US20110178753A1 - Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder - Google Patents

Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder Download PDF

Info

Publication number
US20110178753A1
US20110178753A1 US13/006,466 US201113006466A US2011178753A1 US 20110178753 A1 US20110178753 A1 US 20110178753A1 US 201113006466 A US201113006466 A US 201113006466A US 2011178753 A1 US2011178753 A1 US 2011178753A1
Authority
US
United States
Prior art keywords
parameter
value
aacmm
memory
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/006,466
Inventor
Frederick John York
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faro Technologies Inc
Original Assignee
Faro Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US29655510P priority Critical
Application filed by Faro Technologies Inc filed Critical Faro Technologies Inc
Priority to US13/006,466 priority patent/US20110178753A1/en
Assigned to FARO TECHNOLOGIES, INC. reassignment FARO TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YORK, FREDERICK JOHN
Publication of US20110178753A1 publication Critical patent/US20110178753A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/002Measuring arrangements characterised by the use of optical means for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical means for measuring two or more coordinates coordinate measuring machines
    • G01B11/007Measuring arrangements characterised by the use of optical means for measuring two or more coordinates coordinate measuring machines feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
    • G01B21/02Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical means
    • G01B5/004Measuring arrangements characterised by the use of mechanical means for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical means for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24067Processor stores variables, events and date in eeprom, for external monitor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37193Multicoordinate measuring system, machine, cmm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40233Portable robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40596Encoder in each joint
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45061Measuring robot

Abstract

A portable articulated arm coordinate measurement machine (AACMM) that includes a manually positionable articulated arm, a measurement device attached to a first end of the AACMM, and an electronic circuit for receiving the position signal and for providing data corresponding to a position of the measurement device. The AACMM further includes an environmental recorder. The environmental recorder includes a sensor for outputting a value of a parameter, a memory, and logic executable by the environmental recorder to implement a method. The method includes monitoring the value of the parameter, and determining that the value of the parameter is outside of a programmable threshold. The value of the parameter and a timestamp are stored in the memory in response to the value of the parameter being determined to be outside of the programmable threshold. The contents of the memory are transmitted to the electronic circuit.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of provisional application No. 61/296,555 filed Jan. 20, 2010, the content of which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • The present disclosure relates to a coordinate measuring machine, and more particularly to a portable articulated arm coordinate measuring machine having an integrated environmental recorder.
  • Portable articulated arm coordinate measuring machines (AACMMs) have found widespread use in the manufacturing or production of parts where there is a need to rapidly and accurately verify the dimensions of the part during various stages of the manufacturing or production (e.g., machining) of the part. Portable AACMMs represent a vast improvement over known stationary or fixed, cost-intensive and relatively difficult to use measurement installations, particularly in the amount of time it takes to perform dimensional measurements of relatively complex parts. Typically, a user of a portable AACMM simply guides a probe along the surface of the part or object to be measured. The measurement data are then recorded and provided to the user. In some cases, the data are provided to the user in visual form, for example, three-dimensional (3-D) form on a computer screen. In other cases, the data are provided to the user in numeric form, for example when measuring the diameter of a hole, the text “Diameter=1.0034” is displayed on a computer screen.
  • An example of a prior art portable articulated arm CMM is disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582), which is incorporated herein by reference in its entirety. The '582 patent discloses a 3-D measuring system comprised of a manually-operated articulated arm CMM having a support base on one end and a measurement probe at the other end. Commonly assigned U.S. Pat. No. 5,611,147 ('147), which is incorporated herein by reference in its entirety, discloses a similar articulated arm CMM. In the '147 patent, the articulated arm CMM includes a number of features including an additional rotational axis at the probe end, thereby providing for an arm with either a two-two-two or a two-two-three axis configuration (the latter case being a seven axis arm).
  • Information about past environmental conditions of an articulated arm CMM is helpful during system diagnostics and repair of the articulated arm CMM. To enhance traceability of the past operating environments of the articulated arm CMM, what is needed is an environmental monitoring system to measure and record environmental data for the articulated arm CMM.
  • SUMMARY OF THE INVENTION
  • An embodiment is a portable articulated arm coordinate measurement machine (AACMM) that includes a manually positionable articulated arm having opposed first and second ends, the arm including a plurality of connected arm segments, each of the arm segments including at least one position transducer for producing a position signal. The AACMM also includes a measurement device attached to a first end of the AACMM, and an electronic circuit for receiving the position signal from the transducers and for providing data corresponding to a position of the measurement device. The AACM further includes an environmental recorder in communication with the electronic circuit. The environmental recorder includes a sensor for outputting a value of a parameter, a memory, and logic executable by the environmental recorder to implement a method. The method includes monitoring the value of the parameter, and determining that the value of the parameter is outside of a programmable threshold. The value of the parameter and a timestamp are stored in the memory in response to the value of the parameter being determined to be outside of the programmable threshold. The contents of the memory are transmitted to the electronic circuit.
  • Another embodiment is a method of implementing a portable AACMM. The method includes receiving a value of a parameter from a sensor located on the portable AACM. The portable AACMM includes a manually positionable articulated arm having opposed first and second ends. The arm includes a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal. The portable AACMM also includes a measurement device attached to a first end of the portable AACMM, and an electronic circuit which receives the position signal from the transducers and provides data corresponding to a position of the measurement device. The received value of the parameter is monitored and it is determined that the value of the parameter is outside of a programmable threshold. The value of the parameter and a timestamp are stored in a memory located on an environmental recorder in response to the value of the parameter being determined to be outside of the programmable threshold. The contents of the memory are transmitted to the base computer processor.
  • A further embodiment is a computer program product for implementing a portable AACMM. The computer program product includes a storage medium having computer-readable program code embodied thereon, which when executed by a computer causes the computer to implement a method. The method includes receiving a value of a parameter from a sensor located on the portable AACM. The portable AACMM includes a manually positionable articulated arm having opposed first and second ends. The arm includes a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal. The portable AACMM also includes a measurement device attached to a first end of the portable AACMM, and an electronic circuit which receives the position signal from the transducers and provides data corresponding to a position of the measurement device. The received value of the parameter is monitored and it is determined that the value of the parameter is outside of a programmable threshold. The value of the parameter and a timestamp are stored in a memory located on an environmental recorder in response to the value of the parameter being determined to be outside of the programmable threshold. The contents of the memory are transmitted to the base computer processor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawings, exemplary embodiments are shown which should not be construed to be limiting regarding the entire scope of the disclosure, and wherein the elements are numbered alike in several FIGURES:
  • FIG. 1, including FIGS. 1A and 1B, are perspective views of a portable articulated arm coordinate measuring machine (AACMM) having embodiments of various aspects of the present invention therewithin;
  • FIG. 2, including FIGS. 2A-2D taken together, is a block diagram of electronics utilized as part of the AACMM of FIG. 1 in accordance with an embodiment;
  • FIG. 3, including FIGS. 3A and 3B taken together, is a block diagram describing detailed features of the electronic data processing system of FIG. 2 in accordance with an embodiment;
  • FIG. 4 is a block diagram describing detailed features of the environmental recorder of FIG. 3 in accordance with an embodiment;
  • FIG. 5 is a flow diagram describing a process performed by the environmental recorder when the AACMM is powered off in accordance with an embodiment; and
  • FIG. 6 is a flow diagram describing a process performed by the environmental recorder when the AACMM is powered on in accordance with an embodiment.
  • DETAILED DESCRIPTION
  • A portable articulated arm coordinate measuring machine (AACMM) that includes an environmental recorder is provided in accordance with exemplary embodiments. The environmental recorder provides data that may be useful in explaining any anomalous behavior of the AACMM. Data representing the history of the AACMM is recorded by the environmental recorder at various times, including from early in the manufacturing process, during time in inventory, during shipment of the product, and during subsequent handling and use at the site of an end user. This data can be read directly by an end user of the AACMM via an on-board operating system and display, or it can be extracted and saved on another computer. The environmental recorder is an independent, battery backed environmental monitoring system that is located on the AACMM.
  • Data collected by the environmental recorder may be utilized to alert a user about an event and to suggest that a probe calibration and/or a single point articulation performance test (SPAT) be performed to see if the arm is still measuring to specification. The data collected by the environmental recorder is also used during system diagnostics and repair to determine a history of the AACMM in terms of environmental conditions. Environmental conditions include, but are not limited to: temperature, humidity, and shock (e.g., due to the AACMM being dropped). Sensors located on the environmental recorder output values of environmental condition parameters and their values are recorded periodically. In accordance with embodiments, the periodic recording occurs both when the AACMM is powered on and when the AACMM is powered off. In addition, or alternatively, the values of environmental condition parameters are recorded in response to an event such as an extreme humidity value (e.g., as defined by a programmable threshold) being detected at a sensor. In accordance with embodiments, the recording of values that exceed thresholds occurs both when the AACMM is powered on and when the AACMM is powered off.
  • FIGS. 1A and 1B illustrate, in perspective, a portable articulated arm coordinate measuring machine (AACMM) 100 according to various embodiments of the present invention, an articulated arm being one type of coordinate measuring machine. As shown in FIGS. 1A and 1B, the exemplary AACMM 100 may comprise a six or seven axis articulated measurement device having a measurement probe housing 102 coupled to an arm portion 104 of the AACMM 100 at one end. The arm portion 104 comprises a first arm segment 106 coupled to a second arm segment 108 by a first grouping of bearing cartridges 110 (e.g., two bearing cartridges). A second grouping of bearing cartridges 112 (e.g., two bearing cartridges) couples the second arm segment 108 to the measurement probe housing 102. A third grouping of bearing cartridges 114 (e.g., three bearing cartridges) couples the first arm segment 106 to a base 116 located at the other end of the arm portion 104 of the AACMM 100. Each grouping of bearing cartridges 110, 112, 114 provides for multiple axes of articulated movement. Also, the measurement probe housing 102 may comprise the shaft of the seventh axis portion of the AACMM 100 (e.g., a cartridge containing an encoder system that determines movement of the measurement device, for example a probe 118, in the seventh axis of the AACMM 100). In use of the AACMM 100, the base 116 is typically affixed to a work surface.
  • Each bearing cartridge within each bearing cartridge grouping 110, 112, 114 typically contains an encoder system (e.g., an optical angular encoder system). The encoder system (i.e., transducer) provides an indication of the position of the respective arm segments 106, 108 and corresponding bearing cartridge groupings 110, 112, 114 that all together provide an indication of the position of the probe 118 with respect to the base 116 (and, thus, the position of the object being measured by the AACMM 100 in a certain frame of reference—for example a local or global frame of reference). The arm segments 106, 108 may be made from a suitably rigid material such as but not limited to a carbon composite material for example. A portable AACMM 100 with six or seven axes of articulated movement (i.e., degrees of freedom) provides advantages in allowing the operator to position the probe 118 in a desired location within a 360° area about the base 116 while providing an arm portion 104 that may be easily handled by the operator. However, it should be appreciated that the illustration of an arm portion 104 having two arm segments 106, 108 is for exemplary purposes, and the claimed invention should not be so limited. An AACMM 100 may have any number of arm segments coupled together by bearing cartridges (and, thus, more or less than six or seven axes of articulated movement or degrees of freedom).
  • The probe 118 is detachably mounted to the measurement probe housing 102, which is connected to bearing cartridge grouping 112. A handle 126 is removable with respect to the measurement probe housing 102 by way of, for example, a quick-connect interface. The handle 126 may be replaced with another device (e.g., a laser line probe, a bar code reader), thereby providing advantages in allowing the operator to use different measurement devices with the same AACMM 100. In exemplary embodiments, the probe housing 102 houses a removable probe 118, which is a contacting measurement device and may have different tips 118 that physically contact the object to be measured, including, but not limited to: ball, touch-sensitive, curved and extension type probes. In other embodiments, the measurement is performed, for example, by a non-contacting device such as a laser line probe (LLP). In an embodiment, the handle 126 is replaced with the LLP using the quick-connect interface. Other types of measurement devices may replace the removable handle 126 to provide additional functionality. Examples of such measurement devices include, but are not limited to, one or more illumination lights, a temperature sensor, a thermal scanner, a bar code scanner, a projector, a paint sprayer, a camera, or the like, for example.
  • As shown in FIGS. 1A and 1B, the AACMM 100 includes the removable handle 126 that provides advantages in allowing accessories or functionality to be changed without removing the measurement probe housing 102 from the bearing cartridge grouping 112. As discussed in more detail below with respect to FIG. 2, the removable handle 126 may also include an electrical connector that allows electrical power and data to be exchanged with the handle 126 and the corresponding electronics located in the probe end.
  • In various embodiments, each grouping of bearing cartridges 110, 112, 114 allows the arm portion 104 of the AACMM 100 to move about multiple axes of rotation. As mentioned, each bearing cartridge grouping 110, 112, 114 includes corresponding encoder systems, such as optical angular encoders for example, that are each arranged coaxially with the corresponding axis of rotation of, e.g., the arm segments 106, 108. The optical encoder system detects rotational (swivel) or transverse (hinge) movement of, e.g., each one of the arm segments 106, 108 about the corresponding axis and transmits a signal to an electronic data processing system within the AACMM 100 as described in more detail herein below. Each individual raw encoder count is sent separately to the electronic data processing system as a signal where it is further processed into measurement data. No position calculator separate from the AACMM 100 itself (e.g., a serial box) is required, as disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582).
  • The base 116 may include an attachment device or mounting device 120. The mounting device 120 allows the AACMM 100 to be removably mounted to a desired location, such as an inspection table, a machining center, a wall or the floor for example. In one embodiment, the base 116 includes a handle portion 122 that provides a convenient location for the operator to hold the base 116 as the AACMM 100 is being moved. In one embodiment, the base 116 further includes a movable cover portion 124 that folds down to reveal a user interface, such as a display screen.
  • In accordance with an embodiment, the base 116 of the portable AACMM 100 contains or houses an electronic data processing system that includes two primary components: a base processing system that processes the data from the various encoder systems within the AACMM 100 as well as data representing other arm parameters to support three-dimensional (3-D) positional calculations; and a user interface processing system that includes an on-board operating system, a touch screen display, and resident application software that allows for relatively complete metrology functions to be implemented within the AACMM 100 without the need for connection to an external computer.
  • The electronic data processing system in the base 116 may communicate with the encoder systems, sensors, and other peripheral hardware located away from the base 116 (e.g., a LLP that can be mounted to the removable handle 126 on the AACMM 100). The electronics that support these peripheral hardware devices or features may be located in each of the bearing cartridge groupings 110, 112, 114 located within the portable AACMM 100.
  • FIG. 2 is a block diagram of electronics utilized in an AACMM 100 in accordance with an embodiment. The embodiment shown in FIG. 2 includes an electronic data processing system 210 including a base processor board 204 for implementing the base processing system, a user interface board 202, a base power board 206 for providing power, a Bluetooth module 232, and a base tilt board 208. The user interface board 202 includes a computer processor for executing application software to perform user interface, display, and other functions described herein.
  • As shown in FIG. 2, the electronic data processing system 210 is in communication with the aforementioned plurality of encoder systems via one or more arm buses 218. In the embodiment depicted in FIG. 2, each encoder system generates encoder data and includes: an encoder arm bus interface 214, an encoder digital signal processor (DSP) 216, an encoder read head interface 234, and a temperature sensor 212. Other devices, such as strain sensors, may be attached to the arm bus 218.
  • Also shown in FIG. 2 are probe end electronics 230 that are in communication with the arm bus 218. The probe end electronics 230 include a probe end DSP 228, a temperature sensor 212, a handle/LLP interface bus 240 that connects with the handle 126 or the LLP 242 via the quick-connect interface in an embodiment, and a probe interface 226. The quick-connect interface allows access by the handle 126 to the data bus, control lines, and power bus used by the LLP 242 and other accessories. In an embodiment, the probe end electronics 230 are located in the measurement probe housing 102 on the AACMM 100. In an embodiment, the handle 126 may be removed from the quick-connect interface and measurement may be performed by the laser line probe (LLP) 242 communicating with the probe end electronics 230 of the AACMM 100 via the handle/LLP interface bus 240. In an embodiment, the electronic data processing system 210 is located in the base 116 of the AACMM 100, the probe end electronics 230 are located in the measurement probe housing 102 of the AACMM 100, and the encoder systems are located in the bearing cartridge groupings 110, 112, 114. The probe interface 226 may connect with the probe end DSP 228 by any suitable communications protocol, including commercially-available products from Maxim Integrated Products, Inc. that embody the 1-wire® communications protocol 236.
  • FIG. 3 is a block diagram describing detailed features of the electronic data processing system 210 of the AACMM 100 in accordance with an embodiment. In an embodiment, the electronic data processing system 210 is located in the base 116 of the AACMM 100 and includes the base processor board 204, the user interface board 202, a base power board 206, a Bluetooth module 232, and a base tilt module 208.
  • In an embodiment shown in FIG. 3, the base processor board 204 includes the various functional blocks illustrated therein. For example, a base processor function 302 is utilized to support the collection of measurement data from the AACMM 100 and receives raw arm data (e.g., encoder system data) via the arm bus 218 and a bus control module function 308. The memory function 304 stores programs and static arm configuration data. The base processor board 204 also includes an external hardware option port function 310 for communicating with any external hardware devices or accessories such as an LLP 242. A real time clock (RTC) and log 306, a battery pack interface (IF) 316, and a diagnostic port 318 are also included in the functionality in an embodiment of the base processor board 204 depicted in FIG. 3.
  • The base processor board 204 also manages all the wired and wireless data communication with external (host computer) and internal (display processor 202) devices. The base processor board 204 has the capability of communicating with an Ethernet network via an Ethernet function 320 (e.g., using a clock synchronization standard such as Institute of Electrical and Electronics Engineers (IEEE) 1588), with a wireless local area network (WLAN) via a LAN function 322, and with Bluetooth module 232 via a parallel to serial communications (PSC) function 314. The base processor board 204 also includes a connection to a universal serial bus (USB) device 312.
  • The base processor board 204 transmits and collects raw measurement data (e.g., encoder system counts, temperature readings) for processing into measurement data without the need for any preprocessing, such as disclosed in the serial box of the aforementioned '582 patent. The base processor 204 sends the processed data to the display processor 328 on the user interface board 202 via an RS485 interface (IF) 326. In an embodiment, the base processor 204 also sends the raw measurement data to an external computer.
  • Turning now to the user interface board 202 in FIG. 3, the angle and positional data received by the base processor is utilized by applications executing on the display processor 328 to provide an autonomous metrology system within the AACMM 100. Applications may be executed on the display processor 328 to support functions such as, but not limited to: measurement of features, guidance and training graphics, remote diagnostics, temperature corrections, control of various operational features, connection to various networks, and display of measured objects. Along with the display processor 328 and a liquid crystal display (LCD) 338 (e.g., a touch screen LCD) user interface, the user interface board 202 includes several interface options including a secure digital (SD) card interface 330, a memory 332, a USB Host interface 334, a diagnostic port 336, a camera port 340, an audio/video interface 342, a dial-up/cell modem 344 and a global positioning system (GPS) port 346.
  • The electronic data processing system 210 shown in FIG. 3 also includes a base power board 206 with an environmental recorder 362 for recording environmental data. The base power board 206 also provides power to the electronic data processing system 210 using an AC/DC converter 358 and a battery charger control 360. The base power board 206 communicates with the base processor board 204 using inter-integrated circuit (I2C) serial single ended bus 354 as well as via a DMA serial peripheral interface (DSPI) 356. The base power board 206 is connected to a tilt sensor and radio frequency identification (RFID) module 208 via an input/output (I/O) expansion function 364 implemented in the base power board 206.
  • Though shown as separate components, in other embodiments all or a subset of the components may be physically located in different locations and/or functions combined in different manners than that shown in FIG. 3. For example, in one embodiment, the base processor board 204 and the user interface board 202 are combined into one physical board.
  • In an embodiment, the AACMM 100 includes the integrated electronic data processing system 210 described above. The electronic data processing system 210 resides onboard, and is integrated with, the AACMM 100 and its components. The base processor board 204 includes a base computer processor, which may be implemented by the processor function 302 illustrated in FIG. 3. The base computer processor performs user-selected functions in response to requests received via the AACMM 100, which functions are described further herein. In an exemplary embodiment, the functions are performed via one or more applications (e.g., logic) executed by the base computer processor and stored, e.g., in memory 304 of FIG. 3. In an embodiment the requests may be received at the AACMM 100 via the onboard user interface board 202 illustrated in FIG. 2 and/or an external computer processor that is remotely located from the AACMM 100 and communicates with the AACMM 100 either directly through a USB channel, over an Ethernet network, or wirelessly, e.g., over a wireless LAN or Bluetooth™-enabled channel 232, as illustrated generally in FIG. 2. In response to the requests, various components, e.g., encoders 214/216/234, probe end electronics 230, and/or peripheral devices (e.g., LLP 242) are activated and collect data responsive to the requests. Information derived by the data is returned to the base computer processor, and forwarded to a destination device as described further herein.
  • Referring to FIG. 4, a more detailed view of the environmental recorder 362 of FIG. 3 is generally shown. The environmental recorder 362 includes a battery 410 for providing electrical power to components of the environmental recorder 362 for an extended period of time (e.g., five to six months) without the need for external power. The battery 410 may be implemented using any battery sized to fit on the environmental recorder 362 and capable of holding a charge for an extended period of time. The battery 410 is charged when the AACMM 100 is connected to external power for operation or if present, from a secondary (re-chargeable) AACMM battery pack, whether connected to external power or not. Having a dedicated battery 410 in the environmental recorder 362 allows the environmental recorder 362 to operate when the AACMM 100 is powered off (e.g., in a power off state).
  • The environmental recorder 362 also includes a clock 406 for maintaining the date and time of day. The clock 406 is used to generate a timestamp for events that are logged as well as to measure time intervals. Commercially available clocks such as, but not limited to, a crystal driven clock may be utilized by embodiments.
  • The environmental recorder 362 depicted in FIG. 4 includes various sensors: an impact sensor 402, a humidity sensor 414, and a temperature sensor 412. These sensors are examples of the types of sensors that may be utilized by the environmental recorder 362 and are not intended to be limiting as other types of sensors (e.g., vibration sensors, atmospheric pressure sensors, etc.) may also be implemented.
  • An embodiment of the impact sensor 402 is implemented by two or more accelerometers: a first accelerometer designed to detect and measure very small accelerations (or vibrations); and a second accelerometer designed to detect and measure larger accelerations. When the first accelerometer detects a motion, it instructs the second accelerometer to start taking and recording measurements. As known in the art, accelerometers measure acceleration in terms of gravitational force (g-force), and thus, the impact sensor 402 measures a g-force parameter. Any suitable accelerometers known in the art for detecting a shock or impact may be utilized by exemplary embodiments described herein, including, but not limited to three-axis micro electro-mechanical systems (MEMS), gravitometers, piezoresistive accelerometers, and capacitive accelerometers. In an embodiment, a g-force value detected by the first accelerometer that is greater than a present threshold (e.g., 2.5 g), causes the environmental recorder 362 to store the values of the g-force along with a timestamp. This programmable g-force threshold value may be updated during manufacturing or initialization of the AACMM 100.
  • The parameter measured by the temperature sensor 412 is ambient temperature, and the temperature sensor 412 is implemented by a commercially available temperature sensor. In an embodiment, a temperature value that is greater than 45 degrees Celsius or less than 5 degrees Celsius causes the environmental recorder 362 to store the value of the temperature along with a timestamp. This programmable temperature threshold value may be updated during manufacturing or initialization of the AACMM 100.
  • A humidity parameter is measured by the humidity sensor 414, and the humidity sensor 414 is implemented by a commercially available humidity sensor. In an embodiment, a humidity value that is greater than 80% or less than 20% causes the environmental recorder 362 to store the value of the humidity along with a timestamp. This programmable humidity threshold value may be updated during manufacturing or initialization of the AACMM 100.
  • The processor 408 controls a programmable time interval for recording values of the parameters from the sensors, the reading of sensors, and the recording or storage of the values and timestamps into the memory 404. As described herein, the values of parameters measured by the sensors cause the environmental recorder 362 to activate the recording of the parameter value at the moment of an event (or shortly thereafter) regardless of the monitoring schedule of that sensor. An alert may also be sent to an operator of the system (e.g., via the LCD 338) in response to the event being detected. In addition, the processor 408 controls the periodic transmission of contents of the memory 404 to the base processor board 204. In an embodiment, the transmission is across an inter-integrated circuit (I2C) bus, and the processor is implemented by a commercially available processor. The processor 408 controls the processing described herein using hardware instructions, software instructions or a combination of both.
  • The memory 404 stores the recorded values of the parameters and their associated timestamps. In addition, the memory 404 may store the programmable threshold values associated with the parameters. The memory 404 is implemented by a commercially available memory such as, but not limited to: flash and direct random access memory (SRAM). The size of the memory 404 dictates how many parameter values and timestamps may be stored at the environmental recorder 362 before requiring a transmission of contents of the memory 404 to the base processor board 204.
  • FIG. 4 shows the impact sensor 402, memory 404, clock 406, processor 408, battery 410, temperature sensor 412, and humidity sensor 414 located on the environmental recorder 362. In alternate embodiments, all or a subset of these elements are located outside of the environmental recorder 362 on the AACMM 100 with communication between the elements being provided via a network or bus.
  • In an embodiment, the environmental recorder 362 utilizes multiple processors, clocks, and sensors. The lowest level system runs continuously and detects basis events that then bring up the next processor and sensor set. When the AACMM 100 is powered up, a third processor comes into play to interface to the environmental recorder 362, and then a fourth processor comes up to allow retrieval and display of data.
  • Referring to FIG. 5, a flow diagram describing a process performed by the environmental recorder 362 when the AACMM is in a low power mode (e.g., powered off, reduced power) is generally shown. In an embodiment, the processing is facilitated by computer instructions, or logic, located in the processor 408. At step 502, the values of parameters output by the sensors located on the environmental recorder 362, such as impact sensor 402 and/or temperature sensor 412 are monitored. At step 504, it is determined if an event has been detected by the monitoring. An event occurs when the value of at least one of the parameters is outside of a programmable threshold. An event also occurs when a programmable time interval has expired. If an event has not been detected, as determined at step 504, then processing continues at step 502. Otherwise, if an event has been detected, then processing continues at step 506.
  • In an embodiment, while the monitoring and detecting are being performed, the environmental recorder 362 is in a low power mode where the memory 404 is not accessible. At step 506, the environmental recorder 362 is put into a high power mode to allow access to the memory 404. The values of the parameter(s) along with a timestamp are stored to the memory 404 at step 508. In an embodiment, values of all of the parameters being measured by the sensors are stored to the memory 404 at step 508. Alternatively, all of the parameter values are stored to memory 404 when the event detected at step 504 is that a programmable time interval has expired, and only the value of the parameter causing the event to be detected at step 504 is stored to memory 404 when the event detected at step 504 is that a threshold has been exceeded. In an embodiment, step 508 is repeated a programmable number of times or for a programmable amount of time when the event detected at step 504 is that a threshold has been exceeded. In an embodiment, space in the memory 404 is conserved, by performing step 508 only if the current value of the parameter is different from a previous value of the parameter. At step 510, the environmental recorder 362 is put into the low power mode. In an embodiment, the low power mode includes portions of the environmental recorder 362 that are not used for the monitoring and detecting being powered off. Processing then continues at step 502.
  • Referring to FIG. 6, a flow diagram describing a process performed by the environmental recorder 362 when the AACMM is powered on is generally shown. In an embodiment, the processing is facilitated by computer instructions, or logic, located in the processor 408. At step 602, the values of parameters output by the sensors located on the environmental recorder 362, such as impact sensor 402 and/or temperature sensor 412 are monitored. At step 604, it is determined if an event has been detected by the monitoring. An event occurs when the value of at least one of the parameters is outside of a programmable threshold. An event also occurs when a programmable time interval has expired. If it is determined at step 604, that an event has not been detected, then processing continues at step 608. Alternatively, it if is determined that an event has been detected, then processing continues at step 608.
  • The values of the parameter(s) along with a timestamp are stored to the memory 404 at step 606. In an embodiment, values of all of the parameters being measured by the sensors are stored to the memory 404 at step 606. Alternatively, all of the parameter values are stored to memory 404 when the event detected at step 604 is that a programmable time interval has expired, and only the value of the parameter causing the event to be detected at step 604 is stored to memory 404 when the event detected at step 604 is that a threshold has been exceeded. In an embodiment, space in the memory 404 is conserved, by performing step 606 only if the current value of the parameter is different from a previous value of the parameter. In an embodiment, step 606 is repeated a programmable number of times or for a programmable amount of time when the event detected at step 604 is that a threshold has been exceeded.
  • At step 608, it is determined if contents of the memory 404 should be transmitted to the base processor board 204. The determination is made based on how much space is left in the memory 404 and/or how much time has passed since the last time the contents of the memory 404 were transmitted to the base processor board 204. If it is determined, at step 608, that the contents of the memory 404 should be transmitted to the base processor board computer 204, then processing continues at step 610. At step 610, the transmitting is performed and the memory 404 is cleared out. Processing then continues at step 602. Once the data is transmitted to the base processor board 204, it is stored in the memory 304 on the base processor board 204. The data can then be transmitted to a processor remote from the AACMM 100 and/or displayed on the color LCD 338 on the user interface board 202. In additional embodiments, the thresholds and time intervals are programmed using the color LCD 338 on the user interface board 202.
  • In an embodiment, additional monitoring is provided by the environmental recorder 362 when the AACMM 100 is powered on. The system monitors and records time stamped events such as, for example, error codes returned by software, missed communications, and supply voltage variations. Data from the environmental recorder 362 is then correlated with a software event monitoring system on the base processor board 204 to determine if hardware error conditions are related to environmental events.
  • In an embodiment, data from the environmental recorder 362 is used to create a history of the AACMM 100 from manufacture, through storage, shipment and use. This historical data can be used to diagnose issues reported by the user, which could include accuracy variations, electronic errors, and/or software anomalies. As an example, if a customer reported that the AACMM 100 suddenly stopped providing accurate readings, the historical data could be reviewed to see if the AACMM 100 was subjected to excessive shock just prior to the change in performance. A report of performance problems on a particular shift or date could be reviewed for extremes in temperature or vibrations at that time. The historical data can also be used to see if an AACMM 100 was abused during transport either to a customer site or in route back to the factory for service. AACMMs 100 showing similar performance symptoms can be checked for common environmental factors in the history log.
  • Technical effects and benefits include the ability to more easily perform troubleshooting and determination of root cause of product failures, especially for events that occur during shipping, that occur outside of normal operating hours, or that go un-reported (e.g., dropping of the AACMM 100).
  • As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method, or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
  • Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++, C# or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • Aspects of the present invention are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer program instructions may also be stored in a computer readable medium that may direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
  • While the invention has been described with reference to example embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims (24)

