5446736A (en) 1993-10-07 1995-08-29 Ast Research, Inc. Method and apparatus for connecting a node to a wireless network using a standard protocol
US5745551A (en) 1993-10-27 1998-04-28 Tcsi Corporation Telecommunication apparatus for receiving, storing and forwarding a plurality of voice signals to a wireless network, in response to a control signal therefrom
US5627878A (en) 1993-10-27 1997-05-06 Tcsi Corporation Telecommunication apparatus for receiving, storing and forwarding a plurality of electrical signals to a wireless network, in response to a control signal therefrom
US5416468A (en) 1993-10-29 1995-05-16 Motorola, Inc. Two-tiered system and method for remote monitoring
GB9323337D0 (en) 1993-11-11 1994-01-05 Marconi Gec Ltd High-speed digital subscriber lines
US5588038A (en) 1993-11-19 1996-12-24 J.F.A. Tech., Inc. System and method for signaling a device at a remote location over a wireless network
US5960344A (en) 1993-12-20 1999-09-28 Norand Corporation Local area network having multiple channel wireless access
US5566209A (en) 1994-02-10 1996-10-15 Telefonaktiebolaget Lm Ericsson Transceiver algorithms of antenna arrays
SG52170A1 (en) 1994-02-17 1998-09-28 Micrilor Inc A high-data-rate wireless local-area network
US5459725A (en) 1994-03-22 1995-10-17 International Business Machines Corporation Reliable multicasting over spanning trees in packet communications networks
US5537435A (en) 1994-04-08 1996-07-16 Carney; Ronald Transceiver apparatus employing wideband FFT channelizer with output sample timing adjustment and inverse FFT combiner for multichannel communication network
US5771352A (en) 1994-04-14 1998-06-23 Kabushiki Kaisha Toshiba Communication control apparatus and method
US5519731A (en) 1994-04-14 1996-05-21 Amati Communications Corporation ADSL compatible discrete multi-tone apparatus for mitigation of T1 noise
US6018528A (en) 1994-04-28 2000-01-25 At&T Corp System and method for optimizing spectral efficiency using time-frequency-code slicing
US5634004A (en) 1994-05-16 1997-05-27 Network Programs, Inc. Directly programmable distribution element
US5574979A (en) * 1994-06-03 1996-11-12 Norand Corporation Periodic interference avoidance in a wireless radio frequency communication system
JP2561031B2 (en) 1994-06-07 1996-12-04 日本電気株式会社 Transceiver
US5627863A (en) 1994-07-15 1997-05-06 Amati Communications Corporation Frame synchronization in multicarrier transmission systems
CA2129200C (en) 1994-07-29 1999-08-10 Murray C. Baker Access point switching for mobile wireless network node
CA2129193C (en) 1994-07-29 1999-07-20 Peter E. Reissner Access point tracking for mobile wireless network node
GB9415421D0 (en) 1994-07-30 1994-09-21 Procter & Gamble Cosmetic compositions and processes for manufacture thereof
US5614914A (en) 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US5649286A (en) 1994-11-14 1997-07-15 Bellsouth Corporation Method for managing the registration of a wireless unit
US5793258A (en) 1994-11-23 1998-08-11 California Amplifier Low cross polarization and broad bandwidth
US6006069A (en) 1994-11-28 1999-12-21 Bosch Telecom Gmbh Point-to-multipoint communications system
US5861844A (en) 1994-11-29 1999-01-19 Qualcomm Incorporated Method and apparatus for providing redundant coverage within a cellular communication system
GB2295751A (en) 1994-11-30 1996-06-05 Ibm Data communication system using directory service providing routing information
MY123040A (en) 1994-12-19 2006-05-31 Salbu Res And Dev Proprietary Ltd Multi-hop packet radio networks
US5579341A (en) 1994-12-29 1996-11-26 Motorola, Inc. Multi-channel digital transceiver and method
US5748683A (en) 1994-12-29 1998-05-05 Motorola, Inc. Multi-channel transceiver having an adaptive antenna array and method
IL112233A (en) 1995-01-03 1998-02-22 State Rafaelel Ministry Of Def Adaptive polarization diversity system
JP2778498B2 (en) 1995-01-11 1998-07-23 日本電気株式会社 Spread spectrum diversity transceiver
US5684491A (en) 1995-01-27 1997-11-04 Hazeltine Corporation High gain antenna systems for cellular use
US6006110A (en) 1995-02-22 1999-12-21 Cisco Technology, Inc. Wireless communication network using time-varying vector channel equalization for adaptive spatial equalization
US6101399A (en) 1995-02-22 2000-08-08 The Board Of Trustees Of The Leland Stanford Jr. University Adaptive beam forming for transmitter operation in a wireless communication system
DE19506439A1 (en) 1995-02-24 1996-08-29 Sel Alcatel Ag Allocation of a carrier frequency in an SDMA radio system
US5659353A (en) 1995-03-17 1997-08-19 Bell Atlantic Network Services, Inc. Television distribution system and method
US5649287A (en) 1995-03-29 1997-07-15 Telefonaktiebolaget Lm Ericsson Orthogonalizing methods for antenna pattern nullfilling
US5655019A (en) 1995-03-30 1997-08-05 Mckernan; Randolph W. Identity protection method for use with wireless telephone systems
US5592471A (en) 1995-04-21 1997-01-07 Cd Radio Inc. Mobile radio receivers using time diversity to avoid service outages in multichannel broadcast transmission systems
JP2751869B2 (en) 1995-04-28 1998-05-18 日本電気株式会社 Transmit diversity method
FI98025C (en) 1995-05-05 1997-03-25 Nokia Mobile Phones Ltd Wireless LAN system and receiver
US6097707A (en) 1995-05-19 2000-08-01 Hodzic; Migdat I. Adaptive digital wireless communications network apparatus and process
GB9510127D0 (en) 1995-05-20 1995-08-02 West End System Corp CATV Data transmission system
AU704356B2 (en) 1995-05-24 1999-04-22 Bellsouth Corporation Asymmetric data communications system
US5696766A (en) 1995-06-02 1997-12-09 Dsc Communications Corporation Apparatus and method of synchronizing a transmitter in a subscriber terminal of a wireless telecommunications system
US5809282A (en) 1995-06-07 1998-09-15 Grc International, Inc. Automated network simulation and optimization system
DE19520353A1 (en) 1995-06-07 1996-12-12 Thomson Brandt Gmbh Method and circuit arrangement for improving the reception behavior when transmitting digital signals
US6112056A (en) 1995-06-07 2000-08-29 Cisco Systems, Inc. Low power, short range point-to-multipoint communications system
US6775519B1 (en) 1995-06-07 2004-08-10 Globalstar L.P. Method and apparatus for accounting for user terminal session-based connection to a satellite communication system
WO1997001942A1 (en) 1995-06-28 1997-01-16 Mci Communications Corporation Method and apparatus for improved call connectivity in an intelligent wireless network
US5790516A (en) 1995-07-14 1998-08-04 Telefonaktiebolaget Lm Ericsson Pulse shaping for data transmission in an orthogonal frequency division multiplexed system
US5610617A (en) 1995-07-18 1997-03-11 Lucent Technologies Inc. Directive beam selectivity for high speed wireless communication networks
US5657142A (en) 1995-07-25 1997-08-12 Mci Communications Corporation Optimal allocation of multiplexing equipment and distribution of load in a fiber optic network
US5873048A (en) 1995-07-27 1999-02-16 Lucent Technologies Inc. Locator and method for a wireless communication system
US5894590A (en) 1995-07-31 1999-04-13 Motorola, Inc. Independent satellite-based communications systems sharing common frequency spectrum and method of operation thereof
US5703938A (en) 1995-08-28 1997-12-30 Mct Communications Corp. Method of optimizing access trunk configurations and system therefor
US5911120A (en) 1995-09-08 1999-06-08 At&T Wireless Services Wireless communication system having mobile stations establish a communication link through the base station without using a landline or regional cellular network and without a call in progress
US5666126A (en) 1995-09-18 1997-09-09 California Amplifier Multi-staged antenna optimized for reception within multiple frequency bands
US5615211A (en) 1995-09-22 1997-03-25 General Datacomm, Inc. Time division multiplexed backplane with packet mode capability
US5815488A (en) 1995-09-28 1998-09-29 Cable Television Laboratories, Inc. Multiple user access method using OFDM
US5710758A (en) 1995-09-29 1998-01-20 Qualcomm Incorporated Wireless network planning tool
US5949769A (en) 1995-10-10 1999-09-07 Sicom, Inc. Multirate local multipoint data distribution system
US5818832A (en) 1995-10-10 1998-10-06 Sicom, Inc. Rapid synchronization for communication systems
US5721733A (en) 1995-10-13 1998-02-24 General Wireless Communications, Inc. Wireless network access scheme
US5898904A (en) 1995-10-13 1999-04-27 General Wireless Communications, Inc. Two-way wireless data network having a transmitter having a range greater than portions of the service areas
JPH09172446A (en) 1995-10-20 1997-06-30 Fuji Xerox Co Ltd Lan of multiple bus system and radio lan
US5721725A (en) 1995-10-30 1998-02-24 Xerox Corporation Protocol for channel access in wireless or network data communication
US5854903A (en) 1995-11-07 1998-12-29 Lucent Technologies Inc. Optimization method for routing and logical network design in multi-service networks
JP2783222B2 (en) 1995-11-13 1998-08-06 日本電気株式会社 Antenna gain control device for mobile communication system
US5875396A (en) 1995-11-13 1999-02-23 Wytec, Incorporated Multichannel radio frequency transmission system to deliver wideband digital data into independent sectorized service areas
US5794119A (en) 1995-11-21 1998-08-11 Stanford Telecommunications, Inc. Subscriber frequency control system and method in point-to-multipoint RF communication system
US5963863A (en) 1995-12-01 1999-10-05 Telefonaktiebolaget L M Ericsson Routing system for automatically routing a call to a multi-mode transceiver in a wireless network
US5668610A (en) 1995-12-04 1997-09-16 Cellularvision Technology & Telecommunications, L.P. LMDS transmitter array with polarization-diversity sub-cells
US5974322A (en) 1995-12-04 1999-10-26 Telefonaktiebolaget L/M Ericsson (Publ) Method and apparatus for placing a fixed-site transceiver into service in a wireless communication network
US5809431A (en) 1995-12-06 1998-09-15 Stanford Telecommunications, Inc. Local multipoint distribution system
US5790784A (en) 1995-12-11 1998-08-04 Delco Electronics Corporation Network for time synchronizing a digital information processing system with received digital information
US5857142A (en) 1995-12-14 1999-01-05 Mediaone Group, Inc. Architecture and method for providing interactive broadband products and services using existing telephone plant
US5878036A (en) 1995-12-20 1999-03-02 Spartz; Michael K. Wireless telecommunications system utilizing CDMA radio frequency signal modulation in conjunction with the GSM A-interface telecommunications network protocol
US5943023A (en) 1995-12-21 1999-08-24 Endgate Corporation Flared trough waveguide antenna
US5818830A (en) 1995-12-29 1998-10-06 Lsi Logic Corporation Method and apparatus for increasing the effective bandwidth of a digital wireless network
US5936578A (en) 1995-12-29 1999-08-10 Lucent Technologies Multipoint-to-point wireless system using directional antennas
US5850592A (en) 1996-01-11 1998-12-15 Gte Internetworking Incorporated Method for self-organizing mobile wireless station network
US5884181A (en) 1996-01-19 1999-03-16 Bell Communications Research, Inc. Interference reduction in shared-frequency wireless communication systems
US5712641A (en) 1996-02-28 1998-01-27 Electro-Radiation Incorporated Interference cancellation system for global positioning satellite receivers
US5978364A (en) 1996-02-29 1999-11-02 Philips Electronics North America Corporation Method for routing data packets within a wireless, packet-hopping network and a wireless network for implementing the same
US5890064A (en) 1996-03-13 1999-03-30 Telefonaktiebolaget L M Ericsson (Publ) Mobile telecommunications network having integrated wireless office system
US5809020A (en) 1996-03-18 1998-09-15 Motorola, Inc. Method for adaptively adjusting weighting coefficients in a cDMA radio receiver
US5937042A (en) 1996-03-19 1999-08-10 Mci Communications Corporation Method and system for rehome optimization
US6088431A (en) 1996-03-20 2000-07-11 Aeris Communications, Inc. Method for transmitting voice or data in a wireless network depending on billing account status
US5737327A (en) 1996-03-29 1998-04-07 Motorola, Inc. Method and apparatus for demodulation and power control bit detection in a spread spectrum communication system
US5796922A (en) 1996-03-29 1998-08-18 Weber State University Trainable, state-sampled, network controller
US5960039A (en) 1996-04-10 1999-09-28 Lucent Technologies Inc. Methods and apparatus for high data rate transmission in narrowband mobile radio channels
US6035000A (en) 1996-04-19 2000-03-07 Amati Communications Corporation Mitigating radio frequency interference in multi-carrier transmission systems
US5668562A (en) 1996-04-19 1997-09-16 Lgc Wireless, Inc. Measurement-based method of optimizing the placement of antennas in a RF distribution system
EP0804044A1 (en) 1996-04-24 1997-10-29 Siemens Aktiengesellschaft Service control in an intelligent network
EP2280494A3 (en) 1996-04-26 2011-12-07 AT & T Corp. Method and apparatus for data transmission using multiple transmit antennas
US5933420A (en) 1996-04-30 1999-08-03 3Com Corporation Method and apparatus for assigning spectrum of a wireless local area network
US6038251A (en) 1996-05-09 2000-03-14 Texas Instruments Incorporated Direct equalization method
US6021158A (en) 1996-05-09 2000-02-01 Texas Instruments Incorporated Hybrid wireless wire-line network integration and management
US5892796A (en) 1996-05-10 1999-04-06 Rypinski; Chandos A. Frame format and method for adaptive equalization within an integrated services wireless local area network
US5907544A (en) 1996-05-10 1999-05-25 Rypinski; Chandos A. Hub controller architecture and function for a multiple access-point wireless communication network
DE69705356T2 (en) 1996-05-17 2002-05-02 Motorola Ltd Method and device for weighting a transmission path
US5809133A (en) 1996-05-24 1998-09-15 Advanced Micro Devices, Inc. DTMF detector system and method which performs frequency domain energy calculations with improved performance
US5852633A (en) 1996-06-07 1998-12-22 Motorola, Inc. Method for allocating data in a data communication system
US5867485A (en) 1996-06-14 1999-02-02 Bellsouth Corporation Low power microcellular wireless drop interactive network
US5732113A (en) 1996-06-20 1998-03-24 Stanford University Timing and frequency synchronization of OFDM signals
US5949758A (en) 1996-06-27 1999-09-07 International Business Machines Corporation Bandwidth reservation for multiple file transfer in a high speed communication network
US6097771A (en) 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
US5924039A (en) 1996-08-13 1999-07-13 Telesis Technologies Laboratory Digital multichannel multipoint distribution system (MMDS) network that supports broadcast video and two-way data transmissions
US5909429A (en) 1996-09-03 1999-06-01 Philips Electronics North America Corporation Method for installing a wireless network which transmits node addresses directly from a wireless installation device to the nodes without using the wireless network
US5936949A (en) 1996-09-05 1999-08-10 Netro Corporation Wireless ATM metropolitan area network
JP2924817B2 (en) 1996-09-13 1999-07-26 日本電気株式会社 Information server system
US5905721A (en) 1996-09-26 1999-05-18 Cwill Telecommunications, Inc. Methods for channel estimation and signal detection of CDMA signals
US5887156A (en) 1996-09-30 1999-03-23 Northern Telecom Limited Evolution planning in a wireless network
FR2754125B1 (en) 1996-09-30 2004-07-09 Sc Reprosol DEVICE AND METHOD FOR VECTOR EQUALIZATION OF AN OFDM SIGNAL
US5909470A (en) 1996-10-11 1999-06-01 Arraycomm, Inc. Method and apparatus for decision directed demodulation using antenna arrays and spatial processing
US6463295B1 (en) 1996-10-11 2002-10-08 Arraycomm, Inc. Power control with signal quality estimation for smart antenna communication systems
US5930243A (en) 1996-10-11 1999-07-27 Arraycomm, Inc. Method and apparatus for estimating parameters of a communication system using antenna arrays and spatial processing
US6842430B1 (en) 1996-10-16 2005-01-11 Koninklijke Philips Electronics N.V. Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same
US5946631A (en) 1996-10-17 1999-08-31 Philips Electronics North America Corporation Real-time CSMA method having the capability to adaptively vary cell sizes and a wireless network for implementing the same
US6018659A (en) 1996-10-17 2000-01-25 The Boeing Company Airborne broadband communication network
EP1062444A4 (en) 1996-10-22 2001-04-11 Kalsi Eng Inc Improved flexible wedge gate valve
US6041088A (en) 1996-10-23 2000-03-21 Sicom, Inc. Rapid synchronization for communication systems
US6014089A (en) 1996-10-28 2000-01-11 Tracy Corporation Ii Method for transmitting data using a digital control channel of a wireless network
US5958018A (en) 1996-10-30 1999-09-28 Lucent Technologies Inc. Wireless services data network translating mac address to asynchronous transfer mode (ATM) address
US5953311A (en) 1997-02-18 1999-09-14 Discovision Associates Timing synchronization in a receiver employing orthogonal frequency division multiplexing
US5790959A (en) 1996-11-13 1998-08-04 Hewlett-Packard Company Programmable band select and transfer module for local multipoint distribution service basestation
US6141373A (en) 1996-11-15 2000-10-31 Omnipoint Corporation Preamble code structure and detection method and apparatus
US5920818A (en) 1996-12-03 1999-07-06 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for controlling communications in a multi-network, wireless communication system
US6044062A (en) 1996-12-06 2000-03-28 Communique, Llc Wireless network system and method for providing same
JP3308835B2 (en) 1996-12-06 2002-07-29 株式会社日立製作所 Wireless communication system
US6122260A (en) 1996-12-16 2000-09-19 Civil Telecommunications, Inc. Smart antenna CDMA wireless communication system
US5896391A (en) 1996-12-19 1999-04-20 Northern Telecom Limited Forward error correction assisted receiver optimization
GB2320618A (en) 1996-12-20 1998-06-24 Northern Telecom Ltd Base station antenna arrangement with narrow overlapping beams
US5844886A (en) 1996-12-30 1998-12-01 Telefonaktiebolaget Lm Ericsson (Publ.) System and method for network optimization using code blocking
US6115411A (en) 1996-12-31 2000-09-05 Lucent Technologies, Inc. System and method for spread spectrum code position modulation and wireless local area network employing the same
US5940755A (en) 1996-12-31 1999-08-17 Mci Communications Corporation System and method for wireless network of unlicensed personal communications service areas with local switch interfaces and enhanced customer features
US5953325A (en) 1997-01-02 1999-09-14 Telefonaktiebolaget L M Ericsson (Publ) Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas
US5952896A (en) 1997-01-13 1999-09-14 Applied Materials, Inc. Impedance matching network
US5978650A (en) 1997-01-21 1999-11-02 Adc Telecommunications, Inc. System and method for transmitting data
US6052599A (en) 1997-01-30 2000-04-18 At & T Corp. Cellular communication system with multiple same frequency broadcasts in a cell
US6246716B1 (en) 1997-01-31 2001-06-12 Adtran, Inc. Information communication system
US5903844A (en) 1997-02-04 1999-05-11 Motorola, Inc. Method and apparatus for determining remote unit location in a communication system
US5933421A (en) 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
US5844939A (en) 1997-02-14 1998-12-01 Hewlett-Packard Company Low-cost phaselocked local oscillator for millimeter wave transceivers
US6047331A (en) 1997-02-19 2000-04-04 Massachusetts Institute Of Technology Method and apparatus for automatic protection switching
US5923700A (en) 1997-02-24 1999-07-13 At & T Wireless Adaptive weight update method and system for a discrete multitone spread spectrum communications system
US6584144B2 (en) 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
US5864543A (en) 1997-02-24 1999-01-26 At&T Wireless Services, Inc. Transmit/receive compensation in a time division duplex system
WO1998037638A2 (en) 1997-02-24 1998-08-27 At & T Wireless Services, Inc. Highly bandwidth-efficient communications
US6023616A (en) 1998-03-10 2000-02-08 Cd Radio Inc. Satellite broadcast receiver system
US6072769A (en) 1997-03-04 2000-06-06 At&T Corporation Method for multitone division multiple access communications
US6072770A (en) 1997-03-04 2000-06-06 At&T Corporation Method and system providing unified DPSK-PSK signalling for CDMA-based satellite communications
EP0968577B1 (en) 1997-03-21 2009-09-23 The Board of Trustees of The Leland S. Stanford Junior University A system using leo satellites for centimeter-level navigation
US6088588A (en) 1997-03-25 2000-07-11 Nortel Networks Corporation Method and wireless terminal for monitoring communications and providing network with terminal operation information
JP3537988B2 (en) 1997-03-25 2004-06-14 松下電器産業株式会社 Wireless transmitter
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
US5987328A (en) 1997-04-24 1999-11-16 Ephremides; Anthony Method and device for placement of transmitters in wireless networks
US6031833A (en) 1997-05-01 2000-02-29 Apple Computer, Inc. Method and system for increasing throughput in a wireless local area network
US6072990A (en) 1997-05-08 2000-06-06 Lucent Technologies, Inc. Transmitter-receiver pair for wireless network power-code operating point is determined based on error rate
US6021309A (en) 1997-05-22 2000-02-01 Globalstar L.P. Channel frequency allocation for multiple-satellite communication network
US6069887A (en) 1997-05-28 2000-05-30 Apple Computer, Inc. Method and system for synchronization in a wireless local area network
JPH10336087A (en) 1997-05-30 1998-12-18 Kyocera Corp Maximum ratio synthesis transmission diversity device
JP2853742B2 (en) 1997-06-10 1999-02-03 日本電気株式会社 Direct Spread / Code Division Multiplexing Interference Cancellation Receiver
US6064692A (en) 1997-06-20 2000-05-16 Amati Communications Corporation Protocol for transceiver initialization
US6073235A (en) 1997-06-24 2000-06-06 At&T Corp. Private broadcast communication system and method for private broadcast communication over a wired or wireless network
US6466557B1 (en) 1997-07-14 2002-10-15 Sanyo Electric Co., Ltd. Transmission channel allocation method and allocation apparatus
US6012084A (en) 1997-08-01 2000-01-04 International Business Machines Corporation Virtual network communication services utilizing internode message delivery task mechanisms
KR100468820B1 (en) 1997-08-04 2005-03-16 삼성전자주식회사 Adaptive phased array antenna using weight memory unit
US6097951A (en) 1997-08-06 2000-08-01 Northern Telecom Limited Method and apparatus for wireless network architecture based on subscriber distribution
US6005854A (en) 1997-08-08 1999-12-21 Cwill Telecommunication, Inc. Synchronous wireless access protocol method and apparatus
US5909471A (en) 1997-08-08 1999-06-01 Arraycomm, Inc. Method and system for rapid initial control signal detection in a wireless communications system
US5912921A (en) 1997-08-20 1999-06-15 Intermec Ip Corp. Concurrent multiple data rate communications in a wireless local area network
US6131016A (en) 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
US5978117A (en) 1997-08-29 1999-11-02 Lucent Technologies Inc. Dynamic reconfiguration of a wireless network using flexible wavelenght multiplexing
US6185258B1 (en) 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
US6078611A (en) 1997-09-16 2000-06-20 Motorola, Inc. Rake receiver and finger management method for spread spectrum communication
US6009124A (en) 1997-09-22 1999-12-28 Intel Corporation High data rate communications network employing an adaptive sectored antenna
US6067291A (en) 1997-09-23 2000-05-23 Lucent Technologies Inc. Wireless local area network with enhanced carrier sense provision
US6058105A (en) 1997-09-26 2000-05-02 Lucent Technologies Inc. Multiple antenna communication system and method thereof
US6693982B1 (en) 1997-10-06 2004-02-17 At&T Corp. Minimum mean squared error approach to interference cancellation and maximum likelihood decoding of space-time block codes
US6058106A (en) 1997-10-20 2000-05-02 Motorola, Inc. Network protocol method, access point device and peripheral devices for providing for an efficient centrally coordinated peer-to-peer wireless communications network
US6061562A (en) 1997-10-30 2000-05-09 Raytheon Company Wireless communication using an airborne switching node
US6125149A (en) 1997-11-05 2000-09-26 At&T Corp. Successively refinable trellis coded quantization
US6088408A (en) 1998-11-06 2000-07-11 At & T Corp. Decoding for generalized orthogonal designs for space-time codes for wireless communication
US6411799B1 (en) * 1997-12-04 2002-06-25 Qualcomm Incorporated Method and apparatus for providing ternary power control in a communication system
US7299071B1 (en) 1997-12-10 2007-11-20 Arraycomm, Llc Downlink broadcasting by sequential transmissions from a communication station having an antenna array
US6154661A (en) 1997-12-10 2000-11-28 Arraycomm, Inc. Transmitting on the downlink using one or more weight vectors determined to achieve a desired radiation pattern
US6038430A (en) 1997-12-10 2000-03-14 3Com Corporation Method and apparatus for improving transmission of data in a wireless network
US6292559B1 (en) 1997-12-19 2001-09-18 Rice University Spectral optimization and joint signaling techniques with upstream/downstream separation for communication in the presence of crosstalk
US5991628A (en) 1997-12-19 1999-11-23 Motorola, Inc. Scalable wireless communication network and method
US6188736B1 (en) 1997-12-23 2001-02-13 At&T Wireless Svcs. Inc. Near-optimal low-complexity decoding of space-time codes for fixed wireless applications
US6064882A (en) 1997-12-23 2000-05-16 Ericsson Inc. System and method for satellite call optimization
US5898455A (en) 1997-12-23 1999-04-27 California Amplifier, Inc. Interface modules and methods for coupling combined communication signals to communication receivers
US6154659A (en) * 1997-12-24 2000-11-28 Nortel Networks Limited Fast forward link power control in a code division multiple access system
JP3718337B2 (en) 1998-01-08 2005-11-24 株式会社東芝 Adaptive variable directional antenna
FI108827B (en) 1998-01-08 2002-03-28 Nokia Corp A method for implementing connection security in a wireless network
US5982327A (en) 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
US6546055B1 (en) 1998-01-12 2003-04-08 The Board Of Trustees Of The Leland Stanford Junior University Carrier offset determination for RF signals having a cyclic prefix
US6040851A (en) 1998-01-20 2000-03-21 Conexant Systems, Inc. Small-format subsystem for broadband communication services
US6018660A (en) 1998-02-27 2000-01-25 Ericsson Inc. System and method for invoking barring features in a satellite network
JP3266091B2 (en) 1998-03-04 2002-03-18 日本電気株式会社 Cellular system
US6134261A (en) 1998-03-05 2000-10-17 At&T Wireless Svcs. Inc FDD forward link beamforming method for a FDD communications system
US6008923A (en) 1998-03-16 1999-12-28 Netschools Corporation Multiple beam communication network with beam selectivity
US5973642A (en) 1998-04-01 1999-10-26 At&T Corp. Adaptive antenna arrays for orthogonal frequency division multiplexing systems with co-channel interference
JP3465739B2 (en) 1998-04-07 2003-11-10 日本電気株式会社 CDMA adaptive antenna receiving apparatus and communication system
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6078566A (en) 1998-04-28 2000-06-20 Genesys Telecommunications Laboratories, Inc. Noise reduction techniques and apparatus for enhancing wireless data network telephony
US6615024B1 (en) 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
EP0966133B1 (en) 1998-06-15 2005-03-02 Sony International (Europe) GmbH Orthogonal transformations for interference reduction in multicarrier systems
US6795424B1 (en) * 1998-06-30 2004-09-21 Tellabs Operations, Inc. Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems
US5978365A (en) 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
CN101860391B (en) 1998-08-18 2012-12-12 直视集团公司 Multilayer-carrier discrete multi-tone communication technology
WO2000011823A1 (en) 1998-08-18 2000-03-02 Beamreach Networks, Inc. Stacked-carrier discrete multiple tone communication technology
CN100590985C (en) 1998-08-18 2010-02-17 比阿恩凤凰公司 Multilayer carrier discrete multitone communication technology
US6115580A (en) 1998-09-08 2000-09-05 Motorola, Inc. Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein
JP3167682B2 (en) * 1998-09-28 2001-05-21 三洋電機株式会社 Radio apparatus having transmission directivity and control method therefor
BR9913999A (en) 1998-10-23 2001-07-03 Caly Corp High capacity wireless broadband network
EP0999717A2 (en) 1998-11-05 2000-05-10 Caly, Inc. Broadband wireless mesh topology network
US6400780B1 (en) * 1998-11-06 2002-06-04 Lucent Technologies Inc. Space-time diversity for wireless systems
US6266528B1 (en) 1998-12-23 2001-07-24 Arraycomm, Inc. Performance monitor for antenna arrays
KR20010082514A (en) 1998-12-24 2001-08-30 오카야마 노리오 Communication system between road and vehicle
US6836469B1 (en) 1999-01-15 2004-12-28 Industrial Technology Research Institute Medium access control protocol for a multi-channel communication system
JP3641961B2 (en) 1999-02-01 2005-04-27 株式会社日立製作所 Wireless communication device using adaptive array antenna
JP3335953B2 (en) 1999-02-05 2002-10-21 埼玉日本電気株式会社 Base station in code division multiple access system.
US6104712A (en) 1999-02-22 2000-08-15 Robert; Bruno G. Wireless communication network including plural migratory access nodes
US6141393A (en) 1999-03-03 2000-10-31 Motorola, Inc. Method and device for channel estimation, equalization, and interference suppression
DE60022569T2 (en) 1999-04-05 2006-05-18 Nippon Telegraph And Telephone Corp. Adaptive array antenna system
US6937665B1 (en) 1999-04-19 2005-08-30 Interuniversitaire Micron Elektronica Centrum Method and apparatus for multi-user transmission
US6891903B2 (en) 1999-04-22 2005-05-10 At&T Corp. Multiple transmit antenna differential detection from generalized orthogonal designs
US6600914B2 (en) 1999-05-24 2003-07-29 Arraycomm, Inc. System and method for emergency call channel allocation
US6594473B1 (en) * 1999-05-28 2003-07-15 Texas Instruments Incorporated Wireless system with transmitter having multiple transmit antennas and combining open loop and closed loop transmit diversities
US6385264B1 (en) 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
US6300881B1 (en) 1999-06-09 2001-10-09 Motorola, Inc. Data transfer system and method for communicating utility consumption data over power line carriers
US6115409A (en) 1999-06-21 2000-09-05 Envoy Networks, Inc. Integrated adaptive spatial-temporal system for controlling narrowband and wideband sources of interferences in spread spectrum CDMA receivers
US7139592B2 (en) 1999-06-21 2006-11-21 Arraycomm Llc Null deepening for an adaptive antenna based communication station
JP3644594B2 (en) 1999-06-23 2005-04-27 国立大学法人 北海道大学 Wireless device
US6714585B1 (en) 1999-06-25 2004-03-30 Ericsson Inc. Rake combining methods and apparatus using weighting factors derived from knowledge of spreading spectrum signal characteristics
US6393073B1 (en) 1999-06-28 2002-05-21 Raytheon Company Method of frequency offset estimation and correction for adaptive antennas
US6757265B1 (en) 1999-07-30 2004-06-29 Iospan Wireless, Inc. Subscriber unit in a hybrid link incorporating spatial multiplexing
US7260369B2 (en) 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
US7415061B2 (en) 1999-08-31 2008-08-19 Broadcom Corporation Cancellation of burst noise in a communication system with application to S-CDMA
US6115406A (en) * 1999-09-10 2000-09-05 Interdigital Technology Corporation Transmission using an antenna array in a CDMA communication system
US7065779B1 (en) * 1999-10-13 2006-06-20 Cisco Technology, Inc. Technique for synchronizing multiple access controllers at the head end of an access network
US7039441B1 (en) 1999-10-19 2006-05-02 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
US7406261B2 (en) 1999-11-02 2008-07-29 Lot 41 Acquisition Foundation, Llc Unified multi-carrier framework for multiple-access technologies
US6351499B1 (en) 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6975666B2 (en) 1999-12-23 2005-12-13 Institut National De La Recherche Scientifique Interference suppression in CDMA systems
AU2001227681A1 (en) 2000-01-10 2001-07-31 Airnet Communications Corporation Packet based backhaul channel configuration for a wireless repeater
US6888809B1 (en) * 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US6865237B1 (en) 2000-02-22 2005-03-08 Nokia Mobile Phones Limited Method and system for digital signal transmission
US7164725B2 (en) 2000-03-10 2007-01-16 Motorola, Inc. Method and apparatus for antenna array beamforming
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6542556B1 (en) 2000-03-31 2003-04-01 Nokia Mobile Phones Ltd. Space-time code for multiple antenna transmission
US7283844B2 (en) 2000-04-04 2007-10-16 Thompson Scott D Multi-beam antenna wireless network system
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US6647078B1 (en) 2000-06-30 2003-11-11 Motorola, Inc. Method and device for multi-user frequency-domain channel estimation based on gradient optimization techniques
US6441784B1 (en) 2000-06-30 2002-08-27 Arraycomm, Inc. Method and apparatus for uplink and downlink weight prediction in adaptive array systems
EP2262151B1 (en) 2000-07-05 2017-10-04 Sony Deutschland Gmbh Pilot pattern design for multiple antennas in an OFDM system
US7418043B2 (en) 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
US6459171B1 (en) 2000-07-21 2002-10-01 Arraycomm, Inc. Method and apparatus for sharing power
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7460835B1 (en) 2000-09-22 2008-12-02 Arraycomm Llc Method and apparatus for determining an operating condition in a communications system
US6842487B1 (en) 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US7062294B1 (en) 2000-09-29 2006-06-13 Arraycomm, Llc. Downlink transmission in a wireless data communication system having a base station with a smart antenna system
US7430197B1 (en) 2000-09-29 2008-09-30 Arraycomm, Llc Radio communications system with a shared broadcast channel
US6795409B1 (en) 2000-09-29 2004-09-21 Arraycomm, Inc. Cooperative polling in a wireless data communication system having smart antenna processing
US6650714B2 (en) 2000-11-30 2003-11-18 Arraycomm, Inc. Spatial processing and timing estimation using a training sequence in a radio communications system
US7043259B1 (en) 2000-09-29 2006-05-09 Arraycomm, Inc. Repetitive paging from a wireless data base station having a smart antenna system
US6795413B1 (en) 2000-09-29 2004-09-21 Arraycomm, Inc. Radio communications system in which traffic is transmitted on the broadcast channel
US6760599B1 (en) 2000-09-29 2004-07-06 Arraycomm, Inc. Method and apparatus for selecting a base station
US6778513B2 (en) 2000-09-29 2004-08-17 Arraycomm, Inc. Method and apparatus for separting multiple users in a shared-channel communication system
US7079480B2 (en) 2000-10-28 2006-07-18 Agee Brian G Enhancing security and efficiency of wireless communications through structural embedding
US6567387B1 (en) 2000-11-07 2003-05-20 Intel Corporation System and method for data transmission from multiple wireless base transceiver stations to a subscriber unit
US6888882B1 (en) 2000-11-30 2005-05-03 Arraycomm, Inc. Reducing collisions in a radio communications system
US6931030B1 (en) 2000-11-30 2005-08-16 Arraycomm, Inc. Training sequence with a random delay for a radio communications system
US6768747B1 (en) 2000-11-30 2004-07-27 Arraycomm, Inc. Relative and absolute timing acquisition for a radio communications system
US6801589B1 (en) 2000-11-30 2004-10-05 Arraycomm, Inc. Relative timing acquisition for a radio communications system
US6650881B1 (en) 2000-11-30 2003-11-18 Arraycomm, Inc. Calculating spatial weights in a radio communications system
US7386781B2 (en) 2000-12-15 2008-06-10 Arraycomm, Llc Method and apparatus for increasing the effective range of a communication link in a wireless communication system
US20020111142A1 (en) 2000-12-18 2002-08-15 Klimovitch Gleb V. System, apparatus, and method of estimating multiple-input multiple-output wireless channel with compensation for phase noise and frequency offset
US6651210B1 (en) 2000-12-21 2003-11-18 Arraycomm, Inc. Flexible multi-bit per symbol rate encoding
US6836673B1 (en) 2000-12-22 2004-12-28 Arraycomm, Inc. Mitigating ghost signal interference in adaptive array systems
US6802038B1 (en) 2000-12-30 2004-10-05 Arraycomm, Inc. Cyclic redundancy check computation algorithm
US6938321B2 (en) 2001-01-02 2005-09-06 Rehrig Pacific Company Pallet scuffing apparatus
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US7116722B2 (en) 2001-02-09 2006-10-03 Lucent Technologies Inc. Wireless communication system using multi-element antenna having a space-time architecture
US6671589B2 (en) 2001-02-13 2003-12-30 William Holst Method and apparatus to support remote and automatically initiated data loading and data acquisition of airborne computers using a wireless spread spectrum aircraft data services link
US6633616B2 (en) * 2001-02-21 2003-10-14 Magis Networks, Inc. OFDM pilot tone tracking for wireless LAN
DE10114052C1 (en) 2001-03-15 2002-07-25 Hertz Inst Heinrich Radio transmission method within closed space uses simultaneous transmission and reception antenna elements and space-time encoders and decoders
US7110381B1 (en) * 2001-03-19 2006-09-19 Cisco Systems Wireless Networking (Australia) Pty Limited Diversity transceiver for a wireless local area network
US7406315B2 (en) 2001-03-20 2008-07-29 Arraycomm Llc Method and apparatus for resource management in a wireless data communication system
US7424002B2 (en) 2001-03-20 2008-09-09 Arraycomm, Llc Resource allocation in a wireless network
US7227855B1 (en) 2001-03-20 2007-06-05 Arraycomm Llc Resource allocation in a wireless network
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6834249B2 (en) 2001-03-29 2004-12-21 Arraycomm, Inc. Method and apparatus for controlling a computing system
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
KR100510434B1 (en) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 OFDM signal transmission system, OFDM signal transmission apparatus and OFDM signal receiver
US7088782B2 (en) 2001-04-24 2006-08-08 Georgia Tech Research Corporation Time and frequency synchronization in multi-input, multi-output (MIMO) systems
US7310304B2 (en) 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7801247B2 (en) 2001-05-01 2010-09-21 Texas Instruments Incorporated Multiple input, multiple output system and method
US7133459B2 (en) 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
US7042856B2 (en) 2001-05-03 2006-05-09 Qualcomm, Incorporation Method and apparatus for controlling uplink transmissions of a wireless communication system
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US6738020B1 (en) 2001-07-31 2004-05-18 Arraycomm, Inc. Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
US7154959B2 (en) * 2001-08-29 2006-12-26 Intel Corporation System and method for emulating a multiple input, multiple output transmission channel
US7269224B2 (en) 2001-09-17 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Apparatus and methods for providing efficient space-time structures for preambles, pilots and data for multi-input, multi-output communications systems
US7039016B1 (en) 2001-09-28 2006-05-02 Arraycomm, Llc Calibration of wideband radios and antennas using a narrowband channel
US7039363B1 (en) 2001-09-28 2006-05-02 Arraycomm Llc Adaptive antenna array with programmable sensitivity
US7277679B1 (en) 2001-09-28 2007-10-02 Arraycomm, Llc Method and apparatus to provide multiple-mode spatial processing to a terminal unit
US7433418B1 (en) 2001-09-28 2008-10-07 Arraycomm, Llc Method and apparatus for efficient storage of training sequences for peak to average power constrained modulation formats
US6973314B2 (en) 2001-09-28 2005-12-06 Arraycomm Llc. System and related methods for clustering multi-point communication targets
US6965788B1 (en) 2001-09-28 2005-11-15 Arraycomm, Inc. Method and apparatus for providing spatial processing in a remote unit
US6788948B2 (en) 2001-09-28 2004-09-07 Arraycomm, Inc. Frequency dependent calibration of a wideband radio system using narrowband channels
US6965774B1 (en) 2001-09-28 2005-11-15 Arraycomm, Inc. Channel assignments in a wireless communication system having spatial channels including enhancements in anticipation of new subscriber requests
US7050832B2 (en) 2001-11-28 2006-05-23 Arraycomm Llc Variable diversity transmission in a radio communications system based on characteristics of a received signal
JP4052835B2 (en) * 2001-12-28 2008-02-27 株式会社日立製作所 Wireless transmission system for multipoint relay and wireless device used therefor
US7054301B1 (en) 2001-12-31 2006-05-30 Arraycomm, Llc. Coordinated hopping in wireless networks using adaptive antenna arrays
US7151795B1 (en) 2001-12-31 2006-12-19 Arraycomm Llc Method and apparatus for increasing spectral efficiency using mitigated power near band-edge
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US6785520B2 (en) 2002-03-01 2004-08-31 Cognio, Inc. System and method for antenna diversity using equal power joint maximal ratio combining
US6879574B2 (en) 2002-06-24 2005-04-12 Nokia Corporation Mobile mesh Ad-Hoc networking
US7372911B1 (en) 2002-06-28 2008-05-13 Arraycomm, Llc Beam forming and transmit diversity in a multiple array radio communications system
US7433347B1 (en) 2002-06-28 2008-10-07 Arraycomm, Llc Broadcast superframe with variable reuse and interference levels for a radio communications system
US7221699B1 (en) 2002-06-28 2007-05-22 Arraycomm Llc External correction of errors between traffic and training in a wireless communications system
US6928287B2 (en) 2002-06-28 2005-08-09 Arraycomm, Inc. Efficient broadcast channel structure and use for spatial diversity communications
US7263082B1 (en) 2002-06-28 2007-08-28 Arraycomm, Llc Resolving user-specific narrow beam signals using a known sequence in a wireless communications system with a common pilot channel
US7257101B2 (en) 2002-07-03 2007-08-14 Arraycomm, Llc Selective power control messaging
US7269389B2 (en) 2002-07-03 2007-09-11 Arraycomm, Llc Selective power control messaging
US7411977B1 (en) 2002-10-21 2008-08-12 Arraycomm Llc. Efficient usage of hardware processing resources
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US6894993B2 (en) 2002-12-27 2005-05-17 Arraycomm, Inc. Detection and correction of channel swap in spatial division multiple access systems
US6950630B2 (en) 2003-03-13 2005-09-27 Arraycomm, Inc. Hard decision-based decorrelator for estimating spatial signatures in a wireless communications system
US6931262B2 (en) 2003-03-13 2005-08-16 Arraycomm, Inc. Soft decision-based decorrelator for estimating spatial signatures in a wireless communications system
US7047045B2 (en) 2003-03-13 2006-05-16 Arraycomm Llc Symbol estimation-based decorrelator for estimating spatial signatures in a wireless communications system
US6950979B2 (en) 2003-03-20 2005-09-27 Arraycomm Inc. Low complexity encoder and decoder
US6931583B2 (en) 2003-03-21 2005-08-16 Arraycomm, Inc. Decoding extended error correcting codes using soft information
US7111223B2 (en) 2003-03-28 2006-09-19 Arraycomm, Llc Error word generation with multiple element input
US20040193982A1 (en) 2003-03-31 2004-09-30 Arraycomm, Inc. Built-in self-test for digital transmitters
US6915438B2 (en) 2003-04-04 2005-07-05 Arraycomm, Inc Distributed power management method for monitoring control/status signal of sub-modules to manage power of sub-modules by activating clock signal during operation of sub-modules
US7420984B2 (en) 2003-05-09 2008-09-02 Arraycomm Llc Method and apparatus for multi-phase wireless handshaking
US7302565B2 (en) 2003-06-24 2007-11-27 Arraycomm Llc Terminal identity masking in a wireless network
US7266685B1 (en) 2003-06-24 2007-09-04 Arraycomm, Llc Time certification in a wireless communications network
US7389111B2 (en) 2003-06-25 2008-06-17 Arraycomm, Llc Adaptive determination of hysteresis for facilitating base station selection, including handover, in a wireless communication system
US6954643B2 (en) 2003-06-25 2005-10-11 Arraycomm Llc Criteria for base station selection, including handover, in a wireless communication system
US7394858B2 (en) * 2003-08-08 2008-07-01 Intel Corporation Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
US7145961B2 (en) 2003-08-28 2006-12-05 Pulselink, Inc. Ultra wideband transmitter
US7430606B1 (en) 2003-10-17 2008-09-30 Arraycomm, Llc Reducing certificate revocation lists at access points in a wireless access network
EP1870814B1 (en) 2006-06-19 2014-08-13 Texas Instruments France Method and apparatus for secure demand paging for processor devices
KR100754593B1 (en) 2004-10-11 2007-09-05 삼성전자주식회사 Apparatus and method for allocating sub-channel and power in a orthogonal frequency division multiplexing access system
SE0403218D0 (en) 2004-12-30 2004-12-30 Ericsson Telefon Ab L M Method and apparatus related to communication
JP4538357B2 (en) * 2005-03-29 2010-09-08 株式会社エヌ・ティ・ティ・ドコモ Transmission rate control method, mobile station, radio base station, and radio network controller
AU2006235200A1 (en) 2005-04-15 2006-10-19 Regenertech Pty Limited Use of Neuropeptide Y (NPY) and agonists and antagonists thereof for tissue regeneration
US7408895B2 (en) * 2005-04-20 2008-08-05 Interdigital Technology Corporation Method and apparatus for scheduling transmissions via an enhanced dedicated channel
KR20060115293A (en) * 2005-05-04 2006-11-08 삼성전자주식회사 Configuration and managing apparatus and method of channel in ofdma system and transmitting/receiving method and apparatus thereof
US9042293B2 (en) 2005-12-13 2015-05-26 Lg Electronics Inc. Communication method using relay station in mobile communication system
US20070153731A1 (en) 2006-01-05 2007-07-05 Nadav Fine Varying size coefficients in a wireless local area network return channel
IL173069A0 (en) 2006-01-10 2006-06-11 Zion Hadad Dr Cellular system and method
FR2898753B1 (en) 2006-03-16 2008-04-18 Commissariat Energie Atomique SEMI-DISTRIBUTED CONTROL CHIP SYSTEM
US8091012B2 (en) 2006-05-04 2012-01-03 Quantenna Communications Inc. System and method for decreasing decoder complexity
US8102802B2 (en) * 2006-05-08 2012-01-24 Motorola Mobility, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
EP1870813B1 (en) 2006-06-19 2013-01-30 Texas Instruments France Page processing circuits, devices, methods and systems for secure demand paging and other operations
KR20080007289A (en) 2006-07-15 2008-01-18 엘지전자 주식회사 Method for acquiring the information of other type network for handover
US8374650B2 (en) * 2006-09-27 2013-02-12 Apple, Inc. Methods for optimal collaborative MIMO-SDMA
US8073073B2 (en) 2006-10-30 2011-12-06 Quantenna Communications, Inc. Optimized clipping for peak-to-average power ratio reduction
US8327158B2 (en) 2006-11-01 2012-12-04 Texas Instruments Incorporated Hardware voting mechanism for arbitrating scaling of shared voltage domain, integrated circuits, processes and systems
EP2082497B1 (en) 2006-11-07 2012-07-18 The DirecTV Group, Inc. Aas direct signaling framing methodologies to support high capacity wireless links
JP2008154242A (en) 2006-11-21 2008-07-03 Yokogawa Electric Corp Mimo mesh network
PL2115920T3 (en) 2007-01-31 2015-04-30 Nokia Technologies Oy Apparatus, method and computer program product for signaling modulation and coding scheme
WO2008101122A2 (en) 2007-02-16 2008-08-21 Quantenna Communications, Inc. Efficient balun
US8538423B2 (en) 2007-03-19 2013-09-17 Nokia Corporation Method and apparatus for setting discontinuous communication interval
US8831116B2 (en) * 2007-03-20 2014-09-09 Motorola Mobility Llc Method and apparatus for providing channel quality and precoding metric feedback in an orthogonal frequency division multiplexing communication system
WO2008141311A1 (en) 2007-05-10 2008-11-20 Quantenna Communications, Inc. Multifunctional signal transform engine
EP2075696A3 (en) 2007-05-10 2010-01-27 Texas Instruments Incorporated Interrupt- related circuits, systems and processes
GB2449252B (en) 2007-05-14 2012-05-16 Toshiba Res Europ Ltd Multichannel MAC in wireless networks
US8111790B2 (en) 2007-10-19 2012-02-07 Quantenna Communications Inc. Mitigating interference in a coded communication system
US8407551B2 (en) 2008-12-15 2013-03-26 Quantenna Communications, Inc. Low complexity LDCP decoding
US20100174599A1 (en) 2009-01-05 2010-07-08 Apple Inc. System and method for providing content associated with a product or service
US8031101B2 (en) 2009-02-12 2011-10-04 Quantenna Communications, Inc. Spur cancellation
US8305921B2 (en) 2009-04-03 2012-11-06 Quantenna Communications, Inc. Channel selection and interference suppression
EP2531969A4 (en) 2010-02-01 2013-12-04 Jumptap Inc Integrated advertising system
WO2014073901A1 (en) * 2012-11-09 2014-05-15 엘지전자 주식회사 Method and device for transmitting and receiving channel state information in wireless communication system

Patent Citations (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093781A (en) * 1988-10-07 1992-03-03 Hughes Aircraft Company Cellular network assignment processor using minimum/maximum convergence technique
US5299148A (en) * 1988-10-28 1994-03-29 The Regents Of The University Of California Self-coherence restoring signal extraction and estimation of signal direction of arrival
US5515378A (en) * 1991-12-12 1996-05-07 Arraycomm, Inc. Spatial division multiple access wireless communication systems
US5592490A (en) * 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US5625880A (en) * 1991-12-12 1997-04-29 Arraycomm, Incorporated Spectrally efficient and high capacity acknowledgement radio paging system
US5396256A (en) * 1992-10-28 1995-03-07 Atr Optical & Radio Communications Research Laboratories Apparatus for controlling array antenna comprising a plurality of antenna elements and method therefor
US6061389A (en) * 1993-03-05 2000-05-09 Hitachi, Ltd. Frequency-hopping communication system and communication station
US5634199A (en) * 1993-04-14 1997-05-27 Stanford University Method of subspace beamforming using adaptive transmitting antennas with feedback
US5875186A (en) * 1993-06-25 1999-02-23 Netwave Technologies Limited Dynamic wireless local area network with interactive communications within the network
US20040012387A1 (en) * 1993-07-23 2004-01-22 Shattil Steve J. Cancellation systems for multicarrier transceiver arrays
US5724666A (en) * 1994-03-24 1998-03-03 Ericsson Inc. Polarization diversity phased array cellular base station and associated methods
US5870385A (en) * 1994-10-26 1999-02-09 International Business Machines Corporation Allocation method and apparatus for reusing network resources in a wireless communication system
US6069894A (en) * 1995-06-12 2000-05-30 Telefonaktiebolaget Lm Ericsson Enhancement of network operation and performance
US5890055A (en) * 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US20070140374A1 (en) * 1996-08-29 2007-06-21 Raleigh Gregory G Spatio-temporal processing for communication
US6377631B1 (en) * 1996-08-29 2002-04-23 Cisco Systems, Inc. Transmitter incorporating spatio-temporal processing
US20030072382A1 (en) * 1996-08-29 2003-04-17 Cisco Systems, Inc. Spatio-temporal processing for communication
US6493335B1 (en) * 1996-09-24 2002-12-10 At&T Corp. Method and system for providing low-cost high-speed data services
US6047189A (en) * 1996-10-11 2000-04-04 Arraycomm, Inc. Adaptive method for channel assignment in a cellular communication system
US7035661B1 (en) * 1996-10-11 2006-04-25 Arraycomm, Llc. Power control with signal quality estimation for smart antenna communication systems
US6690747B2 (en) * 1996-10-11 2004-02-10 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
US5886988A (en) * 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US6016313A (en) * 1996-11-07 2000-01-18 Wavtrace, Inc. System and method for broadband millimeter wave data communication
US6512737B1 (en) * 1997-02-24 2003-01-28 Beamreach Networks, Inc. Stacked carrier discrete multiple tone communication system
US6219341B1 (en) * 1997-03-20 2001-04-17 University Technology Corporation Method for bandwidth efficient multiple access wireless communication
US6047023A (en) * 1997-05-14 2000-04-04 Hughes Electronics Corporation Swept frequency modulation and demodulation technique
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6108565A (en) * 1997-09-15 2000-08-22 Adaptive Telecom, Inc. Practical space-time radio method for CDMA communication capacity enhancement
US6037898A (en) * 1997-10-10 2000-03-14 Arraycomm, Inc. Method and apparatus for calibrating radio frequency base stations using antenna arrays
US6185440B1 (en) * 1997-12-10 2001-02-06 Arraycomm, Inc. Method for sequentially transmitting a downlink signal from a communication station that has an antenna array to achieve an omnidirectional radiation
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US20040100897A1 (en) * 1998-02-12 2004-05-27 Shattil Steve J. Carrier interferometry coding with aplications to cellular and local area networks
US6353604B2 (en) * 1998-05-06 2002-03-05 Terayon Communications Systems, Inc. Apparatus and method for synchronizing an SCDMA upstream or any other type upstream to an MCNS downstream or any other type downstream with a different clock rate than the upstream
US6023203A (en) * 1998-10-14 2000-02-08 Arraycomm, Inc. RF test fixture for adaptive-antenna radio systems
US20020111144A1 (en) * 1998-10-29 2002-08-15 Schiff Leonard N. Variable loop gain in double loop power control systems
US6383432B1 (en) * 1999-01-22 2002-05-07 Chisso Corporation High-speed apparatus and method for producing thermoplastic synthetic fibers
US6317411B1 (en) * 1999-02-22 2001-11-13 Motorola, Inc. Method and system for transmitting and receiving signals transmitted from an antenna array with transmit diversity techniques
US6177906B1 (en) * 1999-04-01 2001-01-23 Arraycomm, Inc. Multimode iterative adaptive smart antenna processing method and apparatus
US6839573B1 (en) * 1999-06-07 2005-01-04 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
US20130176968A1 (en) * 1999-07-30 2013-07-11 Robert W. Heath, Jr. Spatial Multiplexing in a Cellular Network
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US20070009012A1 (en) * 1999-08-31 2007-01-11 Broadcom Corporation, A California Corporation Cancellation of interference in a communication system with application to S-CDMA
US6377636B1 (en) * 1999-11-02 2002-04-23 Iospan Wirless, Inc. Method and wireless communications system using coordinated transmission and training for interference mitigation
US6985466B1 (en) * 1999-11-09 2006-01-10 Arraycomm, Inc. Downlink signal processing in CDMA systems utilizing arrays of antennae
US20010033622A1 (en) * 2000-03-14 2001-10-25 Joengren George Robust utilization of feedback information in space-time coding
US6826240B1 (en) * 2000-03-15 2004-11-30 Motorola, Inc. Method and device for multi-user channel estimation
US6493331B1 (en) * 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
US7020072B1 (en) * 2000-05-09 2006-03-28 Lucent Technologies, Inc. Orthogonal frequency division multiplexing transmit diversity system for frequency-selective fading channels
US20040095907A1 (en) * 2000-06-13 2004-05-20 Agee Brian G. Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6504506B1 (en) * 2000-06-30 2003-01-07 Motorola, Inc. Method and device for fixed in time adaptive antenna combining weights
US6362781B1 (en) * 2000-06-30 2002-03-26 Motorola, Inc. Method and device for adaptive antenna combining weights
US20020062472A1 (en) * 2000-08-03 2002-05-23 Medlock Joel D. Dynamically reconfigurable universal transmitter system
US7688710B2 (en) * 2000-09-01 2010-03-30 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US8098568B2 (en) * 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US6982968B1 (en) * 2000-09-29 2006-01-03 Arraycomm, Inc. Non-directional transmitting from a wireless data base station having a smart antenna system
US6735258B1 (en) * 2000-09-29 2004-05-11 Arraycomm, Inc. Moderate rate phase shift keying codec
US7006579B2 (en) * 2000-09-29 2006-02-28 Nokia Corporation ISI-robust slot formats for non-orthogonal-based space-time block codes
US6684366B1 (en) * 2000-09-29 2004-01-27 Arraycomm, Inc. Multi-rate codec with puncture control
US7158493B1 (en) * 2000-09-29 2007-01-02 Arraycomm, Llc Radio communications system with a minimal broadcast channel
US6564036B1 (en) * 2000-09-29 2003-05-13 Arraycomm, Inc. Mode switching in adaptive array communications systems
US7349371B2 (en) * 2000-09-29 2008-03-25 Arraycomm, Llc Selecting random access channels
US6711412B1 (en) * 2000-10-13 2004-03-23 Iospan Wireless, Inc. Interference mitigation in wireless communications by training of interfering signals
US20080075033A1 (en) * 2000-11-22 2008-03-27 Shattil Steve J Cooperative beam-forming in wireless networks
US6731689B2 (en) * 2000-11-30 2004-05-04 Arraycomm, Inc. Training sequence for a radio communications system
US6839574B2 (en) * 2000-12-20 2005-01-04 Arraycomm, Inc. Method and apparatus for estimating downlink beamforming weights in a communications system
US6683915B1 (en) * 2000-12-21 2004-01-27 Arraycomm, Inc. Multi-bit per symbol rate quadrature amplitude encoding
US6731705B2 (en) * 2000-12-22 2004-05-04 Arraycomm, Inc. Method and apparatus for mitigating inter-channel interference in adaptive array systems
US6987819B2 (en) * 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US7164669B2 (en) * 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US7020490B2 (en) * 2001-01-30 2006-03-28 Koninklijke Philips Electronics N.V. Radio communication system
US7035358B1 (en) * 2001-02-23 2006-04-25 Arraycomm, Inc. Method and apparatus for receiving a wideband signal in the presence of multipath channel imperfections and frequency offset
US20030086366A1 (en) * 2001-03-06 2003-05-08 Branlund Dale A. Adaptive communications methods for multiple user packet radio wireless networks
US7339906B1 (en) * 2001-03-20 2008-03-04 Arraycomm, Llc Opening a communications stream between a user terminal and a base station
US6996060B1 (en) * 2001-03-20 2006-02-07 Arraycomm, Inc. Closing a communications stream between terminals of a communications system
US7027415B1 (en) * 2001-03-20 2006-04-11 Arraycomm, Inc. Dynamic allocation and de-allocation of multiple communication channels for bandwidth on-demand
US20030087673A1 (en) * 2001-05-16 2003-05-08 Walton Jay R. Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
US20110019608A1 (en) * 2001-06-28 2011-01-27 King's College London Method and system for frequency relaying
US7339908B2 (en) * 2001-07-31 2008-03-04 Arraycomm, Llc. System and related methods to facilitate delivery of enhanced data services in a mobile wireless communications environment
US7363376B2 (en) * 2001-07-31 2008-04-22 Arraycomm Llc Method and apparatus for generating an identifier to facilitate delivery of enhanced data services in a mobile computing environment
US6983127B1 (en) * 2001-07-31 2006-01-03 Arraycomm, Inc. Statistical calibration of wireless base stations
US7027837B1 (en) * 2001-09-27 2006-04-11 Arraycomm Llc. Antenna array for point-to-point microwave radio system
US6999771B1 (en) * 2001-09-28 2006-02-14 Arraycomm Llc Channel assignments in a wireless communication system having spatial channels including grouping existing subscribers in anticipation of a new subscriber
US6570527B1 (en) * 2001-09-28 2003-05-27 Arraycomm, Inc. Calibration of differential frequency-dependent characteristics of a radio communications system
US20070042753A1 (en) * 2001-09-28 2007-02-22 Durham Logistics, Llc Wireless network infrastructure
US7016429B1 (en) * 2001-09-28 2006-03-21 Arraycomm, Llc Training sequences for peak to average power constrained modulation formats
US7336626B1 (en) * 2001-09-28 2008-02-26 Arraycomm, Inc Operating time division duplex (TDD) wireless systems in paired spectrum (FDD) allocations
US7003310B1 (en) * 2001-09-28 2006-02-21 Arraycomm Llc. Coupled uplink/downlink power control and spatial processing with adaptive antenna arrays
US7024163B1 (en) * 2001-09-28 2006-04-04 Arraycomm Llc Method and apparatus for adjusting feedback of a remote unit
US7336719B2 (en) * 2001-11-28 2008-02-26 Intel Corporation System and method for transmit diversity base upon transmission channel delay spread
US7206293B2 (en) * 2001-12-28 2007-04-17 Arraycomm Llc System and related methods for beamforming in a multi-point communications environment
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US7031679B2 (en) * 2002-03-27 2006-04-18 Arraycomm, Llc Estimating power on spatial channels
US7366223B1 (en) * 2002-06-06 2008-04-29 Arraycomm, Llc Modifying hopping sequences in wireless networks
US7362799B1 (en) * 2002-06-27 2008-04-22 Arraycomm Llc Method and apparatus for communication signal resolution
US7206554B1 (en) * 2002-06-28 2007-04-17 Arraycomm Llc Transmit diversity with formed beams in a wireless communications system using a common pilot channel
US6999794B1 (en) * 2002-06-28 2006-02-14 Arraycomm Llc Transmission of a common pilot channel from a beamforming transmit antenna array
US6865377B1 (en) * 2002-06-28 2005-03-08 Arraycomm, Inc. Combined open and closed loop beam forming in a multiple array radio communication system
US7342912B1 (en) * 2002-06-28 2008-03-11 Arraycomm, Llc. Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
US7164739B1 (en) * 2002-06-28 2007-01-16 Arraycomm, Llc. Broadcast burst with repeated weights for a radio communications system
US7164726B1 (en) * 2002-06-28 2007-01-16 Arraycomm, Llc. Broadcast burst using spatial diversity for a radio communications system
US7339981B2 (en) * 2002-07-09 2008-03-04 Arraycomm, Llc. Shifted training sequences in a communications system
US7352774B2 (en) * 2002-09-30 2008-04-01 Arraycomm, Llc Multiplexing different types of data sequences
US7020107B2 (en) * 2003-01-21 2006-03-28 Arraycomm, Llc Methods for reliable user switchback on a PHS spatial division multiple access channel
US6996163B2 (en) * 2003-03-27 2006-02-07 Arraycomm, Inc. Walsh-Hadamard decoder
US7036067B2 (en) * 2003-03-28 2006-04-25 Arraycomm, Llc Error detection for multi-stream communications
US20100020907A1 (en) * 2006-05-04 2010-01-28 Quantenna Communications, Inc. Multiple antenna receiver system and method
US20080090575A1 (en) * 2006-07-13 2008-04-17 Oz Barak WiMAX ACCESS POINT NETWORK WITH BACKHAUL TECHNOLOGY
US20080088517A1 (en) * 2006-10-17 2008-04-17 Quantenna Communications, Inc. Tunable antenna system
US20100080317A1 (en) * 2008-10-01 2010-04-01 Quantenna Communications, Inc. Symbol mixing across multiple parallel channels

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11750256B2 (en) * 2002-11-04 2023-09-05 Xr Communications Llc Directed wireless communication
US9800316B2 (en) 2008-02-20 2017-10-24 Hobbit Wave, Inc. Beamforming devices and methods
US8571499B1 (en) * 2010-10-12 2013-10-29 Harold Kirkpatrick Wireless terrestrial communications systems using a line-of-sight frequency for inbound data and a non-line-of-sight frequency for outbound data
US20130107695A1 (en) * 2011-10-28 2013-05-02 Fci Inc. Odfm receiver
US8824271B2 (en) * 2011-10-28 2014-09-02 Fci Inc. ODFM receiver
US9887715B2 (en) * 2012-03-07 2018-02-06 VertoCOMM, Inc. Devices and methods using the hermetic transform
US20150110230A1 (en) * 2012-03-07 2015-04-23 Hobbit Wave, Inc. Devices and methods using the hermetic transform
US9998311B2 (en) 2012-03-07 2018-06-12 VertoCOMM, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using OFDM
US10637520B2 (en) 2012-03-07 2020-04-28 VertoCOMM, Inc. Devices and methods using the hermetic transform
US9275690B2 (en) 2012-05-30 2016-03-01 Tahoe Rf Semiconductor, Inc. Power management in an electronic system through reducing energy usage of a battery and/or controlling an output power of an amplifier thereof
US9509351B2 (en) 2012-07-27 2016-11-29 Tahoe Rf Semiconductor, Inc. Simultaneous accommodation of a low power signal and an interfering signal in a radio frequency (RF) receiver
US10333759B2 (en) * 2012-11-28 2019-06-25 Sony Corporation Receiver for receiving data in a broadcast system
US11201692B2 (en) * 2012-11-28 2021-12-14 Saturn Licensing Llc Receiver for receiving data in a broadcast system using redundancy data
US11843458B2 (en) 2012-11-28 2023-12-12 Saturn Licensing Llc Broadcast system and method for error correction using separately received redundant data and broadcast data
US9531070B2 (en) 2013-03-15 2016-12-27 Christopher T. Schiller Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through accommodating differential coupling between VCOs thereof
US9666942B2 (en) 2013-03-15 2017-05-30 Gigpeak, Inc. Adaptive transmit array for beam-steering
US9837714B2 (en) 2013-03-15 2017-12-05 Integrated Device Technology, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through a circular configuration thereof
US9184498B2 (en) 2013-03-15 2015-11-10 Gigoptix, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through fine control of a tunable frequency of a tank circuit of a VCO thereof
US9722310B2 (en) 2013-03-15 2017-08-01 Gigpeak, Inc. Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through frequency multiplication
US9716315B2 (en) 2013-03-15 2017-07-25 Gigpeak, Inc. Automatic high-resolution adaptive beam-steering
US9780449B2 (en) 2013-03-15 2017-10-03 Integrated Device Technology, Inc. Phase shift based improved reference input frequency signal injection into a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation to reduce a phase-steering requirement during beamforming
US20150063211A1 (en) * 2013-08-29 2015-03-05 Samsung Electronics Co., Ltd. Method and apparatus for applying nested network cording in multipath protocol
US10462043B2 (en) * 2013-08-29 2019-10-29 Samsung Electronics Co., Ltd. Method and apparatus for applying nested network cording in multipath protocol
US10447340B2 (en) 2013-10-25 2019-10-15 VertoCOMM, Inc. Devices and methods employing hermetic transforms for encoding and decoding digital information in spread-spectrum communication systems
US9531431B2 (en) 2013-10-25 2016-12-27 Hobbit Wave, Inc. Devices and methods employing hermetic transforms for encoding and decoding digital information in spread-spectrum communications systems
US9829568B2 (en) 2013-11-22 2017-11-28 VertoCOMM, Inc. Radar using hermetic transforms
US20160344463A1 (en) * 2014-03-24 2016-11-24 Lg Electronics Inc. Method of performing a hybrid beamforming in a wireless communication system and apparatus therefor
US10009084B2 (en) * 2014-03-24 2018-06-26 Lg Electronics Inc. Method of performing a hybrid beamforming in a wireless communication system and apparatus therefor
US11304661B2 (en) 2014-10-23 2022-04-19 VertoCOMM, Inc. Enhanced imaging devices, and image construction methods and processes employing hermetic transforms
US9871684B2 (en) 2014-11-17 2018-01-16 VertoCOMM, Inc. Devices and methods for hermetic transform filters
US10771304B2 (en) 2016-02-26 2020-09-08 VertoCOMM, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using multi-channel signaling
US10305717B2 (en) 2016-02-26 2019-05-28 VertoCOMM, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using multi-channel signaling
US11230375B1 (en) 2016-03-31 2022-01-25 Steven M. Hoffberg Steerable rotating projectile
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
WO2021102478A1 (en) * 2020-06-15 2021-05-27 Zeku, Inc. Approaches to self-clustering resource blocks for improved noise estimation through imbalance detection
WO2022165150A1 (en) * 2021-01-29 2022-08-04 Trustpoint, Inc. Satellite based positioning navigation and timing system, method and computer program product
US11662474B2 (en) 2021-01-29 2023-05-30 Trustpoint, Inc. Satellite based positioning navigation and timing system, method and computer program product

Also Published As

Publication number Publication date
US20150271004A1 (en) 2015-09-24
US20140376657A1 (en) 2014-12-25
USRE45775E1 (en) 2015-10-20
US20140328423A1 (en) 2014-11-06
US20160134341A1 (en) 2016-05-12
US9654323B2 (en) 2017-05-16
US20140204984A1 (en) 2014-07-24
US10349332B2 (en) 2019-07-09
US20180192349A1 (en) 2018-07-05
US9356666B1 (en) 2016-05-31
US20110255577A1 (en) 2011-10-20
US20160204913A1 (en) 2016-07-14
US9209871B2 (en) 2015-12-08
US9344233B2 (en) 2016-05-17
US8315327B2 (en) 2012-11-20
US20140376656A1 (en) 2014-12-25
US9197297B2 (en) 2015-11-24
US20160164647A1 (en) 2016-06-09
US9401783B1 (en) 2016-07-26
US20080232238A1 (en) 2008-09-25
USRE45807E1 (en) 2015-11-17
US9722842B2 (en) 2017-08-01
US20170085407A1 (en) 2017-03-23
US8451928B2 (en) 2013-05-28
US9391745B2 (en) 2016-07-12
US20110194591A1 (en) 2011-08-11
US9106286B2 (en) 2015-08-11
US20110142025A1 (en) 2011-06-16
US9820209B1 (en) 2017-11-14
US8315326B2 (en) 2012-11-20
US8451929B2 (en) 2013-05-28
US20160134455A1 (en) 2016-05-12
US9515788B2 (en) 2016-12-06
US8363744B2 (en) 2013-01-29
US20160087767A1 (en) 2016-03-24
US10257765B2 (en) 2019-04-09
US20110142108A1 (en) 2011-06-16
US20160204914A1 (en) 2016-07-14
US20170332304A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
USRE45807E1 (en) Apparatus for transmitting a signal including transmit data to a multiple-input capable node
US7248841B2 (en) Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US11831372B2 (en) Non-line of sight wireless communication system and method
US20140206367A1 (en) Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
ES2842625T3 (en) Apparatus and procedure for resource allocation in a MIMO-OFDM communication system
US20110021153A1 (en) Centralized cross-layer enhanced method and apparatus for interference mitigation in a wireless network
US20230217349A1 (en) Communication by a repeater system including a network of radio frequency repeater devices
Auer et al. IST-4-027756 WINNER II D6. 13.11 v1. 0 Final CG" metropolitan area" description for integration into overall System Concept and assessment of key technologies
Bournaka Mathematical optimization and signal processing techniques for cooperative wireless networks

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOETHIAN TECHNOLOGY, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CPU CONSULTANTS, INC.;REEL/FRAME:028496/0067

Effective date: 20111223

AS Assignment

Owner name: ALOFT MEDIA, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOETHIAN TECHNOLOGY, LLC;REEL/FRAME:031651/0773

Effective date: 20121012

Owner name: CPU CONSULTANTS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AGEE, BRIAN G.;BROMBERG, MATTHEW C.;REEL/FRAME:031651/0752

Effective date: 20101124

AS Assignment

Owner name: COMCAST CABLE COMMUNICATIONS, LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALOFT MEDIA, LLC;REEL/FRAME:032527/0801

Effective date: 20140325

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION