US20110171946A1 - Mobile telephone with inertial sensor - Google Patents

Mobile telephone with inertial sensor Download PDF

Info

Publication number
US20110171946A1
US20110171946A1 US13070187 US201113070187A US2011171946A1 US 20110171946 A1 US20110171946 A1 US 20110171946A1 US 13070187 US13070187 US 13070187 US 201113070187 A US201113070187 A US 201113070187A US 2011171946 A1 US2011171946 A1 US 2011171946A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
mobile telephone
navigation
inertial sensor
portable device
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13070187
Inventor
Wayne A. Soehren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Details of receivers or network of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Abstract

At least one inertial sensor is configured to sense movement of a mobile telephone. Information derived at least in part from data output by the inertial sensor related to the movement of the mobile telephone is used as an input to a user interface implemented by software executing on the mobile telephone.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/730,778, filed on Mar. 24, 2010, which is a continuation of U.S. application Ser. No. 10/973,503, filed on Oct. 26, 2004. Both U.S. application Ser. Nos. 12/730,778 and 10/973,503 are hereby incorporated herein by reference.
  • BACKGROUND
  • Navigation systems are typically used to provide information indicative of position and/or movement. For example, in one exemplary navigation system, one or more inertial sensors are used to generate information indicative of movement. Examples of such inertial sensors include gyroscopes and accelerometers. In one such navigation system, one or more magnetic sensors are also used to generate information indicative of direction. An example of such a magnetic sensor is a magnetometer. In one such navigation system, one or more barometric pressure sensors are also used to generate information indicative of altitude. The information generated by such sensors is processed to provide positional and/or movement information.
  • In one application, a navigation system is used to generate information indicative of the position and/or motion of a particular human. However, in applications where the sensors are subject to a wide and/or unpredictable range of human movements, the complexity of navigational algorithms and/or the quality of the sensors used in such an application typically must be increased in order to handle and/or compensate for such movements and still provide the desired navigational information. This can increase the cost and/or size of such a system.
  • SUMMARY
  • One exemplary embodiment is directed to a mobile telephone comprising at least one inertial sensor configured to sense movement of the mobile telephone and at least one programmable processor configured to execute software. The at least one programmable processor is communicatively coupled to the inertial sensor. The software is configured to use information derived at least in part from data output by the inertial sensor related to the movement of the mobile telephone as an input to a user interface implemented by the software on the mobile telephone.
  • Another exemplary embodiment is directed to a method comprising sensing movement of a mobile telephone at least in part using an inertial sensor and providing information derived at least in part from sensor data output by the inertial sensor to at least one programmable processor included in the mobile telephone. The method further comprises using at least some of the information provided to the programmable processor as an input to software executing on the programmable processor included in the mobile telephone and using the information derived at least in part from the data output by the inertial sensor as an input to a user interface implemented by the software on the mobile telephone.
  • DRAWINGS
  • FIG. 1 is a schematic diagram of one usage scenario of a human using a navigation unit and a portable digital device.
  • FIG. 2 is a schematic diagram of another usage scenario of a human using a navigation unit and a portable digital device.
  • FIG. 3 is a block diagram of one embodiment of the system shown in FIG. 1.
  • FIG. 4 is a flow diagram of one embodiment of a method of communicating data between a navigation unit and a portable device.
  • FIG. 5 is a flow diagram of one embodiment of a method of communicating data between a navigation unit and a portable device.
  • Like reference numbers and designations in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • FIG. 1 is a schematic diagram of a human 100 (also referred to here as the “user” 100) using an embodiment of system 101 that includes a navigation unit 102 and a portable device 104. FIG. 1 illustrates one usage scenario for the navigation unit 102. As used herein, a “portable device 104” is a device that is typically held in a hand 106 of the user 100 when the user 100 uses or otherwise interacts with the portable device 104. Examples of portable devices 104 include a mobile telephone, two-way radio, palmtop computer, personal digital assistant, music and/or video player (for example, a MP3, CD, or DVD player), and hand-held game device. In the embodiment shown in FIG. 1, the navigation unit 102 and the portable device 104 communicate with one another over a wireless communication link 108. The communication between the navigation unit 102 and the portable device 104 over the wireless communication link 108 occurs when the navigation unit 102 and the portable device 104 are both used by the user 100. That is, such communication occurs when the navigation unit 102 and the portable device 104 are physically close to each other.
  • In the usage scenario shown in FIG. 1, the navigation unit 102 is attached to the torso 110 of the user 100. For example, as shown in FIG. 1, the navigation unit 102 is attached to a belt 112 worn by the user 100. In one implementation, the navigation unit 102 (or a carrying case (not shown) for the navigation unit 102) includes a clip or other attachment mechanism that allows the navigation unit 102 to be removably attached to the belt 112.
  • Such an embodiment is suitable for use, for example, in applications where it is desirable to monitor the movement of the user 100. The portable device 104 is typically subject to a wide and/or unpredictable range of movements. By separating the navigation unit 102 from the portable device 104 and mounting the navigation unit 102 on the torso 110 of the user 100, the navigation unit 102 need not be designed to handle and/or compensate for such a wide and/or unpredictable range of movements of the portable device 104 in order to monitor the movement of the user 100. Thus, smaller, less expensive and/or less complex sensors and/or algorithms can be used in the navigation unit 102 in such an embodiment. The use of such sensors and/or algorithms can reduce the cost, complexity, and/or size of the navigation unit 102.
  • Moreover, though the device 104 is shown in FIG. 1 being held in the hand 106 of the user 100, it is to be understood that the portable device 104 is not always held in the user's hand 106. For example, in the embodiment shown in FIG. 1, the user 100 can attach the portable device 104 to the belt 112 of the user 100 when the user 100 is not holding the portable device 104 in one of the user's hands 106. The portable device 104 (or a carrying case (not shown) for the portable device 104) in such an embodiment includes a belt clip (not shown) or other attachment mechanism that is used to removably attach the portable device 104 to the belt 112. The portable device 104 is removed from the belt 112 when the user 100 wishes to actively interact with the portable device 104. For example, where the portable device 104 comprises a mobile telephone, the mobile telephone is removed from the belt 112 when the user 100 wishes to engage in a telephone call using the mobile telephone.
  • FIG. 2 is a schematic diagram of another usage scenario for the navigation unit 102. The navigation unit 102 in this usage scenario is physically coupled to the portable device 104. For example, in one implementation, the navigation unit 102 is removably coupled to the portable device 104 using a clip or other attachment mechanism that allows the navigation unit 102 to be physically attached to the portable unit 104 so that the navigation unit 102 and the portable device 104 can be held and moved by the user 100 together.
  • Such an embodiment is suitable for use, for example, in applications where it is desirable to monitor the movement of the portable device 104 as opposed to the user 100. For example, in one such application, the navigation unit 102 and the portable device 104 act as an input device for a video game (for example, where the portable device 104 and navigation unit 102 are moved like a steering wheel of an automobile or like a joystick). In another application, the navigation unit 102 and the portable device 104 act as an input device for a user interface executing on the portable device 104 (for example, where the portable device 104 and the navigation unit 102 are used as a pointing device such as a mouse). In the embodiment shown in FIG. 2, the navigation unit 102 and the portable device 104 communicate with one another over a wireless communication link 108, as is done in the usage scenario shown in FIG. 1.
  • In applications where the navigation unit 102 need only identify a finite number of gestures or movements and/or with only a relatively modest degree of accuracy, smaller, less expensive and/or less complex sensors and/or algorithms (for example, the same sensors and/or algorithms that are suitable for use in the usage scenario shown in FIG. 1) can be used in the navigation unit 102. The use of such sensors and/or algorithms can reduce the cost, complexity, and/or size of the navigation unit 102.
  • In the usage scenario shown in FIG. 2, the navigation unit 102 can be removed from the portable device 104 and, for example, mounted to the torso 110 of the user 100 as shown in FIG. 1 in order to monitor the movement of the user 100 as opposed to the portable device 104. Likewise, in the usage scenario shown in FIG. 1, the navigation unit 102 can be removed from the torso 110 of the user 100 and, for example, mounted to the portable device 104 as shown in FIG. 2 in order to monitor the movement of the portable device 104.
  • FIG. 3 is a block diagram of one embodiment of the system 101 shown in FIG. 1. The navigation unit 102 includes a sensor subsystem 302 that includes one or more sensors 304. The sensors 304 generate information (for example, in the form of one or more analog signals or one or more digital data streams) that are indicative of a position and/or movement of the navigation unit 102. In the embodiment shown in FIG. 3, the sensors 304 include one or more inertial sensors 306, one or more magnetic sensors 308, and/or one or more barometric pressure sensors 309. In one implementation of such an embodiment, one or more of the sensors 304 are implemented using micro-electro-mechanical systems (MEMS) sensors. The data output by the sensors 304 are processed by a processing unit 310. In the embodiment shown in FIG. 3, the processing unit 310 is implemented using at least one programmable processor 312 (for example, at least one microprocessor) that is programmed with suitable program instructions 314. In such an embodiment, the processing unit 310 includes a memory 316 (for example, any suitable form of volatile memory and/or non-volatile memory) for storing such program instructions 314 and/or data structures 318 used during execution of the program instructions 314.
  • In the embodiment of system 101 shown in FIG. 3, the navigation unit 102 also includes a wireless interface 320. The wireless interface 320 is coupled to the processing unit 310 and is used by the processing unit 310 to communicate with the portable device 104 over the communication link 108. In one embodiment, the wireless communication link 108 is implemented using a low-power, short-range wireless communication link that makes use of, for example, BLUETOOTH® wireless technology. In such an embodiment, the wireless interface 320 includes a suitable BLUETOOTH wireless transceiver 322 that sends and receives data over the wireless communication link 108. In other embodiments, other types of wireless communication links 108 are used.
  • In the embodiment of system 101 shown in FIG. 3, the navigation unit 102 also includes an attachment interface 380. In one implementation, the attachment interface 380 comprises a clip or other attachment mechanism that is used to attach the navigation unit 102 to the user 100 (or to an item of clothing worn by the user such as a belt) and/or to the portable device 104. In other embodiments, the navigation unit 102 does not include the attachment interface 380 and instead the navigation unit 102 is put into a carrying case (not shown) that includes an attachment interface.
  • An exemplary embodiment of a portable device 104 is also shown in FIG. 3. The portable device 104 shown in FIG. 3 includes an input interface 332 and an output interface 334. The particular type of input interface 332 and output interface 334 used in the portable device 104 varies depending on the particular type of portable device 104 that is used. For example, where the portable device 104 comprises a mobile telephone, the input interface 332 includes a keypad 336 on which a user 100 is able to press various keys to input alphanumeric data. Also, in such a mobile telephone embodiment, the input interface 332 also includes a microphone 338 into which sound input is supplied to the portable device 104. In one implementation, a user speaks various voice commands that are recognized by the portable device 104.
  • In such a mobile telephone embodiment, the output interface 334 includes a display 340 (for example, a liquid crystal display (LCD)) on which information is displayed for the user 100. In one implementation of such an embodiment, a user interface is displayed on the display 340 in order to display information for the user and to prompt the user to supply certain inputs. In some embodiments (for example, where the portable device 104 comprises a personal digital assistant (PDA) or palmtop computer), the input interface 332 includes a touch screen 342 that is coupled to the display 340 of the output interface 334 (for example, by being overlaid on the display 340). Also, in a mobile telephone embodiment, the output interface 334 includes a speaker 344 that generates audio signals for the user 100 to hear. For example, in one implementation of such an embodiment, information is provided to the user 100 (or the user 100 is prompted to supply input) by playing, for example, a voice on the speaker 344 for the user 100.
  • A processing unit 346 is included in the portable device 104. The processing unit 346 is used to control and/or implement at least a portion of the functionality described here as being performed by the portable device 104. In the embodiment shown in FIG. 3, the processing unit 346 is implemented using at least one programmable processor 348 (for example, at least one microprocessor) that is programmed with suitable program instructions 350. In such an embodiment, the processing unit 346 of the portable device 104 includes a memory 352 (for example, any suitable form of volatile memory and/or non-volatile memory) for storing such program instructions 350 and/or data structures 354 used during execution of the program instructions 350.
  • The portable device 104 also includes a wireless interface 356. The wireless interface 356 is coupled to the processing unit 346 of the portable device 104 and is used by the processing unit 346 to communicate with the navigation unit 102 over the communication link 108. In one embodiment where the wireless communication link 108 is implemented using BLUETOOTH® wireless technology, the wireless interface 356 includes a suitable BLUETOOTH wireless transceiver 358 that sends and receives data over the wireless communication link 108. In other embodiments, other types of wireless communication links 108 are used.
  • In the embodiment of system 101 shown in FIG. 3, the portable device 104 also includes an attachment interface 382. In one implementation, the attachment interface 382 comprises a clip or other attachment mechanism that is used to attach the portable device 104 to the user 100 (or to an item of clothing worn by the user such as a belt) and/or to the navigation unit 102. In other embodiments, the portable device 104 does not include the attachment interface 382 and instead the portable device 104 is put into a carrying case (not shown) that includes an attachment interface. For example in one embodiment, the navigation unit 102 is incorporated into a “holster” or other carrying case for the portable device 104. When the user 100 is not actively using the portable device 104, the user 100 inserts the portable device 104 into the holster that contains the navigation unit 102.
  • In the embodiment shown in FIG. 3, each of the navigation unit 102 and the portable device 104 include separate power sources 360 and 362, respectively. For example, in such an embodiment, each of the power sources 360 and 362 comprises one or more batteries. In other embodiments, power sources 360 and/or 362 comprise other types of power sources. By including a separate power source 360 in the navigation unit 102, the navigation unit 102 need not be provided power from another source external to the navigation unit 102 (for example, from the portable device 104).
  • In the embodiment shown in FIG. 3, in addition to inertial sensors 306, magnetic sensors 308 and barometric pressure sensors 309, other mechanisms are used to obtain navigation-related information. In particular, in the embodiment shown in FIG. 3, the sensors 304 include a radio frequency (RF) sensor 370. The RF sensor 370 detects whether a radio frequency transponder (not shown) is within a detection range of the RF sensor 370. In one implementation, the RF sensor 370 comprises a RF transponder reader that, when a RF transponder (not shown) is placed within the detection range of the RF transponder reader, receives information from the RF transponder. In such an implementation, the information that is received from the RF transponder includes information that is associated with a particular geographic location. The information received from such a RF transponder is processed by the processing unit 310 to determine a geographic position estimate. Such a geographic position estimate is then used in the navigation-related processing performed by the processing unit 310 (for example, to control the navigation error growth).
  • For example, in one application a particular RF transponder is located at a specific geographic location (for example, a room within a building). When the navigation unit 102 is positioned so that the RF transponder is within the detection range of the RF sensor 370, the RF transponder communicates information from the RF transponder to the RF sensor 370. In one implementation, the information that is communicated from the RF transponder to the RF sensor 370 includes the geographic position of the RF transponder. That is, information directly identifying the geographic position of the RF transponder is encoded into the information communicated from the RF transponder to the RF sensor 370. In another implementation, the information that is communicated from the RF transponder to the RF sensor 370 includes a serial number or other identifier of the RF transponder. The processing unit 310, in such an implementation, is able to associate that serial number with a particular geographic location (for example, by using a look-up table or other data structure 318 stored in memory 316). In such implementations, the processing unit 310 concludes that the navigation unit 102 is near the geographic position associated with that RF transponder.
  • Also, in the embodiment shown in FIG. 3, the navigation unit 102 uses global position system (GPS) information in the navigation-related processing performed by the processing unit 310. In the embodiment shown in FIG. 3, the navigation unit 102 and/or the portable device 104 includes a GPS receiver. For example, the portable device 104, in one embodiment, includes a GPS receiver 364 that is used to receive signals transmitted by GPS satellites (typically, from at least four GPS satellites). In operation, the distance from each of the GPS satellites to the GPS receiver 364 is determined by estimating the amount of time it takes each signal transmitted by each of the GPS satellites to reach the GPS receiver 364. The distance estimates are then used to calculate the position of the GPS receiver 364. In one such embodiment, such GPS information is communicated from the portable device 104 to the navigation unit 102 over the wireless communication link 108. The GPS information is received by the navigation unit 102 from the portable device 104 and is used by the processing unit 310 in the navigation-related processing performed by the processing unit 310. For example, the processing unit 310 in one embodiment uses the GPS information to control navigation error growth.
  • In another embodiment, the navigation unit 102 includes a GPS receiver 366 within the navigation unit 102 itself instead of, or in addition to, the GPS receiver 364 within the portable device 102. In such an embodiment, the GPS information generated by the GPS receiver 366 is used by the processing unit 310 in the navigation-related processing performed by the processing unit 310. For example, the processing unit 310 in one embodiment uses the GPS information to control navigation error growth.
  • Also, in the embodiment shown in FIG. 3, the navigation unit 102 uses time difference of arrival (TDOA) or time of arrival (TOA) information in the navigation-related processing performed by the processing unit 310. In the embodiment shown in FIG. 3, the portable device 104 includes a TDOA/TOA interface 386 by which the portable device 104 receives a TDOA or TOA position estimate. In operation, the portable device 104 transmits data to two or more base stations (for example, using a transceiver (not shown) included in the TDOA/TOA interface 386). The base stations determine, in this example, a position estimate for the portable device 104 based on the differences in the time at which such transmission arrive at each of the base stations. The position estimate is communicated to the portable device 104 and the portable device 104 communicates the received TDOA position estimate to the navigation unit 102 over the wireless communication link 108. The TDOA position estimate is received by the navigation unit 102 from the portable device 104 and is used by the processing unit 310 in the navigation-related processing performed by the processing unit 310. For example, the processing unit 310 in one embodiment uses the TDOA position estimate to control navigation error growth. In other implementations, TOA techniques are used in addition to or instead of TDOA techniques to generate a position estimate.
  • Moreover, as shown in FIG. 3, the navigation unit 102 can include a TDOA/TOA interface 387 in addition to, or instead of, the TDOA/TOA interface 386 included in the personal device 104. The TDOA/TOA interface 387 is used to generate a TDOA or TOA position estimate as described above in connection with the TDOA/TOA interface 386. In one implementation, the RF sensor 370 is implemented as a TDOA/TOA sensor for use with or in the TDOA/TOA interface 387. Such a position estimate is then used by the processing unit 310 in the navigation-related processing performed by the processing unit 310.
  • In another implementation, the TDOA/TOA interface 387 is used to generate individual TDOA or TOA range and/or range rate estimates to individual TDOA/TOA base station(s) as described above in connection with the TDOA/TOA interface 386. The range and/or range rate estimate(s) are then used by the processing unit 310 in the navigation-related processing performed by the processing unit 310. This implementation allows useful navigation data to be derived from the TDOA/TOA even when a complete position estimate cannot be performed by the TDOA/TOA due to lack of base station coverage.
  • In one exemplary embodiment, the sensors 304 are used to determine a position of the user 100 of the system 101. In such an embodiment, inertial sensors 306 are used to determine a first position estimate. The sensors 304 and/or the GPS receiver 364 or 366 are also used to determine a second position estimate and/or an estimate of distance traveled by the user 100. The second position estimate and/or distance traveled estimate are used to determine corrections to the first position estimate.
  • For example, in one implementation of such an exemplary embodiment, the processing unit 310 generates the first position estimate from signals output from inertial sensors 306. In such an implementation, the inertial sensors 306 include an arrangement of three accelerometers and three gyroscopes that are used to generate the first position estimate. Accelerometers are inertial sensors 306 that sense a linear change in rate (that is, acceleration) along a given axis. Gyroscopes are inertial sensors 306 that sense angular rate (that is, rotational velocity). The three accelerometers are oriented around three mutually orthogonal axes (the x, y, and z axes) and the three gyroscopes are oriented around three mutually orthogonal axes (pitch, yaw, and roll axes). The outputs of the accelerometers and the gyroscopes are processed by the processing unit 310 (for example, using program instructions 314 executing on the programmable processor 312 of the processing unit 310). For example, the three orthogonal outputs of the accelerometers are vectorily summed by the processing unit 310 to obtain an acceleration vector for the navigation unit 102. The processing unit 310 integrates the acceleration vector to obtain a velocity vector for the navigation unit 102 and then integrates the velocity vector to obtain a position vector for the navigation unit 102. The three orthogonal outputs of the gyroscopes are vectorily summed by the processing unit 310 to obtain a rotational velocity vector for the navigation unit 102. The processing unit 310 integrates the rotational velocity vector to obtain the attitude of the navigational unit 102. The position vector and the attitude are used to generate the first position estimate. In another implementation, a second position estimate of altitude is generated using the barometric pressure sensor 309.
  • In one implementation of such an exemplary embodiment, the processing unit 310 generates the second position estimate and/or distance traveled estimate using a motion classifier and one or more motion models. In such an implementation, the motion classifier and motion models are implemented, for example, in software using appropriate program instructions 314 executing on the programmable processor 312 of the processing unit 310. The motion classifier and motion models are used to generate the second position estimate and/or distance traveled estimate from the signals output by the sensors 304. In another implementation, the second position estimate and/or distance traveled estimate is generated using dead reckoning techniques, GPS information, TDOA information, and/or information received from one or more RF transponders.
  • In one implementation of such an exemplary embodiment, the processing unit 310 generates the corrections to the first position estimate using a Kalman filter. In such an implementation, the Kalman filter is implemented, for example, in software using appropriate program instructions executing on the programmable processor 312 of the processing unit 310. The Kalman filter receives the first position estimate and the second position estimate and/or distance traveled estimate and generates corrective feedback for the first position estimate.
  • Such an exemplary embodiment is described in U.S. Pat. No. 6,522,266, entitled “Navigation System, Method and Software for Foot Travel,” (referred to here as the “266 Patent”). The '266 Patent is hereby incorporated herein by reference.
  • In another exemplary embodiment, the navigation unit 102 is used to sense and measure the motion of the user 100 to which the navigation unit 102 is attached. The navigation unit 102 classifies the motion of the user 100 and determines the amount of energy expended by the user 100 as a result of the motion. The sensors 304 include sensors (for example, sensors 306 and 308) for measuring position and/or distance traveled. In such an embodiment, the sensors 304 also include at least one physiological sensor 372 that senses or measures information indicative of at least one physiological attribute of the user 100 such as respiration rate, heart rate, hydration level, and/or blood oxygen level before, during, and/or after such motion. Such an exemplary embodiment is described in co-pending U.S. patent application Ser. No. 10/634,931, entitled “Human Motion Identification and Measurement System and Method” and filed on Aug. 5, 2003 (the “'931 Application”). The '931 Application is hereby incorporated herein by reference.
  • FIG. 4 is a flow diagram of one embodiment of a method 400 of communicating data between a navigation unit and a portable device. The embodiment shown in FIG. 4 is described here as being implemented using the system 101 shown in FIGS. 1-3, though other embodiments are implemented in other ways (for example, using other navigation units and/or portable devices).
  • Method 400 includes receiving an input for the navigation unit 102 (referred to here as “navigation-related input”) at the portable device 104 (block 402). One example of a navigation-related input is input that is supplied to the portable device 104 by the user 100 via the input interface 332 of the portable device 104. For example, in an embodiment where the portable device 104 comprises a mobile telephone, a user uses a keypad 336 to enter the navigation-related input on the keypad 336 and/or speaks a voice command into a microphone 338 that is recognized, for example, by voice recognition software executing on the processing unit 346 of the portable device 104. In other embodiments, the navigation-related input is supplied using other parts of the input interface 332.
  • In some situations, the portable device 104, via the output interface 344, prompts the user 100 to supply such navigation-related input. For example, in one embodiment, the portable device 104 prompts the user 100 by displaying a prompt on a display 340 (for example, as a part of a user interface). In another embodiment, the portable device 104 prompts the user 100 by playing an audible cue on a speaker 344 (for example, by playing a voice instructing the user 100 to supply a certain type of navigation-related input). In other situations, the user 100 supplies the navigation-related input to the portable device 100 without first being prompted by the portable device 104. For example, in one such situation, the user 100 provides a system command to the navigation unit 102 (for example, to change some operational aspect of the navigation unit 102).
  • One type of navigation-related input includes system or other types of commands that modify the operation of the navigation unit 102. For example, in one embodiment, the user 100 causes the navigation unit 102 to power on or power off by entering a power on or power off command, respectively.
  • Another type of navigation-related input includes navigation information that is used in the navigation processing performed by the navigation unit 102. For example, in an embodiment where the navigation unit 102 performs dead reckoning navigation processing, the user 100 supplies an input that is indicative of a known starting position of the user 100 that serves as the basis for the dead reckoning processing performed by the navigation unit 102.
  • Another type of navigation-related input includes information about the user 100. For example, in an embodiment where the navigation unit 102 estimates an amount of energy expended by the user 100 in performing some motion such as walking, the user 100 enters the user's weight and age, which are used by the processing unit 310 in such an embodiment to estimate the amount of energy expended by the user 100 in performing the motion. Another example of such navigation-related input includes an average stride length for the user 100 that is used in dead reckoning navigation processing performed by the navigation unit 102.
  • Another type of navigation-related input is GPS information that is received by a GPS receiver 364 of the portable device 104. For example, in one embodiment, the GPS receiver 364 of the portable device 104 receive signals transmitted by four GPS satellites. The distance from each of the GPS satellites to the GPS receiver 364 is determined by estimating the amount of time it takes each signal transmitted by each of the GPS satellites to reach the GPS receiver 364. The distance estimates are then used to calculate the position of the GPS receiver 364. This GPS position information is then communicated to the navigation unit 102 as described below.
  • Another type of navigation-related input is TDOA information that is received by a TDOA interface 386 of the portable device 104. For example in one embodiment, the TDOA information includes a TDOA position estimate determined based on the time difference of arrival of a transmission from the portable device 104 to multiple base stations. The TDOA information is then communicated to the navigation unit 102 as described below.
  • Method 400 also includes transmitting the navigation-related input from the portable device 104 to the navigation unit 102 over the wireless communication link 108 (block 404). The navigation-related input is received by the navigation unit 102 (block 406). For example, the navigation-related input is transmitted by the wireless transceiver 358 of portable device 104 to the wireless transceiver 322 of the navigation unit 102 over the wireless communication link 108 using BLUETOOTH technology. The transmitted navigation-related input is received by the wireless transceiver 322 in the navigation unit 102 and is supplied to the processing unit 310 for use thereby. In other embodiments, other wireless communication technology is used.
  • In one embodiment, the navigation-related input is checked for errors and/or other conditions by the portable device 104 prior to communicating the navigation-related input to the navigation unit 102. For example, where a user 100 supplies navigation-related input to the portable device 104 using the input interface 332 (for example, by entering such input using keypad 336), if the user 100 makes a data entry error (for example, by entering alphabetic data where numeric data is expected or required), an error message is displayed for the user 100 via the output interface 334 (for example, by displaying such a message on the display 340) prompting the user 100 to supply corrected input. In this way, navigation-related input containing an error need not be communicated between the portable device 104 and the navigation unit 102. As a result, the navigation unit 102 need not perform the checking performed by the portable device 104.
  • In other embodiments, such checking is performed by the navigation unit 102 after the navigation-related input has been communicated from the portable device 104 to the navigation unit 102 over the wireless communication link 108. In one implementation of such an embodiment, when the navigation unit 102 determines that the received navigation-related input contains an error (or when some other condition exists), the navigation unit 102 communicates this fact to the portable device 104 (for example, by sending an error message to the portable device 104 over the wireless communication link 108). When the portable device 104 receives such a communication, the portable device 104 informs the user 100 that the navigation-related input contained an error (for example, by displaying a suitable error message on the display 340). In this way, the input processing functionality of the portable device 104 can be simplified.
  • In other embodiments, input checking is performed both by the portable device 104 prior to communication of the navigation-related input to the navigation unit 102 and by the navigation unit 102 after the navigation-related input is received at the navigation unit 102.
  • Method 400 also includes using at least a portion of the received navigation-related input in the processing performed by the navigation unit 102 (block 408). For example, where the navigation-related input includes system or other types of commands that modify the operation of the navigation unit 102, the navigation unit 102 carries out the command included in the navigation-related input and modifies the operation of the navigation unit 102 accordingly.
  • In an embodiment where the navigation unit 102 performs dead reckoning navigation processing and the navigation-related input includes a known starting position of the user 100, the known starting position is used in the dead reckoning navigation processing performed by the navigation unit 102.
  • In an embodiment where the navigation unit 102 estimates an amount of energy expended by the user 100 in performing some motion such as walking and the navigation-related input includes the weight and age of the user 100, the processing unit 310 uses the weight and age information to estimate the amount of energy expended by the user 100 in performing the motion.
  • In an embodiment where the navigation-related input includes GPS or TDOA information (for example, a position estimate determined based on GPS signals received at the portable device 104 or a TDOA position estimate), the GPS or TDOA information is used by the processing unit 310, for example, to limit the growth of errors in position and/or motion estimates based on the outputs of the inertial sensors 306.
  • FIG. 5 is a flow diagram of one embodiment of a method 500 of communicating data between a navigation unit and a portable device. The embodiment shown in FIG. 5 is described here as being implemented using the system 101 shown in FIGS. 1-3, though other embodiments are implemented in other ways (for example, using other navigation units and/or portable devices).
  • Method 500 includes generating output at the navigation unit 102 (block 502). This output is also referred to here as “navigation-related output.” In one embodiment, the navigation-related output is generated by the processing unit 310 of the navigation unit 102. In such an embodiment, the processing unit 310 generates the navigation-related output based on, for example, signals output by the sensors 304 and/or the GPS receiver 366 and/or navigation-related input received from the portable unit 104 (for example, a navigation-related input such as a starting position estimate or GPS or TDOA information received from the GPS receiver 364 or TDOA interface 386, respectively, of the portable device 104).
  • One example of a navigation-related output is a position estimate that is determined by the navigation unit 102 using signals output by one or more of the sensors 304. Another example of navigation-related output is an estimate of an attribute related to motion of the user (for example, the distance traveled, velocity, acceleration, etc.). Examples of such output are described in the '266 Patent. Other examples of navigation-related output include an estimate or measured physiological attribute of the user 100 to which the navigation unit 102 is attached (for example, energy expended, respiration rate, heart rate, hydration level, blood oxygen level). Examples of such physiological output are described in the '931 Application.
  • Method 500 includes transmitting the navigation-related output from the navigation unit 102 to the portable device 104 over the wireless communication link 108 (block 504). The navigation-related output is received by the portable device 104 (block 506). For example, the navigation-related output is transmitted by the wireless transceiver 322 of the navigation unit 102 to the wireless transceiver 358 of portable device 104 over the wireless communication link 108 using BLUETOOTH technology. In other embodiments, other wireless communication technology is used. The transmitted navigation-related output is received by the wireless transceiver 358 in the portable device 104.
  • The received navigation-related output is used by the portable device 104 (block 508). For example, in one embodiment, the received navigation-related output is supplied to the processing unit 346 of the portable device 104 for use thereby. For example in one implementation (shown in FIG. 5 using dashed lines), the use of the navigation-related output includes outputting at least a portion of the navigation-related output at the portable device 104 for the user 100 (block 510). In one usage scenario, information (for example, a position estimate) included in the navigation-related output is displayed on a display 340 of the portable device 104 for the user 100 to read. In such a usage scenario, the navigation-related output is displayed within a user interface that is otherwise displayed on display 340. Also, in some situations, the navigation-related output is displayed in connection with a prompt or other request for the user 100 to enter some form of input in response to the displayed output.
  • In another usage scenario, the information included in the navigation-related output is used to generate an audio signal that is played by the speaker 344 included in the output interface 334 of the portable device 104. For example, in one implementation of such an embodiment, information included in the navigation-related output is output in the form of a voice that speaks at least some of the information included (or information that is derived from at least some of) the navigation-related output. In another implementation, a particular audio cue is played on the speaker 342 depending on the content of the navigation-related output (for example, a warning beep may be played if the user 100 has strayed from a particular course or a physiological attribute of the user 100 meets some condition).
  • In one embodiment, information included in the navigation-related output is formatted or otherwise modified prior to being output by the portable device 104. In one example where the navigation-related output includes a position estimate, the processing unit 346 of the portable device 104 converts the units of measure in which the position estimate is expressed to units that are preferred by the user 100 (for example, from metric units to English/U.S. units).
  • In another embodiment, the received navigation-related output is used by the portable device 104 as an input for other processing performed by the portable device 104. For example in the usage scenario shown in FIG. 2, the navigation unit 102 and the portable device 104 act as an input device, for example, for a video game or a user interface executing on the portable device 104. The navigation-related output received by the portable device 104 is supplied to the video game or user interface for processing thereby.
  • The methods and techniques described here may be implemented in digital electronic circuitry, or with a programmable processor (for example, a special-purpose processor or a general-purpose processor such as a microprocessor) firmware, software, or in combinations of them. Apparatus embodying these techniques may include appropriate input and output devices, a programmable processor, and a storage medium tangibly embodying program instructions for execution by the programmable processor. A process embodying these techniques may be performed by a programmable processor executing a program of instructions to perform desired functions by operating on input data and generating appropriate output. The techniques may advantageously be implemented in one or more programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. Generally, a processor will receive instructions and data from a read-only memory and/or a random access memory. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and DVD disks. Any of the foregoing may be supplemented by, or incorporated in, specially-designed application-specific integrated circuits (ASICs).
  • A number of embodiments of the invention defined by the following claims have been described. Nevertheless, it will be understood that various modifications to the described embodiments may be made without departing from the spirit and scope of the claimed invention. Accordingly, other embodiments are within the scope of the following claims.

Claims (11)

  1. 1. A mobile telephone comprising:
    at least one inertial sensor configured to sense movement of the mobile telephone; and
    at least one programmable processor configured to execute software, the at least one programmable processor communicatively coupled to the inertial sensor;
    wherein the software is configured to use information derived at least in part from data output by the inertial sensor related to the movement of the mobile telephone as an input to a user interface implemented by the software on the mobile telephone.
  2. 2. The mobile telephone of claim 1, wherein the inertial sensor comprises at least one of:
    an accelerometer; and
    a gyroscope.
  3. 3. The mobile telephone of claim 1, wherein the information derived at least in part from the data output by the inertial sensor related to the movement of the mobile telephone comprises information indicative of at least one of an attitude of the mobile telephone, a velocity of the mobile telephone, and an acceleration of the mobile telephone.
  4. 4. The mobile telephone of claim 1, wherein the inertial sensor is attached to the mobile telephone.
  5. 5. The mobile telephone of claim 1 further comprising at least one of: a display, a speaker, a key pad, a microphone, and a touch screen.
  6. 6. The mobile telephone of claim 1 further comprising at least one of a magnetic sensor, a barometric pressure sensor, a radio frequency sensor, a physiological sensor, a global position system receiver, a time difference of arrival interface, and a time of arrival interface.
  7. 7. A method comprising:
    sensing movement of a mobile telephone at least in part using an inertial sensor;
    providing information derived at least in part from sensor data output by the inertial sensor to at least one programmable processor included in the mobile telephone; and
    using at least some of the information provided to the programmable processor as an input to software executing on the programmable processor included in the mobile telephone; and
    using the information derived at least in part from the data output by the inertial sensor as an input to a user interface implemented by the software on the mobile telephone.
  8. 8. The method of claim 7, wherein the inertial sensor comprises at least one of:
    an accelerometer; and
    a gyroscope.
  9. 9. The method of claim 7, wherein information derived at least in part from the sensor data output by the inertial sensor comprises information indicative of at least one of an attitude of the mobile telephone, a velocity of the mobile telephone, and an acceleration of the mobile telephone.
  10. 10. A program product for use with a mobile telephone having an inertial sensor attached thereto, the program product comprising a non-transitory processor-readable medium on which program instructions are embodied, wherein the program instructions are operable, when executed by at least one programmable processor included in the mobile telephone, to cause the mobile telephone to:
    obtain information derived from sensor data output by the inertial sensor;
    use at least some of the information derived from the sensor data output by the inertial sensor as an input for the program product; and
    use the information derived at least in part from the data output by the inertial sensor as an input to a user interface on the mobile telephone.
  11. 11. The program product of claim 10, wherein the information derived from the sensor data output by the inertial sensor is indicative of at least one of an attitude of the mobile telephone, a velocity of the mobile telephone, and an acceleration of the mobile telephone.
US13070187 2004-10-26 2011-03-23 Mobile telephone with inertial sensor Abandoned US20110171946A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10973503 US7706977B2 (en) 2004-10-26 2004-10-26 Personal navigation device for use with portable device
US12730778 US8112226B2 (en) 2004-10-26 2010-03-24 Telephone or other portable device with inertial sensor
US13070187 US20110171946A1 (en) 2004-10-26 2011-03-23 Mobile telephone with inertial sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13070187 US20110171946A1 (en) 2004-10-26 2011-03-23 Mobile telephone with inertial sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12730778 Continuation US8112226B2 (en) 2004-10-26 2010-03-24 Telephone or other portable device with inertial sensor

Publications (1)

Publication Number Publication Date
US20110171946A1 true true US20110171946A1 (en) 2011-07-14

Family

ID=35788700

Family Applications (3)

Application Number Title Priority Date Filing Date
US10973503 Active 2028-03-18 US7706977B2 (en) 2004-10-26 2004-10-26 Personal navigation device for use with portable device
US12730778 Active US8112226B2 (en) 2004-10-26 2010-03-24 Telephone or other portable device with inertial sensor
US13070187 Abandoned US20110171946A1 (en) 2004-10-26 2011-03-23 Mobile telephone with inertial sensor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10973503 Active 2028-03-18 US7706977B2 (en) 2004-10-26 2004-10-26 Personal navigation device for use with portable device
US12730778 Active US8112226B2 (en) 2004-10-26 2010-03-24 Telephone or other portable device with inertial sensor

Country Status (4)

Country Link
US (3) US7706977B2 (en)
EP (1) EP1805483B1 (en)
JP (2) JP4790721B2 (en)
WO (1) WO2006047525A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100312468A1 (en) * 2009-06-03 2010-12-09 Honeywell International Inc. Integrated micro-electro-mechanical systems (mems) sensor device
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US20140155087A1 (en) * 2010-12-10 2014-06-05 Blueforce Development Corporation Decision support
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8938210B1 (en) * 2011-06-29 2015-01-20 Integrity Tracking, Llc Personal monitoring system and method
FR3010363A1 (en) * 2013-09-09 2015-03-13 Valeo Securite Habitacle Method for Securing a control distance of a motor vehicle by a mobile terminal
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9077321B2 (en) 2013-10-23 2015-07-07 Corning Optical Communications Wireless Ltd. Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305303B2 (en) * 2004-03-02 2007-12-04 Honeywell International Inc. Personal navigation using terrain-correlation and/or signal-of-opportunity information
US7764641B2 (en) 2005-02-05 2010-07-27 Cisco Technology, Inc. Techniques for determining communication state using accelerometer data
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US9041744B2 (en) * 2005-07-14 2015-05-26 Telecommunication Systems, Inc. Tiled map display on a wireless device
US20070282565A1 (en) * 2006-06-06 2007-12-06 Honeywell International Inc. Object locating in restricted environments using personal navigation
US8577328B2 (en) 2006-08-21 2013-11-05 Telecommunication Systems, Inc. Associating metro street address guide (MSAG) validated addresses with geographic map data
US7919015B2 (en) * 2006-10-05 2011-04-05 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
US20100042322A1 (en) * 2006-12-13 2010-02-18 Chang-Hee Won Modular navigation system and methods
JP5230652B2 (en) * 2007-01-10 2013-07-10 トムトム インターナショナル ベスローテン フエンノートシャップ Way to show traffic delays, computer programs and navigation system
US9651387B2 (en) * 2007-07-05 2017-05-16 Invensense, Inc. Portable navigation system
US8862710B2 (en) 2007-09-11 2014-10-14 Telecommunication Systems, Inc. Dynamic configuration of mobile station location services
EP2201545A4 (en) * 2007-09-11 2011-01-19 Telecomm Systems Inc Wireless device location alerts on battery notification events
EP2220457B1 (en) * 2007-11-09 2016-06-22 TeleCommunication Systems, Inc. Points-of-interest panning on a displayed map with a persistent search on a wireless phone
US8428869B2 (en) * 2008-04-07 2013-04-23 Telecommunication Systems, Inc. Context enabled address selection
EP2277105A4 (en) * 2008-04-07 2012-09-19 Telecomm Systems Inc Proximity search for point-of-interest names combining inexact string match with an expanding radius search
US20090322671A1 (en) * 2008-06-04 2009-12-31 Cybernet Systems Corporation Touch screen augmented reality system and method
US8396658B2 (en) * 2008-10-06 2013-03-12 Telecommunication Systems, Inc. Probabilistic reverse geocoding
US8594627B2 (en) * 2008-10-06 2013-11-26 Telecommunications Systems, Inc. Remotely provisioned wirelessly proxy
US9200913B2 (en) * 2008-10-07 2015-12-01 Telecommunication Systems, Inc. User interface for predictive traffic
US9285239B2 (en) * 2008-10-07 2016-03-15 Telecommunication Systems, Inc. User interface for content channel HUD (heads-up display) and channel sets for location-based maps
WO2010042173A1 (en) * 2008-10-07 2010-04-15 Telecommunication Systems, Inc. User interface for dynamic user-defined stopovers during guided navigation ("side trips")
US20100088018A1 (en) * 2008-10-08 2010-04-08 Kevin Tsurutome Glance ahead navigation
US20110032145A1 (en) * 2009-08-06 2011-02-10 Motorola, Inc. Method and System for Performing Gesture-Based Directed Search
JP5556101B2 (en) * 2009-09-17 2014-07-23 ソニー株式会社 Orientation calculation unit, correction value initialization method, and cellular phone with a bearing calculation function
US20110118969A1 (en) * 2009-11-17 2011-05-19 Honeywell Intellectual Inc. Cognitive and/or physiological based navigation
US8493822B2 (en) 2010-07-14 2013-07-23 Adidas Ag Methods, systems, and program products for controlling the playback of music
US10039970B2 (en) * 2010-07-14 2018-08-07 Adidas Ag Location-aware fitness monitoring methods, systems, and program products, and applications thereof
WO2012076062A1 (en) * 2010-12-10 2012-06-14 Sony Ericsson Mobile Communications Ab Touch sensitive haptic display
US20120316777A1 (en) * 2011-06-07 2012-12-13 Casio Computer Co., Ltd. Portable terminal, navigation system, and storage medium storing program
JP5821726B2 (en) * 2012-03-19 2015-11-24 カシオ計算機株式会社 Event notification device, and an event notification system
US9597014B2 (en) 2012-06-22 2017-03-21 Fitbit, Inc. GPS accuracy refinement using external sensors
US9044171B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. GPS power conservation using environmental data
JP6035915B2 (en) * 2012-07-05 2016-11-30 カシオ計算機株式会社 Direction display device and the direction display system
US20140095061A1 (en) * 2012-10-03 2014-04-03 Richard Franklin HYDE Safety distance monitoring of adjacent vehicles
US9779379B2 (en) 2012-11-05 2017-10-03 Spireon, Inc. Container verification through an electrical receptacle and plug associated with a container and a transport vehicle of an intermodal freight transport system
US8933802B2 (en) 2012-11-05 2015-01-13 Spireon, Inc. Switch and actuator coupling in a chassis of a container associated with an intermodal freight transport system
CN102937708A (en) * 2012-11-08 2013-02-20 安徽神剑鹏升科技有限公司 Mobile communication network based system for monitoring and positioning electromagnetic signals
US20150316383A1 (en) * 2012-12-03 2015-11-05 Navisens, Inc. Systems and methods for estimating the motion of an object
US8976062B2 (en) 2013-04-01 2015-03-10 Fitbit, Inc. Portable biometric monitoring devices having location sensors
US9779449B2 (en) 2013-08-30 2017-10-03 Spireon, Inc. Veracity determination through comparison of a geospatial location of a vehicle with a provided data
US9767609B2 (en) * 2014-02-12 2017-09-19 Microsoft Technology Licensing, Llc Motion modeling in visual tracking
CN103837149A (en) * 2014-03-25 2014-06-04 深圳市凯立德科技股份有限公司 Navigation device and wearable device as well as interactive method thereof
US9551788B2 (en) 2015-03-24 2017-01-24 Jim Epler Fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer
US20170030716A1 (en) * 2015-07-29 2017-02-02 Invensense, Inc. Method and apparatus for user and moving vehicle detection
GB201614852D0 (en) * 2016-09-01 2016-10-19 Tomtom Int Bv Navigation device and display

Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584646A (en) * 1983-06-29 1986-04-22 Harris Corporation System for correlation and recognition of terrain elevation
US4829304A (en) * 1986-05-20 1989-05-09 Harris Corp. Map-aided navigation system employing TERCOM-SITAN signal processing
US4949089A (en) * 1989-08-24 1990-08-14 General Dynamics Corporation Portable target locator system
US5440492A (en) * 1992-12-23 1995-08-08 Kozah; Ghassan F. Kinematically positioned data acquisition apparatus and method
US5528518A (en) * 1994-10-25 1996-06-18 Laser Technology, Inc. System and method for collecting data used to form a geographic information system database
US5646857A (en) * 1995-03-31 1997-07-08 Trimble Navigation Limited Use of an altitude sensor to augment availability of GPS location fixes
US5774829A (en) * 1995-12-12 1998-06-30 Pinterra Corporation Navigation and positioning system and method using uncoordinated beacon signals in conjunction with an absolute positioning system
US5912643A (en) * 1997-05-29 1999-06-15 Lockheed Corporation Passive navigation system
US6032108A (en) * 1998-07-08 2000-02-29 Seiple; Ronald Sports performance computer system and method
US6067046A (en) * 1997-04-15 2000-05-23 Trimble Navigation Limited Handheld surveying device and method
US6092005A (en) * 1996-07-15 2000-07-18 Toyota Jidosha Kabushiki Kaisha Vehicle driving condition prediction device and warning device
US6125326A (en) * 1996-09-30 2000-09-26 Mazda Motor Corporation Navigation system
US6122960A (en) * 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
US6124826A (en) * 1994-10-07 2000-09-26 Mannesmann Aktiengesellschaft Navigation device for people
US6127945A (en) * 1995-10-18 2000-10-03 Trimble Navigation Limited Mobile personal navigator
US6132391A (en) * 1997-12-30 2000-10-17 Jatco Corporation Portable position detector and position management system
US6218980B1 (en) * 1982-09-13 2001-04-17 Mcdonnell Douglas Corporation Terrain correlation system
US6243660B1 (en) * 1999-10-12 2001-06-05 Precision Navigation, Inc. Digital compass with multiple sensing and reporting capability
US6246960B1 (en) * 1998-11-06 2001-06-12 Ching-Fang Lin Enhanced integrated positioning method and system thereof for vehicle
US6339746B1 (en) * 1999-09-30 2002-01-15 Kabushiki Kaisha Toshiba Route guidance system and method for a pedestrian
US6362778B2 (en) * 2000-03-26 2002-03-26 Timothy J Neher Personal location detection system
US6415223B1 (en) * 1999-11-29 2002-07-02 American Gnc Corporation Interruption-free hand-held positioning method and system thereof
US20020111737A1 (en) * 2000-12-20 2002-08-15 Nokia Corporation Navigation system
US6459990B1 (en) * 1999-09-23 2002-10-01 American Gnc Corporation Self-contained positioning method and system thereof for water and land vehicles
US6512976B1 (en) * 2001-04-27 2003-01-28 Honeywell International Inc. Method and system for terrain aided navigation
US6522266B1 (en) * 2000-05-17 2003-02-18 Honeywell, Inc. Navigation system, method and software for foot travel
US6542824B1 (en) * 1999-01-29 2003-04-01 International Business Machines Corporation Method and system for determining position information utilizing a portable electronic device lacking global positioning system (GPS) reception capability
US6546336B1 (en) * 1998-09-26 2003-04-08 Jatco Corporation Portable position detector and position management system
US20030092493A1 (en) * 2001-11-13 2003-05-15 Takao Shimizu Game system with enhanced low power mode-related processing
US20030114980A1 (en) * 2001-12-13 2003-06-19 Markus Klausner Autonomous in-vehicle navigation system and diagnostic system
US6590526B1 (en) * 2002-01-25 2003-07-08 Harris Corporation Apparatus for census surveying and related methods
US20030151506A1 (en) * 2002-02-11 2003-08-14 Mark Luccketti Method and apparatus for locating missing persons
US20030158664A1 (en) * 2002-02-19 2003-08-21 Swope Charles B. Method of increasing location accuracy in an inertial navigational device
US20030182077A1 (en) * 2002-03-25 2003-09-25 Emord Nicholas Jon Seamless sensory system
US20030182053A1 (en) * 2002-03-19 2003-09-25 Swope Charles B. Device for use with a portable inertial navigation system ("PINS") and method for transitioning between location technologies
US6751535B2 (en) * 2001-01-22 2004-06-15 Komatsu Ltd. Travel controlling apparatus of unmanned vehicle
US20040133346A1 (en) * 2003-01-08 2004-07-08 Bye Charles T. Attitude change kalman filter measurement apparatus and method
US20040168515A1 (en) * 2003-02-28 2004-09-02 Stmicroelectronics S.R.L. Multiple-threshold multidirectional inertial device
US20040181703A1 (en) * 2003-02-12 2004-09-16 Nokia Corporation Selecting operation modes in electronic device
US20040185822A1 (en) * 2003-02-28 2004-09-23 Tealdi Daniel A. Method and apparatus for automatically tracking location of a wireless communication device
US6826477B2 (en) * 2001-04-23 2004-11-30 Ecole Polytechnique Federale De Lausanne (Epfl) Pedestrian navigation method and apparatus operative in a dead reckoning mode
US20050015199A1 (en) * 2003-07-16 2005-01-20 Thales North America, Inc. Intelligent modular navigation information capability
US20050017454A1 (en) * 2003-06-09 2005-01-27 Shoichi Endo Interactive gaming systems with haptic feedback
US6850844B1 (en) * 2002-06-28 2005-02-01 Garmin Ltd. Portable navigation device with integrated GPS and dead reckoning capabilities
US6882308B2 (en) * 2000-03-22 2005-04-19 Asulab Sa Portable device for determining horizontal and vertical positions and method for operating the same
US20050110676A1 (en) * 2003-10-06 2005-05-26 Heppe Stephen B. Method and apparatus for satellite-based relative positioning of moving platforms
US6908386B2 (en) * 2002-05-17 2005-06-21 Nintendo Co., Ltd. Game device changing sound and an image in accordance with a tilt operation
US20050136912A1 (en) * 1999-03-31 2005-06-23 Curatolo Benedict S. Security and tracking system
US6975959B2 (en) * 2002-12-03 2005-12-13 Robert Bosch Gmbh Orientation and navigation for a mobile device using inertial sensors
US20060075342A1 (en) * 2002-12-18 2006-04-06 Koninklijke Philips Electronics N.V. Handheld pda video accessory
US7094147B2 (en) * 2001-08-22 2006-08-22 Nintendo Co., Ltd. Game system, puzzle game program, and storage medium having program stored therein
US7169998B2 (en) * 2002-08-28 2007-01-30 Nintendo Co., Ltd. Sound generation device and sound generation program
US7223173B2 (en) * 1999-10-04 2007-05-29 Nintendo Co., Ltd. Game system and game information storage medium used for same
US7292867B2 (en) * 2003-01-16 2007-11-06 Bones In Motion, Inc. Location-aware fitness training device, methods, and program products that support real-time interactive communication and automated route generation
US7295296B1 (en) * 2005-12-15 2007-11-13 L-3 Communications Integrated Systems L.P. Portable target locator apparatus and method of use
US7302359B2 (en) * 2006-02-08 2007-11-27 Honeywell International Inc. Mapping systems and methods

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940116A (en) 1982-08-31 1984-03-05 Canon Inc Display control system
JPH07134641A (en) 1993-11-10 1995-05-23 Canon Inc Portable information processor
JPH07271505A (en) 1994-03-29 1995-10-20 Toshiba Corp Image display controller
GB2298539A (en) * 1995-02-27 1996-09-04 Richard Deehan Portable guidance device
US5757207A (en) * 1995-03-22 1998-05-26 Altera Corporation Programmable logic array integrated circuit incorporating a first-in first-out memory
GB9711453D0 (en) 1997-06-03 1997-07-30 Bide Stephen Portable information-providing apparatus
GB2371962B (en) 1998-04-24 2002-09-18 Nec Corp System for controlling scrolling of a display on a screen
FR2788151A1 (en) 1999-01-06 2000-07-07 Notaras Anhou Katinga Mobile phone mouse converter for display screen for interpretation of maps has phone used as a mouse for movement over the map
DE10129444A1 (en) * 2001-06-19 2003-01-02 Bosch Gmbh Robert Locating and navigation method and system for a motor vehicle has a gyro-sensor and GPS system with the position determined using GPS used to constantly correct the coupled position determined using the gyro-sensor
CA2479506A1 (en) 2002-03-20 2003-09-25 Visuaide Inc. Wireless handheld portable navigation system and method for visually impaired pedestrians
US20060176294A1 (en) * 2002-10-07 2006-08-10 Johannes Vaananen Cursor for electronic devices
JP2004147272A (en) * 2002-10-23 2004-05-20 Takeshi Ogura Communication module for cellular phone and mobile pc with wireless mouse and ten key functions of which main body can be bisected
JP3910541B2 (en) * 2003-01-21 2007-04-25 富士フイルム株式会社 Image storage device
US20080048979A1 (en) * 2003-07-09 2008-02-28 Xolan Enterprises Inc. Optical Method and Device for use in Communication
JP4085926B2 (en) * 2003-08-14 2008-05-14 ソニー株式会社 The information processing terminal and communication system

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218980B1 (en) * 1982-09-13 2001-04-17 Mcdonnell Douglas Corporation Terrain correlation system
US4584646A (en) * 1983-06-29 1986-04-22 Harris Corporation System for correlation and recognition of terrain elevation
US4829304A (en) * 1986-05-20 1989-05-09 Harris Corp. Map-aided navigation system employing TERCOM-SITAN signal processing
US4949089A (en) * 1989-08-24 1990-08-14 General Dynamics Corporation Portable target locator system
US5440492A (en) * 1992-12-23 1995-08-08 Kozah; Ghassan F. Kinematically positioned data acquisition apparatus and method
US6124826A (en) * 1994-10-07 2000-09-26 Mannesmann Aktiengesellschaft Navigation device for people
US5528518A (en) * 1994-10-25 1996-06-18 Laser Technology, Inc. System and method for collecting data used to form a geographic information system database
US5646857A (en) * 1995-03-31 1997-07-08 Trimble Navigation Limited Use of an altitude sensor to augment availability of GPS location fixes
US6127945A (en) * 1995-10-18 2000-10-03 Trimble Navigation Limited Mobile personal navigator
US6122960A (en) * 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
US5774829A (en) * 1995-12-12 1998-06-30 Pinterra Corporation Navigation and positioning system and method using uncoordinated beacon signals in conjunction with an absolute positioning system
US6092005A (en) * 1996-07-15 2000-07-18 Toyota Jidosha Kabushiki Kaisha Vehicle driving condition prediction device and warning device
US6125326A (en) * 1996-09-30 2000-09-26 Mazda Motor Corporation Navigation system
US6067046A (en) * 1997-04-15 2000-05-23 Trimble Navigation Limited Handheld surveying device and method
US5912643A (en) * 1997-05-29 1999-06-15 Lockheed Corporation Passive navigation system
US6132391A (en) * 1997-12-30 2000-10-17 Jatco Corporation Portable position detector and position management system
US6032108A (en) * 1998-07-08 2000-02-29 Seiple; Ronald Sports performance computer system and method
US6546336B1 (en) * 1998-09-26 2003-04-08 Jatco Corporation Portable position detector and position management system
US6246960B1 (en) * 1998-11-06 2001-06-12 Ching-Fang Lin Enhanced integrated positioning method and system thereof for vehicle
US6542824B1 (en) * 1999-01-29 2003-04-01 International Business Machines Corporation Method and system for determining position information utilizing a portable electronic device lacking global positioning system (GPS) reception capability
US20050136912A1 (en) * 1999-03-31 2005-06-23 Curatolo Benedict S. Security and tracking system
US6459990B1 (en) * 1999-09-23 2002-10-01 American Gnc Corporation Self-contained positioning method and system thereof for water and land vehicles
US6339746B1 (en) * 1999-09-30 2002-01-15 Kabushiki Kaisha Toshiba Route guidance system and method for a pedestrian
US7223173B2 (en) * 1999-10-04 2007-05-29 Nintendo Co., Ltd. Game system and game information storage medium used for same
US6243660B1 (en) * 1999-10-12 2001-06-05 Precision Navigation, Inc. Digital compass with multiple sensing and reporting capability
US6415223B1 (en) * 1999-11-29 2002-07-02 American Gnc Corporation Interruption-free hand-held positioning method and system thereof
US6882308B2 (en) * 2000-03-22 2005-04-19 Asulab Sa Portable device for determining horizontal and vertical positions and method for operating the same
US6362778B2 (en) * 2000-03-26 2002-03-26 Timothy J Neher Personal location detection system
US6522266B1 (en) * 2000-05-17 2003-02-18 Honeywell, Inc. Navigation system, method and software for foot travel
US20020111737A1 (en) * 2000-12-20 2002-08-15 Nokia Corporation Navigation system
US6751535B2 (en) * 2001-01-22 2004-06-15 Komatsu Ltd. Travel controlling apparatus of unmanned vehicle
US6826477B2 (en) * 2001-04-23 2004-11-30 Ecole Polytechnique Federale De Lausanne (Epfl) Pedestrian navigation method and apparatus operative in a dead reckoning mode
US6512976B1 (en) * 2001-04-27 2003-01-28 Honeywell International Inc. Method and system for terrain aided navigation
US7094147B2 (en) * 2001-08-22 2006-08-22 Nintendo Co., Ltd. Game system, puzzle game program, and storage medium having program stored therein
US20030092493A1 (en) * 2001-11-13 2003-05-15 Takao Shimizu Game system with enhanced low power mode-related processing
US20030114980A1 (en) * 2001-12-13 2003-06-19 Markus Klausner Autonomous in-vehicle navigation system and diagnostic system
US6590526B1 (en) * 2002-01-25 2003-07-08 Harris Corporation Apparatus for census surveying and related methods
US20030151506A1 (en) * 2002-02-11 2003-08-14 Mark Luccketti Method and apparatus for locating missing persons
US20030158664A1 (en) * 2002-02-19 2003-08-21 Swope Charles B. Method of increasing location accuracy in an inertial navigational device
US20030182053A1 (en) * 2002-03-19 2003-09-25 Swope Charles B. Device for use with a portable inertial navigation system ("PINS") and method for transitioning between location technologies
US20030182077A1 (en) * 2002-03-25 2003-09-25 Emord Nicholas Jon Seamless sensory system
US6908386B2 (en) * 2002-05-17 2005-06-21 Nintendo Co., Ltd. Game device changing sound and an image in accordance with a tilt operation
US6850844B1 (en) * 2002-06-28 2005-02-01 Garmin Ltd. Portable navigation device with integrated GPS and dead reckoning capabilities
US7169998B2 (en) * 2002-08-28 2007-01-30 Nintendo Co., Ltd. Sound generation device and sound generation program
US6975959B2 (en) * 2002-12-03 2005-12-13 Robert Bosch Gmbh Orientation and navigation for a mobile device using inertial sensors
US20060075342A1 (en) * 2002-12-18 2006-04-06 Koninklijke Philips Electronics N.V. Handheld pda video accessory
US20040133346A1 (en) * 2003-01-08 2004-07-08 Bye Charles T. Attitude change kalman filter measurement apparatus and method
US7292867B2 (en) * 2003-01-16 2007-11-06 Bones In Motion, Inc. Location-aware fitness training device, methods, and program products that support real-time interactive communication and automated route generation
US20040181703A1 (en) * 2003-02-12 2004-09-16 Nokia Corporation Selecting operation modes in electronic device
US20040185822A1 (en) * 2003-02-28 2004-09-23 Tealdi Daniel A. Method and apparatus for automatically tracking location of a wireless communication device
US20040168515A1 (en) * 2003-02-28 2004-09-02 Stmicroelectronics S.R.L. Multiple-threshold multidirectional inertial device
US20050017454A1 (en) * 2003-06-09 2005-01-27 Shoichi Endo Interactive gaming systems with haptic feedback
US20050015199A1 (en) * 2003-07-16 2005-01-20 Thales North America, Inc. Intelligent modular navigation information capability
US20050110676A1 (en) * 2003-10-06 2005-05-26 Heppe Stephen B. Method and apparatus for satellite-based relative positioning of moving platforms
US7295296B1 (en) * 2005-12-15 2007-11-13 L-3 Communications Integrated Systems L.P. Portable target locator apparatus and method of use
US7302359B2 (en) * 2006-02-08 2007-11-27 Honeywell International Inc. Mapping systems and methods

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US9609070B2 (en) 2007-12-20 2017-03-28 Corning Optical Communications Wireless Ltd Extending outdoor location based services and applications into enclosed areas
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8315793B2 (en) * 2009-06-03 2012-11-20 Honeywell International Inc. Integrated micro-electro-mechanical systems (MEMS) sensor device
US20100312468A1 (en) * 2009-06-03 2010-12-09 Honeywell International Inc. Integrated micro-electro-mechanical systems (mems) sensor device
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US10070258B2 (en) 2009-07-24 2018-09-04 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9913094B2 (en) 2010-08-09 2018-03-06 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9066211B2 (en) * 2010-12-10 2015-06-23 Blueforce Development Corporation Decision support
US20140155087A1 (en) * 2010-12-10 2014-06-05 Blueforce Development Corporation Decision support
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US8938210B1 (en) * 2011-06-29 2015-01-20 Integrity Tracking, Llc Personal monitoring system and method
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9414192B2 (en) 2012-12-21 2016-08-09 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
FR3010363A1 (en) * 2013-09-09 2015-03-13 Valeo Securite Habitacle Method for Securing a control distance of a motor vehicle by a mobile terminal
US9077321B2 (en) 2013-10-23 2015-07-07 Corning Optical Communications Wireless Ltd. Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns

Also Published As

Publication number Publication date Type
JP2011070660A (en) 2011-04-07 application
EP1805483B1 (en) 2017-11-29 grant
US7706977B2 (en) 2010-04-27 grant
US8112226B2 (en) 2012-02-07 grant
EP1805483A1 (en) 2007-07-11 application
US20060089786A1 (en) 2006-04-27 application
JP4790721B2 (en) 2011-10-12 grant
WO2006047525A1 (en) 2006-05-04 application
JP2008518236A (en) 2008-05-29 application
US20100174487A1 (en) 2010-07-08 application

Similar Documents

Publication Publication Date Title
US6542824B1 (en) Method and system for determining position information utilizing a portable electronic device lacking global positioning system (GPS) reception capability
US7395181B2 (en) Motion tracking system
Foxlin et al. Constellation: A wide-range wireless motion-tracking system for augmented reality and virtual set applications
Foxlin et al. Miniature six-DOF inertial system for tracking HMDs
US20100004860A1 (en) Pedestrian navigation system and method
US20090315704A1 (en) Method and Integrated System for Tracking Luggage
US20100057359A1 (en) Location systems for handheld electronic devices
US20090247863A1 (en) Tracking system and method
US20110199298A1 (en) Pointer with motion sensing resolved by data merging
US7024307B2 (en) Map evaluation system, collation device, and map evaluation device
US6434485B1 (en) GPS device with compass and altimeter and method for displaying navigation information
US20070006472A1 (en) Independent personal underwater navigation system for scuba divers
US6862525B1 (en) GPS device with compass and altimeter and method for displaying navigation information
US20020152027A1 (en) Vehicle docking station for portable handheld computing device
US20060021238A1 (en) Compass sensor unit and portable electronic device
US20090082994A1 (en) Headset With Integrated Pedometer and Corresponding Method
US20090177437A1 (en) Indoor navigation system and method
US7299034B2 (en) System and method for wearable electronics
US6972715B2 (en) Dive computer with global positioning system receiver
US20110029241A1 (en) Personal Navigation System and Associated Methods
US20050033515A1 (en) Wireless personal tracking and navigation system
US20110208421A1 (en) Navigation device, navigation method, and program
US20130197857A1 (en) Gps-calibrated pedometer
US6032108A (en) Sports performance computer system and method
US20020087264A1 (en) Position location system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOEHREN, WAYNE A.;REEL/FRAME:026007/0979

Effective date: 20041025