US20110048929A1 - FIB Process for Selective and Clean Etching of Copper - Google Patents

FIB Process for Selective and Clean Etching of Copper Download PDF

Info

Publication number
US20110048929A1
US20110048929A1 US12547368 US54736809A US2011048929A1 US 20110048929 A1 US20110048929 A1 US 20110048929A1 US 12547368 US12547368 US 12547368 US 54736809 A US54736809 A US 54736809A US 2011048929 A1 US2011048929 A1 US 2011048929A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
copper
dielectric
method
etching
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12547368
Inventor
Vladimir V. Makarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIZA LAB A OF STATE OF CALIFORNIA LLC LLC
Original Assignee
TIZA LAB A OF STATE OF CALIFORNIA LLC LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern

Abstract

Etch assisting agents for focused ion beam (FIB) etching of copper for circuit editing of integrated circuits both prevent loss of adjacent dielectric due to sputtering by the ion beam, and render sputtered re-deposited copper on adjacent surfaces non-conductive to avoid electrical short circuits. The agents comprise hydrazine and hydrazine derivatives compounds having an N—N (N being Nitrogen) bonding in their molecules, and boiling points between about 70° and 200° C. Preferred agents are either Hydrazine monohydrate or Nitrosodimethylamine, alone or in combination with Nitrogen Tetroxide, and are effective for etching copper in high aspect ratio (deep) holes.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to focused ion beam etching of copper and copper materials, and more particularly to the chemically-assisted etching of copper over dielectric materials.
  • Copper (Cu) is the primary material used in integrated circuits (ICs) to create electrically conductive interconnects, and the etching of copper in ICs using focused ion beam (FIB) techniques is important in the field of circuit editing (CE) for failure verification and debugging of the ICs. Circuit editing of ICs with a focused-ion-beam (FIB) system requires that copper planes and traces be milled (cut) uniformly and cleanly so as to electrically isolate circuit elements across the separation created.
  • Achieving clean uniform FIB etching of copper for CE is difficult. In spite of significant past efforts to improve the quality of FIB copper etching processes, problems persist and improvements are needed in two main areas. These two areas are reducing electrically conductive re-deposited copper in the FIB etching area, and improving the etching selectivity and removal of copper while protecting the adjacent and underlying dielectric from unwanted etching and removal. Both of these problems arise from the properties of copper.
  • In contrast to aluminum (Al) that that may be removed quickly and cleanly in a FIB operation using an agent such as iodine or an iodine-containing etchant, copper does not create simple volatile compounds with iodine as does aluminum (e.g., AlI3) that can survive under ion bombardment and are easily removed. Rather, copper etching in a FIB process is due substantially exclusively to ion beam sputtering. This can inevitably lead to re-deposition of conductive copper which causes problems as discussed below.
  • In addition, copper has a crystalline structure comprising crystal grains which have different crystallographic orientations. Grains with different orientations exhibit significantly different FIB etching rates, and, therefore, FIB etching of copper is very non-uniform and uneven. It results in a very rough surface on the etched copper, and may perforate the copper layer down to the underlying dielectric. This may lead to significant damage of the underlying dielectric, and may result in electrical short circuiting of IC circuits from re-deposited electrically conductive copper. Past efforts to improving selectivity have focused principally on protecting the dielectric rather than enhancing the removal of copper, since the required selectivity that is achievable for copper etching is low relative to other materials, e.g., aluminum, where volatile etching byproducts are created.
  • The ion beam sputtering process causes copper re-deposition all about the area exposed by the ion beam. This creates significant problems since the milled copper material that is intended to be removed re-deposits in this area, making electrical isolation of a signal difficult or impossible. In addition to affording protection of the adjacent and underlying dielectric against unwanted damage or removal, copper etch-assisting chemical agents must also actively assist in either limiting re-deposition of conductive copper material or converting re-deposited conductive copper to a non-conductive state to prevent unwanted electrical short circuits and ensure disconnection of copper conductors intended to be disconnected. FIG. 1 shows two comparative examples of FIB operations to cut copper lines using straight sputtering by an ion beam without any etch assisting agent (top trace A), and ion beam sputtering in an atmosphere of NH4OH comprising a mixture of oxidizing vapors of ammonia (NH3) and water (H2O) (bottom trace B). In the figures, copper appears as the bright areas. The different shades of brightness (gray to white) in the copper lines represent areas of different grain orientations that were etched differently.
  • In the top example A of FIG. 1, the re-deposited conductive copper is clearly seen as the thin bright lines 10, 11 above and below the severed copper line 12, demonstrating that electrical disconnection was not complete, i.e. there was no voltage difference between disconnected ends of the copper line. On the other hand, in the bottom example B in the figure, the copper line 14 was successfully cut and the two ends of the line were disconnected electrically. The re-deposited conductive copper was oxidized by the vapors of NH3 and H2O, and a voltage potential difference was present between the disconnected ends of the copper line. This example shows the advantages of using chemical oxidizers, such as electro-negative chemical elements like oxygen and nitrogen, as FIB etching agents for copper.
  • However, not all oxidizing agents will work with copper. For example, halogens should not be used as etch-assisting agents. Halogens, with the exception of fluorine, spontaneously react with and corrode copper without any activation by an ion beam, and seriously degrade the conductivity of the copper. Even if halogen agents such as chlorine, bromine and iodine are carefully controlled, they can remain in the FIB vacuum chamber for a long time and continue to corrode any exposed copper. Furthermore, all halogens (including fluorine) are very aggressive to both high-k and low-k dielectrics.
  • When etching copper, there should be reasonably small and controlled over-etching of the dielectric so that performing CE on one metallization layer does not break through to an adjacent or underlying layer and create electrical leakage. Moreover, if cutting a copper line on a plane is not the last operation in the CE process, steps should be taken to ensure that the dielectric floor is flat after copper removal. Otherwise, subsequent operations can be seriously affected. As noted previously, because of its crystalline structure, the sputtering rate of copper is highly dependent on its grain orientation (and the ion beam current density, as well), and the average etching rate can vary significantly, as by a factor of four or more for a given set of FIB operating parameters. This is illustrated in FIG. 2 that shows the results of straight sputtering of copper 20 without any etch assisting chemistry applied, and clearly demonstrates the very uneven sputtering of copper due to its crystallographic structure. The dimensions of the milled area in the figure are approximately 10 μm×10 μm. As shown, the underlying dielectric is heavily damaged in areas where the copper removal was the greatest, while in other areas significant amounts of copper remain to be removed. From this figure, the difficulties in controlling the etching of copper may be readily appreciated.
  • Since copper removal is due to ion beam sputtering (not volatilization), copper removal occurs relatively slowly in comparison to the dielectric. Thus, any copper etch assisting agent must provide protection of the adjacent or underlying dielectric to prevent unwanted etching of the dielectric. Once an area of dielectric is exposed, the etch assisting agent should either halt or significantly slow down the dielectric sputtering.
  • For silicon dioxide, SiO2, dielectric, it has been found that oxygen, water or a mixture of vapors of water and ammonia can slow down dielectric sputtering by up to a factor of ten if the ion beam current density and vapor pressure are adjusted properly. Water and ammonia are good oxidizers and have been found to afford reasonably good protection for conventional dielectrics, and oxygen, water and a mixture of water and ammonia have been used as copper etch assisting chemicals for etching copper over conventional SiO2 dielectric. However, these compounds have been found to be useless for protecting the new low-k dielectrics being increasingly used in ICs. The main problem is that many low-k dielectrics contain carbon as one of the main components of the dielectric structure, which is why low-k dielectrics are sometimes called “organic” dielectrics. Both water and oxygen easily oxidize carbon in the dielectric structure to produce carbon monoxide (CO) or carbon dioxide (CO2), both of which are gases and are volatilized. Therefore, rather than being protective agents for the dielectric, they accelerate dielectric etching by volatilizing one of the main components of the dielectric structure.
  • There has been and is an increasing tendency in the IC industry to employ dielectrics with even lower k numbers by increasing of the proportion of carbon in their structures. This has led to a demand for new copper etch assisting chemistries that are capable of protecting the dielectric. U.S. Pat. No. 7,060,196 discloses and claims a number of chemicals, mainly nitro-compounds such as Nitro-methane, Nitro-ethane, Nitro-propane, Nitro-ethanol and others, for use as etch assisting agents to protect dielectrics in FIB copper etching applications. Nitro-ethanol presently is one of the most widely used chemical agents for etching copper over organic dielectrics in FIB operations. While Nitro-ethanol has been effective in limiting dielectric etching, it has not been very effective addressing the issue of re-deposition of sputtered conductive copper material on surfaces adjacent to the IC work area. This is shown in FIG. 3.
  • FIG. 3 illustrates the results of etching copper over Black Diamond™ dielectric using Nitro-ethanol as an etch assisting agent. As shown, the center of the milled area has a flat bottom with two rows of contacts 30 comprising vias connected to the next lower layer. However, re-deposited copper is clearly present on the vertical walls of the openings, as indicated at 32. Re-deposited conductive copper material appears as bright areas in the figure as it produces secondary electron emission. The re-deposited material is conductive because it contains copper and some carbon from the copper etch assisting compound (Nitro-ethanol in this case). This re-deposited material may render the IC partially or totally inoperative by electrically short circuiting interconnects or grounding copper power planes. For example, if in the figure the upper milled area 34 were not wider than the lower milled area 36, the top and bottom power planes would be electrically shorted to each other by the re-deposited conductive copper on the vertical walls of the openings. There is also more re-deposited conductive copper material in the milled areas which is invisible in the figure because it is not grounded and does not produce secondary electron emission. From the figure, it can be concluded that while the Nitro-ethanol copper etch assisting compound functioned well to protect of the underlying dielectric, it is not effective in addressing conductive copper re-deposition.
  • Thus, there is a need for etching methods and etch assisting agents for FIB etching of copper that addresses the foregoing and other problems with known methods and etch assisting agents. In particular, there is a need for etching methods and etch assisting agents for FIB etching of copper that both protect the adjacent and underlying dielectric from unwanted etching, and that avoid the problems caused by re-deposition of conductive copper and copper materials. It is to these ends that the present invention is directed.
  • SUMMARY OF THE INVENTION
  • The invention affords FIB copper etching processes and agents that address the foregoing and other known problems of FIB copper etching processes and agents for CE of ICs. In particular, the invention affords FIB copper etch assisting agents that address the two principal problems with known etch assisting agents, i.e., protection of the adjacent dielectric when etching copper, and rendering sputtered and re-deposited conductive copper non-conductive to prevent electrical short circuiting. The etch assisting agents of the invention protect the adjacent dielectric during copper etching by having low volatility which affords high stickiness and long resident time when absorbed on the dielectric surface, and by being formed of compounds that form oxides or nitrides and contribute to the replenishment of dielectric lost by ion beam sputtering. The etch assisting agents additionally afford efficient oxidation of re-deposited copper to convert the sputtered and re-deposited conductive copper to a non-conductive oxide.
  • In one aspect the invention affords a FIB process and etch assisting agent for etching copper in the presence of a dielectric by a focused ion beam, in which the copper and the dielectric are exposed to the etch assisting agent that contains an N—N bonding in its molecules, where N is nitrogen.
  • In a more specific aspect, the agent is hydrazine or a derivative thereof, having a boiling point between about 70° C. and 200° C. And even more particularly, the agent is Hydrazine monohydrate or Nitrosodimethylamine.
  • In yet another aspect the invention affords a FIB process and etch assisting agent for etching copper in the presence of a dielectric by a focused ion beam, in which the copper and dielectric are exposed to the etch assisting agent comprising, in combination, a first compound containing an N—N bonding in its molecules, where N is nitrogen, that protects the dielectric, and a second compound that is a strong oxidizer that renders re-deposited conductive copper non-conductive.
  • More particularly, the first compound is Hydrazine monohydrate or Nitrosodimethylamine, and said second compound comprises Nitrogen Tetroxide.
  • In still a further aspect, the invention affords a FIB process for etching copper in the presence of a dielectric by a focused ion beam, in which the copper and dielectric are cooled to a temperature between about −15° C. to +10° C., and the copper and dielectric are exposed to an etch assisting agent comprising Nitrogen Tetroxide.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the results of milling two copper lines using conventional ion beam etching, the upper copper line in the figure having been etched by straight ion beam sputtering without using any etch assisting agent; and the lower copper line having been milled by ion beam etching in an atmosphere comprising vapors of ammonia, NH3, and water, H2O;
  • FIG. 2 illustrates the uneven etching of copper by straight ion beam sputtering in an etching agent-free environment;
  • FIG. 3 shows the results of ion beam etching of copper over Black Diamond™ dielectric using Nitro-ethanol as an etch assisting agent; and
  • FIGS. 4A-B are diagrammatic views respectively illustrating the FIB etching of copper using a gas etch assisting agent on a planar surface, and in a trench.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The invention is particularly well adapted to the FIB etching of copper interconnects, power and ground planes, and the like in ICs for circuit editing (CE), and will be described in that context. However it will be appreciated that this is illustrative of only one utility of the invention, and that the invention has greater applicability.
  • Conventional focused ion beam (FIB) apparatus and operations are well known and will not be described in detail herein, and may be used in practicing the invention as explained below. For instance, U.S. Pat. No. 7,060,196, which is hereby incorporated by reference herein, discloses FIB apparatus for milling copper over organic dielectrics in a context and environment similar to that of the present invention, and such apparatus may be used to practice the invention.
  • As explained above, the invention affords a gaseous etch assisting agent that protects dielectric adjacent to copper against over etching in a FIB etching process, and oxidizes sputtered conductive copper re-deposited in the etching work area to convert it to a non-conductive state. FIGS. 4A-B respectively illustrate diagrammatically the FIB etching of a copper line 50 disposed on a planar dielectric surface 52, and a copper line 60 disposed in a trench 62 having sidewalls 64 and 66. As shown in the figures, an ion beam 70 is directed to the copper lines 50, 60 to be etched, and the copper lines and the adjacent dielectric are exposed to a gaseous etch assisting agent 72 from a gas nozzle 74 located in the FIB chamber adjacent to the ion beam. The gaseous etch assisting agent, as will be described, comprises one or more compounds that are selected both to protect the dielectric and to passivate the sputtered copper through oxidation to render it non-conductive. As used herein, the term “adjacent” in reference to the dielectric means both dielectric that is in the vicinity of the copper as well as dielectric that underlies the copper; and the term “conductive copper” refers both to elemental copper as well as to conductive copper compounds or materials.
  • As may be appreciated from FIGS. 4A-B, the gas flux delivered to a work area in FIB systems is not very uniform or symmetrical, as the gas nozzle cannot obstruct the ion beam path and must be positioned off to one side. FIG. 4A shows that when copper lines 50, 80 are located on a planar surface 52, the etch assisting gas can easily reach any point on the surface in the area between the copper lines and treat that area, for example, to oxidize re-deposited copper. However, when the copper line to be cut is on the bottom of a trench, for example line 60 in FIG. 4B, which is a very common situation, it may not be possible to achieve direct line of sight from the gas nozzle to the bottom of the trench. There may be shadowed areas (like wall 64 in the figure) where the primary etch assisting gas stream 72 cannot directly impinge. The higher the aspect ratio (depth to width) of the trench, the greater the shadowing problem. The only opportunity for any significant quantity of the etch assisting gas to reach shadowed areas such as walls or the bottom of the trench is to bounce off of other surfaces, such as wall 64, as indicated at 68 in FIG. 4B. Moreover, other copper lines 82, 84 may be exposed on the vertical walls 64, 66 of the trench, and supplying sufficient etch assisting gas flux to the areas around these copper lines is difficult. If the etch assisting gas is too sticky, i.e., has low volatility and a long resident time, it tends to remain on the walls where it impinges and either does not reach the shadowed areas or does so with low flux. In this case, there may be insufficient reflected gas flux in the shadowed areas to afford the desired processing, e.g., oxidation of re-deposited copper in the shadowed area and protection of the dielectric. Accordingly, by selecting a gas with the appropriate stickiness, bouncing the etch assisting gas from surfaces to reach shadowed areas can be an effective mechanism for supplying the etch assisting agent to a shadowed work area, either to protect the dielectric or to effect oxidation of re-deposited conductive copper.
  • Where it is necessary to cut a copper line 60 on the bottom of a trench 62 where other copper lines 82, 84 from other metal layers may be exposed at the trench walls 64, 66, as illustrated in FIG. 4B, copper re-deposition may occur (and very often does) in areas where the etch assisting gas can arrive only indirectly after bouncing from another surface. Sticky etch assisting gases with long residence times on a surface will not be efficient for this purpose as the gas will tend to remain in the spot where it first impinges. On the other hand, the stickier the etch assisting agent, the more efficient it is for protection of the dielectrics against ion beam bombardment. This creates a contradiction. The better the copper etch assisting compound is for protection of the underlying dielectric, the worse it is for oxidation of re-deposited copper, especially in tight (high aspect ratio) holes.
  • To address this contradiction, the invention affords more volatile and more aggressive oxidizing copper etch assisting agents with less carbon atoms per molecule and lower working ion beam current densities in order to maintain reasonable dielectric protection. Additionally, the invention provides a combination of different compounds as copper etch assisting agents, one compound being sticky for good protection of dielectrics and the other compound being more volatile and a more aggressive oxidizer to render the sputtered and re-deposited conductive copper non-conductive.
  • The invention provides etch assisting agents that satisfy both of the two primary requirements of copper etch assisting agents. First, they protect the adjacent dielectric, both conventional and low-k dielectrics, during copper etching. This requires that the etch assisting agent have low volatility, which implies high boiling point, low vapor pressure, high stickiness, and long residence time when adsorbed on a surface, because efficient protection requires collecting significant amount of the agent on the protected surface. Secondly, the etch assisting agents afford efficient and continuous oxidation during sputtering and re-deposition of conductive copper onto surfaces adjacent to the work spot. Since it is difficult and impractical to clean re-deposited copper following etching that is more that a couple of mono-layers deep, the agents oxidize copper both during sputtering and during or immediately following re-deposition as a mono-layer onto adjacent surfaces. This requires that an etch assisting agent be more volatile and be an aggressive and efficient oxidizer, and that the agent be delivered to all adjacent surfaces in sufficient amounts (flux) to oxidize the re-deposited copper.
  • If the etch assisting oxidizing gas is too sticky, i.e., has a low volatility due to a high boiling point and low vapor pressure, it has a long residence time when absorbed on a surface. The gas cannot reach re-deposited copper in the shadowed areas of the trench and will not be effective as an oxidizing agent. An etch assisting agent that is too sticky cannot provide efficient oxidation of the re-deposited copper in holes with a high enough aspect ratio. Yet, if the etch assisting agent is too volatile (low stickiness), it does not remain on the dielectric surface long enough to prevent dielectric etching.
  • In accordance with the invention, it has been found that certain compounds protect all known dielectrics from sputtering by Gallium (Ga+) ions. The distinguishing feature of these compounds is that they contain an N—N bonding (N being Nitrogen) in their molecules. Due to the presence of N—N fragments in the molecules, when exposed to an ion beam and to the flux of the etch assisting agent, dielectric sputtering is significantly compensated through growing of replacement dielectric by Nitrogen (N) from the etching agent combining with Silicon (Si) from the dielectric or Gallium (Ga+) from the ion beam to produce Si3N4 or GaN, respectively. Preferred compounds comprise hydrazine or hydrazine derivatives with boiling points between about 70° C. and 200° C.
  • More particularly, preferred compounds that have been found that have reasonably good stickiness for dielectric protection as well as good oxidation efficiency are Nitrosodimethylamine (“NDMA”), C2H6N2O, and Hydrazine monohydrate (“HMH”), N2H4*H2O. In addition, for high aspect ratio areas where the oxidizing compound should be very mobile, a combination of HDMA or HMH with Nitrogen Tetroxide, N2O4, may be used. Nitrogen Tetroxide is an extremely powerful oxidizer with a very high vapor pressure (boiling point of 21° C.) which makes it an ideal oxidizing agent for deep holes or other high aspect ratio (“HAR”) areas.
  • All the above compounds can be used at reasonably low temperatures of the target IC. Since their volatility decreases with decreasing temperature, their stickiness to the target surface increases, and the temperature of the work area may be controlled to control the etching process, as explained below. In fact, Nitrogen Tetroxide (N2O4) has particularly advantageous utility at temperatures in the range, for example, of −20° C. to +10° C., and more particularly in the range −15° C. to +10° C., that are reasonably close to its melting point of −11.2° C. Since N2O4 has a solid phase at this temperature, in a temperature range around this temperature increased amounts of N2O4 can be collected on surfaces of the IC. Therefore, N2O4 can work both for protection of the dielectric (it has an N—N group and is efficiently collected on surface at low temperature) and as an oxidizer for re-deposited copper.
  • The temperature of the IC may be lowered to a desired temperature for FIB copper etching by mounting the IC on a surface of a thermoelectric cooler (Peltier) module in the FIB vacuum chamber to cool the IC. The electrical inputs to the thermoelectric cooler can be controlled to manipulate the temperature of the IC through the Peltier effect to cool the IC to the desired temperature. A thermocouple in the chamber may be used to measure the temperature of the IC. U.S. Patent Publication US 2006/0065853, Mar. 30, 2006, to Chad Rue, which is hereby incorporated by reference herein, discloses such an apparatus and method for manipulating the temperature of a sample in a FIB that may be used for controlling the temperature of the IC during etching.
  • The following Table 1 gives a comparison of the properties of NDMA, HMH and N2O4 as copper etch assisting agents, along with NitroEthanol for reference purposes.
  • TABLE 1
    Oxidation Can Be Used Alone
    Compound Volatility efficiency in a HAR Hole? Other
    1 NitrosoDimethylAmine moderate good yes
    2 Hydrazine monohydrate high/moderate good yes
    3 Nitrogen Tetroxide high very high Only at low Expected to be very
    temperatures efficient below
    about −11.2° C.
    (melting point)
    n/a NitroEthanol low good no
  • The following tables present operating parameters and working examples of FIB copper etching processes employing the foregoing gaseous etch assisting agents in accordance with the invention.
  • The gallium, Ga+, ion beam potentials of the FIB are preferably adjusted to be about 30 kV out of the ion column, and the ion beam current is preferably adjusted to a value within the range of the order of about 1 picoAmps (pA) or below to several tens of nanoAmps (nA) so that ion beam current density is in the range of the preferred values for each etch assisting agent, as specified below. The preferred gas pressures and current densities are listed in the following Table 2, which gives specific preferred FIB process parameters for each of the etching agents of the invention.
  • TABLE 2
    Preferred Ion
    Preferred Ion Beam Current
    Beam Current Density for
    Preferred Density for Etching Copper
    Copper Etch Pressure of Etching Copper Over Organic
    Assisting the Chemistry over SiO2 Dielectrics
    Chemistry (torr) (pA/μm2) (pA/μm2)
    NDMA 3.0 × 10−5 8.0 ≦5.0
    HMH 3.0 × 10−5 5.0 ≦3.0
    N2O4 3.0 × 10−5 3.0 ≦2.0
    (at an IC Temp. of
    about −12° C.)
  • The values of the preferred parameters in Table 1 may vary and assume values within a range of ±30% of the preferred values shown. Time is a parameter that will depend upon the thicknesses of the etched layers.
  • The following Table 3 gives preferred working parameters when each of the two main copper etch assisting agents, NDMA and HMH is used in combination with the oxidizing agent N2O4 for both conventional and organic (low-k) dielectrics.
  • TABLE 3
    Preferred Preferred Ion
    Ion Beam Beam Current
    Current Density for
    Main Copper Preferred Density for Etching
    Etch Assisting Pressure of Etching Copper over
    Chemistry With the main Preferred Copper over Organic
    N2O4 Oxidizing Chemistry Pressure of SiO2 Dielectrics
    Agent (torr) N2O4 (torr) (pA/μm2) (pA/μm2)
    NDMA + N2O4 3.0 × 10−5 1.0 × 10−5 8.0 ≦5.0
    HMH + N2O4 3.0 × 10−5 1.0 × 10−5 5.0 ≦3.0
  • The following Tables 4-5 give working examples and representative operating parameters for NDMA and HMH, respectively, when used alone. The sets of parameters in the Tables have been found to produce good results for the different chemistries of the invention when used with both conventional SiO2 and organic dielectrics.
  • TABLE 4
    Working Examples - NDMA
    Etch Assisting Etched Area Ion Beam Current Copper Etching
    Chemistry Size, Current, Density Thickness Dielectric Time
    Pressure (torr) (um × um) (pA) (pA/um2) (um) Type (min:sec)
    3.0E−5 4 × 2 46 3.8 0.6 Organic 8:25
    2.7E−5 5.5 × 3.0 120 7.3 1.0 SiO2 13:40 
    2.8E−5 1 × 1 3 3.0 0.4 Organic 5:40
  • TABLE 5
    Working Examples - HMH
    Etch Assisting Etched Area Ion Beam Current Copper Etching
    Chemistry Size, Current, Density Thickness Dielectric Time
    Pressure (torr) (um × um) (pA) (pA/um2) (um) Type (min:sec)
    3.2E−5 5 × 5 242 9.7 1.0 SiO2 15:25
    3.0E−5 3 × 2 20 3.3 0.6 Organic 11:30
    2.9E−5 2 × 2 10 2.5 0.4 Organic  6:20
  • Since the sputtering rate of copper is proportional to the ion current density, the ratio of the current density to the flux of a particular gaseous etch assisting agent influences both the oxidation of the sputtered and re-deposited copper as well as the protection afforded to the dielectric. If the current density is too high, the gas does not have sufficient time to adequately oxidize the sputtered and re-deposited copper, and if the gas flux is too low, it may not adequately protect the dielectric. Generally, it is preferable to select a gas flux, and then adjust the current density to give a desired ratio. The values in the Tables have been found to afford good results. As may be appreciated, these values are representative values and may be adjusted within ranges about the values given for the specifics of a particular etching operation.
  • While the foregoing has been with reference to preferred embodiments of the invention, it may be appreciated that changes may be made in these embodiments without departing from the principles and the spirit of the invention, the scope of which is defined in the appended claims.

Claims (20)

  1. 1. A method of focused ion beam etching of copper in the presence of a dielectric comprising:
    directing a focused ion beam onto the copper to be etched; and
    exposing the copper and the dielectric to an etch assisting agent comprising a compound selected from the group of compounds that contain an N—N bonding in their molecules, where N is nitrogen.
  2. 2. The method of claim 1, wherein said compound comprises hydrazine and derivatives thereof with boiling points between about 70° C. and 200° C.
  3. 3. The method of claim 2, wherein said compound is selected from the group consisting of Hydrazine monohydrate and Nitrosodimethylamine.
  4. 4. The method of claim 3 wherein said etch assisting agent further comprises Nitrogen Tetroxide in combination with one of said Hydrazine monohydrate and Nitrosodimethylamine.
  5. 5. The method of claim 1, further comprising lowering the temperature of the copper and the dielectric to decrease the volatility and increase the sticking coefficient of the agent.
  6. 6. The method of claim 5, wherein said lowering the temperature of the copper and the dielectric comprises lowering the temperature to between about −15° C. to +10° C.
  7. 7. The method of claim 1, wherein said agent comprises an oxidizer having a low boiling point at or below about 21° C.
  8. 8. The method of claim 7, wherein said oxidizer comprises Nitrogen Tetroxide.
  9. 9. The method of claim 8, wherein said cooling comprises cooling the copper and dielectric to a temperature of the order of about −12° C. such that the Nitrogen Tetroxide is collected in a solid phase on the surfaces of the dielectric and the copper.
  10. 10. A method of focused ion beam etching of copper in the presence of a dielectric comprising:
    directing a focused ion beam onto a portion of the copper; and
    exposing the copper to an etch assisting agent comprising a first compound selected to protect the dielectric from etching and a second compound comprising a strong oxidizer to render sputtered conductive copper non-conductive.
  11. 11. The method of claim 10, wherein the first compound is selected to have low to moderate volatility to afford a sufficient residence time on the dielectric to replenish dielectric lost due to ion beam etching.
  12. 12. The method of claim 11, wherein said copper is located in a high aspect ratio hole that has first surfaces shadowed from direct exposure to the etch assisting agent, and said first compound is selected to have a volatility such that it bounces from second surfaces on which it impinges directly onto said first surfaces with sufficient flux to oxidize re-deposited copper at said first surfaces.
  13. 13. The method of claim 10 further comprising adjusting a ratio of copper etching ion beam current to a flux of the etch assisting agent to oxidize substantially completely sputtered copper that is re-deposited onto surfaces in the vicinity of said etching.
  14. 14. The method of claim 10, wherein the first compound is selected from the group consisting of compounds that contain an N—N bonding in their molecules, where N is nitrogen.
  15. 15. The method of claim 14, wherein said first compound is selected from the group consisting of Hydrazine monohydrate and Nitrosodimethylamine.
  16. 16. The method of claim 14, wherein said second compound comprises Nitrogen Tetroxide.
  17. 17. The method of claim 10, wherein said dielectric is one of a conventional or an organic dielectric.
  18. 18. A method of focused ion beam etching of copper in the presence of a dielectric comprising:
    cooling the copper and the dielectric to a temperature between about −15° C. to +10° C.;
    directing a focused ion beam onto a portion of the copper; and
    exposing the copper and the dielectric to an etch assisting agent comprising Nitrogen Tetroxide.
  19. 19. The method of claim 18 further comprising adjusting a copper etching ion beam current relative to a flux of Nitrogen Tetroxide such that sputtered copper is substantially completely oxidized and dielectric sputtered by the ion beam is substantially replenished.
  20. 20. The method of claim 19, wherein the dielectric is one of silicon dioxide or an organic dielectric, and the dielectric is replenished through reaction of Nitrogen with one or both of the dielectric and Gallium from the ion beam.
US12547368 2009-08-25 2009-08-25 FIB Process for Selective and Clean Etching of Copper Abandoned US20110048929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12547368 US20110048929A1 (en) 2009-08-25 2009-08-25 FIB Process for Selective and Clean Etching of Copper

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US12547368 US20110048929A1 (en) 2009-08-25 2009-08-25 FIB Process for Selective and Clean Etching of Copper
US12727191 US20110048931A1 (en) 2009-08-25 2010-03-18 FIB Process for Selective and Clean Etching of Copper
JP2012526903A JP2013503485A (en) 2009-08-25 2010-08-24 Focused ion beam processes for selective and clean etching of copper
PCT/US2010/046449 WO2011025770A1 (en) 2009-08-25 2010-08-24 Focused ion beam process for selective and clean etching of copper
US13504089 US8894828B2 (en) 2009-08-25 2010-08-24 FIB process for selective and clean etching of copper
KR20127007421A KR20120065368A (en) 2009-08-25 2010-08-24 Focused ion beam process for selective and clean etching of copper
EP20100812545 EP2470688B1 (en) 2009-08-25 2010-08-24 Focused ion beam process for selective and clean etching of copper

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12727191 Continuation-In-Part US20110048931A1 (en) 2009-08-25 2010-03-18 FIB Process for Selective and Clean Etching of Copper
PCT/US2010/046449 Continuation WO2011025770A1 (en) 2009-08-25 2010-08-24 Focused ion beam process for selective and clean etching of copper
PCT/US2010/046449 Continuation-In-Part WO2011025770A1 (en) 2009-08-25 2010-08-24 Focused ion beam process for selective and clean etching of copper

Publications (1)

Publication Number Publication Date
US20110048929A1 true true US20110048929A1 (en) 2011-03-03

Family

ID=43623226

Family Applications (1)

Application Number Title Priority Date Filing Date
US12547368 Abandoned US20110048929A1 (en) 2009-08-25 2009-08-25 FIB Process for Selective and Clean Etching of Copper

Country Status (1)

Country Link
US (1) US20110048929A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218022B1 (en) * 1996-09-20 2001-04-17 Toray Engineering Co., Ltd. Resin etching solution and process for etching polyimide resins
US20010053605A1 (en) * 2000-03-10 2001-12-20 Michael Phaneuf Apparatus and method for reducing differential sputter rates
US6407001B1 (en) * 2000-06-30 2002-06-18 Intel Corporation Focused ion beam etching of copper
US6824655B2 (en) * 2001-08-27 2004-11-30 Credence Systems Corporation Process for charged particle beam micro-machining of copper
US20060065853A1 (en) * 2004-09-30 2006-03-30 Chad Rue Apparatus and method for manipulating sample temperature for focused ion beam processing
US7060196B2 (en) * 2003-10-03 2006-06-13 Credence Systems Corporation FIB milling of copper over organic dielectrics
US7083741B2 (en) * 2002-10-17 2006-08-01 Siltronic Ag Process and device for the wet-chemical treatment of silicon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218022B1 (en) * 1996-09-20 2001-04-17 Toray Engineering Co., Ltd. Resin etching solution and process for etching polyimide resins
US20010053605A1 (en) * 2000-03-10 2001-12-20 Michael Phaneuf Apparatus and method for reducing differential sputter rates
US6407001B1 (en) * 2000-06-30 2002-06-18 Intel Corporation Focused ion beam etching of copper
US6824655B2 (en) * 2001-08-27 2004-11-30 Credence Systems Corporation Process for charged particle beam micro-machining of copper
US7083741B2 (en) * 2002-10-17 2006-08-01 Siltronic Ag Process and device for the wet-chemical treatment of silicon
US7060196B2 (en) * 2003-10-03 2006-06-13 Credence Systems Corporation FIB milling of copper over organic dielectrics
US20060065853A1 (en) * 2004-09-30 2006-03-30 Chad Rue Apparatus and method for manipulating sample temperature for focused ion beam processing

Similar Documents

Publication Publication Date Title
US7084070B1 (en) Treatment for corrosion in substrate processing
US6746961B2 (en) Plasma etching of dielectric layer with etch profile control
US6440863B1 (en) Plasma etch method for forming patterned oxygen containing plasma etchable layer
US6123088A (en) Method and cleaner composition for stripping copper containing residue layers
US5605601A (en) Method of manufacturing semiconductor device
US4505782A (en) Plasma reactive ion etching of aluminum and aluminum alloys
US6812147B2 (en) GCIB processing to improve interconnection vias and improved interconnection via
US6693043B1 (en) Method for removing photoresist from low-k films in a downstream plasma system
US6010603A (en) Patterned copper etch for micron and submicron features, using enhanced physical bombardment
US7723221B2 (en) Stacked film patterning method and gate electrode forming method
US5118387A (en) Dry etching method
US4450042A (en) Plasma etch chemistry for anisotropic etching of silicon
US6008140A (en) Copper etch using HCI and HBr chemistry
US6177353B1 (en) Metallization etching techniques for reducing post-etch corrosion of metal lines
US6468904B1 (en) RPO process for selective CoSix formation
EP0516043A2 (en) Dry etching method
US6491835B1 (en) Metal mask etching of silicon
US5350488A (en) Process for etching high copper content aluminum films
US6787783B2 (en) Apparatus and techniques for scanning electron beam based chip repair
US6613681B1 (en) Method of removing etch residues
US20110079241A1 (en) Method for ion source component cleaning
US5700740A (en) Prevention of corrosion of aluminum interconnects by removing corrosion-inducing species
US20050095783A1 (en) Formation of a double gate structure
US4229247A (en) Glow discharge etching process for chromium
US20040180536A1 (en) Method for manufature of semiconductor intergrated circuit device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TIZA LAB, L.L.C., A LIMITED LIABILITY COMPANY OF T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAKAROV, VLADIMIR V.;REEL/FRAME:023166/0263

Effective date: 20090828