1. A portable articulated arm coordinate measurement machine (AACMM), comprising:
a manually positionable articulated arm having opposed first and second ends, the arm including a plurality of connected arm segments, each of the arm segments including at least one position transducer for producing a position signal;
a measurement device attached to a first end of the AACMM;
an electronic circuit for receiving the position signal from the at least one transducer and for providing data corresponding to a position of the measurement device; and
an environmental recorder in communication with the electronic circuit, the environmental recorder including
a sensor for outputting a value of a parameter;
a memory; and
logic executable by the environmental recorder to implement a method that comprises
monitoring the value of the parameter;
determining that the value of the parameter is outside of a programmable threshold;
storing the value of the parameter and a timestamp in the memory, the storing responsive to the determining; and
transmitting contents of the memory to the electronic circuit.
2. The system of claim 1, wherein the environmental recorder further comprises a battery, and the monitoring, determining, and storing are performed using power from the battery when the portable AACMM is in a power off state.
3. The system of claim 1, wherein the method further comprises storing the value of the parameter and the time stamp in the memory at least once during a programmable time interval.
4. The system of claim 1, wherein the transmitting is performed when the portable AACMM is powered on in response to at least one of the memory reaching a programmable capacity and a programmable amount of time passing since the last time that the contents were transmitted to the electronic circuit.
5. The system of claim 1, wherein the storing is further responsive to the value of the parameter being different than a previous value of the parameter.
6. The system of claim 1, wherein the sensor comprises a shock sensor and the parameter is acceleration.
7. The system of claim 1, wherein the sensor comprises at least one of a temperature sensor and a humidity sensor.
8. A method of implementing a portable articulated arm coordinate measuring machine (AACMM), the method comprising:
receiving a value of a parameter from a sensor located on the portable AACMM, the portable AACMM comprised of a manually positionable articulated arm portion having opposed first and second ends, the arm portion including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal, a measurement device attached to the first end, and an electronic circuit which receives the position signal from the at least one transducer and provides data corresponding to a position of the measurement device;
monitoring the value of the parameter;
determining that the value of the parameter is outside of a programmable threshold;
storing the value of the parameter and a timestamp in a memory located on an environmental recorder, the storing responsive to detecting the event; and
transmitting contents of the memory to the electronic circuit.
9. The method of claim 8, wherein the monitoring, determining, and storing are performed using power from a battery connected to the environmental recorder when the portable articulated arm coordinate measuring machine is in a power off state.
10. The method of claim 8, further comprising storing the value of the parameter and the time stamp in the memory at least once during a programmable time interval.
11. The method of claim 8, wherein the transmitting is performed when the portable AACMM is powered on in response to at least one of the memory reaching a programmable capacity and a programmable amount of time passing since the last time that the contents were transmitted to the electronic circuit.
12. The method of claim 8, wherein the storing is further responsive to the value of the parameter being different than a previous value of the parameter.
13. The method of claim 8, wherein the sensor comprises a shock sensor and the parameter is acceleration.
14. The method of claim 8, wherein the sensor comprises at least one of a temperature sensor and a humidity sensor.
15. The method of claim 8, further comprising initiating an alert to the electronic circuit in response to detecting the event.
16. The method of claim 8, further comprising generating a report responsive to the contents of the memory.
17. The method of claim 16, wherein the report is utilized to diagnose at least one of accuracy variations, electronic errors, and software anomalies.
18. A computer program product for implementing a portable articulated arm coordinate measuring machine (AACMM), the computer program product comprising a storage medium having computer-readable program code embodied thereon, which when executed by a computer causes the computer to implement a method, the method including:
receiving a value of a parameter from a sensor located on the portable AACMM, the portable AACMM comprised of a manually positionable articulated arm portion having opposed first and second ends, the arm portion including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal, a measurement device attached to a first end of the portable AACMM, and an electronic circuit which receives the position signal from the at least one transducer and provides data corresponding to a position of the measurement device;
monitoring the value of the parameter;
determining that the value of the parameter is outside of a programmable threshold;
storing the value of the parameter and a timestamp in a memory located on an environmental recorder, the storing responsive to detecting the event; and
transmitting contents of the memory to the electronic circuit.
19. The computer program product of claim 18, wherein the monitoring, determining, and storing are performed using power from a battery located on the environmental recorder when the portable AACMM is in a power off state.
20. The computer program product of claim 18, wherein the method further comprises storing the value of the parameter and the timestamp in the memory at least once during a programmable time interval.
21. The computer program product of claim 18, wherein the transmitting is performed when the portable AACMM is powered on in response to at least one of the memory reaching a programmable capacity and a programmable amount of time passing since the last time that the contents were transmitted to the electronic circuit.
22. The computer program product of claim 18, wherein the storing is further responsive to the value of the parameter being different than a previous value of the parameter.
23. The computer program product of claim 18, wherein the sensor comprises at least one of a shock sensor, a temperature sensor, and a humidity sensor.
24. The computer program product of claim 18, wherein the method further includes initiating an alert to the electronic circuit in response to detecting the event.
US13/006,466 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder Abandoned US20110178753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US29655510P true 2010-01-20 2010-01-20
US13/006,466 US20110178753A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/006,466 US20110178753A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder

Publications (1)

Publication Number Publication Date
US20110178753A1 true US20110178753A1 (en) 2011-07-21

Family

ID=43736091

Family Applications (15)

Application Number Title Priority Date Filing Date
US13/006,500 Active US8001697B2 (en) 2010-01-20 2011-01-14 Counter balance for coordinate measurement device
US13/006,458 Abandoned US20110178763A1 (en) 2010-01-20 2011-01-14 Use of inclinometers to improve relocation of a portable articulated arm coordinate measuring machine
US13/006,466 Abandoned US20110178753A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder
US13/006,455 Active 2031-12-27 US9009000B2 (en) 2010-01-20 2011-01-14 Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US13/006,486 Abandoned US20110178762A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine with Multiple Communication Channels
US13/006,524 Abandoned US20110178765A1 (en) 2010-01-20 2011-01-14 Multi-functional coordinate measurement machines
US13/006,463 Abandoned US20110178758A1 (en) 2010-01-20 2011-01-14 Integrated part temperature measurement system
US13/006,484 Abandoned US20110178754A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine Having Integrated Software Controls
US13/006,490 Active US8028432B2 (en) 2010-01-20 2011-01-14 Mounting device for a coordinate measuring machine
US13/006,461 Abandoned US20110175745A1 (en) 2010-01-20 2011-01-14 Embedded arm strain sensors
US13/006,503 Active 2031-02-27 US8276286B2 (en) 2010-01-20 2011-01-14 Display for coordinate measuring machine
US13/006,564 Active 2033-11-29 US8942940B2 (en) 2010-01-20 2011-01-14 Portable articulated arm coordinate measuring machine and integrated electronic data processing system
US13/006,496 Active 2032-03-04 US8763266B2 (en) 2010-01-20 2011-01-14 Coordinate measurement device
US13/009,965 Active US8171650B2 (en) 2010-01-20 2011-01-20 Intelligent repeatable arm mounting system
US13/628,448 Active US8601702B2 (en) 2010-01-20 2012-09-27 Display for coordinate measuring machine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/006,500 Active US8001697B2 (en) 2010-01-20 2011-01-14 Counter balance for coordinate measurement device
US13/006,458 Abandoned US20110178763A1 (en) 2010-01-20 2011-01-14 Use of inclinometers to improve relocation of a portable articulated arm coordinate measuring machine

Family Applications After (12)

Application Number Title Priority Date Filing Date
US13/006,455 Active 2031-12-27 US9009000B2 (en) 2010-01-20 2011-01-14 Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US13/006,486 Abandoned US20110178762A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine with Multiple Communication Channels
US13/006,524 Abandoned US20110178765A1 (en) 2010-01-20 2011-01-14 Multi-functional coordinate measurement machines
US13/006,463 Abandoned US20110178758A1 (en) 2010-01-20 2011-01-14 Integrated part temperature measurement system
US13/006,484 Abandoned US20110178754A1 (en) 2010-01-20 2011-01-14 Portable Articulated Arm Coordinate Measuring Machine Having Integrated Software Controls
US13/006,490 Active US8028432B2 (en) 2010-01-20 2011-01-14 Mounting device for a coordinate measuring machine
US13/006,461 Abandoned US20110175745A1 (en) 2010-01-20 2011-01-14 Embedded arm strain sensors
US13/006,503 Active 2031-02-27 US8276286B2 (en) 2010-01-20 2011-01-14 Display for coordinate measuring machine
US13/006,564 Active 2033-11-29 US8942940B2 (en) 2010-01-20 2011-01-14 Portable articulated arm coordinate measuring machine and integrated electronic data processing system
US13/006,496 Active 2032-03-04 US8763266B2 (en) 2010-01-20 2011-01-14 Coordinate measurement device
US13/009,965 Active US8171650B2 (en) 2010-01-20 2011-01-20 Intelligent repeatable arm mounting system
US13/628,448 Active US8601702B2 (en) 2010-01-20 2012-09-27 Display for coordinate measuring machine

Country Status (6)

Country Link
US (15) US8001697B2 (en)
JP (16) JP2013517508A (en)
CN (14) CN104075638A (en)
DE (13) DE112011100289B4 (en)
GB (13) GB2490812A (en)
WO (14) WO2011090899A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178764A1 (en) * 2010-01-20 2011-07-21 Faro Technologies, Inc. Portable Articulated Arm Coordinate Measuring Machine with Multi-Bus Arm Technology
US20130252513A1 (en) * 2012-03-22 2013-09-26 Balance Systems S.R.L. Feeler for workpieces being machined
US20150355310A1 (en) * 2014-06-06 2015-12-10 Faro Technologies, Inc. Metrology instrument system and method of operating

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881896B2 (en) 2002-02-14 2011-02-01 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
US7693325B2 (en) 2004-01-14 2010-04-06 Hexagon Metrology, Inc. Transprojection of geometry data
DE102006031580A1 (en) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Method and device for the three-dimensional detection of a spatial area
US7743524B2 (en) 2006-11-20 2010-06-29 Hexagon Metrology Ab Coordinate measurement machine with improved joint
US7779548B2 (en) 2008-03-28 2010-08-24 Hexagon Metrology, Inc. Coordinate measuring machine with rotatable grip
US8122610B2 (en) * 2008-03-28 2012-02-28 Hexagon Metrology, Inc. Systems and methods for improved coordination acquisition member comprising calibration information
US7908757B2 (en) 2008-10-16 2011-03-22 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
DE102009015920B4 (en) 2009-03-25 2014-11-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
WO2010116203A1 (en) * 2009-04-06 2010-10-14 Aktiebolaget Skf Detection system, joint system provided with such a detection system and automotive vehicle equipped with such a joint system
CA2766906C (en) 2009-06-30 2019-03-05 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
US8099877B2 (en) 2009-11-06 2012-01-24 Hexagon Metrology Ab Enhanced position detection for a CMM
DE102009057101A1 (en) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
CN104040285B (en) * 2012-06-15 2015-12-30 法罗技术股份有限公司 Coordinate measuring machine having a detachable attachment
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
DE112011102995B4 (en) 2010-09-08 2016-05-19 Faro Technologies Inc. Laser scanner or laser tracking device with a projector
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
DE112011100290T5 (en) 2010-01-20 2013-02-28 Faro Technologies Inc. Coordinate measuring machine with an illuminated probe end and operating method
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
JP2015184279A (en) * 2014-03-24 2015-10-22 ファロ テクノロジーズ インコーポレーテッド Coordinate measurement machine with distance meter used to establish frame of reference
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
WO2013126163A1 (en) * 2012-02-21 2013-08-29 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
JP2013517508A (en) 2010-01-20 2013-05-16 ファロ テクノロジーズ インコーポレーテッド Multifunctional coordinate measuring machine
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
JP5218524B2 (en) * 2010-03-15 2013-06-26 株式会社安川電機 Robot system and robot operation restriction method
WO2011113490A1 (en) * 2010-03-18 2011-09-22 Abb Research Ltd. Calibration of a base coordinate system for an industrial robot
USD643319S1 (en) * 2010-03-29 2011-08-16 Hexagon Metrology Ab Portable coordinate measurement machine
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
DE102010020925B4 (en) 2010-05-10 2014-02-27 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8127458B1 (en) 2010-08-31 2012-03-06 Hexagon Metrology, Inc. Mounting apparatus for articulated arm laser scanner
JP5523995B2 (en) * 2010-09-03 2014-06-18 株式会社ミツトヨ measuring device
JP5639836B2 (en) * 2010-10-01 2014-12-10 株式会社ミツトヨ Measuring device
US9168654B2 (en) * 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US8411285B2 (en) * 2010-11-22 2013-04-02 Trimble Navigation Limited Stationing an unleveled optical total station
GB2518544A (en) 2011-03-03 2015-03-25 Faro Tech Inc Target apparatus and method
US8902408B2 (en) * 2011-02-14 2014-12-02 Faro Technologies Inc. Laser tracker used with six degree-of-freedom probe having separable spherical retroreflector
US8619265B2 (en) 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US8900126B2 (en) * 2011-03-23 2014-12-02 United Sciences, Llc Optical scanning device
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
WO2012141868A1 (en) 2011-04-15 2012-10-18 Faro Technologies, Inc. Enhanced position detector in laser tracker
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9514487B2 (en) * 2011-06-08 2016-12-06 Amazon Technologies, Inc. Internal measurement collection system and method of using same
GB2493214B (en) * 2011-07-29 2016-06-08 Taylor Hobson Ltd Metrological apparatus
CN103093291A (en) * 2011-10-31 2013-05-08 鸿富锦精密工业(深圳)有限公司 Image measurement object management system and method
CN103096141B (en) * 2011-11-08 2019-06-11 华为技术有限公司 A kind of method, apparatus and system obtaining visual angle
FR2982941A1 (en) * 2011-11-18 2013-05-24 Hexagon Metrology Sas Measuring apparatus comprising an indexed locking arm
FR2982940B1 (en) * 2011-11-18 2014-12-19 Hexagon Metrology Sas Method for controlling measuring apparatus and measuring apparatus using the same
US8763267B2 (en) 2012-01-20 2014-07-01 Hexagon Technology Center Gmbh Locking counterbalance for a CMM
DE102012100609A1 (en) 2012-01-25 2013-07-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US8900125B2 (en) * 2012-03-12 2014-12-02 United Sciences, Llc Otoscanning with 3D modeling
FR2989133B1 (en) * 2012-04-10 2015-01-30 Maquet Sas Suspension arm for electrical apparatus, electrical equipment for operating block
US9472005B1 (en) * 2012-04-18 2016-10-18 Amazon Technologies, Inc. Projection and camera system for augmented reality environment
JP2013234951A (en) * 2012-05-10 2013-11-21 Mitsutoyo Corp Three-dimensional measuring apparatus
US9069355B2 (en) 2012-06-08 2015-06-30 Hexagon Technology Center Gmbh System and method for a wireless feature pack
WO2013188972A1 (en) 2012-06-18 2013-12-27 Collineo Inc. Remote visual inspection system and method
US20140005810A1 (en) 2012-06-27 2014-01-02 Ubiquiti Networks, Inc. Method and apparatus for monitoring and processing sensor data using a sensor-interfacing device
CN103543700B (en) * 2012-06-27 2016-08-17 尤比奎蒂网络公司 A method and apparatus for controlling the sensor means
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
CN103659806B (en) * 2012-09-06 2016-05-25 沈阳新松机器人自动化股份有限公司 An industrial robot zero calibration method
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
DE102012109481A1 (en) 2012-10-05 2014-04-10 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9057610B2 (en) * 2012-11-03 2015-06-16 Trimble A.B. Robotic laser pointer apparatus and methods
EP2735843A1 (en) * 2012-11-21 2014-05-28 Hexagon Technology Center GmbH Measuring machine and method for automated measurement of an object
EP2929226B1 (en) 2012-12-10 2018-05-02 UTC Fire & Security Corporation Alignment swivel and method
DE102013200210B3 (en) * 2013-01-09 2014-06-12 Carl Zeiss Industrielle Messtechnik Gmbh Holding element for holding rotating device, has coupling portion coupled to holding element in position and/or orientated to base such that element holds rotating device and sensor arrangement for coupling portion on base in position
DE102013001457A1 (en) * 2013-01-28 2014-07-31 Blum-Novotest Gmbh In a workpiece processing machine to be recorded temperature-compensated probe and method for temperature compensation of a probe
US20150377606A1 (en) * 2013-02-25 2015-12-31 Nikon Metrology N.V. Projection system
US9250214B2 (en) 2013-03-12 2016-02-02 Hexagon Metrology, Inc. CMM with flaw detection system
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9228816B2 (en) * 2013-03-15 2016-01-05 Faro Technologies, Inc. Method of determining a common coordinate system for an articulated arm coordinate measurement machine and a scanner
JP6285146B2 (en) * 2013-10-29 2018-02-28 株式会社ミツトヨ Arm-type CMM and tilt correction method for base supporting arm-type CMM
JP6226716B2 (en) * 2013-11-22 2017-11-08 株式会社ミツトヨ Arm-type coordinate measuring machine and deflection correction method for arm-type coordinate measuring machine
JP6420537B2 (en) * 2013-12-10 2018-11-07 株式会社ミツトヨ Articulated 3D measuring device
US9594250B2 (en) 2013-12-18 2017-03-14 Hexagon Metrology, Inc. Ultra-portable coordinate measurement machine
US9163921B2 (en) 2013-12-18 2015-10-20 Hexagon Metrology, Inc. Ultra-portable articulated arm coordinate measurement machine
US9700978B2 (en) * 2014-01-27 2017-07-11 The Boeing Company System and method for processing a workpiece
JP2015141140A (en) 2014-01-29 2015-08-03 株式会社ミツトヨ Remotely-operable measuring instrument and measuring system
JP2015141139A (en) 2014-01-29 2015-08-03 株式会社ミツトヨ Manual measurement device
EP2916099A1 (en) 2014-03-07 2015-09-09 Hexagon Technology Center GmbH Articulated arm coordinate measuring machine
USD727905S1 (en) 2014-04-17 2015-04-28 Faro Technologies, Inc. Laser scanning device
US9921046B2 (en) 2014-05-14 2018-03-20 Faro Technologies, Inc. Metrology device and method of servicing
US9829305B2 (en) 2014-05-14 2017-11-28 Faro Technologies, Inc. Metrology device and method of changing operating system
US9903701B2 (en) 2014-05-14 2018-02-27 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a rotary switch
US9739591B2 (en) 2014-05-14 2017-08-22 Faro Technologies, Inc. Metrology device and method of initiating communication
US9803969B2 (en) 2014-05-14 2017-10-31 Faro Technologies, Inc. Metrology device and method of communicating with portable devices
US9746308B2 (en) 2014-05-14 2017-08-29 Faro Technologies, Inc. Metrology device and method of performing an inspection
US9759540B2 (en) 2014-06-11 2017-09-12 Hexagon Metrology, Inc. Articulating CMM probe
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
WO2016044658A1 (en) 2014-09-19 2016-03-24 Hexagon Metrology, Inc. Multi-mode portable coordinate measuring machine
WO2016057421A1 (en) 2014-10-06 2016-04-14 Ecoserv Technologies, Llc Apparatuses, systems, and methods for cleaning
US9651361B2 (en) * 2014-10-08 2017-05-16 Faro Technologies, Inc. Coordinate measurement machine with redundant energy sources
EP3021074A1 (en) 2014-11-13 2016-05-18 Hexagon Technology Center GmbH Motionless measurement system control
US20160187876A1 (en) 2014-12-05 2016-06-30 W2Bi, Inc. Smart box for automatic feature testing of smart phones and other devices
US9683895B2 (en) * 2014-12-29 2017-06-20 Bosch Automotive Service Solutions Inc. Non-contact infrared temperature sensor with wireless functionality
JP6548923B2 (en) * 2015-03-12 2019-07-24 株式会社ミツトヨ Command execution system and position measurement device
JP2016205974A (en) * 2015-04-21 2016-12-08 株式会社ミツトヨ Measuring system and user interface device
US9964402B2 (en) * 2015-04-24 2018-05-08 Faro Technologies, Inc. Two-camera triangulation scanner with detachable coupling mechanism
WO2016183339A1 (en) * 2015-05-12 2016-11-17 Hexagon Metrology, Inc. Apparatus and method of controlling a coordinate measuring machine using environmental information or coordinate measuring machine information
WO2016196292A1 (en) 2015-05-29 2016-12-08 Hexagon Metrology, Inc. Coordinate measuring machine with object location logic
CN105318852A (en) * 2015-09-29 2016-02-10 爱佩仪中测(成都)精密仪器有限公司 Coordinate measuring system convenient to store
CN105180871A (en) * 2015-09-29 2015-12-23 爱佩仪中测(成都)精密仪器有限公司 Light measurement instrument
CN105180863A (en) * 2015-09-29 2015-12-23 爱佩仪中测(成都)精密仪器有限公司 Geometric size measurement mechanism
DE102015122844A1 (en) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D measuring device with battery pack
US9740200B2 (en) 2015-12-30 2017-08-22 Unmanned Innovation, Inc. Unmanned aerial vehicle inspection system
US9513635B1 (en) 2015-12-30 2016-12-06 Unmanned Innovation, Inc. Unmanned aerial vehicle inspection system
US10083616B2 (en) 2015-12-31 2018-09-25 Unmanned Innovation, Inc. Unmanned aerial vehicle rooftop inspection system
CN105716658A (en) * 2016-03-03 2016-06-29 华能澜沧江水电股份有限公司小湾水电厂 Prototype stress strain testing method and system for gate
US10145671B2 (en) 2016-03-31 2018-12-04 Topcon Positioning Systems, Inc. Three dimensional laser measuring system and method
US20170314997A1 (en) * 2016-05-02 2017-11-02 Kevin Lynn Baum Temperature measuring head unit for a hot stick
US10251079B2 (en) 2016-08-12 2019-04-02 W2Bi, Inc. Cloud-based services for management of cell-based test systems
US10158552B2 (en) 2016-08-12 2018-12-18 W2Bi, Inc. Device profile-driven automation for cell-based test systems
EP3348361A1 (en) * 2017-01-13 2018-07-18 Universal Robots A/S Clamped flange joint
US20180204295A1 (en) * 2017-01-19 2018-07-19 International Business Machines Corporation Disposition manager for resource recovery
USD833894S1 (en) * 2017-01-27 2018-11-20 Faro Technologies, Inc Measurement device
US10267614B2 (en) * 2017-04-13 2019-04-23 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine
CN107339937B (en) * 2017-07-10 2019-03-05 大连理工大学 A kind of mechanism kinematic parameter test device of Multi-sensor Fusion

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1535312A (en) * 1923-09-15 1925-04-28 Hosking Richard Thomas Waterproof covering for cameras
US1918813A (en) * 1932-02-02 1933-07-18 Kinzy Jacob Camera case
US2316573A (en) * 1940-04-01 1943-04-13 W & L E Gurley Instrument case
US2333243A (en) * 1942-12-07 1943-11-02 Morrison Brothers Company Detachable coupling
US2702683A (en) * 1951-08-17 1955-02-22 Harold L Green Magnetic holder for gasoline filling spout caps
US2748926A (en) * 1952-03-17 1956-06-05 Matthew T Leahy Micrometer support
US2924495A (en) * 1958-09-15 1960-02-09 Merz Engineering Inc Instrument case
US2966257A (en) * 1959-11-03 1960-12-27 Gen Radio Co Instrument carrying case
US2983367A (en) * 1958-06-25 1961-05-09 Lee W Parmater Plural instrument carrying case
US3066790A (en) * 1961-11-13 1962-12-04 American Optical Corp Instrument carrying case
US3458167A (en) * 1966-12-28 1969-07-29 Fmc Corp Balancing mechanism
US4138045A (en) * 1977-06-15 1979-02-06 Engineered Products, Inc. Camera case
US4178515A (en) * 1978-05-12 1979-12-11 Lockheed Electronics Co., Inc. Optical signal communicating apparatus
US4340008A (en) * 1980-09-22 1982-07-20 Mendelson Ralph R Tilt indicator for shipping containers
US4379461A (en) * 1979-01-17 1983-04-12 Nilsson Erling S Thermographic apparatus
US4424899A (en) * 1982-03-08 1984-01-10 Western Electric Co., Inc. Instrument carrying case
US4430796A (en) * 1981-02-09 1984-02-14 Kosaka Laboratory Ltd. Method and apparatus for determining the location of points on a three dimensional thing
US4457625A (en) * 1981-07-13 1984-07-03 Itek Corporation Self calibrating contour measuring system using fringe counting interferometers
US4506448A (en) * 1981-10-27 1985-03-26 British Aerospace Public Limited Company Teaching robots
US4537233A (en) * 1983-06-21 1985-08-27 Continental Emsco Company Spring balance assembly
US4606696A (en) * 1984-06-25 1986-08-19 Slocum Alexander H Mechanism to determine position and orientation in space
US4659280A (en) * 1985-01-22 1987-04-21 Gmf Robotics Corporation Robot with balancing mechanism having a variable counterbalance force
US4663852A (en) * 1985-09-19 1987-05-12 Digital Electronic Automation, Inc Active error compensation in a coordinated measuring machine
US4664588A (en) * 1984-03-09 1987-05-12 Applied Robotics Inc. Apparatus and method for connecting and exchanging remote manipulable elements to a central control source
US4676002A (en) * 1984-06-25 1987-06-30 Slocum Alexander H Mechanisms to determine position and orientation in space
US4714339A (en) * 1986-02-28 1987-12-22 The United States Of America As Represented By The Secretary Of Commerce Three and five axis laser tracking systems
US4751950A (en) * 1987-01-21 1988-06-21 Bock John S Camera and lens protector
US4767257A (en) * 1985-12-23 1988-08-30 Mitsubishi Denki Kabushiki Kaisha Industrial robot
US4790651A (en) * 1987-09-30 1988-12-13 Chesapeake Laser Systems, Inc. Tracking laser interferometer
US4816822A (en) * 1986-02-14 1989-03-28 Ryan Instruments, Inc. Remote environmental monitor system
US4882806A (en) * 1988-07-11 1989-11-28 Davis Thomas J Counterbalancing torsion spring mechanism for devices which move up and down and method of setting the torsion springs thereof
US4954952A (en) * 1988-02-16 1990-09-04 Trw Inc. Robotic arm systems
US4982841A (en) * 1989-01-26 1991-01-08 Goedecke Hans Joachim Protective envelope for a camera
US4996909A (en) * 1986-02-14 1991-03-05 Vache John P Housing for remote environmental monitor system
US5025966A (en) * 1990-05-07 1991-06-25 Potter Stephen B Magnetic tool holder
US5027951A (en) * 1989-06-20 1991-07-02 Johnson Level & Tool Mfg. Co., Inc. Apparatus and method for packaging of articles
US5069524A (en) * 1988-03-07 1991-12-03 Honda Giken Kogyo Kabushiki Kaisha Robot hand optical fiber connector coupling assembly
US5189797A (en) * 1991-03-12 1993-03-02 Romer Apparatus for measuring the shape or position of an object
US5205111A (en) * 1989-06-20 1993-04-27 Johnson Level & Tool Mfg. Co., Inc. Packaging method for a level and case
US5211476A (en) * 1991-03-04 1993-05-18 Allflex Europe S.A. Temperature recording system
US5213240A (en) * 1991-05-06 1993-05-25 H. Dietz & Company, Inc. Magnetic tool holder
US5219423A (en) * 1990-11-30 1993-06-15 Sony Corporation Carrying system
US5239855A (en) * 1991-07-12 1993-08-31 Hewlett-Packard Company Positional calibration of robotic arm joints relative to the gravity vector
US5289264A (en) * 1991-09-26 1994-02-22 Hans Steinbichler Method and apparatus for ascertaining the absolute coordinates of an object
US5319445A (en) * 1992-09-08 1994-06-07 Fitts John M Hidden change distribution grating and use in 3D moire measurement sensors and CMM applications
US5332315A (en) * 1991-04-27 1994-07-26 Gec Avery Limited Apparatus and sensor unit for monitoring changes in a physical quantity with time
US5373346A (en) * 1991-06-13 1994-12-13 Onset Computer Corp. Data gathering computer and analysis display computer interface system and methodology
US5402582A (en) * 1993-02-23 1995-04-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
US5412880A (en) * 1993-02-23 1995-05-09 Faro Technologies Inc. Method of constructing a 3-dimensional map of a measurable quantity using three dimensional coordinate measuring apparatus
US5430384A (en) * 1994-07-22 1995-07-04 Onset Computer Corp. Temperature compensated soil moisture sensor
US5455670A (en) * 1993-05-27 1995-10-03 Associated Universities, Inc. Optical electronic distance measuring apparatus with movable mirror
US5455993A (en) * 1991-07-27 1995-10-10 Index-Werke Gmbh & Co. Kg Hahn & Tessky Tool turret for a machine tool, in particular a lathe
US5510977A (en) * 1994-08-02 1996-04-23 Faro Technologies Inc. Method and apparatus for measuring features of a part or item
US5528505A (en) * 1993-09-20 1996-06-18 Romer Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method
US5535524A (en) * 1995-01-27 1996-07-16 Brown & Sharpe Manufacturing Company Vibration damper for coordinate measuring machine
US5611147A (en) * 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
US5623416A (en) * 1995-01-06 1997-04-22 Onset Computer Corporation Contact closure data logger
US5682508A (en) * 1995-03-23 1997-10-28 Onset Computer Corporation UART protocol that provides predictable delay for communication between computers of disparate ability
WO1998008050A1 (en) * 1996-08-23 1998-02-26 Nino Camurri Coordinate measuring apparatus
US5724264A (en) * 1993-07-16 1998-03-03 Immersion Human Interface Corp. Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
US5752112A (en) * 1996-11-06 1998-05-12 George Paddock, Inc. Mounting system for body mounted camera equipment
US5754449A (en) * 1995-04-25 1998-05-19 Instrumented Sensor Technology, Inc. Method and apparatus for recording time history data of physical variables
US5768792A (en) * 1996-02-09 1998-06-23 Faro Technologies Inc. Method and apparatus for measuring and tube fitting
US5829148A (en) * 1996-04-23 1998-11-03 Eaton; Homer L. Spatial measuring device
US5832416A (en) * 1995-09-01 1998-11-03 Brown & Sharpe Manufacturing Company Calibration system for coordinate measuring machine
US5887122A (en) * 1994-12-14 1999-03-23 Fanuc Ltd. Tracking control method for robot with weaving action
US5926782A (en) * 1996-11-12 1999-07-20 Faro Technologies Inc Convertible three dimensional coordinate measuring machine
US5956857A (en) * 1997-05-19 1999-09-28 Faro Technologies, Inc. Mounting device for a coordinate measuring machine
US5973788A (en) * 1995-10-12 1999-10-26 Metronor Asa System for point-by-point measuring of spatial coordinates
US5978748A (en) * 1998-07-07 1999-11-02 Faro Technologies, Inc. Host independent articulated arm
US5983936A (en) * 1997-06-12 1999-11-16 The Dover Corporation Torsion spring balance assembly and adjustment method
US5996790A (en) * 1998-06-26 1999-12-07 Asahi Research Corporation Watertight equipment cover
US5997779A (en) * 1996-12-18 1999-12-07 Aki Dryer Manufacturer, Inc. Temperature monitor for gypsum board manufacturing
US6050615A (en) * 1997-05-31 2000-04-18 Weinhold; Karl Pipe coupling having clamp halves and quick-action closure
USD423534S (en) * 1999-02-19 2000-04-25 Faro Technologies, Inc. Articulated arm
US6060889A (en) * 1998-02-11 2000-05-09 Onset Computer Corporation Sensing water and moisture using a delay line
US6067116A (en) * 1996-09-27 2000-05-23 Ricoh Company, Ltd. Digital camera
US6112423A (en) * 1999-01-15 2000-09-05 Brown & Sharpe Manufacturing Co. Apparatus and method for calibrating a probe assembly of a measuring machine
US6131299A (en) * 1998-07-01 2000-10-17 Faro Technologies, Inc. Display device for a coordinate measurement machine
US6151789A (en) * 1998-07-01 2000-11-28 Faro Technologies Inc. Adjustable handgrip for a coordinate measurement machine
US6163294A (en) * 1998-09-10 2000-12-19 Trimble Navigation Limited Time-tagging electronic distance measurement instrument measurements to serve as legal evidence of calibration
US6166504A (en) * 1998-12-22 2000-12-26 Denso Corporation Control apparatus for robot having an arm moving within allowable working area
US6166811A (en) * 1999-08-12 2000-12-26 Perceptron, Inc. Robot-based gauging system for determining three-dimensional measurement data
US6219928B1 (en) * 1998-07-08 2001-04-24 Faro Technologies Inc. Serial network for coordinate measurement apparatus
USD441632S1 (en) * 1998-07-20 2001-05-08 Faro Technologies Inc. Adjustable handgrip
US6240651B1 (en) * 1998-06-17 2001-06-05 Mycrona Gmbh Coordinate measuring machine having a non-sensing probe
US20010004269A1 (en) * 1999-12-14 2001-06-21 Junichiro Shibata Portable terminal
US6253458B1 (en) * 1998-12-08 2001-07-03 Faro Technologies, Inc. Adjustable counterbalance mechanism for a coordinate measurement machine
US6282195B1 (en) * 1997-01-09 2001-08-28 Silicon Graphics, Inc. Packetized data transmissions in a switched router architecture
US6339410B1 (en) * 1997-07-22 2002-01-15 Tellassist, Inc. Apparatus and method for language translation between patient and caregiver, and for communication with speech deficient patients
US20020032541A1 (en) * 2000-02-01 2002-03-14 Simon Raab Method, system and storage medium for providing an executable program to a coordinate measurement system
US6366831B1 (en) * 1993-02-23 2002-04-02 Faro Technologies Inc. Coordinate measurement machine with articulated arm and software interface
US6408252B1 (en) * 1997-08-01 2002-06-18 Dynalog, Inc. Calibration system and displacement measurement device
JP2005030937A (en) * 2003-07-07 2005-02-03 Hitachi Metals Ltd Portable electronic apparatus
US7372581B2 (en) * 2005-04-11 2008-05-13 Faro Technologies, Inc. Three-dimensional coordinate measuring device
US7721396B2 (en) * 2007-01-09 2010-05-25 Stable Solutions Llc Coupling apparatus with accessory attachment

Family Cites Families (623)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1538758A (en) 1924-09-17 1925-05-19 Taylor Claude Hunter Piston ring
US2452033A (en) 1945-04-16 1948-10-26 Warner Electric Brake Mfg Co Tractor trailer brake control
GB894320A (en) 1959-03-13 1962-04-18 Famatex G M B H Fabrik Fur Tex Tentering device
GB1112941A (en) 1965-01-02 1968-05-08 Smiths Industries Ltd Improvements in or relating to scanning apparatus
AT307762B (en) 1971-04-28 1973-06-12 Eumig Method and apparatus for measuring distance
US3899145A (en) 1973-07-20 1975-08-12 Us Navy Laser transmitting and receiving lens optics
US3945729A (en) 1974-12-30 1976-03-23 Stanford Research Institute Combined ranging and color sensor
US4667231A (en) 1979-09-07 1987-05-19 Diffracto Ltd. Electro-optical part inspection in the presence of contamination and surface finish variation
JPS6348856Y2 (en) * 1980-06-11 1988-12-15
CH652330A5 (en) 1981-01-13 1985-11-15 Agie Ag Ind Elektronik and means for automatically Litigation at the electric discharge machining process.
US4561776A (en) * 1981-03-25 1985-12-31 Diffracto Ltd. Electro-optical sensors for tool and robotic inspection
DD201245A1 (en) 1981-10-16 1983-07-13 Rolf Jurenz Optical arrangement for automatic sharpening
JPS58171291A (en) * 1982-03-31 1983-10-07 Mitsubishi Electric Corp Detector for angle of inclination of robot
JPS59133890U (en) * 1983-02-28 1984-09-07
US4733961A (en) 1983-03-07 1988-03-29 Texas Instruments Incorporated Amplifier for integrated laser/FLIR rangefinder
DE3340317A1 (en) 1983-11-08 1984-08-16 Walter Hesse Test set for the simultaneous orientation and height determination of points in cavities where access is difficult
JPS61157095A (en) * 1984-12-28 1986-07-16 Toshiba Corp Phase synchronizing circuit
JPS61179683A (en) * 1985-02-05 1986-08-12 Matsushita Electric Ind Co Ltd Portable electronic device
DE3687127D1 (en) 1985-02-28 1992-12-17 Symbol Technologies Inc Portable scanning with a laser diode.
CA1268654A (en) 1985-10-24 1990-05-08 Arkady Kutman Camera support and housing
DE3623343C1 (en) 1986-07-11 1989-12-21 Bodenseewerk Geraetetech Optical viewfinder with rosette scan
US5969321A (en) 1986-08-08 1999-10-19 Norand Corporation Hand-held optically readable information set reader with operation over a range of distances
US5576529A (en) 1986-08-08 1996-11-19 Norand Technology Corporation Hand-held optically readable information set reader focus with operation over a range of distances
JPH0464562B2 (en) * 1986-11-28 1992-10-15 Hitachi Construction Machinery
US4901218A (en) * 1987-08-12 1990-02-13 Renishaw Controls Limited Communications adaptor for automated factory system
US4870274A (en) 1987-12-07 1989-09-26 Micro Video, Inc. Laser scanner with rotating mirror and housing which is transparent to the scanning radiation
US6889903B1 (en) 1988-08-31 2005-05-10 Intermec Ip Corp. Method and apparatus for optically reading information
US5289855A (en) 1988-10-14 1994-03-01 Elkay Manufacturing Co. Liquid container support and probe-type hygienic liquid dispensing system
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
KR910005508B1 (en) * 1989-05-23 1991-07-31 박준호 Measuring and analysing method of numerical controller
US4984881A (en) 1989-12-19 1991-01-15 Ebara Corporation Rotation supporting device of a polygon mirror
JP2781039B2 (en) * 1989-12-25 1998-07-30 松下電工株式会社 Wireless Switch
US5068971A (en) * 1990-03-23 1991-12-03 Simco Industries, Inc. Adjustable portable coordinate measuring machine
CA2038818A1 (en) 1990-03-30 1991-10-01 Akio Nagamune Distance measuring method and apparatus therefor
US5390104A (en) * 1990-04-02 1995-02-14 Fulton; Francis M. Adaptive control man-augmentation system for a suspended work station
US5675326A (en) 1990-04-11 1997-10-07 Auto-Sense, Ltd. Method of determining optimal detection beam locations using reflective feature mapping
US5168532A (en) 1990-07-02 1992-12-01 Varian Associates, Inc. Method for improving the dynamic range of an imaging system
IL95205D0 (en) 1990-07-27 1991-06-10 Optrotech Ltd Method and apparatus for optical inspection of substrates
SE466726B (en) 1990-08-20 1992-03-23 Kent Lennartsson Device in distributed computer system
DE4027990C1 (en) 1990-09-04 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier
JPH04115108A (en) 1990-09-05 1992-04-16 Matsushita Electric Ind Co Ltd Three-dimensional scanner
US5124524A (en) 1990-11-15 1992-06-23 Laser Design Inc. Laser alignment and control system
JPH04225188A (en) 1990-12-27 1992-08-14 Nec Corp Object classification device
JP2969009B2 (en) 1991-02-22 1999-11-02 株式会社リコー Axial Mira - deflector
CA2065482A1 (en) 1991-04-11 1992-10-12 Akira Inoue Method and apparatus for measuring a coating state
JP3189843B2 (en) 1991-04-15 2001-07-16 ソニー株式会社 Case for the camera
US5218427A (en) 1991-09-06 1993-06-08 Koch Stephen K Ranging system for three-dimensional object digitizing
JPH0572477A (en) 1991-09-13 1993-03-26 Toshiba Corp Afocal optical device
US5371347A (en) 1991-10-15 1994-12-06 Gap Technologies, Incorporated Electro-optical scanning system with gyrating scan head
KR930007660A (en) 1991-10-29 1993-05-20 오오가 노리오 Image rendering apparatus
GB9126269D0 (en) 1991-12-11 1992-02-12 Renishaw Metrology Ltd Temperature sensor for coordinate positioning apparatus
DE4211348C2 (en) * 1992-04-04 1994-06-23 Chiron Werke Gmbh Energy line guide on a machine tool with a rotary table
DE4222642A1 (en) 1992-07-10 1994-01-13 Bodenseewerk Geraetetech Pictures barrel Sensor Unit
US5313261A (en) 1992-07-13 1994-05-17 Applied Remote Technology Inc. Method and apparatus for faithful gray scale representation of under water laser images
US5329347A (en) 1992-09-16 1994-07-12 Varo Inc. Multifunction coaxial objective system for a rangefinder
DE4327250C5 (en) 1992-09-25 2008-11-20 Carl Zeiss Industrielle Messtechnik Gmbh Method for measuring coordinates on workpieces
US5402365A (en) 1992-10-28 1995-03-28 Motorola, Inc. Differential odometer dynamic calibration method and apparatus therefor
DE4340756C5 (en) 1992-12-08 2006-08-10 Sick Ag Laser range finding device
DE4303804C2 (en) 1993-02-10 1996-06-27 Leuze Electronic Gmbh & Co Means for measuring distance
JPH06313710A (en) * 1993-04-28 1994-11-08 Hitachi Plant Eng & Constr Co Ltd Arm extension apparatus for three-dimensional space coordinate measuring machine
JP3256332B2 (en) 1993-05-24 2002-02-12 株式会社光電製作所 Distance measuring method as well as the distance measuring device
JP2859514B2 (en) 1993-05-31 1999-02-17 株式会社カイジョー Doppler shift correction pulse-type fishing nets depth gauge
US6697748B1 (en) 1995-08-07 2004-02-24 Immersion Corporation Digitizing system and rotary table for determining 3-D geometry of an object
US6553130B1 (en) 1993-08-11 2003-04-22 Jerome H. Lemelson Motor vehicle warning and control system and method
JPH07128051A (en) 1993-11-02 1995-05-19 Sekisui Chem Co Ltd Unevenness survey system
US5668631A (en) 1993-12-20 1997-09-16 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
JPH07209080A (en) 1993-12-28 1995-08-11 Amberg Measuring Technik Ltd Optical scanning apparatus
JPH07210586A (en) 1994-01-13 1995-08-11 Nikon Corp Optimizing device for probe path for three-dimensional coordinate measuring instrument
JPH07218261A (en) 1994-02-03 1995-08-18 Nikon Corp Laser projector
IL108646D0 (en) 1994-02-14 1995-03-15 Israel State Opto-mechanical system
JPH07229963A (en) 1994-02-21 1995-08-29 Oki Electric Ind Co Ltd Method for track detection
DE4410775C2 (en) 1994-03-28 2000-04-06 Daimler Chrysler Ag Control device and method of operation of an operating system for this controller
DE4412044A1 (en) 1994-04-08 1995-10-12 Leuze Electronic Gmbh & Co Opto-electronic system for detecting objects in monitoring region
SE506753C2 (en) 1995-05-02 1998-02-09 Tokimec Inc Device for determining the shape of a road surface
US20020014533A1 (en) 1995-12-18 2002-02-07 Xiaxun Zhu Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps
JP3619545B2 (en) 1994-08-23 2005-02-09 オリンパス株式会社 The camera of the distance measuring apparatus
JPH0876039A (en) 1994-09-08 1996-03-22 Fuji Xerox Co Ltd Multi-beam laser recorder
US5517297A (en) 1994-10-13 1996-05-14 Hughes Aircraft Company Rangefinder with transmitter, receiver, and viewfinder on a single common optical axis
JPH08129145A (en) 1994-11-01 1996-05-21 Nec Eng Ltd Rotary deflection unit
JPH08136849A (en) 1994-11-08 1996-05-31 Konica Corp Optical scanner
US5793993A (en) 1995-01-26 1998-08-11 General Magic, Inc. Method for transmitting bus commands and data over two wires of a serial bus
JP3582918B2 (en) 1995-02-14 2004-10-27 株式会社トプコン Laser surveying instrument
JPH08262361A (en) 1995-03-17 1996-10-11 Ebara Corp Attaching structure for polygon mirror
JPH08262140A (en) 1995-03-20 1996-10-11 Tokyo Gas Co Ltd Laser beam swinging mechanism for laser radar and laser device using it
CN2236119Y (en) 1995-03-22 1996-09-25 付文博 Single-jig measuring machine
US5825666A (en) * 1995-06-07 1998-10-20 Freifeld; Daniel Optical coordinate measuring machines and optical touch probes
DE19521771A1 (en) 1995-06-20 1997-01-02 Jan Michael Mrosik FMCW distance measurement
GB9515311D0 (en) 1995-07-26 1995-09-20 3D Scanners Ltd Stripe scanners and methods of scanning
DE19534535C2 (en) * 1995-09-18 2000-05-31 Leitz Mestechnik Gmbh coordinate measuring machine
US6204961B1 (en) 1995-09-18 2001-03-20 Litton Systems, Inc. Day and night sighting system
DE29515738U1 (en) 1995-10-04 1995-11-30 Vosseler Hans Guenther Measuring device for contactless measurement analysis of bodies or surfaces
WO1997016703A1 (en) 1995-10-30 1997-05-09 Kabushiki Kaisha Topcon Rotary laser system
DE19543763B4 (en) * 1995-11-24 2005-07-21 Leitz Messtechnik Gmbh A method for automatic detection of various sensors in coordinate and devices for carrying out the method
US5734417A (en) 1995-12-05 1998-03-31 Yokogawa Precision Corporation Visual presentation equipment
DE19601875C2 (en) 1996-01-19 1999-08-19 Siemens Ag Method and device for the elimination of interference in the FM-CW radar
US6460004B2 (en) 1996-02-06 2002-10-01 Perceptron, Inc. Method and apparatus for calibrating a non-contact gauging sensor with respect to an external coordinate system
US6134507A (en) 1996-02-06 2000-10-17 Perceptron, Inc. Method and apparatus for calibrating a non-contact gauging sensor with respect to an external coordinate system
DE19607345A1 (en) 1996-02-27 1997-08-28 Sick Ag Laser range finding device
US5936721A (en) 1996-03-18 1999-08-10 Kabushiki Kaisha Topcon Guide beam direction setting apparatus
JP3908297B2 (en) 1996-03-19 2007-04-25 株式会社トプコン Laser surveyor
JP3797704B2 (en) * 1996-04-05 2006-07-19 株式会社ミツトヨ Optical measuring device
US5831719A (en) 1996-04-12 1998-11-03 Holometrics, Inc. Laser scanning system
US5988862A (en) 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
JPH102714A (en) 1996-06-19 1998-01-06 Canon Inc Method and device for measurement
US6057915A (en) 1996-06-21 2000-05-02 Thermotrex Corporation Projectile tracking system
US5918029A (en) 1996-09-27 1999-06-29 Digital Equipment Corporation Bus interface slicing mechanism allowing for a control/data-path slice
KR100268048B1 (en) 1996-10-28 2000-11-01 고바야시 마사키 Underwater laser imaging apparatus
DE19647152A1 (en) 1996-11-14 1998-05-28 Sick Ag Laser range finding device
DE29622033U1 (en) 1996-12-18 1997-02-27 Siemens Ag Control panel with operating elements integrated therein, and a display unit
GB9626825D0 (en) 1996-12-24 1997-02-12 Crampton Stephen J Avatar kiosk
US5906388A (en) * 1997-01-14 1999-05-25 Quiksilver, Inc. Footwear mounting system
JPH10246863A (en) 1997-03-05 1998-09-14 Sankyo Seiki Mfg Co Ltd Rotating polygon mirror type light deflector
AU6871898A (en) 1997-03-28 1998-10-22 Gary P. Thieltges Motion stable camera support system
DE19720049B4 (en) 1997-05-14 2006-01-19 Hexagon Metrology Gmbh Method for controlling a motor coordinate measuring machine and coordinate measuring machine for carrying out the method
US6069700A (en) 1997-07-31 2000-05-30 The Boeing Company Portable laser digitizing system for large parts
US5953687A (en) * 1997-08-18 1999-09-14 Giddings & Lewis, Inc. Method and apparatus for displaying active probe tip status of a coordinate measuring machine
WO1999010706A1 (en) 1997-08-29 1999-03-04 Perceptron, Inc. Digital 3-d light modulated position measurement system
DE19806288A1 (en) 1998-02-16 1999-08-26 Fraunhofer Ges Forschung Laser scanner measuring system
JP3709698B2 (en) 1998-02-16 2005-10-26 三菱電機株式会社 Radar device
CA2320973A1 (en) 1998-03-10 1999-09-16 Andreas Ullrich Method for monitoring objects or an object area
DE19811550C2 (en) 1998-03-18 2002-06-27 Bosch Gmbh Robert Method and circuit arrangement for generating frequency signals
EP0949524A1 (en) 1998-04-07 1999-10-13 Fujifilm Electronic Imaging Limited Rotatable mirror assembly
DE19816270A1 (en) 1998-04-11 1999-10-21 Werth Messtechnik Gmbh Method and arrangement for detecting the geometry of articles by means of a coordinate
EP0952427B1 (en) 1998-04-24 2004-03-03 Inco Limited Automated guided apparatus
DE19820307C2 (en) 1998-05-07 2003-01-02 Mycrona Ges Fuer Innovative Me Non-contact temperature measurement at a Mehrkoordinatenmeß- and testing device
EP1098540A4 (en) * 1998-07-15 2005-10-12 Hitachi Ltd Method of switching busy line in mobile communication network
GB2341203A (en) 1998-09-01 2000-03-08 Faro Tech Inc Flat web coupler for coordinate measurement systems
WO2000014474A1 (en) 1998-09-08 2000-03-16 Brown & Sharpe Manufacturing Company Coordinate measuring machine having a machine tool frame
JP3835016B2 (en) 1998-10-16 2006-10-18 三菱電機株式会社 Laser radar device
DE19850118A1 (en) 1998-10-30 2000-05-11 Siemens Ag Profile measuring system and method for performing
GB9826093D0 (en) 1998-11-28 1999-01-20 Limited Locating arm for a probe on a coordinate positioning machine
JP4088906B2 (en) 1998-12-16 2008-05-21 株式会社トプコン Photo detector of surveying instrument
JP4180718B2 (en) 1999-01-29 2008-11-12 株式会社トプコン Rotating laser device
JP2000249546A (en) 1999-02-26 2000-09-14 Seiko Precision Inc Portable small-sized electronic measure
DE60032136T2 (en) 1999-03-19 2007-10-25 Titech Visionsort As material inspection
JP3443030B2 (en) * 1999-03-31 2003-09-02 オークマ株式会社 measuring device
GB9907644D0 (en) * 1999-04-06 1999-05-26 Renishaw Plc Surface sensing device with optical sensor
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
TW396799U (en) 1999-04-14 2000-07-01 Dunchock Richard Stephen A kind of positioning device for an article
DE50011253D1 (en) 1999-04-19 2006-02-09 Fraunhofer Ges Forschung Image processing for preparing a texture analysis
US6675122B1 (en) 1999-04-19 2004-01-06 Leica Geosystems Ag Indirect position determination with the aid of a tracker
DE19928958A1 (en) 1999-05-22 2000-11-23 Volkswagen Ag Laser scanner with reception unit having spherical lens having recess with optical axis orthogonal to axis of rotation, for use in automobiles
JP2000339468A (en) 1999-05-31 2000-12-08 Minolta Co Ltd Method and device for positioning three-dimensional data
JP2001013001A (en) * 1999-06-29 2001-01-19 A & D Co Ltd Electronic weighing apparatus with built-in weight
EP1067361A1 (en) 1999-07-06 2001-01-10 Datalogic S.P.A. Method and a device for measuring the distance of an object
JP3822389B2 (en) * 1999-07-09 2006-09-20 株式会社ミツトヨ Displacement measuring system
US7800758B1 (en) 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
JP3670900B2 (en) * 1999-08-30 2005-07-13 三菱重工業株式会社 Transmitter automatic calibration method and transmitter automatic calibration device
DE59901809D1 (en) 1999-08-31 2002-07-25 Leica Geosystems Ag Tachymeter telescope
DE19949044B4 (en) 1999-10-11 2004-05-27 Leica Microsystems Wetzlar Gmbh Device for fine focusing of a lens in an optical Sytstem and coordinate measuring device with a device for fine focusing of a lens
JP2001154098A (en) * 1999-11-30 2001-06-08 Mitsutoyo Corp Image probe
US6796048B2 (en) 2001-02-01 2004-09-28 Faro Technologies, Inc. Method, system and storage medium for providing a tool kit for a coordinate measurement system
US6650402B2 (en) 2000-02-10 2003-11-18 Oceanit Laboratories, Inc. Omni-directional cloud height indicator
US6825923B2 (en) 2000-03-10 2004-11-30 Hamar Laser Instruments, Inc. Laser alignment system with plural lasers for impingement on a single target
FR2806657B1 (en) 2000-03-21 2002-08-16 Romain Granger positional tracking system of a three-dimensional machine in a fixed referential
DE20006504U1 (en) 2000-04-08 2000-08-17 Brown & Sharpe Gmbh Probe with replaceable stylus
US6204651B1 (en) 2000-04-18 2001-03-20 Sigmatel, Inc. Method and apparatus for regulating an output voltage of a switch mode converter
US6547397B1 (en) 2000-04-19 2003-04-15 Laser Projection Technologies, Inc. Apparatus and method for projecting a 3D image
DE10026357C2 (en) 2000-05-27 2002-09-12 Martin Argast Optoelectronic device
JP4613337B2 (en) 2000-05-29 2011-01-19 株式会社ニコン Microscope
US6750873B1 (en) 2000-06-27 2004-06-15 International Business Machines Corporation High quality texture reconstruction from multiple scans
AT284528T (en) 2000-07-13 2004-12-15 Werth Messtechnik Gmbh A method for the contactless measurement of geometries of objects
US6734410B2 (en) 2000-08-30 2004-05-11 Pentax Precision Co., Ltd. Surveying instrument having an optical distance meter and an autofocus system, and a surveying instrument having a detachable autofocus system
US6639684B1 (en) 2000-09-13 2003-10-28 Nextengine, Inc. Digitizer using intensity gradient to image features of three-dimensional objects
GB0022443D0 (en) 2000-09-13 2000-11-01 Bae Systems Plc Marking out method and system
TW519485B (en) * 2000-09-20 2003-02-01 Ind Tech Res Inst Infrared 3D scanning system
JP2004509345A (en) 2000-09-20 2004-03-25 ベルス・メステヒニーク・ゲーエムベーハー Apparatus and method for performing optical tactile type measuring structure
US7006084B1 (en) 2000-09-26 2006-02-28 Faro Technologies, Inc. Method and system for computer aided manufacturing measurement analysis
US6519860B1 (en) * 2000-10-19 2003-02-18 Sandia Corporation Position feedback control system
US6668466B1 (en) 2000-10-19 2003-12-30 Sandia Corporation Highly accurate articulated coordinate measuring machine
US7076420B1 (en) 2000-10-26 2006-07-11 Cypress Semiconductor Corp. Emulator chip/board architecture and interface
US7994465B1 (en) 2006-02-06 2011-08-09 Microsoft Corporation Methods and devices for improved charge management for three-dimensional and color sensing
US7200246B2 (en) 2000-11-17 2007-04-03 Honeywell International Inc. Object detection
FR2817339B1 (en) 2000-11-24 2004-05-14 Mensi A three-dimensional recording of a scene emitting laser
JP4595197B2 (en) 2000-12-12 2010-12-08 株式会社デンソー Distance measuring device
US7101300B2 (en) 2001-01-23 2006-09-05 Black & Decker Inc. Multispeed power tool transmission
DE10108774A1 (en) 2001-02-23 2002-09-05 Zeiss Carl Coordinate measuring device for probing a workpiece, the probe head for a coordinate measuring machine and method for operating a coordinate measuring machine
US20020128790A1 (en) 2001-03-09 2002-09-12 Donald Woodmansee System and method of automated part evaluation including inspection, disposition recommendation and refurbishment process determination
DE10137241A1 (en) 2001-03-15 2002-09-19 Tecmath Ag Arrangement, for detecting and measuring objects, optically projects markers onto object, records partial views of object in global coordinate system using information re-detected markers
DE10112833C1 (en) 2001-03-16 2003-03-13 Hilti Ag Method and apparatus for electro-optical distance measurement
US6847436B2 (en) 2001-04-10 2005-01-25 Faro Laser Trackers, Llc Chopper-stabilized absolute distance meter
JP4530571B2 (en) 2001-04-16 2010-08-25 Hoya株式会社 3D image detection device
US6649208B2 (en) 2001-04-17 2003-11-18 Wayne E. Rodgers Apparatus and method for thin film deposition onto substrates
US6418774B1 (en) 2001-04-17 2002-07-16 Abb Ab Device and a method for calibration of an industrial robot
US6598306B2 (en) 2001-04-17 2003-07-29 Homer L. Eaton Self-loading spatial reference point array
US6859747B2 (en) * 2001-04-26 2005-02-22 Siemens Energy & Automation, Inc. Method and apparatus for self-calibrating a motion control system
JP2004530139A (en) * 2001-06-12 2004-09-30 ヘキサゴン メトロロジー,アクティエボラーグ A communication method between the control unit and the precise measurement assembly, the common control bus connecting them each other
US6626339B2 (en) 2001-06-27 2003-09-30 All Rite Products Holder mounted bag
DE10131610C1 (en) 2001-06-29 2003-02-20 Siemens Dematic Ag Method of calibrating the optical system of a laser machine for processing electrical circuit substrates
CN2508896Y (en) 2001-07-08 2002-09-04 冯继武 Digital display multifunction moving three coordinate measuring machine
JP2003050128A (en) 2001-08-07 2003-02-21 Sokkia Co Ltd Instrument for measuring distance and angle
DE10140174B4 (en) * 2001-08-22 2005-11-10 Leica Microsystems Semiconductor Gmbh Coordinate measuring table and coordinate measuring instrument
US7190465B2 (en) 2001-08-30 2007-03-13 Z + F Zoller & Froehlich Gmbh Laser measurement system
DE10143060A1 (en) 2001-09-03 2003-03-20 Sick Ag Vehicle laser scanner transmits wide beam front towards moving deflector, causing reflective front to adopt various orientations in scanned space
US7372558B2 (en) 2001-10-11 2008-05-13 Laser Projection Technologies, Inc. Method and system for visualizing surface errors
JP3577028B2 (en) 2001-11-07 2004-10-13 川崎重工業株式会社 Coordinated control system of the robot
AT412028B (en) 2001-11-09 2004-08-26 Riegl Laser Measurement Sys Means for recording an object space
DE10155488A1 (en) 2001-11-13 2003-05-28 Wilhelm Caspary Method for recording the condition of a road surface uses a vehicle heading along a road in a preset direction with a scanner emitting pulsed oscillating laser beams at predefined angular stages
AU2002357737A1 (en) * 2001-11-16 2003-06-10 Faro Technologies, Inc. Method and system for assisting a user taking measurements using a coordinate measurement machine
JP2003156562A (en) 2001-11-22 2003-05-30 Optec:Kk Electronic distance meter
JP2003156330A (en) 2001-11-22 2003-05-30 Nec Corp Airborne topography-measuring apparatus and method
US6753876B2 (en) 2001-12-21 2004-06-22 General Electric Company Method for high dynamic range image construction based on multiple images with multiple illumination intensities
JP3613708B2 (en) 2001-12-27 2005-01-26 川崎重工業株式会社 Sectional shape measuring device
JP2003216255A (en) * 2002-01-18 2003-07-31 Matsushita Electric Ind Co Ltd Method for controlling converter in solar power generation device
US6759979B2 (en) 2002-01-22 2004-07-06 E-Businesscontrols Corp. GPS-enhanced system and method for automatically capturing and co-registering virtual models of a site
US7336602B2 (en) 2002-01-29 2008-02-26 Intel Corporation Apparatus and method for wireless/wired communications interface
USD472824S1 (en) 2002-02-14 2003-04-08 Faro Technologies, Inc. Portable coordinate measurement machine
US6952882B2 (en) * 2002-02-14 2005-10-11 Faro Technologies, Inc. Portable coordinate measurement machine
US7246030B2 (en) 2002-02-14 2007-07-17 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
US7073271B2 (en) * 2002-02-14 2006-07-11 Faro Technologies Inc. Portable coordinate measurement machine
US6973734B2 (en) 2002-02-14 2005-12-13 Faro Technologies, Inc. Method for providing sensory feedback to the operator of a portable measurement machine
WO2003069267A1 (en) * 2002-02-14 2003-08-21 Faro Technologies, Inc. Portable coordinate measurement machine with articulated arm
USRE42082E1 (en) 2002-02-14 2011-02-01 Faro Technologies, Inc. Method and apparatus for improving measurement accuracy of a portable coordinate measurement machine
US6957496B2 (en) 2002-02-14 2005-10-25 Faro Technologies, Inc. Method for improving measurement accuracy of a portable coordinate measurement machine
US7519493B2 (en) 2002-02-14 2009-04-14 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
US7881896B2 (en) * 2002-02-14 2011-02-01 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
US7296979B2 (en) 2002-02-26 2007-11-20 Faro Technologies Inc. Stable vacuum mounting plate adapter
AT411299B (en) 2002-03-04 2003-11-25 Riegl Laser Measurement Sys A method for recording an object space
US7120092B2 (en) 2002-03-07 2006-10-10 Koninklijke Philips Electronics N. V. System and method for performing clock synchronization of nodes connected via a wireless local area network
AU2003218293A1 (en) 2002-03-19 2003-10-08 Faro Technologies, Inc. Tripod and method
JP4004316B2 (en) 2002-03-20 2007-11-07 株式会社トプコン Surveying device and method for acquiring image data using surveying device
WO2003081485A1 (en) * 2002-03-20 2003-10-02 Faro Technologies, Inc. Coordinate measurement system and method
JP2003308205A (en) * 2002-04-12 2003-10-31 Aplix Corp Method for temporarily halting program
EP1361414B1 (en) 2002-05-08 2011-01-26 3D Scanners Ltd Method for the calibration and qualification simultaneously of a non-contact probe
GB0211473D0 (en) 2002-05-18 2002-06-26 Aea Technology Plc Railway surveying
JP2004037317A (en) 2002-07-04 2004-02-05 Murata Mfg Co Ltd Three-dimensional shape measuring method and three-dimensional shape measuring device
DE10232028C5 (en) 2002-07-16 2011-07-07 Leuze electronic GmbH + Co. KG, 73277 Optical sensor
JP2004109106A (en) 2002-07-22 2004-04-08 Fujitsu Ltd Method and apparatus for inspecting surface defect
JP4121803B2 (en) 2002-08-08 2008-07-23 株式会社トプコン Lightwave distance measuring device
US7230689B2 (en) 2002-08-26 2007-06-12 Lau Kam C Multi-dimensional measuring system
JP2004093504A (en) 2002-09-03 2004-03-25 Topcon Corp Surveying device
DE10244643A1 (en) 2002-09-25 2004-04-08 Hella Kg Hueck & Co. Optoelectronic position monitoring system for road vehicle has two pulsed lasers, sensor and mechanical scanner with rotating mirror at 45 degrees to shaft with calibration disk adjacent to reader
CA2500005C (en) 2002-09-26 2011-12-06 Barrett Technology, Inc. Intelligent, self-contained robotic hand
US6895347B2 (en) 2002-10-15 2005-05-17 Remote Data Systems, Inc. Computerized methods for data loggers
JP4228132B2 (en) 2002-10-18 2009-02-25 株式会社トプコン Position measuring device
US7069124B1 (en) 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
US7024032B2 (en) 2002-10-31 2006-04-04 Perceptron, Inc. Method for assessing fit and alignment of a manufactured part
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
JP2006521536A (en) 2002-11-26 2006-09-21 ジェームス エフ. マンロ Precision of the distance measuring apparatus and method
DE10257856A1 (en) 2002-12-11 2004-07-08 Leitz Messtechnik Gmbh A method for vibration damping of a coordinate measuring machine and coordinate measuring machine
SE525290C2 (en) 2002-12-20 2005-01-25 Trimble Ab A surveying system for measuring / release and method of using same
DE10261386A1 (en) 2002-12-30 2004-07-08 Robert Bosch Gmbh Apparatus for a line termination of two-wire lines
SE526913C2 (en) 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Process in the form of intelligent functions for vehicles and automatic loaders existing terrain mapping and material volumes, obstacle detection and control of the vehicle and working
US20040139265A1 (en) 2003-01-10 2004-07-15 Onset Corporation Interfacing a battery-powered device to a computer using a bus interface
US6826664B2 (en) 2003-01-10 2004-11-30 Onset Computer Corporation Interleaving synchronous data and asynchronous data in a single data storage file
JP2004245832A (en) 2003-01-22 2004-09-02 Pentax Corp Multiple beam scanning color inspection device
US7145926B2 (en) 2003-01-24 2006-12-05 Peter Vitruk RF excited gas laser
DE10304188A1 (en) 2003-01-29 2004-08-19 Iqsun Gmbh Three-dimensional scanner has rotor consisting at least partly of transparent material and multiple parts and inclined rotatable mirror in form of mirroring on surface of rotor part
US7337344B2 (en) 2003-01-31 2008-02-26 Point Grey Research Inc. Methods and apparatus for synchronizing devices on different serial data buses
DE10305010B4 (en) 2003-02-07 2012-06-28 Robert Bosch Gmbh Apparatus and method for image formation
USD491210S1 (en) * 2003-02-13 2004-06-08 Faro Technologies, Inc. Probe for a portable coordinate measurement machine
ITTO20030139A1 (en) 2003-02-27 2004-08-28 Comau Spa industrial robot
JP2004257927A (en) 2003-02-27 2004-09-16 Pulstec Industrial Co Ltd Three-dimensional profile measuring system and method for measuring the same
JP4707306B2 (en) 2003-02-28 2011-06-22 株式会社小坂研究所 Articulated coordinate measuring device
DE102004010083B4 (en) 2003-03-22 2006-11-23 Hexagon Metrology Gmbh Probe of the measuring type for a coordinate measuring machine
US7106421B2 (en) 2003-04-04 2006-09-12 Omron Corporation Method of adjusting axial direction of monitoring apparatus
US7003892B2 (en) * 2003-04-15 2006-02-28 Hexagon Metrology Ab Spatial coordinate-based method for identifying work pieces
WO2004096502A1 (en) 2003-04-28 2004-11-11 Stephen James Crampton Cmm arm with exoskeleton
GB0309662D0 (en) * 2003-04-28 2003-06-04 Crampton Stephen Robot CMM arm
US20040221790A1 (en) 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
JP4315327B2 (en) 2003-05-09 2009-08-19 極東産機株式会社 Laser distance measuring device and laser distance meter calibration method
JP4284644B2 (en) 2003-05-23 2009-06-24 財団法人生産技術研究奨励会 3D model construction system and 3D model construction program
US8123350B2 (en) 2003-06-03 2012-02-28 Hexagon Metrology Ab Computerized apparatus and method for applying graphics to surfaces
US9339266B2 (en) 2003-06-09 2016-05-17 St. Joseph Health System Method and apparatus for sharps protection
DE10326848B4 (en) 2003-06-14 2005-06-23 Leuze Lumiflex Gmbh + Co. Kg optical sensor
US7460865B2 (en) * 2003-06-18 2008-12-02 Fisher-Rosemount Systems, Inc. Self-configuring communication networks for use with process control systems
JP3875665B2 (en) 2003-07-31 2007-01-31 北陽電機株式会社 Scanning range sensor
US6764185B1 (en) 2003-08-07 2004-07-20 Mitsubishi Electric Research Laboratories, Inc. Projector as an input and output device
JP2005069700A (en) 2003-08-25 2005-03-17 East Japan Railway Co Three-dimensional data acquisition device
JP2005077379A (en) 2003-09-03 2005-03-24 Denso Corp Radar device
WO2005027039A2 (en) 2003-09-08 2005-03-24 Laser Projection Technologies, Inc. 3d projection with image recording
US7463368B2 (en) 2003-09-10 2008-12-09 Metris Canada Inc Laser projection system, intelligent data correction system and method
CA2536232A1 (en) 2003-09-10 2005-03-17 Virtek Laser Systems, Inc. Laser projection systems and methods
DE10348019A1 (en) 2003-10-15 2005-05-25 Henkel Kgaa A method for computer-assisted simulation of a machine arrangement, simulation apparatus, computer-readable storage medium and computer program element
US8417370B2 (en) * 2003-10-17 2013-04-09 Hexagon Metrology Ab Apparatus and method for dimensional metrology
FR2861843B1 (en) 2003-10-29 2006-07-07 Romain Granger Connecting device associated with a three dimensional measuring apparatus arm with articulated arms
DE10350974B4 (en) 2003-10-30 2014-07-17 Hottinger Baldwin Messtechnik Gmbh Transducer element, device for detecting loads on fiber composite components and method of manufacturing the device
US7307701B2 (en) 2003-10-30 2007-12-11 Raytheon Company Method and apparatus for detecting a moving projectile
AT413453B (en) 2003-11-21 2006-03-15 Riegl Laser Measurement Sys Device for recording an object room
JP4344224B2 (en) 2003-11-21 2009-10-14 浜松ホトニクス株式会社 Optical mask and MOPA laser device
CN2665668Y (en) 2003-11-26 2004-12-22 万丙林 Utility type three-coordinates measuring machine
JP2005174887A (en) 2003-12-05 2005-06-30 Tse:Kk Sensor switch
DE10359415A1 (en) 2003-12-16 2005-07-14 Trimble Jena Gmbh A method for calibrating a measurement device
GB0329312D0 (en) 2003-12-18 2004-01-21 Univ Durham Mapping perceived depth to regions of interest in stereoscopic images
DE10361870B4 (en) 2003-12-29 2006-05-04 Faro Technologies Inc., Lake Mary Laser scanner and method for optically scanning and measuring an environment of the laser scanner
DE20320216U1 (en) 2003-12-29 2004-03-18 Iqsun Gmbh laser scanner
US7152456B2 (en) 2004-01-14 2006-12-26 Romer Incorporated Automated robotic measuring system
US7693325B2 (en) 2004-01-14 2010-04-06 Hexagon Metrology, Inc. Transprojection of geometry data
US6893133B1 (en) 2004-01-15 2005-05-17 Yin S. Tang Single panel color image projection system
JP2005215917A (en) 2004-01-29 2005-08-11 Hitachi Plant Eng & Constr Co Ltd Working drawing creation support method and replacement model creation method
US7630807B2 (en) 2004-07-15 2009-12-08 Hitachi, Ltd. Vehicle control system
FI123306B (en) 2004-01-30 2013-02-15 Wisematic Oy Robot tool system, and its control method, computer program and software product
JP3908226B2 (en) 2004-02-04 2007-04-25 北陽電機株式会社 Scanning range sensor
WO2005075875A1 (en) 2004-02-07 2005-08-18 Chumdan Enpla Co., Ltd. Fluid coupling device
US7140213B2 (en) 2004-02-21 2006-11-28 Strattec Security Corporation Steering column lock apparatus and method
AT504018T (en) 2004-02-24 2011-04-15 Faro Tech Inc Through a window covered retroreflector
US7180072B2 (en) 2004-03-01 2007-02-20 Quantapoint, Inc. Method and apparatus for creating a registration network of a scene
JP2005257510A (en) 2004-03-12 2005-09-22 Alpine Electronics Inc Another car detection device and method
DE102004015111A1 (en) 2004-03-27 2005-10-20 Fraunhofer Ges Forschung Determining position, orientation of navigating system, e.g. robot, involves determining parameters of translation, rotation transformations of distance measurement curve to determine characteristic associations between transformed curves
JP4552485B2 (en) * 2004-03-31 2010-09-29 ブラザー工業株式会社 Image input / output device
WO2005096126A1 (en) * 2004-03-31 2005-10-13 Brother Kogyo Kabushiki Kaisha Image i/o device
DE102004015668B3 (en) 2004-03-31 2005-09-08 Hexagon Metrology Gmbh Apparatus for quick temperature measurement of a work piece on coordinate measurement apparatus with a measuring probe head and using a temperature sensor
FR2868349B1 (en) 2004-04-06 2006-06-23 Kreon Technologies Sarl Mixed, optical, and mechanical probe, and method of relocation therefor
SE527421C2 (en) 2004-04-27 2006-02-28 Hexagon Metrology Ab CMM is composed of individually calibrated units
DE102004021892B4 (en) 2004-05-04 2010-02-04 Amatec Robotics Gmbh Robot-guided optical measuring arrangement and method and auxiliary device for measuring this measuring arrangement
EP1596160A1 (en) 2004-05-10 2005-11-16 Hexagon Metrology AB Method of inspecting workpieces on a measuring machine
JP4438053B2 (en) 2004-05-11 2010-03-24 キヤノン株式会社 Radiation imaging apparatus, image processing method, and computer program
US7199872B2 (en) 2004-05-18 2007-04-03 Leica Geosystems Ag Method and apparatus for ground-based surveying in sites having one or more unstable zone(s)
US6901673B1 (en) 2004-05-20 2005-06-07 The Boeing Company Tie-in device for the correlation of coordinate systems
US7508971B2 (en) 2004-05-28 2009-03-24 The Boeing Company Inspection system using coordinate measurement machine and associated method
DE102004028090A1 (en) 2004-06-09 2005-12-29 Robert Bosch Gmbh A method for calibrating a sensor system for vehicle interior monitoring
JP4427389B2 (en) 2004-06-10 2010-03-03 株式会社トプコン Surveying instrument
EP1610091A1 (en) 2004-06-23 2005-12-28 Leica Geosystems AG Scanner system and method for surface acquisition
SE527248C2 (en) 2004-06-28 2006-01-31 Hexagon Metrology Ab Measuring probe for use in coordinate measuring
DE102004032822A1 (en) 2004-07-06 2006-03-23 Micro-Epsilon Messtechnik Gmbh & Co Kg Method for processing measured values
US7697748B2 (en) 2004-07-06 2010-04-13 Dimsdale Engineering, Llc Method and apparatus for high resolution 3D imaging as a function of camera position, camera trajectory and range
US20060017720A1 (en) 2004-07-15 2006-01-26 Li You F System and method for 3D measurement and surface reconstruction
WO2006010395A2 (en) 2004-07-23 2006-02-02 Carl Zeiss Industrielle Messtechnik Gmbh Sensor module for the scanning head of a tactile co-ordinate measuring device
JP2006038683A (en) 2004-07-28 2006-02-09 Sokkia Co Ltd Three-dimensional measuring instrument
JP4376150B2 (en) 2004-08-06 2009-12-02 株式会社デンソー Rotation angle detector
WO2006121457A2 (en) 2004-08-18 2006-11-16 Sarnoff Corporation Method and apparatus for performing three-dimensional computer modeling
US7940875B2 (en) 2004-09-13 2011-05-10 Agilent Technologies, Inc. System and method for coordinating the actions of a plurality of devices via scheduling the actions based on synchronized local clocks
US7561598B2 (en) 2004-09-13 2009-07-14 Agilent Technologies, Inc. Add-on module for synchronizing operations of a plurality of devices
US8930579B2 (en) 2004-09-13 2015-01-06 Keysight Technologies, Inc. System and method for synchronizing operations of a plurality of devices via messages over a communication network
US7360648B1 (en) 2004-09-15 2008-04-22 Tbac Investment Trust Gun protector
US7196509B2 (en) 2004-09-23 2007-03-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Thermopile temperature sensing with color contouring
CN101031817B (en) 2004-09-30 2011-02-09 Faro科技有限公司 Absolute distance meter that measures a moving retroreflector
JP4634770B2 (en) 2004-10-06 2011-02-23 東芝メディカルシステムズ株式会社 X-ray CT apparatus and image reconstruction method
DE102004052075A1 (en) 2004-10-26 2006-04-27 Jungheinrich Ag Node for a bus network, bus network and method for configuring the network
US7983835B2 (en) 2004-11-03 2011-07-19 Lagassey Paul J Modular intelligent transportation system
GB0424729D0 (en) 2004-11-09 2004-12-08 Crampton Stephen Probe end module for articulated arms
US7268893B2 (en) 2004-11-12 2007-09-11 The Boeing Company Optical projection system
DE102005027208B4 (en) 2004-11-16 2011-11-10 Zoller & Fröhlich GmbH Method for controlling a laser scanner
EP1659417A1 (en) 2004-11-19 2006-05-24 Leica Geosystems AG Method for the determination of the orientation of an orientationindicator
US7319936B2 (en) 2004-11-22 2008-01-15 Teradyne, Inc. Instrument with interface for synchronization in automatic test equipment
GB2421383A (en) 2004-12-07 2006-06-21 Instro Prec Ltd Surface profile measurement
DE102004059468B3 (en) 2004-12-10 2006-06-14 Hexagon Metrology Gmbh A method of separating the mechanical connection between a stylus receptacle and a probe and means for severing the mechanical connection between a stylus receptacle and a probe
DE502004002991D1 (en) 2004-12-15 2007-04-05 Hexagon Metrology Gmbh Measuring probe with vibration damping for a coordinate measuring machine
US7701592B2 (en) 2004-12-17 2010-04-20 The Boeing Company Method and apparatus for combining a targetless optical measurement function and optical projection of information
US20060186301A1 (en) 2004-12-27 2006-08-24 Premier Mounts Mount and leveling system
EP1775630A4 (en) 2005-01-05 2009-04-15 Panasonic Corp Case
JP2006203404A (en) 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Device and method for radio communication
DE202005000983U1 (en) 2005-01-20 2005-03-24 Hexagon Metrology Gmbh Coordinate measurement machine has dovetail guide interface with electrical contact rows on circuit board
US7339783B2 (en) 2005-01-21 2008-03-04 Technology Advancement Group, Inc. System for protecting a portable computing device
US7464814B2 (en) 2005-01-28 2008-12-16 Carnevali Jeffrey D Dry box with movable protective cover
JP4468195B2 (en) * 2005-01-31 2010-05-26 富士通株式会社 Identification unit and processing device for processing device
US8085388B2 (en) 2005-02-01 2011-12-27 Laser Projection Technologies, Inc. Laser radar projection with object feature detection and ranging
CA2596284C (en) 2005-02-01 2016-07-26 Laser Projection Technologies, Inc. Laser projection with object feature detection
US7477359B2 (en) 2005-02-11 2009-01-13 Deltasphere, Inc. Method and apparatus for making and displaying measurements based upon multiple 3D rangefinder data sets
JP2006226948A (en) * 2005-02-21 2006-08-31 Tokyo Seimitsu Co Ltd Dimension measuring apparatus
AU2005200937A1 (en) 2005-03-02 2006-09-21 Maptek Pty Ltd Imaging system
JP4529018B2 (en) 2005-03-03 2010-08-25 Nok株式会社 Luminescent guidance sign
JP2006268260A (en) 2005-03-23 2006-10-05 Seiko Epson Corp Data transfer controller and electronic equipment
JP2006266821A (en) 2005-03-23 2006-10-05 Mitsubishi Electric Corp Radar apparatus
JP5016245B2 (en) 2005-03-29 2012-09-05 ライカ・ゲオジステームス・アクチェンゲゼルシャフト Measurement system for determining the six degrees of freedom of an object
US7400384B1 (en) 2005-04-12 2008-07-15 Lockheed Martin Corporation Method and apparatus for varying pixel spatial resolution for ladar systems
FR2884910B1 (en) * 2005-04-20 2007-07-13 Romer Sa Three-dimensional measuring apparatus with articulated arms comprising a plurality of joint axes
JP4491687B2 (en) 2005-04-21 2010-06-30 パルステック工業株式会社 Coordinate transformation function correction method
US7986307B2 (en) 2005-04-22 2011-07-26 Microsoft Corporation Mechanism for allowing applications to filter out or opt into tablet input
DE102005018837A1 (en) 2005-04-22 2006-10-26 Robert Bosch Gmbh Method and device for synchronizing two bus systems and arrangement of two bus systems
US7860609B2 (en) 2005-05-06 2010-12-28 Fanuc Robotics America, Inc. Robot multi-arm control system
US7961717B2 (en) 2005-05-12 2011-06-14 Iposi, Inc. System and methods for IP and VoIP device location determination
EP1724609A1 (en) * 2005-05-18 2006-11-22 Leica Geosystems AG Method of determining postion of receiver unit
JP2006344136A (en) 2005-06-10 2006-12-21 Fanuc Ltd Robot controller
DE602006013626D1 (en) 2005-06-23 2010-05-27 Faro Tech Inc Device and method for resetting a joint caram coordinate measuring machine
FR2887482B1 (en) 2005-06-28 2008-08-08 Romer Sa Device for machining mechanical parts using a hollow cylindrical tool
US7285793B2 (en) 2005-07-15 2007-10-23 Verisurf Software, Inc. Coordinate tracking system, apparatus and method of use
GB2431723A (en) * 2005-07-26 2007-05-02 Makex Ltd Coordinate measuring machine
US8090491B2 (en) 2005-07-26 2012-01-03 Macdonald Dettwiler & Associates Inc. Guidance, navigation, and control system for a vehicle
SE529780C2 (en) 2005-08-04 2007-11-20 Hexagon Metrology Ab Measuring procedure and measuring device for use in measurement systems such as CMMs
DE102005036929B4 (en) 2005-08-05 2010-06-17 Hexagon Metrology Gmbh probe magazine
GB0516276D0 (en) 2005-08-08 2005-09-14 Crampton Stephen Robust cmm arm with exoskeleton
US7299145B2 (en) * 2005-08-16 2007-11-20 Metris N.V. Method for the automatic simultaneous synchronization, calibration and qualification of a non-contact probe
US20070050774A1 (en) 2005-08-24 2007-03-01 Eldson John C Time-aware systems
WO2007023634A1 (en) 2005-08-25 2007-03-01 Thk Co., Ltd. Movement guiding device
US7298467B2 (en) 2005-09-01 2007-11-20 Romer Method of determining a horizontal profile line defined by walls that are essentially vertical, and an apparatus for implementing said method
US20070055806A1 (en) 2005-09-02 2007-03-08 John Bruce Stratton Adapting legacy instruments to an instrument system based on synchronized time
GB0518078D0 (en) 2005-09-06 2005-10-12 Renishaw Plc Signal transmission system
GB0518153D0 (en) 2005-09-07 2005-10-12 Rolls Royce Plc Apparatus for measuring wall thicknesses of objects
WO2007033273A2 (en) 2005-09-13 2007-03-22 Romer Incorporated Vehicle comprising an articulator of a coordinate measuring machine
DE102005043931A1 (en) 2005-09-15 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser scanner
EP1764579B1 (en) 2005-09-16 2007-12-26 Hexagon Metrology GmbH Method to Determine the Orthogonality of the Axes of a Coordinate Measuring Machine
US7551771B2 (en) 2005-09-20 2009-06-23 Deltasphere, Inc. Methods, systems, and computer program products for acquiring three-dimensional range information
FR2892333B1 (en) 2005-10-21 2008-01-11 Romer Soc Par Actions Simplifi Positional positioning system of a three-dimensional measuring or machining machine in a fixed referential
DE112006003044T5 (en) 2005-10-21 2008-10-23 Deere & Company, Moline Versatile robot control module
JP4375320B2 (en) 2005-10-27 2009-12-02 株式会社日立製作所 Mobile robot
WO2007051972A1 (en) 2005-10-31 2007-05-10 Qinetiq Limited Navigation system
TWI287103B (en) 2005-11-04 2007-09-21 Univ Nat Chiao Tung Embedded network controlled optical flow image positioning omni-direction motion system
DE102005056265A1 (en) 2005-11-14 2007-05-16 Pilz Gmbh & Co Kg Device and method for monitoring a room area, in particular for securing a danger zone of an automated system
SE531462C2 (en) * 2005-11-17 2009-04-14 Hexagon Metrology Ab Adjusting device for a measuring head
US20070118269A1 (en) 2005-11-18 2007-05-24 Alex Gibson Engine control unit to valve control unit interface
US20070122250A1 (en) 2005-11-29 2007-05-31 Mullner Nandor Jr Double-headed screw
US7480037B2 (en) 2005-12-02 2009-01-20 The Boeing Company System for projecting flaws and inspection locations and associated method
US7389870B2 (en) 2005-12-05 2008-06-24 Robert Slappay Instrument caddy with anti-magnetic shield
US7191541B1 (en) 2005-12-06 2007-03-20 Hexagon Metrology Ab Temperature compensation system for a coordinate measuring machine
US20090046140A1 (en) 2005-12-06 2009-02-19 Microvision, Inc. Mobile Virtual Reality Projector
US20070282564A1 (en) 2005-12-06 2007-12-06 Microvision, Inc. Spatially aware mobile projection
US20110111849A1 (en) 2005-12-06 2011-05-12 Microvision, Inc. Spatially Aware Mobile Projection
US7447931B1 (en) 2005-12-09 2008-11-04 Rockwell Automation Technologies, Inc. Step time change compensation in an industrial automation network
DE102005060967B4 (en) 2005-12-20 2007-10-25 Technische Universität München Method and device for setting up a trajectory of a robot device
US7762825B2 (en) * 2005-12-20 2010-07-27 Intuitive Surgical Operations, Inc. Electro-mechanical interfaces to mount robotic surgical arms
US7249421B2 (en) * 2005-12-22 2007-07-31 Hexagon Metrology Ab Hysteresis compensation in a coordinate measurement machine
US20070147435A1 (en) 2005-12-23 2007-06-28 Bruce Hamilton Removing delay fluctuation in network time synchronization
US20070147265A1 (en) 2005-12-23 2007-06-28 Eidson John C Correcting time synchronization inaccuracy caused by internal asymmetric delays in a device
US20100148013A1 (en) 2005-12-23 2010-06-17 General Electric Company System and method for optical locomotive decoupling detection
US7602873B2 (en) 2005-12-23 2009-10-13 Agilent Technologies, Inc. Correcting time synchronization inaccuracy caused by asymmetric delay on a communication link
JP2007178943A (en) 2005-12-28 2007-07-12 Brother Ind Ltd Image display device
US20070153297A1 (en) 2006-01-04 2007-07-05 Lau Kam C Photogrammetric Targets
DE102006003362A1 (en) 2006-01-19 2007-07-26 Carl Zeiss Industrielle Messtechnik Gmbh Coordinate measuring machine and method for operating a coordinate measuring machine
US7995834B1 (en) 2006-01-20 2011-08-09 Nextengine, Inc. Multiple laser scanner
US20070171394A1 (en) 2006-01-25 2007-07-26 Daniel Steiner Flagstick with integrated reflectors for use with a laser range finder
US20070177016A1 (en) * 2006-01-27 2007-08-02 Guangzhou Sat Infrared Technology Co., Ltd Upright infrared camera with foldable monitor
US7348822B2 (en) 2006-01-30 2008-03-25 Agilent Technologies, Inc. Precisely adjusting a local clock
US7564250B2 (en) 2006-01-31 2009-07-21 Onset Computer Corporation Pulsed methods and systems for measuring the resistance of polarizing materials
WO2007088570A2 (en) 2006-02-02 2007-08-09 Metris Ipr Nv Probe for gauging machines
US7610175B2 (en) 2006-02-06 2009-10-27 Agilent Technologies, Inc. Timestamping signal monitor device
US20070185682A1 (en) 2006-02-06 2007-08-09 Eidson John C Time-aware trigger distribution
GB0603128D0 (en) * 2006-02-16 2006-03-29 Renishaw Plc Articulating probe head apparatus
DE102006009422B4 (en) 2006-02-23 2011-08-18 Dreier Lasermesstechnik GmbH, 72160 Device for checking the accuracy of a circular path to be executed by a work spindle
FI119483B (en) 2006-03-07 2008-11-28 Saides Oy Method, system and computer software for locating a measuring device and measuring large objects
US7242590B1 (en) 2006-03-15 2007-07-10 Agilent Technologies, Inc. Electronic instrument system with multiple-configuration instrument modules
US20070217169A1 (en) 2006-03-15 2007-09-20 Yeap Boon L Clamshell housing for instrument modules
US20070217170A1 (en) 2006-03-15 2007-09-20 Yeap Boon L Multiple configuration stackable instrument modules
US8050863B2 (en) 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
CN100363707C (en) 2006-03-17 2008-01-23 哈尔滨工业大学 Precisive determining system of mechanical arm location and gesture in space
US20070223477A1 (en) 2006-03-27 2007-09-27 Eidson John C Packet recognizer with hardware/software tradeoff
US7430070B2 (en) 2006-03-29 2008-09-30 The Boeing Company Method and system for correcting angular drift of laser radar systems
DE202006005643U1 (en) 2006-03-31 2006-07-06 Faro Technologies Inc., Lake Mary Device for three-dimensional detection of a spatial area
US20070248122A1 (en) 2006-04-19 2007-10-25 Bruce Hamilton Methods and systems relating to distributed time markers
DE602007002185D1 (en) 2006-04-27 2009-10-08 3D Scanners Ltd Optical grid
US7568293B2 (en) 2006-05-01 2009-08-04 Paul Ferrari Sealed battery for coordinate measurement machine
US7449876B2 (en) 2006-05-03 2008-11-11 Agilent Technologies, Inc. Swept-frequency measurements with improved speed using synthetic instruments
DE102006024534A1 (en) 2006-05-05 2007-11-08 Zoller & Fröhlich GmbH Laser scanner has rotary head in which mirror is mounted, in section of housing which has triangular cross-section at right angles to its axis
US20070258378A1 (en) 2006-05-05 2007-11-08 Bruce Hamilton Methods and systems relating to distributed time markers
US7454265B2 (en) 2006-05-10 2008-11-18 The Boeing Company Laser and Photogrammetry merged process
US7805854B2 (en) * 2006-05-15 2010-10-05 Hexagon Metrology, Inc. Systems and methods for positioning and measuring objects using a CMM
DE102006023292B4 (en) * 2006-05-18 2008-02-21 Carl Mahr Holding Gmbh Measuring device for fast measurements
DE102006023902A1 (en) 2006-05-22 2007-11-29 Weinhold, Karl, Dipl.-Ing. (FH) Device for connecting two flanged pipe or hose ends
WO2007144906A1 (en) 2006-06-12 2007-12-21 Hexagon Metrology S.P.A Coordinate measuring machine
US20080006083A1 (en) 2006-06-26 2008-01-10 Feinstein Adam J Apparatus and method of transporting and loading probe devices of a metrology instrument
US8060344B2 (en) 2006-06-28 2011-11-15 Sam Stathis Method and system for automatically performing a study of a multidimensional space
DE102006031580A1 (en) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Method and device for the three-dimensional detection of a spatial area
US7609020B2 (en) 2006-07-11 2009-10-27 Delaware Capital Formation, Inc. Geometric end effector system
DE102006035292B4 (en) 2006-07-26 2010-08-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and system for transferring position-related information from a virtual to an actual reality and for displaying this information in the actual reality and use of such a system
US7589595B2 (en) 2006-08-18 2009-09-15 Agilent Technologies, Inc. Distributing frequency references
EP1890168A1 (en) 2006-08-18 2008-02-20 Leica Geosystems AG Laserscanner
US20080066583A1 (en) 2006-08-21 2008-03-20 Lott Glenn D Flange wrench
FR2905235B1 (en) 2006-08-29 2009-03-13 Salomon Sa Protective helmet and method of manufacturing the same
CN101511529B (en) * 2006-08-31 2013-01-30 法罗技术股份有限公司 Method capable of removing smart probea and combination system, and using coordinate measuring machine
JP5073256B2 (en) 2006-09-22 2012-11-14 株式会社トプコン Position measurement device, position measurement method, and position measurement program
JP5057734B2 (en) 2006-09-25 2012-10-24 株式会社トプコン Surveying method, surveying system, and surveying data processing program
JP5466807B2 (en) 2006-09-26 2014-04-09 株式会社トプコン Laser scanner
US8325767B2 (en) 2006-09-29 2012-12-04 Agilent Technologies, Inc. Enhancement of IEEE 1588 synchronization using out-of-band communication path
US7908531B2 (en) 2006-09-29 2011-03-15 Teradyne, Inc. Networked test system
JP2008096123A (en) 2006-10-05 2008-04-24 Keyence Corp Optical displacement gauge, optical displacement measuring method, optical displacement measuring program, computer-readable memory medium and recording equipment
US7990397B2 (en) 2006-10-13 2011-08-02 Leica Geosystems Ag Image-mapped point cloud with ability to accurately represent point coordinates
JP4349405B2 (en) 2006-10-19 2009-10-21 パナソニック株式会社 Alkaline battery
GB0620944D0 (en) 2006-10-20 2006-11-29 Insensys Ltd Curvature measurement moving relative to pipe
US9747698B2 (en) 2006-10-21 2017-08-29 Sam Stathis System for accurately and precisely locating and marking a position in space using wireless communications and robotics
US20090194444A1 (en) 2006-10-24 2009-08-06 Darren Jones Electronics Device Case
JP4897430B2 (en) 2006-10-27 2012-03-14 三井造船株式会社 Image information acquisition device
US7743524B2 (en) * 2006-11-20 2010-06-29 Hexagon Metrology Ab Coordinate measurement machine with improved joint
WO2008066896A2 (en) 2006-11-30 2008-06-05 Faro Technologies, Inc. Portable coordinate measurement machine
ITRM20060651A1 (en) 2006-12-06 2008-06-07 Enea Ente Nuove Tec Method and three-dimensional optical radar device utilizing three rgb beams modulated by laser diodes, in particular for metrological applications and fine arts.
ITTO20060891A1 (en) 2006-12-15 2008-06-16 Hexagon Metrology Spa coordinate-measuring machine with weight balancing device of a movable member in the vertical direction
SE530700C2 (en) 2006-12-21 2008-08-19 Hexagon Metrology Ab Method and apparatus for compensation of geometrical errors in processing machines
EP2095061B1 (en) 2006-12-22 2019-02-20 Hexagon Metrology, Inc Improved joint axis for coordinate measurement machine
EP1952778B1 (en) 2007-01-31 2009-12-09 BrainLAB AG Medical laser target marker and its use
US8784425B2 (en) 2007-02-28 2014-07-22 Smith & Nephew, Inc. Systems and methods for identifying landmarks on orthopedic implants
GB2447258A (en) 2007-03-05 2008-09-10 Geospatial Res Ltd Camera mount for colour enhanced laser imagery
US7675257B2 (en) * 2007-03-09 2010-03-09 Regal Beloit Corporation Methods and systems for recording operating information of an electronically commutated motor
US20080228331A1 (en) 2007-03-14 2008-09-18 Boeing Company A Corporation Of Delaware System and method for measuring parameters at aircraft loci
US20080232269A1 (en) 2007-03-23 2008-09-25 Tatman Lance A Data collection system and method for ip networks
EP1975546B1 (en) 2007-03-26 2010-09-15 Hexagon Metrology AB Method of using multi-axis positioning and measuring system
CN100519099C (en) * 2007-03-29 2009-07-29 廊坊智通机器人系统有限公司 Active-passive joint-arm type measuring robot
US7801258B2 (en) 2007-04-02 2010-09-21 National Instruments Corporation Aligning timebases to share synchronized periodic signals
EP1978328B1 (en) * 2007-04-03 2015-02-18 Hexagon Metrology AB Oscillating scanning probe with constant contact force
EP2132523A4 (en) 2007-04-03 2016-07-27 Hexagon Metrology Ab Method and device for exact measurement of objects
US20080245452A1 (en) 2007-04-03 2008-10-09 David Law Weatherproofing Apparatus and Method for Cameras and Video Recorders
US9858712B2 (en) 2007-04-09 2018-01-02 Sam Stathis System and method capable of navigating and/or mapping any multi-dimensional space
EP1983297B1 (en) * 2007-04-18 2010-04-07 Hexagon Metrology AB Scanning probe with constant scanning speed
US7707000B2 (en) 2007-04-19 2010-04-27 Agilent Technologies, Inc. Test instrument and system responsive to execution time data
GB0708319D0 (en) 2007-04-30 2007-06-06 Renishaw Plc A storage apparatus for a tool
EP1988357B1 (en) 2007-05-04 2018-10-17 Hexagon Technology Center GmbH Coordinate measuring method and device
US20080298254A1 (en) 2007-06-01 2008-12-04 Eidson John C Time-Slotted Protocol With Arming
JP5247068B2 (en) 2007-06-05 2013-07-24 三菱電機株式会社 Radar equipment
US8414246B2 (en) 2007-06-06 2013-04-09 Cycogs, Llc Modular hybrid snake arm
JP5376777B2 (en) 2007-06-13 2013-12-25 三菱電機株式会社 Radar device
US9442158B2 (en) 2007-06-13 2016-09-13 Keysight Technologies, Inc. Method and a system for determining between devices a reference time for execution of a task thereon
DE502007001251D1 (en) 2007-06-14 2009-09-17 Trumpf Laser Marking Systems A Gas-cooled laser device for highly compact laser beam sources
WO2009001385A1 (en) 2007-06-28 2008-12-31 Hexagon Metrology S.P.A. Method for determining dynamic errors in a measuring machine
US7546689B2 (en) 2007-07-09 2009-06-16 Hexagon Metrology Ab Joint for coordinate measurement device
JP5037248B2 (en) 2007-07-17 2012-09-26 株式会社日立製作所 Information collection system and information collection robot
EP2171394B9 (en) 2007-07-24 2014-01-01 Hexagon Metrology S.p.A. Method for compensating measurement errors caused by deformations of a measuring machine bed under the load of a workpiece and measuring machine operating according to said method
JP2009053184A (en) 2007-07-30 2009-03-12 Hexagon Metrology Kk Rotary unit for noncontact sensor and rotary device for noncontact sensor
DE102007037162A1 (en) 2007-08-07 2009-02-19 Gottfried Wilhelm Leibniz Universität Hannover Artificial and natural objects detection method for vehicle, involves converting measuring information in common standard time, synchronizing information on trigger points, and orienting information on clock signal
US8036452B2 (en) 2007-08-10 2011-10-11 Leica Geosystems Ag Method and measurement system for contactless coordinate measurement on an object surface
EP2023077B1 (en) 2007-08-10 2015-06-10 Leica Geosystems AG Method and measuring system for contactless coordinate measurement of the surface of an object
EP2183546B1 (en) 2007-08-17 2015-10-21 Renishaw PLC Non-contact probe
GB2452033A (en) * 2007-08-18 2009-02-25 Internat Metrology Systems Ltd Portable multi-dimensional coordinate measuring machine
CA2597891A1 (en) 2007-08-20 2009-02-20 Marc Miousset Multi-beam optical probe and system for dimensional measurement
JP5598831B2 (en) 2007-09-05 2014-10-01 北陽電機株式会社 Scanning distance measuring device
US7798453B2 (en) 2007-09-07 2010-09-21 Quickset International, Inc. Boresight apparatus and method of use
EP2037214A1 (en) 2007-09-14 2009-03-18 Leica Geosystems AG Method and measuring device for measuring surfaces
CN101861510B (en) 2007-09-14 2014-05-14 海克斯康测量技术有限公司 Method of aligning arm reference systems of multiple- arm measuring machine
USD607350S1 (en) 2007-09-24 2010-01-05 Faro Technologies, Inc Portable coordinate measurement machine
US20090089004A1 (en) 2007-09-27 2009-04-02 Dietrich Werner Vook Time Learning Test System
US7908360B2 (en) 2007-09-28 2011-03-15 Rockwell Automation Technologies, Inc. Correlation of non-times series events in industrial systems
US7774949B2 (en) 2007-09-28 2010-08-17 Hexagon Metrology Ab Coordinate measurement machine
US9811849B2 (en) 2007-09-28 2017-11-07 Great-Circle Technologies, Inc. Contextual execution of automated workflows
US20090089623A1 (en) 2007-09-28 2009-04-02 Agilent Technologies, Inc Event timing analyzer for a system of instruments and method of analyzing event timing in a system of intruments
US7712224B2 (en) 2007-10-03 2010-05-11 Hexagon Metrology Ab Validating the error map of CMM using calibrated probe
WO2009052143A1 (en) 2007-10-16 2009-04-23 Accu-Sort Systems, Inc. Dimensioning and barcode reading system
EP2053353A1 (en) 2007-10-26 2009-04-29 Leica Geosystems AG Distance measuring method and corresponding device
US8041979B2 (en) 2007-10-29 2011-10-18 Agilent Technologies, Inc. Method and a system for synchronising respective state transitions in a group of devices
US8854924B2 (en) 2007-10-29 2014-10-07 Agilent Technologies, Inc. Method, a device and a system for executing an action at a predetermined time
US7797849B2 (en) * 2007-10-31 2010-09-21 Immersion Corporation Portable metrology device
US20090113183A1 (en) 2007-10-31 2009-04-30 Agilent Technologies, Inc. Method of controlling a device and a device controlled thereby
EP2056063A1 (en) 2007-11-05 2009-05-06 Leica Geosystems AG Measuring head system for a coordinate measuring machine and method for optical measuring of displacement of a sensor element of the measuring head system
US8000251B2 (en) 2007-11-14 2011-08-16 Cisco Technology, Inc. Instrumenting packet flows
US20090125196A1 (en) 2007-11-14 2009-05-14 Honeywell International, Inc. Apparatus and method for monitoring the stability of a construction machine
US8051710B2 (en) 2007-11-28 2011-11-08 General Electric Company Method and apparatus for balancing a rotor
EP2068114A1 (en) 2007-12-04 2009-06-10 Metris IPR N.V. Object measuring machine with optimised calibration system
EP2068067A1 (en) 2007-12-04 2009-06-10 Metris IPR N.V. Supporting tripod for articulated arm measuring machines
JP5348449B2 (en) 2007-12-25 2013-11-20 カシオ計算機株式会社 Distance measuring device and projector
US7921575B2 (en) 2007-12-27 2011-04-12 General Electric Company Method and system for integrating ultrasound inspection (UT) with a coordinate measuring machine (CMM)
EP2075096A1 (en) 2007-12-27 2009-07-01 Leica Geosystems AG Method and system for extremely precise positioning of at least one object in the end position of a space
US8065861B2 (en) 2008-01-07 2011-11-29 Newell Window Furnishings, Inc. Blind packaging
CA2649916A1 (en) 2008-01-09 2009-07-09 Tiltan Systems Engineering Ltd. Apparatus and method for automatic airborne lidar data processing and mapping using data obtained thereby
DE102008014275B4 (en) 2008-02-01 2017-04-13 Faro Technologies, Inc. Device for determining a distance to an object
DE102008014274A1 (en) 2008-02-01 2009-08-06 Faro Technologies, Inc., Lake Mary Method and apparatus for determining a distance to an object
US8152071B2 (en) 2008-02-08 2012-04-10 Motion Computing, Inc. Multi-purpose portable computer with integrated devices
WO2009106144A1 (en) 2008-02-29 2009-09-03 Trimble Automated calibration of a surveying instrument
JP2009229255A (en) 2008-03-24 2009-10-08 Hokuyo Automatic Co Scanning range finder
DE102008015536B4 (en) 2008-03-25 2017-04-06 Mtu Friedrichshafen Gmbh Method for address assignment to injectors
US7779548B2 (en) 2008-03-28 2010-08-24 Hexagon Metrology, Inc. Coordinate measuring machine with rotatable grip
US8122610B2 (en) 2008-03-28 2012-02-28 Hexagon Metrology, Inc. Systems and methods for improved coordination acquisition member comprising calibration information
JP5173536B2 (en) 2008-04-02 2013-04-03 シャープ株式会社 Imaging apparatus and optical axis control method
EP2108917B1 (en) 2008-04-07 2012-10-03 Leica Geosystems AG Articulated arm coordinate measuring machine
USD599226S1 (en) * 2008-04-11 2009-09-01 Hexagon Metrology, Inc. Portable coordinate measurement machine
US8520930B2 (en) 2008-04-18 2013-08-27 3D Scanners Ltd. Method and computer program for improving the dimensional acquisition of an object
AT532031T (en) 2008-04-18 2011-11-15 3D Scanners Ltd Method and computer program for improving the dimensional detection of an object
AU2009240105B2 (en) 2008-04-22 2011-12-22 Leica Geosystems Ag Measuring method for an articulated-arm coordinate measuring machine
EP2112461B1 (en) 2008-04-24 2012-10-24 Hexagon Metrology AB Self-powered measuring probe
US9041915B2 (en) 2008-05-09 2015-05-26 Ball Aerospace & Technologies Corp. Systems and methods of scene and action capture using imaging system incorporating 3D LIDAR
US20090299689A1 (en) 2008-06-02 2009-12-03 David Robert Stubben Portable Leveling Table
EP2282873B1 (en) 2008-06-09 2013-04-10 ABB Technology Ltd A method and a system for facilitating calibration of an off-line programmed robot cell
US7752003B2 (en) 2008-06-27 2010-07-06 Hexagon Metrology, Inc. Hysteresis compensation in a coordinate measurement machine
JP5153483B2 (en) 2008-06-30 2013-02-27 三菱電機株式会社 Laser light source device
US7765707B2 (en) * 2008-07-10 2010-08-03 Nikon Metrology Nv Connection device for articulated arm measuring machines
FR2935043B1 (en) 2008-08-14 2011-03-04 Hexagon Metrology Sas Three-dimensional measuring apparatus with articulated arms comprising a plurality of joint axes
US8206765B2 (en) 2008-08-15 2012-06-26 Frito-Lay Trading Company Europe Gmbh Preparation of individually coated edible core products
DE102008039838B4 (en) 2008-08-27 2011-09-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for scanning the three-dimensional surface of an object by means of a light beam scanner
GB2496230B (en) 2008-08-28 2013-07-17 Faro Tech Inc Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
CN201266071Y (en) * 2008-09-01 2009-07-01 爱佩仪中测(成都)精密仪器有限公司 Automatic tracking balancing device of column coordinate measuring machine
CA2734683C (en) 2008-10-09 2013-07-09 Leica Geosystems Ag Device for marking or processing a surface, tool, and articulated arm
US7908757B2 (en) 2008-10-16 2011-03-22 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
DE112009005524B3 (en) 2008-11-17 2018-01-25 Faro Technologies, Inc. Apparatus and method for measuring six degrees of freedom
US8031332B2 (en) 2008-11-20 2011-10-04 Trimble Navigation Limited Layout method
US7809518B2 (en) 2008-12-17 2010-10-05 Agilent Technologies, Inc. Method of calibrating an instrument, a self-calibrating instrument and a system including the instrument
DE102008062763B3 (en) 2008-12-18 2010-07-15 Hexagon Metrology Gmbh Coordinate measuring device has drive for vertically mobile component of coordinate measuring device, where drive moving counterweight mass is formed as drive rigid in comparison with traction mechanism
JP5688876B2 (en) 2008-12-25 2015-03-25 株式会社トプコン Calibration method for laser scanner measurement system
JP5478902B2 (en) 2009-01-20 2014-04-23 スタンレー電気株式会社 Optical distance sensor
EP2219010A1 (en) 2009-02-11 2010-08-18 Leica Geosystems AG Coordinate measuring machine (CMM) and method of compensating errors in a CMM
KR101321036B1 (en) 2009-03-18 2013-10-22 노키아 지멘스 네트웍스 오와이 A method of scheduling data
WO2010108089A2 (en) 2009-03-19 2010-09-23 Perceptron, Inc. Display device for measurement tool
DE102009015922B4 (en) 2009-03-25 2016-12-15 Faro Technologies, Inc. Method for optically scanning and measuring a scene
DE102009015920B4 (en) 2009-03-25 2014-11-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102009001894B4 (en) 2009-03-26 2018-06-28 pmdtechnologies ag Robot system with 3D camera
GB0908200D0 (en) 2009-05-13 2009-06-24 Red Cloud Media Ltd Method of simulation of a real physical environment
DE102009025201B3 (en) 2009-06-12 2011-01-27 Konrad Maierhofer projection device
CN102803987B (en) 2009-06-23 2015-09-16 莱卡地球系统公开股份有限公司 Coordinate measuring equipment
CA2766906C (en) * 2009-06-30 2019-03-05 Hexagon Metrology Ab Coordinate measurement machine with vibration detection
US20110000095A1 (en) 2009-07-02 2011-01-06 Robert Bruce Carlson High Precision Hand-held Engineering Survey/Position Data Collector
CN102483326B (en) 2009-07-03 2015-01-21 莱卡地球系统公开股份有限公司 Apparatus for generating three-dimensional image of object
EP2270425A1 (en) 2009-07-03 2011-01-05 Leica Geosystems AG Coordinate measuring machine (CMM) and method of compensating errors in a CMM
DE102009032262A1 (en) * 2009-07-08 2011-01-13 Steinbichler Optotechnik Gmbh Method for determining the 3D coordinates of an object
DE102009035336B3 (en) 2009-07-22 2010-11-18 Faro Technologies, Inc., Lake Mary Device for optical scanning and measuring of environment, has optical measuring device for collection of ways as ensemble between different centers returning from laser scanner
US8118438B2 (en) 2009-07-24 2012-02-21 Optimet, Optical Metrology Ltd. Method and apparatus for real-time projection onto an object of data obtained from 3-D measurement
DE102009038964A1 (en) 2009-08-20 2011-02-24 Faro Technologies, Inc., Lake Mary Method for optically scanning and measuring an environment
AT508634B1 (en) 2009-08-28 2011-05-15 Riegl Laser Measurement Sys Laser channel for assembling on the roof rack of a vehicle
AT508635B1 (en) 2009-08-28 2011-05-15 Riegl Laser Measurement Sys Laser scanning device for mounting on a vehicle with pendant coupling
US20120217357A1 (en) 2009-09-09 2012-08-30 Jochen Franke System and method for monitoring condition of surface subject to wear
US8181760B2 (en) 2009-10-28 2012-05-22 Nam Tim Trieu Equipment container with integrated stand
US8099877B2 (en) 2009-11-06 2012-01-24 Hexagon Metrology Ab Enhanced position detection for a CMM
US8610761B2 (en) * 2009-11-09 2013-12-17 Prohectionworks, Inc. Systems and methods for optically projecting three-dimensional text, images and/or symbols onto three-dimensional objects
US8352212B2 (en) 2009-11-18 2013-01-08 Hexagon Metrology, Inc. Manipulable aid for dimensional metrology
DE102009055988B3 (en) 2009-11-20 2011-03-17 Faro Technologies, Inc., Lake Mary Device, particularly laser scanner, for optical scanning and measuring surrounding area, has light transmitter that transmits transmission light ray by rotor mirror
DE102009055989B4 (en) 2009-11-20 2017-02-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102009057101A1 (en) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Device for optically scanning and measuring an environment
JP5460341B2 (en) 2010-01-06 2014-04-02 キヤノン株式会社 Three-dimensional measuring apparatus and control method thereof
JP5615382B2 (en) 2010-01-20 2014-10-29 ファロ テクノロジーズ インコーポレーテッド Portable articulated arm coordinate measuring machine using multibus arm technology
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US20130222816A1 (en) 2010-01-20 2013-08-29 Faro Technologies, Inc. Coordinate measuring machine having an illuminated probe end and method of operation
DE112011100290T5 (en) 2010-01-20 2013-02-28 Faro Technologies Inc. Coordinate measuring machine with an illuminated probe end and operating method
JP2013517508A (en) 2010-01-20 2013-05-16 ファロ テクノロジーズ インコーポレーテッド Multifunctional coordinate measuring machine
GB2489179B (en) 2010-02-05 2017-08-02 Trimble Navigation Ltd Systems and methods for processing mapping and modeling data
US9014848B2 (en) 2010-05-20 2015-04-21 Irobot Corporation Mobile robot system
US8391565B2 (en) 2010-05-24 2013-03-05 Board Of Trustees Of The University Of Arkansas System and method of determining nitrogen levels from a digital image
EP2400261A1 (en) 2010-06-21 2011-12-28 Leica Geosystems AG Optical measurement method and system for determining 3D coordination in a measuring object surface
DE102010032723B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032725B4 (en) 2010-07-26 2012-04-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032726B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032724A1 (en) 2010-07-26 2012-01-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
FR2963436B1 (en) 2010-07-29 2012-09-07 Sagem Defense Securite Method for determining a volume of protection in the case of two simultaneous satellite failures
DE102010033561B3 (en) 2010-07-29 2011-12-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US20130300740A1 (en) 2010-09-13 2013-11-14 Alt Software (Us) Llc System and Method for Displaying Data Having Spatial Coordinates
EP2433716A1 (en) 2010-09-22 2012-03-28 Hexagon Technology Center GmbH Surface spraying device with a nozzle control mechanism and a corresponding method
JP5550790B2 (en) 2010-10-25 2014-07-16 ファロ テクノロジーズ インコーポレーテッド Automatic warm-up and stability check for laser trackers
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
DE102010061382B4 (en) 2010-12-21 2019-02-14 Sick Ag Opto-electronic sensor and method for detection and distance determination of objects
CN103459099B (en) 2011-01-28 2015-08-26 英塔茨科技公司 Remote robot with a movable communicate with each other
US8659748B2 (en) 2011-02-15 2014-02-25 Optical Air Data Systems, Llc Scanning non-scanning LIDAR
US8619265B2 (en) 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
JP5581525B2 (en) 2011-05-19 2014-09-03 株式会社ニューマシン Pipe fitting
US8925290B2 (en) 2011-09-08 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Mask storage device for mask haze prevention and methods thereof
DE202011051975U1 (en) 2011-11-15 2013-02-20 Sick Ag Opto-electronic safety sensor with radio-based wireless interface
WO2013101620A1 (en) 2011-12-28 2013-07-04 Faro Technologies, Inc. Line scanner using a low coherence light source
US20130176453A1 (en) 2012-01-06 2013-07-11 Nokia Corporation Methods, apparatuses and computer program products for facilitating image registration based in part on using sensor data
DE102012107544B3 (en) 2012-08-17 2013-05-23 Faro Technologies, Inc. Optical scanning device i.e. laser scanner, for evaluating environment, has planetary gears driven by motor over vertical motor shaft and rotating measuring head relative to foot, where motor shaft is arranged coaxial to vertical axle
JP5827264B2 (en) 2013-04-15 2015-12-02 株式会社クボタ combine

Patent Citations (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1535312A (en) * 1923-09-15 1925-04-28 Hosking Richard Thomas Waterproof covering for cameras
US1918813A (en) * 1932-02-02 1933-07-18 Kinzy Jacob Camera case
US2316573A (en) * 1940-04-01 1943-04-13 W & L E Gurley Instrument case
US2333243A (en) * 1942-12-07 1943-11-02 Morrison Brothers Company Detachable coupling
US2702683A (en) * 1951-08-17 1955-02-22 Harold L Green Magnetic holder for gasoline filling spout caps
US2748926A (en) * 1952-03-17 1956-06-05 Matthew T Leahy Micrometer support
US2983367A (en) * 1958-06-25 1961-05-09 Lee W Parmater Plural instrument carrying case
US2924495A (en) * 1958-09-15 1960-02-09 Merz Engineering Inc Instrument case
US2966257A (en) * 1959-11-03 1960-12-27 Gen Radio Co Instrument carrying case
US3066790A (en) * 1961-11-13 1962-12-04 American Optical Corp Instrument carrying case
US3458167A (en) * 1966-12-28 1969-07-29 Fmc Corp Balancing mechanism
US4138045A (en) * 1977-06-15 1979-02-06 Engineered Products, Inc. Camera case
US4178515A (en) * 1978-05-12 1979-12-11 Lockheed Electronics Co., Inc. Optical signal communicating apparatus
US4379461A (en) * 1979-01-17 1983-04-12 Nilsson Erling S Thermographic apparatus
US4340008A (en) * 1980-09-22 1982-07-20 Mendelson Ralph R Tilt indicator for shipping containers
US4430796A (en) * 1981-02-09 1984-02-14 Kosaka Laboratory Ltd. Method and apparatus for determining the location of points on a three dimensional thing
US4457625A (en) * 1981-07-13 1984-07-03 Itek Corporation Self calibrating contour measuring system using fringe counting interferometers
US4506448A (en) * 1981-10-27 1985-03-26 British Aerospace Public Limited Company Teaching robots
US4424899A (en) * 1982-03-08 1984-01-10 Western Electric Co., Inc. Instrument carrying case
US4537233A (en) * 1983-06-21 1985-08-27 Continental Emsco Company Spring balance assembly
US4664588B1 (en) * 1984-03-09 1989-09-26
US4664588A (en) * 1984-03-09 1987-05-12 Applied Robotics Inc. Apparatus and method for connecting and exchanging remote manipulable elements to a central control source
US4606696A (en) * 1984-06-25 1986-08-19 Slocum Alexander H Mechanism to determine position and orientation in space
US4676002A (en) * 1984-06-25 1987-06-30 Slocum Alexander H Mechanisms to determine position and orientation in space
US4659280A (en) * 1985-01-22 1987-04-21 Gmf Robotics Corporation Robot with balancing mechanism having a variable counterbalance force
US4663852A (en) * 1985-09-19 1987-05-12 Digital Electronic Automation, Inc Active error compensation in a coordinated measuring machine
US4767257A (en) * 1985-12-23 1988-08-30 Mitsubishi Denki Kabushiki Kaisha Industrial robot
US4996909A (en) * 1986-02-14 1991-03-05 Vache John P Housing for remote environmental monitor system
US4816822A (en) * 1986-02-14 1989-03-28 Ryan Instruments, Inc. Remote environmental monitor system
US4714339B1 (en) * 1986-02-28 1997-03-18 Us Army Three and five axis laser tracking systems
US4714339B2 (en) * 1986-02-28 2000-05-23 Us Commerce Three and five axis laser tracking systems
US4714339A (en) * 1986-02-28 1987-12-22 The United States Of America As Represented By The Secretary Of Commerce Three and five axis laser tracking systems
US4751950A (en) * 1987-01-21 1988-06-21 Bock John S Camera and lens protector
US4790651A (en) * 1987-09-30 1988-12-13 Chesapeake Laser Systems, Inc. Tracking laser interferometer
US4954952A (en) * 1988-02-16 1990-09-04 Trw Inc. Robotic arm systems
US5069524A (en) * 1988-03-07 1991-12-03 Honda Giken Kogyo Kabushiki Kaisha Robot hand optical fiber connector coupling assembly
US4882806A (en) * 1988-07-11 1989-11-28 Davis Thomas J Counterbalancing torsion spring mechanism for devices which move up and down and method of setting the torsion springs thereof
US4982841A (en) * 1989-01-26 1991-01-08 Goedecke Hans Joachim Protective envelope for a camera
US5027951A (en) * 1989-06-20 1991-07-02 Johnson Level & Tool Mfg. Co., Inc. Apparatus and method for packaging of articles
US5205111A (en) * 1989-06-20 1993-04-27 Johnson Level & Tool Mfg. Co., Inc. Packaging method for a level and case
US5372250B1 (en) * 1989-06-20 1996-10-01 Johnson Level & Tool Mfg Level and case package
US5372250A (en) * 1989-06-20 1994-12-13 Johnson Level & Tool Mfg. Co., Inc. Level and case package
US5025966A (en) * 1990-05-07 1991-06-25 Potter Stephen B Magnetic tool holder
US5219423A (en) * 1990-11-30 1993-06-15 Sony Corporation Carrying system
US5211476A (en) * 1991-03-04 1993-05-18 Allflex Europe S.A. Temperature recording system
US5189797A (en) * 1991-03-12 1993-03-02 Romer Apparatus for measuring the shape or position of an object
US5332315A (en) * 1991-04-27 1994-07-26 Gec Avery Limited Apparatus and sensor unit for monitoring changes in a physical quantity with time
US5213240A (en) * 1991-05-06 1993-05-25 H. Dietz & Company, Inc. Magnetic tool holder
US5373346A (en) * 1991-06-13 1994-12-13 Onset Computer Corp. Data gathering computer and analysis display computer interface system and methodology
US5239855A (en) * 1991-07-12 1993-08-31 Hewlett-Packard Company Positional calibration of robotic arm joints relative to the gravity vector
US5455993A (en) * 1991-07-27 1995-10-10 Index-Werke Gmbh & Co. Kg Hahn & Tessky Tool turret for a machine tool, in particular a lathe
US5289264A (en) * 1991-09-26 1994-02-22 Hans Steinbichler Method and apparatus for ascertaining the absolute coordinates of an object
US5319445A (en) * 1992-09-08 1994-06-07 Fitts John M Hidden change distribution grating and use in 3D moire measurement sensors and CMM applications
US5402582A (en) * 1993-02-23 1995-04-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
US20020087233A1 (en) * 1993-02-23 2002-07-04 Simon Raab Portable coordinate measurement machine with pre-stressed bearings
US6366831B1 (en) * 1993-02-23 2002-04-02 Faro Technologies Inc. Coordinate measurement machine with articulated arm and software interface
US5611147A (en) * 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
US5412880A (en) * 1993-02-23 1995-05-09 Faro Technologies Inc. Method of constructing a 3-dimensional map of a measurable quantity using three dimensional coordinate measuring apparatus
US5455670A (en) * 1993-05-27 1995-10-03 Associated Universities, Inc. Optical electronic distance measuring apparatus with movable mirror
US5724264A (en) * 1993-07-16 1998-03-03 Immersion Human Interface Corp. Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
US6125337A (en) * 1993-07-16 2000-09-26 Microscribe, Llc Probe apparatus and method for tracking the position and orientation of a stylus and controlling a cursor
US5528505A (en) * 1993-09-20 1996-06-18 Romer Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method
US5430384A (en) * 1994-07-22 1995-07-04 Onset Computer Corp. Temperature compensated soil moisture sensor
US5510977A (en) * 1994-08-02 1996-04-23 Faro Technologies Inc. Method and apparatus for measuring features of a part or item
US5887122A (en) * 1994-12-14 1999-03-23 Fanuc Ltd. Tracking control method for robot with weaving action
US5623416A (en) * 1995-01-06 1997-04-22 Onset Computer Corporation Contact closure data logger
US5535524A (en) * 1995-01-27 1996-07-16 Brown & Sharpe Manufacturing Company Vibration damper for coordinate measuring machine
US5682508A (en) * 1995-03-23 1997-10-28 Onset Computer Corporation UART protocol that provides predictable delay for communication between computers of disparate ability
US5754449A (en) * 1995-04-25 1998-05-19 Instrumented Sensor Technology, Inc. Method and apparatus for recording time history data of physical variables
US5832416A (en) * 1995-09-01 1998-11-03 Brown & Sharpe Manufacturing Company Calibration system for coordinate measuring machine
US5973788A (en) * 1995-10-12 1999-10-26 Metronor Asa System for point-by-point measuring of spatial coordinates
US6166809A (en) * 1995-10-12 2000-12-26 Metronor Asa System for point-by-point measuring of spatial coordinates
US5768792A (en) * 1996-02-09 1998-06-23 Faro Technologies Inc. Method and apparatus for measuring and tube fitting
US5829148A (en) * 1996-04-23 1998-11-03 Eaton; Homer L. Spatial measuring device
WO1998008050A1 (en) * 1996-08-23 1998-02-26 Nino Camurri Coordinate measuring apparatus
US6067116A (en) * 1996-09-27 2000-05-23 Ricoh Company, Ltd. Digital camera
US5752112A (en) * 1996-11-06 1998-05-12 George Paddock, Inc. Mounting system for body mounted camera equipment
US5926782A (en) * 1996-11-12 1999-07-20 Faro Technologies Inc Convertible three dimensional coordinate measuring machine
US5997779A (en) * 1996-12-18 1999-12-07 Aki Dryer Manufacturer, Inc. Temperature monitor for gypsum board manufacturing
US6282195B1 (en) * 1997-01-09 2001-08-28 Silicon Graphics, Inc. Packetized data transmissions in a switched router architecture
US5956857A (en) * 1997-05-19 1999-09-28 Faro Technologies, Inc. Mounting device for a coordinate measuring machine
US6050615A (en) * 1997-05-31 2000-04-18 Weinhold; Karl Pipe coupling having clamp halves and quick-action closure
US5983936A (en) * 1997-06-12 1999-11-16 The Dover Corporation Torsion spring balance assembly and adjustment method
US6339410B1 (en) * 1997-07-22 2002-01-15 Tellassist, Inc. Apparatus and method for language translation between patient and caregiver, and for communication with speech deficient patients
US6408252B1 (en) * 1997-08-01 2002-06-18 Dynalog, Inc. Calibration system and displacement measurement device
US6060889A (en) * 1998-02-11 2000-05-09 Onset Computer Corporation Sensing water and moisture using a delay line
US6240651B1 (en) * 1998-06-17 2001-06-05 Mycrona Gmbh Coordinate measuring machine having a non-sensing probe
US5996790A (en) * 1998-06-26 1999-12-07 Asahi Research Corporation Watertight equipment cover
US6131299A (en) * 1998-07-01 2000-10-17 Faro Technologies, Inc. Display device for a coordinate measurement machine
US6151789A (en) * 1998-07-01 2000-11-28 Faro Technologies Inc. Adjustable handgrip for a coordinate measurement machine
US5978748A (en) * 1998-07-07 1999-11-02 Faro Technologies, Inc. Host independent articulated arm
US6219928B1 (en) * 1998-07-08 2001-04-24 Faro Technologies Inc. Serial network for coordinate measurement apparatus
USD441632S1 (en) * 1998-07-20 2001-05-08 Faro Technologies Inc. Adjustable handgrip
US6163294A (en) * 1998-09-10 2000-12-19 Trimble Navigation Limited Time-tagging electronic distance measurement instrument measurements to serve as legal evidence of calibration
US6298569B1 (en) * 1998-12-08 2001-10-09 Faro Technologies, Inc. Adjustable counterbalance mechanism for a coordinate measurement machine
US6253458B1 (en) * 1998-12-08 2001-07-03 Faro Technologies, Inc. Adjustable counterbalance mechanism for a coordinate measurement machine
US6166504A (en) * 1998-12-22 2000-12-26 Denso Corporation Control apparatus for robot having an arm moving within allowable working area
US6112423A (en) * 1999-01-15 2000-09-05 Brown & Sharpe Manufacturing Co. Apparatus and method for calibrating a probe assembly of a measuring machine
USD423534S (en) * 1999-02-19 2000-04-25 Faro Technologies, Inc. Articulated arm
US6166811A (en) * 1999-08-12 2000-12-26 Perceptron, Inc. Robot-based gauging system for determining three-dimensional measurement data
US20010004269A1 (en) * 1999-12-14 2001-06-21 Junichiro Shibata Portable terminal
US20020032541A1 (en) * 2000-02-01 2002-03-14 Simon Raab Method, system and storage medium for providing an executable program to a coordinate measurement system
JP2005030937A (en) * 2003-07-07 2005-02-03 Hitachi Metals Ltd Portable electronic apparatus
US7372581B2 (en) * 2005-04-11 2008-05-13 Faro Technologies, Inc. Three-dimensional coordinate measuring device
US7721396B2 (en) * 2007-01-09 2010-05-25 Stable Solutions Llc Coupling apparatus with accessory attachment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of JP2005-30937 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178764A1 (en) * 2010-01-20 2011-07-21 Faro Technologies, Inc. Portable Articulated Arm Coordinate Measuring Machine with Multi-Bus Arm Technology
US8683709B2 (en) * 2010-01-20 2014-04-01 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with multi-bus arm technology
US20130252513A1 (en) * 2012-03-22 2013-09-26 Balance Systems S.R.L. Feeler for workpieces being machined
US20150355310A1 (en) * 2014-06-06 2015-12-10 Faro Technologies, Inc. Metrology instrument system and method of operating

Also Published As

Publication number Publication date
WO2011090903A4 (en) 2011-09-09
WO2011090902A1 (en) 2011-07-28
WO2011090890A1 (en) 2011-07-28
GB2494817B (en) 2013-10-09
GB201214407D0 (en) 2012-09-26
GB2494956A (en) 2013-03-27
JP5192614B1 (en) 2013-05-08
WO2011091096A3 (en) 2011-11-10
DE112011100304B4 (en) 2016-11-03
DE112011100293T5 (en) 2013-01-10
DE112011100308T5 (en) 2012-10-25
GB2489346B (en) 2013-07-17
WO2011091096A2 (en) 2011-07-28
GB201210309D0 (en) 2012-07-25
GB201210311D0 (en) 2012-07-25
US20110178755A1 (en) 2011-07-21
GB201212467D0 (en) 2012-08-29
GB201210314D0 (en) 2012-07-25
WO2011090889A1 (en) 2011-07-28
CN102712091A (en) 2012-10-03
DE112011100302T5 (en) 2012-10-25
GB2489134A (en) 2012-09-19
US9009000B2 (en) 2015-04-14
US8601702B2 (en) 2013-12-10
GB2489135A (en) 2012-09-19
DE112011100295B4 (en) 2018-01-11
WO2011090887A1 (en) 2011-07-28
JP5763680B2 (en) 2015-08-12
GB201214550D0 (en) 2012-09-26
JP2013517495A (en) 2013-05-16
WO2011091096A4 (en) 2012-01-26
WO2011090901A1 (en) 2011-07-28
CN102725702A (en) 2012-10-10
US8028432B2 (en) 2011-10-04
DE112011100291T5 (en) 2013-03-28
JP5442149B2 (en) 2014-03-12
US20110178762A1 (en) 2011-07-21
JP2013517497A (en) 2013-05-16
JP5297561B2 (en) 2013-09-25
DE112011100310T5 (en) 2012-11-08
CN102687433A (en) 2012-09-19
CN102725702B (en) 2015-04-08
US20110178754A1 (en) 2011-07-21
GB2489347A (en) 2012-09-26
GB2495033A (en) 2013-03-27
GB2494956B (en) 2013-07-17
JP2013517501A (en) 2013-05-16
GB2489650A (en) 2012-10-03
CN102713500B (en) 2014-07-09
DE112011100310B8 (en) 2017-10-12
GB2489837A (en) 2012-10-10
GB2490812A (en) 2012-11-14
DE112011100300T5 (en) 2013-03-07
DE112011100292T5 (en) 2012-12-20
US8001697B2 (en) 2011-08-23
US8942940B2 (en) 2015-01-27
US8171650B2 (en) 2012-05-08
CN102713499A (en) 2012-10-03
JP2013517504A (en) 2013-05-16
CN102597896A (en) 2012-07-18
WO2011090903A1 (en) 2011-07-28
CN102597895A (en) 2012-07-18
WO2011090891A1 (en) 2011-07-28
US20130025143A1 (en) 2013-01-31
US8276286B2 (en) 2012-10-02
DE112011100193B4 (en) 2016-07-07
US20110178758A1 (en) 2011-07-21
US20110178765A1 (en) 2011-07-21
US20110173825A1 (en) 2011-07-21
GB201210414D0 (en) 2012-07-25
CN102639959A (en) 2012-08-15
JP2013517512A (en) 2013-05-16
US20110173826A1 (en) 2011-07-21
GB201208504D0 (en) 2012-06-27
GB2489649A (en) 2012-10-03
US20110178763A1 (en) 2011-07-21
WO2011090897A4 (en) 2011-09-15
GB2490612A (en) 2012-11-07
DE112011100193T5 (en) 2012-12-13
JP2013517503A (en) 2013-05-16
CN102713498B (en) 2014-07-16
WO2011090894A4 (en) 2011-09-15
CN102639959B (en) 2014-12-31
GB2490452A (en) 2012-10-31
US20110173828A1 (en) 2011-07-21
GB2489347B (en) 2014-09-17
JP2013517506A (en) 2013-05-16
JP5346409B2 (en) 2013-11-20
GB2495033B (en) 2013-10-09
JP2013517498A (en) 2013-05-16
JP5421467B2 (en) 2014-02-19
WO2011090894A1 (en) 2011-07-28
CN102713499B (en) 2014-07-09
DE112011100299T5 (en) 2013-01-10
GB201223017D0 (en) 2013-01-30
US8763266B2 (en) 2014-07-01
GB201223012D0 (en) 2013-01-30
WO2011090898A1 (en) 2011-07-28
JP2015052615A (en) 2015-03-19
GB2489135B (en) 2013-10-09
CN102713498A (en) 2012-10-03
WO2011090896A1 (en) 2011-07-28
WO2011090897A1 (en) 2011-07-28
CN104075638A (en) 2014-10-01
WO2011090900A1 (en) 2011-07-28
CN102859314A (en) 2013-01-02
JP2013517505A (en) 2013-05-16
GB2489346A (en) 2012-09-26
GB2494817A (en) 2013-03-20
GB201214569D0 (en) 2012-09-26
JP5977802B2 (en) 2016-08-24
DE112011100296T5 (en) 2013-01-10
CN102656422A (en) 2012-09-05
CN102844642B (en) 2015-08-19
DE112011100292B4 (en) 2016-11-24
JP2015232570A (en) 2015-12-24
US20110173823A1 (en) 2011-07-21
GB201214415D0 (en) 2012-09-26
DE112011100289T5 (en) 2013-01-24
US20110173824A1 (en) 2011-07-21
CN102771079A (en) 2012-11-07
GB2489134B (en) 2013-10-09
DE112011100295T5 (en) 2013-01-10
US20110178766A1 (en) 2011-07-21
US20110175745A1 (en) 2011-07-21
WO2011090899A1 (en) 2011-07-28
CN102844642A (en) 2012-12-26
JP2013517508A (en) 2013-05-16
DE112011100289B4 (en) 2015-07-02
DE112011100304T5 (en) 2012-10-25
CN102713500A (en) 2012-10-03
GB201210306D0 (en) 2012-07-25
JP2013517507A (en) 2013-05-16
DE112011100310B4 (en) 2017-05-18
JP2013228400A (en) 2013-11-07
JP2013517502A (en) 2013-05-16
JP2013517499A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
US7826984B2 (en) Method and a control system for monitoring the condition of an industrial robot
US9201414B2 (en) Intrinsically-safe handheld field maintenance tool with image and/or sound capture
US8284407B2 (en) Coordinate measuring machine having an illuminated probe end and method of operation
US9978251B2 (en) Wireless location-based system and method for detecting hazardous and non-hazardous conditions
US8533967B2 (en) Coordinate measurement machines with removable accessories
JP5192614B1 (en) Coordinate measuring device
CN102472662B (en) Coordinate measurement machine with vibration detection
US20140278259A1 (en) Capture and association of measurement data
US8122610B2 (en) Systems and methods for improved coordination acquisition member comprising calibration information
JPWO2006022201A1 (en) Robot evaluation system and evaluation method
US9810549B2 (en) Systems, methods, and apparatus for calibration of and three-dimensional tracking of intermittent motion with an inertial measurement unit
US20040226392A1 (en) Apparatus for detecting and reporting environmental conditions in bulk processing and handling of goods
US7286949B2 (en) Method of error correction
US20060053645A1 (en) Level, angle and distance measuring device
JP5194229B2 (en) Data collection system for system monitoring
CN104094081A (en) Inspection method with barcode identification
US9228816B2 (en) Method of determining a common coordinate system for an articulated arm coordinate measurement machine and a scanner
US20140101953A1 (en) Portable articulated arm coordinate measuring machine with optical communications bus
US8875409B2 (en) Coordinate measurement machines with removable accessories
CN101233384A (en) Measurement method and measuring device for use in measurement systems
ES2261262T3 (en) A measurement device that includes a mobile measurement probe.
CN101581935B (en) System for reliable collaborative assembly and maintenance of complex systems
EP2637001A1 (en) Industrial process device utilizing magnetic induction
JP2015523558A (en) Coordinate measuring machine with two-layer arm
US9772173B2 (en) Method for measuring 3D coordinates of a surface with a portable articulated arm coordinate measuring machine having a camera

Legal Events

Date Code Title Description
AS Assignment

Owner name: FARO TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YORK, FREDERICK JOHN;REEL/FRAME:025639/0137

Effective date: 20110110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION