US20110157237A1 - Method for adjusting frame brightness - Google Patents

Method for adjusting frame brightness Download PDF

Info

Publication number
US20110157237A1
US20110157237A1 US12/701,593 US70159310A US2011157237A1 US 20110157237 A1 US20110157237 A1 US 20110157237A1 US 70159310 A US70159310 A US 70159310A US 2011157237 A1 US2011157237 A1 US 2011157237A1
Authority
US
United States
Prior art keywords
pixel level
values
block
blocks
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/701,593
Inventor
Chao-Chinge Chen
Pei-Tang Su
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amtran Technology Co Ltd
Original Assignee
Amtran Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amtran Technology Co Ltd filed Critical Amtran Technology Co Ltd
Assigned to AmTRAN TECHNOLOGY Co. Ltd reassignment AmTRAN TECHNOLOGY Co. Ltd ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHAO-CHINGE, SU, PEI-TANG
Publication of US20110157237A1 publication Critical patent/US20110157237A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the invention relates to a method for adjusting frame brightness, particularly to a method for adjusting frame brightness to enhance frame contrast.
  • LCD Liquid Crystal Display
  • a LCD mainly comprises a liquid crystal display panel and a backlight module. Since a liquid crystal display panel itself cannot emit light, it is necessary to have a backlight module to provide backlight sources required by the liquid crystal display panel.
  • Cold cathode fluorescent lamps are usually used as light sources in conventional backlight modules.
  • LEDs light-emitting diodes
  • advantages including small size, low operation voltage, long life span, and high color saturation. Therefore, using LEDs as a light source of a backlight module has become a new choice. Since LEDs in a backlight module are usually arranged in an array, the brightness of different LEDs can be individually adjusted.
  • the invention provides a method for adjusting frame brightness that enhances frame contrast.
  • the method for the invention includes the following steps. First, an image data in YUV format is received. Next, a plurality of pixel level values of pixels of the image data are retrieved. Then, an overall average pixel level value of the pixel level values is calculated. In addition, a number distribution of the pixel level values is calculated. Afterward, a dimming curve is determined according to the overall average pixel level value and the number distribution of the pixel level values. Moreover, the image data is divided into a plurality of blocks, and an average pixel level value of pixels in each of the blocks is calculated. Next, the block average pixel level values are substituted into the dimming curve to obtain a plurality of block brightness values. Thereafter, the image data is outputted and backlight sources corresponding to each of the blocks are driven to provide brightness values to each of the blocks for displaying a frame.
  • steps of driving backlight sources corresponding to each of the blocks include the following steps. First, a plurality of pulse width modulation values corresponding to the block brightness values are generated. Next, a plurality of LEDs corresponding to each of the blocks are driven by the pulse width modulation values so as to provide the block brightness values.
  • the method for adjusting frame brightness of the invention individually adjusts the block brightness values provided by the backlight sources corresponding to each of the blocks so as to enhance frame contrast.
  • FIG. 1 is a flowchart illustrating a method for adjusting frame brightness according to an exemplary embodiment of the invention.
  • FIG. 2 illustrates pixel level values of image data of an exemplary embodiment of the invention.
  • FIG. 3 is a histogram illustrating pixel level values of image data of an exemplary embodiment of the invention.
  • FIG. 4 is a dimming curve of image data of an exemplary embodiment of the invention.
  • FIGS. 5 and 6 explain two methods for determining dimming curves.
  • FIG. 7 is a flowchart illustrating steps of driving backlight sources.
  • FIG. 8 illustrates the relations between the backlight sources and image data.
  • YUV is a color space.
  • YUV is a format that stores color images.
  • Y stands for luminance
  • luma stands for chrominance
  • V stands for chroma.
  • YUV is often used for describing analogue signals.
  • YUV has been extensively used in computer systems. Since the limitation of human sensation is taken into consideration in the YUV format, using the YUV format to encode color images or video can reduces the bandwidth of chrominance. Therefore, compared with a RGB format, YUV format effectively enables viewers to ignore transmission errors or distortion.
  • FIG. 1 is a flowchart illustrating a method for adjusting frame brightness according to an exemplary embodiment of the invention.
  • frame brightness is adjusted.
  • the details of Steps S 1002 -S 1016 are provided hereafter.
  • FIG. 2 illustrates pixel level values of image data 1000 of an exemplary embodiment of the invention.
  • the image data 1000 is in 4*4 YUV format and uses 8 bits to show pixel level values.
  • Step S 1002 is performed to receive the image data 1000 in YUV format.
  • Step S 1004 is performed to retrieve pixels 1002 - 1032 from the image data 1000 .
  • the pixel level values of the pixels 1002 - 1032 retrieved are 20, 20, 150, 150, 150, 150, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, and 100, respectively.
  • an overall average pixel level value of the pixels 1002 - 1032 is about 54.
  • the overall average pixel level values in this embodiment are rounded up or down to the fifth to be an integer, but the invention is not limited in this embodiment.
  • FIG. 3 is a histogram illustrating pixel level values of the image data 1000 of an exemplary embodiment of the invention.
  • the x-axis in FIG. 3 represents pixel level values
  • the y-axis in FIG. 3 represents the pixel numbers.
  • FIG. 3 is obtained by summing up the number distribution of brightness values of the pixels 1002 - 1032 .
  • the statistical method in a histogram 2000 of pixel level values it can be known that when the pixel level value is 20, the pixel number is 2, when the pixel level value is 100, the pixel number is 10, and when the pixel level value is 150, the pixel number is 4.
  • the statistical method in the histogram 2000 of pixel level values is used for summing up the number distribution of pixel level values, but the invention is not limited in this embodiment and can be embodied by any other methods, for example, average values and standard deviation.
  • a dimming curve 3000 is determined according to the overall average pixel level value and the number distribution of the pixel level values (here referring to the histogram 2000 of pixel level values of FIG. 3 ).
  • FIG. 4 is a dimming curve of the image data 1000 of an exemplary embodiment of the invention.
  • the x-axis in FIG. 4 represents block average pixel level values
  • the y-axis in FIG. 4 represents block brightness values.
  • Step S 1014 the block average pixel level values of the blocks 1102 - 1108 are substituted into the dimming curve 3000 in FIG. 4 so as to obtain a plurality of block brightness values.
  • a block brightness value of 100 is obtained.
  • a block brightness value of 175 is obtained.
  • a block brightness value of 150 is obtained.
  • a block brightness value of 100 of the block 1108 is obtained.
  • Step S 1016 the image data 1000 is outputted and backlight sources corresponding to each of the blocks 1102 - 1108 are driven to provide brightness values to the blocks for displaying a frame.
  • the block brightness values corresponding to the blocks 1102 - 1108 are 100, 175, 150, and 150, respectively.
  • the dimming curve 3000 is determined according to pixel level values and an overall average brightness.
  • the block average pixel level value are substituted into the dimming curve 3000 so as to obtain a plurality of block brightness values.
  • backlight sources corresponding to each of the blocks 1102 - 1108 are driven by each of the block brightness values, so different level of brightness can be provided by the backlight sources corresponding to each of the blocks 1102 - 1108 .
  • a backlight source of lower brightness is provided to a block with a darker frame
  • a backlight source of higher brightness is provided to a block with a brighter frame.
  • this embodiment can enhance the frame contrast.
  • FIGS. 5 and 6 explain two methods for determining dimming curves.
  • Step S 1010 of FIG. 1 determines a dimming curve according to the overall average pixel level value and the number distribution of the pixel level values. For example, when the number distribution of the pixel level values is bell-shaped, a dimming curve as shown in FIG. 5 can be determined by further considering the overall average pixel level value. When the number distribution of the pixel level values is presented as FIG. 5 , numbers of the pixels with high pixel, level values and pixels with low pixel level values are fewer, the dimming curve is gradual in the section of middle block average pixel level values, and the dimming curve has larger slopes in the sections of high and low block average pixel level values.
  • a dimming curve as shown in FIG. 6 can be determined by further considering the overall average pixel level value.
  • numbers of the pixels with high pixel level values and pixels with low pixel level values are more, the dimming curve has larger slope in the section of middle block average pixel level values, and the dimming curve are gradual in the sections of high and low block average pixel level values.
  • the “+” in FIGS. 5 and 6 are not the addition in the mathematical operation, the “+” in FIGS. 5 and 6 present that the dimming curves are determined according to the overall average pixel level value and the number distribution of the pixel level values synthetically.
  • a dimming curve still can be determined by further considering the overall average pixel level value.
  • different dimming curves can be obtained according to different number distributions of the pixel level values, and image with better contrast can be obtained by outputting different pulse width modulation values to drive the backlight source.
  • FIG. 7 is a flowchart illustrating the steps of driving the backlight sources
  • FIG. 8 shows the relations between backlight sources and blocks of image data.
  • the backlight sources corresponding to the blocks 1102 , 1104 , 1106 , and 1108 of the image data 1000 are LEDs 1202 , 1204 , 1206 , and 1208 , respectively.
  • Step S 1016 in FIG. 1 is further divided into the following steps. First, in Step S 1016 A, a plurality of pulse width modulation values corresponding to the block brightness values are generated, and here the block brightness values corresponding to the blocks 1102 - 1108 are 100, 175, 150, and 150, respectively.
  • Step S 1016 B the LEDs 1202 - 1208 corresponding to the blocks 1102 - 1108 are driven by the pulse width modulation values so as to provide block brightness values, and here the block brightness values are 100, 175, 150, and 150.
  • the LEDs 1202 - 1208 are only represented respectively by a single LED, but the invention is not limited in this embodiment.
  • a dimming curve is first determined according to pixel level values and an overall average pixel level value, next, a block average pixel level values are substituted into the dimming curve to obtain a plurality of block brightness values, and then backlight sources corresponding to each of the blocks are driven to provide the block brightness values to each of the blocks. Since the block brightness provided by the backlight sources to each of the blocks is different, an optimum frame contrast is obtained by each of the blocks.

Abstract

A method for adjusting frame brightness is provided. First, an image data in YUV format is received. Next, a dimming curve is determined according to an overall average pixel level value of the image data and a number distribution of pixel level values. Then, the image data is divided into a plurality of blocks, and a block average pixel level value of pixels in each of the blocks is calculated. Thereafter, the block average pixel level values are substituted into the dimming curve to obtain a plurality of block brightness values. Afterward, the image data is outputted and backlight sources corresponding to each of the blocks are driven to provide the block brightness values to each of the blocks for displaying a frame.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the priority benefit of Taiwan application serial no. 98146201, filed on Dec. 31, 2009. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of specification.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a method for adjusting frame brightness, particularly to a method for adjusting frame brightness to enhance frame contrast.
  • 2. Description of Related Art
  • In recent years, Flat Panel Display, such as Liquid Crystal Display (LCD), has been greatly developed. Liquid Crystal Display (LCD) has become a mainstream in the market due to its advantages such as low power consumption, absence of radiation, and high space utilization. A LCD mainly comprises a liquid crystal display panel and a backlight module. Since a liquid crystal display panel itself cannot emit light, it is necessary to have a backlight module to provide backlight sources required by the liquid crystal display panel.
  • Cold cathode fluorescent lamps (CCFLs) are usually used as light sources in conventional backlight modules. However, as the technology level of making light-emitting diodes rises, light-emitting diodes (LEDs) now have the advantages including small size, low operation voltage, long life span, and high color saturation. Therefore, using LEDs as a light source of a backlight module has become a new choice. Since LEDs in a backlight module are usually arranged in an array, the brightness of different LEDs can be individually adjusted.
  • SUMMARY OF THE INVENTION
  • The invention provides a method for adjusting frame brightness that enhances frame contrast.
  • The method for the invention includes the following steps. First, an image data in YUV format is received. Next, a plurality of pixel level values of pixels of the image data are retrieved. Then, an overall average pixel level value of the pixel level values is calculated. In addition, a number distribution of the pixel level values is calculated. Afterward, a dimming curve is determined according to the overall average pixel level value and the number distribution of the pixel level values. Moreover, the image data is divided into a plurality of blocks, and an average pixel level value of pixels in each of the blocks is calculated. Next, the block average pixel level values are substituted into the dimming curve to obtain a plurality of block brightness values. Thereafter, the image data is outputted and backlight sources corresponding to each of the blocks are driven to provide brightness values to each of the blocks for displaying a frame.
  • In one embodiment of the adjusting method for the invention, steps of driving backlight sources corresponding to each of the blocks include the following steps. First, a plurality of pulse width modulation values corresponding to the block brightness values are generated. Next, a plurality of LEDs corresponding to each of the blocks are driven by the pulse width modulation values so as to provide the block brightness values.
  • Based on the above, the method for adjusting frame brightness of the invention individually adjusts the block brightness values provided by the backlight sources corresponding to each of the blocks so as to enhance frame contrast.
  • In order to make the aforementioned and other features and advantages of the invention more comprehensible, embodiments accompanying figures are described in detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1 is a flowchart illustrating a method for adjusting frame brightness according to an exemplary embodiment of the invention.
  • FIG. 2 illustrates pixel level values of image data of an exemplary embodiment of the invention.
  • FIG. 3 is a histogram illustrating pixel level values of image data of an exemplary embodiment of the invention.
  • FIG. 4 is a dimming curve of image data of an exemplary embodiment of the invention.
  • FIGS. 5 and 6 explain two methods for determining dimming curves.
  • FIG. 7 is a flowchart illustrating steps of driving backlight sources.
  • FIG. 8 illustrates the relations between the backlight sources and image data.
  • DESCRIPTION OF EMBODIMENTS
  • YUV is a color space. In other words, YUV is a format that stores color images. Y stands for luminance, luma, U stands for chrominance, and V stands for chroma. YUV is often used for describing analogue signals. Presently, YUV has been extensively used in computer systems. Since the limitation of human sensation is taken into consideration in the YUV format, using the YUV format to encode color images or video can reduces the bandwidth of chrominance. Therefore, compared with a RGB format, YUV format effectively enables viewers to ignore transmission errors or distortion.
  • FIG. 1 is a flowchart illustrating a method for adjusting frame brightness according to an exemplary embodiment of the invention. By using Steps S1002-S1016, frame brightness is adjusted. The details of Steps S1002-S1016 are provided hereafter.
  • FIG. 2 illustrates pixel level values of image data 1000 of an exemplary embodiment of the invention. Referring to FIGS. 1 and 2, the image data 1000 is in 4*4 YUV format and uses 8 bits to show pixel level values. First, Step S1002 is performed to receive the image data 1000 in YUV format. Next, Step S1004 is performed to retrieve pixels 1002-1032 from the image data 1000. The pixel level values of the pixels 1002-1032 retrieved are 20, 20, 150, 150, 150, 150, 100, 100, 100, 100, 100, 100, 100, 100, 100, and 100, respectively. In Step S1006, an overall average pixel level value of the pixels 1002-1032 is about 54. For the convenience of explanation, the overall average pixel level values in this embodiment are rounded up or down to the fifth to be an integer, but the invention is not limited in this embodiment.
  • FIG. 3 is a histogram illustrating pixel level values of the image data 1000 of an exemplary embodiment of the invention. The x-axis in FIG. 3 represents pixel level values, and the y-axis in FIG. 3 represents the pixel numbers. Referring to FIGS. 1 and 2, in Step S1008, FIG. 3 is obtained by summing up the number distribution of brightness values of the pixels 1002-1032. By using the statistical method in a histogram 2000 of pixel level values, it can be known that when the pixel level value is 20, the pixel number is 2, when the pixel level value is 100, the pixel number is 10, and when the pixel level value is 150, the pixel number is 4. In this embodiment, the statistical method in the histogram 2000 of pixel level values is used for summing up the number distribution of pixel level values, but the invention is not limited in this embodiment and can be embodied by any other methods, for example, average values and standard deviation.
  • Referring to FIGS. 1 and 2, in Step S1010, a dimming curve 3000 is determined according to the overall average pixel level value and the number distribution of the pixel level values (here referring to the histogram 2000 of pixel level values of FIG. 3).
  • In Step S1012, the image data 1000 is divided into a plurality of blocks, so pixels 1002, 1004, 1010, and 1012 belong to a block 1102, pixels 1006, 1008, 1014, and 1016 belong to a block 1104, pixels 1018, 1020, 1026, and 1028 belong to a block 1106, and pixels 1022, 1024, 1030, and 1032 belong to a block 1108. Next, a block average pixel level value in each of the blocks 1102-1108 is calculated. The block average pixel level value of the block 1102 is 75, the block average pixel level value of the block 1104 is 125, the block average pixel level value of the block 1106 is 100, and the block average pixel level value of the block 1108 is 100.
  • FIG. 4 is a dimming curve of the image data 1000 of an exemplary embodiment of the invention. The x-axis in FIG. 4 represents block average pixel level values, and the y-axis in FIG. 4 represents block brightness values. Referring to FIGS. 1 and 2, in Step S1014, the block average pixel level values of the blocks 1102-1108 are substituted into the dimming curve 3000 in FIG. 4 so as to obtain a plurality of block brightness values. By substituting the block average pixel level value of 75 of the block 1102 into the dimming curve 3000, a block brightness value of 100 is obtained. By substituting the block average pixel level value of 125 of the block 1104 into the dimming curve 3000, a block brightness value of 175 is obtained. By substituting the block average pixel level value of 100 of the block 1106 into the dimming curve 3000, a block brightness value of 150 is obtained. By substituting the block average pixel level value of 100 of the block 1108 into the dimming curve 3000, a block brightness value of 150 is obtained.
  • In Step S1016, the image data 1000 is outputted and backlight sources corresponding to each of the blocks 1102-1108 are driven to provide brightness values to the blocks for displaying a frame. Here the block brightness values corresponding to the blocks 1102-1108 are 100, 175, 150, and 150, respectively.
  • In this embodiment, the dimming curve 3000 is determined according to pixel level values and an overall average brightness. Next, the block average pixel level value are substituted into the dimming curve 3000 so as to obtain a plurality of block brightness values. Afterward backlight sources corresponding to each of the blocks 1102-1108 are driven by each of the block brightness values, so different level of brightness can be provided by the backlight sources corresponding to each of the blocks 1102-1108. As a result, for instance, a backlight source of lower brightness is provided to a block with a darker frame, while a backlight source of higher brightness is provided to a block with a brighter frame. Compared with those methods with one single level of brightness of backlight sources, this embodiment can enhance the frame contrast.
  • FIGS. 5 and 6 explain two methods for determining dimming curves. Step S1010 of FIG. 1 determines a dimming curve according to the overall average pixel level value and the number distribution of the pixel level values. For example, when the number distribution of the pixel level values is bell-shaped, a dimming curve as shown in FIG. 5 can be determined by further considering the overall average pixel level value. When the number distribution of the pixel level values is presented as FIG. 5, numbers of the pixels with high pixel, level values and pixels with low pixel level values are fewer, the dimming curve is gradual in the section of middle block average pixel level values, and the dimming curve has larger slopes in the sections of high and low block average pixel level values. When the number distribution of the pixel level values is M-shaped, a dimming curve as shown in FIG. 6 can be determined by further considering the overall average pixel level value. When the number distribution of the pixel level values is presented as FIG. 6, numbers of the pixels with high pixel level values and pixels with low pixel level values are more, the dimming curve has larger slope in the section of middle block average pixel level values, and the dimming curve are gradual in the sections of high and low block average pixel level values. It should be noted that the “+” in FIGS. 5 and 6 are not the addition in the mathematical operation, the “+” in FIGS. 5 and 6 present that the dimming curves are determined according to the overall average pixel level value and the number distribution of the pixel level values synthetically.
  • Meanwhile, when the number distribution of the pixel level values is L-shaped, reversed L-shaped or others, a dimming curve still can be determined by further considering the overall average pixel level value. In this way, different dimming curves can be obtained according to different number distributions of the pixel level values, and image with better contrast can be obtained by outputting different pulse width modulation values to drive the backlight source.
  • FIG. 7 is a flowchart illustrating the steps of driving the backlight sources, and FIG. 8 shows the relations between backlight sources and blocks of image data. Referring to FIGS. 7 and 8, the backlight sources corresponding to the blocks 1102, 1104, 1106, and 1108 of the image data 1000 are LEDs 1202, 1204, 1206, and 1208, respectively. Step S1016 in FIG. 1 is further divided into the following steps. First, in Step S1016A, a plurality of pulse width modulation values corresponding to the block brightness values are generated, and here the block brightness values corresponding to the blocks 1102-1108 are 100, 175, 150, and 150, respectively. Next, in Step S1016B, the LEDs 1202-1208 corresponding to the blocks 1102-1108 are driven by the pulse width modulation values so as to provide block brightness values, and here the block brightness values are 100, 175, 150, and 150. For the convenience of explanation, here the LEDs 1202-1208 are only represented respectively by a single LED, but the invention is not limited in this embodiment.
  • Based on the above, in the method for adjusting frame brightness of the invention, a dimming curve is first determined according to pixel level values and an overall average pixel level value, next, a block average pixel level values are substituted into the dimming curve to obtain a plurality of block brightness values, and then backlight sources corresponding to each of the blocks are driven to provide the block brightness values to each of the blocks. Since the block brightness provided by the backlight sources to each of the blocks is different, an optimum frame contrast is obtained by each of the blocks.
  • Although the invention has been described with reference to the above embodiments, it will be apparent to one of the ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims not by the above detailed descriptions.

Claims (2)

1. A method for adjusting frame brightness, comprising:
receiving an image data, wherein the image data is in YUV format;
retrieving a plurality of pixel level values of a plurality of pixels of the image data;
calculating an overall average pixel level value of the pixel level values;
summing up a number distribution of the pixel level values;
determining a dimming curve according to the overall average pixel level value and the number distribution of the pixel level values;
dividing the image data into a plurality of blocks, calculating a block average pixel level value of each of the blocks;
substituting the block average pixel level values into the dimming curve to obtain a plurality of block brightness values; and
outputting the image data and driving backlight sources corresponding to each of the blocks to provide the block brightness values to each of the blocks for displaying a frame.
2. The method for adjusting frame brightness according to claim 1, wherein steps of driving the backlight sources corresponding to each of the blocks comprising:
generating a plurality of pulse width modulation values corresponding to the block brightness values; and
driving a plurality of LEDs corresponding to each of the blocks by the pulse width modulation values to provide the block brightness values.
US12/701,593 2009-12-31 2010-02-07 Method for adjusting frame brightness Abandoned US20110157237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW98146201 2009-12-31
TW098146201A TWI400963B (en) 2009-12-31 2009-12-31 Display apparatus and method for adjusting frame brightness

Publications (1)

Publication Number Publication Date
US20110157237A1 true US20110157237A1 (en) 2011-06-30

Family

ID=44186985

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/701,593 Abandoned US20110157237A1 (en) 2009-12-31 2010-02-07 Method for adjusting frame brightness

Country Status (2)

Country Link
US (1) US20110157237A1 (en)
TW (1) TWI400963B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293592A1 (en) * 2012-05-03 2013-11-07 Shenzhen China Star Optoelectronics Technology Co, Ltd. 3d display apparatus and 3d display system and driving method thereof
CN103489430A (en) * 2013-09-25 2014-01-01 深圳Tcl新技术有限公司 Backlight luminance acquiring method and display
US20140300618A1 (en) * 2013-04-04 2014-10-09 Nvidia Corporation Regional dimming for power savings
US9208751B2 (en) 2012-08-24 2015-12-08 Samsung Electronics Co., Ltd. GPU-based LCD dynamic backlight scaling
US20160019863A1 (en) * 2014-07-17 2016-01-21 Novatek Microelectronics Corp. Image processing method and device
US20160309112A1 (en) * 2015-04-20 2016-10-20 Novatek Microelectronics Corp. Image processing circuit and image contrast enhancement method thereof
US9830865B2 (en) 2013-04-04 2017-11-28 Nvidia Corporation Regional histogramming for global approximation
US9852497B2 (en) 2013-04-04 2017-12-26 Nvidia Corporation Per pixel mapping for image enhancement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604752B (en) * 2017-01-04 2017-11-01 茂達電子股份有限公司 Light emitting diode display device and method for generating dimming signal
TWI746201B (en) * 2020-10-06 2021-11-11 瑞軒科技股份有限公司 Display device and image correction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257329A1 (en) * 2003-06-20 2004-12-23 Lg. Philips Lcd Co., Ltd. Method and apparatus for driving liquid crystal display device
US20070152926A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Apparatus and method for driving liquid crystal display device
US20080117162A1 (en) * 2006-11-21 2008-05-22 Lg. Philips Lcd Co. Ltd Liquid crystal display and driving method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828793A (en) * 1996-05-06 1998-10-27 Massachusetts Institute Of Technology Method and apparatus for producing digital images having extended dynamic ranges
US6128108A (en) * 1997-09-03 2000-10-03 Mgi Software Corporation Method and system for compositing images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257329A1 (en) * 2003-06-20 2004-12-23 Lg. Philips Lcd Co., Ltd. Method and apparatus for driving liquid crystal display device
US20070152926A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Apparatus and method for driving liquid crystal display device
US7505016B2 (en) * 2005-12-29 2009-03-17 Lg Display Co., Ltd. Apparatus and method for driving liquid crystal display device
US20080117162A1 (en) * 2006-11-21 2008-05-22 Lg. Philips Lcd Co. Ltd Liquid crystal display and driving method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293592A1 (en) * 2012-05-03 2013-11-07 Shenzhen China Star Optoelectronics Technology Co, Ltd. 3d display apparatus and 3d display system and driving method thereof
US9208751B2 (en) 2012-08-24 2015-12-08 Samsung Electronics Co., Ltd. GPU-based LCD dynamic backlight scaling
US20140300618A1 (en) * 2013-04-04 2014-10-09 Nvidia Corporation Regional dimming for power savings
US9830865B2 (en) 2013-04-04 2017-11-28 Nvidia Corporation Regional histogramming for global approximation
US9852497B2 (en) 2013-04-04 2017-12-26 Nvidia Corporation Per pixel mapping for image enhancement
US10019787B2 (en) * 2013-04-04 2018-07-10 Nvidia Corporation Regional dimming for power savings
CN103489430A (en) * 2013-09-25 2014-01-01 深圳Tcl新技术有限公司 Backlight luminance acquiring method and display
US20160019863A1 (en) * 2014-07-17 2016-01-21 Novatek Microelectronics Corp. Image processing method and device
US9886644B2 (en) * 2014-07-17 2018-02-06 Novatek Microelectronics Corp. Image processing method and device
US20160309112A1 (en) * 2015-04-20 2016-10-20 Novatek Microelectronics Corp. Image processing circuit and image contrast enhancement method thereof
US10419708B2 (en) * 2015-04-20 2019-09-17 Novatek Microelectronics Corp. Image processing circuit and image contrast enhancement method thereof

Also Published As

Publication number Publication date
TWI400963B (en) 2013-07-01
TW201123916A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
US20110157237A1 (en) Method for adjusting frame brightness
CN107591131B (en) Backlight driving method and device
US9922602B2 (en) Display device and display method
KR101605157B1 (en) Method for driving display apparatus
KR101396148B1 (en) Display device with a backlight
US8358293B2 (en) Method for driving light source blocks, driving unit for performing the method and display apparatus having the driving unit
KR101571732B1 (en) Liquid crystal display and method for driving the same
CN106062860B (en) Image processing apparatus, image processing method, and image display apparatus
KR101578214B1 (en) Liquid crystal display device and driving method thereof
US20090115720A1 (en) Liquid crystal display, liquid crystal display module, and method of driving liquid crystal display
US20100013866A1 (en) Light source device and liquid crystal display unit
JP2009053687A (en) Back light unit and its usage
EP2082391B1 (en) Liquid crystal display system and method
US8605031B2 (en) Driving apparatus of backlight module and driving method thereof
CN101971243A (en) Image display device
US10699652B2 (en) Signal processing device and display device having the same
US8400393B2 (en) Method of controlling backlight module, backlight controller and display device using the same
US8305332B2 (en) Backlight unit, liquid crystal display device including the same, and localized dimming method thereof
US20130271506A1 (en) Backlight control method and backlight system
US20090160754A1 (en) Liquid crystal display device, television apparatus, and method for controlling liquid crystal display device
US11024238B2 (en) High dynamic contrast image display method and device based on partitioned backlight
CN102117610A (en) Method for adjusting brightness of picture
JP4894149B2 (en) Liquid crystal display
JP2009294436A (en) Backlight device and liquid crystal display device
CN102820008B (en) Display control circuit and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION