US20110088993A1 - Spring clutch - Google Patents

Spring clutch Download PDF

Info

Publication number
US20110088993A1
US20110088993A1 US12/972,779 US97277910A US2011088993A1 US 20110088993 A1 US20110088993 A1 US 20110088993A1 US 97277910 A US97277910 A US 97277910A US 2011088993 A1 US2011088993 A1 US 2011088993A1
Authority
US
United States
Prior art keywords
clutch
spring
clutch spring
pulley
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/972,779
Inventor
Takahide Saito
Masafumi Nakakoji
Katsumi Furutani
Koji Akiyoshi
Tomoaki Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006111715A external-priority patent/JP2007285368A/en
Priority claimed from JP2006144278A external-priority patent/JP2007315460A/en
Priority claimed from JP2006195598A external-priority patent/JP2008025616A/en
Priority claimed from JP2006198421A external-priority patent/JP2008025707A/en
Priority claimed from JP2007073833A external-priority patent/JP2008045735A/en
Application filed by Individual filed Critical Individual
Priority to US12/972,779 priority Critical patent/US20110088993A1/en
Publication of US20110088993A1 publication Critical patent/US20110088993A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/20Freewheels or freewheel clutches with expandable or contractable clamping ring or band
    • F16D41/206Freewheels or freewheel clutches with expandable or contractable clamping ring or band having axially adjacent coils, e.g. helical wrap-springs

Definitions

  • the present invention relates to a spring clutch comprising a clutch spring in the form of a coil spring mounted between an input member and an output member for transmitting the rotation of the input member in one direction to the output member and cutting off the transmission of rotation if the rotating speed of the output member exceeds the rotating speed of the input member.
  • an engine accessory driving apparatus for transmitting the rotation of the crankshaft of an engine to rotary shafts of engine accessories through a belt transmission
  • a pulley mounted on the rotary shaft of each engine accessory also tends to decelerate quickly.
  • the rotary shaft of the alternator because the rotary shaft of the alternator has a large inertia, it cannot decelerate quickly in response to quick deceleration of the engine, so that the pulley mounted on the rotary shaft tends to continue to rotate at a constant speed.
  • the angular speed of the crankshaft changes in one turn.
  • Such a change in angular speed causes slip between the belt and the pulleys, thus causing fatigue of the belt and impairing its durability.
  • Japanese patent publication 2003-322174A proposes a clutch pulley device which is free of this problem.
  • a cylindrical clutch spring made of a wire having a square section is mounted between a pulley and a pulley hub mounted in the pulley.
  • the clutch spring has its outer periphery in elastic contact with a cylindrical clutch surface formed on the inner periphery of the pulley and has one end thereof in engagement with the pulley hub.
  • the clutch spring When the speed of the pulley hub exceeds the speed of the pulley, the clutch spring is radially compressed, causing slip between the clutch surface of the pulley and the clutch spring, so that the pulley can rotate freely.
  • a bend is formed at a portion of the clutch spring corresponding to the inlet of the spiral groove and stress concentrates at the bend during torque input.
  • the clutch spring can break at its bend due to fatigue after repetition of loading of torque. This was a problem to be solved to improve durability.
  • An object of the present invention is to provide a spring clutch which has its durability improved by preventing the clutch spring from breaking due to fatigue.
  • a spring clutch comprising an input member having a cylindrical clutch surface on its inner periphery, an output member mounted in the input member so as to be rotatable relative to the input member, and a cylindrical clutch spring mounted between the input member and the output member and including a torque transmission end through which torque is transmitted to the output member, wherein when the input member rotates in one direction, the clutch spring radially expands by contact with the clutch surface, thereby transmitting torque from the input member to the output member, and when the speed of the output member exceeds the speed of the input member, the clutch spring is radially compressed, thereby cutting off the transmission of torque from the input member to the output member, and wherein the clutch surface is formed with at least one large-diameter recess to allow radial expansion of several turns of the clutch spring.
  • the clutch spring can be smoothly mounted in the clutch surface without getting caught.
  • the clutch spring has at least one small-diameter portion which is not brought into pressed engagement with the clutch surface when the clutch spring expands.
  • the clutch spring can be smoothly mounted in the clutch surface without getting caught.
  • the clutch surface is formed with a large-diameter recess at a position opposite to the end portion of the clutch spring including the torque transmission end to allow expansion of several turns of the clutch spring at its portion including the torque transmission end
  • the clutch spring comprises a clutch portion disposed radially opposite to a portion of the clutch surface other than the large-diameter recess, and a damper portion disposed radially opposite to the large-diameter recess, the clutch portion having a smaller spring rigidity than the damper portion.
  • the clutch spring may be made from either a wire having a round section or a square section. But, with a clutch spring made from a wire having a round section, when the outer periphery of the clutch spring engages the clutch surface, the engaging surface would be liable to be damaged due to high surface pressure. Thus it is preferable to use a clutch spring made from a wire having a square section.
  • a clutch spring made from a wire having a square section it is possible to make the spring rigidity of the clutch portion and that of the damper portion different from each other by making different the thicknesses of wires from which the clutch portion and the damper portion are made.
  • One method of making them different is by forming a coil spring from a wire having a square section and turning the inner periphery of the coil spring.
  • the spring rigidity of the clutch portion may be uniform over the entire axial length or may increase toward the damper portion in steps or continuously.
  • the clutch surface is formed with a large-diameter recess at a position opposite to the end portion of the clutch spring including the torque transmission end, and a cover ring is mounted in the large-diameter recess to cover this end portion of the clutch spring.
  • the cover ring comprises an annular portion covering the torque transmission end of the clutch spring and a plurality of hold-down claws extending axially from one end of the annular portion for restraining expansion of the clutch spring with sufficient spaces left between the adjacent ones of the hold-down claws to allow elastic deformation of the clutch spring.
  • the hold-down claws may be in a V shape having a width increasing toward the annular portion. With this arrangement, the spaces between the claws are the largest at their tip and decrease gradually toward the annular portion. Thus, the amount of deformation of the clutch spring between the adjacent claws becomes smaller toward the torque transmission side end of the clutch spring.
  • This arrangement makes it possible to increase the spring rigidity of the torque output end of the clutch spring gradually toward its one end, and prevent the breakage of the clutch spring effectively and relax the torque input loaded to the clutch spring.
  • a radially elastically deformable elastic ring is mounted in the large-diameter recess to supplement the spring rigidity of the end portion of the clutch spring including the torque transmission end.
  • the elastic ring may comprise a cylindrical body formed with a cut at a portion of its circumference or may comprise an annular portion having a plurality of elastic legs extending axially from one end of the annular portion with spaces between the adjacent ones of the annular legs.
  • a gap is formed between the outer periphery of the elastic ring and the inner periphery of the large-diameter recess and the gap is of such a size that even if the elastic ring expands under the maximum torque (allowable maximum torque to the spring clutch) loaded to the input member, the outer periphery of the elastic ring is kept out of contact with the inner periphery of the large-diameter recess. This prevents the spring clutch from being loaded with shock and prevents it from breakage.
  • the spring rigidity of the end portion of the clutch spring including the torque transmission end can be increased.
  • the clutch spring one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface, thereby improving the operability of the spring clutch.
  • a ring member is mounted between the clutch surface and the clutch spring so as to get into elastic contact with the clutch spring
  • a cylindrical elastic member is mounted between the ring member and the clutch surface so as to come into elastic contact with the outer periphery of the ring member and the clutch surface.
  • the ring member may be highly rigid and not elastically deformable or may be elastically deformable.
  • the use of an elastically deformable ring member increases the percentage of absorption of excessive torque by elastic deformation of both the ring member and the elastic member. Thus, an excessive torque can be absorbed more effectively in comparison with the arrangement in which it is absorbed by elastic deformation of the elastic member only.
  • FIG. 1 is a vertical sectional front view of a spring clutch according to a first embodiment of this invention
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1 ;
  • FIG. 3 is a partial enlarged perspective view thereof, showing how a clutch spring is coupled with a pulley hub;
  • FIG. 4 is a vertical sectional front view of a spring clutch according to a second embodiment of the present invention.
  • FIG. 5 is a sectional view taken along line V-V of FIG. 4 ;
  • FIG. 6 is a vertical sectional front view of a spring clutch according to a third embodiment of the invention.
  • FIG. 7 is a sectional view taken along line VII-VII of FIG. 6 ;
  • FIG. 8 is a sectional view of a different clutch spring
  • FIG. 9 is a sectional view of a still different clutch spring
  • FIG. 10 is a vertical sectional front view of a spring clutch according to a fourth embodiment of the invention.
  • FIG. 11 is a sectional view taken along line XI-XI of FIG. 10 ;
  • FIG. 12 is a perspective view of a cover ring
  • FIG. 13 is a perspective view of a different cover ring
  • FIG. 14 is a partial sectional view of the spring clutch, showing how the cover ring is prevented from rotating relative to the pulley hub;
  • FIG. 15 is a perspective view of the cover ring shown in FIG. 14 ;
  • FIG. 16 is a vertical sectional front view of a spring clutch according to a fifth embodiment of the invention.
  • FIG. 17 is a partial enlarged sectional view of the spring clutch of FIG. 16 , showing how an elastic ring is mounted;
  • FIG. 18 is a perspective view of an elastic ring
  • FIG. 19 is a perspective view of a different elastic ring
  • FIG. 20 is a perspective view of a still different elastic ring
  • FIG. 21 is a vertical sectional front view of a spring clutch according to a sixth embodiment of the invention.
  • FIG. 22 is a perspective view of an elastic member
  • FIGS. 23A and 23B are perspective views of other two different ring members.
  • FIGS. 1 to 3 show a spring clutch according to the first embodiment of the present invention.
  • the spring clutch includes a pulley 1 as an input member, and a pulley hub 2 as an output member mounted in the pulley 1 .
  • the pulley hub 2 comprises an output shaft 2 a made of a metal and a sleeve 2 b mounted around the output shaft 2 a .
  • the output shaft 2 a has an opposed pair of small-diameter portions 3 and 4 at both ends thereof. Between the small-diameter portion 3 at one end of the output shaft 2 a and the corresponding end of the pulley 1 , a single-seal bearing 5 is mounted to support the pulley 1 and the pulley hub 2 so as to be rotatable relative to each other.
  • a seal 6 is mounted between the pulley 1 and the output shaft 2 a and has its inner periphery in elastic contact with the outer periphery of the small-diameter portion 4 at the other end of the output shaft 2 a.
  • the sleeve 2 b is molded of synthetic resin, and is pressed onto the outer shaft 2 a .
  • the seal 6 is formed with an annular projection 7 on its inner periphery at its end facing the seal 6 .
  • the annular projection 7 is axially immovably fixed between a shoulder 8 formed on the outer periphery of the output shaft 2 a near its other end and a snap ring 9 fixed on the outer periphery of the small-diameter portion 4 of the output shaft 2 a.
  • the sleeve 2 b is formed with a pair of flanges 10 and 11 on its outer periphery at its both ends.
  • the space between the pair of the flanges 10 and 11 serves as a grease reservoir.
  • the flanges 10 and 11 have different outer diameters.
  • the large-diameter flange 10 which is located near the seal 6 , has a slightly smaller diameter than the inner diameter of the pulley 1 .
  • the outer peripheral surface of the large-diameter flange 10 serves as a radial bearing surface 12 for supporting the pulley 1 so as to be rotatable relative to the output shaft 2 a.
  • the small-diameter flange 11 which is located near the bearing 5 , has a larger width than the large-diameter flange 10 .
  • the small-diameter flange 11 is formed with a pair of diametrically opposed recesses 13 in its side facing the bearing 5 .
  • the output shaft 2 a is formed with a pair of diametrically opposed projections 14 a and 14 b on its outer periphery at its end near the bearing 5 .
  • the projections 14 a and 14 b fit in the recesses 13 , thereby preventing the sleeve 2 b from rotating relative to the output shaft 2 a.
  • the pair of projections 14 a and 14 b have different lengths.
  • the longer projection 14 a has its outer periphery disposed radially outwardly of the outer periphery of the small-diameter flange 11 and located adjacent to the inner periphery of the pulley 1 .
  • a cutout 15 is formed in the outer periphery of the small-diameter flange 11 to extend circumferentially from the recess 13 in which the longer projection 14 a fits.
  • a cylindrical clutch surface 16 is formed on the inner periphery of the pulley 1 between the bearing 5 and the seal 6 , and a cylindrical clutch spring 17 is mounted inside the clutch surface 16 .
  • the clutch spring 17 is a coil spring made from a wire having a square section. In the unstressed state, the clutch spring 17 has a larger diameter than the small-diameter portion of the clutch surface 16 , and is mounted in the pulley 1 in a compressed state with the outer periphery of its portion near the seal in elastic contact with the clutch surface 16 .
  • a projection 19 for torque transmission is in engagement with the end of the clutch spring 17 near the bearing 5 .
  • the projection 19 is engaged in the cutout 15 , which is formed in the outer periphery of the sleeve 2 b .
  • the end of the clutch spring 17 near the bearing 5 serves as a torque transmission end through which torque is transmitted to the pulley hub 2 . Its other end is a free end.
  • the outer periphery of the free end is in elastic contact with the cylindrical clutch surface 16 .
  • One side surface of the projection 14 a facing the leading end surface of the projection 19 for torque transmission is a tapered surface 20 .
  • the leading end surface of the projection 19 is also a tapered surface 21 complementary to the tapered surface 20 .
  • the end of the clutch spring 17 is brought into engagement with the projection 19 by engaging an L-shaped engaging piece 23 at the end of the clutch spring 17 in an L-shaped recess 22 formed in the top surface of the projection 19 .
  • the clutch surface 16 is formed with a large-diameter recess 24 at a position opposite to the end portion of the clutch spring 17 including the torque transmission end.
  • a positioning ring 26 is provided between the single-seal bearing 5 and a shoulder 25 formed at the end of the output shaft 2 a on its outer periphery.
  • the positioning ring 26 has on its outer periphery a positioning piece 27 which abuts the side of the torque transmission projection 19 .
  • the clutch spring 17 is axially positioned by the positioning piece 27 and the large-diameter flange 10 of the sleeve 2 b.
  • the pulley hub 2 is mounted on a rotary shaft of e.g. an alternator as an engine accessory so that they will not rotate relative to each other. Then, a belt is trained about the pulley 1 and the pulley on the crankshaft to transmit the rotation of the crankshaft to the pulley 1 through the belt.
  • a rotary shaft e.g. an alternator as an engine accessory
  • the torque transmission projection 19 at the end of the clutch spring 17 smoothly slides radially outwardly along the tapered surface 20 of the projection 14 a , so that torque is transmitted to the projection 14 a and the pulley hub 2 rotates in the same direction as the pulley 1 .
  • the torque transmission projection 19 moves neither axially nor circumferentially, relative to the clutch spring 17 . They do not move radially relative to each other, either.
  • the single large-diameter recess 24 is provided in the clutch surface 16 at a position opposite to the end portion of the clutch spring 17 including the torque transmission end, the position and number of such large-diameter recesses 24 are not limited, but a plurality of axially spaced apart large-diameter recesses 24 may be formed.
  • FIGS. 4 and 5 show a spring clutch according to the second embodiment of this invention.
  • the large-diameter recess 24 of FIG. 1 is omitted and the clutch surface 16 is cylindrical with a uniform diameter over its entire axial length.
  • this embodiment differs from the first embodiment in that the clutch spring 17 is provided with a small-diameter portion 17 b at its portion including the torque transmission end.
  • elements identical to those of the first embodiment are denoted by identical numerals and their description is omitted.
  • the clutch spring 17 is provided with the single small-diameter portion 17 b at its portion including the torque transmission end, the position and number of such small-diameter portions 17 b are not limited. For example, a plurality of axially spaced apart small-diameter portions 17 b may be formed.
  • FIGS. 6 and 7 show a spring clutch according to the third embodiment of this invention.
  • a pulley 1 as an input member and a pulley hub 2 as an output member are supported by a bearing 5 mounted at one end of the pulley 1 so as to be relatively rotatable.
  • the pulley 1 has a radially inner cylindrical clutch surface 16 which is formed with a large-diameter recess 24 at its end near the bearing 5 .
  • a clutch spring 17 in the form of a coil spring is mounted in a radially compressed state in the pulley 1 and has a clutch portion 17 c at a position opposite to the clutch surface 16 which is in elastic contact with the clutch surface 16 .
  • the clutch spring 17 has a damper portion 17 d at a position opposite to the large-diameter recess 24 .
  • the damper portion 17 d has its end portion fitted on a small-diameter spring fitting surface 11 a formed on a flange 11 provided at one end of the pulley hub 2 and has its extreme end inserted and engaged in a spiral groove 30 opening to the spring fitting surface 11 a.
  • a lock plate 31 fitted at the other end of the pulley hub 2 is prevented from coming off by a snap ring 32 .
  • the lock plate 31 and the flange 11 axially position the clutch spring 17 .
  • the spring rigidity of the clutch portion 17 c of the clutch spring 17 is set to be smaller than that of the damper portion 17 d , which is disposed opposite to the large-diameter recess 24 .
  • the clutch portion 17 c of the clutch spring 17 is thinner than the damper portion 17 d .
  • Such a clutch spring can be easily made by forming a coil spring from a wire having a square section and turning one end portion of the inner periphery of the coil spring.
  • the clutch portion 17 c may have a uniform thickness and a uniform spring rigidity over its entire axial length, or may have a thickness increasing in steps toward the damper portion 17 d as shown in FIG. 8 so that the spring rigidity changes in steps in the axial direction. Instead, as shown in FIG. 9 , clutch portion 17 c may have its thickness gradually increasing toward the damper portion 17 d so that the spring rigidity continuously changes in the axial direction.
  • a clutch spring having the clutch portion 17 c , of which the spring rigidity is lower than that of the damper portion 17 d can also be made by forming a spring wire having its thickness changing in the length direction into a coil shape.
  • the clutch surface 16 is formed with the large-diameter recess 24 at a position opposite to the damper portion 17 d , the damper portion 17 d only radially expands without being pressed against the inner periphery of the large-diameter recess 24 .
  • the expansion of the clutch portion 17 c increases a pressed contact engaging force against the clutch surface 16 , so that the clutch spring 17 rotates together with the pulley 1 .
  • the torque of the pulley 1 is transmitted through the one end of the clutch spring 17 to the pulley hub 2 , so that the pulley hub 2 rotates in the same direction as the pulley 1 .
  • FIGS. 10 to 12 show a spring clutch according to the fourth embodiment of the present invention.
  • This embodiment differs from the third embodiment in that the clutch spring 17 has a uniform thickness over the entire length and has its portion including the torque transmission end covered by a cover ring 40 mounted in the large-diameter recess 24 , and that a flange 11 formed at one end of the pulley hub 2 is formed with a projection 41 which circumferentially opposes the torque transmission end of the clutch spring 17 , and through which torque is transmitted.
  • elements identical to those of the third embodiment are denoted by identical numerals and their description is omitted.
  • the cover ring 40 comprises an annular portion 42 covering the torque transmission end of the clutch spring 17 and a plurality of hold-down claws 43 extending axially from one end of the annular portion 42 for restricting radial expansion of the clutch spring 17 with sufficient spaces left between the adjacent hold-down claws to allow elastic deformation of the clutch spring 17 .
  • the cover ring 40 By providing the cover ring 40 in the large-diameter recess 24 so as to cover the end portion of the clutch spring 17 including the torque transmission end, it is possible to increase the spring rigidity of this portion of the clutch spring 17 .
  • This makes it possible to adopt as the clutch spring 17 one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface 16 , thereby improving the operability of the spring clutch.
  • the cover ring 40 is prevented from axially moving and producing noise because the flange 44 is axially positioned by the flange 11 shown in FIG. 10 and the bearing 5 .
  • the hold-down claws 43 may be V shaped having a width increasing toward the annular portion 42 .
  • the spaces between the claws 43 are the largest at their tip and decrease gradually toward the annular portion 42 .
  • the amount of deformation of the clutch spring 17 between the adjacent claws 43 becomes smaller toward the torque transmission end of the clutch spring 17 .
  • This arrangement makes it possible to increase the spring rigidity of the clutch spring 17 gradually toward the torque transmission end, prevent the breakage of the clutch spring effectively and relax the torque input loaded.
  • the cover ring 40 can be prevented from turning relative to the pulley hub 2 , thereby preventing the cover ring 40 from rotating freely and producing noise.
  • FIGS. 16 to 18 show a spring clutch according to the fifth embodiment of the invention.
  • an elastic ring 50 is mounted in place of the cover ring 40 to supplement the spring rigidity of the portion of the clutch spring 17 near the torque transmission end.
  • the elastic ring 50 is formed with a cut 52 at a portion of the circumference of a cylindrical member 51 . As shown in FIG. 17 , between the elastic ring 50 and the large-diameter recess 24 , there is formed a gap 6 of such a size that even if the pulley 1 is loaded with the maximum design torque (that is, maximum allowable torque to the spring clutch) and the elastic ring 50 expands, the outer periphery of the elastic ring 50 does not contact the inner periphery of the large-diameter recess 24 .
  • the maximum design torque that is, maximum allowable torque to the spring clutch
  • the spring rigidity of this portion of the clutch spring 17 increases. This makes it possible to adopt as the clutch spring 17 one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface 16 , thereby improving the operability of the spring clutch.
  • the elastic ring 50 supplements the spring rigidity of the portion of the clutch spring 17 including the torque transmission end, it is possible to suppress the formation of a bend at this portion of the clutch spring 17 in transmitting torque by the expansion of the clutch spring 17 . Therefore, the clutch spring 17 will hardly break due to fatigue and a highly durable spring clutch can be obtained.
  • the elastic ring 50 may have a plurality of elastic legs 54 extending integrally from one end of an annular portion 53 so as to be circumferentially spaced apart from each other. As shown in FIG. 20 , the elastic legs 54 may have their width decreasing gradually toward their tip so that their spring rigidity increases gradually toward the annular portion 53 . This gives a spring rigidity corresponding to the expansion force to the end portion of the clutch spring 17 including the torque transmission end.
  • the elastic ring 50 shown in any of FIGS. 18 to 20 has a cutout to receive the projection 41 formed on the flange 11 , like the embodiment shown in FIGS. 14 and 15 , thereby preventing the ring 50 from rotating relative to the pulley hub 2 and producing noise.
  • FIGS. 21 and 22 show a spring clutch according to the sixth embodiment of the invention.
  • a ring member 60 is mounted between the clutch surface 16 formed on the inner periphery of the pulley 1 and the clutch spring 17 mounted in the pulley 1 so that the clutch spring 17 is brought into elastic contact with the ring member 60 .
  • a cylindrical elastic member 61 is mounted between the ring member 60 and the clutch surface 16 so as to be brought into elastic contact with both the outer periphery of the ring member 60 and the clutch surface 16 .
  • the elastic member 61 is a thin cylindrical body 62 made of a metal and formed with a plurality of opposed pairs of cuts 63 arranged circumferentially at equal intervals.
  • a plurality of elastic protrusions 64 are formed by radially inwardly bulging the portions between the respective pairs of cuts 63 .
  • the clutch spring 17 has a uniform diameter over the entire axial length and has its one end inserted and engaged in a spiral groove 30 formed in the flange 11 like the arrangement shown in FIG. 6 .
  • this embodiment is the same as the second embodiment shown in FIG. 4 .
  • identical parts are denoted by identical numerals and their description is omitted.
  • the ring member 60 may be formed with an axial cut 65 or, as shown in FIG. 23B , it may be formed with a plurality of slits 66 extending axially from one end thereof so as to be elastically deformable. This increases the percentage of absorption of excessive torque by elastic deformation of both the ring member 60 and the elastic member 61 . Thus, an excessive torque can be absorbed more effectively in comparison with the arrangement in which it is absorbed by elastic deformation of the elastic member 61 only.

Abstract

A spring clutch is provided for which durability is improved by preventing a clutch spring from breaking due to fatigue. A cylindrical clutch spring made from a wire having a square section is mounted between a pulley and a pulley hub mounted in the pulley. An end of the clutch spring is coupled to the pulley hub. A clutch surface is formed on the inner periphery of the pulley and is formed with a large-diameter recess at a position opposite to the end portion of the clutch spring including the torque transmission end. When the pulley rotates in one direction, the clutch spring expands. At this time, the end portion of the clutch spring including the torque transmission end expands in the large-diameter recess, thus relaxing sharp torque produced in the clutch. This prevents local stress concentration on the clutch spring and breakage of the clutch spring and improves the durability of the clutch.

Description

  • This application is a divisional application of application Ser. No. 11/783,697, filed Apr. 11, 2007.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a spring clutch comprising a clutch spring in the form of a coil spring mounted between an input member and an output member for transmitting the rotation of the input member in one direction to the output member and cutting off the transmission of rotation if the rotating speed of the output member exceeds the rotating speed of the input member.
  • Generally, with an engine accessory driving apparatus for transmitting the rotation of the crankshaft of an engine to rotary shafts of engine accessories through a belt transmission, if the engine is decelerated quickly, a pulley mounted on the rotary shaft of each engine accessory also tends to decelerate quickly. Especially in the case of an alternator, because the rotary shaft of the alternator has a large inertia, it cannot decelerate quickly in response to quick deceleration of the engine, so that the pulley mounted on the rotary shaft tends to continue to rotate at a constant speed.
  • In this state, there occurs a big difference between the speed of the pulley on the crankshaft and that of the pulley on the rotary shaft of the alternator, so that the belt tension increases and the belt becomes liable to break.
  • Also, the angular speed of the crankshaft changes in one turn. Such a change in angular speed causes slip between the belt and the pulleys, thus causing fatigue of the belt and impairing its durability.
  • Japanese patent publication 2003-322174A proposes a clutch pulley device which is free of this problem.
  • In this clutch pulley device, a cylindrical clutch spring made of a wire having a square section is mounted between a pulley and a pulley hub mounted in the pulley. The clutch spring has its outer periphery in elastic contact with a cylindrical clutch surface formed on the inner periphery of the pulley and has one end thereof in engagement with the pulley hub. When the pulley rotates in one direction, the clutch spring expands and increases the engaging force to the clutch surface, so that the rotation of the pulley is transmitted to the pulley hub through the clutch spring.
  • When the speed of the pulley hub exceeds the speed of the pulley, the clutch spring is radially compressed, causing slip between the clutch surface of the pulley and the clutch spring, so that the pulley can rotate freely.
  • With the clutch pulley device of Patent publication 2003-322174, since one end of the clutch spring is inserted and engaged in a spiral groove formed in one end of the pulley hub, a gap is formed between the outer periphery of the portion of the clutch spring and the clutch surface formed on the inner periphery of the pulley outside of the inlet of the spiral groove.
  • Therefore, in the deformation mode of the clutch spring in torque transmission, a bend is formed at a portion of the clutch spring corresponding to the inlet of the spiral groove and stress concentrates at the bend during torque input.
  • As a result, the clutch spring can break at its bend due to fatigue after repetition of loading of torque. This was a problem to be solved to improve durability.
  • An object of the present invention is to provide a spring clutch which has its durability improved by preventing the clutch spring from breaking due to fatigue.
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided a spring clutch comprising an input member having a cylindrical clutch surface on its inner periphery, an output member mounted in the input member so as to be rotatable relative to the input member, and a cylindrical clutch spring mounted between the input member and the output member and including a torque transmission end through which torque is transmitted to the output member, wherein when the input member rotates in one direction, the clutch spring radially expands by contact with the clutch surface, thereby transmitting torque from the input member to the output member, and when the speed of the output member exceeds the speed of the input member, the clutch spring is radially compressed, thereby cutting off the transmission of torque from the input member to the output member, and wherein the clutch surface is formed with at least one large-diameter recess to allow radial expansion of several turns of the clutch spring.
  • By forming the large-diameter recess only at a position opposite to the end portion of the clutch spring including the torque transmission end, the clutch spring can be smoothly mounted in the clutch surface without getting caught.
  • In this arrangement, by forming the clutch surface with at least one large-diameter recess, when the input member rotates in one direction relative to the output member and the clutch spring expands, several turns of the clutch spring opposite to the large-diameter recess expand, but are not pressed against the clutch surface. Therefore, sharp torque input produced by the clutch is relaxed by elastic deformation of the coil portion and no breakage of the clutch spring will occur. Thus a highly durable spring clutch is provided.
  • In another embodiment of this invention, the clutch spring has at least one small-diameter portion which is not brought into pressed engagement with the clutch surface when the clutch spring expands.
  • If the small-diameter portion is formed only at a position opposite to the torque transmission end of the clutch spring, the clutch spring can be smoothly mounted in the clutch surface without getting caught.
  • In this arrangement, by providing the clutch spring with the small-diameter portion, when the input member rotates in one direction relative to the output member and the clutch spring expands, the small-diameter portion expands, but is not pressed against the clutch surface into engagement. Thus, sharp torque input is relaxed so that breakage of the clutch spring is prevented and thus the durability of the spring clutch can be improved.
  • In another arrangement, the clutch surface is formed with a large-diameter recess at a position opposite to the end portion of the clutch spring including the torque transmission end to allow expansion of several turns of the clutch spring at its portion including the torque transmission end, and the clutch spring comprises a clutch portion disposed radially opposite to a portion of the clutch surface other than the large-diameter recess, and a damper portion disposed radially opposite to the large-diameter recess, the clutch portion having a smaller spring rigidity than the damper portion.
  • In this arrangement, the clutch spring may be made from either a wire having a round section or a square section. But, with a clutch spring made from a wire having a round section, when the outer periphery of the clutch spring engages the clutch surface, the engaging surface would be liable to be damaged due to high surface pressure. Thus it is preferable to use a clutch spring made from a wire having a square section.
  • With a clutch spring made from a wire having a square section, it is possible to make the spring rigidity of the clutch portion and that of the damper portion different from each other by making different the thicknesses of wires from which the clutch portion and the damper portion are made. One method of making them different is by forming a coil spring from a wire having a square section and turning the inner periphery of the coil spring.
  • The spring rigidity of the clutch portion may be uniform over the entire axial length or may increase toward the damper portion in steps or continuously.
  • If the spring rigidity of the clutch portion is made smaller than that of the damper portion by changing the thickness of the wire by cutting, stress would concentrate at a portion where the thickness of the wire changes sharply.
  • Therefore, it is possible to relax concentration of stress by changing the spring rigidity of the clutch portion so as to gradually increase toward the damper portion in steps or continuously.
  • According to another embodiment of this invention, the clutch surface is formed with a large-diameter recess at a position opposite to the end portion of the clutch spring including the torque transmission end, and a cover ring is mounted in the large-diameter recess to cover this end portion of the clutch spring. The cover ring comprises an annular portion covering the torque transmission end of the clutch spring and a plurality of hold-down claws extending axially from one end of the annular portion for restraining expansion of the clutch spring with sufficient spaces left between the adjacent ones of the hold-down claws to allow elastic deformation of the clutch spring.
  • By forming the clutch surface with a large-diameter recess, when the input member rotates in one direction relative to the output member and the clutch spring expands, the damper portion of the clutch spring expands, but is not pressed against the clutch surface. Thus, elastic deformation by expansion of the damper portion relaxes sharp torque input. Therefore, it is not probable that the clutch spring bends at the damper portion and stress concentrates at the bend. Thus a highly durable spring clutch can be provided.
  • Also, by making the spring rigidity of the clutch portion smaller than that of the damper portion, change in the idling torque with change in the outer diameter of the clutch portion is small and the idling torque can be set at a small value. Thus, wear by friction during idling and heat buildup can be suppressed and the life of the clutch function unit can be increased.
  • The hold-down claws may be in a V shape having a width increasing toward the annular portion. With this arrangement, the spaces between the claws are the largest at their tip and decrease gradually toward the annular portion. Thus, the amount of deformation of the clutch spring between the adjacent claws becomes smaller toward the torque transmission side end of the clutch spring.
  • This arrangement makes it possible to increase the spring rigidity of the torque output end of the clutch spring gradually toward its one end, and prevent the breakage of the clutch spring effectively and relax the torque input loaded to the clutch spring.
  • In this arrangement, by mounting the cover ring in the large-diameter recess of the clutch surface so as to cover the end portion of the clutch spring including the torque transmission end and forming the cover ring with a plurality of hold-down claws, it is possible to increase the spring rigidity of the torque output end of the clutch spring. This makes it possible to adopt as the clutch spring one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface, thereby improving the operability of the spring clutch.
  • Also, when the clutch spring expands into clutch engagement with the clutch surface, several turns of the clutch spring at its portion including the torque transmission end is prevented from expanding at their portions opposite to the hold-down claws of the cover ring, so that the spring rigidity increases, and at their portions opposite to the spaces between the hold-down claws, the several turns of the clutch spring elastically deform and bulge radially outwardly, thereby relieving sharp torque input produced by the clutch. Therefore, no breakage of the clutch spring will occur and a highly durable spring clutch can be obtained.
  • According to another embodiment of this invention, a radially elastically deformable elastic ring is mounted in the large-diameter recess to supplement the spring rigidity of the end portion of the clutch spring including the torque transmission end.
  • The elastic ring may comprise a cylindrical body formed with a cut at a portion of its circumference or may comprise an annular portion having a plurality of elastic legs extending axially from one end of the annular portion with spaces between the adjacent ones of the annular legs.
  • A gap is formed between the outer periphery of the elastic ring and the inner periphery of the large-diameter recess and the gap is of such a size that even if the elastic ring expands under the maximum torque (allowable maximum torque to the spring clutch) loaded to the input member, the outer periphery of the elastic ring is kept out of contact with the inner periphery of the large-diameter recess. This prevents the spring clutch from being loaded with shock and prevents it from breakage.
  • In this arrangement, by mounting the elastic ring in the large-diameter recess of the clutch surface, the spring rigidity of the end portion of the clutch spring including the torque transmission end can be increased. This makes it possible to adopt as the clutch spring one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface, thereby improving the operability of the spring clutch.
  • According to a further embodiment of this invention, a ring member is mounted between the clutch surface and the clutch spring so as to get into elastic contact with the clutch spring, and a cylindrical elastic member is mounted between the ring member and the clutch surface so as to come into elastic contact with the outer periphery of the ring member and the clutch surface.
  • The ring member may be highly rigid and not elastically deformable or may be elastically deformable. The use of an elastically deformable ring member increases the percentage of absorption of excessive torque by elastic deformation of both the ring member and the elastic member. Thus, an excessive torque can be absorbed more effectively in comparison with the arrangement in which it is absorbed by elastic deformation of the elastic member only.
  • In this embodiment, by providing the ring member between the clutch surface and the clutch spring so as to be brought into elastic contact with the clutch spring, it is possible to make uniform the radial force of the clutch spring and ensure stable transmission of torque.
  • By providing the cylindrical elastic member between the ring member and the clutch surface so as to get into elastic contact with the outer periphery of the ring member and the clutch surface, if an excessive torque (shock torque) over the transmitted torque capacity is loaded by friction between the ring member and the elastic member, slip occurs at contact point between the ring member and the elastic member, so that torque transmission to the clutch spring is cut off. This prevents stress concentration to the torque transmission side end of the clutch spring and prevents breakage. Thus a highly durable spring clutch can be obtained.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features and objects of the present invention will become apparent from the following description made with reference to the accompanying drawings, in which:
  • FIG. 1 is a vertical sectional front view of a spring clutch according to a first embodiment of this invention;
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1;
  • FIG. 3 is a partial enlarged perspective view thereof, showing how a clutch spring is coupled with a pulley hub;
  • FIG. 4 is a vertical sectional front view of a spring clutch according to a second embodiment of the present invention;
  • FIG. 5 is a sectional view taken along line V-V of FIG. 4;
  • FIG. 6 is a vertical sectional front view of a spring clutch according to a third embodiment of the invention;
  • FIG. 7 is a sectional view taken along line VII-VII of FIG. 6;
  • FIG. 8 is a sectional view of a different clutch spring;
  • FIG. 9 is a sectional view of a still different clutch spring;
  • FIG. 10 is a vertical sectional front view of a spring clutch according to a fourth embodiment of the invention;
  • FIG. 11 is a sectional view taken along line XI-XI of FIG. 10;
  • FIG. 12 is a perspective view of a cover ring;
  • FIG. 13 is a perspective view of a different cover ring;
  • FIG. 14 is a partial sectional view of the spring clutch, showing how the cover ring is prevented from rotating relative to the pulley hub;
  • FIG. 15 is a perspective view of the cover ring shown in FIG. 14;
  • FIG. 16 is a vertical sectional front view of a spring clutch according to a fifth embodiment of the invention;
  • FIG. 17 is a partial enlarged sectional view of the spring clutch of FIG. 16, showing how an elastic ring is mounted;
  • FIG. 18 is a perspective view of an elastic ring;
  • FIG. 19 is a perspective view of a different elastic ring;
  • FIG. 20 is a perspective view of a still different elastic ring;
  • FIG. 21 is a vertical sectional front view of a spring clutch according to a sixth embodiment of the invention;
  • FIG. 22 is a perspective view of an elastic member; and
  • FIGS. 23A and 23B are perspective views of other two different ring members.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The embodiments of the present invention are described below with reference to the accompanying drawings. FIGS. 1 to 3 show a spring clutch according to the first embodiment of the present invention. As shown in FIG. 1, the spring clutch includes a pulley 1 as an input member, and a pulley hub 2 as an output member mounted in the pulley 1.
  • The pulley hub 2 comprises an output shaft 2 a made of a metal and a sleeve 2 b mounted around the output shaft 2 a. The output shaft 2 a has an opposed pair of small-diameter portions 3 and 4 at both ends thereof. Between the small-diameter portion 3 at one end of the output shaft 2 a and the corresponding end of the pulley 1, a single-seal bearing 5 is mounted to support the pulley 1 and the pulley hub 2 so as to be rotatable relative to each other.
  • At the other end of the pulley 1, a seal 6 is mounted between the pulley 1 and the output shaft 2 a and has its inner periphery in elastic contact with the outer periphery of the small-diameter portion 4 at the other end of the output shaft 2 a.
  • The sleeve 2 b is molded of synthetic resin, and is pressed onto the outer shaft 2 a. The seal 6 is formed with an annular projection 7 on its inner periphery at its end facing the seal 6. The annular projection 7 is axially immovably fixed between a shoulder 8 formed on the outer periphery of the output shaft 2 a near its other end and a snap ring 9 fixed on the outer periphery of the small-diameter portion 4 of the output shaft 2 a.
  • The sleeve 2 b is formed with a pair of flanges 10 and 11 on its outer periphery at its both ends. The space between the pair of the flanges 10 and 11 serves as a grease reservoir. The flanges 10 and 11 have different outer diameters. The large-diameter flange 10, which is located near the seal 6, has a slightly smaller diameter than the inner diameter of the pulley 1. The outer peripheral surface of the large-diameter flange 10 serves as a radial bearing surface 12 for supporting the pulley 1 so as to be rotatable relative to the output shaft 2 a.
  • The small-diameter flange 11, which is located near the bearing 5, has a larger width than the large-diameter flange 10. As shown in FIG. 2, the small-diameter flange 11 is formed with a pair of diametrically opposed recesses 13 in its side facing the bearing 5. The output shaft 2 a is formed with a pair of diametrically opposed projections 14 a and 14 b on its outer periphery at its end near the bearing 5. The projections 14 a and 14 b fit in the recesses 13, thereby preventing the sleeve 2 b from rotating relative to the output shaft 2 a.
  • The pair of projections 14 a and 14 b have different lengths. The longer projection 14 a has its outer periphery disposed radially outwardly of the outer periphery of the small-diameter flange 11 and located adjacent to the inner periphery of the pulley 1.
  • A cutout 15 is formed in the outer periphery of the small-diameter flange 11 to extend circumferentially from the recess 13 in which the longer projection 14 a fits.
  • As shown in FIG. 1, a cylindrical clutch surface 16 is formed on the inner periphery of the pulley 1 between the bearing 5 and the seal 6, and a cylindrical clutch spring 17 is mounted inside the clutch surface 16.
  • The clutch spring 17 is a coil spring made from a wire having a square section. In the unstressed state, the clutch spring 17 has a larger diameter than the small-diameter portion of the clutch surface 16, and is mounted in the pulley 1 in a compressed state with the outer periphery of its portion near the seal in elastic contact with the clutch surface 16.
  • As shown in FIGS. 1 to 3, a projection 19 for torque transmission is in engagement with the end of the clutch spring 17 near the bearing 5. The projection 19 is engaged in the cutout 15, which is formed in the outer periphery of the sleeve 2 b. With this arrangement, the end of the clutch spring 17 near the bearing 5 serves as a torque transmission end through which torque is transmitted to the pulley hub 2. Its other end is a free end. The outer periphery of the free end is in elastic contact with the cylindrical clutch surface 16. Thus, the output member and the clutch spring are rotatable indefinitely other than when the clutch spring is radially expanded by contact with the clutch surface to press against the clutch surface, as discussed below.
  • One side surface of the projection 14 a facing the leading end surface of the projection 19 for torque transmission is a tapered surface 20. The leading end surface of the projection 19 is also a tapered surface 21 complementary to the tapered surface 20.
  • As shown in FIG. 3, the end of the clutch spring 17 is brought into engagement with the projection 19 by engaging an L-shaped engaging piece 23 at the end of the clutch spring 17 in an L-shaped recess 22 formed in the top surface of the projection 19.
  • As shown in FIG. 1, the clutch surface 16 is formed with a large-diameter recess 24 at a position opposite to the end portion of the clutch spring 17 including the torque transmission end.
  • As shown in FIG. 1, a positioning ring 26 is provided between the single-seal bearing 5 and a shoulder 25 formed at the end of the output shaft 2 a on its outer periphery. The positioning ring 26 has on its outer periphery a positioning piece 27 which abuts the side of the torque transmission projection 19. The clutch spring 17 is axially positioned by the positioning piece 27 and the large-diameter flange 10 of the sleeve 2 b.
  • The pulley hub 2 is mounted on a rotary shaft of e.g. an alternator as an engine accessory so that they will not rotate relative to each other. Then, a belt is trained about the pulley 1 and the pulley on the crankshaft to transmit the rotation of the crankshaft to the pulley 1 through the belt.
  • In this state, when the rotation of the crankshaft is transmitted to the pulley 1 and the pulley 1 rotates in the direction shown by the arrow in FIG. 2, the clutch spring 17 radially expands by contact with the clutch surface 16 and is pressed against the clutch surface 16.
  • At this time, because the clutch surface 16 is formed with the large-diameter recess 24 at a position opposite to the end portion of the clutch spring 17 including the torque transmission end, several turns of the clutch spring 17 at this end portion radially expand but are not pressed against the inner periphery of the large-diameter recess 24.
  • Also, with the expansion of the clutch spring 17, the torque transmission projection 19 at the end of the clutch spring 17 smoothly slides radially outwardly along the tapered surface 20 of the projection 14 a, so that torque is transmitted to the projection 14 a and the pulley hub 2 rotates in the same direction as the pulley 1. As described above, the torque transmission projection 19 moves neither axially nor circumferentially, relative to the clutch spring 17. They do not move radially relative to each other, either.
  • As described above, in transmitting torque from the pulley 1 to the pulley hub 2, only several turns of the clutch spring 17 at its portion including the torque transmission end radially expand without being pressed against the inner periphery of the large-diameter recess 24. Therefore, sharp torque input produced at the clutch is relaxed and no breakage of the clutch spring 17 will occur. Thus a highly durable spring clutch is provided.
  • Although in the embodiment of FIG. 1, the single large-diameter recess 24 is provided in the clutch surface 16 at a position opposite to the end portion of the clutch spring 17 including the torque transmission end, the position and number of such large-diameter recesses 24 are not limited, but a plurality of axially spaced apart large-diameter recesses 24 may be formed.
  • While torque is being transmitted from the pulley 1 to the pulley hub 2, when the speed of the pulley hub 2 exceeds the speed of the pulley 1, the torque transmission projection 19 engages the end wall of the cutout 15 and the turn 17 a of the clutch spring 17 at its leading end is dragged and moves radially inwardly of the sleeve 2 b by its own restoring elasticity away from the clutch surface 16. Thus the clutch spring 17 is radially compressed and slips on the contact surface with the clutch surface 16. Now the pulley 1 rotates freely and the transmission of rotation from the pulley 1 to the pulley hub 2 is cut off.
  • Even when the speed of the pulley hub 2 exceeds the speed of the pulley 1, because the torque transmission projection 19 is in engagement with the end wall of the cutout 15, projection 19 is kept close to the projection 14 a. Thus, when the speed of the pulley 1 exceeds the speed of the pulley hub 2, the projection 19 is instantly presses against the tapered surface 20 of the projection 14 a, so that torque can be transmitted to the pulley hub 2 without delay.
  • FIGS. 4 and 5 show a spring clutch according to the second embodiment of this invention. In this embodiment, the large-diameter recess 24 of FIG. 1 is omitted and the clutch surface 16 is cylindrical with a uniform diameter over its entire axial length. Also, this embodiment differs from the first embodiment in that the clutch spring 17 is provided with a small-diameter portion 17 b at its portion including the torque transmission end. Thus, elements identical to those of the first embodiment are denoted by identical numerals and their description is omitted.
  • With this arrangement, in transmitting torque by the expansion of the clutch spring 17, the small-diameter coil portion 17 b only radially expands and is not pressed against the clutch surface 16. Thus, like the spring clutch of FIG. 1, sharp torque input produced by the clutch is relaxed, so that breakage of the clutch spring 17 is prevented and thus the durability of the clutch can be improved.
  • Although in FIG. 4, the clutch spring 17 is provided with the single small-diameter portion 17 b at its portion including the torque transmission end, the position and number of such small-diameter portions 17 b are not limited. For example, a plurality of axially spaced apart small-diameter portions 17 b may be formed.
  • FIGS. 6 and 7 show a spring clutch according to the third embodiment of this invention. In this embodiment, a pulley 1 as an input member and a pulley hub 2 as an output member are supported by a bearing 5 mounted at one end of the pulley 1 so as to be relatively rotatable. The pulley 1 has a radially inner cylindrical clutch surface 16 which is formed with a large-diameter recess 24 at its end near the bearing 5.
  • A clutch spring 17 in the form of a coil spring is mounted in a radially compressed state in the pulley 1 and has a clutch portion 17 c at a position opposite to the clutch surface 16 which is in elastic contact with the clutch surface 16. The clutch spring 17 has a damper portion 17 d at a position opposite to the large-diameter recess 24. The damper portion 17 d has its end portion fitted on a small-diameter spring fitting surface 11 a formed on a flange 11 provided at one end of the pulley hub 2 and has its extreme end inserted and engaged in a spiral groove 30 opening to the spring fitting surface 11 a.
  • A lock plate 31 fitted at the other end of the pulley hub 2 is prevented from coming off by a snap ring 32. The lock plate 31 and the flange 11 axially position the clutch spring 17. The spring rigidity of the clutch portion 17 c of the clutch spring 17 is set to be smaller than that of the damper portion 17 d, which is disposed opposite to the large-diameter recess 24.
  • For setting the spring rigidity as described above, in this embodiment, the clutch portion 17 c of the clutch spring 17 is thinner than the damper portion 17 d. Such a clutch spring can be easily made by forming a coil spring from a wire having a square section and turning one end portion of the inner periphery of the coil spring.
  • The clutch portion 17 c may have a uniform thickness and a uniform spring rigidity over its entire axial length, or may have a thickness increasing in steps toward the damper portion 17 d as shown in FIG. 8 so that the spring rigidity changes in steps in the axial direction. Instead, as shown in FIG. 9, clutch portion 17 c may have its thickness gradually increasing toward the damper portion 17 d so that the spring rigidity continuously changes in the axial direction.
  • A clutch spring having the clutch portion 17 c, of which the spring rigidity is lower than that of the damper portion 17 d, can also be made by forming a spring wire having its thickness changing in the length direction into a coil shape.
  • In this arrangement, when the pulley 1 rotates in the direction shown by the arrow in FIG. 7, the clutch portion 17 c of the clutch spring 17 radially expands by contact with the clutch surface 16 and is pressed against the clutch surface 16.
  • At this time, because the clutch surface 16 is formed with the large-diameter recess 24 at a position opposite to the damper portion 17 d, the damper portion 17 d only radially expands without being pressed against the inner periphery of the large-diameter recess 24.
  • The expansion of the clutch portion 17 c increases a pressed contact engaging force against the clutch surface 16, so that the clutch spring 17 rotates together with the pulley 1. Thus, the torque of the pulley 1 is transmitted through the one end of the clutch spring 17 to the pulley hub 2, so that the pulley hub 2 rotates in the same direction as the pulley 1.
  • While torque is being transmitted from the pulley 1 to the pulley hub 2, because the damper portion 17 d only radially expands without being pressed against the inner periphery of the large-diameter recess 24, elastic deformation by expansion of the damper portion 17 d relaxes sharp torque input produced by the clutch. Therefore, it is not probable that the clutch spring 17 will bend at the damper portion 17 d with stress concentrating there. Thus a highly durable spring clutch can be provided.
  • By making the spring rigidity of the clutch portion 17 c lower than that of the damper portion 17 d, adherence to the clutch surface 16 increases, and the clutch portion 17 c is radially expanded and compressed with small torque. This improves response of the spring clutch.
  • FIGS. 10 to 12 show a spring clutch according to the fourth embodiment of the present invention. This embodiment differs from the third embodiment in that the clutch spring 17 has a uniform thickness over the entire length and has its portion including the torque transmission end covered by a cover ring 40 mounted in the large-diameter recess 24, and that a flange 11 formed at one end of the pulley hub 2 is formed with a projection 41 which circumferentially opposes the torque transmission end of the clutch spring 17, and through which torque is transmitted. Thus, elements identical to those of the third embodiment are denoted by identical numerals and their description is omitted.
  • As shown in FIGS. 10 and 12, the cover ring 40 comprises an annular portion 42 covering the torque transmission end of the clutch spring 17 and a plurality of hold-down claws 43 extending axially from one end of the annular portion 42 for restricting radial expansion of the clutch spring 17 with sufficient spaces left between the adjacent hold-down claws to allow elastic deformation of the clutch spring 17.
  • By providing the cover ring 40 in the large-diameter recess 24 so as to cover the end portion of the clutch spring 17 including the torque transmission end, it is possible to increase the spring rigidity of this portion of the clutch spring 17. This makes it possible to adopt as the clutch spring 17 one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface 16, thereby improving the operability of the spring clutch.
  • When the clutch spring 17 radially expands and engages the clutch surface 16, the several turns of clutch spring 17 at its portion including the torque transmission end are prevented from expanding at their portions opposite to the hold-down claws 43 of the cover ring 40, so that their spring rigidity increases. The several turns of the clutch spring elastically deform so as to bulge radially outwardly at their portions opposite to the spaces between the hold-down claws, thereby relieving sharp torque input produced by the clutch. Therefore, no breakage of the clutch spring 17 will occur and a highly durable spring clutch can be obtained.
  • As shown in FIG. 13, by forming a radially inwardly extending flange 44 on the other side of the annular portion 42, the cover ring 40 is prevented from axially moving and producing noise because the flange 44 is axially positioned by the flange 11 shown in FIG. 10 and the bearing 5.
  • As shown in FIGS. 14 and 15, the hold-down claws 43 may be V shaped having a width increasing toward the annular portion 42. With this arrangement, the spaces between the claws 43 are the largest at their tip and decrease gradually toward the annular portion 42. Thus, the amount of deformation of the clutch spring 17 between the adjacent claws 43 becomes smaller toward the torque transmission end of the clutch spring 17.
  • This arrangement makes it possible to increase the spring rigidity of the clutch spring 17 gradually toward the torque transmission end, prevent the breakage of the clutch spring effectively and relax the torque input loaded.
  • Further, as shown in FIGS. 14 and 15, by forming the annular portion 42 with a cutout 45 to receive the projection 41, the cover ring 40 can be prevented from turning relative to the pulley hub 2, thereby preventing the cover ring 40 from rotating freely and producing noise.
  • FIGS. 16 to 18 show a spring clutch according to the fifth embodiment of the invention. In this embodiment, an elastic ring 50 is mounted in place of the cover ring 40 to supplement the spring rigidity of the portion of the clutch spring 17 near the torque transmission end.
  • The elastic ring 50 is formed with a cut 52 at a portion of the circumference of a cylindrical member 51. As shown in FIG. 17, between the elastic ring 50 and the large-diameter recess 24, there is formed a gap 6 of such a size that even if the pulley 1 is loaded with the maximum design torque (that is, maximum allowable torque to the spring clutch) and the elastic ring 50 expands, the outer periphery of the elastic ring 50 does not contact the inner periphery of the large-diameter recess 24.
  • As shown in the fifth embodiment, by mounting the elastic ring 50 at the portion of the clutch spring 17 including the torque transmission end, the spring rigidity of this portion of the clutch spring 17 increases. This makes it possible to adopt as the clutch spring 17 one made from a spring material which is thin, apt to deform elastically and has good adherence to the clutch surface 16, thereby improving the operability of the spring clutch.
  • Also, because the elastic ring 50 supplements the spring rigidity of the portion of the clutch spring 17 including the torque transmission end, it is possible to suppress the formation of a bend at this portion of the clutch spring 17 in transmitting torque by the expansion of the clutch spring 17. Therefore, the clutch spring 17 will hardly break due to fatigue and a highly durable spring clutch can be obtained.
  • When the clutch spring 17 radially expands and engages the clutch surface 16, the torque output end of the clutch spring 17 expands into close contact with the inner periphery of the elastic ring 50. As the amount of its expansion increases, the elastic ring 50 expands. The elastic deformation by the expansion of the end portion of the clutch spring 17 including the torque transmission end and the expansion of the elastic ring 50 relaxes sharp torque input produced by the clutch and effectively prevents the formation of a bend on the clutch spring 17. This prevents breakage of the clutch spring 17 and the pulley hub 2.
  • As shown in FIG. 19, the elastic ring 50 may have a plurality of elastic legs 54 extending integrally from one end of an annular portion 53 so as to be circumferentially spaced apart from each other. As shown in FIG. 20, the elastic legs 54 may have their width decreasing gradually toward their tip so that their spring rigidity increases gradually toward the annular portion 53. This gives a spring rigidity corresponding to the expansion force to the end portion of the clutch spring 17 including the torque transmission end.
  • Preferably, the elastic ring 50 shown in any of FIGS. 18 to 20 has a cutout to receive the projection 41 formed on the flange 11, like the embodiment shown in FIGS. 14 and 15, thereby preventing the ring 50 from rotating relative to the pulley hub 2 and producing noise.
  • FIGS. 21 and 22 show a spring clutch according to the sixth embodiment of the invention. In this embodiment, a ring member 60 is mounted between the clutch surface 16 formed on the inner periphery of the pulley 1 and the clutch spring 17 mounted in the pulley 1 so that the clutch spring 17 is brought into elastic contact with the ring member 60. A cylindrical elastic member 61 is mounted between the ring member 60 and the clutch surface 16 so as to be brought into elastic contact with both the outer periphery of the ring member 60 and the clutch surface 16.
  • As shown in FIG. 22, the elastic member 61 is a thin cylindrical body 62 made of a metal and formed with a plurality of opposed pairs of cuts 63 arranged circumferentially at equal intervals. A plurality of elastic protrusions 64 are formed by radially inwardly bulging the portions between the respective pairs of cuts 63.
  • The clutch spring 17 has a uniform diameter over the entire axial length and has its one end inserted and engaged in a spiral groove 30 formed in the flange 11 like the arrangement shown in FIG. 6.
  • Otherwise, this embodiment is the same as the second embodiment shown in FIG. 4. Thus, identical parts are denoted by identical numerals and their description is omitted.
  • In the sixth embodiment, by providing the ring member 60 between the clutch surface 16 and the clutch spring 17 so as to be brought into elastic contact with the clutch spring 17, it is possible to make uniform the radial force of the clutch spring 17 and ensure stable transmission of torque.
  • By providing the cylindrical elastic member 61 between the ring member 60, which is a rigid body, and the clutch surface 16 so as to be brought into elastic contact with the outer periphery of the ring member 60 and the clutch surface 16, if an excessive torque (shock torque) over the transmittable torque capacity is loaded by friction between the ring member 60 and the elastic member 61, slip occurs at the contact point between the ring member 60 and the elastic member 61, so that torque transmission to the clutch spring 17 is cut off. This prevents stress concentration to the end portion of the clutch spring 17 including the torque transmission end and thus its breakage. Thus, a highly durable spring clutch is provided.
  • As shown in FIG. 23A, the ring member 60 may be formed with an axial cut 65 or, as shown in FIG. 23B, it may be formed with a plurality of slits 66 extending axially from one end thereof so as to be elastically deformable. This increases the percentage of absorption of excessive torque by elastic deformation of both the ring member 60 and the elastic member 61. Thus, an excessive torque can be absorbed more effectively in comparison with the arrangement in which it is absorbed by elastic deformation of the elastic member 61 only.

Claims (2)

1. A spring clutch comprising an input member having a cylindrical clutch surface on its inner periphery, an output member mounted in said input member so as to be rotatable relative to said input member, and a cylindrical clutch spring mounted between said input member and said output member and including a torque transmission end through which torque is transmitted to said output member, wherein when said input member rotates in one direction, said clutch spring radially expands by contact with said clutch surface, thereby transmitting torque from said input member to said output member, and when the speed of said output member exceeds the speed of said input member, said clutch spring is radially compressed, thereby cutting off the transmission of torque from said input member to said output member, and wherein said clutch spring has at least one small-diameter portion which are not pressed against said clutch surface when said clutch spring radially expands.
2. The spring clutch of claim 2 wherein said small-diameter portion is formed only at an end portion of said clutch spring including said torque transmission end.
US12/972,779 2006-04-14 2010-12-20 Spring clutch Abandoned US20110088993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/972,779 US20110088993A1 (en) 2006-04-14 2010-12-20 Spring clutch

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2006111715A JP2007285368A (en) 2006-04-14 2006-04-14 Spring clutch
JP2006-111715 2006-04-14
JP2006144278A JP2007315460A (en) 2006-05-24 2006-05-24 Spring clutch
JP2006-144278 2006-05-24
JP2006-195598 2006-07-18
JP2006195598A JP2008025616A (en) 2006-07-18 2006-07-18 Spring clutch
JP2006-198421 2006-07-20
JP2006198293 2006-07-20
JP2006198421A JP2008025707A (en) 2006-07-20 2006-07-20 Spring clutch
JP2006-198293 2006-07-20
JP2007-073833 2007-03-22
JP2007073833A JP2008045735A (en) 2006-07-20 2007-03-22 Spring clutch
US11/783,697 US7878315B2 (en) 2006-04-14 2007-04-11 Spring clutch
US12/972,779 US20110088993A1 (en) 2006-04-14 2010-12-20 Spring clutch

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/783,697 Division US7878315B2 (en) 2006-04-14 2007-04-11 Spring clutch

Publications (1)

Publication Number Publication Date
US20110088993A1 true US20110088993A1 (en) 2011-04-21

Family

ID=38603786

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/783,697 Expired - Fee Related US7878315B2 (en) 2006-04-14 2007-04-11 Spring clutch
US12/972,779 Abandoned US20110088993A1 (en) 2006-04-14 2010-12-20 Spring clutch

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/783,697 Expired - Fee Related US7878315B2 (en) 2006-04-14 2007-04-11 Spring clutch

Country Status (1)

Country Link
US (2) US7878315B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160312875A1 (en) * 2015-04-27 2016-10-27 Zhejiang Yangtong Automobile Parts Co., Ltd. Overrunning alternator damping pulley
US11655861B2 (en) 2020-09-25 2023-05-23 T.P.P. Co. Friction clutch pressure plate device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026517B2 (en) * 2006-07-07 2012-09-12 ダイコ ユーロペ ソシエタ ア レスポンサビリタ リミタータ Pulley assembly
JP5677305B2 (en) * 2008-10-27 2015-02-25 リテンズ オートモーティヴ パートナーシップ How to make an overrunning decoupler
US8419574B2 (en) * 2010-04-06 2013-04-16 The Gates Corporation Isolator
US8602928B2 (en) * 2010-04-15 2013-12-10 Gates Corporation Isolator
CN102906441B (en) * 2010-05-25 2016-11-09 利滕斯汽车合伙公司 There is between hub and belt wheel the decoupler assembly of sliding interface
CN103140667B (en) * 2010-06-14 2015-11-25 利滕斯汽车合伙公司 Engine starter
EP3444492B1 (en) * 2010-11-14 2020-04-22 Litens Automotive Partnership Decoupler with tuned damping and methods associated therewith
DE102011081045A1 (en) * 2011-08-16 2013-02-21 Robert Bosch Gmbh Gear drive unit
CN102562843A (en) * 2012-03-10 2012-07-11 博山宝丰陶瓷机械有限公司 Plane friction type clutch on working shaft of ceramic roller machine
US8888622B2 (en) * 2012-06-04 2014-11-18 The Gates Corporation Isolator decoupler
JP5914416B2 (en) * 2012-06-20 2016-05-11 三ツ星ベルト株式会社 Pulley structure
CN104822965B (en) 2012-10-12 2017-11-28 利滕斯汽车合伙公司 By endless drive component as MGU or motor auxiliary or start engine used in isolator
KR20150100686A (en) 2012-12-26 2015-09-02 리텐스 오토모티브 파트너쉽 Orbital tensioner assembly
CN105393024B (en) 2013-05-23 2018-04-03 利滕斯汽车合伙公司 Reduce the isolator with double-acting spring system of noise
CN103363064B (en) * 2013-07-15 2015-06-03 李志敏 Spring friction brake one-way coupling damping belt wheel
CN103352973B (en) * 2013-06-13 2015-04-22 李志敏 Unidirectional belt pulley subjected to friction clutch by spring
US9611928B2 (en) 2013-06-13 2017-04-04 Zhimin Li Unidirectional coupling damping pulley
US10267405B2 (en) 2013-07-24 2019-04-23 Litens Automotive Partnership Isolator with improved damping structure
US10041578B2 (en) 2013-07-25 2018-08-07 Litens Automotive Partnership Spring assembly for isolator
US9453538B2 (en) * 2013-08-27 2016-09-27 Litens Automotive Partnership Isolator for engine with progressive lock-up for isolation spring
WO2015048885A1 (en) 2013-10-01 2015-04-09 Litens Automotive Partnership Decoupler with controlled damping
WO2015066800A1 (en) 2013-11-10 2015-05-14 Litens Automotive Partnership Isolator with dual springs
US9097297B1 (en) * 2014-01-17 2015-08-04 Gates Corporation Hydraulic isolator decoupler
US9033832B1 (en) * 2014-01-23 2015-05-19 Gates Corporation Isolating decoupler
US9169914B2 (en) * 2014-03-07 2015-10-27 Gates Corporation Isolating decoupler
US9206892B2 (en) * 2014-04-08 2015-12-08 Gates Corporation Isolating decoupler
EP3161346B1 (en) 2014-06-26 2020-06-24 Litens Automotive Partnership Orbital tensioner assembly
TWI551795B (en) * 2014-07-14 2016-10-01 勝利工業股份有限公司 Pulley for an alternator
US9759274B2 (en) 2014-08-18 2017-09-12 Gates Corporation Accessory tuning device with spring lock
DE102014223228B3 (en) * 2014-11-13 2016-04-21 Schaeffler Technologies AG & Co. KG Pulley arrangement
US9291253B1 (en) 2015-03-24 2016-03-22 Gates Corporation Isolating decoupler
DE102015224608B4 (en) * 2015-12-08 2021-02-04 Schaeffler Technologies AG & Co. KG Pulley decoupler
FR3047363B1 (en) * 2016-02-03 2018-03-02 Valeo Equipements Electriques Moteur PULLEY ASSEMBLY FOR A ROTATING ELECTRICAL MACHINE
FR3047362B1 (en) * 2016-02-03 2018-03-02 Valeo Equipements Electriques Moteur PULLEY ASSEMBLY FOR A ROTATING ELECTRICAL MACHINE
DE102016211558B4 (en) * 2016-06-28 2019-01-31 Schaeffler Technologies AG & Co. KG Riemenscheibenentkoppler
US11549558B2 (en) 2018-08-01 2023-01-10 Gates Corporation Isolator decoupler
US20240084862A1 (en) * 2021-01-20 2024-03-14 Litens Automotive Partnership Decoupler with torque-limiting feature to protect components thereof
US11867275B2 (en) * 2021-11-30 2024-01-09 Gates Corporation Belt starter generator tuning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156573A (en) * 1991-06-05 1992-10-20 Litens Automotive Partnership Serpentine drive with coil spring-one-way clutch alternator connection
US5165507A (en) * 1989-05-02 1992-11-24 Sugatsune Industrial Co., Ltd. Damper for a flapdoor using viscous fluid
US5211269A (en) * 1989-05-02 1993-05-18 Sugatsune Industrial Co., Ltd. Damper for a flapdoor using viscous fluid
US5749449A (en) * 1996-12-16 1998-05-12 Sikorsky Aircraft Corporation Coil spring for overrunning spring clutches
US6761656B2 (en) * 2002-05-31 2004-07-13 Ntn Corporation Over-running clutch pulley with clutch cartridge
US7191880B2 (en) * 2000-05-31 2007-03-20 Ntn Corporation Over-running clutch pulley with increased surface microhardness
US7618337B2 (en) * 2002-07-26 2009-11-17 Litens Automotove Partnership Overrunning decoupler pulley with bare wire spring and grease lubrication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322174A (en) 2002-05-07 2003-11-14 Ntn Corp Spring clutch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165507A (en) * 1989-05-02 1992-11-24 Sugatsune Industrial Co., Ltd. Damper for a flapdoor using viscous fluid
US5211269A (en) * 1989-05-02 1993-05-18 Sugatsune Industrial Co., Ltd. Damper for a flapdoor using viscous fluid
US5156573A (en) * 1991-06-05 1992-10-20 Litens Automotive Partnership Serpentine drive with coil spring-one-way clutch alternator connection
US5749449A (en) * 1996-12-16 1998-05-12 Sikorsky Aircraft Corporation Coil spring for overrunning spring clutches
US7191880B2 (en) * 2000-05-31 2007-03-20 Ntn Corporation Over-running clutch pulley with increased surface microhardness
US6761656B2 (en) * 2002-05-31 2004-07-13 Ntn Corporation Over-running clutch pulley with clutch cartridge
US7618337B2 (en) * 2002-07-26 2009-11-17 Litens Automotove Partnership Overrunning decoupler pulley with bare wire spring and grease lubrication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160312875A1 (en) * 2015-04-27 2016-10-27 Zhejiang Yangtong Automobile Parts Co., Ltd. Overrunning alternator damping pulley
US9784357B2 (en) * 2015-04-27 2017-10-10 Ningbo Yangtong Automobile Parts Co., Ltd. Overrunning alternator damping pulley
US11655861B2 (en) 2020-09-25 2023-05-23 T.P.P. Co. Friction clutch pressure plate device

Also Published As

Publication number Publication date
US20070240964A1 (en) 2007-10-18
US7878315B2 (en) 2011-02-01

Similar Documents

Publication Publication Date Title
US7878315B2 (en) Spring clutch
CA2491230C (en) Overrunning alternator decoupler pulley with bare wire spring and grease lubrication
CA2547383C (en) Spring travel limiter for overrunning alternator decoupler
US6761656B2 (en) Over-running clutch pulley with clutch cartridge
JP3500506B2 (en) Automotive torsion damper
US10533627B2 (en) Vibration damping device for motor vehicle transmission drivetrain
JP2018505363A (en) Belt pulley decoupler
WO2013155615A1 (en) Power transmitting device with overrunning decoupler
JP2017503984A (en) Isolating decoupler
JPH09119509A (en) One way direction over running clutch pulley device
JP2018510299A (en) Belt pulley decoupler
EP1208312A1 (en) Over-running clutch pulley with open clutch cavity
JP2003207033A (en) Over-running clutch pulley with reduced axial length
JP2008089182A (en) Disengageable pulley device
JP4179694B2 (en) Clutch with damper spring
US9611904B2 (en) Centrifugal clutch apparatus
JP2007285368A (en) Spring clutch
US20040127294A1 (en) Power transmission
JP2017160923A (en) Power transmission device
WO2017154794A1 (en) Power transmission device
JP2007315460A (en) Spring clutch
JP2008025707A (en) Spring clutch
JP2013024366A (en) Rotational fluctuation absorbing crank pulley
JP2007278364A (en) Spring clutch
JP2006177523A (en) Retainer for one-way clutch and one-way clutch

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION