US20110022105A9 - Defibrillation system - Google Patents

Defibrillation system Download PDF

Info

Publication number
US20110022105A9
US20110022105A9 US10/224,689 US22468902A US2011022105A9 US 20110022105 A9 US20110022105 A9 US 20110022105A9 US 22468902 A US22468902 A US 22468902A US 2011022105 A9 US2011022105 A9 US 2011022105A9
Authority
US
United States
Prior art keywords
patient
wearable defibrillator
electrode
defibrillator according
defibrillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/224,689
Other versions
US20030004547A1 (en
Inventor
James Owen
Randall Fincke
James O'Leary
Mark Totman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zoll Medical Corp
Original Assignee
Cardiac Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26712993&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110022105(A9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cardiac Science Corp filed Critical Cardiac Science Corp
Priority to US10/224,689 priority Critical patent/US20110022105A9/en
Publication of US20030004547A1 publication Critical patent/US20030004547A1/en
Assigned to CADENT MEDICAL CORPORATION reassignment CADENT MEDICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FINCKE, RANDALL W, OWEN, JAMES M, TOTMAN, MARK H, O'LEARY, JAMES P
Assigned to CARDIAC SCIENCE, INC. reassignment CARDIAC SCIENCE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CADENT MEDICAL CORPORATION
Assigned to CARDIAC SCIENCE CORPORATION reassignment CARDIAC SCIENCE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDIAC SCIENCE, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: CARDIAC SCIENCE, INC.
Publication of US20110022105A9 publication Critical patent/US20110022105A9/en
Assigned to CARDIAC SCIENCE CORPORATION reassignment CARDIAC SCIENCE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to DBS BANK LTD., BANGALORE BRANCH reassignment DBS BANK LTD., BANGALORE BRANCH SECURITY AGREEMENT Assignors: CARDIAC SCIENCE CORPORATION
Priority to US14/308,119 priority patent/US9089718B2/en
Assigned to ZOLL MEDICAL CORPORATION reassignment ZOLL MEDICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDIAC SCIENCE CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/046Specially adapted for shock therapy, e.g. defibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3918Heart defibrillators characterised by shock pathway, e.g. by electrode configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • A61N1/3937Monitoring output parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3987Heart defibrillators characterised by the timing or triggering of the shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3993User interfaces for automatic external defibrillators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0468Specially adapted for promoting wound healing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • A61N1/0496Patch electrodes characterised by using specific chemical compositions, e.g. hydrogel compositions, adhesives

Definitions

  • the present invention is directed to a defibrillation device, and more particularly to a personal wearable pacer/cardioverter/defibrillator which monitors a patient's condition, detects shockable or paceable arrhythmias, determines consciousness, and, in the case that the patient is determined to be unconscious, administers therapy to the patient.
  • Cardiac arrhythmias such as ventricular fibrillation and ventricular tachycardia
  • Cardiac arrhythmias are electrical malfunctions of the heart, in which regular electrical impulses in the heart are replaced by irregular, rapid impulses. These irregular, rapid impulses can cause the heart to stop normal contractions, thereby interrupting blood flow therethrough. Such an interruption in blood flow can cause organ damage or even death.
  • defibrillation Normal heart contractions, and thus normal blood flow, can be restored to a patient through application of electric shock.
  • This procedure which is called defibrillation, has proven highly effective at treating patients with cardiac arrhythmias, provided that it is administered within minutes of the arrhythmia. In the past, this was not always possible, since defibrillation units were large, and thus not easy to move, and could only be operated by an experienced clinician.
  • implantable defibrillators were developed. Such defibrillators, however, also have several drawbacks. Specifically, use of a such a defibrillator requires surgery, thereby making their use inconvenient and even undesirable under certain circumstances. Moreover, implantable defibrillators are also costly, both in terms of the device itself and in terms of the cost of the surgery and subsequent treatments.
  • AEDs portable automatic external defibrillators
  • the present invention is a defibrillator for delivering defibrillation energy to a patient.
  • the defibrillator includes at least one electrode which attaches to the patient for transmitting the defibrillation energy to the patient and for receiving patient information from the patient, and a plurality of capacitors which are switchable so as to alter characteristics of the defibrillation energy.
  • a controller controls switching of the plurality of capacitors in accordance with the patient information received from the at least one electrode.
  • the foregoing aspect of the invention makes it possible to deliver, to the patient, defibrillation energy which is appropriate for that patient.
  • the invention provides increased effectiveness in the treatment of cardiac arrhythmias.
  • the present invention is a way in which to increase long-term wear of a sensing electrode, such as a traditional defibrillation electrode (i.e., electrodes having a conductive surface area of over 60 cm 2 ), a low-surface-area electrode (i.e., electrodes having a conductive surface area of roughly 60 to 10 cm 2 ), or segmented electrodes (i.e., electrodes having a conductive surface area of roughly 8 to 10 cm 2 ).
  • the invention includes a variety of different techniques for increasing the amount of time that an electrode can be worn by a patient without resulting in substantial skin irritation or damage.
  • one or more electrodes are moved on the patient's body periodically.
  • therapeutic or prophylactic agents are provided in or on the electrode.
  • the size, configuration, and materials used to construct the electrodes contribute the amount of time that the electrodes can be worn by a patient.
  • the present invention is a defibrillator for delivering defibrillation energy to a patient.
  • the defibrillator includes a signal generator for generating the defibrillation energy and a plurality of segmented electrodes each having a conductive area for transmitting the defibrillation energy to the patient.
  • the plurality of segmented electrodes are divided into groups of two or more electrodes, each of the groups of electrodes having at least one line connected to the signal generator. Each of the lines has a length that is sufficient for each group of electrodes to be placed on the patient a predetermined distance away from others of the groups of electrodes.
  • the electrodes in at least one of the groups are spatially arranged to have an effective conductive area which is greater than a total combined conductive area of the electrodes in the group.
  • the invention is a segmented electrode device for use during ventricular fibrillation of a patient.
  • the segmented electrode device includes a plurality of segmented electrodes each having a conductive area for transmitting defibrillation energy to the patient.
  • the plurality of segmented electrodes are divided into groups of two or more electrodes, each of the groups of electrodes having at least one line connected to a signal generator.
  • Each of the lines has a length that is sufficient for each group of electrodes to be placed on the patient a predetermined distance away from others of the groups of electrodes.
  • the electrodes in at least one of the groups are spatially arranged to have an effective conductive area which is greater than a total combined conductive area of the electrodes in the group.
  • these aspects of the invention have an advantage over their conventional counterparts. That is, these aspects of the invention are able to provide defibrillation energy to the patient without using large electrodes. Thus, these aspects of the invention provide reduced skin irritation without a corresponding reduction in efficacy.
  • the present invention is a defibrillator for delivering defibrillation energy to a patient.
  • the defibrillator includes an external interface, over which patient information is transmitted to an external location, and a patient interface, over which the defibrillation energy is transmitted to the patient, and over which the patient information is received.
  • a processor is included in the defibrillator, which analyzes the patient information received over the patient interface and which controls transmission of the defibrillation energy to the patient based on at least a first portion of the patient information.
  • a memory stores at least a second portion of the patient information prior to transmission of the second portion of the patient information over the external interface.
  • the invention By controlling transmission of the defibrillation energy to the patient based on at least a first portion of information received from the patient, the invention is able to tailor the defibrillation energy to the patient's needs. Moreover, because the invention includes a memory which stores at least a second portion of the patient information, and includes an external interface over which such information may be transmitted, the invention is capable of recording patient information, such as patient electrocardiogram (hereinafter “ECG”) information or the like for a period of time, and of transmitting that patient information to an external location, such as a central repository, hospital, doctor, etc.
  • ECG patient electrocardiogram
  • the present invention a defibrillator for delivering defibrillation energy to a patient.
  • the defibrillator includes a processor and a patient interface, over which patient information is received from the patient and over which the defibrillation energy is transmitted to the patient.
  • the processor operates in a normal mode and a low-power consumption mode, wherein, during the normal mode, the processor receives the patient information and controls transmission of the defibrillation energy in accordance with the patient information.
  • the invention reduces the amount of power consumed by the defibrillator. As a result, a power supply will last longer in the defibrillator of the present invention than in its conventional counterparts.
  • the present invention is a defibrillation system which includes a defibrillator for delivering defibrillation energy to a patient and a base station connected to the defibrillator.
  • the defibrillator includes a plurality of electrodes connected to the patient for transmitting defibrillation energy to the patient and for receiving patient information from the patient, and a memory which stores the patient information and defibrillation information, the defibrillation information relating to operation of the defibrillator.
  • the defibrillator also includes a base station interface, over which the patient information and the defibrillation information are transmitted, and over which external information is received, and a controller for controlling when the defibrillation energy is transmitted to the patient based on the patient information and at least part of the external information.
  • the base station includes a defibrillator interface which mates to the base station interface of the defibrillator and over which (i) the defibrillation information and the patient information is received from the memory of the defibrillator, and (ii) the external information is transmitted to the defibrillator.
  • the base station also includes an external interface, over which the defibrillation information and the patient information is transmitted to an external location. and over which the external information is received from the external location.
  • a defibrillator it is possible to transmit patient and defibrillation information from a defibrillator to a base station and from the base station to an external location, such as a central repository, doctor, hospital, etc.
  • an external location such as a central repository, doctor, hospital, etc.
  • the foregoing arrangement makes it possible to transmit external information from the base station to the defibrillator.
  • This external information can be used, e.g., to reprogram the defibrillator, to alert a patient to a possible condition in the patient or the defibrillator, etc.
  • a memory on the defibrillator containing patient and defibrillation information is removable, and can be transferred to the base station or to an external location for downloading.
  • the present invention is a defibrillation system which includes a defibrillator for delivering predetermined defibrillation energy to a patient, an indicator which indicates operational defects in the defibrillator, and a base station which is interfaced to the defibrillator.
  • the base station performs diagnostics on the defibrillator in order to detect operational defects in the defibrillator, and transmits results of the diagnostics to the defibrillator.
  • the indicator provides an indication of such operational defects in the defibrillator when the base station detects operational defects in the defibrillator.
  • this aspect of the invention is able to reduce the chances of malfunction following a cardiac arrhythmia. As a result, this aspect of the invention increases the patient's chances of surviving an arrhythmia.
  • the present invention is a method of treating a patient for ventricular tachycardia, bradycardia, ventricular fibrillation, or other treatable rhythm using a pacer/converter/defibrillator in accordance with the present invention (hereinafter referred to solely as a “defibrillator”).
  • the method includes monitoring the patient for a predetermined condition via one or more electrodes on the defibrillator, sending a message to the patient in response to the predetermined condition, activating the defibrillator so that the defibrillator delivers defibrillation energy to the patient, and storing at least one of the results of the monitoring, sending and activating steps in a memory on the defibrillator.
  • the method also includes downloading information stored in the memory of the defibrillator to a base station having an external interface, and transmitting the information downloaded from the memory of the base station to an external location via the external interface of the base station.
  • the present invention By sending a message to the patient in response to the predetermined condition, by processing the patient's response, and by other consciousness detection methods, the present invention is able to reduce the chances of defibrillation energy being delivered to the patient while the patient is still conscious. Moreover, the foregoing aspect of the invention is able to store at least some information relating to the arrhythmia and the patient's response thereto, and to download that information to a base station, from whence the information may be transmitted to an external location for analysis or the like.
  • the present invention is a base station for use with a defibrillator.
  • the base station includes a defibrillator interface over which information is exchanged with the defibrillator, an external interface over which information is exchanged with an external entity, and a controller.
  • the controller receives patient information and defibrillation information from the defibrillator, (ii) transmits the patient information and defibrillation information to the external entity, (iii) receives defibrillator programming information from the external entity, (iv) programs the defibrillator in accordance with the defibrillator programming information, (v) performs diagnostics on the defibrillator, and (vi) transmits results of the diagnostics to at least one of the defibrillator and the external entity.
  • the base station of the present invention may both act as an interface between a defibrillator and an external entity and provide a patient with a means to ensure proper operation of the defibrillator.
  • the present invention is a method for reprogramming a defibrillator based on a central database of information relating to patients that use a type of defibrillator.
  • the method includes collecting, in the central database, information relating to a plurality of patients that use the type of defibrillator, analyzing the information stored in the central database so as to test an algorithm for detecting irregular heart activity, and correcting the algorithm for detecting irregular heart activity based on a result of the analyzing process.
  • the method also includes transmitting a corrected algorithm to a plurality of base stations corresponding to the plurality of patients, and reprogramming a defibrillator in each of the base stations using the corrected algorithm.
  • the present invention is able to improve its performance over time.
  • the invention features a long-term cardiac monitoring and defibrillation system that is wearable by a patient.
  • the system includes at least two electrode arrays electrically connected to a portable defibrillator.
  • the electrode arrays are spatially separated and adhered to portions of the patient's skin in the thoracic window area for an extended period of time, such that electrical activity of the heart can be monitored and effective defibrillation and/or pacing impulses can be delivered to the patient's heart.
  • the electrode arrays comprise plural electrodes which are capable of sensing the patient's heart condition by detecting the electrical activity of the heart, and of delivering defibrillation or pacing impulses to the patient's heart when required.
  • the cardiac monitoring and defibrillation system of the invention comprises features which enhances the long-term wearability of the system.
  • These features include use of a low-current defibrillation waveform and electrodes having a composition and/or geometric design adapted to minimize the area of the electrodes.
  • a lower current than that typically used for defibrillation can provided effective defibrillation, particularly when coupled with electrode arrays having electrode surface areas which are significantly smaller than the surface area of conventional defibrillation electrodes.
  • the use of reduced area electrodes minimizes irritation to the skin.
  • These features also permit higher impedance materials to be used in the electrodes, which is also less irritating to the patient's skin.
  • the electrode array comprises multiple spatially separated electrodes separated by non-conductive material, passive material or free space.
  • the use of multiple smaller electrodes minimizes the electrode area in contact with the skin needed to deliver an effective defibrillation impulse to the heart, thereby reducing the area of skin in contact with electrode materials.
  • Another aspect of the invention features a long term cardiac monitoring and defibrillation system and method that ameliorates, reduces or prevents irritation of the patient's skin caused by delivery of defibrillation impulses and/or by the constant contact of the electrodes with the skin.
  • skin that becomes irritated from contact with the electrodes is permitted to recover by periodically detaching the electrode arrays and moving or rotating them by a predetermined amount, and re-affixing either the same or new electrode arrays to different portions of the skin within the patient's thoracic window area. This moving or rotating allows substantially different sections of the patient's skin to be in contact with the electrodes so that portions of the skin previously in contact with the electrodes are allowed to recover.
  • the electrode arrays of the present invention preferably are designed for long term patient wearability.
  • the electrode arrays include a therapeutic or prophylactic material which ameliorates, reduces or prevents irritation to the patient's skin in contact with the electrode arrays.
  • Therapeutic or prophylactic materials may include, for example, wound healing agents, moisturizers, emollients, protective agents or antibacterial agents.
  • Each electrode array comprises electrically conductive areas (electrodes) and electrically non-conductive areas (passive areas). The electrodes are capable of sensing the electrical activity of the heart, delivering electrical impulses (cardio and defibrillation) to the heart, as well as tactile stimulation and pacing signals.
  • the electrode arrays preferably include an adhesive portion for adhering the array directly to the skin.
  • external means for retaining the electrode arrays in electrical proximity to the skin may be used, such as a vest or a band.
  • Long term wearability of the electrode arrays may be enhanced by selecting materials for use in the electrode array which minimize irritation to the skin in contact with the array.
  • materials may include, for example, adhesives and backing materials having a high moisture vapor transmission rate and conductive materials for use in the electrodes having low salt (ionic) concentrations or comprised of silicone or other adhesive materials that are conductive by means of additives.
  • long term wear can be enhanced and skin irritation reduced by including in the system means for monitoring, and adjusting as necessary, the environment at the interface between the electrode array and the skin.
  • Such means may include, for example, means for monitoring and adjusting the ⁇ PH at the skin-electrode interface in order to maintain a neutral non-irritating interface; and means for controlling the ion flow at the interface between the electrodes and the skin.
  • ion flow would be reduced to a minimum except for the short time during which a defibrillating shock is being delivered, at which time the ion flow would temporarily increase to provide a conductive path for the defibrillation impulse.
  • FIG. 1 shows a defibrillation system according to the present invention in a configuration for performing diagnostics and data uploading.
  • FIG. 2 shows the defibrillation system according to the present invention during use in connection with monitoring and treating a patient.
  • FIG. 3 shows an electrode harness used with the defibrillation system of FIGS. 1 and 2 .
  • FIG. 4 shows a view of a sensing electrode and applicator used in the electrode harness of FIG. 3 .
  • FIG. 5 shows an application tray used to apply sensing electrodes to a patient's body.
  • FIG. 6 shows defibrillation energy having a bi-phasic waveform which is generated by the defibrillation system of the present invention.
  • FIG. 7A shows a front view of a wearable defibrillator used in the system shown in FIGS. 1 and 2 .
  • FIG. 7B is an exploded view showing the mechanical construction of the wearable defibrillator of the present invention.
  • FIG. 8 shows a functional block diagram of the defibrillator shown in FIG. 7A .
  • FIG. 9 shows a “221” capacitor configuration.
  • FIG. 10 shows a “2111” capacitor configuration.
  • FIG. 11 shows a “11111” capacitor configuration.
  • FIG. 12 is a flow diagram depicting general operation of the wearable defibrillator of FIG. 7A .
  • FIG. 13 is a block diagram of electrical circuitry used in the preferred embodiment of the present invention to implement the functions shown in FIG. 8 .
  • FIG. 14 shows capacitor switching circuitry used in the preferred embodiment of the present invention.
  • FIG. 15 is a block diagram of a base station used in the system of FIGS. 1 and 2 .
  • FIG. 16 is a block diagram showing a preferred algorithm used by the present invention to perform ECG analysis on received patient information.
  • FIG. 17 is an exploded view of the primary power supply used in the defibrillator of the present invention.
  • FIG. 18 shows a view of an alternative electrode and applicator configuration that may be used in the present invention that uses selectively applied adhesives in the applicators.
  • FIG. 19 is a view of an alternative electrode configuration that may be used in the present invention.
  • FIGS. 20A and 20B are views of an alternative electrode configuration that may be used in the present invention.
  • FIGS. 21A and 21B are views of an alternative electrode configuration that may be used in the present invention.
  • FIG. 22 shows a view of an alternative electrode configuration that may be used in the present invention.
  • FIG. 23 shows a view of an alternative electrode configuration that may be used in the present invention.
  • FIG. 24 shows an embodiment of an electrode in which an adhesive surface is covered with a pull-tab covering to allow the patient to place the electrode on the patient's skin and then to pull the tab to expose the adhesive surface.
  • defibrillation system 1 is directed to a defibrillation system for use in treating patients who have suffered from cardiac arrhythmias.
  • a representative embodiment of the invention is shown in FIGS. 1 and 2 .
  • defibrillation system 1 is comprised of base station 2 , electrode harness 4 , personal computer 6 , patient simulator 7 , central repository 9 , and wearable defibrillator 10 .
  • base station 2 electrode harness 4
  • personal computer 6 personal computer 6
  • patient simulator 7 patient simulator 7
  • central repository 9 central repository
  • wearable defibrillator 10 wearable defibrillator
  • Defibrillator 10 is capable of interfacing either to base station 2 , as shown in FIG. 1 , or to electrode harness 4 , as shown in FIG. 2 .
  • both electrode harness 4 and base station 2 include physical connector identifiers at their respective interfaces to defibrillator 10 .
  • defibrillator 10 is able to determine both the type of interfaced device (i.e., a base station or electrode harness) and the identity of a particular interfaced device (i.e., one electrode harness as opposed to another), and then to react accordingly
  • Electrode harness 4 includes one or more sensing electrodes 31 which interface to patient 12 , and which are used both to monitor the patient and to transmit defibrillation energy to the patient.
  • sensing electrodes 31 comprise segmented electrodes since these require the most description.
  • Defibrillation energy which can comprise an electric signal having a bi-phasic waveform, a mono-phasic waveform, or a truncated exponential waveform, is generated by defibrillator 10 in the event that predetermined conditions have been detected in the patient. These predetermined conditions include whether the patient has suffered a cardiac arrhythmia, whether the patient is conscious, as well as other conditions, such as patient impedance, that are monitored by sensing electrodes 31 .
  • Defibrillator 10 is also capable of providing pacing impulses and tactile stimulation signals to the patient via electrode harness 4 .
  • the tactile stimulation signals alert the patient to abnormal cardiac activity in the patient, whereas the pacing impulses stimulate contractions of the patient's heart.
  • electrode harness 4 is being worn by the patient, data may be transmitted directly from defibrillator 10 to personal computer 201 via non-contact interface 16 .
  • base station 2 When defibrillator 10 is interfaced to base station 2 , as shown in FIG. 1 , base station 2 is able to perform diagnostics on the defibrillator, to reprogram the defibrillator, and to retrieve data stored in the defibrillator. Such data can include an operational history of the defibrillator, information concerning the patient's cardiac activity, and the like. All or some of this retrieved data may be transmitted, via personal computer interface 14 , to personal computer 6 for display and/or processing.
  • Data retrieved by base station 2 from defibrillator 10 may be transmitted to central repository 9 via external data link 17 .
  • Central repository 9 preferably stores this data, together with patient and defibrillation information corresponding to a plurality of other patients, all of whom use the same type of defibrillator.
  • a personal computer 19 is in communication with central repository 9 . This personal computer may be used to analyze the patient and defibrillation information received from defibrillator 10 in view of corresponding information from the plurality of other patients, and, if desired, to provide the results of this analysis back to base station 2 .
  • defibrillator 10 also includes a link to patient simulator 7 .
  • Patient simulator 7 comprises test equipment which simulates bodily functions and characteristics of a patient, including cardiac activity and thoracic impedance.
  • defibrillator 10 monitors patient simulator 7 in much the same way that defibrillator 10 monitors a patient and, in a case that predetermined conditions have been detected in patient simulator 7 , transmits defibrillation energy to patient simulator 7 .
  • patient simulator 7 also simulates patient responses to the defibrillation energy provided by defibrillator 10 and provides response information back to defibrillator 10 . This response information may be transmitted to, and analyzed by, base station 2 , and then provided to any one or more of central repository 9 , computer 6 , or defibrillator 10 .
  • FIG. 3 shows a close-up view of electrode harness 4 .
  • Electrode harness 4 is preferably disposable and, in preferred embodiments of the invention, can be worn for approximately 2 to 7 days or longer for a cumulative period of 1 week to 12 months.
  • electrode harness may include a means for defibrillator 10 to determine how long electrode harness 4 has been connected thereto.
  • electrode harness 4 includes an identification resistor (not shown) as its physical connector identifier. Defibrillator 10 measures the resistance across this resistor and then starts a countdown, after which defibrillator 10 notifies the patient that it is time to change the electrode harness.
  • each electrode harness may include a different, unique resistance associated therewith. Defibrillator 10 may measure this resistance by passing a current therethrough and, in this manner, determine the identity of an interfaced electrode harness.
  • electrode harness 4 includes power supply 20 , connector 21 , non-electrically conductive padding 22 and 24 , electrical leads (or “lines”) 26 , 27 , 29 and 30 , and sensing electrodes 31 .
  • Sensing electrodes 31 comprise the defibrillator's interface to the patient. Specifically, sensing electrodes 31 attach to the patient so as to monitor the patient, transmit tactile stimulation energy, and to transmit defibrillation energy to the patient under appropriate circumstances.
  • Each electrode may comprise a single layer of conductive material. In preferred embodiments of the invention, however, each electrode is multi-layered as shown, for example, in the cross-sectional view of electrode 31 a in FIG. 4 . In the example shown in FIG. 4 , electrode 31 a includes three layers, namely top cover assembly 32 , conductor/wire assembly 33 , and skin interface 32
  • Skin interface 32 contacts directly with the patient's skin and comprises a layer of material, such as a hydrogel, that is capable of transmitting defibrillation energy to the patient without causing substantial irritation or harm to the skin.
  • a layer of material such as a hydrogel
  • conductive screens or meshes can be used in addition to or in place of hydrogel. These screens or meshes may be used in combination with a cream, such as a hydrating cream or a skin healing cream. Such creams also may be applied to the patient's skin before attaching the electrodes thereto.
  • Conductor/wire assembly 34 contacts to conductor/wire assembly 34 , which can be either substantially coextensive with, or smaller than, skin interface 32 .
  • Conductor/wire assembly 34 includes conductive layer 34 a, wire connection 34 b, wire 34 c, and sealing layer 34 d.
  • Conductive layer 34 a preferably comprises a silver/silver chloride polymer base ink silk-screened onto a layer of Tyvek (used as an insulator and as a carrier) which is die-cut and folded.
  • Tyvek used as an insulator and as a carrier
  • a wire with a welded washer is then attached to conductive layer 34 a by means of a washer (tin plated nickel) and eyelet (a hollow rivet that is crimped in order to hold the assembly together). Insulating tape is then wrapped around this connection in order to reduce corrosion.
  • conductor 34 a may comprise conductive metal such as tin, silver, gold, copper, salts or oxides of these conductive metals, carbon, a substrate which has been coated with a conductive compound (e.g., polytetrafluoroethylene), an ink silkscreened on a carrier, metallized cloth, solid metal or carbon grid, foil, plate, etc.
  • Conductor 34 preferably has a thickness which is sufficient to transmit at least ten successive defibrillation energy signals having peak amplitudes of 23 amperes for a duration of 10.75 msec each.
  • Top cover assembly 33 includes foam insulating layer 33 a and wearable adhesive layer 37 .
  • Adhesive 37 which can comprise an adhesive material fixed to a backing, such as tape or the like, is disposed adjacent to conductor 34 and/or skin interface 32 and is used to attach electrode 31 a to the patient's skin. In preferred embodiments of the invention, adhesive 37 may also be temperature sensitive, meaning that adhesion thereof increases or decreases in response to temperature variations. Adhesive 37 is preferably non-conductive.
  • Adhesive 37 should also be adapted for long-term wear. To this end, an adhesive having a high moisture vapor transmission rate (“MVTR”) of approximately 300 to 1500 g/m 2 /day is suitable for use with the invention. By virtue of this feature of the invention, the adhesive is made breathable, meaning that it permits air to be transmitted therethrough to the patient's skin. This increases the amount of time an electrode may be worn without causing substantial harm to the patient's skin. Adhesive 37 should also be sufficient to adhere to the patient's body in the face of normal movements or muscle contractions and in the face of normal water exposure such as might occur during bathing or sweating. However, adhesive 37 should not be so strong as to cause substantial discomfort during removal of an electrode. To this end, adhesive 37 preferably has a peel strength of 500 g/cm or less.
  • Applicator 35 includes two layers—a bottom layer having cut-outs 35 a and a top layer having an adhesive 35 b. Cut-outs 35 a limit the amount of adhesive that contacts the top side of the electrode.
  • Release liner assembly 36 includes cut-out 36 a on upper layer 36 b (closest to the hydrogel) which causes only a portion of urethane bottom layer 36 c to come into contact with upper layer 36 b. This configuration of release liner assembly 36 , particularly cut-out 36 a, allows bottom layer 36 c to be removed first from an electrode, followed by upper-layer 36 b, without causing any separation of the electrode from the applicator assembly. Moreover, cut-outs 35 a on applicator 35 b facilitate removal of applicator 35 b from top cover assembly 35 without causing harm to the electrode.
  • FIG. 18 An alternative electrode configuration to that shown in FIG. 4 is shown in FIG. 18 .
  • FIGS. 19 to 24 show additional alternative electrode configurations.
  • FIG. 19 shows a finger-patterned electrode 200 comprising a conductive adhesive polymer layer 220 , a carbon sheet 240 , and a medical adhesive carrier 260 , covering and extending beyond the edges of the polymer layer 220 and the carbon sheet 240 .
  • a metal sheet or a metal fabric may replace carbon sheet 220 .
  • FIG. 20A and FIG. 20B show a rectangular electrode 300 comprising metal foil sheet 320 , pressure pad backing 340 and medical adhesive carrier 360 , covering and extending beyond the edges of the metal foil sheet 320 and the pressure pad backing 340 .
  • the front surface of metal foil sheet 320 comes in contact with patient's skin 380 and pressure pad backing 340 contacts the back surface of metal foil sheet 320 and keeps metal foil sheet 320 in close contact with skin 380 .
  • a pressure pad is a unit which can be deformed by pressure applied in the direction perpendicular to the skin. By maintaining a thickness that is less than a free dimension, pressure in the pad is assured.
  • Medical adhesive carrier 360 contacts pressure pad backing 340 .
  • a metal fabric replaces metal foil sheet 320 .
  • FIGS. 21A and 21B show rectangular electrode 400 comprising metal foil sheet 420 , pressure pad backing 440 , stiffener 460 , and medical adhesive carrier 480 .
  • the front surface of metal foil 420 is in contact with skin 490 ; the front surface of pressure pad 440 is in contact with the back surface of metal foil 420 ; the front surface of stiffener 460 is in contact with the back surface of pressure pad 440 ; and medical adhesive carrier 480 is in contact with stiffener 460 and covers and extends beyond the edges of all other layers ( 420 , 440 , and 460 ).
  • Stiffener 460 comprises a material which will resist bending, and stiffener 460 is used to transmit force into the electrode area.
  • stiffener 460 comprises a thin plastic material with an area that is slightly larger than areas of metal foil sheet 420 and pressure pad backing 440 .
  • a metal fabric replaces metal foil sheet 420 .
  • FIG. 22 shows electrode 500 with alternating strips of active areas 520 and space 540 for breathing.
  • Each active area 520 comprises a metal foil sheet and a pressure pad backing. The strips of active areas 520 are in contact with stiffener 560 , and stiffener 560 is in contact with medical adhesive carrier 580 .
  • a metal fabric replaces the metal foil in each active area 520 .
  • each active area comprises a metal foil sheet or a metal fabric, a pressure pad backing and a stiffener. The back surfaces of the active areas are in contact with a medical adhesive carrier.
  • FIG. 23 show electrode 600 with multiple small square-shaped active areas 620 .
  • active areas 620 are spaced for breathing.
  • Each active area 620 comprises a metal foil and a pressure pad backing.
  • the back surfaces of active areas 620 are in contact with the front surface of stiffener 640
  • medical adhesive carrier 660 is in contact with the back surface of stiffener 640 .
  • a metal fabric replaces the metal foil sheet.
  • each active area comprises a metal foil sheet or a metal fabric, a pressure pad backing and a stiffener. Back surfaces of the active areas are in contact with a medical adhesive carrier.
  • FIG. 24 shows an embodiment of the electrode in which the adhesive surface is covered with a pull-tab covering to allow the patient to place the electrode on the skin and then pull the tab to expose the adhesive surface and maintain the electrode in place.
  • a conductive portion of each sensing electrode which in this case are segmented electrodes, preferably has a surface area that is roughly 8 to 10 cm 2 ; although other dimensions may be used.
  • the present invention takes advantage of “spreading resistance” in the patient's bodily tissue so as to permit this reduction in the surface area of the conductive portion each electrode.
  • Spreading resistance is a property of human tissue which causes defibrillation energy (or any other electric signal for that matter) applied to the patient's skin to spread outward over the skin and downward and outward through the patient's tissue.
  • the present invention compensates for this by placing sensing electrodes 31 in a geometric pattern such that the interaction between diffusing current from each sensing electrode results in an accumulation of spreading current in areas between sensing electrodes 31 .
  • the result is that an effective area is created in which current densities in the path between groups of sensing electrodes (e.g., sensing electrodes 31 a, 31 b and 31 c shown in FIG. 3 ) are similar to that of a large electrode having a perimeter equal to an outer perimeter of all of the sensing electrodes in the group.
  • a similar effect may be achieved through random placement of the electrodes on the patient.
  • the present invention is able to create a “virtual” conductive surface using relatively small electrodes.
  • the virtual conductive surface can be significantly larger than a combined conducive area of the individual sensing electrodes. This also contributes to a lower impedance for a combined surface area of the sensing electrodes than would be the case for a continuous electrode having a similar surface area.
  • Each of sensing electrodes 31 may be shaped so that the conductive portion thereof has a perimeter which is greater than a circumference corresponding to a radius of the electrode. That is, since charge tends to migrate to the perimeter of an electrode, the present invention attempts to maximize the perimeter of each electrode, particularly conductive surfaces thereof, thereby increasing the amplitude of the defibrillation energy that the electrode can handle without causing substantial burns to the patient. Examples of electrodes with such a perimeter include star-shaped electrodes, square electrodes, swirled-shaped electrodes, etc. It is, however, noted that conventional circular electrodes may be used in conjunction with the present invention as well.
  • sensing electrodes 31 should be placed within a “thoracic window” on the patient's body.
  • a thoracic window is defined as an area of the patient's body which is suitable for placing electrodes so as to optimize delivery of defibrillation energy to the patient's heart, and is described in an article by Geddes et al. the American Heart Journal, volume 94, page 67 (1977), the contents of which are hereby incorporated by reference into the subject application as if set forth herein in full.
  • electrodes are typically placed underneath the patient's left rib cage and over the patients right shoulder area.
  • electrodes are typically placed on a patient's lower left back and left front.
  • the sensing electrodes are placeable over the thoracic window either randomly or in a geometric pattern which is sufficient to cover a large enough area of the patient's myocardium to cause adequate defibrillation upon application of defibrillation energy.
  • Electrodes 31 can be attached or placed in contact with the skin by various methods. Proper defibrillation requires that the electrodes be in close contact with the patient's skin, in addition to being placed in an appropriate location within the patient's thoracic window area. Preferably, the electrode are attached to the patient's skin using an adhesive thereon, as described in more detail below. However, other attachment means are possible. For example, a thoracic wrap made out of cotton or spandex can be used to assure proper placement of the electrodes and good contact between the electrodes an the skin.
  • each sensing electrode in a group (e.g., the group of electrodes 31 a, 31 b and 31 c ) should be placed within a predetermined distance of other sensing electrodes in the group.
  • each sensing electrode in each group of electrodes is separated from other sensing electrodes in that same group by between 0.5 and 3 times an effective diameter of each electrode, where the effective diameter corresponds to the farthest distance between two points on the electrode.
  • electrode harness 4 includes non-electrically conductive pads 22 and 24 (i.e., the passive areas), on which groups of sensing electrodes can be mounted in predetermined geometric configurations. For example, as shown in FIG.
  • sensing electrodes 31 a, 31 b and 31 c are mounted on pad 22 in a triangular configuration, while sensing electrodes 31 d, 31 e, 31 f and 31 g are mounted on pad 24 in a rectangular configuration.
  • FIG. 3 shows only two geometric arrangements for sensing electrodes 31 , the invention is not limited to these. Rather, any geometric arrangement may be utilized, including, but not limited to, a checkerboard pattern, swirl patterns, interlocking patterns, star patterns, crescent patterns, E-shaped patterns, F-shaped patterns, L-shaped patterns, X-shaped patterns, H-shaped patterns, O-shaped patterns, C-shaped patterns, etc.
  • the electrodes may be arranged in a random manner as well.
  • pads 22 and 24 are flexible so as to facilitate placement of sensing electrodes 31 on contours of the patient's body. It is noted, however, that pads 22 and 24 need not be flexible. Rather, an adhesive tape can be used in place of pads 22 and 24 or, alternatively, in addition to pads 22 and 24 . As still another alternative, pads 22 and 24 can be used selectively in electrode harness 4 , meaning that pads can be used to mount some of sensing electrodes 31 and not others. In fact, this is the case in the representative embodiment of the invention depicted in FIG. 3 . That is, in the embodiment shown in FIG.
  • segmented electrodes is not mounted on a pad, but rather “floats”, meaning that it can be mounted anywhere on a patient's body, constrained, of course, by the length of its electrical lead 30 .
  • electrode 31 h does not provide the defibrillation energy to the patient, but rather is used only to monitor the patient's ECG.
  • all electrodes may float in the same manner as sensing electrode 31 h.
  • the invention may include an applicator tray, such as tray 39 shown in FIG. 5 , having cups 40 which arrange the electrodes in geometric pattens so as to ensure accurate placement within the patient's thoracic window. That is, the applicator tray ensures that the electrodes will be spatially arranged in the manner described above so as to take advantage of human tissue's spreading effect.
  • electrodes 31 may include a hydrogel or other conductive material on a surface thereof which comes into contact with the patient's skin, i.e., on the skin interface of the electrode.
  • the hydrogel is electrically conductive, thereby permitting transmission of the defibrillation energy to the patient, but has a relatively low ion concentration that is low enough so as to not to cause substantial skin irritation.
  • the conductivity of the hydrogel is variable based, e.g., on temperature, etc.
  • the hydrogel preferably has a relatively high MVTR, thereby making the hydrogel breathable. As was the case above with respect to adhesive 37 , this reduces skin irritation caused by wearing the electrodes, and thus increases the amount of time that the electrodes can be worn.
  • Hydrogels or other conductive materials used with conventional ECG electrodes may be used in the present invention, since the deleterious effects of such materials will be countered by the present invention for reasons described both above and below.
  • conductive materials which meet the above qualifications include electrolytes, such as sodium chloride (NaCl), potassium chloride (KCl), or lithium chloride (LiCl).
  • electrolytes such as sodium chloride (NaCl), potassium chloride (KCl), or lithium chloride (LiCl).
  • Currently preferred hydrogel materials include hydrophilic polymers, such as karaya gum, gum acacia, locust bean gum, polysaccharide gum, modified polysaccharide, or polyacrylamide.
  • a hydrating agent such as water or polyhydric alcohol (e.g., glycerine, propylene glycol, triethylene glycol, glycerol, etc.) may also be included in the conductive material.
  • water is typically present at a concentration from about 1% to 60% by weight, whereas polyhydric alcohol is typically present at a concentration from about 10% to 50% by weight.
  • the electrode interface to the skin may include, instead of or in addition to a hydrogel, a mesh, screen, or other porous material. These elements are conductive and, due to their porous nature, allow air to pass therethrough to the patient's skin. As was the case with the hydrogel described above, this feature of the invention provides for prolonged wearability of the electrodes.
  • the hydrogel on each sensing electrode may also include a therapeutic or prophylactic agent which reduces skin irritation caused by the electrode, and/or which promotes healing of wounds or skin irritation that may be caused by the sensing electrodes.
  • a therapeutic or prophylactic agent which reduces skin irritation caused by the electrode, and/or which promotes healing of wounds or skin irritation that may be caused by the sensing electrodes.
  • Such an agent may be applied directly to each electrode, or capsules which release the agent in response to the defibrillation energy may be applied to the electrode.
  • a therapeutic or prophylactic agent may also be included on each of pads 22 and 24 in order to promote skin health.
  • Agents which render the patient's skin porous such as keratolytic agents (e.g., salicylic acid) or rubefacient (e.g., methyl salicylate) may be included on each electrode or pad so as to facilitate transmission of the therapeutic or prophylactic agent into the skin and/or to permit use of low water content hydrogels.
  • keratolytic agents e.g., salicylic acid
  • rubefacient e.g., methyl salicylate
  • therapeutic or prophylactic agents examples include moisturizers, emollients, bactericides, mold inhibitors, stabilizers or buffers to maintain a neutral PH and to reduce corrosion and skin sensitivity, gelation inhibitors (e.g., Mg(OAc) 2 ), healing agents, hormonal agents (e.g., hydrocortisone (steroids)), protective agents, etc.
  • gelation inhibitors e.g., Mg(OAc) 2
  • healing agents e.g., hydrocortisone (steroids)
  • hormonal agents e.g., hydrocortisone (steroids)
  • protective agents etc.
  • acceptable bactericides and mold inhibitors include antibactierals, antiseptics, antifungals, boric acid, bacitracin, acriflavine, formaldehyde, gentian violet, mercuric sulfide, mercurochrome, neomycin, and iodine.
  • acceptable stabilizers include oligo or polybasic organic acids and their salts (including chelating agents), polyethers, tartaric acid, citric acid, and n-alkyl sulfonate, where n is from 8 to 16 carbon atoms.
  • acceptable healing agents include allantoin, peruvian balsam, vitamin A, and vitamin B.
  • acceptable protective agents include benzoin, charcoal, talc, zinc oxide, and aloe vera. These therapeutic agents may be used both prior to use or after use to promote healing.
  • the amount of therapeutic or prophylactic material used corresponds to an amount effective to reduce irritation, or to promote recovery of irritated skin.
  • the therapeutic or prophylactic agent may be in any form useful to achieve the intended purpose, including liquid solutions, creams, gels, solids, granules, powders or any other form, including microcapsules.
  • the therapeutic or prophylactic agent may be included as part of the electrode, e.g., incorporated in the conductive areas of the electrode, or incorporated in a passive area of the electrode array.
  • the electrode array may comprise three areas: electrode areas, passive areas and areas containing the therapeutic or prophylactic material.
  • the therapeutic or prophylactic material may be applied to the skin prior to attaching the electrodes (pre-treatment), or after the electrodes have been removed (post-treatment).
  • skin irritation may be reduced by including in the electrode array means for monitoring, controlling and/or correcting the skin environment in contact with the electrode array. For example, it is possible to monitor the electrode-to-skin PH, and adjust the PH accordingly.
  • the electrodes may comprise a multi-layered matrix for controlling ion flow between the skin and the electrode.
  • non-segmented electrodes having conductive portions of less than 60 cm 2 and, in some cases, even to less than 30 cm 2 may be utilized.
  • conductive portions of defibrillation electrodes traditionally, it was necessary for conductive portions of defibrillation electrodes to have a surface area of 60 cm 2 to 80 cm 2 in order to deliver a sufficient defibrillation energy to the patient.
  • the present invention takes advantage of the “spreading resistance” effect described above so as to permit reduction in the surface area of each electrode.
  • the features described herein with respect to sensing electrodes 31 may also be used in conjunction with the non-segmented electrodes described herein.
  • These features include, but are not limited to, using hydrogels having low ion concentrations, therapeutic and prophylactic agents, and/or high MVTRs, effecting electrode movement relative to the patient so as to reduce the deleterious effects of electrode-to-skin contact, etc., utilizing an adhesive designed for long-term wear, etc.
  • the following monitoring and energy-transmitting functions described with respect to segmented electrodes may also be used in conjunction with the non-segmented electrodes described herein.
  • non-segmented defibrillation electrodes i.e., electrodes having a surface area of 60 cm 2 to 80 cm 2
  • these aspects include, but are not limited to, using the electrodes in conjunction with hydrogels having low ion concentrations, therapeutic and prophylactic agents, and/or high MVTRs, effecting electrode movement relative to the patient so as to reduce the deleterious effects of electrode-to-skin contact, etc., utilizing an adhesive designed for long-term wear, etc.
  • the following monitoring and energy-transmitting functions described with respect to sensing electrodes 31 may also be used in conjunction with the traditional non-segmented electrodes described herein.
  • defibrillator 10 may also be used with any type of commercially-available subcutaneous electrode as well. It is still further noted that the invention may include combinations of two or more of the foregoing types of electrodes.
  • each group of electrodes and/or single electrode has at least one electrical lead mechanically connected between its lead interface and power supply 20 .
  • the leads can be standard cables comprising electrically conductive wires sheathed in a flexible, protective material, e.g., a flexible plastic material.
  • the wires used in the leads preferably are able to carry repeated defibrillation impulses of at least 20 A for a 20 millisecond duration, and preferably have adequate insulation qualities satisfying a high potential test for about 1750 V.
  • the cables preferably are flexible, durable, soft and comfortable while having sturdy insulation.
  • power supply 20 includes base 180 , top 181 and, sandwiched therebetween, batteries 184 .
  • Power supply 20 is also comprised of connector 21 , which includes the physical connector identifier for electrode harness 4 , and which interfaces power supply 20 and electrical leads 26 , 27 , 29 and 30 to defibrillator 10 .
  • connector 21 includes socket 186 which receives the electrical leads via holes 185 .
  • Socket 186 fits within top 181 such that pin 188 on top 181 contacts with hole 190 on socket 186 . Socket 186 is shielded so as to protect signals being transmitted therethrough from batteries 184 . This shielding is tied to the “floating” ground in the battery and also to shields from the leads to the electrodes.
  • each electrical lead is non-removably connected to connector 21 on power supply 20 , meaning that each lead is hard-wired to connector 21 or is otherwise connected to connector 21 in a way in which removal of the electrical leads from connector 21 will damage either one or both of these components. It is noted, however, that alternative embodiments of the invention are possible, in which each lead is removably connected to connector 21 .
  • Power supply 20 comprises the primary power cell for wearable defibrillator 10 .
  • batteries 184 comprise non-rechargeable lithium batteries (e.g., DL123A, size 2/3 A) which are capable of providing 2 to 7 days of normal operation of defibrillator 10 , including delivering at least six defibrillation energy (i.e., shocks) having peak currents of 23 A to the patient.
  • the working voltage of power supply 20 is preferably 3.3 to 6.6 V, with the maximum output being 6.6 V.
  • power supply 20 is made water-resistant by sealing power supply 20 within a silicone membrane (not shown) or the like.
  • power supply 20 may be made water-resistant by a number of other means as well. For example, it is possible to use a variety of other insulating materials in place of silicone. By sealing power supply 20 in this manner, it is possible to reduce the risk of unintended electric shock during activities, such as showering or the like.
  • Each electrical lead on electrode harness 4 has a length that is sufficient for each corresponding electrode or group of electrodes to be placed on the patient at a predetermined distance away from others of the electrodes or groups of electrodes.
  • defibrillator as opposed to solely ECG
  • the invention ensures proper accumulation of current in areas between the sensing electrodes.
  • the present invention provides an additional advantage in this regard in that groups of electrodes arranged in geometric patterns on the patient are movable relative to the patient in a manner which ensures that the geometric patterns are substantially retained, but are at different orientations relative to the patient.
  • sensing electrodes 31 a, 31 b and 31 c it is possible to rotate pad 22 containing sensing electrodes 31 a, 31 b and 31 c on a patient such that pad 22 is still within the patient's thoracic window (e.g., either the apex-sternum thoracic window, the anterior-posterior thoracic window, or some combination thereof), but such that sensing electrodes 31 a, 31 b and 31 c do not contact the patient's skin at the same location.
  • Random rotation or movement may also be used to accomplish the same result. For example, in a case that electrodes 31 all float, random motion may be the best way in which to achieve the desired result.
  • each sensing electrodes 31 , group of sensing electrodes, or individual non-sensing electrodes should be rotated in the above manner roughly once every 12 hours to 7 days.
  • sensing electrodes 31 are capable of transmitting electrical signals from defibrillator 10 to a patient.
  • These electrical signals include, but are not necessarily limited to, defibrillation energy, tactile stimulation signals, pacing signals, and AC and DC signals used to measure a patient's skin and thoracic impedance.
  • the same information used to measure the patient's thoracic impedance may also be used to determine the patient's respiration and pulse rates.
  • the defibrillation energy preferably has a bi-phasic waveform with two phases. These phases may have substantially equal durations or, alternatively, may have different durations, e.g., the first phase may be roughly 6 msec and the second phase may be roughly 4 msec.
  • An example of a bi-phasic waveform having substantially equal durations is shown in FIG. 6 (described below).
  • the waveform of the defibrillation energy may also be mono-phasic, i.e., the waveform may comprise just the first one of the two phases shown in FIG. 6 , or may comprise a truncated exponential waveform.
  • Monophasic waveforms typically require greater current, generally on the order of 15% to 20% greater, in order to achieve substantially the same effect as bi-phasic waveforms.
  • the pacing impulses these preferably comprise waveforms having a low peak current of roughly 150 mA.
  • Sensing electrodes 31 are also capable of transmitting patient information from the patient to defibrillator 10 .
  • This patient information includes, but is not limited to, information relating to the patient's skin and thoracic impedance, artifact noise in the patient's body (caused, e.g., by cardiopulmonary resuscitation, agonal breathing, seizures, patient handling, and ambulatory or vehicular motion), sensory stimulation signals from the patient, and the patient's ECG, including any cardiovascular signals evidencing abnormal heart activity.
  • electrode harness 4 preferably includes two independent differential channels, namely “ECG 1” and “ECG 2” shown in FIG. 3 , for measuring the patient's ECG.
  • groups of electrodes 31 a , 31 b and 31 c and 31 d, 31 e, 31 f and 31 g comprising ECG 1 both provide the defibrillation energy to the patient and monitor the patient's ECG, whereas electrode 31 h comprising ECG 2 is used solely for monitoring the patient's ECG.
  • ECG 1 serves as the primary monitoring channel for ECG analysis
  • ECG 2 serves as a backup for use in a case that ECG 1 is not operating or is not operating properly (e.g., if ECG 1 is relatively noisy).
  • ECG 2 can be used as a means of verifying the validity of an ECG obtained via ECG 1 . That is, by comparing ECGs obtained from ECG 1 an ECG 2 , it is possible to confirm the validity of the patient's ECG. It is also possible to confirm whether the electrodes are properly attached to the patient based on this comparison. As still another alternative, it is possible to “average” ECGs from ECG 1 and ECG 2 , in order to obtain an averaged ECG for the patient, or to increase ECG resolution by using inputs from both ECG 1 and ECG 2 .
  • the use to which defibrillator 10 puts the ECG signal, as well as the other signals obtained via an electrode harness 4 is provided in detail below.
  • defibrillator 10 provides several ways to measure the patient's thoracic impedance based on information received from sensing electrodes 31 .
  • the patient's impedance is determined directly by applying an AC or DC signal through an electrode, sampling data obtained from the electrode in response to the AC or DC signal, and analyzing the sampled data. More specifically, in preferred embodiments of the invention, this method of measuring the patient's thoracic impedance entails sampling such data from an electrode within 5 seconds of defibrillator power-on and then every 10 seconds for a 160 msec period at a sample rate of 4 msec or to continuously sample the impedance signal.
  • Filtering is then performed on the sampled data so as to reduce the bandwidth of the sampled data to less than 10 Hz.
  • the sampled data is then analyzed so as to provide a noise magnitude estimate for the signal and a frequency content of the signal.
  • Subsequent processing is then performed to obtain a measurement of the patient's thoracic impedance by averaging all of the data samples in each 160 msec period. This averaging and filtering is performed in order to reduce the effects of artifact noise associated with CPR, muscle tremors, and agonal breathing. Of course, this processing occurs in defibrillator 10 , and not in electrode harness 4 .
  • the patient's thoracic impedance is also calculated by defibrillator 10 each time the defibrillation energy is transmitted to the patient.
  • the patient's thoracic impedance may be determined before, during and after transmission of defibrillation energy, based on patient information received from the electrodes in response to the defibrillation energy.
  • defibrillator 10 includes housing 40 , light emitting diode (hereinafter “LED”) 41 , visual indicator 42 , auditory indicator 44 , annunciator 46 , user interface 47 , communications link 49 , and connector 50 .
  • FIG. 7B is an exploded view showing the mechanical construction of the features shown in FIG. 7A . A description of these features of the invention is provided below.
  • Housing 40 is preferably small enough to make the defibrillator portable, and thus wearable, yet large enough to house the circuitry included within defibrillator 10 .
  • housing 40 can comprise a belt, or the like, which a patient can wear around his or her waist, chest, etc.
  • housing 40 comprises a rectangular casing that is roughly 6 inches in length, by 4 inches in width, by 2 inches in depth, or preferably 5.2 inches by 3.2 inches by 1.5 inches.
  • housing 40 is comprised of base 40 a and top 40 b.
  • the preferred weight of defibrillator 10 is approximately 1.5 pounds or preferably 1.0 pound or lighter.
  • the invention is able to achieve its small size by using high-energy capacitors (e.g., 500 ⁇ F, 400 ⁇ F, etc.) to store and deliver defibrillation energy, as described in more detail below.
  • Connector 50 and communications link 49 comprise external interfaces on defibrillator 10 .
  • Connector 50 is disposed on housing 40 so as to permit connection of defibrillator 10 to mating connector 21 on power supply 20 (see FIG. 2 ), and to permit connection of defibrillator 10 to corresponding mating connector 51 on base station 2 (see FIG. 1 ).
  • connector 50 preferably includes two high-speed data pins (not shown), which permits base station 2 to interface to defibrillator 10 at a same point that electrode harness 4 interfaces to defibrillator 10 .
  • Communications link 49 comprises a non-contact interface to personal computer 201 (see FIG.
  • IR infrared
  • RF radio frequency
  • Visual indicator 42 comprises a liquid crystal display (hereinafter “LCD”) or the like (in preferred embodiments, a Standish 162SLC 2 ⁇ 16 dot matrix display), having two lines for displaying information, including text and errors, to a patient or to a clinician operating defibrillator 10 .
  • LCD liquid crystal display
  • Standish 162SLC 2 ⁇ 16 dot matrix display having two lines for displaying information, including text and errors, to a patient or to a clinician operating defibrillator 10 .
  • This information can include, but is not limited to, information concerning the patient's heart activity, such as the patient's ECG or the like; messages upon detection of abnormal activity in the patient's heart; statements indicating that the patient has been wearing electrode harness 4 for greater than a recommended period of time; instructions for the use of defibrillator 10 ; prompts for using defibrillator 10 ; errors that have occurred in defibrillator 10 ; messages transmitted to defibrillator 10 from an external location via base station 2 , personal computer 6 , or personal computer 201 ; an indication that one or more of sensing electrodes 31 have become detached from the patient; and an indication that defibrillator 10 cannot differentiate between artifact noise in a patient's body and a cardiac arrhythmia.
  • the information is displayed for about 15 seconds.
  • one or more visual indicators such as light emitting diode (hereinafter “LED”) 41 , may be provided on defibrillator 10 to indicate different operational states thereof.
  • LED 41 blinks when defibrillator 10 is operating normally, is off when defibrillator 10 is without power (including when power supply 20 has failed), and is continuously illuminated during power-up error detection diagnostics performed by defibrillator 10 .
  • Auditory indicator 44 comprises a speaker (in preferred embodiments, an MG Electronics MCS298 speaker) or the like, which provides verbal messages corresponding to information displayed on visual indicator 42 . These messages may be output in a variety of different languages on both visual indicator 42 and auditory indicator 44 .
  • auditory indicator 41 echos visual display 42 , and has a volume that is adjustable at least up to 60 or 70 decibels. Auditory indicator 44 may also be configured to provide additional sounds, such as tones, buzzing, beeping, etc. to indicate error conditions within defibrillator 10 .
  • error conditions include, but are not limited to, a low or drained power supply, improper attachment of sensing electrodes 31 to the patient, detachment of sensing electrodes 31 from the patient, and inoperability of defibrillator 10 .
  • another auditory indicator such as annunciator 46 , may also be included on defibrillator 10 .
  • Annunciator 46 is preferably separate from auditory indicator 42 , and produces a buzzing or other unique sound to indicate error conditions within defibrillator 10 , particularly a low or drained power supply.
  • User interface 47 comprises a response button, whereby a patient or clinician can provide an input to wearable defibrillator 10 simply by pressing the button.
  • the response button is comprised silicone 47 a, button 47 b, paddle 47 c and foil 47 d.
  • the response button cancels any upcoming defibrillation operation, meaning that, when pressed, the response button terminates a current defibrillation and, in some embodiments of the invention, disarms defibrillator 10 .
  • the response button is relatively large, making it easily accessible to the patient, particularly through clothing and the like.
  • defibrillator 10 confirms when the response button has been pressed by issuing both audio and visual messages.
  • the response button is pushed in response to, e.g., a “PLEASE RESPOND” verbal message so as to confirm patient consciousness or lack thereof.
  • defibrillator 10 also includes a cardiac event recording button which may or may not be separate from the response button, and which is pushed when the patient wants to record occurrence of a cardiac event. It is noted that these two functions are combined during a potential rescue situation; i.e., the patient will want to respond to the defibrillator's response requests at the same time, possibly recording the occurrence of a cardiac event. Combining these functions into a single button helps train the patient to habitually push the same button whenever there are requests from the defibrillator or cardiac events.
  • FIG. 8 is a system functional block diagram of defibrillator 10 .
  • the hardware and software functional blocks shown in FIG. 8 monitor and analyze patient information (e.g., the patient's ECG) received from electrode harness 4 in order to determine if a cardiac rhythm is life threatening and requires defibrillation, and also permits communication to base station 2 , personal computer 6 , and personal computer 210 .
  • these blocks within defibrillator 10 determine the patient's thoracic impedance based on information received from the patient via electrode harness 4 , and adjust the defibrillation energy accordingly.
  • a predetermined thoracic impedance value may be stored in data logging memory block 57 . That predetermined thoracic impedance value may then be retrieved and used to adjust the defibrillation signal.
  • defibrillator 10 comprises auditory indicator 44 , visual indicator 42 , LED 41 , user interface 47 , and annunciator 46 . Descriptions of these features of the invention were provided above and, therefore, will not be repeated here. It is worth noting, however, that annunciator 46 receives power from backup battery 54 , which is rechargeable, and which is independent of the primary source of power (i.e., power supply 20 ) for defibrillator 10 . Backup battery 54 provides power to annunciator 46 in the event that power supply 20 fails, thereby giving annunciator 46 the ability to warn the patient in such an event.
  • backup battery 54 provides power to annunciator 46 in the event that power supply 20 fails, thereby giving annunciator 46 the ability to warn the patient in such an event.
  • Defibrillator 10 also includes patient measurements block 56 , data logging memory block 57 , accessory communications block 59 , real time clock (hereinafter “RTC”) 60 , RTC/RAM backup battery 61 , which may or may not be separate from backup battery 54 , and signal generator 62 .
  • signal generator 62 comprises processing block 64 , defibrillation control block 66 , discharge/protection switches 67 , capacitors 69 , charger 70 and charge control block 71 .
  • the present invention includes the forgoing blocks in signal generator 62 , any combination of hardware and/or software which effects the same function as these features can be employed in the practice of the present invention.
  • RTC 66 maintains the current date and time, receiving power from rechargeable RTC/RAM backup battery 61 when defibrillator 10 is powered-off.
  • RTC 60 is a Dallas 1306 serial RTC, which is able to maintain the correct time and date for up to 30 days without connection to power supply 20 .
  • RTC/RAM backup battery 61 also provides power to a memory (e.g., a RAM (not shown)).
  • Accessory communications block 59 performs any filtering and protocol conversion necessary to enable transmission of data between defibrillator 10 and base station 2 , personal computer 6 and/or personal computer 210 .
  • Patient measurements block 56 comprises analog signal conditioning hardware which filters and digitizes ECG signals, thoracic impedance measurements, and electrode-to-skin impedance measurements received via electrode harness 4 , and which transmits the resulting data to processing block 64 .
  • Patient measurements block 56 also receives information from an accelerometer, described below, relating to the patient's motion, and provides this information to processing block 64 .
  • Data logging memory block 57 stores both the operational history of defibrillator 10 and information relating to the patient. More specifically, data logging memory block 57 stores abnormal heart activity of the patient; the patient's ECG before, during and after application of defibrillation energy; an indication that the patient has been trained for use with defibrillator 10 ; analyzed ECG conditions; ECG markings, including defibrillation synch, external pace pulse, high slew rate, and saturation; patient thoracic and electrode-to-skin impedance measurements over time; voice, tone, and buzzer prompts; displayed messages; information concerning patient interaction with the defibrillator 10 (e.g., if and when the patient has pressed the response button); transmitted defibrillation waveform measurements, including current and voltage versus time; execution time measurements of defibrillator 10 for use in determining if defibrillator 10 operated as expected; detected operational errors of defibrillator 10 (including a type of error, persistence
  • data logging memory block essentially stores any information provided to, or transmitted from, defibrillator 10 over a predetermined span of time, such as two days.
  • This data is preferably stored in a log format and includes time data specifying a time at which each event occurred.
  • embedded in the data are validation and synchronization mechanisms for use in detecting areas of corrupted or missing data.
  • data logging memory block 57 has a capacity (e.g., 24 megabytes or 48 megabytes) which is sufficient to record the foregoing information over a 48 hour period of continuous use of defibrillator 10 .
  • a capacity e.g., 24 megabytes or 48 megabytes
  • data logging memory block 57 is removable, and can be transferred to the base station or to an external location at which point data stored therein may be downloaded.
  • Signal generator 62 generates, based on patient impedance data provided from patient measurements block 56 , defibrillation energy which preferably has a bi-phasic waveform may have two phases with substantially identical durations, different durations, or a first phase with a longer duration than a second phase, and having relatively low peak amplitudes over a patient impedance range.
  • defibrillation energy which preferably has a bi-phasic waveform may have two phases with substantially identical durations, different durations, or a first phase with a longer duration than a second phase, and having relatively low peak amplitudes over a patient impedance range.
  • a mono-phasic waveform or a truncated exponential waveform having similar characteristics may also be used.
  • FIG. 6 shows a representative example of defibrillation energy generated by signal generator 62 .
  • the amplitude at the end of the pulse is 60 to 80% of its initial value.
  • the example shown in FIG. 6 merely representative, and waveforms having different values can also be generated by the present invention.
  • the duration of each phase of a bi-phasic waveform may be between 4.5 and 6.4 msec.
  • the waveform corresponding to the defibrillation energy preferably also has a substantially consistent tilt, as shown in FIG. 6 .
  • the tilt of the defibrillation energy is between 53% and 79%.
  • the present invention provides a way in which to alter this tilt using capacitors 69 .
  • capacitors 69 store energy which is discharged to the patient via discharge/protection switches 67 in the form of the foregoing defibrillation energy. This energy is discharged as a waveform having the foregoing characteristics.
  • the tilt of the waveform i.e., the rate of the waveform's exponential decay
  • the circuit used to generate the waveform.
  • circuit's time constant ⁇ may be altered by switching capacitors 69 , as described below, so as to alter the overall, combined capacitance value of capacitors 69 .
  • switching capacitors 69 in this manner, it is possible to vary the tilt of the waveform and the achieve a low-current waveform.
  • the energy for defibrillation energy is discharged by capacitors 69 only in the case that a life-threatening cardiac arrhythmia is detected in the patient (as determined by comparing the patient's ECG to pre-stored patient parameters), the patient is deemed to be unconscious (as determined, e.g., by the patient's response, or lack thereof, to messages provided by auditory indicator 44 , visual indicator 42 . and annunciator 46 ), and the patient's thoracic impedance is within a predetermined range. In preferred embodiments of the invention, this range is between 15 ohms and 200 ohms. The process of determining whether and when to transmit defibrillation energy to a patient is described in more detail below.
  • One (or more) of capacitors 69 is also used to provide the above-noted tactile stimulation signal to the patient.
  • the tactile stimulation signal may be used to alert the patient of the occurrence of a cardiac event, and may vary based on the patient and based on which time it is administered to the patient in response to a message from the defibrillator. That same capacitor may also be used to deliver a pacing signal to the patient's heart in order to stimulate normal contractions thereof.
  • the invention preferably includes 5 capacitors having capacitances of 500 ⁇ F (350 V) each; although capacitors having other capacitances may be used as well.
  • the capacitors are switchable into the “221” configuration shown in FIG. 9 , in which there are two sets of parallel capacitors in series with a single capacitor; the “2111” configuration shown in FIG. 10 , in which there is one set of parallel capacitors in series with three single capacitors; and the “11111” configuration shown in FIG. 11 , in which there are five single capacitors in series.
  • the higher the impedance of the patient the lower the peak current that is required for the defibrillation energy (a lower tilt is also required at higher impedances).
  • the 11111 capacitor configuration may be used to generate defibrillation energy having a maximum peak current of 15 A.
  • the 221 capacitor configuration may be used to generate defibrillation energy having a maximum peak current of 21 A.
  • Table 1 shown below, provides values for I max+ , I avrg+ , I final , t max+ , t switch , and t max ⁇ (see FIG. 6 ) for defibrillation energy for patients having impedances of 40, 60, 80 and 120 ohms. These values are merely representative of a particular case, and other values, of course, may be substituted therefor. In this regard, as noted above, the duration of each phase is roughly between 4.5-6.5 msec, and the peak current is roughly between 12 and 25 A.
  • the invention may also include a resistor, placed in series with the capacitors. Due to the resistor's effect on the circuit's time constant, the resistor has the effect of “smoothing”, i.e., decreasing the tilt of, the waveform of the defibrillation energy. In this regard, generally speaking, an increase in the resistance of the resistor decreases the tilt of the waveform.
  • the invention may include a single capacitor and one or more switchable resistors to achieve the effect of varying the circuit's time constant and thereby varying the waveform of the defibrillation energy.
  • discharge/protection switches 67 control delivery of the defibrillation energy from capacitors 69 to the patient.
  • Discharge/protection switches 67 are controlled by defibrillation control block 66 which, in turn, is controlled by processing block 64 .
  • processing block 64 commands defibrillation control block 66 to open discharge/protection switches 67 , thereby providing protection from unwanted electric signals.
  • processing block 64 determines that defibrillation energy is to be transmitted to the patient, processing block 64 immediately commands defibrillation block control block 66 to close discharge/protection switches 67 , thereby providing the energy to the patient.
  • one of capacitors 69 is also able to transmit tactile stimulation and pacing signals to the patient.
  • processing block 64 issues a command to defibrillation control block 66 which, in response, may switch one of discharge protection switches 67 so as to output a signal from only one of capacitors 69 .
  • defibrillator control block 66 also monitors discharge/protection switches 67 and provides the results thereof to processing block 64 .
  • Charger 70 controls charging of capacitors 69 from power supply 20 , the input of which is labeled 20 a in FIG. 8 .
  • charger 70 comprises hardware which transfers energy from power supply 20 to capacitors 69 .
  • Charger control block 71 controls charger 70 in response to commands received from processing block 64 so that capacitors 69 charge to a level commanded by processing block 64 .
  • processing block 64 may issue commands to charge capacitors 69 to one of a plurality of different levels depending on a determined type of arrhythmia, e.g., ventricular fibrillation versus ventricular tachycardia.
  • Processing block may also issue commands to charge processing block 69 based on a type of signal to be transmitted, e.g., defibrillation energy, a pacing impulse, or a tactile stimulation signal.
  • Processing block 64 can comprise a microprocessor, controller, or the like, as described below, which includes an internal program memory (not shown in FIG. 8 ).
  • This memory is used to store software modules comprised of process steps that are executable by processing block 64 . Specifically, process steps in these modules are executable to control operation of defibrillator 10 based on input received from a patient or, alternatively, from base station 2 (see FIG. 1 ).
  • These software modules comprise input/output (hereinafter “I/O”) module 80 , including communications submodule 81 therein, data recording module 82 , diagnostics module 84 , defibrillation control module 86 , ECG analysis module 87 , user interface protocols 89 , and master control module 90 .
  • I/O input/output
  • I/O module 80 preferably comprises a BIOS module which controls the transfer of data between software modules running within processing block 64 and hardware components within defibrillator 10 . I/O module 80 also controls communications between processing block 64 and auditory indicator 44 , visual indicator 42 , LED 41 , and user interface 47 . To this end, the invention includes user interface protocols 89 , between master control module 90 and I/O module 80 . User interface protocols 89 comprise command sequences for controlling transmission of various prompts, such as tones, verbal messages, or the like, to the user via auditory indicator 44 , visual indicator 42 , and LED 41 in response to detected events, such as a cardiac arrhythmias or the like.
  • user interface protocols 89 include command sequences for controlling receipt of signals input by the user via user interface 47 (i.e., the response button).
  • Communications submodule 81 controls communications between processing block 64 and an interfaced device, such as electrode harness 4 or base station 2 , via accessory communications block 59 .
  • Processing block 64 also executes a low-level, run time executive (hereinafter “RTE”) module (not shown), which supports communication between the various software tasks running in processing block 64 .
  • RTE run time executive
  • ECG analysis module 87 comprises process steps which monitor the patient for a predetermined condition based on information provided through electrodes 31 .
  • ECG analysis module analyzes the patient's ECG and impedance data provided from sensing electrodes 31 (via patient measurements circuit 56 ), together with other information provided from the patient, including artifact noise and patient motion, in order to determine whether, when, and what types of arrhythmias are present in the patient's ECG.
  • ECG analysis module 87 performs any necessary signal processing on the patient's ECG and thoracic impedance data in order to remove any extraneous data such as may be present due to noise in the patient's body, including artifact noise or noise caused by patient motion.
  • ECG analysis module 87 compares the patient's ECG and thoracic impedance data to the patient parameters stored in data logging memory block 57 (e.g., the patient's thoracic impedance range and ventricular fibrillation and ventricular tachycardia rates at which defibrillation, pacing or cardio (described below) signals should be administered) in order to determine whether an arrhythmia has occurred.
  • the patient parameters stored in data logging memory block 57 e.g., the patient's thoracic impedance range and ventricular fibrillation and ventricular tachycardia rates at which defibrillation, pacing or cardio (described below) signals should be administered
  • ECG analysis module 87 determines that an arrhythmia has occurred, ECG analysis module 87 analyzes the patient's ECG and the patient parameters in order to determine the type of arrhythmia, i.e., whether the arrhythmia comprises ventricular fibrillation, ventricular tachycardia, asystole, bradycardia, or indioventricular rhythms, and whether defibrillation energy should be transmitted to the patient in response to the arrhythmia.
  • the type of arrhythmia i.e., whether the arrhythmia comprises ventricular fibrillation, ventricular tachycardia, asystole, bradycardia, or indioventricular rhythms, and whether defibrillation energy should be transmitted to the patient in response to the arrhythmia.
  • ECG analysis module 87 determines if the patient's rhythm is normal, meaning that the patient has a normal heartbeat, in which case no intervention is required; bradycardia, meaning that the measured heartbeat is less than 5 bpm; ventricular fibrillation which comprises uncoordinated rapid contractions of the heart which replace normal synchronous pumping action, specifically in the heart's lower chambers; ventricular tachycardia which comprise a threatening heart condition associated with a very rapid heart rate (>150 bpm) but minimum pumping action; marginal ventricular tachycardia (between 120 and 150 bpm—referred to as “walking VTs”); noise; and non-determinate signals, which are described below.
  • the invention may use one or more well-known analysis algorithms to make these determinations. However, in preferred embodiments of the invention, ECG analysis module 87 performs the algorithm shown in FIG. 16 .
  • ECG input and prefiltering stage 150 includes preconditioning filter step 154 , during which baseline stabilizer processing, noise filtering, bandpass filtering, and auto-gain control are performed on the patient's input ECG data. In preferred embodiments, at least some of these functions are performed in hardware in patient measurements block 56 (e.g., ECG filter 119 and ECG amplifier 92 described below with respect to FIG. 13 ). Following preconditioning filter step 154 , the ECG data is then transmitted to both rhythm analysis step 156 and fault detection step 157 .
  • Rhythm analysis step 156 detects peaks in the patient's ECG, a beat morphology of the patient's heart, and a rhythm interval of the patient's heart.
  • Fault detection step 157 determines a noise level estimate for noise in the patient's ECG, the electrode quality, meaning connection of electrodes 31 to the patient, and the patient's ECG signal amplitude.
  • Results from steps 156 and 157 are provided to preliminary decision matrix 158 which makes a preliminary determination, based on the information provided from steps 156 and 157 and based on stored patient parameters, whether the patient's ECG comprises a benign rhythm, a complex rhythm, or a rhythm that constitutes a risk of arrhythmia. This preliminary determination is then provided to periodic arrhythmia review step 160 .
  • Periodic arrhythmia review step 160 samples the input ECG data for fixed time intervals (e.g., 10 to 20 seconds), or at variable time intervals for arrhythmias which are preliminarily determined to be complex. This data, along with the preliminary determination made in preliminary decision matrix 158 , is then passed along to arrhythmia risk assessment stage 151 , specifically to rhythm analysis step 161 .
  • Rhythm analysis step 161 performs segment morphology analysis on data received from periodic arrhythmia review step 160 , and also performs a temporal analysis of the results of the segment morphology analysis. Processing then proceeds to decision matrix 162 which either confirms or refutes the preliminary decision made in preliminary decision matrix 158 based on the processed data and stored patient parameters. Specifically, decision matrix 162 either confirms or refutes that the patient's ECG comprises a benign rhythm, an arrhythmia, or a complex rhythm. Processing then proceeds to therapy decision algorithm stage 152 , specifically to rhythm analysis step 164 . Rhythm analysis step 164 processes the patient's ECG data by performing thereon, a Fourier analysis, a power spectral analysis, spectral analysis extraction, and a multi-variate temporal analysis.
  • the processed ECG data output from rhythm analysis step 164 is then provided to noise analysis step 166 .
  • Noise analysis step 166 performs adaptive noise discrimination on the processed ECG data, and then performs noise identification and classification so as to characterize noise in the data.
  • the noise may comprise artifact nose, noise from an internal pacemaker, etc.
  • processing proceeds to decision matrix 167 .
  • Decision matrix 167 either confirms that the patients ECG is a benign rhythm, in which case decision matrix 167 merely permits continued monitoring of the patient's ECG, or declares that there is an arrhythmia.
  • the results of decision matrix 167 are then output to therapy decision step 169 , which determines whether to provide defibrillation energy to the patient based on the results of decision matrix 167 , together with patient physiologic measurements provided by step 170 .
  • physiologic measurements include consciousness detection, hemodynamic assessment, and stimulus response tests.
  • ECG analysis module 87 is able to differentiate “treatable rhythms”, meaning ECG and physiologic analysis results which warrant application of therapy, from “non-treatable rhythms”, meaning ECG and physiologic analysis results which do not warrant application of therapy.
  • Non-treatable rhythms include normal sinus rhythms, supraventricular tachycardia, atrial fibrillation (with or without bundle branch block), atrial flutter, second and third degree heart block, ventricular ectopy, premature ventricular contractions, and pacing (see below).
  • ECG analysis module 87 is also capable of recognizing spontaneous organized cardiac rhythms that frequently follow defibrillation, and are associated with the presence of pulse and blood pressure. These rhythms are also classified as non-treatable.
  • Treatable rhythms include ventricular fibrillation (coarse), and high rate ventricular tachycardia that are hemodynamically compromised and result in patient unconsciousness.
  • the peak-to-peak amplitude should be greater than 150 ⁇ V for the rhythm to be considered treatable, and for a ventricular tachycardia the patient's rate must exceed the corresponding patient parameter, namely the patient parameter corresponding to the ventricular tachycardia rate at which defibrillation energy (or a cardio signal (i.e. a low-energy defibrillation signal)) is to be delivered to the patient.
  • ECG analysis module 87 is also able to identify other rhythms. These include non-determinative rhythms and pace rhythms. Pace rhythms correspond to heart rates that are sustained below 30 bpm and which result in patient unconsciousness. These rhythms are treated with a pacing signal, as opposed to a full defibrillation/cardio signal. Non-determinate rhythms comprise rhythms which require additional analysis to make a definitive decision as to whether defibrillation is required in response thereto. Such rhythms may be the result of extraneous artifact noise in the patient's body caused, e.g., by muscle contractions resulting from movement.
  • ECG analysis module 87 In the event that ECG analysis module 87 is unable to differentiate between extraneous noise and the patient's ECG, ECG analysis module 87 notifies master control module 90 which, in turn, outputs a message to visual indicator 42 and/or auditory indicator 44 .
  • ECG analysis module 87 is able to determine, based on electrode-to-skin impedance data received from electrodes 31 and the electrode-to-skin impedance range stored in data logging memory block 57 , whether and which electrode in electrode harness 4 has become detached from the patient.
  • patient measurements block 56 preferably monitors separate, identifiable terminals which permits ECG analysis module 87 to identify inputs from particular electrodes in electrode harness 4 . In the case that one or more of these electrodes has become detached from the patient, ECG analysis module 87 passes such information along to master control module 90 .
  • ECG analysis module 87 is also able to determine whether electrodes are attached to the patient's skin based on thoracic impedance measurements. That is, if the patient's thoracic impedance is determined to be above a predetermined value, such as 200 ohms, ECG module ascertains that the electrodes are no longer attached to the patient.
  • ECG analysis module 87 also determines the patient's heart rate and “R-wave synchronization trigger” based on received ECG information.
  • R-waves are present in the patient's ECG, both intrinsically and, in some cases, due to an internal or external pacemaker. Transmission of defibrillation signal (in this case a cardio signal) to the patient must be synchronized with an R-wave in order to avoid triggering ventricular fibrillation during a vulnerable period of the patient's ventricles. This vulnerable period occurs during repolarization of the ventricles, and usually begins 30 to 40 msec before the apex of a T-wave in the patient's ECG, and ends near the apex of the T-wave.
  • the vulnerable period starts approximately at the same time, but may persist for as long as 120 msec after the end of the T-wave. In all cases, however, the onset of the vulnerable period follows the peak of the R-wave by an amount of time that depends on the patient's heart rate and on the patient's ECG. The onset ranges from approximately 220 msec at a heart rate of 60 bpm to 120 msec and to as low as 100 msec at a heart rate of 150 bpm.
  • the R-wave synchronization trigger determined by ECG analysis module 87 is used by master control module 90 , described below, to synchronize the defibrillation energy so that the defibrillation energy is not applied during these vulnerable periods.
  • defibrillation energy is synchronized so that it is delivered within 60 msec of the patient's R-wave peak, if one is present. If no R-wave is detected within a 500 msec monitoring window, then the defibrillation energy is transmitted at the end of this window.
  • ECG analysis module 87 disregards stand-alone pacemaker pulses, meaning that only the heart's reaction to these pulses is factored into determination of the R-wave synchronization trigger, and not the pacemaker pulses themselves.
  • Master control module 90 integrates patient information from ECG analysis module 87 , patient responsiveness from user interface 47 , and outputs to auditory indicator 44 , visual indicator 42 , and LED 41 .
  • FIG. 12 is a flow diagram which provides an overview of this aspect of master control module 90 's operation, including some operational aspects of ECG analysis module 87 .
  • master control module 90 receives analysis results from ECG analysis module 87 , which indicate whether the patient has suffered an arrhythmia, the type of arrhythmia that the patient has suffered, and whether the arrhythmia is life threatening.
  • Master control module 90 also receives information concerning the patient's thoracic impedance. As described below, this information is used to determine the amplitude of the defibrillation energy to be transmitted by defibrillator 10 .
  • step S 1201 receives the ECG analysis results and impedance information
  • processing proceeds to step S 1202 , which determines whether the analysis results indicate that the patient has suffered a life-threatening arrhythmia.
  • step S 1202 determines that the patient has not suffered a life-threatening arrhythmia
  • processing proceeds to step S 1203 .
  • Step S 1203 issues commands to output a message, such as “SEE A DOCTOR”, to the patient, in the form of audio and visual signals via audio indicator 44 and visual indicator 42 , respectively. Thereafter, processing returns to step S 1201 .
  • step S 1204 determines whether other pre-conditions have been met before defibrillation energy is transmitted to the patient. Specifically, step S 1204 determines whether the patient's thoracic impedance is within a predetermined range, preferably between 15 and 200 ohms, and whether the patient's ECG has been confirmed by, e.g., both ECG 1 and ECG 2 above taking into account artifact noise in the patient's body. In a case that step S 1204 determines that these pre-conditions have been met, processing proceeds to step S 1205 ; otherwise processing proceeds to steps S 1203 and back to step S 1201 .
  • Step S 1205 determines whether the patient is conscious. More specifically, in step S 1205 , master control module 90 outputs a message (e.g., a query) such as “ARE YOU THERE”. This message is output both visually and audibly. After the message is output, master control module 90 waits a predetermined period of time for a response signal. This response signal may be input by the patient via user interface 47 , specifically, by pressing the response button. In a case that master control module 90 detects the response signal within the predetermined period of time, master control module 90 ascertains that the patient is conscious. Since defibrillator 10 does not administer defibrillation energy to conscious patients, in this case, master control module 90 will not cause defibrillation energy to be transmitted to the patient. Instead, processing proceeds to step S 1203 , in which master control module simply issues instructions to the patient, which can vary depending upon the severity of the arrhythmia.
  • a message e.g., a query
  • ARE YOU THERE This message is output both visually
  • transmission of defibrillation energy to the patient is averted.
  • transmission of the defibrillation energy can also be averted upon detection of certain errors in the defibrillator, disconnection of electrode harness 4 from defibrillator 10 , and removal of sensing electrodes 31 from the patient.
  • step S 1205 in a case that master control module 90 does not detect a response signal within the predetermined period of time, master control module 90 issues another audio or visual message (e.g., a louder message). After this second message has been transmitted to the patient, master control module 90 again waits for a response from the patient. In a case that the patient does not respond to this second message within a predetermined period of time, master control module 90 issues a third message to the patient. This message can be a still louder message or can include a tactile stimulation signal which is transmitted via an electrode on the patient. If the patient does not yet respond, master control module 90 issues a fourth and final message together with a tactile stimulation signal.
  • the format of these four messages can vary. For example, verbal messages need not be louder, the tactile stimulation signal can increase in intensity with each message or may be applied at each message, etc. Moreover, there need not be four messages. Rather, there can be more or less messages, as desired.
  • master control module 90 determines that the patient is unconscious. In this case, processing proceeds to step S 1206 , in which case master control module 90 immediately thereafter issues a command to defibrillation control module 86 instructing that the defibrillation energy be transmitted to the patient. That is, in preferred embodiments of the invention, as soon as the patient is determined to be unconscious, master control module causes defibrillation energy to be transmitted to the patient immediately, without waiting for further input from the patient, a clinician, or other party. Included with the command to transmit the defibrillation energy is data defining the amplitude and duration of phases in the defibrillation energy. Master control module 90 determines this information based on the measured thoracic impedance of the patient (see, e.g., Table 1 above).
  • the defibrillator trains patients with periodical tests in use of the response button via a response test training protocol.
  • Clinicians introducing the defibrillator to new patients are able to initiate execution fo the protocol from an attached clinician station (not shown).
  • the protocol is based on first two alert levels (described below) and an imminent response protocol (i.e., when the patient must response to a message from the defibrillator) so that the patient learns and becomes familiar with the first part of the imminent response protocol.
  • the repetition of the Level 2 prompts is to ensure that the patient was given more than enough time to response.
  • the response/test training protocol serves to develop a habitual reaction in the patient to the push response button in response to voice and tactile stimulation signal prompts during a potential rescue situation; regularly expose the patient to the “PLEASE RESPOND” voice menage prompt at Level 1, Level 2 with tactile stimulation signal if they do not respond to the first prompt; indirectly show the patient that before electrical therapy will be applied to them, they will be exposed to a series of voice and tactile stimulation signals to confirm that the patient is unconscious each time the test is performed, establish that the defibrillator is generating the voice and tactile stimulation prompts and that the patient can hear/feel them, can respond, and the defibrillator is registering the response; each time, record how fast the patient is responding to the prompts; and each time, determine that patient interface is working and, otherwise, declare the defibrillator unusable.
  • master control module 90 may also cause a message, such as “STAND BACK”, to be output prior to defibrillation so as to advise bystanders of an upcoming defibrillation.
  • a message such as “STAND BACK”
  • other messages may be provided to bystanders as well.
  • Such a message may even be output after defibrillation energy is administered to the patient.
  • any number of different types of messages may be included in the invention, which may be output at any time during the defibrillation process.
  • master control module 90 In addition to applying defibrillation energy to the patient, master control module 90 also determines when it is time to provide a pacing signal to the patient, and applies that signal accordingly. This process is similar to the above process for applying defibrillation energy. That is, in a case that master control module 90 determines that a patient's heart rate is below 30 bpm and the patient is unconscious, a pacing signal may be applied via the electrode harness 4 .
  • Defibrillation control module 86 controls defibrillation control block 66 and charge control block 71 in accordance with the command received from master control module 90 so that defibrillation energy which is appropriate for the patient can be generated and transmitted to the patient.
  • diagnostics module 84 performs diagnostics on defibrillator 10 relating to the operation and safety thereof prior to transmitting defibrillation energy to the patient. These diagnostics include diagnostics that are performed at power-on of defibrillator 10 in order to determine if there are operational defects therein. In a case that diagnostics module 84 detects operational defects as a result of these diagnostics, this information is stored in data logging memory block 57 and is transmitted back to master control module 90 , which alerts the patient. Such information also may be transmitted to base station 2 or to personal computer 6 .
  • Data recording module 82 controls transmission of data between defibrillator 10 , base station 2 and computers 6 and 210 .
  • This data can include as noted above, abnormal heart activity of the patient; the patient's ECG before, during and after application of defibrillation energy; analyzed ECG conditions; ECG markings, including defibrillation synch, external pace pulse, high slew rate, and saturation; patient thoracic and electrode-to-skin impedance measurements over time; voice, tone, and buzzer prompts; displayed messages; information concerning patient interaction with the defibrillator 10 ; transmitted defibrillation waveform measurements, including current and voltage versus time; execution time measurements of defibrillator 10 for use in determining if defibrillator 10 operated as expected; detected operational errors of defibrillator 10 ; calibration data for defibrillator 10 ; the serial number of defibrillator 10 ; a harness identification ID of an electrode harness interfaced to defibrillator
  • FIG. 13 is a block diagram showing representative hardware used to implement the functions of defibrillator 10 described above with respect to the FIG. 8 .
  • the hardware components shown in FIG. 13 include processor board 91 , which is comprised of ECG amplifier 92 , flash memories 94 , program ROM 96 , static RAM (hereinafter “SRAM”) 97 , backup battery 99 , voice chip 100 , LCD circuit 101 , processor field programmable gate array (hereinafter “FPGA”) 102 , voice driver 103 , output circuit 104 , reset/watchdog circuit 106 , power supply monitor 107 , microprocessor 109 , control FPGA 110 , address and data bus 111 , crystal oscillator 112 , and RTC 113 .
  • capacitors 69 Also included within defibrillator 10 are capacitors 69 , transformer 114 , power supply 20 , input circuitry 116 , output circuitry 117 , ECG filter 119 , and accelerometer 120 .
  • processor 109 processor FPGA 102 and control FPGA 110 perform the functions of processing block 64 ; flash memories 94 perform the functions of data logging memory block 57 ; control FPGA 110 performs the functions of defibrillation control block 66 , charge control block 71 , and charger 70 ; processor FPGA 102 , input circuitry 116 , ECG filters 119 , accelerometer 120 , and ECG amplifiers 92 perform the functions of patient measurements block 56 ; and control FPGA 110 , together with a serial interface (not shown) and a non contact interface (not shown), perform the functions of accessory communications block 59 . Remaining hardware components of FIG. 13 that perform the functions shown in FIG. 8 are self-evident
  • the hardware components shown in FIG. 13 are all tied to an internal, “floating” ground during operation of defibrillator 10 .
  • the use of floating grounds during operation of defibrillator 10 is important from the patient's perspective, since it reduces the chances of unwanted electric shock to the patient.
  • This floating ground may be on power supply 20 , which was described above. A detailed description of power supply 20 is therefore omitted here for the sake of brevity. Suffice it to say that power supply 20 provides power to all components on defibrillator 10 , including processor board 91 , input circuitry 116 , and capacitors 69 .
  • Accelerometer 120 measures a patient's motion and provides this information to processor 109 via control FPGA 110 .
  • Processor 109 analyzes the information received from accelerometer 120 , stores information relating to patient motion, and uses this information in its calculations of artifact noise noted above.
  • Input circuitry 116 receives signals from each of sensing electrodes 31 , negative and positive inputs from power supply 20 , and a connector ID from an interfaced device. Input circuitry 116 also controls output of defibrillation, tactile stimulation and pacing signals to a patient. To this end, included within input circuitry 116 are a plurality of switches, one corresponding to each input/output. These switches open and close in response to instructions from processor board 91 so as to ensure that signals, such as the defibrillation energy, are not inadvertently transmitted to a patient. Input circuitry 116 also includes shielding and the like on its input/output signal lines so as to reduce the chances of damage to defibrillation circuitry during application of defibrillation energy to the patient.
  • ECG filter 119 comprises plurality of bandpass filters used to filter signals received from electrode harness 4 . These filtered signals are transmitted to ECG amplifier 92 on processor board 91 .
  • ECG amplifier 92 includes amplifying circuitry for amplifying the filtered signals received from ECG filter 119 , and an analog-to-digital converter for converting the amplified signals from analog form into digital form. These digital signals are then transmitted to processor 109 via processor FPGA 102 .
  • Processor 109 receives clocking signals from crystal oscillator 112 , which preferably provides signals up to 40 MHz.
  • Processor 109 can comprise a microprocessor, microcontroller, or the like, and is used to execute the software modules-described above so as to control operation of defibrillator 10 .
  • microprocessors which have been identified as suitable for use with the present invention include the Intel 196 processor family, Intel 386EX (386EXTB), TMS320F206, Motorola 68332, the TI “2 ⁇ 3” family DSP Processor, Amtel 8051 or equivalent, Hitachi 8/500 series, Mitsubishi M37700, and Motorola 68HC16, to name a few.
  • Processor 109 also controls the application of power to other components in defibrillator 10 , particularly those on processor board 91 , and is able to cause these components to be powered-up and powered-down for predetermined time intervals. This feature of the invention reduces the amount of power consumed by defibrillator 10 .
  • processor 109 is capable of operating in different modes, during which processor 109 consumes different amounts of power. Specifically, processor 109 is operable in a normal mode, during which processor 109 samples data from electrodes 31 and controls defibrillator 10 in the manner described herein. Processor 109 is also operable in a low-power mode. In some embodiments of the invention, processor 109 may be turned off completely. In preferred embodiments, however, most processing in processor 109 ceases, but some elementary routines remain running. During the low-power mode, all internal registers in processor 109 retain their data, thereby making it possible for processor 109 to resume normal operation upon re-entering the normal mode.
  • Processor 109 enters the low-power mode periodically, e.g., at intervals of 1 to 2 ms, for predetermined periods of time, e.g., 20 ms.
  • processor 109 can operate in the low-power and normal modes at equal intervals, such as every 4 ms.
  • the length of time that processor 109 operates in the low-power mode is variable based on information received from the patient or, alternatively, based on information received from central repository 9 . For example, if processor 109 determines based, e.g., on the patient's ECG and previous history, that the patient is at a relatively low risk for a cardiac arrhythmia, processor 109 can lengthen the period of the low-power mode. Likewise, if processor 109 determines, based on similar information, that the patient is at a high risk for an arrhythmia, processor 109 can shorten, or even eliminate, the low-power mode.
  • processor 109 may enter a “deep” low power mode, in which processor 109 is off, or in which only the most elementary of routines remain running.
  • processor 109 may enter a “light” low power mode, in which less power is consumed than when the processor operates in the normal mode, but in which more than just elementary routines remain running in the processor.
  • processor 109 To enter the low-power mode, in preferred embodiments of the invention, processor 109 simply executes an “IDLE” instruction, during which most internal processing in processor 109 is disabled. In response to this IDLE instruction, processor 109 stops its internal clock and may execute only low-level routines so as to perform minimal tasks, such as determining when it is time to re-enter the normal mode. To this end, in the low-power mode, processor 109 , via control FPGA 110 (described below), monitors signals received from RTC 113 and, based on these signals, determines when it is time to re-enter the normal mode. In a case that defibrillator 10 includes a button or the like (not shown) on its user interface for placing processor 109 in the normal mode manually, processor 109 also monitors such a button during the low-power mode.
  • defibrillator 10 includes a button or the like (not shown) on its user interface for placing processor 109 in the normal mode manually, processor 109 also monitors such a button during the
  • Flash memories 94 comprise removable EPROMs or the like.
  • Program ROM 96 stores the software modules described above with respect to FIG. 8 which are executed by processor 109 .
  • Static RAM 97 comprises a memory out of which those software modules may be executed.
  • SRAM 97 is backed-up by backup battery 99 .
  • backup battery 99 contains a rechargeable lithium coin cell battery which is sufficient to back up both RTC 113 and SRAM 97 . Battery backup 99 may also be used to supply power to power annunciator 46 . Alternatively, a second backup battery (not shown) may be used for this purpose.
  • Reset/watchdog circuit 106 monitors processor 109 and control FPGA 110 in order to determine if either processor 109 or control FPGA has lost program control.
  • control FPGA 110 outputs a square wave signal called WATCHDOG_OUT in a case that control FPGA 110 and processor 109 are communicating properly.
  • Reset/watchdog circuit 106 monitors this signal for variations therein. In a case that this signal is interrupted, or has an unexpected waveform, reset/watchdog circuit 106 ascertains that there has been a system malfunction.
  • processor 109 is programmed to generate a signal called CONTROL_PLD_FAULT in a case that control FPGA 110 has failed. Reset/watchdog circuit 106 monitors for this signal as well in order to ascertain if there has been a failure in control FPGA 110 .
  • reset/watchdog circuit 106 In the event that either processor 109 or control FPGA 110 has failed, a system reset will be attempted by reset/watchdog circuit 106 . If the problem persists, reset/watchdog circuit 106 will instruct output circuit 109 to output an alarm, e.g., a “tone” or a “buzzing” via annunciator 46 . In this regard, in the event of a system error which causes a reset to be asserted, an alarm will not be sounded immediately. That is, if the system successfully recovers after one reset, no alarm will be sounded. This design allows the system to rebound from a temporary fault without alerting the user unnecessarily.
  • an alarm e.g., a “tone” or a “buzzing”
  • the alarm is sounded for 5 to 10 seconds. If the system subsequently recovers, the alarm will cease to sound at the conclusion of this 5 to 10 second period; otherwise, the alarm will continue as long as the system reset signal is asserted for 200 msec or more per second, stopping only when the backup battery for annunciator 46 has been drained.
  • power supply monitor 107 monitors power supply 20 .
  • power supply monitor comprises plural comparators with associated circuitry for making these determinations. In a case that power supply 20 is low, or is outputting greater than a predetermined amount of power, this information is transmitted to reset/watchdog circuit 106 . In response, reset/watchdog circuit 106 causes annunciator 46 to output an alarm via output circuit 104 . In a case that power supply 20 has failed, processor 109 shuts down defibrillator 10 just after reset/watchdog circuit 106 has caused annunciator 46 to output the alarm.
  • Processor board 91 also includes control FPGA 110 and processor FPGA 102 , which comprise glue logic for controlling inputs to, and outputs from, processor board 91 .
  • Processor FPGA 102 contains memory page registers, glue logic, and processor internal clock stopping/starting circuitry. This clock stopping/starting circuitry stops an internal clock of processor 109 for predetermined periods of time, such as 4 msec, during processor 109 's low-power modes.
  • Processor FPGA 102 also controls outputs to LED 41 , auditory indicator 44 and visual indicator 42 (see FIG. 8 ).
  • voice chip 100 e.g., an ISD33000 series Chip Voice Record/Playback device which can store up to 60 seconds of prerecorded voice messages.
  • Voice driver 103 is also required to drive auditory indicator 44 .
  • An example of such a driver is a TI TPA4861D (SOIC-8).
  • Defibrillator 10 also includes LCD controller/driver 101 which, in preferred embodiments of the invention, is an OKI MSM6555B or MISM6665 chip.
  • Control FPGA 110 contains a defibrillator state machine and various registers for controlling operations of defibrillator 10 .
  • these registers are capacitor configuration registers (not shown). By writing into these registers, capacitors 69 can be programmed to enable different capacitor configurations, i.e., the 221, 2111 or 11111 configurations shown in FIGS. 9 to 11 .
  • control FPGA 110 includes CAP_SW 1 , CAP_SW 2 , CHRGELCB and CHARGE registers. Writing a “1” into the CHARGE register enables capacitor charging, whereas writing a “0” into the CHARGE register disables charging.
  • Writing a “1” into the CHRGELCB register switches all capacitors into a parallel configuration for charging, whereas writing a “0” into the CHRGELCB register charges only one of capacitors 60 and allows that one of capacitors 69 to be placed into a series configuration for transmitting a tactile stimulation or pacing signal.
  • Writing a “1” into the CAP_SW 1 register switches two of capacitors 69 into a series configuration, whereas writing a “0” into CAP_SW 1 register switches the two of capacitors 69 into a parallel configuration.
  • Control FPGA 110 comprises a plurality of other registers as well, including a defibrillator control register. Bits are written to the defibrillator control register to set defibrillator 10 to provide either defibrillation energy, a tactile stimulation signal, or a pacing signal. Control FPGA 110 also has a number of other functions, including monitoring the charge in capacitors 69 and adjusting the charge based on signals (e.g., patient impedance) received from an interfaced device such as electrode harness 4 , monitoring inputs from user interface 47 , e.g., the response button, and providing output via a serial interface (not shown) to base station 2 and via a non-contact interface (not shown) to personal computer 6 .
  • signals e.g., patient impedance
  • FIG. 14 shows a detailed circuit diagram of capacitors 69 (and of transformer 114 ).
  • the circuitry shown in FIG. 14 fits on a circuit board having a surface area of roughly 2 inches 2 or less.
  • capacitors 69 a, 69 b, 69 c, 69 d and 69 e are charged by power supply 20 via transformer 114 .
  • CAPSW 1 controls switching of capacitors 69 b and 69 c via transistor switch 122
  • CAPSW 2 controls switching of capacitors 69 d and 69 e via transistor switch 124 .
  • this switching controls the overall, combined capacitance of 69 a, 69 b, 69 c, 69 d and 69 e, which affects the amplitude and the tilt of a waveform output therefrom.
  • Additional signal conditioning and output circuitry is also shown in FIG. 14 but, since this particular circuitry is not essential to the invention, a detailed description thereof has been omitted for the sake of brevity.
  • FIG. 14 also shows circuitry 126 which is used to output tactile stimulation and pacing signals from capacitor 69 a.
  • PACEP and TENSP which are output by control FPGA 110 , control application of the pacing and tactile stimulation and signals, respectively, from capacitor 69 a. That is, charge from capacitor 69 a, namely CAP 1 + 127 , is applied to circuitry 126 and processed for output as the pacing or tactile stimulation signal.
  • FIG. 14 also shows the CHARGELCB signal, which was described above, and ISNSCB and IDSNSCB signals.
  • the ISNSCB signal comprises a current sense signal which is used to determine the charge of capacitors 69
  • the IDSNSCB signal is used to determine the defibrillation energy current.
  • This information is passed back to processor board 91 , which processes this information and responds in the manner described above. For example, in the event that processor 109 determines that capacitors 69 are charged excessively for a particular patient such that over-current or even over-time defibrillation could occur, defibrillator 10 may be shut down or temporarily disabled so that capacitors 69 can be discharged without harm to the patient.
  • output circuitry 117 includes signal conditioning circuitry as well as control circuitry which ensures that defibrillation energy will not be output inadvertently.
  • the invention also includes other safety features which limit transmission of the defibrillation control signal. For example, prior to delivery of the defibrillation energy, processor 109 monitors and demonstrates that state control clocks controlling the defibrillation energy are operational, and also tests the hardware components in order to detect any single point failures therein. These tests include testing switches in input circuitry 116 , through which the defibrillation energy is transmitted. These switches are tested, one at a time, to demonstrate that each switch is capable of holding off a full magnitude of the defibrillation energy.
  • a voltage across each transistor is monitored to record a test voltage and to record a transistor gate drive time constant in addition to combined opto isolator and transistor turn-off times. These voltages are then used to measure patient voltage during application of the defibrillation energy. Upper transistor switches, through which the defibrillation energy is transmitted, are tested first, followed by lower transistor switches. Each transistor switch is monitored and tested to demonstrate that the defibrillation energy would be terminated independently of hardware control timing.
  • processor 109 arms the defibrillation controller, e.g., control FPGA 110 .
  • processor 109 provides the following sequence of control signals to initiate arming of the defibrillation controller.
  • processor 109 tests its own internal safety signal (“PD_SAFE”) to demonstrate its ability to override any hardware defibrillation control signals.
  • PD_SAFE internal safety signal
  • Master control module 90 executing within processor 109 , sets a “defibrillator arm request status” bit in memory for use and checking by an executive control module (not shown).
  • This executive control module monitors operation of the software and updates a watchdog timer in processor 109 (which outputs the WATCHDOG_OUT signal noted above) when the software is confirmed to function properly.
  • the executive control module then sets an arm request signal in the defibrillation controller and calls a watchdog update subroutine which transitions the signal output from the watchdog timer. This causes a watchdog timer update and transitions the “armed request” status to the “armed” status in the defibrillation controller.
  • the PD_SAFE signal is then put in the active state to allow the activation of hardware control signals for defibrillation therapy.
  • processor 109 provides a final synchronized trigger signal to the defibrillation controller for delivery of the defibrillation energy.
  • This synchronized trigger signal will be accepted only after the “armed” status has been established.
  • the defibrillation controller will clear the armed status if the synchronization trigger signal is not provided within a 500 msec time period, thereby providing a limited acceptable period for defibrillation therapy.
  • processor 109 determines if the defibrillation energy was transmitted properly.
  • defibrillation energy dosage errors of over-current are protected by the reset/watchdog circuit described above, but, if such an event does inadvertently occur, a fault condition is retained in a hardware fault register.
  • under-dosages of the defibrillation energy are also detected and stored. In addition to being stored, these and other defibrillator operational errors may be transmitted to base station 2 .
  • Diagnostics module 84 also performs a plurality of diagnostics on defibrillator 10 to test defibrillator 10 's hardware. These diagnostics include cold start diagnostics, which are executed when defibrillator 10 powers-up normally, warm start diagnostics which are executed when defibrillator 10 experiences transient reset or power loss, runtime diagnostics which are continuing, periodic tests performed in the background of normal operating conditions, and specific conditions diagnostics which are tests that are performed prior to, or when certain operations are performed, such as transmission of defibrillation energy.
  • cold start diagnostics which are executed when defibrillator 10 powers-up normally
  • warm start diagnostics which are executed when defibrillator 10 experiences transient reset or power loss
  • runtime diagnostics which are continuing
  • periodic tests performed in the background of normal operating conditions and specific conditions diagnostics which are tests that are performed prior to, or when certain operations are performed, such as transmission of defibrillation energy.
  • Cold start diagnostics include RAM test, ROM test, D/A and A/D converter tests, FPGA tests, RTC and ECG sampling rate tests, LCD tests, voice circuitry tests, backup battery voltage tests, primary power supply voltage tests, internal voltage tests, old electrode harness test (i.e., whether the electrode harness has been changed after transmission of defibrillation energy), safety tests so as to verify that safety controls are operational, watchdog timer tests, shutdown tests, and patient parameters validation.
  • Warm start diagnostics include operational state data tests (protected RAM validation) and patient parameters validation.
  • Runtime diagnostics include watchdog timer active tests so as to confirm that a clock signal is active, software clock to real time clock comparison tests, software execution times checks, system voltage tests so as to test if the system is within voltage specifications, A/D runtime reference voltage tests, backup battery voltage tests, primary power supply voltage tests, internal voltage tests, old electrode harness test, operational state data integrity test, operational temperature tests, lead off tests, stuck keys test, safety tests including electrode harness time limit tests, defibrillation capacitor voltage tests, defibrillation output circuitry tests, output voltage tests, patient parameter validation, and impedance measurements. Specific conditions diagnostics include tests which are performed prior to transmission of defibrillation energy to the patient.
  • These tests include cross checking processor tests whereby control FPGA 110 checks processor 109 for correct performance of a command sequence, and processor 109 checks control FPGA 110 for correct progression of states during set-up and transmission of defibrillation energy.
  • Other tests include a watchdog timer test which resets the system in a case that processor 109 fails to respond periodically, electrodes-off tests in which processor 109 confirms that electrodes are attached to the patient, operational therapy state data integrity tests, pre-therapy dosage tests whereby energy to be transmitted as defibrillation energy is compared with two impedance measurements prior to transmission, stuck ECG relay contacts tests (prior to defibrillation), H-bridge therapy tests, and delivered defibrillation current limiting tests.
  • a base station for use with the present invention includes a defibrillator interface, over which information is exchanged with the defibrillator, and an external interface over which information is exchanged with an external entity, such as central repository 9 , a doctor's office, a hospital, etc.
  • a controller which receives patient information and defibrillation information from the defibrillator, transmits the patient information and defibrillation information to the external entity, receives defibrillator programming information from the external entity, programs the defibrillator in accordance with the defibrillator programming information, performs diagnostics on the defibrillator, and transmits results of the diagnostics to at least one of the defibrillator and the external entity.
  • Communication between the defibrillator and the base station may be via an RF, IR, or direct electrical connection.
  • communication/testing may be effected by direct contact between the sensing electrodes and the base station.
  • base station 2 includes, RAM 130 , program memory 131 , user interface 132 , non-volatile memory 133 , defibrillator interface 134 , external interface 136 , controller 137 , address/data bus 139 , and personal computer interface 140 .
  • Base station 2 may receive power from an external source, such as a wall outlet, or from a battery (not shown).
  • an external source such as a wall outlet, or from a battery (not shown).
  • Defibrillator interface 134 corresponds to connector 51 shown in FIG. 1 and comprises an interface to defibrillator 10 , over which patient information (e.g., ECG information) and defibrillator information (e.g., errors in operation of defibrillator 10 ) is received from the defibrillator, and over which external information (i.e., information received from an external source, such as new patient parameters) is transmitted to the defibrillator.
  • patient information e.g., ECG information
  • defibrillator information e.g., errors in operation of defibrillator 10
  • external information i.e., information received from an external source, such as new patient parameters
  • Defibrillator interface 134 includes base station 2 's physical connector ID.
  • Defibrillator interface 134 is preferably a serial interface and, as described above, mates to the same connector on defibrillator 10 that is used to interface defibrillator 10 to
  • Personal computer 6 which is interfaced to base station 2 via personal computer interface 140 , may be used to indicate operational characteristics of base station 2 , such as when base station 2 is uploading data, whether that upload was successful, a display of all uploaded data, etc.
  • External interface comprises a link to an external location, such as central repository 9 (see FIG. 1 ) or a personal computer, over which patient and defibrillation information is transmitted to the external source, and over which the external information is received from the external source.
  • External interface can comprise a modem link, a network connection, or the like, over which data may be transmitted to and from base station 2 .
  • all information stored in data logging memory block 57 above can be transmitted over defibrillator interface 134 and external interface 136 of base station 2 .
  • Controller 137 comprises a microprocessor or the like, which is capable of executing stored program instructions so as to control operation of base station 2 . Any type of processor may be employed, such as those described above with respect to defibrillator 10 .
  • Program instructions that can be executed by controller 137 are stored in program memory 131 .
  • Program memory 131 preferably comprises an EPROM, or the like, which can be reprogrammed with newly-received information or routines by controller 137 .
  • program memory 131 stores control module 140 , diagnostics module 142 , and patient parameters 144 , among other data and software modules.
  • Patient parameters 144 correspond to the patient parameters described above and, as noted, can be reprogrammed based on information, such as instructions, provided from an external source.
  • Control module 140 is executed so as to control transfer of information between defibrillator 10 , base station 2 , and central repository 9 .
  • Diagnostics module 142 comprises a module which performs various safety diagnostics on defibrillator 10 when defibrillator 10 is interfaced to base station 2 .
  • control module 140 may be executed to retrieve information relating to operational errors of defibrillator 10 from data logging memory block 57 of defibrillator 10 . Diagnostics module 142 may then use this information to target-test components and/or software on defibrillator 10 that may be responsible for these errors.
  • diagnostics module 142 may perform a complete safety diagnostic check on all aspects of defibrillator 10 each time defibrillator 10 is mated to base station 2 .
  • base station 2 is capable of performing diagnostics comprising an audio test to confirm that messages and tones output by defibrillator 10 are clearly audible; measurement tests to confirm that all measurements in defibrillator 10 needed to perform a defibrillation procedure are as expected; ECG analysis tests so as to confirm that defibrillator 10 is able to detect and differentiate various cardiac arrhythmias; defibrillation waveform tests so as to confirm that defibrillator 10 can generate and output a waveform appropriate for a patient having a particular impedance; patient leakage current tests so as to confirm that leakage current in defibrillator 10 is not above an acceptable level; over-dosage defibrillation tests so as to confirm that defibrillator 10 will automatically terminate an over-current defibrillation (e.g., I max ⁇ 30 A) and an over-time defibrillation (e.g., t max ⁇ 20 msec); under-dos
  • Diagnostics module 142 may also be executed to check proper transmission of patient parameters or other programming information from base station 2 to defibrillator 10 . More specifically, in operation, base station 2 receives new patient parameters over external interface 136 from central repository 9 , and transmits these patient parameters over defibrillator interface 134 to data logging memory block 57 in defibrillator 10 .
  • Diagnostics module 142 may then be executed to issue a request for the patient parameters stored in data logging memory block 57 over defibrillator interface 134 , to receive the patient parameters therefrom over defibrillator interface 134 , and to compare the patient parameters, including a checksum, to the same patient parameters, which are stored in program memory 131 , so as to verify valid receipt of the patient parameters by defibrillator 10 .
  • the results of the foregoing diagnostics may be transmitted back to defibrillator 10 in order to warn the user of the defects via, e.g., an LCD or a speaker.
  • the results of such diagnostics may also be transmitted to an external location via external interface 136 for analysis or the like.
  • Base station 2 also includes RAM 130 , out of which controller 137 executes program instructions stored in program memory 131 , and non-volatile memory 133 , which stores information received from defibrillator 10 and from an external source.
  • Non-volatile memory 133 can comprise an NVRAM, battery backed-up RAM, EPROM, or the like, and has a storage capacity which is the same as or greater than that of data logging memory block 57 on defibrillator 10 .
  • non-volatile memory 133 should be capable of storing any information downloaded to base station 2 from defibrillator 10 , including all or part of the information described above that is stored in data logging memory block 57 , i.e., abnormal heart activity of the patient, the patient's ECG before, during and after application of defibrillation energy, etc.
  • controller 137 upon connection of defibrillator 10 to defibrillator interface 134 , in preferred embodiments of the invention, controller 137 requests defibrillator 10 to upload data stored in data logging memory block 57 and, if the data has been uploaded successfully, controller 137 requests defibrillator 10 to reset all recorded data in data logging memory block 57 , and also to clear patient parameters stored therein to their default settings.
  • defibrillator 10 As noted above, it is possible to reprogram defibrillator 10 and/or base station 2 with information received from the external location. In fact, it is even possible to use information received from defibrillator 10 to affect such reprogramming. More specifically, information relating to patients using the same type of defibrillator, i.e., defibrillator 10 's type, is stored in central repository 9 . This information can be analyzed in order to test algorithms used in defibrillator 10 . One such algorithm that may be tested is an algorithm used by ECG analysis module 87 above to detect irregular heart activity. Once this algorithm is tested based on analysis results from plural defibrillators, it is possible to pinpoint errors in the algorithm, and to correct these errors.
  • ECG analysis module 87 an algorithm used by ECG analysis module 87 above to detect irregular heart activity.
  • the corrected algorithm can be transmitted back to base station 2 , as well as to a plurality of other base stations.
  • central repository may identify base station 2 as corresponding to defibrillator 10 based on defibrillator 10 's ID number.
  • Base station 2 can then reprogram defibrillator 10 using the corrected algorithm.
  • the invention provides a means by which to improve its performance based on information collected thereby.

Abstract

A method of treating a patient for ventricular tachycardia using a wearable defibrillator includes monitoring the patient for a predetermined condition via one or more electrodes on the defibrillator, sending a message to the patient in response to the predetermined condition, activating the defibrillator so that the defibrillator delivers defibrillation energy to the patient, and storing at least one of the results of the monitoring, sending and activating steps in a memory on the defibrillator. The method also includes downloading information stored in the memory of the defibrillator to a base station having an external interface, and transmitting the information downloaded from the memory of the base station to an external location via the external interface of the base station.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention is directed to a defibrillation device, and more particularly to a personal wearable pacer/cardioverter/defibrillator which monitors a patient's condition, detects shockable or paceable arrhythmias, determines consciousness, and, in the case that the patient is determined to be unconscious, administers therapy to the patient.
  • 2. Description of the Related Art
  • Cardiac arrhythmias, such as ventricular fibrillation and ventricular tachycardia, are electrical malfunctions of the heart, in which regular electrical impulses in the heart are replaced by irregular, rapid impulses. These irregular, rapid impulses can cause the heart to stop normal contractions, thereby interrupting blood flow therethrough. Such an interruption in blood flow can cause organ damage or even death.
  • Normal heart contractions, and thus normal blood flow, can be restored to a patient through application of electric shock. This procedure, which is called defibrillation, has proven highly effective at treating patients with cardiac arrhythmias, provided that it is administered within minutes of the arrhythmia. In the past, this was not always possible, since defibrillation units were large, and thus not easy to move, and could only be operated by an experienced clinician.
  • In response to the foregoing drawbacks of defibrillation units, implantable defibrillators were developed. Such defibrillators, however, also have several drawbacks. Specifically, use of a such a defibrillator requires surgery, thereby making their use inconvenient and even undesirable under certain circumstances. Moreover, implantable defibrillators are also costly, both in terms of the device itself and in terms of the cost of the surgery and subsequent treatments.
  • To address the foregoing drawbacks of implantable defibrillators, portable automatic external defibrillators (hereinafter “AEDs”) were developed. These defibrillators are typically used by trained emergency medical system personnel. The major shortcoming of these defibrillators is the delay between the onset of ventricular fibrillation and the administering of a first shock. It has been estimated that survival decreases by 10% for each minute that passes after the first minute of ventricular fibrillation.
  • Temporary high risk patients who do not reach an ICD have little protection against sudden cardiac arrest (“SDA”), particularly with the discovery that anti-arrhythmia drugs have been proven to be less effective than a placebo. Accordingly, there exists a need for a defibrillator, preferably a portable, wearable defibrillator, which addresses the foregoing drawbacks of conventional defibrillators.
  • SUMMARY OF THE INVENTION
  • The present invention addresses the foregoing needs. For example, according to one aspect, the present invention is a defibrillator for delivering defibrillation energy to a patient. The defibrillator includes at least one electrode which attaches to the patient for transmitting the defibrillation energy to the patient and for receiving patient information from the patient, and a plurality of capacitors which are switchable so as to alter characteristics of the defibrillation energy. According to the invention, a controller controls switching of the plurality of capacitors in accordance with the patient information received from the at least one electrode.
  • By monitoring the patient for patient information and switching the plurality of capacitors in accordance with the patient information, the foregoing aspect of the invention makes it possible to deliver, to the patient, defibrillation energy which is appropriate for that patient. As a result, the invention provides increased effectiveness in the treatment of cardiac arrhythmias.
  • According to another aspect, the present invention is a way in which to increase long-term wear of a sensing electrode, such as a traditional defibrillation electrode (i.e., electrodes having a conductive surface area of over 60 cm2), a low-surface-area electrode (i.e., electrodes having a conductive surface area of roughly 60 to 10 cm2), or segmented electrodes (i.e., electrodes having a conductive surface area of roughly 8 to 10 cm2). Specifically, the invention includes a variety of different techniques for increasing the amount of time that an electrode can be worn by a patient without resulting in substantial skin irritation or damage. For example, according to one embodiment, one or more electrodes are moved on the patient's body periodically. As another example, therapeutic or prophylactic agents are provided in or on the electrode. Also, the size, configuration, and materials used to construct the electrodes contribute the amount of time that the electrodes can be worn by a patient.
  • According to another aspect, the present invention is a defibrillator for delivering defibrillation energy to a patient. The defibrillator includes a signal generator for generating the defibrillation energy and a plurality of segmented electrodes each having a conductive area for transmitting the defibrillation energy to the patient. The plurality of segmented electrodes are divided into groups of two or more electrodes, each of the groups of electrodes having at least one line connected to the signal generator. Each of the lines has a length that is sufficient for each group of electrodes to be placed on the patient a predetermined distance away from others of the groups of electrodes. In the invention, the electrodes in at least one of the groups are spatially arranged to have an effective conductive area which is greater than a total combined conductive area of the electrodes in the group.
  • According to still another aspect, the invention is a segmented electrode device for use during ventricular fibrillation of a patient. The segmented electrode device includes a plurality of segmented electrodes each having a conductive area for transmitting defibrillation energy to the patient. The plurality of segmented electrodes are divided into groups of two or more electrodes, each of the groups of electrodes having at least one line connected to a signal generator. Each of the lines has a length that is sufficient for each group of electrodes to be placed on the patient a predetermined distance away from others of the groups of electrodes. In the invention, the electrodes in at least one of the groups are spatially arranged to have an effective conductive area which is greater than a total combined conductive area of the electrodes in the group.
  • By virtue of the electrode configurations in the foregoing two aspects of the invention, it is possible to simulate a larger conductive area using segmented electrodes. As a result, these aspects of the invention have an advantage over their conventional counterparts. That is, these aspects of the invention are able to provide defibrillation energy to the patient without using large electrodes. Thus, these aspects of the invention provide reduced skin irritation without a corresponding reduction in efficacy.
  • According to another aspect, the present invention is a defibrillator for delivering defibrillation energy to a patient. The defibrillator includes an external interface, over which patient information is transmitted to an external location, and a patient interface, over which the defibrillation energy is transmitted to the patient, and over which the patient information is received. A processor is included in the defibrillator, which analyzes the patient information received over the patient interface and which controls transmission of the defibrillation energy to the patient based on at least a first portion of the patient information. A memory stores at least a second portion of the patient information prior to transmission of the second portion of the patient information over the external interface.
  • By controlling transmission of the defibrillation energy to the patient based on at least a first portion of information received from the patient, the invention is able to tailor the defibrillation energy to the patient's needs. Moreover, because the invention includes a memory which stores at least a second portion of the patient information, and includes an external interface over which such information may be transmitted, the invention is capable of recording patient information, such as patient electrocardiogram (hereinafter “ECG”) information or the like for a period of time, and of transmitting that patient information to an external location, such as a central repository, hospital, doctor, etc.
  • According to another aspect, the present invention a defibrillator for delivering defibrillation energy to a patient. The defibrillator includes a processor and a patient interface, over which patient information is received from the patient and over which the defibrillation energy is transmitted to the patient. The processor operates in a normal mode and a low-power consumption mode, wherein, during the normal mode, the processor receives the patient information and controls transmission of the defibrillation energy in accordance with the patient information.
  • By having the processor operate in a low-power consumption mode, the invention reduces the amount of power consumed by the defibrillator. As a result, a power supply will last longer in the defibrillator of the present invention than in its conventional counterparts.
  • According to another aspect, the present invention is a defibrillation system which includes a defibrillator for delivering defibrillation energy to a patient and a base station connected to the defibrillator. The defibrillator includes a plurality of electrodes connected to the patient for transmitting defibrillation energy to the patient and for receiving patient information from the patient, and a memory which stores the patient information and defibrillation information, the defibrillation information relating to operation of the defibrillator. The defibrillator also includes a base station interface, over which the patient information and the defibrillation information are transmitted, and over which external information is received, and a controller for controlling when the defibrillation energy is transmitted to the patient based on the patient information and at least part of the external information. The base station includes a defibrillator interface which mates to the base station interface of the defibrillator and over which (i) the defibrillation information and the patient information is received from the memory of the defibrillator, and (ii) the external information is transmitted to the defibrillator. The base station also includes an external interface, over which the defibrillation information and the patient information is transmitted to an external location. and over which the external information is received from the external location.
  • By virtue of the foregoing arrangement, it is possible to transmit patient and defibrillation information from a defibrillator to a base station and from the base station to an external location, such as a central repository, doctor, hospital, etc. Moreover, the foregoing arrangement makes it possible to transmit external information from the base station to the defibrillator. This external information can be used, e.g., to reprogram the defibrillator, to alert a patient to a possible condition in the patient or the defibrillator, etc. In particularly preferred embodiments of the invention, a memory on the defibrillator containing patient and defibrillation information is removable, and can be transferred to the base station or to an external location for downloading.
  • According to another aspect, the present invention is a defibrillation system which includes a defibrillator for delivering predetermined defibrillation energy to a patient, an indicator which indicates operational defects in the defibrillator, and a base station which is interfaced to the defibrillator. The base station performs diagnostics on the defibrillator in order to detect operational defects in the defibrillator, and transmits results of the diagnostics to the defibrillator. The indicator provides an indication of such operational defects in the defibrillator when the base station detects operational defects in the defibrillator.
  • By alerting the patient to operational defects in the defibrillator while the defibrillator is still in the base station, this aspect of the invention is able to reduce the chances of malfunction following a cardiac arrhythmia. As a result, this aspect of the invention increases the patient's chances of surviving an arrhythmia.
  • According to another aspect, the present invention is a method of treating a patient for ventricular tachycardia, bradycardia, ventricular fibrillation, or other treatable rhythm using a pacer/converter/defibrillator in accordance with the present invention (hereinafter referred to solely as a “defibrillator”). The method includes monitoring the patient for a predetermined condition via one or more electrodes on the defibrillator, sending a message to the patient in response to the predetermined condition, activating the defibrillator so that the defibrillator delivers defibrillation energy to the patient, and storing at least one of the results of the monitoring, sending and activating steps in a memory on the defibrillator. The method also includes downloading information stored in the memory of the defibrillator to a base station having an external interface, and transmitting the information downloaded from the memory of the base station to an external location via the external interface of the base station.
  • By sending a message to the patient in response to the predetermined condition, by processing the patient's response, and by other consciousness detection methods, the present invention is able to reduce the chances of defibrillation energy being delivered to the patient while the patient is still conscious. Moreover, the foregoing aspect of the invention is able to store at least some information relating to the arrhythmia and the patient's response thereto, and to download that information to a base station, from whence the information may be transmitted to an external location for analysis or the like.
  • In this regard, according to another aspect, the present invention is a base station for use with a defibrillator. The base station includes a defibrillator interface over which information is exchanged with the defibrillator, an external interface over which information is exchanged with an external entity, and a controller. The controller (i) receives patient information and defibrillation information from the defibrillator, (ii) transmits the patient information and defibrillation information to the external entity, (iii) receives defibrillator programming information from the external entity, (iv) programs the defibrillator in accordance with the defibrillator programming information, (v) performs diagnostics on the defibrillator, and (vi) transmits results of the diagnostics to at least one of the defibrillator and the external entity.
  • Thus, the base station of the present invention may both act as an interface between a defibrillator and an external entity and provide a patient with a means to ensure proper operation of the defibrillator.
  • According to another aspect, the present invention is a method for reprogramming a defibrillator based on a central database of information relating to patients that use a type of defibrillator. The method includes collecting, in the central database, information relating to a plurality of patients that use the type of defibrillator, analyzing the information stored in the central database so as to test an algorithm for detecting irregular heart activity, and correcting the algorithm for detecting irregular heart activity based on a result of the analyzing process. The method also includes transmitting a corrected algorithm to a plurality of base stations corresponding to the plurality of patients, and reprogramming a defibrillator in each of the base stations using the corrected algorithm.
  • By providing a way in which to test algorithms for detecting irregular heart activity, a way in which to correct such algorithms, and a way in which to reprogram a defibrillator with a corrected algorithm, the present invention is able to improve its performance over time.
  • In preferred embodiments, the invention features a long-term cardiac monitoring and defibrillation system that is wearable by a patient. The system includes at least two electrode arrays electrically connected to a portable defibrillator. The electrode arrays are spatially separated and adhered to portions of the patient's skin in the thoracic window area for an extended period of time, such that electrical activity of the heart can be monitored and effective defibrillation and/or pacing impulses can be delivered to the patient's heart. The electrode arrays comprise plural electrodes which are capable of sensing the patient's heart condition by detecting the electrical activity of the heart, and of delivering defibrillation or pacing impulses to the patient's heart when required.
  • In another aspect, the cardiac monitoring and defibrillation system of the invention comprises features which enhances the long-term wearability of the system. These features include use of a low-current defibrillation waveform and electrodes having a composition and/or geometric design adapted to minimize the area of the electrodes. In this regard, it has been determined that use of a lower current than that typically used for defibrillation can provided effective defibrillation, particularly when coupled with electrode arrays having electrode surface areas which are significantly smaller than the surface area of conventional defibrillation electrodes. The use of reduced area electrodes minimizes irritation to the skin. These features also permit higher impedance materials to be used in the electrodes, which is also less irritating to the patient's skin.
  • In one aspect, the electrode array comprises multiple spatially separated electrodes separated by non-conductive material, passive material or free space. The use of multiple smaller electrodes minimizes the electrode area in contact with the skin needed to deliver an effective defibrillation impulse to the heart, thereby reducing the area of skin in contact with electrode materials.
  • Another aspect of the invention features a long term cardiac monitoring and defibrillation system and method that ameliorates, reduces or prevents irritation of the patient's skin caused by delivery of defibrillation impulses and/or by the constant contact of the electrodes with the skin. According to this aspect, skin that becomes irritated from contact with the electrodes is permitted to recover by periodically detaching the electrode arrays and moving or rotating them by a predetermined amount, and re-affixing either the same or new electrode arrays to different portions of the skin within the patient's thoracic window area. This moving or rotating allows substantially different sections of the patient's skin to be in contact with the electrodes so that portions of the skin previously in contact with the electrodes are allowed to recover.
  • The electrode arrays of the present invention preferably are designed for long term patient wearability. To this end, the electrode arrays include a therapeutic or prophylactic material which ameliorates, reduces or prevents irritation to the patient's skin in contact with the electrode arrays. Therapeutic or prophylactic materials may include, for example, wound healing agents, moisturizers, emollients, protective agents or antibacterial agents. Each electrode array comprises electrically conductive areas (electrodes) and electrically non-conductive areas (passive areas). The electrodes are capable of sensing the electrical activity of the heart, delivering electrical impulses (cardio and defibrillation) to the heart, as well as tactile stimulation and pacing signals.
  • The electrode arrays preferably include an adhesive portion for adhering the array directly to the skin. However, external means for retaining the electrode arrays in electrical proximity to the skin may be used, such as a vest or a band. Long term wearability of the electrode arrays may be enhanced by selecting materials for use in the electrode array which minimize irritation to the skin in contact with the array. Such materials may include, for example, adhesives and backing materials having a high moisture vapor transmission rate and conductive materials for use in the electrodes having low salt (ionic) concentrations or comprised of silicone or other adhesive materials that are conductive by means of additives.
  • In another embodiment, long term wear can be enhanced and skin irritation reduced by including in the system means for monitoring, and adjusting as necessary, the environment at the interface between the electrode array and the skin. Such means may include, for example, means for monitoring and adjusting the {PH at the skin-electrode interface in order to maintain a neutral non-irritating interface; and means for controlling the ion flow at the interface between the electrodes and the skin. In the latter embodiment, ion flow would be reduced to a minimum except for the short time during which a defibrillating shock is being delivered, at which time the ion flow would temporarily increase to provide a conductive path for the defibrillation impulse.
  • This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof in connection with the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a defibrillation system according to the present invention in a configuration for performing diagnostics and data uploading.
  • FIG. 2 shows the defibrillation system according to the present invention during use in connection with monitoring and treating a patient.
  • FIG. 3 shows an electrode harness used with the defibrillation system of FIGS. 1 and 2.
  • FIG. 4 shows a view of a sensing electrode and applicator used in the electrode harness of FIG. 3.
  • FIG. 5 shows an application tray used to apply sensing electrodes to a patient's body.
  • FIG. 6 shows defibrillation energy having a bi-phasic waveform which is generated by the defibrillation system of the present invention.
  • FIG. 7A shows a front view of a wearable defibrillator used in the system shown in FIGS. 1 and 2.
  • FIG. 7B is an exploded view showing the mechanical construction of the wearable defibrillator of the present invention.
  • FIG. 8 shows a functional block diagram of the defibrillator shown in FIG. 7A.
  • FIG. 9 shows a “221” capacitor configuration.
  • FIG. 10 shows a “2111” capacitor configuration.
  • FIG. 11 shows a “11111” capacitor configuration.
  • FIG. 12 is a flow diagram depicting general operation of the wearable defibrillator of FIG. 7A.
  • FIG. 13 is a block diagram of electrical circuitry used in the preferred embodiment of the present invention to implement the functions shown in FIG. 8.
  • FIG. 14 shows capacitor switching circuitry used in the preferred embodiment of the present invention.
  • FIG. 15 is a block diagram of a base station used in the system of FIGS. 1 and 2.
  • FIG. 16 is a block diagram showing a preferred algorithm used by the present invention to perform ECG analysis on received patient information.
  • FIG. 17 is an exploded view of the primary power supply used in the defibrillator of the present invention.
  • FIG. 18 shows a view of an alternative electrode and applicator configuration that may be used in the present invention that uses selectively applied adhesives in the applicators.
  • FIG. 19 is a view of an alternative electrode configuration that may be used in the present invention.
  • FIGS. 20A and 20B are views of an alternative electrode configuration that may be used in the present invention.
  • FIGS. 21A and 21B are views of an alternative electrode configuration that may be used in the present invention.
  • FIG. 22 shows a view of an alternative electrode configuration that may be used in the present invention.
  • FIG. 23 shows a view of an alternative electrode configuration that may be used in the present invention.
  • FIG. 24 shows an embodiment of an electrode in which an adhesive surface is covered with a pull-tab covering to allow the patient to place the electrode on the patient's skin and then to pull the tab to expose the adhesive surface.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is directed to a defibrillation system for use in treating patients who have suffered from cardiac arrhythmias. A representative embodiment of the invention is shown in FIGS. 1 and 2. As shown in these figures, defibrillation system 1 is comprised of base station 2, electrode harness 4, personal computer 6, patient simulator 7, central repository 9, and wearable defibrillator 10. A brief overview of the operation of each of these components is provided below, followed by detailed descriptions thereof.
  • Defibrillator 10 is capable of interfacing either to base station 2, as shown in FIG. 1, or to electrode harness 4, as shown in FIG. 2. To this end, both electrode harness 4 and base station 2 include physical connector identifiers at their respective interfaces to defibrillator 10. By reading these connector identifiers, defibrillator 10 is able to determine both the type of interfaced device (i.e., a base station or electrode harness) and the identity of a particular interfaced device (i.e., one electrode harness as opposed to another), and then to react accordingly
  • Electrode harness 4 includes one or more sensing electrodes 31 which interface to patient 12, and which are used both to monitor the patient and to transmit defibrillation energy to the patient. In this regard, although defibrillator 10 may be utilized with non-segmented electrodes having a low surface area or with traditional defibrillation electrodes, sensing electrodes 31 comprise segmented electrodes since these require the most description. Defibrillation energy, which can comprise an electric signal having a bi-phasic waveform, a mono-phasic waveform, or a truncated exponential waveform, is generated by defibrillator 10 in the event that predetermined conditions have been detected in the patient. These predetermined conditions include whether the patient has suffered a cardiac arrhythmia, whether the patient is conscious, as well as other conditions, such as patient impedance, that are monitored by sensing electrodes 31.
  • Defibrillator 10 is also capable of providing pacing impulses and tactile stimulation signals to the patient via electrode harness 4. The tactile stimulation signals alert the patient to abnormal cardiac activity in the patient, whereas the pacing impulses stimulate contractions of the patient's heart. While electrode harness 4 is being worn by the patient, data may be transmitted directly from defibrillator 10 to personal computer 201 via non-contact interface 16.
  • When defibrillator 10 is interfaced to base station 2, as shown in FIG. 1, base station 2 is able to perform diagnostics on the defibrillator, to reprogram the defibrillator, and to retrieve data stored in the defibrillator. Such data can include an operational history of the defibrillator, information concerning the patient's cardiac activity, and the like. All or some of this retrieved data may be transmitted, via personal computer interface 14, to personal computer 6 for display and/or processing.
  • Data retrieved by base station 2 from defibrillator 10 may be transmitted to central repository 9 via external data link 17. Central repository 9 preferably stores this data, together with patient and defibrillation information corresponding to a plurality of other patients, all of whom use the same type of defibrillator. A personal computer 19 is in communication with central repository 9. This personal computer may be used to analyze the patient and defibrillation information received from defibrillator 10 in view of corresponding information from the plurality of other patients, and, if desired, to provide the results of this analysis back to base station 2.
  • As shown in FIG. 1, defibrillator 10 also includes a link to patient simulator 7. Patient simulator 7 comprises test equipment which simulates bodily functions and characteristics of a patient, including cardiac activity and thoracic impedance. During testing, defibrillator 10 monitors patient simulator 7 in much the same way that defibrillator 10 monitors a patient and, in a case that predetermined conditions have been detected in patient simulator 7, transmits defibrillation energy to patient simulator 7. To aid in the testing process, patient simulator 7 also simulates patient responses to the defibrillation energy provided by defibrillator 10 and provides response information back to defibrillator 10. This response information may be transmitted to, and analyzed by, base station 2, and then provided to any one or more of central repository 9, computer 6, or defibrillator 10.
  • Electrode Harness
  • FIG. 3 shows a close-up view of electrode harness 4. Electrode harness 4 is preferably disposable and, in preferred embodiments of the invention, can be worn for approximately 2 to 7 days or longer for a cumulative period of 1 week to 12 months. To this end, electrode harness may include a means for defibrillator 10 to determine how long electrode harness 4 has been connected thereto. For example, in one embodiment of the invention, electrode harness 4 includes an identification resistor (not shown) as its physical connector identifier. Defibrillator 10 measures the resistance across this resistor and then starts a countdown, after which defibrillator 10 notifies the patient that it is time to change the electrode harness. In this regard, each electrode harness may include a different, unique resistance associated therewith. Defibrillator 10 may measure this resistance by passing a current therethrough and, in this manner, determine the identity of an interfaced electrode harness.
  • As shown in FIG. 3, electrode harness 4 includes power supply 20, connector 21, non-electrically conductive padding 22 and 24, electrical leads (or “lines”) 26, 27, 29 and 30, and sensing electrodes 31. Sensing electrodes 31 comprise the defibrillator's interface to the patient. Specifically, sensing electrodes 31 attach to the patient so as to monitor the patient, transmit tactile stimulation energy, and to transmit defibrillation energy to the patient under appropriate circumstances. Each electrode may comprise a single layer of conductive material. In preferred embodiments of the invention, however, each electrode is multi-layered as shown, for example, in the cross-sectional view of electrode 31 a in FIG. 4. In the example shown in FIG. 4, electrode 31 a includes three layers, namely top cover assembly 32, conductor/wire assembly 33, and skin interface 32
  • Skin interface 32 contacts directly with the patient's skin and comprises a layer of material, such as a hydrogel, that is capable of transmitting defibrillation energy to the patient without causing substantial irritation or harm to the skin. For larger patients, or hypoallergenic patients, conductive screens or meshes can be used in addition to or in place of hydrogel. These screens or meshes may be used in combination with a cream, such as a hydrating cream or a skin healing cream. Such creams also may be applied to the patient's skin before attaching the electrodes thereto.
  • Skin interface 32 contacts to conductor/wire assembly 34, which can be either substantially coextensive with, or smaller than, skin interface 32. Conductor/wire assembly 34 includes conductive layer 34 a, wire connection 34 b, wire 34 c, and sealing layer 34 d. Conductive layer 34 a preferably comprises a silver/silver chloride polymer base ink silk-screened onto a layer of Tyvek (used as an insulator and as a carrier) which is die-cut and folded. A wire with a welded washer is then attached to conductive layer 34 a by means of a washer (tin plated nickel) and eyelet (a hollow rivet that is crimped in order to hold the assembly together). Insulating tape is then wrapped around this connection in order to reduce corrosion.
  • As an alternative to the silver/silver chloride formulation, conductor 34 a may comprise conductive metal such as tin, silver, gold, copper, salts or oxides of these conductive metals, carbon, a substrate which has been coated with a conductive compound (e.g., polytetrafluoroethylene), an ink silkscreened on a carrier, metallized cloth, solid metal or carbon grid, foil, plate, etc. Conductor 34 preferably has a thickness which is sufficient to transmit at least ten successive defibrillation energy signals having peak amplitudes of 23 amperes for a duration of 10.75 msec each.
  • Top cover assembly 33 includes foam insulating layer 33 a and wearable adhesive layer 37. Adhesive 37, which can comprise an adhesive material fixed to a backing, such as tape or the like, is disposed adjacent to conductor 34 and/or skin interface 32 and is used to attach electrode 31 a to the patient's skin. In preferred embodiments of the invention, adhesive 37 may also be temperature sensitive, meaning that adhesion thereof increases or decreases in response to temperature variations. Adhesive 37 is preferably non-conductive.
  • Adhesive 37 should also be adapted for long-term wear. To this end, an adhesive having a high moisture vapor transmission rate (“MVTR”) of approximately 300 to 1500 g/m2/day is suitable for use with the invention. By virtue of this feature of the invention, the adhesive is made breathable, meaning that it permits air to be transmitted therethrough to the patient's skin. This increases the amount of time an electrode may be worn without causing substantial harm to the patient's skin. Adhesive 37 should also be sufficient to adhere to the patient's body in the face of normal movements or muscle contractions and in the face of normal water exposure such as might occur during bathing or sweating. However, adhesive 37 should not be so strong as to cause substantial discomfort during removal of an electrode. To this end, adhesive 37 preferably has a peel strength of 500 g/cm or less.
  • Also shown in FIG. 4 are applicator 35 and release liner assembly 36. Applicator 35 includes two layers—a bottom layer having cut-outs 35 a and a top layer having an adhesive 35 b. Cut-outs 35 a limit the amount of adhesive that contacts the top side of the electrode. Release liner assembly 36 includes cut-out 36 a on upper layer 36 b (closest to the hydrogel) which causes only a portion of urethane bottom layer 36 c to come into contact with upper layer 36 b. This configuration of release liner assembly 36, particularly cut-out 36 a, allows bottom layer 36 c to be removed first from an electrode, followed by upper-layer 36 b, without causing any separation of the electrode from the applicator assembly. Moreover, cut-outs 35 a on applicator 35 b facilitate removal of applicator 35 b from top cover assembly 35 without causing harm to the electrode.
  • An alternative electrode configuration to that shown in FIG. 4 is shown in FIG. 18. FIGS. 19 to 24 show additional alternative electrode configurations. FIG. 19 shows a finger-patterned electrode 200 comprising a conductive adhesive polymer layer 220, a carbon sheet 240, and a medical adhesive carrier 260, covering and extending beyond the edges of the polymer layer 220 and the carbon sheet 240. In other embodiments, a metal sheet or a metal fabric may replace carbon sheet 220.
  • FIG. 20A and FIG. 20B show a rectangular electrode 300 comprising metal foil sheet 320, pressure pad backing 340 and medical adhesive carrier 360, covering and extending beyond the edges of the metal foil sheet 320 and the pressure pad backing 340. The front surface of metal foil sheet 320 comes in contact with patient's skin 380 and pressure pad backing 340 contacts the back surface of metal foil sheet 320 and keeps metal foil sheet 320 in close contact with skin 380. In this regard, a pressure pad is a unit which can be deformed by pressure applied in the direction perpendicular to the skin. By maintaining a thickness that is less than a free dimension, pressure in the pad is assured. Medical adhesive carrier 360 contacts pressure pad backing 340. In another embodiment, a metal fabric replaces metal foil sheet 320.
  • FIGS. 21A and 21B show rectangular electrode 400 comprising metal foil sheet 420, pressure pad backing 440, stiffener 460, and medical adhesive carrier 480. The front surface of metal foil 420 is in contact with skin 490; the front surface of pressure pad 440 is in contact with the back surface of metal foil 420; the front surface of stiffener 460 is in contact with the back surface of pressure pad 440; and medical adhesive carrier 480 is in contact with stiffener 460 and covers and extends beyond the edges of all other layers (420, 440, and 460). Stiffener 460 comprises a material which will resist bending, and stiffener 460 is used to transmit force into the electrode area. In a preferred embodiment, stiffener 460 comprises a thin plastic material with an area that is slightly larger than areas of metal foil sheet 420 and pressure pad backing 440. In another embodiment, a metal fabric replaces metal foil sheet 420.
  • FIG. 22 shows electrode 500 with alternating strips of active areas 520 and space 540 for breathing. Each active area 520 comprises a metal foil sheet and a pressure pad backing. The strips of active areas 520 are in contact with stiffener 560, and stiffener 560 is in contact with medical adhesive carrier 580. In another embodiment, a metal fabric replaces the metal foil in each active area 520. In yet other embodiments, each active area comprises a metal foil sheet or a metal fabric, a pressure pad backing and a stiffener. The back surfaces of the active areas are in contact with a medical adhesive carrier.
  • FIG. 23 show electrode 600 with multiple small square-shaped active areas 620. As in the alternative strip configuration, active areas 620 are spaced for breathing. Each active area 620 comprises a metal foil and a pressure pad backing. The back surfaces of active areas 620 are in contact with the front surface of stiffener 640, and medical adhesive carrier 660 is in contact with the back surface of stiffener 640. In another embodiment, a metal fabric replaces the metal foil sheet. In yet other embodiments, each active area comprises a metal foil sheet or a metal fabric, a pressure pad backing and a stiffener. Back surfaces of the active areas are in contact with a medical adhesive carrier.
  • FIG. 24 shows an embodiment of the electrode in which the adhesive surface is covered with a pull-tab covering to allow the patient to place the electrode on the skin and then pull the tab to expose the adhesive surface and maintain the electrode in place.
  • A conductive portion of each sensing electrode, which in this case are segmented electrodes, preferably has a surface area that is roughly 8 to 10 cm2; although other dimensions may be used. The present invention, however, takes advantage of “spreading resistance” in the patient's bodily tissue so as to permit this reduction in the surface area of the conductive portion each electrode. Spreading resistance is a property of human tissue which causes defibrillation energy (or any other electric signal for that matter) applied to the patient's skin to spread outward over the skin and downward and outward through the patient's tissue. In the context of the present invention, once current from the defibrillation energy is applied from an electrode to the patient's skin, the current diffuses beyond the electrode and continues to diffuse as the current moves into the underlying tissue. As a result of this diffusion, the density of the current decreases with increasing distance from the perimeter of the electrode. The present invention compensates for this by placing sensing electrodes 31 in a geometric pattern such that the interaction between diffusing current from each sensing electrode results in an accumulation of spreading current in areas between sensing electrodes 31. The result is that an effective area is created in which current densities in the path between groups of sensing electrodes (e.g., sensing electrodes 31 a, 31 b and 31 c shown in FIG. 3) are similar to that of a large electrode having a perimeter equal to an outer perimeter of all of the sensing electrodes in the group. A similar effect may be achieved through random placement of the electrodes on the patient.
  • Thus, by spatially arranging the sensing electrodes to take advantage of human tissue's spreading resistance, the present invention is able to create a “virtual” conductive surface using relatively small electrodes. The virtual conductive surface can be significantly larger than a combined conducive area of the individual sensing electrodes. This also contributes to a lower impedance for a combined surface area of the sensing electrodes than would be the case for a continuous electrode having a similar surface area.
  • Each of sensing electrodes 31 may be shaped so that the conductive portion thereof has a perimeter which is greater than a circumference corresponding to a radius of the electrode. That is, since charge tends to migrate to the perimeter of an electrode, the present invention attempts to maximize the perimeter of each electrode, particularly conductive surfaces thereof, thereby increasing the amplitude of the defibrillation energy that the electrode can handle without causing substantial burns to the patient. Examples of electrodes with such a perimeter include star-shaped electrodes, square electrodes, swirled-shaped electrodes, etc. It is, however, noted that conventional circular electrodes may be used in conjunction with the present invention as well.
  • To increase operational efficiency of sensing electrodes 31, sensing electrodes 31 should be placed within a “thoracic window” on the patient's body. A thoracic window is defined as an area of the patient's body which is suitable for placing electrodes so as to optimize delivery of defibrillation energy to the patient's heart, and is described in an article by Geddes et al. the American Heart Journal, volume 94, page 67 (1977), the contents of which are hereby incorporated by reference into the subject application as if set forth herein in full. In this regard, there are two currently defined thoracic windows on a patient. These comprise the anterior-posterior thoracic window and the apex-sternum thoracic window. In the apex-sternum thoracic window, electrodes are typically placed underneath the patient's left rib cage and over the patients right shoulder area. In the anterior-posterior thoracic window, electrodes are typically placed on a patient's lower left back and left front. Preferably, the sensing electrodes are placeable over the thoracic window either randomly or in a geometric pattern which is sufficient to cover a large enough area of the patient's myocardium to cause adequate defibrillation upon application of defibrillation energy.
  • Electrodes 31 can be attached or placed in contact with the skin by various methods. Proper defibrillation requires that the electrodes be in close contact with the patient's skin, in addition to being placed in an appropriate location within the patient's thoracic window area. Preferably, the electrode are attached to the patient's skin using an adhesive thereon, as described in more detail below. However, other attachment means are possible. For example, a thoracic wrap made out of cotton or spandex can be used to assure proper placement of the electrodes and good contact between the electrodes an the skin.
  • In order to ensure proper current accumulation in areas between the sensing electrodes, each sensing electrode in a group (e.g., the group of electrodes 31 a, 31 b and 31 c) should be placed within a predetermined distance of other sensing electrodes in the group. In preferred embodiments of the invention, each sensing electrode in each group of electrodes is separated from other sensing electrodes in that same group by between 0.5 and 3 times an effective diameter of each electrode, where the effective diameter corresponds to the farthest distance between two points on the electrode. To ensure proper separation among the sensing electrodes, electrode harness 4 includes non-electrically conductive pads 22 and 24 (i.e., the passive areas), on which groups of sensing electrodes can be mounted in predetermined geometric configurations. For example, as shown in FIG. 3, sensing electrodes 31 a, 31 b and 31 c (i.e., the active areas) are mounted on pad 22 in a triangular configuration, while sensing electrodes 31 d, 31 e, 31 f and 31 g are mounted on pad 24 in a rectangular configuration. Although FIG. 3 shows only two geometric arrangements for sensing electrodes 31, the invention is not limited to these. Rather, any geometric arrangement may be utilized, including, but not limited to, a checkerboard pattern, swirl patterns, interlocking patterns, star patterns, crescent patterns, E-shaped patterns, F-shaped patterns, L-shaped patterns, X-shaped patterns, H-shaped patterns, O-shaped patterns, C-shaped patterns, etc. Of course, the electrodes may be arranged in a random manner as well.
  • Preferably, pads 22 and 24 are flexible so as to facilitate placement of sensing electrodes 31 on contours of the patient's body. It is noted, however, that pads 22 and 24 need not be flexible. Rather, an adhesive tape can be used in place of pads 22 and 24 or, alternatively, in addition to pads 22 and 24. As still another alternative, pads 22 and 24 can be used selectively in electrode harness 4, meaning that pads can be used to mount some of sensing electrodes 31 and not others. In fact, this is the case in the representative embodiment of the invention depicted in FIG. 3. That is, in the embodiment shown in FIG. 3, segmented electrodes is not mounted on a pad, but rather “floats”, meaning that it can be mounted anywhere on a patient's body, constrained, of course, by the length of its electrical lead 30. As described below, electrode 31 h does not provide the defibrillation energy to the patient, but rather is used only to monitor the patient's ECG. However, to provide greater flexibility in electrode placement, in alternative embodiments of the invention, all electrodes may float in the same manner as sensing electrode 31 h. In the case that all or some electrodes float, the invention may include an applicator tray, such as tray 39 shown in FIG. 5, having cups 40 which arrange the electrodes in geometric pattens so as to ensure accurate placement within the patient's thoracic window. That is, the applicator tray ensures that the electrodes will be spatially arranged in the manner described above so as to take advantage of human tissue's spreading effect.
  • As noted above, electrodes 31 may include a hydrogel or other conductive material on a surface thereof which comes into contact with the patient's skin, i.e., on the skin interface of the electrode. The hydrogel is electrically conductive, thereby permitting transmission of the defibrillation energy to the patient, but has a relatively low ion concentration that is low enough so as to not to cause substantial skin irritation. In preferred embodiments, the conductivity of the hydrogel is variable based, e.g., on temperature, etc. In addition, the hydrogel preferably has a relatively high MVTR, thereby making the hydrogel breathable. As was the case above with respect to adhesive 37, this reduces skin irritation caused by wearing the electrodes, and thus increases the amount of time that the electrodes can be worn.
  • Hydrogels or other conductive materials used with conventional ECG electrodes may be used in the present invention, since the deleterious effects of such materials will be countered by the present invention for reasons described both above and below. In addition, conductive materials which meet the above qualifications include electrolytes, such as sodium chloride (NaCl), potassium chloride (KCl), or lithium chloride (LiCl). Currently preferred hydrogel materials include hydrophilic polymers, such as karaya gum, gum acacia, locust bean gum, polysaccharide gum, modified polysaccharide, or polyacrylamide. A hydrating agent, such as water or polyhydric alcohol (e.g., glycerine, propylene glycol, triethylene glycol, glycerol, etc.) may also be included in the conductive material. In these cases, water is typically present at a concentration from about 1% to 60% by weight, whereas polyhydric alcohol is typically present at a concentration from about 10% to 50% by weight.
  • As noted above, the electrode interface to the skin may include, instead of or in addition to a hydrogel, a mesh, screen, or other porous material. These elements are conductive and, due to their porous nature, allow air to pass therethrough to the patient's skin. As was the case with the hydrogel described above, this feature of the invention provides for prolonged wearability of the electrodes.
  • The hydrogel on each sensing electrode may also include a therapeutic or prophylactic agent which reduces skin irritation caused by the electrode, and/or which promotes healing of wounds or skin irritation that may be caused by the sensing electrodes. Such an agent may be applied directly to each electrode, or capsules which release the agent in response to the defibrillation energy may be applied to the electrode. A therapeutic or prophylactic agent may also be included on each of pads 22 and 24 in order to promote skin health. Agents which render the patient's skin porous, such as keratolytic agents (e.g., salicylic acid) or rubefacient (e.g., methyl salicylate) may be included on each electrode or pad so as to facilitate transmission of the therapeutic or prophylactic agent into the skin and/or to permit use of low water content hydrogels.
  • Examples of therapeutic or prophylactic agents that may be used with the present invention include moisturizers, emollients, bactericides, mold inhibitors, stabilizers or buffers to maintain a neutral PH and to reduce corrosion and skin sensitivity, gelation inhibitors (e.g., Mg(OAc)2), healing agents, hormonal agents (e.g., hydrocortisone (steroids)), protective agents, etc. Examples of acceptable bactericides and mold inhibitors include antibactierals, antiseptics, antifungals, boric acid, bacitracin, acriflavine, formaldehyde, gentian violet, mercuric sulfide, mercurochrome, neomycin, and iodine. Examples of acceptable stabilizers include oligo or polybasic organic acids and their salts (including chelating agents), polyethers, tartaric acid, citric acid, and n-alkyl sulfonate, where n is from 8 to 16 carbon atoms. Examples of acceptable healing agents include allantoin, peruvian balsam, vitamin A, and vitamin B. Examples of acceptable protective agents include benzoin, charcoal, talc, zinc oxide, and aloe vera. These therapeutic agents may be used both prior to use or after use to promote healing.
  • The amount of therapeutic or prophylactic material used corresponds to an amount effective to reduce irritation, or to promote recovery of irritated skin. The therapeutic or prophylactic agent may be in any form useful to achieve the intended purpose, including liquid solutions, creams, gels, solids, granules, powders or any other form, including microcapsules. As noted above, the therapeutic or prophylactic agent may be included as part of the electrode, e.g., incorporated in the conductive areas of the electrode, or incorporated in a passive area of the electrode array. Alternatively, the electrode array may comprise three areas: electrode areas, passive areas and areas containing the therapeutic or prophylactic material. In addition, the therapeutic or prophylactic material may be applied to the skin prior to attaching the electrodes (pre-treatment), or after the electrodes have been removed (post-treatment). In another embodiment, skin irritation may be reduced by including in the electrode array means for monitoring, controlling and/or correcting the skin environment in contact with the electrode array. For example, it is possible to monitor the electrode-to-skin PH, and adjust the PH accordingly. Along these lines, the electrodes may comprise a multi-layered matrix for controlling ion flow between the skin and the electrode.
  • In alternative embodiments of the invention, rather than using the sensing electrode configuration described above, i.e., segmented electrodes, non-segmented electrodes having conductive portions of less than 60 cm2 and, in some cases, even to less than 30 cm2 may be utilized. In this regard, traditionally, it was necessary for conductive portions of defibrillation electrodes to have a surface area of 60 cm2 to 80 cm2 in order to deliver a sufficient defibrillation energy to the patient. The present invention, however, takes advantage of the “spreading resistance” effect described above so as to permit reduction in the surface area of each electrode. Of course, the features described herein with respect to sensing electrodes 31 may also be used in conjunction with the non-segmented electrodes described herein. These features include, but are not limited to, using hydrogels having low ion concentrations, therapeutic and prophylactic agents, and/or high MVTRs, effecting electrode movement relative to the patient so as to reduce the deleterious effects of electrode-to-skin contact, etc., utilizing an adhesive designed for long-term wear, etc. As well, the following monitoring and energy-transmitting functions described with respect to segmented electrodes may also be used in conjunction with the non-segmented electrodes described herein.
  • In still other embodiments of the invention, traditional non-segmented defibrillation electrodes, i.e., electrodes having a surface area of 60 cm2 to 80 cm2, may be used in conjunction with all aspects of the invention described herein, particularly those aspects of the invention that provide for long term (i.e., greater than two days) wearability of the electrodes. In this regard, these aspects include, but are not limited to, using the electrodes in conjunction with hydrogels having low ion concentrations, therapeutic and prophylactic agents, and/or high MVTRs, effecting electrode movement relative to the patient so as to reduce the deleterious effects of electrode-to-skin contact, etc., utilizing an adhesive designed for long-term wear, etc. As well, the following monitoring and energy-transmitting functions described with respect to sensing electrodes 31 may also be used in conjunction with the traditional non-segmented electrodes described herein.
  • It is noted that defibrillator 10 may also be used with any type of commercially-available subcutaneous electrode as well. It is still further noted that the invention may include combinations of two or more of the foregoing types of electrodes.
  • Referring back to FIG. 3, in electrode harness 4, each group of electrodes and/or single electrode has at least one electrical lead mechanically connected between its lead interface and power supply 20. The leads can be standard cables comprising electrically conductive wires sheathed in a flexible, protective material, e.g., a flexible plastic material. The wires used in the leads preferably are able to carry repeated defibrillation impulses of at least 20 A for a 20 millisecond duration, and preferably have adequate insulation qualities satisfying a high potential test for about 1750 V. In addition, the cables preferably are flexible, durable, soft and comfortable while having sturdy insulation.
  • An exploded view of power supply 20 is shown in FIG. 17. As shown in FIG. 17, power supply 20 includes base 180, top 181 and, sandwiched therebetween, batteries 184. Power supply 20 is also comprised of connector 21, which includes the physical connector identifier for electrode harness 4, and which interfaces power supply 20 and electrical leads 26, 27, 29 and 30 to defibrillator 10. To this end, connector 21 includes socket 186 which receives the electrical leads via holes 185. Socket 186 fits within top 181 such that pin 188 on top 181 contacts with hole 190 on socket 186. Socket 186 is shielded so as to protect signals being transmitted therethrough from batteries 184. This shielding is tied to the “floating” ground in the battery and also to shields from the leads to the electrodes.
  • In preferred embodiments of the invention, each electrical lead is non-removably connected to connector 21 on power supply 20, meaning that each lead is hard-wired to connector 21 or is otherwise connected to connector 21 in a way in which removal of the electrical leads from connector 21 will damage either one or both of these components. It is noted, however, that alternative embodiments of the invention are possible, in which each lead is removably connected to connector 21.
  • Power supply 20 comprises the primary power cell for wearable defibrillator 10. To this end, batteries 184 comprise non-rechargeable lithium batteries (e.g., DL123A, size 2/3 A) which are capable of providing 2 to 7 days of normal operation of defibrillator 10, including delivering at least six defibrillation energy (i.e., shocks) having peak currents of 23 A to the patient. In this regard, the working voltage of power supply 20 is preferably 3.3 to 6.6 V, with the maximum output being 6.6 V.
  • In preferred embodiments, power supply 20 is made water-resistant by sealing power supply 20 within a silicone membrane (not shown) or the like. In this regard, power supply 20 may be made water-resistant by a number of other means as well. For example, it is possible to use a variety of other insulating materials in place of silicone. By sealing power supply 20 in this manner, it is possible to reduce the risk of unintended electric shock during activities, such as showering or the like.
  • Each electrical lead on electrode harness 4 has a length that is sufficient for each corresponding electrode or group of electrodes to be placed on the patient at a predetermined distance away from others of the electrodes or groups of electrodes. As noted above, by spatially arranging defibrillator (as opposed to solely ECG) electrodes in this manner, the invention ensures proper accumulation of current in areas between the sensing electrodes. The present invention provides an additional advantage in this regard in that groups of electrodes arranged in geometric patterns on the patient are movable relative to the patient in a manner which ensures that the geometric patterns are substantially retained, but are at different orientations relative to the patient. For example, it is possible to rotate pad 22 containing sensing electrodes 31 a, 31 b and 31 c on a patient such that pad 22 is still within the patient's thoracic window (e.g., either the apex-sternum thoracic window, the anterior-posterior thoracic window, or some combination thereof), but such that sensing electrodes 31 a, 31 b and 31 c do not contact the patient's skin at the same location. Random rotation or movement may also be used to accomplish the same result. For example, in a case that electrodes 31 all float, random motion may be the best way in which to achieve the desired result. Moreover, in accordance with the invention, and particularly with non-segmented electrodes, it is possible merely to shift each electrode from a first position to a second position, such that portions of the first and second positions overlap.
  • By providing for the foregoing rotation and/or movement, together with the therapeutic and prophylactic agents described above, the present invention reduces skin damage which may occur due to prolonged use of wearable defibrillator 10. To achieve optimum reduction in skin damage, each sensing electrodes 31, group of sensing electrodes, or individual non-sensing electrodes should be rotated in the above manner roughly once every 12 hours to 7 days.
  • In operation, sensing electrodes 31 are capable of transmitting electrical signals from defibrillator 10 to a patient. These electrical signals include, but are not necessarily limited to, defibrillation energy, tactile stimulation signals, pacing signals, and AC and DC signals used to measure a patient's skin and thoracic impedance. The same information used to measure the patient's thoracic impedance may also be used to determine the patient's respiration and pulse rates. The defibrillation energy preferably has a bi-phasic waveform with two phases. These phases may have substantially equal durations or, alternatively, may have different durations, e.g., the first phase may be roughly 6 msec and the second phase may be roughly 4 msec. An example of a bi-phasic waveform having substantially equal durations is shown in FIG. 6 (described below).
  • As noted above, the waveform of the defibrillation energy may also be mono-phasic, i.e., the waveform may comprise just the first one of the two phases shown in FIG. 6, or may comprise a truncated exponential waveform. Monophasic waveforms typically require greater current, generally on the order of 15% to 20% greater, in order to achieve substantially the same effect as bi-phasic waveforms. Regarding the pacing impulses, these preferably comprise waveforms having a low peak current of roughly 150 mA.
  • Sensing electrodes 31 are also capable of transmitting patient information from the patient to defibrillator 10. This patient information includes, but is not limited to, information relating to the patient's skin and thoracic impedance, artifact noise in the patient's body (caused, e.g., by cardiopulmonary resuscitation, agonal breathing, seizures, patient handling, and ambulatory or vehicular motion), sensory stimulation signals from the patient, and the patient's ECG, including any cardiovascular signals evidencing abnormal heart activity.
  • In this regard, electrode harness 4 preferably includes two independent differential channels, namely “ECG 1” and “ECG 2” shown in FIG. 3, for measuring the patient's ECG. In this regard, groups of electrodes 31 a, 31 b and 31 c and 31 d, 31 e, 31 f and 31 g comprising ECG 1 both provide the defibrillation energy to the patient and monitor the patient's ECG, whereas electrode 31 h comprising ECG 2 is used solely for monitoring the patient's ECG. ECG 1 serves as the primary monitoring channel for ECG analysis, whereas ECG 2 serves as a backup for use in a case that ECG 1 is not operating or is not operating properly (e.g., if ECG 1 is relatively noisy). Alternatively, ECG 2 can be used as a means of verifying the validity of an ECG obtained via ECG 1. That is, by comparing ECGs obtained from ECG 1 an ECG 2, it is possible to confirm the validity of the patient's ECG. It is also possible to confirm whether the electrodes are properly attached to the patient based on this comparison. As still another alternative, it is possible to “average” ECGs from ECG 1 and ECG 2, in order to obtain an averaged ECG for the patient, or to increase ECG resolution by using inputs from both ECG 1 and ECG 2. The use to which defibrillator 10 puts the ECG signal, as well as the other signals obtained via an electrode harness 4, is provided in detail below.
  • For example, defibrillator 10 provides several ways to measure the patient's thoracic impedance based on information received from sensing electrodes 31. Specifically, the patient's impedance is determined directly by applying an AC or DC signal through an electrode, sampling data obtained from the electrode in response to the AC or DC signal, and analyzing the sampled data. More specifically, in preferred embodiments of the invention, this method of measuring the patient's thoracic impedance entails sampling such data from an electrode within 5 seconds of defibrillator power-on and then every 10 seconds for a 160 msec period at a sample rate of 4 msec or to continuously sample the impedance signal. Filtering is then performed on the sampled data so as to reduce the bandwidth of the sampled data to less than 10 Hz. The sampled data is then analyzed so as to provide a noise magnitude estimate for the signal and a frequency content of the signal. Subsequent processing is then performed to obtain a measurement of the patient's thoracic impedance by averaging all of the data samples in each 160 msec period. This averaging and filtering is performed in order to reduce the effects of artifact noise associated with CPR, muscle tremors, and agonal breathing. Of course, this processing occurs in defibrillator 10, and not in electrode harness 4.
  • In addition to the foregoing method, the patient's thoracic impedance is also calculated by defibrillator 10 each time the defibrillation energy is transmitted to the patient. Specifically, the patient's thoracic impedance may be determined before, during and after transmission of defibrillation energy, based on patient information received from the electrodes in response to the defibrillation energy.
  • Wearable Defibrillator
  • A close-up view of defibrillator 10 is shown in FIG. 7A. As shown in FIG. 7A, defibrillator 10 includes housing 40, light emitting diode (hereinafter “LED”) 41, visual indicator 42, auditory indicator 44, annunciator 46, user interface 47, communications link 49, and connector 50. FIG. 7B is an exploded view showing the mechanical construction of the features shown in FIG. 7A. A description of these features of the invention is provided below.
  • Housing 40 is preferably small enough to make the defibrillator portable, and thus wearable, yet large enough to house the circuitry included within defibrillator 10. In this regard, housing 40 can comprise a belt, or the like, which a patient can wear around his or her waist, chest, etc. However, in preferred embodiments of the invention, housing 40 comprises a rectangular casing that is roughly 6 inches in length, by 4 inches in width, by 2 inches in depth, or preferably 5.2 inches by 3.2 inches by 1.5 inches. As shown in FIG. 7B, housing 40 is comprised of base 40 a and top 40 b. The preferred weight of defibrillator 10 is approximately 1.5 pounds or preferably 1.0 pound or lighter. In this regard, the invention is able to achieve its small size by using high-energy capacitors (e.g., 500 μF, 400 μF, etc.) to store and deliver defibrillation energy, as described in more detail below.
  • Connector 50 and communications link 49 comprise external interfaces on defibrillator 10. Connector 50 is disposed on housing 40 so as to permit connection of defibrillator 10 to mating connector 21 on power supply 20 (see FIG. 2), and to permit connection of defibrillator 10 to corresponding mating connector 51 on base station 2 (see FIG. 1). To this end, connector 50 preferably includes two high-speed data pins (not shown), which permits base station 2 to interface to defibrillator 10 at a same point that electrode harness 4 interfaces to defibrillator 10. By virtue of this arrangement, information can be transmitted between defibrillator 10 and either base station 2 or a patient. Communications link 49 comprises a non-contact interface to personal computer 201 (see FIG. 2), over which information may be transmitted between defibrillator 10 and personal computer 201 (see FIG. 2) while defibrillator 10 is being worn by the patient or, if desired, at other times as well. Examples of such a non-contact interface include an infrared (hereinafter “IR”) link or a radio frequency (hereinafter “RF”) link.
  • Visual indicator 42 comprises a liquid crystal display (hereinafter “LCD”) or the like (in preferred embodiments, a Standish 162SLC 2×16 dot matrix display), having two lines for displaying information, including text and errors, to a patient or to a clinician operating defibrillator 10. This information can include, but is not limited to, information concerning the patient's heart activity, such as the patient's ECG or the like; messages upon detection of abnormal activity in the patient's heart; statements indicating that the patient has been wearing electrode harness 4 for greater than a recommended period of time; instructions for the use of defibrillator 10; prompts for using defibrillator 10; errors that have occurred in defibrillator 10; messages transmitted to defibrillator 10 from an external location via base station 2, personal computer 6, or personal computer 201; an indication that one or more of sensing electrodes 31 have become detached from the patient; and an indication that defibrillator 10 cannot differentiate between artifact noise in a patient's body and a cardiac arrhythmia. In preferred embodiments of the invention, the information is displayed for about 15 seconds.
  • In addition to the LCD, one or more visual indicators, such as light emitting diode (hereinafter “LED”) 41, may be provided on defibrillator 10 to indicate different operational states thereof. For example, in preferred embodiments of the invention, LED 41 blinks when defibrillator 10 is operating normally, is off when defibrillator 10 is without power (including when power supply 20 has failed), and is continuously illuminated during power-up error detection diagnostics performed by defibrillator 10.
  • Auditory indicator 44 comprises a speaker (in preferred embodiments, an MG Electronics MCS298 speaker) or the like, which provides verbal messages corresponding to information displayed on visual indicator 42. These messages may be output in a variety of different languages on both visual indicator 42 and auditory indicator 44. In preferred embodiments of the invention, auditory indicator 41 echos visual display 42, and has a volume that is adjustable at least up to 60 or 70 decibels. Auditory indicator 44 may also be configured to provide additional sounds, such as tones, buzzing, beeping, etc. to indicate error conditions within defibrillator 10. Examples of such error conditions include, but are not limited to, a low or drained power supply, improper attachment of sensing electrodes 31 to the patient, detachment of sensing electrodes 31 from the patient, and inoperability of defibrillator 10. In addition, another auditory indicator, such as annunciator 46, may also be included on defibrillator 10. Annunciator 46 is preferably separate from auditory indicator 42, and produces a buzzing or other unique sound to indicate error conditions within defibrillator 10, particularly a low or drained power supply.
  • User interface 47 comprises a response button, whereby a patient or clinician can provide an input to wearable defibrillator 10 simply by pressing the button. As shown in FIG. 7B, the response button is comprised silicone 47 a, button 47 b, paddle 47 c and foil 47 d. The response button cancels any upcoming defibrillation operation, meaning that, when pressed, the response button terminates a current defibrillation and, in some embodiments of the invention, disarms defibrillator 10. In preferred embodiments of the invention, the response button is relatively large, making it easily accessible to the patient, particularly through clothing and the like. In addition, in preferred embodiments of the invention, defibrillator 10 confirms when the response button has been pressed by issuing both audio and visual messages. In operation, the response button is pushed in response to, e.g., a “PLEASE RESPOND” verbal message so as to confirm patient consciousness or lack thereof. In preferred embodiments of the invention, defibrillator 10 also includes a cardiac event recording button which may or may not be separate from the response button, and which is pushed when the patient wants to record occurrence of a cardiac event. It is noted that these two functions are combined during a potential rescue situation; i.e., the patient will want to respond to the defibrillator's response requests at the same time, possibly recording the occurrence of a cardiac event. Combining these functions into a single button helps train the patient to habitually push the same button whenever there are requests from the defibrillator or cardiac events.
  • FIG. 8 is a system functional block diagram of defibrillator 10. Briefly, the hardware and software functional blocks shown in FIG. 8 monitor and analyze patient information (e.g., the patient's ECG) received from electrode harness 4 in order to determine if a cardiac rhythm is life threatening and requires defibrillation, and also permits communication to base station 2, personal computer 6, and personal computer 210. In addition, these blocks within defibrillator 10 determine the patient's thoracic impedance based on information received from the patient via electrode harness 4, and adjust the defibrillation energy accordingly. Alternatively, a predetermined thoracic impedance value may be stored in data logging memory block 57. That predetermined thoracic impedance value may then be retrieved and used to adjust the defibrillation signal.
  • As shown in FIG. 8, defibrillator 10 comprises auditory indicator 44, visual indicator 42, LED 41, user interface 47, and annunciator 46. Descriptions of these features of the invention were provided above and, therefore, will not be repeated here. It is worth noting, however, that annunciator 46 receives power from backup battery 54, which is rechargeable, and which is independent of the primary source of power (i.e., power supply 20) for defibrillator 10. Backup battery 54 provides power to annunciator 46 in the event that power supply 20 fails, thereby giving annunciator 46 the ability to warn the patient in such an event.
  • Defibrillator 10 also includes patient measurements block 56, data logging memory block 57, accessory communications block 59, real time clock (hereinafter “RTC”) 60, RTC/RAM backup battery 61, which may or may not be separate from backup battery 54, and signal generator 62. In the representative embodiment of the invention described herein, signal generator 62 comprises processing block 64, defibrillation control block 66, discharge/protection switches 67, capacitors 69, charger 70 and charge control block 71. In this regard, although the present invention includes the forgoing blocks in signal generator 62, any combination of hardware and/or software which effects the same function as these features can be employed in the practice of the present invention.
  • RTC 66 maintains the current date and time, receiving power from rechargeable RTC/RAM backup battery 61 when defibrillator 10 is powered-off. In preferred embodiments of the invention, RTC 60 is a Dallas 1306 serial RTC, which is able to maintain the correct time and date for up to 30 days without connection to power supply 20. RTC/RAM backup battery 61 also provides power to a memory (e.g., a RAM (not shown)). Accessory communications block 59 performs any filtering and protocol conversion necessary to enable transmission of data between defibrillator 10 and base station 2, personal computer 6 and/or personal computer 210. Patient measurements block 56 comprises analog signal conditioning hardware which filters and digitizes ECG signals, thoracic impedance measurements, and electrode-to-skin impedance measurements received via electrode harness 4, and which transmits the resulting data to processing block 64. Patient measurements block 56 also receives information from an accelerometer, described below, relating to the patient's motion, and provides this information to processing block 64.
  • Data logging memory block 57 stores both the operational history of defibrillator 10 and information relating to the patient. More specifically, data logging memory block 57 stores abnormal heart activity of the patient; the patient's ECG before, during and after application of defibrillation energy; an indication that the patient has been trained for use with defibrillator 10; analyzed ECG conditions; ECG markings, including defibrillation synch, external pace pulse, high slew rate, and saturation; patient thoracic and electrode-to-skin impedance measurements over time; voice, tone, and buzzer prompts; displayed messages; information concerning patient interaction with the defibrillator 10 (e.g., if and when the patient has pressed the response button); transmitted defibrillation waveform measurements, including current and voltage versus time; execution time measurements of defibrillator 10 for use in determining if defibrillator 10 operated as expected; detected operational errors of defibrillator 10 (including a type of error, persistence of the error, whether defibrillator 10 was in the operational mode when the error occurred, whether defibrillation had begun when the error occurred, and whether a cardiac arrhythmia had been detected when the error occurred); calibration data for defibrillator 10; the serial number of defibrillator 10; a harness identification ID of an electrode harness interfaced to defibrillator 10; cold and warm start information for defibrillator 10; artifact noise in the patient; data from an accelerometer relating to motion of the patient; documentation regarding the defibrillator; instructions on how to use the defibrillator; and patient parameters. These patient parameters include, but are not limited to, the patient's ID number which is a unique assigned identifier for each patient (range of 1 to 9,999; default=0); the patient's name; the language used for voice and corresponding text messages; a minimum audio level to which a patient responds; minimum tactile stimulation signal to which a patient responds; maximum tactile stimulation signal for a patient; pacing bradycardia rate—heartbeat rate below which bradycardia will be declared and pace rescue initiated; pace current level—current level needed to ensure pace rescue; a ventricular tachycardia rate at which defibrillation energy is to be delivered to the patient (range of 150 to 180 beats per minute (hereinafter “bpm”)); the patient's thoracic impedance range, meaning, the impedance range during which defibrillation energy may be transmitted to the patient (range of 15 to 200 ohms); a time and a date at which the defibrillator was issued to the patient; a name of a clinic at an external location (e.g., central repository 9, a hospital, a doctor's office, etc.); a name of a clinician at the external location; and an electrode-to-skin impedance range which is used to determine whether the electrodes are not attached, or are improperly attached, to the patient. Also stored with the patient parameters is a checksum which is used to determine their validity.
  • In summary, data logging memory block essentially stores any information provided to, or transmitted from, defibrillator 10 over a predetermined span of time, such as two days. This data is preferably stored in a log format and includes time data specifying a time at which each event occurred. In addition, embedded in the data are validation and synchronization mechanisms for use in detecting areas of corrupted or missing data.
  • In preferred embodiments of the invention, data logging memory block 57 has a capacity (e.g., 24 megabytes or 48 megabytes) which is sufficient to record the foregoing information over a 48 hour period of continuous use of defibrillator 10. In embodiments of the invention where only a portion of the foregoing information is stored in data logging memory block 57, there may be a corresponding decrease in the size of data logging memory block 57 or a corresponding increase in the available period of use for the device. On the other hand, to achieve a reduction in the required amount of memory space without sacrificing data stored therein, it is possible to compress the data, preferably at a 4-to-1 compression ratio, and then to store the compressed data in data logging memory block 57. It is noted that the invention is not limited to compressing the data at a 4-to-1 ratio, and that any compression ratio may be used. Any of a number of well-known compression algorithms, particularly those relating to biological signal compression, may be employed to effect the necessary compression. Compression techniques that result in lossless compression, however, are preferred. In particularly preferred embodiments of the invention, data logging memory block 57 is removable, and can be transferred to the base station or to an external location at which point data stored therein may be downloaded.
  • Signal generator 62 generates, based on patient impedance data provided from patient measurements block 56, defibrillation energy which preferably has a bi-phasic waveform may have two phases with substantially identical durations, different durations, or a first phase with a longer duration than a second phase, and having relatively low peak amplitudes over a patient impedance range. A mono-phasic waveform or a truncated exponential waveform having similar characteristics may also be used.
  • FIG. 6 shows a representative example of defibrillation energy generated by signal generator 62. As shown in FIG. 6, waveform 72 has two phases 74 and 76, each of which has substantially the same durations 77 and 79 (i.e., tmax=˜5.4 seconds) and a peak amplitude of less than 23 amperes (i.e. Imax=˜20A). Specifically, the bi-phasic waveform has a 5.37 msec (+/−5%) initial “positive” phase, followed by a 100 to 300 μsec zero-potential plateau (i.e., tswitch=˜180 μsec), followed by another 5.37 msec (+/−5%) “negative” phase. In preferred embodiments of the invention, the amplitude at the end of the pulse is 60 to 80% of its initial value. Of course, the example shown in FIG. 6 merely representative, and waveforms having different values can also be generated by the present invention. In fact, in preferred embodiments of the invention, the duration of each phase of a bi-phasic waveform may be between 4.5 and 6.4 msec.
  • The waveform corresponding to the defibrillation energy preferably also has a substantially consistent tilt, as shown in FIG. 6. In preferred embodiments, the tilt of the defibrillation energy is between 53% and 79%. The present invention provides a way in which to alter this tilt using capacitors 69. In this regard, capacitors 69 store energy which is discharged to the patient via discharge/protection switches 67 in the form of the foregoing defibrillation energy. This energy is discharged as a waveform having the foregoing characteristics. The tilt of the waveform (i.e., the rate of the waveform's exponential decay) is determined by the “RC” time constant τ of the circuit used to generate the waveform. In this regard, that circuit's time constant τ may be altered by switching capacitors 69, as described below, so as to alter the overall, combined capacitance value of capacitors 69. Thus, by switching capacitors 69 in this manner, it is possible to vary the tilt of the waveform and the achieve a low-current waveform.
  • To ensure safe operation, the energy for defibrillation energy is discharged by capacitors 69 only in the case that a life-threatening cardiac arrhythmia is detected in the patient (as determined by comparing the patient's ECG to pre-stored patient parameters), the patient is deemed to be unconscious (as determined, e.g., by the patient's response, or lack thereof, to messages provided by auditory indicator 44, visual indicator 42. and annunciator 46), and the patient's thoracic impedance is within a predetermined range. In preferred embodiments of the invention, this range is between 15 ohms and 200 ohms. The process of determining whether and when to transmit defibrillation energy to a patient is described in more detail below. One (or more) of capacitors 69 is also used to provide the above-noted tactile stimulation signal to the patient. The tactile stimulation signal may be used to alert the patient of the occurrence of a cardiac event, and may vary based on the patient and based on which time it is administered to the patient in response to a message from the defibrillator. That same capacitor may also be used to deliver a pacing signal to the patient's heart in order to stimulate normal contractions thereof.
  • The invention preferably includes 5 capacitors having capacitances of 500 μF (350 V) each; although capacitors having other capacitances may be used as well. The capacitors are switchable into the “221” configuration shown in FIG. 9, in which there are two sets of parallel capacitors in series with a single capacitor; the “2111” configuration shown in FIG. 10, in which there is one set of parallel capacitors in series with three single capacitors; and the “11111” configuration shown in FIG. 11, in which there are five single capacitors in series. In general, the higher the impedance of the patient, the lower the peak current that is required for the defibrillation energy (a lower tilt is also required at higher impedances). Consequently, the higher the impedance of the patient, the lower the capacitance that is required to generate the defibrillation energy. For example, for a patient whose impedance is relatively high (e.g., 120 ohms), the 11111 capacitor configuration may be used to generate defibrillation energy having a maximum peak current of 15 A.
  • In this regard, the lower the impedance of the patient, the higher the capacitance that is required to generate the defibrillation energy. Thus, for patients whose impedance is relatively low (e.g., 40 ohms), the 221 capacitor configuration may be used to generate defibrillation energy having a maximum peak current of 21 A.
  • Table 1, shown below, provides values for Imax+, Iavrg+, Ifinal, tmax+, tswitch, and tmax− (see FIG. 6) for defibrillation energy for patients having impedances of 40, 60, 80 and 120 ohms. These values are merely representative of a particular case, and other values, of course, may be substituted therefor. In this regard, as noted above, the duration of each phase is roughly between 4.5-6.5 msec, and the peak current is roughly between 12 and 25 A.
    TABLE 1
    40 ohms 60 ohms 80 ohms 120 ohms
    Imax + 21 A 20 A 20 A 15 A
    Iavrg + 15 A 15 A 15 A 11 A
    Ifinal − −7.0 A −6.0 A −5.0 A −5.5 A
    tmax + 5.4 ms 5.4 ms 5.4 ms 5.4 ms
    tswitch 0.2 ms 0.2 ms 0.2 ms 0.2 ms
    tmax − 5.4 ms 5.4 ms 5.4 ms 5.4 ms
  • In addition to using capacitors 69 to control the waveform of the defibrillation energy in the foregoing manner, the invention may also include a resistor, placed in series with the capacitors. Due to the resistor's effect on the circuit's time constant, the resistor has the effect of “smoothing”, i.e., decreasing the tilt of, the waveform of the defibrillation energy. In this regard, generally speaking, an increase in the resistance of the resistor decreases the tilt of the waveform. As an alternative to the foregoing configuration, the invention may include a single capacitor and one or more switchable resistors to achieve the effect of varying the circuit's time constant and thereby varying the waveform of the defibrillation energy.
  • As noted above, discharge/protection switches 67 control delivery of the defibrillation energy from capacitors 69 to the patient. Discharge/protection switches 67 are controlled by defibrillation control block 66 which, in turn, is controlled by processing block 64. Specifically, when defibrillator 10 is not in use, or is not required to provide an output signal, processing block 64 commands defibrillation control block 66 to open discharge/protection switches 67, thereby providing protection from unwanted electric signals. On the other hand, when processing block 64 determines that defibrillation energy is to be transmitted to the patient, processing block 64 immediately commands defibrillation block control block 66 to close discharge/protection switches 67, thereby providing the energy to the patient. In this regard, as noted above, one of capacitors 69 is also able to transmit tactile stimulation and pacing signals to the patient. In a case that a tactile stimulation or a pacing signal, as opposed to the defibrillation energy, is to be transmitted, processing block 64 issues a command to defibrillation control block 66 which, in response, may switch one of discharge protection switches 67 so as to output a signal from only one of capacitors 69. As shown in FIG. 8, defibrillator control block 66 also monitors discharge/protection switches 67 and provides the results thereof to processing block 64.
  • Charger 70 controls charging of capacitors 69 from power supply 20, the input of which is labeled 20 a in FIG. 8. Specifically, charger 70 comprises hardware which transfers energy from power supply 20 to capacitors 69. Charger control block 71 controls charger 70 in response to commands received from processing block 64 so that capacitors 69 charge to a level commanded by processing block 64. In this regard, processing block 64 may issue commands to charge capacitors 69 to one of a plurality of different levels depending on a determined type of arrhythmia, e.g., ventricular fibrillation versus ventricular tachycardia. Thus, if a ventricular fibrillation is detected, then a signal having a higher amplitude is output, whereas if a ventricular tachycardia is detected, then a “cardio” or lower amplitude defibrillation signal is output. Processing block may also issue commands to charge processing block 69 based on a type of signal to be transmitted, e.g., defibrillation energy, a pacing impulse, or a tactile stimulation signal.
  • Processing block 64 can comprise a microprocessor, controller, or the like, as described below, which includes an internal program memory (not shown in FIG. 8). This memory is used to store software modules comprised of process steps that are executable by processing block 64. Specifically, process steps in these modules are executable to control operation of defibrillator 10 based on input received from a patient or, alternatively, from base station 2 (see FIG. 1). These software modules comprise input/output (hereinafter “I/O”) module 80, including communications submodule 81 therein, data recording module 82, diagnostics module 84, defibrillation control module 86, ECG analysis module 87, user interface protocols 89, and master control module 90.
  • I/O module 80 preferably comprises a BIOS module which controls the transfer of data between software modules running within processing block 64 and hardware components within defibrillator 10. I/O module 80 also controls communications between processing block 64 and auditory indicator 44, visual indicator 42, LED 41, and user interface 47. To this end, the invention includes user interface protocols 89, between master control module 90 and I/O module 80. User interface protocols 89 comprise command sequences for controlling transmission of various prompts, such as tones, verbal messages, or the like, to the user via auditory indicator 44, visual indicator 42, and LED 41 in response to detected events, such as a cardiac arrhythmias or the like. Similarly, user interface protocols 89 include command sequences for controlling receipt of signals input by the user via user interface 47 (i.e., the response button). Communications submodule 81 controls communications between processing block 64 and an interfaced device, such as electrode harness 4 or base station 2, via accessory communications block 59. Processing block 64 also executes a low-level, run time executive (hereinafter “RTE”) module (not shown), which supports communication between the various software tasks running in processing block 64.
  • ECG analysis module 87 comprises process steps which monitor the patient for a predetermined condition based on information provided through electrodes 31. ECG analysis module analyzes the patient's ECG and impedance data provided from sensing electrodes 31 (via patient measurements circuit 56), together with other information provided from the patient, including artifact noise and patient motion, in order to determine whether, when, and what types of arrhythmias are present in the patient's ECG.
  • More specifically, ECG analysis module 87 performs any necessary signal processing on the patient's ECG and thoracic impedance data in order to remove any extraneous data such as may be present due to noise in the patient's body, including artifact noise or noise caused by patient motion. Assuming that ECG analysis module 87 is able to remove extraneous noise from the patient's ECG and impedance data, ECG analysis module 87 compares the patient's ECG and thoracic impedance data to the patient parameters stored in data logging memory block 57 (e.g., the patient's thoracic impedance range and ventricular fibrillation and ventricular tachycardia rates at which defibrillation, pacing or cardio (described below) signals should be administered) in order to determine whether an arrhythmia has occurred. In the case that ECG analysis module 87 determines that an arrhythmia has occurred, ECG analysis module 87 analyzes the patient's ECG and the patient parameters in order to determine the type of arrhythmia, i.e., whether the arrhythmia comprises ventricular fibrillation, ventricular tachycardia, asystole, bradycardia, or indioventricular rhythms, and whether defibrillation energy should be transmitted to the patient in response to the arrhythmia. Specifically, ECG analysis module 87 determines if the patient's rhythm is normal, meaning that the patient has a normal heartbeat, in which case no intervention is required; bradycardia, meaning that the measured heartbeat is less than 5 bpm; ventricular fibrillation which comprises uncoordinated rapid contractions of the heart which replace normal synchronous pumping action, specifically in the heart's lower chambers; ventricular tachycardia which comprise a threatening heart condition associated with a very rapid heart rate (>150 bpm) but minimum pumping action; marginal ventricular tachycardia (between 120 and 150 bpm—referred to as “walking VTs”); noise; and non-determinate signals, which are described below. The invention may use one or more well-known analysis algorithms to make these determinations. However, in preferred embodiments of the invention, ECG analysis module 87 performs the algorithm shown in FIG. 16.
  • The algorithm shown in FIG. 16 essentially includes three stages, ECG input and prefiltering stage 150, arrhythmia risk assessment stage 151, and therapy decision algorithm stage 152. ECG input and prefiltering stage 150 includes preconditioning filter step 154, during which baseline stabilizer processing, noise filtering, bandpass filtering, and auto-gain control are performed on the patient's input ECG data. In preferred embodiments, at least some of these functions are performed in hardware in patient measurements block 56 (e.g., ECG filter 119 and ECG amplifier 92 described below with respect to FIG. 13). Following preconditioning filter step 154, the ECG data is then transmitted to both rhythm analysis step 156 and fault detection step 157.
  • Rhythm analysis step 156 detects peaks in the patient's ECG, a beat morphology of the patient's heart, and a rhythm interval of the patient's heart. Fault detection step 157 determines a noise level estimate for noise in the patient's ECG, the electrode quality, meaning connection of electrodes 31 to the patient, and the patient's ECG signal amplitude. Results from steps 156 and 157 are provided to preliminary decision matrix 158 which makes a preliminary determination, based on the information provided from steps 156 and 157 and based on stored patient parameters, whether the patient's ECG comprises a benign rhythm, a complex rhythm, or a rhythm that constitutes a risk of arrhythmia. This preliminary determination is then provided to periodic arrhythmia review step 160. Periodic arrhythmia review step 160 samples the input ECG data for fixed time intervals (e.g., 10 to 20 seconds), or at variable time intervals for arrhythmias which are preliminarily determined to be complex. This data, along with the preliminary determination made in preliminary decision matrix 158, is then passed along to arrhythmia risk assessment stage 151, specifically to rhythm analysis step 161.
  • Rhythm analysis step 161 performs segment morphology analysis on data received from periodic arrhythmia review step 160, and also performs a temporal analysis of the results of the segment morphology analysis. Processing then proceeds to decision matrix 162 which either confirms or refutes the preliminary decision made in preliminary decision matrix 158 based on the processed data and stored patient parameters. Specifically, decision matrix 162 either confirms or refutes that the patient's ECG comprises a benign rhythm, an arrhythmia, or a complex rhythm. Processing then proceeds to therapy decision algorithm stage 152, specifically to rhythm analysis step 164. Rhythm analysis step 164 processes the patient's ECG data by performing thereon, a Fourier analysis, a power spectral analysis, spectral analysis extraction, and a multi-variate temporal analysis.
  • The processed ECG data output from rhythm analysis step 164 is then provided to noise analysis step 166. Noise analysis step 166 performs adaptive noise discrimination on the processed ECG data, and then performs noise identification and classification so as to characterize noise in the data. For example, the noise may comprise artifact nose, noise from an internal pacemaker, etc. Thereafter, processing proceeds to decision matrix 167. Decision matrix 167 either confirms that the patients ECG is a benign rhythm, in which case decision matrix 167 merely permits continued monitoring of the patient's ECG, or declares that there is an arrhythmia. The results of decision matrix 167 are then output to therapy decision step 169, which determines whether to provide defibrillation energy to the patient based on the results of decision matrix 167, together with patient physiologic measurements provided by step 170. These physiologic measurements include consciousness detection, hemodynamic assessment, and stimulus response tests.
  • By virtue of the foregoing, ECG analysis module 87 is able to differentiate “treatable rhythms”, meaning ECG and physiologic analysis results which warrant application of therapy, from “non-treatable rhythms”, meaning ECG and physiologic analysis results which do not warrant application of therapy. Non-treatable rhythms include normal sinus rhythms, supraventricular tachycardia, atrial fibrillation (with or without bundle branch block), atrial flutter, second and third degree heart block, ventricular ectopy, premature ventricular contractions, and pacing (see below). ECG analysis module 87 is also capable of recognizing spontaneous organized cardiac rhythms that frequently follow defibrillation, and are associated with the presence of pulse and blood pressure. These rhythms are also classified as non-treatable. Treatable rhythms include ventricular fibrillation (coarse), and high rate ventricular tachycardia that are hemodynamically compromised and result in patient unconsciousness. For ventricular fibrillation, the peak-to-peak amplitude should be greater than 150 μV for the rhythm to be considered treatable, and for a ventricular tachycardia the patient's rate must exceed the corresponding patient parameter, namely the patient parameter corresponding to the ventricular tachycardia rate at which defibrillation energy (or a cardio signal (i.e. a low-energy defibrillation signal)) is to be delivered to the patient.
  • When identifying treatable versus non-treatable rhythms, the foregoing process errs on the side of caution, meaning that it is more likely that the ECG analysis module 87 will identify a non-treatable rhythm as treatable, than identify a treatable rhythm as non-treatable. This feature is built into the system as a safety measure, so that the likelihood of misidentifying a life-threatening arrhythmia is reduced.
  • ECG analysis module 87 is also able to identify other rhythms. These include non-determinative rhythms and pace rhythms. Pace rhythms correspond to heart rates that are sustained below 30 bpm and which result in patient unconsciousness. These rhythms are treated with a pacing signal, as opposed to a full defibrillation/cardio signal. Non-determinate rhythms comprise rhythms which require additional analysis to make a definitive decision as to whether defibrillation is required in response thereto. Such rhythms may be the result of extraneous artifact noise in the patient's body caused, e.g., by muscle contractions resulting from movement. In the event that ECG analysis module 87 is unable to differentiate between extraneous noise and the patient's ECG, ECG analysis module 87 notifies master control module 90 which, in turn, outputs a message to visual indicator 42 and/or auditory indicator 44.
  • In addition to the foregoing, ECG analysis module 87 is able to determine, based on electrode-to-skin impedance data received from electrodes 31 and the electrode-to-skin impedance range stored in data logging memory block 57, whether and which electrode in electrode harness 4 has become detached from the patient. To this end, patient measurements block 56 preferably monitors separate, identifiable terminals which permits ECG analysis module 87 to identify inputs from particular electrodes in electrode harness 4. In the case that one or more of these electrodes has become detached from the patient, ECG analysis module 87 passes such information along to master control module 90. ECG analysis module 87 is also able to determine whether electrodes are attached to the patient's skin based on thoracic impedance measurements. That is, if the patient's thoracic impedance is determined to be above a predetermined value, such as 200 ohms, ECG module ascertains that the electrodes are no longer attached to the patient.
  • ECG analysis module 87 also determines the patient's heart rate and “R-wave synchronization trigger” based on received ECG information. In this regard, R-waves are present in the patient's ECG, both intrinsically and, in some cases, due to an internal or external pacemaker. Transmission of defibrillation signal (in this case a cardio signal) to the patient must be synchronized with an R-wave in order to avoid triggering ventricular fibrillation during a vulnerable period of the patient's ventricles. This vulnerable period occurs during repolarization of the ventricles, and usually begins 30 to 40 msec before the apex of a T-wave in the patient's ECG, and ends near the apex of the T-wave. If ventricular ischemia is present, the vulnerable period starts approximately at the same time, but may persist for as long as 120 msec after the end of the T-wave. In all cases, however, the onset of the vulnerable period follows the peak of the R-wave by an amount of time that depends on the patient's heart rate and on the patient's ECG. The onset ranges from approximately 220 msec at a heart rate of 60 bpm to 120 msec and to as low as 100 msec at a heart rate of 150 bpm. The R-wave synchronization trigger determined by ECG analysis module 87 is used by master control module 90, described below, to synchronize the defibrillation energy so that the defibrillation energy is not applied during these vulnerable periods. Specifically, defibrillation energy is synchronized so that it is delivered within 60 msec of the patient's R-wave peak, if one is present. If no R-wave is detected within a 500 msec monitoring window, then the defibrillation energy is transmitted at the end of this window. In determining the R-wave synchronization trigger, ECG analysis module 87 disregards stand-alone pacemaker pulses, meaning that only the heart's reaction to these pulses is factored into determination of the R-wave synchronization trigger, and not the pacemaker pulses themselves.
  • Master control module 90 integrates patient information from ECG analysis module 87, patient responsiveness from user interface 47, and outputs to auditory indicator 44, visual indicator 42, and LED 41. FIG. 12 is a flow diagram which provides an overview of this aspect of master control module 90's operation, including some operational aspects of ECG analysis module 87. In step S1201 of the flow diagram, master control module 90 receives analysis results from ECG analysis module 87, which indicate whether the patient has suffered an arrhythmia, the type of arrhythmia that the patient has suffered, and whether the arrhythmia is life threatening. Master control module 90 also receives information concerning the patient's thoracic impedance. As described below, this information is used to determine the amplitude of the defibrillation energy to be transmitted by defibrillator 10.
  • After step S1201 receives the ECG analysis results and impedance information, processing proceeds to step S1202, which determines whether the analysis results indicate that the patient has suffered a life-threatening arrhythmia. In a case that step S1202 determines that the patient has not suffered a life-threatening arrhythmia, processing proceeds to step S1203. Step S1203 issues commands to output a message, such as “SEE A DOCTOR”, to the patient, in the form of audio and visual signals via audio indicator 44 and visual indicator 42, respectively. Thereafter, processing returns to step S1201.
  • On the other hand, in the case that step S1202 determines that the patient has suffered a life-threatening arrhythmia, processing proceeds to step S1204. Step S1204 determines whether other pre-conditions have been met before defibrillation energy is transmitted to the patient. Specifically, step S1204 determines whether the patient's thoracic impedance is within a predetermined range, preferably between 15 and 200 ohms, and whether the patient's ECG has been confirmed by, e.g., both ECG 1 and ECG 2 above taking into account artifact noise in the patient's body. In a case that step S1204 determines that these pre-conditions have been met, processing proceeds to step S1205; otherwise processing proceeds to steps S1203 and back to step S1201.
  • Step S1205 determines whether the patient is conscious. More specifically, in step S1205, master control module 90 outputs a message (e.g., a query) such as “ARE YOU THERE”. This message is output both visually and audibly. After the message is output, master control module 90 waits a predetermined period of time for a response signal. This response signal may be input by the patient via user interface 47, specifically, by pressing the response button. In a case that master control module 90 detects the response signal within the predetermined period of time, master control module 90 ascertains that the patient is conscious. Since defibrillator 10 does not administer defibrillation energy to conscious patients, in this case, master control module 90 will not cause defibrillation energy to be transmitted to the patient. Instead, processing proceeds to step S1203, in which master control module simply issues instructions to the patient, which can vary depending upon the severity of the arrhythmia.
  • Thus, by pressing the response button, transmission of defibrillation energy to the patient is averted. In this regard, transmission of the defibrillation energy can also be averted upon detection of certain errors in the defibrillator, disconnection of electrode harness 4 from defibrillator 10, and removal of sensing electrodes 31 from the patient.
  • In step S1205, in a case that master control module 90 does not detect a response signal within the predetermined period of time, master control module 90 issues another audio or visual message (e.g., a louder message). After this second message has been transmitted to the patient, master control module 90 again waits for a response from the patient. In a case that the patient does not respond to this second message within a predetermined period of time, master control module 90 issues a third message to the patient. This message can be a still louder message or can include a tactile stimulation signal which is transmitted via an electrode on the patient. If the patient does not yet respond, master control module 90 issues a fourth and final message together with a tactile stimulation signal. In this regard, it is noted that the format of these four messages can vary. For example, verbal messages need not be louder, the tactile stimulation signal can increase in intensity with each message or may be applied at each message, etc. Moreover, there need not be four messages. Rather, there can be more or less messages, as desired.
  • In the event that the patient responds to none of the foregoing messages, master control module 90 ascertains that the patient is unconscious. In this case, processing proceeds to step S1206, in which case master control module 90 immediately thereafter issues a command to defibrillation control module 86 instructing that the defibrillation energy be transmitted to the patient. That is, in preferred embodiments of the invention, as soon as the patient is determined to be unconscious, master control module causes defibrillation energy to be transmitted to the patient immediately, without waiting for further input from the patient, a clinician, or other party. Included with the command to transmit the defibrillation energy is data defining the amplitude and duration of phases in the defibrillation energy. Master control module 90 determines this information based on the measured thoracic impedance of the patient (see, e.g., Table 1 above).
  • In preferred embodiments of the invention, the defibrillator trains patients with periodical tests in use of the response button via a response test training protocol. Clinicians introducing the defibrillator to new patients are able to initiate execution fo the protocol from an attached clinician station (not shown). The same protocols that are be used to periodically test (and train) patients whenever the electrodes are replaced. The protocol is based on first two alert levels (described below) and an imminent response protocol (i.e., when the patient must response to a message from the defibrillator) so that the patient learns and becomes familiar with the first part of the imminent response protocol. The patient learns what the voice message prompt sounds like at Level 1, and learn what the Level 2 combined voice and tactile simulation signal sounds and feels like. The repetition of the Level 2 prompts is to ensure that the patient was given more than enough time to response. The response/test training protocol serves to develop a habitual reaction in the patient to the push response button in response to voice and tactile stimulation signal prompts during a potential rescue situation; regularly expose the patient to the “PLEASE RESPOND” voice menage prompt at Level 1, Level 2 with tactile stimulation signal if they do not respond to the first prompt; indirectly show the patient that before electrical therapy will be applied to them, they will be exposed to a series of voice and tactile stimulation signals to confirm that the patient is unconscious each time the test is performed, establish that the defibrillator is generating the voice and tactile stimulation prompts and that the patient can hear/feel them, can respond, and the defibrillator is registering the response; each time, record how fast the patient is responding to the prompts; and each time, determine that patient interface is working and, otherwise, declare the defibrillator unusable.
  • In some embodiments of the invention, in a case that a patient is determined to be unconscious, master control module 90 may also cause a message, such as “STAND BACK”, to be output prior to defibrillation so as to advise bystanders of an upcoming defibrillation. In this regard, other messages may be provided to bystanders as well. For example, it is possible to output a message such as “CALL FOR HELP” in the event that a patient wearing the defibrillator is unconscious. Such a message may even be output after defibrillation energy is administered to the patient. In this regard, any number of different types of messages may be included in the invention, which may be output at any time during the defibrillation process.
  • In addition to applying defibrillation energy to the patient, master control module 90 also determines when it is time to provide a pacing signal to the patient, and applies that signal accordingly. This process is similar to the above process for applying defibrillation energy. That is, in a case that master control module 90 determines that a patient's heart rate is below 30 bpm and the patient is unconscious, a pacing signal may be applied via the electrode harness 4.
  • Defibrillation control module 86 controls defibrillation control block 66 and charge control block 71 in accordance with the command received from master control module 90 so that defibrillation energy which is appropriate for the patient can be generated and transmitted to the patient.
  • Regarding the remaining software modules executing within processing block 64, diagnostics module 84 performs diagnostics on defibrillator 10 relating to the operation and safety thereof prior to transmitting defibrillation energy to the patient. These diagnostics include diagnostics that are performed at power-on of defibrillator 10 in order to determine if there are operational defects therein. In a case that diagnostics module 84 detects operational defects as a result of these diagnostics, this information is stored in data logging memory block 57 and is transmitted back to master control module 90, which alerts the patient. Such information also may be transmitted to base station 2 or to personal computer 6.
  • Data recording module 82 controls transmission of data between defibrillator 10, base station 2 and computers 6 and 210. This data can include as noted above, abnormal heart activity of the patient; the patient's ECG before, during and after application of defibrillation energy; analyzed ECG conditions; ECG markings, including defibrillation synch, external pace pulse, high slew rate, and saturation; patient thoracic and electrode-to-skin impedance measurements over time; voice, tone, and buzzer prompts; displayed messages; information concerning patient interaction with the defibrillator 10; transmitted defibrillation waveform measurements, including current and voltage versus time; execution time measurements of defibrillator 10 for use in determining if defibrillator 10 operated as expected; detected operational errors of defibrillator 10; calibration data for defibrillator 10; the serial number of defibrillator 10; a harness identification ID of an electrode harness interfaced to defibrillator 10; cold and warm start information for defibrillator 10; artifact noise in the patient; data from an accelerometer relating to motion of the patient; and patient parameters. Data recording module 82 also controls storage of the foregoing data in data logging memory block 57.
  • FIG. 13 is a block diagram showing representative hardware used to implement the functions of defibrillator 10 described above with respect to the FIG. 8. The hardware components shown in FIG. 13 include processor board 91, which is comprised of ECG amplifier 92, flash memories 94, program ROM 96, static RAM (hereinafter “SRAM”) 97, backup battery 99, voice chip 100, LCD circuit 101, processor field programmable gate array (hereinafter “FPGA”) 102, voice driver 103, output circuit 104, reset/watchdog circuit 106, power supply monitor 107, microprocessor 109, control FPGA 110, address and data bus 111, crystal oscillator 112, and RTC 113. Also included within defibrillator 10 are capacitors 69, transformer 114, power supply 20, input circuitry 116, output circuitry 117, ECG filter 119, and accelerometer 120.
  • Generally speaking, processor 109, processor FPGA 102 and control FPGA 110 perform the functions of processing block 64; flash memories 94 perform the functions of data logging memory block 57; control FPGA 110 performs the functions of defibrillation control block 66, charge control block 71, and charger 70; processor FPGA 102, input circuitry 116, ECG filters 119, accelerometer 120, and ECG amplifiers 92 perform the functions of patient measurements block 56; and control FPGA 110, together with a serial interface (not shown) and a non contact interface (not shown), perform the functions of accessory communications block 59. Remaining hardware components of FIG. 13 that perform the functions shown in FIG. 8 are self-evident
  • The hardware components shown in FIG. 13 are all tied to an internal, “floating” ground during operation of defibrillator 10. This means that there are no connections to an external ground when defibrillator 10 is interfaced to a patient (although there may be external ground connections when defibrillator 10 is interfaced to base station 2). The use of floating grounds during operation of defibrillator 10 is important from the patient's perspective, since it reduces the chances of unwanted electric shock to the patient. This floating ground may be on power supply 20, which was described above. A detailed description of power supply 20 is therefore omitted here for the sake of brevity. Suffice it to say that power supply 20 provides power to all components on defibrillator 10, including processor board 91, input circuitry 116, and capacitors 69.
  • Accelerometer 120 measures a patient's motion and provides this information to processor 109 via control FPGA 110. Processor 109 analyzes the information received from accelerometer 120, stores information relating to patient motion, and uses this information in its calculations of artifact noise noted above.
  • Input circuitry 116 receives signals from each of sensing electrodes 31, negative and positive inputs from power supply 20, and a connector ID from an interfaced device. Input circuitry 116 also controls output of defibrillation, tactile stimulation and pacing signals to a patient. To this end, included within input circuitry 116 are a plurality of switches, one corresponding to each input/output. These switches open and close in response to instructions from processor board 91 so as to ensure that signals, such as the defibrillation energy, are not inadvertently transmitted to a patient. Input circuitry 116 also includes shielding and the like on its input/output signal lines so as to reduce the chances of damage to defibrillation circuitry during application of defibrillation energy to the patient.
  • Signals received from input circuitry 116 are transmitted to ECG filter 119. ECG filter 119 comprises plurality of bandpass filters used to filter signals received from electrode harness 4. These filtered signals are transmitted to ECG amplifier 92 on processor board 91. ECG amplifier 92 includes amplifying circuitry for amplifying the filtered signals received from ECG filter 119, and an analog-to-digital converter for converting the amplified signals from analog form into digital form. These digital signals are then transmitted to processor 109 via processor FPGA 102.
  • Processor 109 receives clocking signals from crystal oscillator 112, which preferably provides signals up to 40 MHz. Processor 109 can comprise a microprocessor, microcontroller, or the like, and is used to execute the software modules-described above so as to control operation of defibrillator 10. Examples of microprocessors which have been identified as suitable for use with the present invention include the Intel 196 processor family, Intel 386EX (386EXTB), TMS320F206, Motorola 68332, the TI “2×3” family DSP Processor, Amtel 8051 or equivalent, Hitachi 8/500 series, Mitsubishi M37700, and Motorola 68HC16, to name a few. Processor 109 also controls the application of power to other components in defibrillator 10, particularly those on processor board 91, and is able to cause these components to be powered-up and powered-down for predetermined time intervals. This feature of the invention reduces the amount of power consumed by defibrillator 10.
  • As another power saving feature, processor 109 is capable of operating in different modes, during which processor 109 consumes different amounts of power. Specifically, processor 109 is operable in a normal mode, during which processor 109 samples data from electrodes 31 and controls defibrillator 10 in the manner described herein. Processor 109 is also operable in a low-power mode. In some embodiments of the invention, processor 109 may be turned off completely. In preferred embodiments, however, most processing in processor 109 ceases, but some elementary routines remain running. During the low-power mode, all internal registers in processor 109 retain their data, thereby making it possible for processor 109 to resume normal operation upon re-entering the normal mode. Processor 109 enters the low-power mode periodically, e.g., at intervals of 1 to 2 ms, for predetermined periods of time, e.g., 20 ms. Alternatively, processor 109 can operate in the low-power and normal modes at equal intervals, such as every 4 ms.
  • In preferred embodiments of the invention, the length of time that processor 109 operates in the low-power mode is variable based on information received from the patient or, alternatively, based on information received from central repository 9. For example, if processor 109 determines based, e.g., on the patient's ECG and previous history, that the patient is at a relatively low risk for a cardiac arrhythmia, processor 109 can lengthen the period of the low-power mode. Likewise, if processor 109 determines, based on similar information, that the patient is at a high risk for an arrhythmia, processor 109 can shorten, or even eliminate, the low-power mode.
  • Another feature of the low power mode is that the amount of power consumed therein may be varied. For example, in a case that processor 109 determines that benign rhythms have occurred for a relatively long time, processor 109 may enter a “deep” low power mode, in which processor 109 is off, or in which only the most elementary of routines remain running. On the other hand, in a case that processor 109 determines that a treatable rhythm occurred recently, processor 109 may enter a “light” low power mode, in which less power is consumed than when the processor operates in the normal mode, but in which more than just elementary routines remain running in the processor.
  • To enter the low-power mode, in preferred embodiments of the invention, processor 109 simply executes an “IDLE” instruction, during which most internal processing in processor 109 is disabled. In response to this IDLE instruction, processor 109 stops its internal clock and may execute only low-level routines so as to perform minimal tasks, such as determining when it is time to re-enter the normal mode. To this end, in the low-power mode, processor 109, via control FPGA 110 (described below), monitors signals received from RTC 113 and, based on these signals, determines when it is time to re-enter the normal mode. In a case that defibrillator 10 includes a button or the like (not shown) on its user interface for placing processor 109 in the normal mode manually, processor 109 also monitors such a button during the low-power mode.
  • Flash memories 94 comprise removable EPROMs or the like. Program ROM 96 stores the software modules described above with respect to FIG. 8 which are executed by processor 109. Static RAM 97 comprises a memory out of which those software modules may be executed. As described above, SRAM 97 is backed-up by backup battery 99. In this regard, backup battery 99 contains a rechargeable lithium coin cell battery which is sufficient to back up both RTC 113 and SRAM 97. Battery backup 99 may also be used to supply power to power annunciator 46. Alternatively, a second backup battery (not shown) may be used for this purpose.
  • Reset/watchdog circuit 106 monitors processor 109 and control FPGA 110 in order to determine if either processor 109 or control FPGA has lost program control. For example, in a preferred embodiment of the invention, control FPGA 110 outputs a square wave signal called WATCHDOG_OUT in a case that control FPGA 110 and processor 109 are communicating properly. Reset/watchdog circuit 106 monitors this signal for variations therein. In a case that this signal is interrupted, or has an unexpected waveform, reset/watchdog circuit 106 ascertains that there has been a system malfunction. As another example, processor 109 is programmed to generate a signal called CONTROL_PLD_FAULT in a case that control FPGA 110 has failed. Reset/watchdog circuit 106 monitors for this signal as well in order to ascertain if there has been a failure in control FPGA 110.
  • In the event that either processor 109 or control FPGA 110 has failed, a system reset will be attempted by reset/watchdog circuit 106. If the problem persists, reset/watchdog circuit 106 will instruct output circuit 109 to output an alarm, e.g., a “tone” or a “buzzing” via annunciator 46. In this regard, in the event of a system error which causes a reset to be asserted, an alarm will not be sounded immediately. That is, if the system successfully recovers after one reset, no alarm will be sounded. This design allows the system to rebound from a temporary fault without alerting the user unnecessarily. If, however, a persistent fault condition exists which reasserts itself for at least 200 msec per second, the alarm is sounded for 5 to 10 seconds. If the system subsequently recovers, the alarm will cease to sound at the conclusion of this 5 to 10 second period; otherwise, the alarm will continue as long as the system reset signal is asserted for 200 msec or more per second, stopping only when the backup battery for annunciator 46 has been drained.
  • The system will also reset itself if power output by power supply 20 drops below a predetermined level or goes above a predetermined level. To determine if power supply 20 has gone below or above these predetermined levels, power supply monitor 107 monitors power supply 20. In preferred embodiments of the invention, power supply monitor comprises plural comparators with associated circuitry for making these determinations. In a case that power supply 20 is low, or is outputting greater than a predetermined amount of power, this information is transmitted to reset/watchdog circuit 106. In response, reset/watchdog circuit 106 causes annunciator 46 to output an alarm via output circuit 104. In a case that power supply 20 has failed, processor 109 shuts down defibrillator 10 just after reset/watchdog circuit 106 has caused annunciator 46 to output the alarm.
  • Processor board 91 also includes control FPGA 110 and processor FPGA 102, which comprise glue logic for controlling inputs to, and outputs from, processor board 91. Processor FPGA 102 contains memory page registers, glue logic, and processor internal clock stopping/starting circuitry. This clock stopping/starting circuitry stops an internal clock of processor 109 for predetermined periods of time, such as 4 msec, during processor 109's low-power modes. Processor FPGA 102 also controls outputs to LED 41, auditory indicator 44 and visual indicator 42 (see FIG. 8). In this regard, interfaced to processor FPGA 102 is voice chip 100, e.g., an ISD33000 series Chip Voice Record/Playback device which can store up to 60 seconds of prerecorded voice messages. Voice driver 103 is also required to drive auditory indicator 44. An example of such a driver is a TI TPA4861D (SOIC-8). Defibrillator 10 also includes LCD controller/driver 101 which, in preferred embodiments of the invention, is an OKI MSM6555B or MISM6665 chip.
  • Control FPGA 110 contains a defibrillator state machine and various registers for controlling operations of defibrillator 10. Among these registers are capacitor configuration registers (not shown). By writing into these registers, capacitors 69 can be programmed to enable different capacitor configurations, i.e., the 221, 2111 or 11111 configurations shown in FIGS. 9 to 11. More specifically, control FPGA 110 includes CAP_SW1, CAP_SW2, CHRGELCB and CHARGE registers. Writing a “1” into the CHARGE register enables capacitor charging, whereas writing a “0” into the CHARGE register disables charging. Writing a “1” into the CHRGELCB register switches all capacitors into a parallel configuration for charging, whereas writing a “0” into the CHRGELCB register charges only one of capacitors 60 and allows that one of capacitors 69 to be placed into a series configuration for transmitting a tactile stimulation or pacing signal. Writing a “1” into the CAP_SW1 register switches two of capacitors 69 into a series configuration, whereas writing a “0” into CAP_SW1 register switches the two of capacitors 69 into a parallel configuration. Writing a “1” into the CAP_SW2 register switches two others of capacitors 69 into a series configuration, whereas writing a “0” into CAP_SW2 register switches the two others of capacitors 69 into a parallel configuration. Thus, values in CAP_SW1 and CAP_SW2 control the configuration of capacitors 69 during a defibrillation.
  • Control FPGA 110 comprises a plurality of other registers as well, including a defibrillator control register. Bits are written to the defibrillator control register to set defibrillator 10 to provide either defibrillation energy, a tactile stimulation signal, or a pacing signal. Control FPGA 110 also has a number of other functions, including monitoring the charge in capacitors 69 and adjusting the charge based on signals (e.g., patient impedance) received from an interfaced device such as electrode harness 4, monitoring inputs from user interface 47, e.g., the response button, and providing output via a serial interface (not shown) to base station 2 and via a non-contact interface (not shown) to personal computer 6.
  • As noted above, outputs from control FPGA 110, namely CAPSW1 and CAPSW2, control switching of capacitors 69 from the 11111 configuration into the 2111 and 221 configurations. FIG. 14 shows a detailed circuit diagram of capacitors 69 (and of transformer 114). In preferred embodiments of the invention, the circuitry shown in FIG. 14 fits on a circuit board having a surface area of roughly 2 inches2 or less. As shown in FIG. 14, capacitors 69 a, 69 b, 69 c, 69 d and 69 e are charged by power supply 20 via transformer 114. CAPSW1 controls switching of capacitors 69 b and 69 c via transistor switch 122, whereas CAPSW2 controls switching of capacitors 69 d and 69 e via transistor switch 124. As noted above, this switching controls the overall, combined capacitance of 69 a, 69 b, 69 c, 69 d and 69 e, which affects the amplitude and the tilt of a waveform output therefrom. Additional signal conditioning and output circuitry is also shown in FIG. 14 but, since this particular circuitry is not essential to the invention, a detailed description thereof has been omitted for the sake of brevity.
  • It is worth noting, however, that FIG. 14 also shows circuitry 126 which is used to output tactile stimulation and pacing signals from capacitor 69 a. As shown in FIG. 14, PACEP and TENSP, which are output by control FPGA 110, control application of the pacing and tactile stimulation and signals, respectively, from capacitor 69 a. That is, charge from capacitor 69 a, namely CAP1+127, is applied to circuitry 126 and processed for output as the pacing or tactile stimulation signal. FIG. 14 also shows the CHARGELCB signal, which was described above, and ISNSCB and IDSNSCB signals. The ISNSCB signal comprises a current sense signal which is used to determine the charge of capacitors 69, whereas the IDSNSCB signal is used to determine the defibrillation energy current. This information is passed back to processor board 91, which processes this information and responds in the manner described above. For example, in the event that processor 109 determines that capacitors 69 are charged excessively for a particular patient such that over-current or even over-time defibrillation could occur, defibrillator 10 may be shut down or temporarily disabled so that capacitors 69 can be discharged without harm to the patient.
  • Returning to FIG. 13, output circuitry 117 includes signal conditioning circuitry as well as control circuitry which ensures that defibrillation energy will not be output inadvertently. In this regard, the invention also includes other safety features which limit transmission of the defibrillation control signal. For example, prior to delivery of the defibrillation energy, processor 109 monitors and demonstrates that state control clocks controlling the defibrillation energy are operational, and also tests the hardware components in order to detect any single point failures therein. These tests include testing switches in input circuitry 116, through which the defibrillation energy is transmitted. These switches are tested, one at a time, to demonstrate that each switch is capable of holding off a full magnitude of the defibrillation energy. At each step of this switch test, a voltage across each transistor (i.e., switch) is monitored to record a test voltage and to record a transistor gate drive time constant in addition to combined opto isolator and transistor turn-off times. These voltages are then used to measure patient voltage during application of the defibrillation energy. Upper transistor switches, through which the defibrillation energy is transmitted, are tested first, followed by lower transistor switches. Each transistor switch is monitored and tested to demonstrate that the defibrillation energy would be terminated independently of hardware control timing.
  • In addition, as noted above, two pre-conditions must be met before defibrillation energy is transmitted the patient, namely, (i) the patient has experienced a treatable rhythm and (ii) the patient is unconscious. When these two conditions occur, processor 109 arms the defibrillation controller, e.g., control FPGA 110. Specifically, processor 109 provides the following sequence of control signals to initiate arming of the defibrillation controller. First, processor 109 tests its own internal safety signal (“PD_SAFE”) to demonstrate its ability to override any hardware defibrillation control signals. Processor 109 then confirms that defibrillation energy can be detected properly by activating test signals and reading current feedback signals based on these test signals. Master control module 90, executing within processor 109, sets a “defibrillator arm request status” bit in memory for use and checking by an executive control module (not shown). This executive control module monitors operation of the software and updates a watchdog timer in processor 109 (which outputs the WATCHDOG_OUT signal noted above) when the software is confirmed to function properly. The executive control module then sets an arm request signal in the defibrillation controller and calls a watchdog update subroutine which transitions the signal output from the watchdog timer. This causes a watchdog timer update and transitions the “armed request” status to the “armed” status in the defibrillation controller. The PD_SAFE signal is then put in the active state to allow the activation of hardware control signals for defibrillation therapy.
  • Next, processor 109 provides a final synchronized trigger signal to the defibrillation controller for delivery of the defibrillation energy. This synchronized trigger signal will be accepted only after the “armed” status has been established. The defibrillation controller will clear the armed status if the synchronization trigger signal is not provided within a 500 msec time period, thereby providing a limited acceptable period for defibrillation therapy. In a case that the defibrillation energy is transmitted to the patient, following transmission thereof, processor 109 determines if the defibrillation energy was transmitted properly. In this regard, defibrillation energy dosage errors of over-current are protected by the reset/watchdog circuit described above, but, if such an event does inadvertently occur, a fault condition is retained in a hardware fault register. Similarly, under-dosages of the defibrillation energy are also detected and stored. In addition to being stored, these and other defibrillator operational errors may be transmitted to base station 2.
  • Diagnostics module 84 also performs a plurality of diagnostics on defibrillator 10 to test defibrillator 10's hardware. These diagnostics include cold start diagnostics, which are executed when defibrillator 10 powers-up normally, warm start diagnostics which are executed when defibrillator 10 experiences transient reset or power loss, runtime diagnostics which are continuing, periodic tests performed in the background of normal operating conditions, and specific conditions diagnostics which are tests that are performed prior to, or when certain operations are performed, such as transmission of defibrillation energy.
  • Cold start diagnostics include RAM test, ROM test, D/A and A/D converter tests, FPGA tests, RTC and ECG sampling rate tests, LCD tests, voice circuitry tests, backup battery voltage tests, primary power supply voltage tests, internal voltage tests, old electrode harness test (i.e., whether the electrode harness has been changed after transmission of defibrillation energy), safety tests so as to verify that safety controls are operational, watchdog timer tests, shutdown tests, and patient parameters validation. Warm start diagnostics include operational state data tests (protected RAM validation) and patient parameters validation. Runtime diagnostics include watchdog timer active tests so as to confirm that a clock signal is active, software clock to real time clock comparison tests, software execution times checks, system voltage tests so as to test if the system is within voltage specifications, A/D runtime reference voltage tests, backup battery voltage tests, primary power supply voltage tests, internal voltage tests, old electrode harness test, operational state data integrity test, operational temperature tests, lead off tests, stuck keys test, safety tests including electrode harness time limit tests, defibrillation capacitor voltage tests, defibrillation output circuitry tests, output voltage tests, patient parameter validation, and impedance measurements. Specific conditions diagnostics include tests which are performed prior to transmission of defibrillation energy to the patient. These tests include cross checking processor tests whereby control FPGA 110 checks processor 109 for correct performance of a command sequence, and processor 109 checks control FPGA 110 for correct progression of states during set-up and transmission of defibrillation energy. Other tests include a watchdog timer test which resets the system in a case that processor 109 fails to respond periodically, electrodes-off tests in which processor 109 confirms that electrodes are attached to the patient, operational therapy state data integrity tests, pre-therapy dosage tests whereby energy to be transmitted as defibrillation energy is compared with two impedance measurements prior to transmission, stuck ECG relay contacts tests (prior to defibrillation), H-bridge therapy tests, and delivered defibrillation current limiting tests.
  • Base Station
  • In brief, a base station for use with the present invention includes a defibrillator interface, over which information is exchanged with the defibrillator, and an external interface over which information is exchanged with an external entity, such as central repository 9, a doctor's office, a hospital, etc. Also included in the base station is a controller which receives patient information and defibrillation information from the defibrillator, transmits the patient information and defibrillation information to the external entity, receives defibrillator programming information from the external entity, programs the defibrillator in accordance with the defibrillator programming information, performs diagnostics on the defibrillator, and transmits results of the diagnostics to at least one of the defibrillator and the external entity. Communication between the defibrillator and the base station may be via an RF, IR, or direct electrical connection. In addition, communication/testing may be effected by direct contact between the sensing electrodes and the base station.
  • A block diagram of base station 2 is shown in FIG. 15. As shown, base station 2 includes, RAM 130, program memory 131, user interface 132, non-volatile memory 133, defibrillator interface 134, external interface 136, controller 137, address/data bus 139, and personal computer interface 140. Base station 2 may receive power from an external source, such as a wall outlet, or from a battery (not shown). Each of the features of base station 2 shown in FIG. 15 is described in more detail below.
  • User interface 132 can comprise a keyboard, buttons, switches, or the like, which provide a user with a way to control base station 2 directly. Defibrillator interface 134 corresponds to connector 51 shown in FIG. 1 and comprises an interface to defibrillator 10, over which patient information (e.g., ECG information) and defibrillator information (e.g., errors in operation of defibrillator 10) is received from the defibrillator, and over which external information (i.e., information received from an external source, such as new patient parameters) is transmitted to the defibrillator. Defibrillator interface 134 includes base station 2's physical connector ID. Defibrillator interface 134 is preferably a serial interface and, as described above, mates to the same connector on defibrillator 10 that is used to interface defibrillator 10 to electrode harness 4.
  • Personal computer 6, which is interfaced to base station 2 via personal computer interface 140, may be used to indicate operational characteristics of base station 2, such as when base station 2 is uploading data, whether that upload was successful, a display of all uploaded data, etc.
  • External interface comprises a link to an external location, such as central repository 9 (see FIG. 1) or a personal computer, over which patient and defibrillation information is transmitted to the external source, and over which the external information is received from the external source. External interface can comprise a modem link, a network connection, or the like, over which data may be transmitted to and from base station 2. At this point, it is noted that all information stored in data logging memory block 57 above can be transmitted over defibrillator interface 134 and external interface 136 of base station 2.
  • Controller 137 comprises a microprocessor or the like, which is capable of executing stored program instructions so as to control operation of base station 2. Any type of processor may be employed, such as those described above with respect to defibrillator 10. Program instructions that can be executed by controller 137 are stored in program memory 131. Program memory 131 preferably comprises an EPROM, or the like, which can be reprogrammed with newly-received information or routines by controller 137. In preferred embodiments of the invention, program memory 131 stores control module 140, diagnostics module 142, and patient parameters 144, among other data and software modules.
  • Patient parameters 144 correspond to the patient parameters described above and, as noted, can be reprogrammed based on information, such as instructions, provided from an external source. Control module 140 is executed so as to control transfer of information between defibrillator 10, base station 2, and central repository 9. Diagnostics module 142 comprises a module which performs various safety diagnostics on defibrillator 10 when defibrillator 10 is interfaced to base station 2. By way of example, control module 140 may be executed to retrieve information relating to operational errors of defibrillator 10 from data logging memory block 57 of defibrillator 10. Diagnostics module 142 may then use this information to target-test components and/or software on defibrillator 10 that may be responsible for these errors. Alternatively, diagnostics module 142 may perform a complete safety diagnostic check on all aspects of defibrillator 10 each time defibrillator 10 is mated to base station 2.
  • In this regard, base station 2 is capable of performing diagnostics comprising an audio test to confirm that messages and tones output by defibrillator 10 are clearly audible; measurement tests to confirm that all measurements in defibrillator 10 needed to perform a defibrillation procedure are as expected; ECG analysis tests so as to confirm that defibrillator 10 is able to detect and differentiate various cardiac arrhythmias; defibrillation waveform tests so as to confirm that defibrillator 10 can generate and output a waveform appropriate for a patient having a particular impedance; patient leakage current tests so as to confirm that leakage current in defibrillator 10 is not above an acceptable level; over-dosage defibrillation tests so as to confirm that defibrillator 10 will automatically terminate an over-current defibrillation (e.g., Imax≧30 A) and an over-time defibrillation (e.g., tmax≧20 msec); under-dosage defibrillation tests so as to determine if defibrillator is providing an under-current defibrillation (e.g., Imax is less than a required current for a patient's impedance measurement by more than 20%) or an under-time defibrillation (e.g., tmax is less than a required duration for a patient's impedance measurement by more than 20%); power consumption tests so to confirm that defibrillator 10 meets with the power requirements set forth in Table 2 below; and button switch tests to confirm that each button on user interface 47 is operating properly.
    TABLE 2
    Defibrillator Operating Conditions Current Constraint
    Low-Power Mode <2 mA
    Patient Monitoring Only <20 mA
    Detection of Ventricular Fibrillation <400 mA
    When any of the following operations are active <900 mA
    i) Flash read/write
    ii) LCD
    iii) Voice message/Tone
    iv) Accessory Communications
    Charging of Capacitors <3.0 A
  • Diagnostics module 142 may also be executed to check proper transmission of patient parameters or other programming information from base station 2 to defibrillator 10. More specifically, in operation, base station 2 receives new patient parameters over external interface 136 from central repository 9, and transmits these patient parameters over defibrillator interface 134 to data logging memory block 57 in defibrillator 10. Diagnostics module 142 may then be executed to issue a request for the patient parameters stored in data logging memory block 57 over defibrillator interface 134, to receive the patient parameters therefrom over defibrillator interface 134, and to compare the patient parameters, including a checksum, to the same patient parameters, which are stored in program memory 131, so as to verify valid receipt of the patient parameters by defibrillator 10.
  • In preferred embodiments of the invention, the results of the foregoing diagnostics may be transmitted back to defibrillator 10 in order to warn the user of the defects via, e.g., an LCD or a speaker. In addition, the results of such diagnostics may also be transmitted to an external location via external interface 136 for analysis or the like.
  • Base station 2 also includes RAM 130, out of which controller 137 executes program instructions stored in program memory 131, and non-volatile memory 133, which stores information received from defibrillator 10 and from an external source. Non-volatile memory 133 can comprise an NVRAM, battery backed-up RAM, EPROM, or the like, and has a storage capacity which is the same as or greater than that of data logging memory block 57 on defibrillator 10. This is preferable, since non-volatile memory 133 should be capable of storing any information downloaded to base station 2 from defibrillator 10, including all or part of the information described above that is stored in data logging memory block 57, i.e., abnormal heart activity of the patient, the patient's ECG before, during and after application of defibrillation energy, etc. In this regard, upon connection of defibrillator 10 to defibrillator interface 134, in preferred embodiments of the invention, controller 137 requests defibrillator 10 to upload data stored in data logging memory block 57 and, if the data has been uploaded successfully, controller 137 requests defibrillator 10 to reset all recorded data in data logging memory block 57, and also to clear patient parameters stored therein to their default settings.
  • As noted above, it is possible to reprogram defibrillator 10 and/or base station 2 with information received from the external location. In fact, it is even possible to use information received from defibrillator 10 to affect such reprogramming. More specifically, information relating to patients using the same type of defibrillator, i.e., defibrillator 10's type, is stored in central repository 9. This information can be analyzed in order to test algorithms used in defibrillator 10. One such algorithm that may be tested is an algorithm used by ECG analysis module 87 above to detect irregular heart activity. Once this algorithm is tested based on analysis results from plural defibrillators, it is possible to pinpoint errors in the algorithm, and to correct these errors. Thereafter, the corrected algorithm can be transmitted back to base station 2, as well as to a plurality of other base stations. In this regard, central repository may identify base station 2 as corresponding to defibrillator 10 based on defibrillator 10's ID number. Base station 2 can then reprogram defibrillator 10 using the corrected algorithm. As a result the invention provides a means by which to improve its performance based on information collected thereby.
  • The present invention has been described with respect to particular illustrative embodiments. It is to be understood that the invention is not limited to the above-described embodiments and modifications thereto, and that various changes and modifications may be made by those of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims (77)

1. A wearable defibrillator adapted to deliver defibrillation energy to a patient, the wearable defibrillator comprising:
at least one electrode having a conductive surface in contact with the patient's skin, the at least one electrode being adapted for long-term wear on the patient.
2. A wearable defibrillator according to claim 1, wherein the at least one electrode comprises one or more of the following types of electrodes: a segmented electrode, a low-surface area electrode, a traditional defibrillation electrode, and a subcutaneous electrode.
3. A wearable defibrillator according to claim 1, wherein the at least one electrode is wearable for a period of greater than one week.
4. A wearable defibrillator according to claim 1, wherein the at least one electrode includes electrically-conductive hydrogel at a surface thereof with contacts to the patient's skin, the electrically-conductive hydrogel having a predetermined ion concentration.
5. A wearable defibrillator according to claim 4, wherein the electrically-conductive hydrogel includes a therapeutic agent which promotes skin health.
6. A wearable defibrillator according to claim 1, wherein the at least one electrode includes a mesh at a surface thereof which contacts to the patient's skin.
7. A wearable defibrillator according to claim 1, wherein the at least one electrode is periodically movable to different positions on the patient.
8. A wearable defibrillator for delivering defibrillation energy to a patient, the defibrillator comprising:
at least one electrode which attaches to the patient for transmitting the defibrillation energy to the patient and for receiving patient information from the patient;
a plurality of capacitors which are switchable so as to alter characteristics of the defibrillation energy; and
a controller which controls switching of the plurality of capacitors in accordance with the patient information received from the at least one electrode.
9. A wearable defibrillator according to claim 8, wherein the patient information comprises a thoracic impedance of the patient.
10. A wearable defibrillator according to claim 9, wherein the thoracic impedance is determined periodically by applying an AC signal through the at least one electrode, sampling data obtained from the at least one electrode in response to the AC signal, and analyzing the sampled data.
11. A wearable defibrillator according to claim 9, wherein the thoracic impedance is calculated each time the defibrillation energy is transmitted to the patient based on patient information received from the at least one electrode in response to the defibrillation energy.
12. A wearable defibrillator according to claim 9, wherein the controller controls switching of the capacitors in a case that the thoracic impedance of the patient is within a predetermined range.
13. A wearable defibrillator according to claim 8, wherein the patient information comprises an electrocardiogram of the patient.
14. A wearable defibrillator according to claim 13, wherein the controller controls switching of the capacitors in a case that the electrocardiogram indicates a cardiac arrhythmia and in a case that the patient is unconscious.
15. A wearable defibrillator according to claim 8, wherein the patient information comprises electrode-to-skin impedance, the electrode-to-skin impedance being used to determine connection of the at least one electrode to the patient.
16. A wearable defibrillator according to claim 8, wherein the patient information comprises artifact noise in the patient's body.
17. A wearable defibrillator according to claim 8, further comprising a memory which stores the patient parameter, the patient parameters comprising at least one of the patient's name; the language used for voice and corresponding text messages; a minimum audio level to which a patient responds a minimum tactile stimulation signal to which a patient responds, a maximum tactile stimulation signal for a patient, a pacing bradycardia rate, a pace current level, the patient's ID number, a ventricular tachycardia rate at which defibrillation energy is to be delivered to the patient, the patient's thoracic impedance range, a time and a date at which the defibrillator was issued to the patient, a name of a clinic at an external location, a name of a clinician at the external location, and an electrode-to-skin impedance range;
wherein the controller controls switching of the plurality of capacitors also in accordance with the patient parameters.
18. A wearable defibrillator according to claim 8, wherein the plurality of capacitors comprises five capacitors; and
wherein the five capacitors are switchable in configurations of 221, 2111 and 1111.
19. A wearable defibrillator according to claim 8, wherein the at least one electrode is capable of transmitting a tactile stimulation signal from at least one of the plurality of capacitors to the patient.
20. A wearable defibrillator according to claim 19, wherein the tactile stimulation signal is transmitted to the patient in a case that the patient information indicates that the patient has suffered a cardiac arrhythmia.
21. A wearable defibrillator according to claim 8, wherein the wearable defibrillator includes a floating ground.
22. A wearable defibrillator for delivering defibrillation energy to a patient, the defibrillator comprising:
at least one electrode which attaches to the patient for transmitting the defibrillation energy to the patient; and
a signal generator for generating the defibrillation energy, wherein the defibrillation energy has a bi-phasic waveform with a peak amplitude that is below 23 amperes for a patient having a thoracic impedance which is at least 40 ohms.
23. A wearable defibrillator according to claim 22, wherein the bi-phasic waveform includes two phases having substantially identical durations.
24. A wearable defibrillator according to claim 22, wherein the bi-phasic waveform includes two phases in which a first phase has a duration which is greater than a duration of the second phase.
25. A wearable defibrillator according to claim 23, wherein the at least one electrode receives information from the patient which indicates a thoracic impedance of the patient; and
wherein the signal generator varies the peak amplitude of the defibrillation energy in accordance with the thoracic impedance of the patient.
26. A wearable defibrillator according to claim 25, wherein the signal generator comprises a plurality of capacitors which are switchable in order to affect the amplitude of the defibrillation energy.
27. A wearable defibrillator according to claim 26, further comprising a resistor in series with the plurality of capacitors.
28. A wearable defibrillator according to claim 23, wherein an average amplitude of the defibrillation energy is below 17 amperes for a patient having a thoracic impedance which is at least 40 ohms.
29. A wearable defibrillator according to claim 23, wherein the bi-phasic waveform is truncated and delivered within a predetermined time period.
30. A wearable defibrillator according to claim 22, wherein each of electrode has a surface area which is less than 60 cm2.
31. A wearable defibrillator according to claim 22, wherein each electrode has a surface area which is less than 50 cm2.
32. A wearable defibrillator according to claim 22, wherein each electrode has a surface area which is less than 40 cm2.
33. A wearable defibrillator according to claim 22, wherein each electrode has a surface area which is less than 30 cm2.
34. A wearable defibrillator for delivering defibrillation energy to a patient, the defibrillator comprising:
a signal generator for generating the defibrillation energy; and
a plurality of segmented electrodes each having a conductive area for transmitting the defibrillation energy to the patient, wherein the plurality of segmented electrodes are divided into groups of two or more electrodes, each of the groups of electrodes having at least one line connected to the signal generator, each line having a length sufficient for each group of electrodes to be placed on the patient a predetermined distance away from others of the groups of electrodes, the electrodes in at least one of the groups being spatially arranged to have an effective conductive area which is greater than a total combined conductive area of the electrodes in the group.
35. A wearable defibrillator according to claim 34, further comprising a plurality of non-electrically conductive pads;
wherein each of the groups of two or more electrodes is mounted on one of the plurality of non-electrically conductive pads such that each electrode in the group of electrodes is mounted a predetermined distance away from at least one other electrode in the group of electrodes.
36. A wearable defibrillator according to claim 35, wherein each electrode in the groups of electrodes includes electrically-conductive hydrogel at a surface thereof with contacts to the patient's skin, the electrically-conductive hydrogel having a predetermined ion concentration.
37. A wearable defibrillator according to claim 36, wherein each non-electrically conductive pad includes therapeutic hydrogel at a surface thereof which contacts to the patient's skin.
38. A wearable defibrillator according to claim 35, wherein each non-electrically conductive pad is flexible.
39. A wearable defibrillator according to claim 34, wherein the groups of electrodes are arrangeable on different areas of the patient in predetermined geometric patterns such that the defibrillation energy transmitted from the plurality of electrodes covers a predetermined area of the patient's myocardium.
40. A wearable defibrillator according to claim 39, wherein the groups of electrodes in predetermined geometric patterns are movable relative to the patient such that the predetermined geometric patterns are substantially retained but are at different orientations relative to the patient.
41. A wearable defibrillator according to claim 34, wherein each of the plurality of segmented electrodes is shaped so that each electrode has a perimeter which is greater than a circumference corresponding to a radius of the electrode.
42. A wearable defibrillator according to claim 34, wherein the signal generator includes a power supply which supplies power to the signal generator so as to enable the signal generator to generate the defibrillation energy; and
wherein each line corresponding to each group of electrodes is non-removably connected to the power supply.
43. A wearable defibrillator according to claim 42, wherein the power supply is sealed with a membrane.
44. A wearable defibrillator according to claim 34, further comprising:
a speaker for providing auditory messages to the patient; and
a controller for monitoring each of the segmented electrodes;
wherein the controller monitors a duration of use of each of the segmented electrodes and, when the controller determines that an electrode has been in use for greater than a predetermined period of time, the controller issues a signal to the speaker alerting the patient which electrode has been in use for greater than the predetermined period of time.
45. A wearable defibrillator according to claim 34, wherein each of the plurality of segmented electrodes is capable of transmitting defibrillation energy having a bi-phasic waveform.
46. A wearable defibrillator according to claim 34, wherein each of the plurality of segmented electrodes is capable of transmitting defibrillation energy having a truncated exponential waveform.
47. A wearable defibrillator according to claim 34, wherein each of the plurality of segmented electrodes is capable of transmitting defibrillation energy having a mono-phasic waveform.
48. A wearable defibrillator according to claim 34, wherein the segmented electrodes are separated from each other on the patient by between 0.5 and 3 times an effective diameter of each electrode.
49. A wearable defibrillator according to claim 34, wherein each of the segmented electrodes includes an adhesive on a surface thereof which contacts the patient's skin.
50. A wearable defibrillator for delivering defibrillation energy to a patient, the defibrillator comprising:
an external interface, over which patient information is transmitted to an external location;
a patient interface, over which the defibrillation energy is transmitted to the patient, and over which the patient information is received;
a processor which analyzes the patient information received over the patient interface and which controls transmission of the defibrillation energy to the patient based on at least a first portion of the patient information; and
a memory which stores at least a second portion of the patient information prior to transmission of the second portion of the patient information over the external interface.
51. A wearable defibrillator according to claim 50, wherein the external interface is capable of interfacing to a base station, the base station for receiving the second portion of the patient information from the memory and for transmitting defibrillator programming information to the defibrillator via the external interface, the processor using the defibrillator programming information to reprogram the wearable defibrillator.
52. A wearable defibrillator according to claim 51, further comprising a power supply which supplies power to the wearable defibrillator and which is capable of interfacing to the external interface.
53. A wearable defibrillator according to claim 50, wherein the at least the second portion of the patient information comprises a log, for a predetermined period, which includes at least one of abnormal heart activity of the patient, an electrocardiogram of the patient, and artifact noise in the patient.
54. A wearable defibrillator according to claim 53, further comprising a user interface by which the user interacts with the wearable defibrillator;
wherein the memory further stores a response of the wearable defibrillator to the abnormal heart activity and information concerning patient interaction with the wearable defibrillator.
55. A wearable defibrillator according to claim 54, further comprising an accelerometer which the processor monitors to determine motion of the patient;
wherein the memory further stores data from the accelerometer relating to motion of the patient.
56. A wearable defibrillator according to claim 55, wherein the processor detects defibrillator operational errors and stores the defibrillator operational errors in the memory;
wherein the external interface is capable of interfacing to both a base station and a power supply; and
wherein, in a case that the external interface is interfaced to the base station, the processor transmits, over the external interface, the abnormal heart activity of the patient, the electrocardiogram of the patient, the artifact noise in the patient, the response of the wearable defibrillator to the abnormal heart activity, the information concerning patient interaction with the wearable defibrillator, the data from the accelerometer relating to motion of the patient, and the defibrillator operational errors.
57. A wearable defibrillator according to claim 50, wherein the external interface comprises a non-contact interface over which the patient information is transmitted to a personal computer.
58. A wearable defibrillator according to claim 57, wherein the patient information comprises an electrocardiogram and impedance information for the patient.
59. A wearable defibrillator according to claim 57, wherein the non-contact interface comprises an infrared (“IR”) interface.
60. A wearable defibrillator according to claim 57, wherein the non-contact interface comprises a radio frequency (“RF”) interface.
61. A wearable defibrillator according to claim 50, wherein the memory comprises a flash EPROM; and
wherein the second portion of the patient information is stored in the flash EPROM as compressed data.
62. A wearable defibrillator according to claim 61, wherein the processor compresses data using a lossless compression technique..
63. A wearable defibrillator according to claim 50, wherein the patient interface comprises a plurality of sensing electrodes, the defibrillation energy has a bi-phasic waveform that is transmitted over each of the sensing electrodes, the first patient information comprises an electrocardiogram and thoracic impedance of the patient, and the second patient information comprises an operational history of the wearable defibrillator; and
wherein both the first patient information and the second patient information are stored in the memory and both the first patient information and the second patient information are transmitted over the external interface.
64. A wearable defibrillator according to claim 50, further comprising one or more indicators which provide the patient with indications relating to at least one of the patient information and operability of the wearable defibrillator.
65. A wearable defibrillator according to claim 64, wherein the one or more indicators comprises an auditory indicator which provides the patient with auditory prompts for using the wearable defibrillator.
66. A wearable defibrillator according to claim 65, wherein at least one of the auditory prompts is provided in a case that the processor analyzes the patient information and determines that abnormal heart activity has occurred in the patient.
67. A wearable defibrillator according to claim 66, further comprising a user interface for providing a response signal to the processor in response to user activation;
wherein the processor waits a predetermined period of time after the at least one of the auditory prompts has been provided to the patient and, in a case that the processor does not detect the response signal, the processor causes immediate transmission of the defibrillation energy to the patient.
68. A wearable defibrillator according to claim 65, wherein the patient interface comprises one or more sensing electrodes which are attached to the patient;
wherein the patient information comprises electrode-to-skin impedance from the patient, the electrode-to-skin impedance from the patient being indicative of whether the one or more sensing electrodes is attached to the patient; and
wherein the processor causes the auditory indicator to provide an indication to the patient that the at least one electrode has become detached in a case that the electrode-to-skin impedance from the patient is below a predetermined level.
69. A wearable defibrillator according to claim 65, further comprising a power supply for supplying power to the wearable defibrillator;
wherein the processor monitors the power supply and causes the auditory indicator to provide an auditory message to the patient in a case that the power supply is below a predetermined level.
70. A wearable defibrillator according to claim 64, wherein the one or more indicators comprises a visual display and an auditory indicator which echos information displayed on the visual display.
71. A wearable defibrillator according to claim 50, further comprising a user interface for providing a response signal to the processor in response to user activation;
wherein the patient interface comprises at least one electrode which is capable of transmitting a tactile stimulation signal to the patient; and
wherein the processor waits a predetermined period of time after the tactile stimulation signal has been transmitted to the patient and, in a case that the processor does not detect the response signal, the processor causes transmission of the defibrillation energy to the patient.
72. A wearable defibrillator for delivering defibrillation energy to a patient, the defibrillator comprising:
a patient interface, over which patient information is received from the patient, and over which the defibrillation energy is transmitted to the patient; and
a processor which operates in a normal mode and a low-power consumption mode, wherein, during the normal mode, the processor receives the patient information and controls transmission of the defibrillation energy in accordance with the patient information.
73. A wearable defibrillator according to claim 72, wherein the processor enters the low-power consumption mode periodically for predetermined periods of time.
74. A wearable defibrillator according to claim 73, wherein the predetermined periods of time are variable based on the patient information.
75. A wearable defibrillator according to claim 74, further comprising a memory which stores a log of the patient information for a span of time;
wherein the processor varies the predetermined periods based on the log of patient information stored in the memory.
76. A wearable defibrillator according to claim 72, further comprising a user interface by which a user may place the processor in the normal mode manually.
77. A wearable defibrillator according to claim 72, further comprising a plurality of hardware components for use in outputting the defibrillation energy and for communicating with the patient;
wherein the processor causes each of the plurality of hardware components to be selectively powered-up and powered-down at predetermined time intervals.
US10/224,689 1997-03-07 2002-08-21 Defibrillation system Abandoned US20110022105A9 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/224,689 US20110022105A9 (en) 1997-03-07 2002-08-21 Defibrillation system
US14/308,119 US9089718B2 (en) 1997-03-07 2014-06-18 Defibrillation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4012397P 1997-03-07 1997-03-07
US09/036,265 US6148233A (en) 1997-03-07 1998-03-06 Defibrillation system having segmented electrodes
US09/652,054 US6546285B1 (en) 1997-03-07 2000-08-31 Long term wear electrode for defibrillation system
US10/224,689 US20110022105A9 (en) 1997-03-07 2002-08-21 Defibrillation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/652,054 Division US6546285B1 (en) 1997-03-07 2000-08-31 Long term wear electrode for defibrillation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/308,119 Continuation US9089718B2 (en) 1997-03-07 2014-06-18 Defibrillation system

Publications (2)

Publication Number Publication Date
US20030004547A1 US20030004547A1 (en) 2003-01-02
US20110022105A9 true US20110022105A9 (en) 2011-01-27

Family

ID=26712993

Family Applications (12)

Application Number Title Priority Date Filing Date
US09/036,265 Expired - Lifetime US6148233A (en) 1997-03-07 1998-03-06 Defibrillation system having segmented electrodes
US09/651,947 Expired - Lifetime US6301502B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US09/652,329 Expired - Lifetime US6374138B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US09/651,847 Expired - Lifetime US6427083B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US09/653,174 Expired - Lifetime US6304780B1 (en) 1997-03-07 2000-08-31 External defibrillator system with diagnostic module
US09/652,054 Expired - Lifetime US6546285B1 (en) 1997-03-07 2000-08-31 Long term wear electrode for defibrillation system
US09/652,701 Expired - Lifetime US6418342B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US10/159,806 Abandoned US20030055460A1 (en) 1997-03-07 2002-05-31 Defibrillator with configurable capacitor arrangement
US10/224,689 Abandoned US20110022105A9 (en) 1997-03-07 2002-08-21 Defibrillation system
US10/227,698 Expired - Lifetime US6671545B2 (en) 1997-03-07 2002-08-26 Defibrillator with controller operating in a low power mode
US10/235,171 Expired - Lifetime US6944498B2 (en) 1997-03-07 2002-09-05 Method of utilizing an external defibrillator by replacing its electrodes
US14/308,119 Expired - Fee Related US9089718B2 (en) 1997-03-07 2014-06-18 Defibrillation system

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US09/036,265 Expired - Lifetime US6148233A (en) 1997-03-07 1998-03-06 Defibrillation system having segmented electrodes
US09/651,947 Expired - Lifetime US6301502B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US09/652,329 Expired - Lifetime US6374138B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US09/651,847 Expired - Lifetime US6427083B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US09/653,174 Expired - Lifetime US6304780B1 (en) 1997-03-07 2000-08-31 External defibrillator system with diagnostic module
US09/652,054 Expired - Lifetime US6546285B1 (en) 1997-03-07 2000-08-31 Long term wear electrode for defibrillation system
US09/652,701 Expired - Lifetime US6418342B1 (en) 1997-03-07 2000-08-31 Defibrillation system
US10/159,806 Abandoned US20030055460A1 (en) 1997-03-07 2002-05-31 Defibrillator with configurable capacitor arrangement

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/227,698 Expired - Lifetime US6671545B2 (en) 1997-03-07 2002-08-26 Defibrillator with controller operating in a low power mode
US10/235,171 Expired - Lifetime US6944498B2 (en) 1997-03-07 2002-09-05 Method of utilizing an external defibrillator by replacing its electrodes
US14/308,119 Expired - Fee Related US9089718B2 (en) 1997-03-07 2014-06-18 Defibrillation system

Country Status (6)

Country Link
US (12) US6148233A (en)
EP (1) EP1011806A2 (en)
JP (1) JP2002514107A (en)
AU (1) AU6454798A (en)
CA (1) CA2283339C (en)
WO (1) WO1998039061A2 (en)

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069857A1 (en) * 2005-11-15 2009-03-12 Heinz Bucher External Automatic Defibrillator
US20120112903A1 (en) * 2010-11-08 2012-05-10 Zoll Medical Corporation Remote medical device alarm
WO2013106038A2 (en) * 2011-04-08 2013-07-18 The Johns Hopkins University Automatic external defibrillator for implatable cardiac defibrillator patients undergoing procedures involving electromagnetic interference
US20130325078A1 (en) * 2012-05-31 2013-12-05 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US20140025131A1 (en) * 2012-07-20 2014-01-23 Physio-Control, Inc. Wearable defibrillator with voice prompts and voice recognition
US20140085081A1 (en) * 2012-09-24 2014-03-27 Physio-Control, Inc. Wearable cardiac defibrillator receiving inputs by being deliberately tapped & methods
US8774917B2 (en) 2007-06-06 2014-07-08 Zoll Medical Corporation Wearable defibrillator with audio input/output
CN104225791A (en) * 2013-06-06 2014-12-24 云想数位科技股份有限公司 Intelligent mobile device with emergency external defibrillation function
US8929980B2 (en) * 2012-05-03 2015-01-06 Physio-Control, Inc. External defibrillator electrode, method and system for reducing ECG artifact
US9138592B2 (en) 2013-04-29 2015-09-22 Thinkcloud Digital Technology Co., Ltd. Defibrillation system and method and defibrillator electrode device
US9204813B2 (en) 2011-03-25 2015-12-08 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
WO2016036883A1 (en) * 2014-09-02 2016-03-10 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
WO2016081815A1 (en) * 2014-11-20 2016-05-26 Zoll Medical Corporation External case for a wearable medical device
US20160218021A1 (en) * 2015-01-27 2016-07-28 Advanced Semiconductor Engineering, Inc. Semiconductor package and method of manufacturing the same
US9408548B2 (en) 2011-03-25 2016-08-09 Zoll Medical Corporation Selection of optimal channel for rate determination
US9579516B2 (en) 2013-06-28 2017-02-28 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US20170128735A1 (en) * 2015-11-02 2017-05-11 West Affum Holdings Corp. Wearable cardioverter defibrillator (wcd) causing patient's qrs width to be plotted against the heart rate
US9659475B2 (en) 2011-03-25 2017-05-23 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9684767B2 (en) 2011-03-25 2017-06-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9757576B2 (en) 2014-03-18 2017-09-12 West Affum Holdings Corp. Reliable readiness indication for a wearable defibrillator
US9757579B2 (en) 2013-02-25 2017-09-12 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system informing patient that it is validating just-detected cardiac arrhythmia
US9757581B2 (en) 2014-05-13 2017-09-12 West Affum Holdings Corp. Wearable cardioverter defibrillator components making aggregate shock/no shock determination from two or more ECG signals
US9795782B2 (en) 2011-02-09 2017-10-24 West Affum Holdings Corp. RFID-based sensing of changed condition
US9814894B2 (en) 2012-05-31 2017-11-14 Zoll Medical Corporation Systems and methods for detecting health disorders
US9827431B2 (en) 2013-04-02 2017-11-28 West Affum Holdings Corp. Wearable defibrillator with no long-term ECG monitoring
US9833631B2 (en) 2014-04-02 2017-12-05 West Affum Holdings Corp. Pressure resistant conductive fluid containment
US9878173B2 (en) 2014-03-19 2018-01-30 West Affum Holdings Corp. Wearable cardiac defibrillator system delivering shock upon hearing preset ready word from bystander
US9878171B2 (en) 2012-03-02 2018-01-30 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device
US9895548B2 (en) 2013-01-23 2018-02-20 West Affum Holdings Corp. Wearable cardiac defibrillator (WCD) system controlling conductive fluid deployment per impedance settling at terminal value
US9901741B2 (en) 2015-05-11 2018-02-27 Physio-Control, Inc. Wearable cardioverter defibrillator (WCD) system using sensor modules with reassurance code for confirmation before shock
US10016613B2 (en) 2013-04-02 2018-07-10 West Affum Holdings Corp. Wearable cardiac defibrillator system long-term monitoring alternating patient parameters other than ECG
US10016614B2 (en) 2013-02-25 2018-07-10 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations by aggregating aspects of multiple patient parameters
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10022062B1 (en) 2011-02-09 2018-07-17 West Affum Holdings Corp. Detecting loss of full skin contact in patient electrodes
USD825060S1 (en) 2014-06-24 2018-08-07 West Affum Holdings Corp. Portable defibrillator carrier
US10080886B2 (en) 2014-10-30 2018-09-25 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US10155110B2 (en) 2012-08-10 2018-12-18 West Affum Holdings Corp. Controlling functions of wearable cardiac defibrillation system
US10179246B2 (en) 2015-12-04 2019-01-15 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system using security NFC tag for uploading configuration data
US10252070B2 (en) 2015-09-08 2019-04-09 Zoll Medical Corporation Secure limited components for use with medical devices
US10272010B2 (en) 2015-03-20 2019-04-30 Zoll Medical Corporation Systems and methods for testing a medical device
US10322291B2 (en) 2015-12-04 2019-06-18 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with isolated patient parameter component
US10328275B2 (en) 2007-06-07 2019-06-25 Zoll Medical Corporation Medical device configured to test for user responsiveness
US10328266B2 (en) 2012-05-31 2019-06-25 Zoll Medical Corporation External pacing device with discomfort management
US10426342B2 (en) 2016-03-31 2019-10-01 Zoll Medical Corporation Remote access for ambulatory medical device
US10449370B2 (en) 2014-05-13 2019-10-22 West Affum Holdings Corp. Network-accessible data about patient with wearable cardiac defibrillator system
US10493289B2 (en) 2010-07-09 2019-12-03 Zoll Medical Corporation System and method for conserving power in a medical device
US10500403B2 (en) 2013-02-25 2019-12-10 West Affum Holdings Corp. WCD system validating detected cardiac arrhythmias thoroughly so as to not sound loudly due to some quickly self-terminating cardiac arrhythmias
US10543377B2 (en) 2013-02-25 2020-01-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations by aggregating aspects of patient parameters
US10589109B2 (en) 2017-04-10 2020-03-17 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system computing patient heart rate by multiplying ECG signals from different channels
US10602945B2 (en) 2018-03-13 2020-03-31 Zoll Medical Corporation Telemetry of wearable medical device information to secondary medical device or system
US10617881B2 (en) 2015-07-22 2020-04-14 Zoll Medical Corporation Systems for medical device interactions
US10646707B2 (en) 2017-11-30 2020-05-12 Zoll Medical Corporation Medical devices with rapid sensor recovery
US10674911B2 (en) 2016-03-30 2020-06-09 Zoll Medical Corporation Systems and methods of integrating ambulatory medical devices
US10729900B2 (en) 2016-03-29 2020-08-04 Zoll Medical Corporation Configurable electrodes and sensors
US10737104B2 (en) 2017-07-28 2020-08-11 West Affum Holdings Corp. WCD system outputting human-visible indication and proximate programming device with screen reproducing the human-visible indication in real time
US10835449B2 (en) 2015-03-30 2020-11-17 Zoll Medical Corporation Modular components for medical devices
US10918877B2 (en) 2018-09-28 2021-02-16 Zoll Medical Corporation Battery lock for ambulatory medical device
US10918879B2 (en) 2017-07-28 2021-02-16 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise
USD911527S1 (en) 2018-02-15 2021-02-23 West Affum Holdings Corp. Wearable cardioverter defibrillator connector
US10926080B2 (en) 2017-01-07 2021-02-23 West Affum Holdings Corp. Wearable cardioverter defibrillator with breast support
US10932726B2 (en) 2018-03-16 2021-03-02 Zoll Medical Corporation Monitoring physiological status based on bio-vibrational and radio frequency data analysis
US10940324B2 (en) 2017-05-03 2021-03-09 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system computing heart rate from noisy ECG signal
US10940323B2 (en) 2016-10-04 2021-03-09 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) with power-saving function
US10946207B2 (en) 2017-05-27 2021-03-16 West Affum Holdings Corp. Defibrillation waveforms for a wearable cardiac defibrillator
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US10957453B2 (en) 2019-08-15 2021-03-23 West Affum Holdings Corp. WCD system alert issuance and resolution
US10960213B2 (en) 2018-03-12 2021-03-30 Zoll Medical Corporation Verification of cardiac arrhythmia prior to therapeutic stimulation
US10960220B2 (en) 2017-03-16 2021-03-30 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system evaluating its ECG signals for noise according to tall peak counts
US10967193B2 (en) 2017-02-03 2021-04-06 West Affum Holdings Corp. WCD with pacing analgesia
US11000691B2 (en) 2018-04-24 2021-05-11 West Affum Holdings Corp. Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system
US11013419B2 (en) * 2007-06-13 2021-05-25 Zoll Medical Corporation Wearable medical monitoring device
US11040214B2 (en) 2018-03-01 2021-06-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having main UI that conveys message and peripheral device that amplifies the message
US11045100B2 (en) 2002-08-26 2021-06-29 West Affum Holdings Corp. Pulse detection using patient physiological signals
US11052241B2 (en) 2016-11-03 2021-07-06 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system measuring patient's respiration
US11058884B2 (en) 2018-04-26 2021-07-13 West Affum Holding Corp Wearable medical (WM) system monitoring ECG signal of ambulatory patient for heart condition
US11063378B2 (en) 2019-03-07 2021-07-13 West Affum Holdings Corp. Printed circuit board cable clip for signal sensitive applications
US11058885B2 (en) 2017-11-29 2021-07-13 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system detecting ventricular tachycardia and/or ventricular fibrillation using variable heart rate decision threshold
US11065463B2 (en) 2017-11-10 2021-07-20 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US11077310B1 (en) 2016-10-04 2021-08-03 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter
US11083906B2 (en) 2017-01-05 2021-08-10 West Affum Holdings Corp. Wearable cardioverter defibrillator having adjustable alarm time
US11097107B2 (en) 2012-05-31 2021-08-24 Zoll Medical Corporation External pacing device with discomfort management
US11103717B2 (en) 2017-07-28 2021-08-31 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system reacting to high-frequency ECG noise
US11154230B2 (en) 2017-01-05 2021-10-26 West Affum Holdings Corp. Wearable cardioverter defibrillator having reduced noise prompts
US11160990B1 (en) 2018-02-14 2021-11-02 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) alarms
US11191971B2 (en) * 2019-03-07 2021-12-07 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with active ECG cable shielding
US11198015B2 (en) 2018-04-26 2021-12-14 West Affum Holdings Corp. Multi-sensory alarm for a wearable cardiac defibrillator
US11207538B2 (en) 2017-09-12 2021-12-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system warning ambulatory patient by weak alerting shock
US11213691B2 (en) 2017-02-27 2022-01-04 Zoll Medical Corporation Ambulatory medical device interaction
US11219777B2 (en) 2012-10-10 2022-01-11 West Affum Holdings Corp. External defibrillation with automatic post-shock anti-tachycardia (APSAT) pacing
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US11235143B2 (en) 2017-02-03 2022-02-01 West Affum Holdings Corp. Wearable cardiac defibrillator systems and methods and software for contacting non-witnessing responders
US11247041B2 (en) 2018-08-10 2022-02-15 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) with ECG preamp having active input capacitance balancing
US11260238B2 (en) 2018-04-26 2022-03-01 West Affum Holdings Corp. Wearable medical device (WMD) implementing adaptive techniques to save power
US11260237B1 (en) 2017-11-09 2022-03-01 West Affum Holdings Corp. Wearable defibrillator with output stage having diverting resistance
US11278730B2 (en) 2017-12-04 2022-03-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from patient's rotational motion
US11298556B2 (en) 2018-04-25 2022-04-12 West Affum Holdings Corp. WCD user interface response to a change in device orientation
US11324960B2 (en) 2018-04-26 2022-05-10 West Affum Holdings Corp. Permission-based control of interfacing components with a medical device
US11334826B2 (en) 2019-01-18 2022-05-17 West Affum Holdings Corp. WCD system prioritization of alerts based on severity and/or required timeliness of user response
US11331508B1 (en) 2018-04-25 2022-05-17 West Affum Holdings Corp. Wearable cardioverter defibrillator with a non-invasive blood pressure monitor
US11344718B2 (en) 2019-12-12 2022-05-31 West Affum Holdings Corp. Multichannel posture dependent template based rhythm discrimination in a wearable cardioverter defibrillator
US11364387B2 (en) 2017-07-28 2022-06-21 West Affum Holdings Corp. Heart rate calculator with reduced overcounting
US11376425B2 (en) 2012-08-10 2022-07-05 West Affum Holdings Corp. Controlling functions of wearable cardiac defibrillation system
US11400303B2 (en) 2018-01-05 2022-08-02 West Affum Holdings Corp. Detecting walking in a wearable cardioverter defibrillator system
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11471693B1 (en) 2018-02-14 2022-10-18 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals
US11484271B2 (en) 2019-08-20 2022-11-01 West Affum Holdings Dac Alert presentation based on ancillary device conditions
US11534615B2 (en) 2018-04-26 2022-12-27 West Affum Holdings Dac Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
US11568984B2 (en) 2018-09-28 2023-01-31 Zoll Medical Corporation Systems and methods for device inventory management and tracking
US11617538B2 (en) 2016-03-14 2023-04-04 Zoll Medical Corporation Proximity based processing systems and methods
US11672996B2 (en) 2019-06-24 2023-06-13 West Affum Holdings Dac Wearable cardioverter defibrillator with AI-based features
US11679253B2 (en) 2020-02-16 2023-06-20 West Affum Holdings Dac Wearable medical device with integrated blood oxygen saturation level device
US11698385B2 (en) 2020-11-11 2023-07-11 West Affum Holdings Dac Walking intensity detection and trending in a wearable cardioverter defibrillator
US11709747B2 (en) 2016-01-08 2023-07-25 Zoll Medical Corporation Patient assurance system and method
US11712573B2 (en) 2020-12-16 2023-08-01 West Affum Holdings Dac Managing alerts in a WCD system
US11717687B2 (en) 2020-01-06 2023-08-08 West Affum Holdings Dac Asystole and complete heart block detection
US11724116B2 (en) 2018-02-15 2023-08-15 West Affum Holdings Dac Wearable cardioverter defibrillator latching connector
US11730418B2 (en) 2019-08-22 2023-08-22 West Affum Holdings Dac Cardiac monitoring system with supraventricular tachycardia (SVT) classifications
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
US11730968B2 (en) 2020-12-14 2023-08-22 West Affum Holdings Dac Wearable medical device with temperature managed electrodes
US11771360B2 (en) 2019-08-22 2023-10-03 West Affum Holdings Dac Cardiac monitoring system with normally conducted QRS complex identification
US11793440B2 (en) 2019-08-09 2023-10-24 West Affum Holdings Dac Method to detect noise in a wearable cardioverter defibrillator
US11793469B2 (en) 2020-11-17 2023-10-24 West Affum Holdings Dac Identifying reliable vectors
US11819704B2 (en) 2020-08-21 2023-11-21 West Affum Holdings Dac Positive system alerts
US11819703B2 (en) 2020-09-17 2023-11-21 West Affum Holdings Dac Electrocardiogram (ECG) electrode with deposited ink resistive element
US11833360B2 (en) 2018-05-29 2023-12-05 West Affum Holdings Dac Carry pack for a wearable cardioverter defibrillator
US11844954B2 (en) 2017-11-09 2023-12-19 West Affum Holdings Dac WCD monitor supporting serviceability and reprocessing
US11865354B1 (en) 2018-02-14 2024-01-09 West Affum Holdings Dac Methods and systems for distinguishing VT from VF
US11904176B1 (en) 2020-01-27 2024-02-20 West Affum Holdings Dac Wearable defibrillator system forwarding patient information based on recipient profile and/or event type
US11931591B2 (en) 2022-05-06 2024-03-19 West Affum Holdings Dac Permission-based control of interfacing components with a medical device

Families Citing this family (502)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444546A (en) * 1987-08-12 1989-02-16 Nippon Telegraph & Telephone Knowledge base formation supporting system
US6280461B1 (en) * 1996-05-23 2001-08-28 Lifecor, Inc. Patient-worn energy delivery apparatus
US6963773B2 (en) 1997-03-05 2005-11-08 Medtronic Physio-Control Manufacturing Corp. H-bridge circuit for generating a high-energy biphasic waveform in an external defibrillator using single SCR and IGBT switches in an integrated package
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US6154673A (en) * 1997-12-30 2000-11-28 Agilent Technologies, Inc. Multilingual defibrillator
US6041255A (en) * 1998-04-16 2000-03-21 Kroll; Mark W. Disposable external defibrillator
US6141584A (en) * 1998-09-30 2000-10-31 Agilent Technologies, Inc. Defibrillator with wireless communications
US6208895B1 (en) 1998-10-13 2001-03-27 Physio-Control Manufacturing Corporation Circuit for performing external pacing and biphasic defibrillation
US6390996B1 (en) * 1998-11-09 2002-05-21 The Johns Hopkins University CPR chest compression monitor
US6128530A (en) * 1998-11-18 2000-10-03 Agilent Technologies, Inc. Fail-safe defibrillator
NO310137B1 (en) * 1998-12-11 2001-05-28 Laerdal Medical As System for measuring and analyzing CPR parameters for use with and by an external defibrillator
US6872080B2 (en) * 1999-01-29 2005-03-29 Cardiac Science, Inc. Programmable AED-CPR training device
US6416480B1 (en) * 1999-03-29 2002-07-09 Valeriy Nenov Method and apparatus for automated acquisition of the glasgow coma score (AGCS)
US6454708B1 (en) * 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US8419650B2 (en) 1999-04-16 2013-04-16 Cariocom, LLC Downloadable datasets for a patient monitoring system
US8438038B2 (en) 1999-04-16 2013-05-07 Cardiocom, Llc Weight loss or weight management system
US7945451B2 (en) * 1999-04-16 2011-05-17 Cardiocom, Llc Remote monitoring system for ambulatory patients
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6405081B1 (en) * 1999-04-22 2002-06-11 Koninklijke Philips Electronics N.V. Damped biphasic energy delivery circuit for a defibrillator
WO2000070889A1 (en) * 1999-05-14 2000-11-23 Medtronic Physio-Control Manufacturing Corp. Method and apparatus for remote wireless communication with a medical device
US6668271B1 (en) 1999-05-19 2003-12-23 Richo Company, Ltd. System for distributing, installing and running web applications (agents)
NO311747B1 (en) * 1999-05-31 2002-01-21 Laerdal Medical As Method for determining whether a lifeless person has a pulse, based on impedance measurement between electrodes placed on patient skin, where the electrodes are connected to an external defibrillator sitting impedance measurement system, and
NO310135B1 (en) * 1999-05-31 2001-05-28 Laerdal Medical As System for measuring and applying parameters when performing chest compression in the course of a life-saving situation or training situation as well as applications
AUPQ088699A0 (en) * 1999-06-10 1999-07-01 Tentas Telehealth Pty Ltd Power saving leads status monitoring
US6397104B1 (en) * 1999-07-16 2002-05-28 Koninklijke Philips Electronics N.V. Defibrillation system having defibrillator with replaceable supply module
NO311746B1 (en) * 1999-08-27 2002-01-21 Laerdal Medical As System for reducing signal interference in ECG caused by cardiac lung rescue
US6440082B1 (en) 1999-09-30 2002-08-27 Medtronic Physio-Control Manufacturing Corp. Method and apparatus for using heart sounds to determine the presence of a pulse
US9248306B2 (en) 1999-09-30 2016-02-02 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US20040039419A1 (en) * 1999-09-30 2004-02-26 Stickney Ronald E. Apparatus, software, and methods for cardiac pulse detection using a piezoelectric sensor
US20030109790A1 (en) * 2001-12-06 2003-06-12 Medtronic Physio-Control Manufacturing Corp. Pulse detection method and apparatus using patient impedance
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
EP1251908B1 (en) 2000-02-04 2017-04-05 Zoll Medical Corporation Integrated resuscitation
US20050131465A1 (en) * 2000-02-04 2005-06-16 Freeman Gary A. Integrated resuscitation
US20060064131A1 (en) * 2000-02-04 2006-03-23 Freeman Gary A User interface for defibrillator for use by persons with limited training and experience
US7194371B1 (en) * 2000-03-27 2007-03-20 Cardiobeat.Com Medical testing system and method
US6662051B1 (en) * 2000-03-31 2003-12-09 Stephen A. Eraker Programmable pain reduction device
US6658290B1 (en) * 2000-06-12 2003-12-02 Cardiac Science, Inc. Public access defibrillator
WO2001097909A2 (en) * 2000-06-14 2001-12-27 Medtronic, Inc. Deep computing applications in medical device systems
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
BRPI0414359A (en) * 2000-06-16 2006-11-14 Bodymedia Inc body weight monitoring and management system and other psychological conditions that include interactive and personalized planning, intervention and reporting
US20060122474A1 (en) * 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
ES2260245T3 (en) * 2000-06-23 2006-11-01 Bodymedia, Inc. SYSTEM TO CONTROL HEALTH, WELFARE AND EXERCISE.
US6586850B1 (en) * 2000-07-05 2003-07-01 Koninklijke Philips Electronics N.V. Device with multiple, concurrently-installed power molecules and method for controlling same
US6584362B1 (en) 2000-08-30 2003-06-24 Cardiac Pacemakers, Inc. Leads for pacing and/or sensing the heart from within the coronary veins
US6493586B1 (en) * 2000-08-30 2002-12-10 Cardiac Pacemakers, Inc. Site reversion in cardiac rhythm management
US7146212B2 (en) 2000-09-18 2006-12-05 Cameron Health, Inc. Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7069080B2 (en) 2000-09-18 2006-06-27 Cameron Health, Inc. Active housing and subcutaneous electrode cardioversion/defibrillating system
US7149575B2 (en) * 2000-09-18 2006-12-12 Cameron Health, Inc. Subcutaneous cardiac stimulator device having an anteriorly positioned electrode
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US6603995B1 (en) * 2000-10-19 2003-08-05 Reynolds Medical Limited Body monitoring apparatus
US7792676B2 (en) * 2000-10-25 2010-09-07 Robert Glenn Klinefelter System, method, and apparatus for providing interpretive communication on a network
US6480740B2 (en) * 2000-12-26 2002-11-12 Cardiac Pacemakers, Inc. Safety pacing in multi-site CRM devices
US6871093B2 (en) * 2000-12-28 2005-03-22 Koninklijke Philips Electronics N.V. Reporting the status for an external defibrillator with an audible report in response to a specified user input
WO2002056959A2 (en) * 2001-01-19 2002-07-25 Cardiac Science Inc. An apparatus and a method for defibrillating and/or pacing a heart and an electrode means for use in the apparatus
US6603318B2 (en) * 2001-02-22 2003-08-05 Koninklijke Philips Electronics N.V. Method of determining when electrode pads are unsuitable for use by detecting relative humidity
US6553257B2 (en) * 2001-03-13 2003-04-22 Koninklijke Philips Electronics N.V. Interactive method of performing cardipulmonary resuscitation with minimal delay to defibrillation shocks
WO2002074382A2 (en) * 2001-03-15 2002-09-26 Heartsine Technologies Limited Battery pack for an automatic external defibrillator
US6560485B2 (en) * 2001-03-27 2003-05-06 Koninklijke Philips Electronics N.V. Four contact identification defibrillator electrode system
US6701183B2 (en) * 2001-04-06 2004-03-02 Lechnolgies, Llc Long term atrial fibrillation monitor
US7117031B2 (en) * 2001-04-06 2006-10-03 Lohman Technologies, Llc Long term cardiac monitor
US20020169480A1 (en) * 2001-05-10 2002-11-14 Qingsheng Zhu Method and device for preventing plaque formation in coronary arteries
US6747556B2 (en) 2001-07-31 2004-06-08 Medtronic Physio-Control Corp. Method and system for locating a portable medical device
US6721677B2 (en) * 2001-08-02 2004-04-13 National Instruments Corporation System and method for modular storage of measurement streams using a hierarchy of stream-processing objects
US6772006B2 (en) * 2001-08-06 2004-08-03 Medtronic Physio-Control Manufacturing Corp. Method and device for controlling peak currents in a medical device
RU2211712C2 (en) * 2001-08-23 2003-09-10 Надточий Александр Иванович Adaptive electric stimulation device
US20030044758A1 (en) * 2001-08-30 2003-03-06 Ray Nena R. Shaken baby syndrome educational doll
JP2003107372A (en) * 2001-09-28 2003-04-09 Nec Corp Optical switcher
US20030130697A1 (en) 2001-10-23 2003-07-10 Halperin Henry R. System and/or method for refibrillation of the heart for treatment of post-countershock pulseless electrical activity and/or asystole
US7162306B2 (en) * 2001-11-19 2007-01-09 Medtronic Physio - Control Corp. Internal medical device communication bus
US7330757B2 (en) 2001-11-21 2008-02-12 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US7022063B2 (en) 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US6957368B2 (en) * 2002-01-23 2005-10-18 Medtronic Emergency Response Systems, Inc. Hazard mitigation in medical device
US7736237B2 (en) 2002-03-01 2010-06-15 Aegis Industries, Inc. Electromuscular incapacitation device and methods
US6965796B2 (en) 2002-03-11 2005-11-15 Medtronic Physio-Control Manufacturing Corp. Method and apparatus for self-test of defibrillation and pacing circuits including a patient isolation switch
US7096062B2 (en) 2002-03-11 2006-08-22 Medtronic Physio-Control Manufacturing Corp. Method for self-test of defibrillation and pacing circuits including a patient isolation switch
WO2003082104A1 (en) * 2002-03-29 2003-10-09 Koninklijke Philips Electronics N.V. Monitoring system comprising electrodes with projections
US7033336B2 (en) * 2002-03-29 2006-04-25 Gore Enterprise Holdings, Inc. Proximal catheter assembly having a relief valve
US7058450B2 (en) * 2002-04-22 2006-06-06 Medtronic, Inc. Organizing data according to cardiac rhythm type
US7120488B2 (en) * 2002-05-07 2006-10-10 Medtronic Physio-Control Manufacturing Corp. Therapy-delivering portable medical device capable of triggering and communicating with an alarm system
US20030212438A1 (en) * 2002-05-07 2003-11-13 Nova Richard C. Customization of medical device
US7065401B2 (en) * 2002-05-08 2006-06-20 Michael Worden Method of applying electrical signals to a patient and automatic wearable external defibrillator
TW528593B (en) * 2002-05-17 2003-04-21 Jang-Min Yang Device for monitoring physiological status and method for using the device
US20040015191A1 (en) * 2002-05-31 2004-01-22 Otman Alejandro A. Capturing images of a defibrillation scene
EP1521615A4 (en) * 2002-06-11 2010-11-03 Jeffrey A Matos System for cardiac resuscitation
US6968230B2 (en) 2002-06-26 2005-11-22 Medtronic Physio-Control Manufacturing Corp H-bridge circuit for generating a high-energy biphasic and external pacing waveform in an external defibrillator
US20060129060A1 (en) * 2002-07-02 2006-06-15 Healthpia America Management method of fat mass and management device of fat mass using mobile phone
KR20040003255A (en) * 2002-07-02 2004-01-13 주식회사 메디벤처 A management-method of and management-device of fat mass which is using mobile phone
US20040019258A1 (en) * 2002-07-09 2004-01-29 Kavounas Gregory T. Detecting removal of a medical device from a station
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US20040039420A1 (en) * 2002-08-26 2004-02-26 Medtronic Physio-Control Manufacturing Corp. Apparatus, software, and methods for cardiac pulse detection using accelerometer data
US20040049233A1 (en) * 2002-09-11 2004-03-11 Edwards D. Craig Medical device status information system
US20040064165A1 (en) * 2002-09-30 2004-04-01 Thompson David L. Implantable medical device with hardware-based patch
US20040064342A1 (en) * 2002-09-30 2004-04-01 Browne David W. Health care protocols
US7289837B2 (en) * 2002-10-01 2007-10-30 Nellcor Puritan Bennett Incorpoated Forehead sensor placement
US7698909B2 (en) * 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
MXPA05003688A (en) 2002-10-09 2005-09-30 Bodymedia Inc Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters.
US20090177068A1 (en) * 2002-10-09 2009-07-09 Stivoric John M Method and apparatus for providing derived glucose information utilizing physiological and/or contextual parameters
US6827695B2 (en) 2002-10-25 2004-12-07 Revivant Corporation Method of determining depth of compressions during cardio-pulmonary resuscitation
CA2504555C (en) * 2002-11-15 2012-09-04 Paracor Medical, Inc. Cardiac harness delivery device
US7736299B2 (en) 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
US20070255093A1 (en) * 2002-11-15 2007-11-01 Lilip Lau Cardiac harness delivery device and method
US7229405B2 (en) * 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
AU2003276633A1 (en) * 2002-11-22 2004-06-18 Koninklijke Philips Electronics N.V. Flexible material including controlled substance release
WO2004054656A1 (en) * 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. External defibrillator with shock activated by cessation of precordial compressions
WO2004056418A1 (en) * 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. An electrode assembly and a system with impedance control
US7231258B2 (en) * 2002-12-26 2007-06-12 Medtronic Physio-Control Corp. Communicating medical event information
US7289029B2 (en) 2002-12-31 2007-10-30 Medtronic Physio-Control Corp. Communication between emergency medical device and safety agency
US20040133242A1 (en) * 2003-01-02 2004-07-08 Chapman Fred W. Medical device communication
DE10300735A1 (en) * 2003-01-11 2004-07-22 Corscience Gmbh & Co.Kg Method for detecting a fibrillation state and device for defibrillation
US20040204743A1 (en) * 2003-01-14 2004-10-14 Mcgrath Thomas J. Remotely operating external medical devices
JP4472688B2 (en) * 2003-01-17 2010-06-02 ハートサイン テクノロジーズ リミテッド Disposable defibrillator electrode assembly
US8036742B2 (en) * 2003-01-31 2011-10-11 Physio-Control, Inc. Apparatus and methods for fibrillation and defibrillation
US20040152954A1 (en) * 2003-01-31 2004-08-05 Christopher Pearce Menu-driven medical device configuration
US9962538B2 (en) * 2003-02-06 2018-05-08 Axelgaard Manufacturing Company, Ltd. Multi-electrode with lateral conductivity control
US7697999B2 (en) * 2003-02-06 2010-04-13 Axelgaard Manufacturing Company, Ltd. Moisture resistant electrode with edge protection
US7308304B2 (en) * 2003-02-14 2007-12-11 Medtronic Physio-Control Corp. Cooperating defibrillators and external chest compression devices
US7043308B2 (en) * 2003-02-19 2006-05-09 Stimu-Heal, Inc. Surface electrode for electrical stimulation of tissue
US6961612B2 (en) * 2003-02-19 2005-11-01 Zoll Medical Corporation CPR sensitive ECG analysis in an automatic external defibrillator
US7245964B2 (en) 2003-02-28 2007-07-17 Medtronic Physio-Control Corp. Annotating an audio recording during a medical emergency
US20040172069A1 (en) * 2003-02-28 2004-09-02 Hakala Douglas T. Recording information for emergency call by defibrillator apparatus
US7805190B2 (en) * 2003-04-02 2010-09-28 Physio-Control, Inc. Defibrillators customized for anticipated patients
US7499750B2 (en) * 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Noise canceling cardiac electrodes
US7570997B2 (en) * 2003-04-11 2009-08-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac rhythm management with asystole prevention therapy
US7302294B2 (en) 2003-04-11 2007-11-27 Cardiac Pacemakers, Inc. Subcutaneous cardiac sensing and stimulation system employing blood sensor
US20040214148A1 (en) * 2003-04-22 2004-10-28 Salvino Robert J. Updating health care protocols
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7486990B2 (en) * 2003-04-24 2009-02-03 Medtronic Physio-Control Manufacturing Corporation Electrocardiogram monitoring and cardiac therapy pulse delivery system and method
US7065412B2 (en) * 2003-04-25 2006-06-20 Medtronic, Inc. Implantable trial neurostimulation device
ATE425699T1 (en) * 2003-05-13 2009-04-15 Gme Rechte Und Beteiligungen G DEVICE AND METHOD FOR DETECTING Atrial fibrillation
FR2855059B1 (en) * 2003-05-22 2006-03-17 Schiller Medical EXTERNAL DEFIBRILLATOR HAS TWO OPERATING MODES.
US7769465B2 (en) 2003-06-11 2010-08-03 Matos Jeffrey A System for cardiac resuscitation
US7680533B2 (en) 2003-06-25 2010-03-16 Zoll Medical Corporation Energy delivery apparatus and method
US7047056B2 (en) * 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US7220235B2 (en) * 2003-06-27 2007-05-22 Zoll Medical Corporation Method and apparatus for enhancement of chest compressions during CPR
US7186220B2 (en) * 2003-07-02 2007-03-06 Cardiac Pacemakers, Inc. Implantable devices and methods using frequency-domain analysis of thoracic signal
US7623915B2 (en) * 2003-07-16 2009-11-24 Medtronic Physio-Control Corp. Interactive first aid information system
US20050033369A1 (en) * 2003-08-08 2005-02-10 Badelt Steven W. Data Feedback loop for medical therapy adjustment
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
EP1670547B1 (en) 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
CA2538710A1 (en) * 2003-09-12 2005-03-31 Bodymedia, Inc. Method and apparatus for measuring heart related parameters
US7781378B2 (en) * 2003-09-12 2010-08-24 Cornell Research Foundation, Inc. Protective coating for array material deposition
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US7286872B2 (en) * 2003-10-07 2007-10-23 Cardiac Pacemakers, Inc. Method and apparatus for managing data from multiple sensing channels
US20050101889A1 (en) 2003-11-06 2005-05-12 Freeman Gary A. Using chest velocity to process physiological signals to remove chest compression artifacts
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20070106336A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US7158839B2 (en) * 2003-11-07 2007-01-02 Paracor Medical, Inc. Cardiac harness for treating heart disease
US20070055091A1 (en) * 2004-12-02 2007-03-08 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20050171589A1 (en) * 2003-11-07 2005-08-04 Lilip Lau Cardiac harness and method of delivery by minimally invasive access
US20070106359A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US20050288715A1 (en) * 2003-11-07 2005-12-29 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20060009831A1 (en) * 2003-11-07 2006-01-12 Lilip Lau Cardiac harness having leadless electrodes for pacing and sensing therapy
US20050107833A1 (en) * 2003-11-13 2005-05-19 Freeman Gary A. Multi-path transthoracic defibrillation and cardioversion
JP4889939B2 (en) 2003-11-13 2012-03-07 ゾール メディカル コーポレイション Transthoracic defibrillator
US7957798B2 (en) 2003-12-17 2011-06-07 Physio-Control, Inc. Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US10413742B2 (en) 2008-03-05 2019-09-17 Physio-Control, Inc. Defibrillator patient monitoring pod
US20050136077A1 (en) * 2003-12-18 2005-06-23 Kimberly-Clark Worldwide, Inc. Electrically conductive adhesive hydrogels with two initiators
US7471980B2 (en) * 2003-12-22 2008-12-30 Cardiac Pacemakers, Inc. Synchronizing continuous signals and discrete events for an implantable medical device
CA2553185A1 (en) * 2004-01-12 2005-08-04 Paracor Medical, Inc. Cardiac harness having interconnected strands
US7320261B1 (en) 2004-01-15 2008-01-22 Arena Industries, Llc Animal skin and eye moisture and heat simulator
EP1734858B1 (en) 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
CA2583526A1 (en) * 2004-03-24 2005-10-13 Noninvasive Medical Technologies, Llc Thoracic impedance monitor and electrode array and method of use
US8231389B1 (en) 2004-04-29 2012-07-31 Wireless Generation, Inc. Real-time observation assessment with phoneme segment capturing and scoring
US7706878B2 (en) * 2004-05-07 2010-04-27 Zoll Medical Corporation Automated caregiving device with prompting based on caregiver progress
WO2005112749A1 (en) * 2004-05-12 2005-12-01 Zoll Medical Corporation Ecg rhythm advisory method
US7565194B2 (en) * 2004-05-12 2009-07-21 Zoll Medical Corporation ECG rhythm advisory method
EP1766591B1 (en) * 2004-05-28 2008-01-16 Jan De Geest Communication unit for a person's skin
US20050277841A1 (en) * 2004-06-10 2005-12-15 Adnan Shennib Disposable fetal monitor patch
US7526345B2 (en) * 2004-06-10 2009-04-28 Medtronic Emergency Response Systems, Inc. Assessing medical electrode condition
US20060009675A1 (en) * 2004-07-08 2006-01-12 Steven Meyer Self-anchoring cardiac harness for treating the heart and for defibrillating and/or pacing/sensing
DE602005021505D1 (en) * 2004-07-15 2010-07-08 Laerdal Medical As METHOD AND SYSTEM FOR MONITORING VENTILATIONS
US7224575B2 (en) 2004-07-16 2007-05-29 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US7480528B2 (en) 2004-07-23 2009-01-20 Cardiac Pacemakers, Inc. Method and apparatus for monitoring heart failure patients with cardiopulmonary comorbidities
CN101232844A (en) * 2004-07-30 2008-07-30 捷通心脏系统公司 Detecting artifact signals caused by CPR and/or patient motion
JP2008508923A (en) * 2004-08-03 2008-03-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ External defibrillator with multilingual prompt
US10709330B2 (en) * 2004-11-15 2020-07-14 Koninklijke Philips N.V. Ambulatory medical telemetry device having an audio indicator
CN101115525A (en) * 2004-11-24 2008-01-30 捷通心脏系统公司 Automated external defibrillator (aed) with discrete sensing pulse for use in configuring a therapeutic biphasic waveform
DE102004059082A1 (en) * 2004-12-02 2006-06-08 Biotronik Crm Patent Ag Device for determining the thorax impedance
US20060122656A1 (en) * 2004-12-02 2006-06-08 Ting-Peng Lai Power supply for medical apparatus
US7996072B2 (en) 2004-12-21 2011-08-09 Cardiac Pacemakers, Inc. Positionally adaptable implantable cardiac device
US20060137699A1 (en) * 2004-12-23 2006-06-29 Moore Mark P Providing data destination information to a medical device
US20060149322A1 (en) * 2004-12-30 2006-07-06 Merry Randy L Medical device tracking system
US20060149321A1 (en) * 2004-12-30 2006-07-06 Merry Randy L Medical device information system
US20060173498A1 (en) * 2005-01-31 2006-08-03 Isabelle Banville Communication between an external defibrillator and an implantable medical device
US7590456B2 (en) * 2005-02-10 2009-09-15 Zoll Medical Corporation Triangular or crescent shaped defibrillation electrode
US8185199B2 (en) * 2005-02-10 2012-05-22 Zoll Medical Corporation Monitoring physiological signals during external electrical stimulation
DE102005032431A1 (en) 2005-03-15 2006-09-21 Weinmann Geräte für Medizin GmbH & Co. KG Modular medical device
WO2006102420A2 (en) 2005-03-21 2006-09-28 Defibtech, Llc Pcb blade connector system and method
EP1866025A2 (en) * 2005-03-21 2007-12-19 Defibtech, LLC System and method for presenting defibrillator status information while in standby mode
WO2006102425A2 (en) 2005-03-21 2006-09-28 Defibtech, Llc Environmentally responsive active status indicator system and method
US20060224072A1 (en) * 2005-03-31 2006-10-05 Cardiovu, Inc. Disposable extended wear heart monitor patch
US7623914B1 (en) * 2005-04-11 2009-11-24 Pacesetter, Inc. Reconfigurable digital network for processing data in an implantable medical device
US7590447B2 (en) * 2005-05-09 2009-09-15 Cardiac Pacemakers, Inc. Pacing system analyzer having three sensing and pacing channels
US8688189B2 (en) * 2005-05-17 2014-04-01 Adnan Shennib Programmable ECG sensor patch
US8676317B1 (en) * 2005-07-20 2014-03-18 Pacesetter, Inc. System and method for estimating defibrillation impedance based on low-voltage resistance measurements using an implantable medical device
US7587247B2 (en) * 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
US9089713B2 (en) * 2005-08-31 2015-07-28 Michael Sasha John Methods and systems for semi-automatic adjustment of medical monitoring and treatment
US7457662B2 (en) * 2005-09-09 2008-11-25 Cardiac Science Corporation Method and apparatus for variable capacitance defibrillation
US7650181B2 (en) 2005-09-14 2010-01-19 Zoll Medical Corporation Synchronization of repetitive therapeutic interventions
US8478422B2 (en) * 2005-09-21 2013-07-02 The Ohio State University Electrical stimulation of cell and tissue growth with two-and three-dimensionally patterned electrodes
JP2009508618A (en) * 2005-09-22 2009-03-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for providing event summary information using an encoded ECG waveform
US7668580B2 (en) 2005-10-20 2010-02-23 Samsung Electronics Co., Ltd. Electrode for living body and device for detecting living signal
WO2007081609A2 (en) * 2005-11-18 2007-07-19 Scientific Pathways International, Llc Cpr analysis system and method
US20070118180A1 (en) 2005-11-18 2007-05-24 Quan Ni Cardiac resynchronization therapy for improved hemodynamics based on disordered breathing detection
US20080004663A1 (en) 2005-12-22 2008-01-03 Medtronic Emergency Response Systems, Inc. Defibrillator with implantable medical device detection
US8594771B2 (en) * 2005-12-28 2013-11-26 General Electric Company Devices and methods for self-administered ECG examinations
US8666488B2 (en) 2006-02-06 2014-03-04 Physio-Control, Inc. Post-download patient data protection in a medical device
US20070185545A1 (en) * 2006-02-06 2007-08-09 Medtronic Emergency Response Systems, Inc. Post-download patient data protection in a medical device
US20070255184A1 (en) * 2006-02-10 2007-11-01 Adnan Shennib Disposable labor detection patch
US20070191728A1 (en) * 2006-02-10 2007-08-16 Adnan Shennib Intrapartum monitor patch
WO2007104041A2 (en) * 2006-03-09 2007-09-13 Medtronic, Inc Automated high voltage defibrillator tester
WO2007109076A1 (en) * 2006-03-15 2007-09-27 Cherik Bulkes Composite waveform based method and apparatus for animal tissue stimulation
US8116863B2 (en) 2006-03-21 2012-02-14 Defibtech, Llc System and method for effectively indicating element failure or a preventive maintenance condition in an automatic external defibrillator (AED)
US8099163B2 (en) * 2006-04-04 2012-01-17 The Invention Science Fund I, Llc Automated defibrillator
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8331574B2 (en) * 2006-05-10 2012-12-11 Koninklijke Philips Electronics N.V. Automatic external defibrillator with enhanced clarity of audible prompts
US9630003B2 (en) * 2006-06-15 2017-04-25 Htk Enterprises, Inc. Non-invasive neuro stimulation system
US20070293917A1 (en) * 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
US7370178B1 (en) * 2006-07-14 2008-05-06 Mips Technologies, Inc. Method for latest producer tracking in an out-of-order processor, and applications thereof
DE102006033623B4 (en) * 2006-07-18 2010-04-08 Cerbomed Gmbh System for transcutaneous stimulation of a nerve of the human body
KR20090035538A (en) * 2006-07-27 2009-04-09 파나소닉 주식회사 Semiconductor integrated circuit, program converting apparatus and mapping apparatus
US8024037B2 (en) * 2006-08-01 2011-09-20 Kumar Uday N External defibrillator
US8154853B2 (en) * 2006-08-03 2012-04-10 Cardiac Pacemakers, Inc. Method and apparatus for partitioned capacitor
US8170662B2 (en) * 2006-08-03 2012-05-01 Cardiac Pacemakers, Inc. Method and apparatus for charging partitioned capacitors
US8761875B2 (en) * 2006-08-03 2014-06-24 Cardiac Pacemakers, Inc. Method and apparatus for selectable energy storage partitioned capacitor
US20080177341A1 (en) * 2006-10-27 2008-07-24 Bowers Kyle R Automated external defibrillator (AED) system with multiple patient wireless monitoring capability for use in mass casualty incidents
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
DE202006018672U1 (en) 2006-12-07 2007-03-29 Metrax Gmbh Defibrillator, especially for permanent external placing upon patient, has condenser unit providing capacitance which is matched to patient's impedance for energy storage
US9028259B2 (en) 2007-01-16 2015-05-12 Physio-Control, Inc. Wearable CPR assist, training and testing device
EP2126828A4 (en) * 2007-02-16 2012-01-25 Bodymedia Inc Systems and methods for understanding and applying the physiological and contextual life patterns of an individual or set of individuals
US20080200973A1 (en) * 2007-02-20 2008-08-21 General Electric Company Method and system using MRI compatibility defibrillation pads
US7816412B2 (en) * 2007-02-23 2010-10-19 Conmed Corporation Electrically conductive hydrogels
WO2008137452A1 (en) * 2007-05-04 2008-11-13 Kenergy Royalty Company, Llc Implantable high efficiency digital stimulation device
EP2144559A4 (en) 2007-05-07 2012-07-25 Cardiac Lead Technologies Llc Electrocardiograph monitoring device and connector
US7974689B2 (en) * 2007-06-13 2011-07-05 Zoll Medical Corporation Wearable medical treatment device with motion/position detection
US20090048480A1 (en) * 2007-08-13 2009-02-19 Paracor Medical, Inc. Cardiac harness delivery device
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
US20090048648A1 (en) * 2007-08-17 2009-02-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Self-sterilizing device
US8734718B2 (en) 2007-08-17 2014-05-27 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having an actively controllable therapeutic agent delivery component
US8647292B2 (en) 2007-08-17 2014-02-11 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having components that are actively controllable between two or more wettability states
US8162924B2 (en) * 2007-08-17 2012-04-24 The Invention Science Fund I, Llc System, devices, and methods including actively-controllable superoxide water generating systems
US8460229B2 (en) 2007-08-17 2013-06-11 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having components that are actively controllable between transmissive and reflective states
US8366652B2 (en) * 2007-08-17 2013-02-05 The Invention Science Fund I, Llc Systems, devices, and methods including infection-fighting and monitoring shunts
US8702640B2 (en) 2007-08-17 2014-04-22 The Invention Science Fund I, Llc System, devices, and methods including catheters configured to monitor and inhibit biofilm formation
US8706211B2 (en) 2007-08-17 2014-04-22 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having self-cleaning surfaces
US8753304B2 (en) 2007-08-17 2014-06-17 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having acoustically actuatable waveguide components for delivering a sterilizing stimulus to a region proximate a surface of the catheter
US8591430B2 (en) 2007-09-14 2013-11-26 Corventis, Inc. Adherent device for respiratory monitoring
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
US20090076559A1 (en) * 2007-09-14 2009-03-19 Corventis, Inc. Adherent Device for Cardiac Rhythm Management
EP2200499B1 (en) 2007-09-14 2019-05-01 Medtronic Monitoring, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
US8460189B2 (en) 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8897868B2 (en) 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
US8684925B2 (en) 2007-09-14 2014-04-01 Corventis, Inc. Injectable device for physiological monitoring
EP2205149B1 (en) * 2007-11-08 2015-10-14 Koninklijke Philips N.V. Systems and methods for identifying electrode position for cardiotherapy
AU2009221154B2 (en) * 2008-03-05 2015-02-05 Stryker European Operations Limited An apparatus and method for indicating cardiac output
WO2009114548A1 (en) 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US7881785B2 (en) 2008-03-26 2011-02-01 Cardiac Science Corporation Method and apparatus for defrosting a defibrillation electrode
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US20090270930A1 (en) * 2008-04-25 2009-10-29 Physio-Control, Inc. External Defibrillator With Adaptive Protocols
US20090281372A1 (en) * 2008-05-06 2009-11-12 Paracor Medical, Inc. Cardiac harness assembly for treating congestive heart failure and for defibrillation and/or pacing/sensing
GB2460690A (en) * 2008-06-05 2009-12-09 Poems Ltd Pocket-sized defibrillator with direct attachment to a patient.
DK2318092T3 (en) * 2008-07-22 2018-03-12 Narayanan Lakshmanan Non-invasive temporary interference stimulator
US8255046B2 (en) * 2008-07-31 2012-08-28 Medtronic, Inc. Detecting worsening heart failure based on impedance measurements
US9713701B2 (en) 2008-07-31 2017-07-25 Medtronic, Inc. Using multiple diagnostic parameters for predicting heart failure events
US7834345B2 (en) * 2008-09-05 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistors with superlattice channels
AU2009296712A1 (en) 2008-09-23 2010-04-01 Aegis Industries, Inc. Stun device testing apparatus and methods
US8257274B2 (en) * 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8585627B2 (en) 2008-12-04 2013-11-19 The Invention Science Fund I, Llc Systems, devices, and methods including catheters configured to monitor biofilm formation having biofilm spectral information configured as a data structure
US20120041286A1 (en) 2008-12-04 2012-02-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including implantable devices with anti-microbial properties
WO2010065135A1 (en) * 2008-12-04 2010-06-10 Searete, Llc System, devices, and methods including actively-controllable sterilizing excitation delivery implants
EP2375968B1 (en) 2008-12-15 2018-11-14 Medtronic Monitoring, Inc. Patient monitoring systems and methods
US8632473B2 (en) * 2009-01-30 2014-01-21 Medtronic, Inc. Detecting worsening heart failure based on fluid accumulation with respiratory confirmation
US8781576B2 (en) * 2009-03-17 2014-07-15 Cardiothrive, Inc. Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current
JP5563652B2 (en) 2009-03-17 2014-07-30 カーディオスライヴ インコーポレイテッド External defibrillator
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8301233B2 (en) * 2009-03-31 2012-10-30 Medtronic, Inc. Detecting a condition of a patient using a probability-correlation based model
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8855755B2 (en) * 2009-04-27 2014-10-07 Medtronic, Inc. Distinguishing between treatable and non-treatable heart rhythms
US20110172550A1 (en) 2009-07-21 2011-07-14 Michael Scott Martin Uspa: systems and methods for ems device communication interface
WO2011011454A1 (en) * 2009-07-21 2011-01-27 Zoll Medical Corporation Systems and methods for collection, organization and display of ems information
WO2011127459A1 (en) 2010-04-09 2011-10-13 Zoll Medical Corporation Systems and methods for ems device communications interface
WO2011050283A2 (en) 2009-10-22 2011-04-28 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
US8271072B2 (en) * 2009-10-30 2012-09-18 Medtronic, Inc. Detecting worsening heart failure
EP2498763A4 (en) 2009-11-09 2015-10-07 Spotlight Technology Partners Llc Polysaccharide based hydrogels
AU2010314994B2 (en) 2009-11-09 2016-10-06 Spotlight Technology Partners Llc Fragmented hydrogels
WO2011061733A1 (en) * 2009-11-17 2011-05-26 Israel Shamir Lebovitz A method and device for remote controlled application of medical monitoring and attention
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
EP2353644B1 (en) * 2010-02-09 2012-07-04 BIOTRONIK SE & Co. KG Cardioverter/defibrillator and signal processing device for classifying intracardiac signals
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
WO2011143490A2 (en) 2010-05-12 2011-11-17 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
WO2011146482A1 (en) * 2010-05-18 2011-11-24 Zoll Medical Corporation Wearable ambulatory medical device with multiple sensing electrodes
CN103025379B (en) 2010-05-18 2016-02-17 佐尔医药公司 Wearable therapeutic device
US9585584B2 (en) 2010-05-21 2017-03-07 Medicomp, Inc. Physiological signal monitor with retractable wires
EP3492001A1 (en) 2010-05-21 2019-06-05 Medicomp, INC. Method of determining an optimum electrode vector length with a retractable muti-use cardiac monitor
US8904214B2 (en) 2010-07-09 2014-12-02 Zoll Medical Corporation System and method for conserving power in a medical device
US8239012B2 (en) 2010-10-08 2012-08-07 Cardiac Science Corporation Microcontrolled electrocardiographic monitoring circuit with differential voltage encoding
US20120089000A1 (en) 2010-10-08 2012-04-12 Jon Mikalson Bishay Ambulatory Electrocardiographic Monitor For Providing Ease Of Use In Women And Method Of Use
US8613708B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor with jumpered sensing electrode
US9037477B2 (en) 2010-10-08 2015-05-19 Cardiac Science Corporation Computer-implemented system and method for evaluating ambulatory electrocardiographic monitoring of cardiac rhythm disorders
WO2012078857A2 (en) 2010-12-09 2012-06-14 Zoll Medical Corporation Electrode with redundant impedance reduction
WO2012078937A1 (en) 2010-12-10 2012-06-14 Zoll Medical Corporation Wearable therapeutic device
US9427564B2 (en) 2010-12-16 2016-08-30 Zoll Medical Corporation Water resistant wearable medical device
KR101843083B1 (en) * 2011-01-26 2018-03-29 삼성전자주식회사 Apparatus and method for measuring biological including multiple unit measurer
CN107257152B (en) * 2011-04-28 2021-04-09 佐尔循环公司 System for updating data, operating parameters and/or software
US9782578B2 (en) 2011-05-02 2017-10-10 Zoll Medical Corporation Patient-worn energy delivery apparatus and techniques for sizing same
KR101049172B1 (en) 2011-05-06 2011-07-14 주식회사 씨유메디칼시스템 Automatic phase reversing device for aed
GB2491171B (en) 2011-05-26 2016-09-28 Heartsine Tech Ltd Testing of defibrillator electrodes
WO2013033238A1 (en) 2011-09-01 2013-03-07 Zoll Medical Corporation Wearable monitoring and treatment device
US9101678B2 (en) 2011-11-03 2015-08-11 Elwha Llc Heat-sanitization of surfaces
US8868179B2 (en) 2011-11-11 2014-10-21 Zoll Medical Corporation Determination for effective defibrillation
EP2780073B1 (en) 2011-11-15 2017-09-13 NeuroMetrix, Inc. Apparatus for relieving pain using transcutaneous electrical nerve stimulation
US9734304B2 (en) 2011-12-02 2017-08-15 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
US9700222B2 (en) 2011-12-02 2017-07-11 Lumiradx Uk Ltd Health-monitor patch
EP2809396B1 (en) * 2012-02-02 2018-06-20 Koninklijke Philips N.V. Bilingual language controller for an automated external defibrillator
CN107029349A (en) * 2012-03-09 2017-08-11 安特罗麦迪克斯公司 Safety feature in Medical Devices
US9002465B2 (en) 2012-04-06 2015-04-07 Boston Scientific Neuromodulation Corporation Verifying correct operation of an implantable neurostimulator device using current distribution circuitry
WO2013155503A1 (en) 2012-04-13 2013-10-17 Langer Alois A Outpatient health emergency warning system
US9457197B2 (en) 2012-05-08 2016-10-04 Physio-Control, Inc. Utility module system
EP2854937A4 (en) * 2012-05-31 2016-06-15 Zoll Medical Corp Long term wear multifunction biomedical electrode
US8948859B2 (en) 2012-06-11 2015-02-03 Zoll Medical Corporation Resuscitation enhancements
US8639348B2 (en) * 2012-06-29 2014-01-28 Zoll Medical Corporation Providing life support
US20140005506A1 (en) 2012-06-29 2014-01-02 Zoll Medical Corporation Rescue scene video transmission
US10303852B2 (en) 2012-07-02 2019-05-28 Physio-Control, Inc. Decision support tool for use with a medical monitor-defibrillator
US8761717B1 (en) 2012-08-07 2014-06-24 Brian K. Buchheit Safety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate
US8965501B2 (en) 2012-08-10 2015-02-24 Physio-Control, Inc. Sequential stacked capacitor defibrillator and waveform generated therefrom
US8909335B2 (en) 2012-08-20 2014-12-09 Zoll Medical Corporation Method and apparatus for applying a rectilinear biphasic power waveform to a load
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US10668276B2 (en) 2012-08-31 2020-06-02 Cirtec Medical Corp. Method and system of bracketing stimulation parameters on clinician programmers
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US8868199B2 (en) 2012-08-31 2014-10-21 Greatbatch Ltd. System and method of compressing medical maps for pulse generator or database storage
US9594877B2 (en) 2012-08-31 2017-03-14 Nuvectra Corporation Virtual reality representation of medical devices
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US8983616B2 (en) 2012-09-05 2015-03-17 Greatbatch Ltd. Method and system for associating patient records with pulse generators
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US9615788B2 (en) 2012-08-31 2017-04-11 Nuvectra Corporation Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US8812125B2 (en) 2012-08-31 2014-08-19 Greatbatch Ltd. Systems and methods for the identification and association of medical devices
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US8757485B2 (en) 2012-09-05 2014-06-24 Greatbatch Ltd. System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control
US8838236B2 (en) 2012-09-21 2014-09-16 Physio-Control. Inc. Wearable cardiac defibrillator system with anti-bradyarrhythmia pacing and methods
JP2014076117A (en) * 2012-10-09 2014-05-01 Nippon Koden Corp Electrocardiogram analyzer, and electrode set
US9108039B2 (en) 2012-11-15 2015-08-18 Zoll Medical Corporation Electrode construction for crevice corrosion protection
JP2014108143A (en) * 2012-11-30 2014-06-12 Fukuda Denshi Co Ltd External pacemaker device
US9395234B2 (en) 2012-12-05 2016-07-19 Cardiocom, Llc Stabilizing base for scale
US9345898B2 (en) 2013-01-23 2016-05-24 West Affum Holdings Corp. Wearable cardiac defibrillator system controlling conductive fluid deployment
WO2014116825A1 (en) 2013-01-24 2014-07-31 Irhythm Technologies, Inc. Physiological monitoring device
US9999393B2 (en) 2013-01-29 2018-06-19 Zoll Medical Corporation Delivery of electrode gel using CPR puck
US8880196B2 (en) 2013-03-04 2014-11-04 Zoll Medical Corporation Flexible therapy electrode
US9604069B2 (en) * 2013-03-12 2017-03-28 Koninklijke Philips N.V. Defibrillator and method using limb leads for artifact free ECG
EP2967395A4 (en) 2013-03-14 2016-03-16 Zoll Medical Corp Windowing for identifying shock outcome
US9592402B2 (en) 2013-03-14 2017-03-14 Zoll Medical Corporation Shock determination based on prior shocks
JP2016512762A (en) 2013-03-15 2016-05-09 ゾル メディカル コーポレーションZoll Medical Corporation ECG noise reduction system for vehicle motion artifact removal
US9968267B2 (en) 2013-03-15 2018-05-15 Zoll Medical Corporation Processing impedance signals for breath detection
US10940311B2 (en) * 2013-03-29 2021-03-09 Neurometrix, Inc. Apparatus and method for button-free control of a wearable transcutaneous electrical nerve stimulator using interactive gestures and other means
EP2983593B1 (en) 2013-04-08 2021-11-10 Irhythm Technologies, Inc. Skin abrader
US10279189B2 (en) 2013-06-14 2019-05-07 Cardiothrive, Inc. Wearable multiphasic cardioverter defibrillator system and method
US9616243B2 (en) 2013-06-14 2017-04-11 Cardiothrive, Inc. Dynamically adjustable multiphasic defibrillator pulse system and method
US9833630B2 (en) 2013-06-14 2017-12-05 Cardiothrive, Inc. Biphasic or multiphasic pulse waveform and method
US9656094B2 (en) 2013-06-14 2017-05-23 Cardiothrive, Inc. Biphasic or multiphasic pulse generator and method
US10149973B2 (en) 2013-06-14 2018-12-11 Cardiothrive, Inc. Multipart non-uniform patient contact interface and method of use
US9907970B2 (en) 2013-06-14 2018-03-06 Cardiothrive, Inc. Therapeutic system and method using biphasic or multiphasic pulse waveform
CN105474281A (en) 2013-06-19 2016-04-06 卓尔医学产品公司 Systems and methods of determining location using a medical device
US9445740B1 (en) 2013-06-28 2016-09-20 West Affum Holdings Corp. Patient signal sensing device
WO2015017718A1 (en) 2013-08-01 2015-02-05 Zoll Medical Corporation Systems and methods for utilizing identification devices in a wearable medical therapy device
JP2016527034A (en) * 2013-08-01 2016-09-08 ゾール メディカル コーポレイションZOLL Medical Corporation Wearable medical treatment device indicator
EP3042328A2 (en) * 2013-09-04 2016-07-13 Zero360, Inc. Processing system and method
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US20150088016A1 (en) 2013-09-25 2015-03-26 Zoll Medical Corporation Mobile Device Control
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US20190167139A1 (en) 2017-12-05 2019-06-06 Gust H. Bardy Subcutaneous P-Wave Centric Insertable Cardiac Monitor For Long Term Electrocardiographic Monitoring
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
WO2015048194A1 (en) 2013-09-25 2015-04-02 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9511239B2 (en) 2013-09-27 2016-12-06 Zoll Medical Corporation Electrode with feature for indicating prior use with adult or pediatric subject and systems and methods including same
WO2015048018A1 (en) 2013-09-30 2015-04-02 Zoll Medical Corporation Adult and pediatric defibrillation electrode pad assembly
US20150094556A1 (en) * 2013-09-30 2015-04-02 Yacov GEVA Detachable electrocardiograpey device
US9713728B2 (en) 2013-10-29 2017-07-25 Physio-Control, Inc. Variable sound system for medical devices
USD892340S1 (en) 2013-11-07 2020-08-04 Bardy Diagnostics, Inc. Extended wear electrode patch
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
USD831833S1 (en) 2013-11-07 2018-10-23 Bardy Diagnostics, Inc. Extended wear electrode patch
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
EP3092038B1 (en) * 2014-01-10 2017-12-27 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
WO2015123198A1 (en) 2014-02-12 2015-08-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
JP2017506148A (en) 2014-02-24 2017-03-02 エレメント サイエンス, インクElement Science, Inc External defibrillator
US20150254992A1 (en) * 2014-03-06 2015-09-10 Maneesh SETHI Memory-enhancing and habit-training methods and devices
US20150379880A1 (en) * 2014-03-06 2015-12-31 Maneesh SETHI Device for training behavior
US20160063890A1 (en) * 2014-03-06 2016-03-03 Maneesh SETHI Method for training behavior
US9782093B2 (en) 2014-03-14 2017-10-10 Zoll Medical Corporation Vector-based shock indication
US20150352369A1 (en) 2014-06-10 2015-12-10 Zoll Medical Corporation Selecting energy escalation for defibrillation
US10596064B2 (en) 2014-03-18 2020-03-24 Zoll Medical Corporation CPR chest compression system with tonometric input and feedback
GB2525023B (en) * 2014-04-10 2017-10-04 Cardiola Ltd Apparatus and method for treating a patient having a heart
WO2015175574A1 (en) * 2014-05-12 2015-11-19 Physio-Control, Inc. Wearable healthcare device
WO2015191761A1 (en) 2014-06-10 2015-12-17 Zoll Medical Corporation Determining initial treatments from spectral data
US20150364052A1 (en) * 2014-06-17 2015-12-17 Stephen Brock Blankenship Tactical injury simulating training device
DE102014009890A1 (en) * 2014-07-04 2016-01-07 Drägerwerk AG & Co. KGaA Device for an impedance tomograph
WO2016070128A1 (en) 2014-10-31 2016-05-06 Irhythm Technologies, Inc. Wireless physiological monitoring device and systems
US10004894B2 (en) * 2014-11-19 2018-06-26 Intermountain Intellectual Asset Management, Llc Defibrillators with multi-pad electrodes and related methods
WO2016091984A1 (en) 2014-12-12 2016-06-16 Koninklijke Philips N.V. Device and method for measuring a physiological characteristic of a subject
WO2016100906A1 (en) 2014-12-18 2016-06-23 Zoll Medical Corporation Pacing device with acoustic sensor
JP6440517B2 (en) * 2015-02-12 2018-12-19 日本光電工業株式会社 Automatic external defibrillator
US9867976B2 (en) 2015-03-06 2018-01-16 Zoll Medical Corporation Long-term wear electrode
WO2016149583A1 (en) 2015-03-18 2016-09-22 Zoll Medical Corporation Medical device with acoustic sensor
US10376169B2 (en) 2015-03-24 2019-08-13 Zoll Medical Corporation Systems and methods of determining location using a medical device
WO2016154425A1 (en) 2015-03-26 2016-09-29 Zoll Medical Corporation Amplitude spectrum area considerations for an external medical monitoring and treatment device
EP3274048B1 (en) 2015-03-27 2020-02-26 Zoll Medical Corporation Ecg and defibrillator electrode detection and tracking system
US9734720B2 (en) 2015-04-01 2017-08-15 Zoll Medical Corporation Response mode verification in vehicle dispatch
US10772793B2 (en) 2015-06-12 2020-09-15 Norman A. Paradis Mechanical cardiopulmonary resuscitation combining circumferential constriction and anteroposterior compression of the chest
AU2016312681B2 (en) * 2015-08-26 2021-01-21 Element Science, Inc. Wearable devices
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
US9968789B2 (en) * 2015-09-23 2018-05-15 Mitchell Karl Temporary external pacemaker and monitor
US11364389B2 (en) * 2015-10-01 2022-06-21 Zoll Medical Corporation Training modules for an external medical device
WO2017059274A1 (en) 2015-10-02 2017-04-06 Cardiac Pacemakers, Inc. Enhanced wearable therapy device paired with insertable cardiac monitor
EP4249041A3 (en) 2015-10-16 2023-11-22 Zoll Medical Corporation Dual sensor electrodes for providing enhanced resuscitation feedback
AU2016355338B2 (en) 2015-11-20 2019-04-18 Cardiac Pacemakers, Inc. Single pass coronary venous lead for multiple chamber sense and pace
EP3380189B1 (en) 2015-11-23 2020-08-12 Zoll Medical Corporation Garments for wearable medical devices
US11103719B2 (en) 2016-01-11 2021-08-31 Koninklijke Philips N.V. Method and apparatus for non-audible sensing of a defibrillator status indicator
US10561852B2 (en) 2016-02-26 2020-02-18 Zoll Medical Corporation Systems and methods for providing rapid medical care
US10565396B2 (en) 2016-03-30 2020-02-18 Zoll Medical Corporation Patient data hub
US10561575B2 (en) 2016-03-31 2020-02-18 Zoll Medical Corporation Monitoring CPR by a wearable medical device
US11684542B2 (en) 2016-07-22 2023-06-27 Norman A. Paradis Method to increase the efficacy of cardiopulmonary resuscitation by means of alternating phases during which the physical characteristics of chest compression are varied so as to increase overall forward blood flow
US10952686B2 (en) 2016-08-02 2021-03-23 Medtronic, Inc. Mobile application to prompt physical action to measure physiologic response in implantable device
US9901735B1 (en) * 2016-08-04 2018-02-27 Y-Brain Inc Ancillary device for electrical stimulation device and electrical stimulation device
CN109952130B (en) * 2016-10-12 2023-06-20 皇家飞利浦有限公司 Fault diagnosis test warning override in an Automatic External Defibrillator (AED)
US10702699B2 (en) * 2016-10-13 2020-07-07 Prorogo Ltd. Method and system for cardiac pacing and defibrillation
US11179286B2 (en) 2016-10-21 2021-11-23 Zoll Medical Corporation Adaptive body positioning
US10569090B2 (en) 2016-10-28 2020-02-25 Zoll Medical Corporation Systems, devices, and methods for providing electrotherapy
CN106540373A (en) * 2016-12-07 2017-03-29 深圳市晶科辉电子有限公司 For alleviating pain and the conductive spacer for exercising one's muscles
US10470702B2 (en) 2017-02-21 2019-11-12 Zoll Medical Corporation Assigning zone-based rankings and actions
US11123014B2 (en) 2017-03-21 2021-09-21 Stryker Corporation Systems and methods for ambient energy powered physiological parameter monitoring
US11009870B2 (en) 2017-06-06 2021-05-18 Zoll Medical Corporation Vehicle compatible ambulatory defibrillator
RU2770332C2 (en) * 2017-07-28 2022-04-15 Ф. Хоффманн-Ля Рош Аг Medical device with battery testing function
US11077311B2 (en) 2017-10-02 2021-08-03 Avive Solutions, Inc. Modular defibrillator architecture
US10828500B2 (en) 2017-12-22 2020-11-10 Cardiothrive, Inc. External defibrillator
US11679059B2 (en) 2017-12-30 2023-06-20 Cpr Therapeutics, Inc. Methods and devices to improve the efficacy of mechanical cardiopulmonary resuscitation by changing the position of chest compression
DE102018001251A1 (en) 2018-02-16 2019-08-22 Arnulf Deinzer Juxtacorporeal defibrillator
US10729913B2 (en) 2018-03-19 2020-08-04 Zoll Medical Corporation Patient-worn energy delivery apparatus
US10716949B2 (en) 2018-03-19 2020-07-21 Zoll Medical Corporation Changing cardiac shock delivery parameters based on a transform value
WO2020018728A1 (en) 2018-07-17 2020-01-23 Paradis Norman Alan An automated resuscitation system integrating hemodynamic and defibrillatory capabilities
WO2020069308A1 (en) 2018-09-28 2020-04-02 Zoll Medical Corporation Adhesively coupled wearable medical device
US11253715B2 (en) 2018-10-10 2022-02-22 Element Science, Inc. Wearable medical device with disposable and reusable components
KR20200060649A (en) * 2018-11-22 2020-06-01 현대자동차주식회사 In-vehicle automated external defibrillator and method for controlling the same
US11883661B2 (en) 2018-12-07 2024-01-30 Neurometrix, Inc. Intelligent determination of therapeutic stimulation intensity for transcutaneous electrical nerve stimulation
WO2020139880A1 (en) * 2018-12-28 2020-07-02 Zoll Medical Corporation Wearable medical device response mechanisms and methods of use
JP7155061B2 (en) * 2019-03-27 2022-10-18 日本光電工業株式会社 Biological information measuring device, arrhythmia analysis system, arrhythmia analysis method, arrhythmia analysis program
JP7175453B2 (en) * 2019-04-26 2022-11-21 ウェスト・アファム・ホールディングス・ディーエーシー A wearable medical (WM) system that monitors an ambulatory patient's ECG signal for cardiac anomalies
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11717186B2 (en) 2019-08-27 2023-08-08 Medtronic, Inc. Body stability measurement
CA3145977A1 (en) * 2019-08-27 2021-04-04 Newpace Ltd. Automated wearable belt cardiac defibrillator
CN213609416U (en) 2019-10-09 2021-07-06 Zoll医疗公司 Treatment electrode part and wearable treatment device
US11445960B2 (en) * 2019-10-09 2022-09-20 Trustees Of Boston University Electrography system employing layered electrodes for improved spatial resolution
WO2021079862A1 (en) * 2019-10-24 2021-04-29 一般社団法人メディカル・イノベーション・コンソーシアム Automated external defibrillator
US11752345B2 (en) 2019-11-01 2023-09-12 Zoll Medical Corporation Wearable medical device controller with capacitor framing
EP3847986A1 (en) * 2020-01-13 2021-07-14 Erbe Elektromedizin GmbH Neutral electrode and method for producing same
CA3171482A1 (en) 2020-02-12 2021-08-19 Irhythm Technologies, Inc Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
USD926323S1 (en) 2020-03-30 2021-07-27 Zoll Medical Corporation Automated external defibrillator electrode pad
US11763449B2 (en) 2020-07-24 2023-09-19 Zoll Medical Corporation Systems and methods for generating and applying matrix images to monitor cardiac disease
US11173315B1 (en) 2020-07-24 2021-11-16 Defibrio AS Mobile defibrillator
US11602313B2 (en) 2020-07-28 2023-03-14 Medtronic, Inc. Determining a fall risk responsive to detecting body position movements
WO2022032118A1 (en) 2020-08-06 2022-02-10 Irhythm Technologies, Inc. Electrical components for physiological monitoring device
CN116322497A (en) 2020-08-06 2023-06-23 意锐瑟科技公司 Viscous physiological monitoring device
EP4221826A1 (en) 2020-09-30 2023-08-09 Zoll Medical Corporation Remote monitoring devices and related methods and systems with audible aed signal listening
WO2022212494A2 (en) * 2021-03-31 2022-10-06 Martin Alpert Distributed defibrillator system to enable rapid response for cardiac or pulmonary arrest
WO2022258211A1 (en) * 2021-06-11 2022-12-15 Inbrain Neuroelectronics Sl Neural interface with edge protected porous material
JP2023101321A (en) * 2022-01-07 2023-07-20 日本光電工業株式会社 automated external defibrillator

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274420A (en) * 1975-11-25 1981-06-23 Lectec Corporation Monitoring and stimulation electrode
US4298690A (en) * 1977-05-19 1981-11-03 Kyowa Hakko Kogyo Co., Ltd. Antibiotics XK-62-3 and XK-62-4 and process for production thereof
US5143071A (en) * 1989-03-30 1992-09-01 Nepera, Inc. Non-stringy adhesive hydrophilic gels
US5201865A (en) * 1991-10-28 1993-04-13 Medtronic, Inc. Medical lead impedance measurement system
US5474083A (en) * 1986-12-08 1995-12-12 Empi, Inc. Lifting monitoring and exercise training system
US5741306A (en) * 1996-05-23 1998-04-21 Lifecor, Inc. Patient-worn energy delivery apparatus
US5755742A (en) * 1996-11-05 1998-05-26 Medtronic, Inc. Cardioversion/defibrillation lead impedance measurement system
US5924983A (en) * 1996-04-29 1999-07-20 Minnesota Mining And Manufacturing Company Electrical conductor for biomedical electrodes and biomedical electrodes prepared therefrom
US6063029A (en) * 1992-12-07 2000-05-16 Hisamitsu Pharmaceutical Co., Inc. Diagnostic patch and method for diagnosis using the same
US6088616A (en) * 1997-04-10 2000-07-11 Survivalink Corporation Field programmable automated external defibrillator
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US6334069B1 (en) * 1998-01-15 2001-12-25 Regenesis Biomedical, Inc. Pulsed electromagnetic energy treatment apparatus and method
US6368687B1 (en) * 1997-12-01 2002-04-09 3M Innovative Properties Company Low trauma adhesive article
US6714824B1 (en) * 2000-05-26 2004-03-30 Koninklijke Philips Electronics N.V. Universal electrode system and methods of use and manufacture

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943628A (en) * 1957-02-27 1960-07-05 William L Howell Electrode assembly
BE632412A (en) * 1962-05-17
US3211154A (en) * 1962-06-25 1965-10-12 Mine Safety Appliances Co Sequence switch for ventricular defibrillator
SE332237B (en) * 1964-01-07 1971-02-01 Ceskoslovenska Akademie Ved
DE1282802B (en) * 1966-02-09 1968-11-14 Fritz Hellige & Co G M B H Fab Device for electrical stimulation of the heart
US3547108A (en) * 1968-09-18 1970-12-15 Physio Control Corp Combination defibrillator and heartbeat monitoring system
US3716059A (en) * 1970-08-24 1973-02-13 Cardiac Resuscitator Corp Cardiac resuscitator
US3702613A (en) * 1971-03-04 1972-11-14 Health Systems Inc Electrolyte envelope for use on the active surface of a defibrillator paddle
US3857398A (en) * 1971-12-13 1974-12-31 L Rubin Electrical cardiac defibrillator
US3814105A (en) * 1972-03-01 1974-06-04 Physio Control Corp Portable defibrillators including rotary solenoid relays for energy transfer and dumping
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US3826245A (en) * 1973-02-09 1974-07-30 Statham Instrument Inc Electrodes employing disposable electropods for cardiac instruments
US3868947A (en) * 1973-10-16 1975-03-04 Us Government Concentric electrode construction for an electrocardiogram transmitter
US4002239A (en) * 1973-11-15 1977-01-11 Gilbert Buchalter Cardiac defibrillator cup
US4058127A (en) * 1973-11-15 1977-11-15 Gilbert Buchalter Method of applying viscous fluid to a surface
US3942533A (en) * 1974-10-17 1976-03-09 Cannon Robert L Iii Cardiac defibrillator depolarizing paddle arrangement
US3994302A (en) * 1975-08-14 1976-11-30 Medtronic, Inc. Stimulation electrode of ion-exchange material
US4202340A (en) * 1975-09-30 1980-05-13 Mieczyslaw Mirowski Method and apparatus for monitoring heart activity, detecting abnormalities, and cardioverting a malfunctioning heart
US4034150A (en) * 1976-02-20 1977-07-05 Southern Weaving Company Accordian fold cable with flexible clips over the folds
US4096856A (en) * 1976-09-03 1978-06-27 Physio-Control Corporation Portable electronic physiological instrument having separable first and second components, and improved mechanical connector therefor
US4097113A (en) * 1976-09-03 1978-06-27 Physio-Control Corporation Electrical connectors for portable electronic physiological instruments having separable first and second components
US4102332A (en) * 1977-05-17 1978-07-25 Gessman Lawrence J Remote, telephonic cardiac resuscitation device
US4147162A (en) * 1977-06-10 1979-04-03 Hewlett-Packard Company Defibrillator monitor baseline control
US4164215A (en) * 1977-06-10 1979-08-14 Hewlett-Packard Company Electrode switching means for use in a defibrillator
US4233659A (en) * 1978-01-05 1980-11-11 Hewlett-Packard Company Defibrillator charging current regulator
US4119903A (en) * 1978-01-05 1978-10-10 Hewlett-Packard Company Defibrillator charging circuit
US4848345A (en) * 1978-01-30 1989-07-18 Zenex Corporation Connection circuit and method for using monitor/defibrillator
US4233987A (en) * 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
CA1153427A (en) * 1978-12-11 1983-09-06 Patrick T. Cahalan Tape electrode
US4280507A (en) * 1979-06-27 1981-07-28 Hewlett-Packard Company Patient cable with distributed resistance protection in conductors
US4633879A (en) * 1979-11-16 1987-01-06 Lec Tec Corporation Electrode with disposable interface member
US4381789A (en) * 1979-11-20 1983-05-03 Siemens Aktiengesellschaft Electrode system
US4365634A (en) * 1979-12-06 1982-12-28 C. R. Bard, Inc. Medical electrode construction
BR8009020A (en) * 1980-01-23 1981-11-17 Minnesota Mining & Mfg CONDUCTIVE ADHESIVE AND BIOMEDICAL ELECTRODE
US4328814A (en) * 1980-06-04 1982-05-11 The Kendall Company Precordial ECG strip
US4576170A (en) * 1980-07-09 1986-03-18 Micro-Circuits Company Heart monitor and defibrillator device
CA1171912A (en) 1980-08-05 1984-07-31 Alois A. Langer Arrythmia detection system and method
US4494552A (en) * 1980-08-08 1985-01-22 R2 Corporation Physiological monitoring electrode system
US4419998A (en) * 1980-08-08 1983-12-13 R2 Corporation Physiological electrode systems
US4834103A (en) * 1980-08-08 1989-05-30 Darox Corporation Disposable physiological electrode set
US4850356A (en) * 1980-08-08 1989-07-25 Darox Corporation Defibrillator electrode system
US4328808A (en) * 1980-10-09 1982-05-11 Hewlett-Packard Company Defibrillator with means for determining patient impedance and delivered energy
US4355642A (en) * 1980-11-14 1982-10-26 Physio-Control Corporation Multipolar electrode for body tissue
US4372324A (en) * 1981-08-17 1983-02-08 Hewlett-Packard Company Analog peak voltage detector in a defibrillator
US4729377A (en) 1983-06-01 1988-03-08 Bio-Stimu Trend Corporation Garment apparatus for delivering or receiving electric impulses
US4570637A (en) * 1983-10-20 1986-02-18 Andover Medical Incorporated Electrode
US4653503A (en) * 1983-11-23 1987-03-31 R2 Corporation Physiological electrodes for use with magnetic connector
JPS60153876A (en) 1984-01-19 1985-08-13 ゼツトエムアイ・コーポレーシヨン External non-penetratable heart pace maker and monitor system
US4610254A (en) * 1984-03-08 1986-09-09 Physio-Control Corporation Interactive portable defibrillator
US4619265A (en) * 1984-03-08 1986-10-28 Physio-Control Corporation Interactive portable defibrillator including ECG detection circuit
US4583549A (en) * 1984-05-30 1986-04-22 Samir Manoli ECG electrode pad
US4577639A (en) * 1984-11-08 1986-03-25 Spacelabs, Inc. Apparatus and method for automatic lead selection in electrocardiography
US4681112A (en) * 1985-01-08 1987-07-21 Physio-Control Corporation Medical instrument including electrodes adapted for right and left-handed use
US4628935A (en) * 1985-01-08 1986-12-16 Physio-Control Corporation Defibrillator adapted for use with accessory cassettes
US4635639A (en) * 1985-01-08 1987-01-13 Physio-Control Corporation Modular physiological instrument
DE3502913C1 (en) * 1985-01-29 1986-07-03 Günter Prof. Dr.rer.nat. 5100 Aachen Rau Sensor for non-invasive detection of electrophysiological values
US4700710A (en) * 1985-03-12 1987-10-20 Murray Electronics Associates Limited Partnership Apertured adhesively applied body electrode apparatus and method
US4692273A (en) * 1985-04-15 1987-09-08 Hewlett-Packard Company Novel gel compositions, processes for making same and uses in transmitting and measuring electrical impulses
US4590943A (en) * 1985-04-19 1986-05-27 Physio-Control Corporation System for providing power to portable defibrillator
US4637397A (en) * 1985-05-30 1987-01-20 Case Western Reserve University Triphasic wave defibrillation
US4722354A (en) * 1985-06-14 1988-02-02 Jens Axelgaard Electrical stimulation electrode
US4733670A (en) * 1985-10-11 1988-03-29 The Kendall Company Device for cardiac output monitoring
US4635641A (en) * 1985-10-16 1987-01-13 Murray Electronics Associates Limited Multi-element electrode
US4763660A (en) * 1985-12-10 1988-08-16 Cherne Industries, Inc. Flexible and disposable electrode belt device
US4674512A (en) * 1986-02-03 1987-06-23 Lectec Corporation Medical electrode for monitoring and diagnostic use
US4706680A (en) 1986-06-30 1987-11-17 Nepera Inc. Conductive adhesive medical electrode assemblies
US4786277A (en) * 1986-11-21 1988-11-22 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation
US4785812A (en) * 1986-11-26 1988-11-22 First Medical Devices Corporation Protection system for preventing defibrillation with incorrect or improperly connected electrodes
CA1308170C (en) 1987-01-14 1992-09-29 Rahul Mehra Apparatus for defibrillating a heart
US4821723A (en) * 1987-02-27 1989-04-18 Intermedics Inc. Biphasic waveforms for defibrillation
US4823796A (en) * 1987-04-03 1989-04-25 Laerdal Manufacturing Corp. Defibrillator circuit for producing a trapezoidal defibrillation pulse
US4852571A (en) * 1987-09-03 1989-08-01 Marquette Electronics Disposable biopotential electrode
US4779630A (en) * 1987-09-18 1988-10-25 Katecho, Inc. Defibrillator pad assembly and method for using same
US4840177A (en) * 1987-11-03 1989-06-20 Hewlett-Packard Company Current-based defibrillator
DK157899C (en) * 1987-12-15 1990-09-03 Coloplast As A dressing
US5205297A (en) * 1988-03-25 1993-04-27 Lectec Corporation Multipurpose medical stimulation electrode
US5330527A (en) * 1988-03-25 1994-07-19 Lec Tec Corporation Multipurpose medical electrode
JPH01259872A (en) 1988-04-11 1989-10-17 Fukuda Denshi Co Ltd Electrode for defibrillator
US4928690A (en) 1988-04-25 1990-05-29 Lifecor, Inc. Portable device for sensing cardiac function and automatically delivering electrical therapy
US5078134A (en) * 1988-04-25 1992-01-07 Lifecor, Inc. Portable device for sensing cardiac function and automatically delivering electrical therapy
US4854323A (en) * 1988-06-02 1989-08-08 Rubin Lawrence A Electrocardiograph harness
US4957109A (en) * 1988-08-22 1990-09-18 Cardiac Spectrum Technologies, Inc. Electrocardiograph system
US4955381A (en) * 1988-08-26 1990-09-11 Cardiotronics, Inc. Multi-pad, multi-function electrode
US4927408A (en) * 1988-10-03 1990-05-22 Alza Corporation Electrotransport transdermal system
JP2753722B2 (en) * 1988-12-23 1998-05-20 ジャパンゴアテックス株式会社 Biological electrode
US4926878A (en) * 1988-12-29 1990-05-22 Labeltape Meditect Inc. Medical electrode
US4972846A (en) 1989-01-31 1990-11-27 W. L. Gore & Associates, Inc. Patch electrodes for use with defibrillators
US4989607A (en) * 1989-03-30 1991-02-05 Preston Keusch Highly conductive non-stringy adhesive hydrophilic gels and medical electrode assemblies manufactured therefrom
US4998536A (en) * 1989-12-26 1991-03-12 Kas Products, Inc. Defibrillator pad assembly and method for using same
US5215081A (en) 1989-12-28 1993-06-01 Telectronics Pacing Systems, Inc. Method and device for measuring subthreshold defibrillation electrode resistance and providing a constant energy shock delivery
DE4007211A1 (en) 1990-03-07 1991-09-12 Mueller Gerhard ELECTRICAL CIRCUIT TO PROVIDE A HIGH VOLTAGE PULSE, IN PARTICULAR FOR A DEFIBRILLATOR
US5097830A (en) * 1990-03-30 1992-03-24 Laerdal Manufacturing Corporation Defibrillator with reliability verification
US5713926A (en) 1990-04-25 1998-02-03 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5080097A (en) * 1990-05-14 1992-01-14 Boston University Combination pacer defibrillator electrodes and pacer-defibrillator and method for use therewith
US5111813A (en) * 1990-05-18 1992-05-12 Hewlett-Packard Company Defibrillation employing an impedance-corrected delivered energy
US5193537A (en) * 1990-06-12 1993-03-16 Zmd Corporation Method and apparatus for transcutaneous electrical cardiac pacing
US5205284A (en) * 1990-06-12 1993-04-27 Zoll Medical Corporation Method and apparatus for transcutaneous electrical cardiac pacing with background stimulation
US5431688A (en) * 1990-06-12 1995-07-11 Zmd Corporation Method and apparatus for transcutaneous electrical cardiac pacing
US5150708A (en) * 1990-12-03 1992-09-29 Spacelabs, Inc. Tabbed defibrillator electrode pad
AU645848B2 (en) * 1991-01-15 1994-01-27 Pacesetter Ab A system and method for post-processing intracardiac signals
US5507781A (en) * 1991-05-23 1996-04-16 Angeion Corporation Implantable defibrillator system with capacitor switching circuitry
AU1736392A (en) * 1991-06-11 1992-12-17 Raymond E. Ideker Reduced current cardiac pacing apparatus
EP0594620A4 (en) 1991-07-15 1994-11-02 Zmd Corp Method and apparatus for transcutaneous cardiac pacing.
US5230336A (en) 1991-08-16 1993-07-27 Ventritex, Inc. Method and apparatus for impedance based automatic pulse duration adjustment for defibrillation shock delivery
AU667199B2 (en) * 1991-11-08 1996-03-14 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
AU662582B2 (en) * 1991-11-15 1995-09-07 Minnesota Mining And Manufacturing Company Biomedical electrode provided with two-phase composites conductive, pressure-sensitive adhesive
US5184620A (en) * 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
US5284135A (en) * 1992-02-21 1994-02-08 Zmd Corporation Electrical connection between transcutaneous pacing circuitry and defibrillation circuitry
US5249573A (en) 1992-02-21 1993-10-05 Zmd Corporation Defibrillation discharge circuit test
US5225769A (en) * 1992-02-21 1993-07-06 Zmd Corporation Defibrillation discharge current sensor
US5275158A (en) * 1992-02-21 1994-01-04 Zmd Corporation Defibrillation electrode switch condition sensing
US5330504A (en) * 1992-03-16 1994-07-19 Telectronics Pacing Systems, Inc. Cardioverting defibrillating device with off-line ECG analysis
US5531764A (en) * 1992-03-24 1996-07-02 Angeion Corporation Implantable defibrillator system and method having successive changeable defibrillation waveforms
US5385575A (en) * 1992-03-24 1995-01-31 Angeion Corporation Implantable cardioverter defibrillator having variable output capacitance
US5356428A (en) * 1992-03-31 1994-10-18 Cardiotronics, Inc. Non-invasive, radiolucent electrode
US5366497A (en) * 1992-03-31 1994-11-22 Cardiotronics, Inc. Non-invasive, radiolucent cardiac electrode
US5330526A (en) * 1992-05-01 1994-07-19 Zmd Corporation Combined defibrillation and pacing electrode
US5474574A (en) * 1992-06-24 1995-12-12 Cardiac Science, Inc. Automatic external cardioverter/defibrillator
US5332400A (en) * 1992-12-24 1994-07-26 Incontrol, Inc. Atrial defibrillator and method for providing pre-cardioversion warning
US5405361A (en) * 1993-03-15 1995-04-11 Surviva Link Corporation External defibrillator circuit
US5879374A (en) 1993-05-18 1999-03-09 Heartstream, Inc. External defibrillator with automatic self-testing prior to use
EP1852144B1 (en) 1993-05-18 2017-12-13 Koninklijke Philips N.V. Defibrillator with a self-test system
US5466244A (en) * 1993-05-18 1995-11-14 Heartstream, Inc. Defibrillator electrode system
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
US5601612A (en) 1993-08-06 1997-02-11 Heartstream, Inc. Method for applying a multiphasic waveform
US5372606A (en) 1993-10-07 1994-12-13 Cardiac Pacemakers, Inc. Method and apparatus for generating adaptive n-phasic defibrillation waveforms
US5462157A (en) * 1993-10-28 1995-10-31 Zmd Corporation Electrode package
US5483165A (en) * 1994-01-14 1996-01-09 Heartstream, Inc. Battery system and method for determining a battery condition
US5507778A (en) * 1994-02-22 1996-04-16 Zmd Corporation Semiautomatic defibrillator with synchronized shock delivery
US5391187A (en) * 1994-02-22 1995-02-21 Zmd Corporation Semiautomatic defibrillator with heart rate alarm driven by shock advisory algorithm
US5562708A (en) 1994-04-21 1996-10-08 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation
US5520683A (en) * 1994-05-16 1996-05-28 Physiometrix, Inc. Medical electrode and method
US5470343A (en) * 1994-06-10 1995-11-28 Zmd Corporation Detachable power supply for supplying external power to a portable defibrillator
US5575807A (en) 1994-06-10 1996-11-19 Zmd Corporation Medical device power supply with AC disconnect alarm and method of supplying power to a medical device
US5456710A (en) * 1994-06-30 1995-10-10 Physio-Control Corporation Vented electrode
US5549115A (en) 1994-09-28 1996-08-27 Heartstream, Inc. Method and apparatus for gathering event data using a removable data storage medium and clock
US5593426A (en) 1994-12-07 1997-01-14 Heartstream, Inc. Defibrillator system using multiple external defibrillators and a communications network
US5540724A (en) * 1995-02-03 1996-07-30 Intermedics, Inc. Cardiac cardioverter/defibrillator with in vivo impedance estimation
US5628776A (en) 1995-04-21 1997-05-13 Intermedics, Inc. Implantable lead with warning system
US5630834A (en) 1995-05-03 1997-05-20 Medtronic, Inc. Atrial defibrillator with means for delivering therapy in response to a determination that the patient is likely asleep
USD372977S (en) 1995-05-11 1996-08-20 Heartstream, Inc. Defibrillator
US5623926A (en) 1995-06-07 1997-04-29 Technology Transfer, Inc. Handheld electrocardiogram monitor with electrodes mounted on swing arms
US5645571B1 (en) * 1995-08-01 1999-08-24 Surviva Link Corp Automated external defibrillator with lid activated self-test system
US5722999A (en) * 1995-08-02 1998-03-03 Pacesetter, Inc. System and method for storing and displaying historical medical data measured by an implantable medical device
US5549653A (en) 1995-09-22 1996-08-27 Intermedics, Inc. Muscle stimulation electrode for implantable cardial stimulation device with warning system
US5578063A (en) * 1995-10-19 1996-11-26 Incontrol, Inc. Implantable atrial defibrillator and system having multiple channel electrogram telemetry and method
US5609614A (en) 1995-10-27 1997-03-11 Intermedics, Inc. Implantable cardiac stimulation device with warning system having automatic regulation of stimulation
US5626621A (en) 1995-11-07 1997-05-06 Medtronic, Inc. Dual chamber, multi-mode external pacemaker
EP0776678A1 (en) 1995-11-30 1997-06-04 Hewlett-Packard Company System for administering transcutaneous cardiac pacing with transcutaneous electrical nerve stimuli
US5571165A (en) 1995-12-08 1996-11-05 Ferrari; R. Keith X-ray transmissive transcutaneous stimulating electrode
US5713925A (en) 1996-01-11 1998-02-03 Physio-Control Corporation Adapter for isolating pacing and defibrillation signals
US5836942A (en) 1996-04-04 1998-11-17 Minnesota Mining And Manufacturing Company Biomedical electrode with lossy dielectric properties
US6280461B1 (en) * 1996-05-23 2001-08-28 Lifecor, Inc. Patient-worn energy delivery apparatus
US5716381A (en) * 1996-08-06 1998-02-10 Pacesetter, Inc. Electrophysiology diagnostic device including variable capacitance emulation and voltage threshold determination circuits
US5944669A (en) 1997-11-20 1999-08-31 Lifecor, Inc. Apparatus and method for sensing cardiac function
JP3053010B2 (en) 1997-11-21 2000-06-19 日本電気株式会社 Semiconductor device
US5928270A (en) 1997-12-02 1999-07-27 Cardiocommand, Inc. Method and apparatus for incremental cardioversion or defibrillation
US6169387B1 (en) 1997-12-22 2001-01-02 Lifecor, Inc. Battery management apparatus for portable electronic devices
US5929601A (en) 1997-12-22 1999-07-27 Lifecor, Inc. Battery management apparatus for portable electronic devices
US6065154A (en) 1998-04-07 2000-05-23 Lifecor, Inc. Support garments for patient-worn energy delivery apparatus
US6241751B1 (en) * 1999-04-22 2001-06-05 Agilent Technologies, Inc. Defibrillator with impedance-compensated energy delivery

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274420A (en) * 1975-11-25 1981-06-23 Lectec Corporation Monitoring and stimulation electrode
US4298690A (en) * 1977-05-19 1981-11-03 Kyowa Hakko Kogyo Co., Ltd. Antibiotics XK-62-3 and XK-62-4 and process for production thereof
US5474083A (en) * 1986-12-08 1995-12-12 Empi, Inc. Lifting monitoring and exercise training system
US5143071A (en) * 1989-03-30 1992-09-01 Nepera, Inc. Non-stringy adhesive hydrophilic gels
US5354790A (en) * 1989-03-30 1994-10-11 Nepera, Inc. Methods for the preparation of non-stringy adhesive hydrophilic gels
US5201865A (en) * 1991-10-28 1993-04-13 Medtronic, Inc. Medical lead impedance measurement system
US6063029A (en) * 1992-12-07 2000-05-16 Hisamitsu Pharmaceutical Co., Inc. Diagnostic patch and method for diagnosis using the same
US5924983A (en) * 1996-04-29 1999-07-20 Minnesota Mining And Manufacturing Company Electrical conductor for biomedical electrodes and biomedical electrodes prepared therefrom
US5741306A (en) * 1996-05-23 1998-04-21 Lifecor, Inc. Patient-worn energy delivery apparatus
US5755742A (en) * 1996-11-05 1998-05-26 Medtronic, Inc. Cardioversion/defibrillation lead impedance measurement system
US6301502B1 (en) * 1997-03-07 2001-10-09 Cardiac Science Inc. Defibrillation system
US6546285B1 (en) * 1997-03-07 2003-04-08 Cardiac Science, Inc. Long term wear electrode for defibrillation system
US6944498B2 (en) * 1997-03-07 2005-09-13 Cardiac Science, Inc. Method of utilizing an external defibrillator by replacing its electrodes
US6304780B1 (en) * 1997-03-07 2001-10-16 Cardiac Science Inc. External defibrillator system with diagnostic module
US6671545B2 (en) * 1997-03-07 2003-12-30 Cardiac Science, Inc. Defibrillator with controller operating in a low power mode
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US6374138B1 (en) * 1997-03-07 2002-04-16 Cardiac Science Inc. Defibrillation system
US6418342B1 (en) * 1997-03-07 2002-07-09 Cardiac Science Inc. Defibrillation system
US6427083B1 (en) * 1997-03-07 2002-07-30 Cardiac Science, Inc. Defibrillation system
US20030055460A1 (en) * 1997-03-07 2003-03-20 Owen James M. Defibrillator with configurable capacitor arrangement
US6088616A (en) * 1997-04-10 2000-07-11 Survivalink Corporation Field programmable automated external defibrillator
US6368687B1 (en) * 1997-12-01 2002-04-09 3M Innovative Properties Company Low trauma adhesive article
US6334069B1 (en) * 1998-01-15 2001-12-25 Regenesis Biomedical, Inc. Pulsed electromagnetic energy treatment apparatus and method
US6714824B1 (en) * 2000-05-26 2004-03-30 Koninklijke Philips Electronics N.V. Universal electrode system and methods of use and manufacture

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11045100B2 (en) 2002-08-26 2021-06-29 West Affum Holdings Corp. Pulse detection using patient physiological signals
US11419508B2 (en) 2003-09-02 2022-08-23 West Affum Holdings Dac Pulse detection using patient physiological signals
US8121683B2 (en) * 2005-11-15 2012-02-21 Metrax Gmbh External automatic defibrillator
US20090069857A1 (en) * 2005-11-15 2009-03-12 Heinz Bucher External Automatic Defibrillator
US10029110B2 (en) 2007-06-06 2018-07-24 Zoll Medical Corporation Wearable defibrillator with audio input/output
US10004893B2 (en) 2007-06-06 2018-06-26 Zoll Medical Corporation Wearable defibrillator with audio input/output
US8774917B2 (en) 2007-06-06 2014-07-08 Zoll Medical Corporation Wearable defibrillator with audio input/output
US10426946B2 (en) 2007-06-06 2019-10-01 Zoll Medical Corporation Wearable defibrillator with audio input/output
US8965500B2 (en) 2007-06-06 2015-02-24 Zoll Medical Corporation Wearable defibrillator with audio input/output
US11083886B2 (en) 2007-06-06 2021-08-10 Zoll Medical Corporation Wearable defibrillator with audio input/output
US9492676B2 (en) 2007-06-06 2016-11-15 Zoll Medical Corporation Wearable defibrillator with audio input/output
US11207539B2 (en) 2007-06-07 2021-12-28 Zoll Medical Corporation Medical device configured to test for user responsiveness
US10328275B2 (en) 2007-06-07 2019-06-25 Zoll Medical Corporation Medical device configured to test for user responsiveness
US10434321B2 (en) 2007-06-07 2019-10-08 Zoll Medical Corporation Medical device configured to test for user responsiveness
US11013419B2 (en) * 2007-06-13 2021-05-25 Zoll Medical Corporation Wearable medical monitoring device
US11832918B2 (en) 2007-06-13 2023-12-05 Zoll Medical Corporation Wearable medical monitoring device
US11648412B2 (en) 2010-07-09 2023-05-16 Zoll Medical Corporation System and method for conserving power in a medical device
US10493289B2 (en) 2010-07-09 2019-12-03 Zoll Medical Corporation System and method for conserving power in a medical device
US10159849B2 (en) 2010-11-08 2018-12-25 Zoll Medical Corporation Remote medical device alarm
US11691022B2 (en) 2010-11-08 2023-07-04 Zoll Medical Corporation Remote medical device alarm
US20150109125A1 (en) * 2010-11-08 2015-04-23 Zoll Medical Corporation Remote medical device alarm
US10485982B2 (en) 2010-11-08 2019-11-26 Zoll Medical Corporation Remote medical device alarm
US10881871B2 (en) 2010-11-08 2021-01-05 Zoll Medical Corporation Remote medical device alarm
US9937355B2 (en) * 2010-11-08 2018-04-10 Zoll Medical Corporation Remote medical device alarm
US9925387B2 (en) * 2010-11-08 2018-03-27 Zoll Medical Corporation Remote medical device alarm
US20120112903A1 (en) * 2010-11-08 2012-05-10 Zoll Medical Corporation Remote medical device alarm
US11198017B2 (en) 2010-11-08 2021-12-14 Zoll Medical Corporation Remote medical device alarm
US10022062B1 (en) 2011-02-09 2018-07-17 West Affum Holdings Corp. Detecting loss of full skin contact in patient electrodes
US11026578B2 (en) 2011-02-09 2021-06-08 West Affum Holdings Corp. Alerting for loss of full skin contact of patient electrodes
US9795782B2 (en) 2011-02-09 2017-10-24 West Affum Holdings Corp. RFID-based sensing of changed condition
US9456778B2 (en) 2011-03-25 2016-10-04 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US11417427B2 (en) 2011-03-25 2022-08-16 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9659475B2 (en) 2011-03-25 2017-05-23 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US11393584B2 (en) 2011-03-25 2022-07-19 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9684767B2 (en) 2011-03-25 2017-06-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US10755547B2 (en) 2011-03-25 2020-08-25 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US10813566B2 (en) 2011-03-25 2020-10-27 Zoll Medical Corporation Selection of optimal channel for rate determination
US9990829B2 (en) 2011-03-25 2018-06-05 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US10219717B2 (en) 2011-03-25 2019-03-05 Zoll Medical Corporation Selection of optimal channel for rate determination
US11699521B2 (en) 2011-03-25 2023-07-11 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US10269227B2 (en) 2011-03-25 2019-04-23 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9204813B2 (en) 2011-03-25 2015-12-08 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US9408548B2 (en) 2011-03-25 2016-08-09 Zoll Medical Corporation Selection of optimal channel for rate determination
US11291396B2 (en) 2011-03-25 2022-04-05 Zoll Medical Corporation Selection of optimal channel for rate determination
US9101780B2 (en) 2011-04-08 2015-08-11 The Johns Hopkins University Automatic external defibrillator for implatable cardiac defibrillator patients undergoing procedures involving electromagnetic interference
WO2013106038A3 (en) * 2011-04-08 2013-10-17 The Johns Hopkins University Automatic external defibrillator for implatable cardiac defibrillator patients undergoing procedures involving electromagnetic interference
WO2013106038A2 (en) * 2011-04-08 2013-07-18 The Johns Hopkins University Automatic external defibrillator for implatable cardiac defibrillator patients undergoing procedures involving electromagnetic interference
US11110288B2 (en) 2012-03-02 2021-09-07 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device
US11850437B2 (en) 2012-03-02 2023-12-26 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device
US9878171B2 (en) 2012-03-02 2018-01-30 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device
US8929980B2 (en) * 2012-05-03 2015-01-06 Physio-Control, Inc. External defibrillator electrode, method and system for reducing ECG artifact
US9387317B2 (en) 2012-05-03 2016-07-12 Physio-Control, Inc. External defibrillator electrode, method and system for reducing ECG artifact
US11266846B2 (en) 2012-05-31 2022-03-08 Zoll Medical Corporation Systems and methods for detecting health disorders
US20130325078A1 (en) * 2012-05-31 2013-12-05 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US8983597B2 (en) * 2012-05-31 2015-03-17 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US11097107B2 (en) 2012-05-31 2021-08-24 Zoll Medical Corporation External pacing device with discomfort management
US10384066B2 (en) 2012-05-31 2019-08-20 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US10328266B2 (en) 2012-05-31 2019-06-25 Zoll Medical Corporation External pacing device with discomfort management
US11857327B2 (en) 2012-05-31 2024-01-02 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9814894B2 (en) 2012-05-31 2017-11-14 Zoll Medical Corporation Systems and methods for detecting health disorders
US10441804B2 (en) 2012-05-31 2019-10-15 Zoll Medical Corporation Systems and methods for detecting health disorders
US10898095B2 (en) 2012-05-31 2021-01-26 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9320904B2 (en) 2012-05-31 2016-04-26 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9675804B2 (en) 2012-05-31 2017-06-13 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US20140025131A1 (en) * 2012-07-20 2014-01-23 Physio-Control, Inc. Wearable defibrillator with voice prompts and voice recognition
US10471252B2 (en) 2012-08-10 2019-11-12 West Affum Holdings Corp. Performing and pausing functions of wearable cardiac defibrillation system
US11376425B2 (en) 2012-08-10 2022-07-05 West Affum Holdings Corp. Controlling functions of wearable cardiac defibrillation system
US11794005B2 (en) 2012-08-10 2023-10-24 West Affum Holdings Dac Controlling functions of wearable cardiac defibrillation system
US10155110B2 (en) 2012-08-10 2018-12-18 West Affum Holdings Corp. Controlling functions of wearable cardiac defibrillation system
US20140085081A1 (en) * 2012-09-24 2014-03-27 Physio-Control, Inc. Wearable cardiac defibrillator receiving inputs by being deliberately tapped & methods
US20160303391A1 (en) * 2012-09-24 2016-10-20 West Affum Holdings Corp. Wearable cardiac defibrillator receiving inputs by being deliberately tapped & methods
US9403027B2 (en) * 2012-09-24 2016-08-02 West Affum Holdings Corp. Wearable cardiac defibrillator receiving inputs by being deliberately tapped and methods
US20150360043A1 (en) * 2012-09-24 2015-12-17 West Affum Holdings Corp. Wearable cardiac defibrillator receiving inputs by being deliberately tapped & methods
US9155903B2 (en) * 2012-09-24 2015-10-13 West Affum Holdings Corp. Wearable cardiac defibrillator receiving inputs by being deliberately tapped and methods
US9789327B2 (en) * 2012-09-24 2017-10-17 West Affum Holdings Corp. Wearable cardiac defibrillator receiving inputs by being deliberately tapped and methods
US11219777B2 (en) 2012-10-10 2022-01-11 West Affum Holdings Corp. External defibrillation with automatic post-shock anti-tachycardia (APSAT) pacing
US11464991B2 (en) 2013-01-23 2022-10-11 West Affum Holdings Corp. Wearable cardiac defibrillator (WCD) system controlling conductive fluid deployment
US10507331B2 (en) 2013-01-23 2019-12-17 West Affum Holdings Corp. Wearable cardiac defibrillator system controlling conductive fluid deployment
US9895548B2 (en) 2013-01-23 2018-02-20 West Affum Holdings Corp. Wearable cardiac defibrillator (WCD) system controlling conductive fluid deployment per impedance settling at terminal value
US10543377B2 (en) 2013-02-25 2020-01-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations by aggregating aspects of patient parameters
US10016614B2 (en) 2013-02-25 2018-07-10 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations by aggregating aspects of multiple patient parameters
US10500403B2 (en) 2013-02-25 2019-12-10 West Affum Holdings Corp. WCD system validating detected cardiac arrhythmias thoroughly so as to not sound loudly due to some quickly self-terminating cardiac arrhythmias
US11351391B2 (en) 2013-02-25 2022-06-07 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters
US9757579B2 (en) 2013-02-25 2017-09-12 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system informing patient that it is validating just-detected cardiac arrhythmia
US10426966B2 (en) 2013-02-25 2019-10-01 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system informing patient that it will not shock responsive to just-self-terminated cardiac arrhythmia
US11278731B2 (en) 2013-02-25 2022-03-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system informing patient that it will not shock responsive to just-self-terminated cardiac arrhythmia
US11364388B2 (en) 2013-02-25 2022-06-21 West Affum Holdings Corp. WCD system operable to not alarm when detected cardiac arrhythmias are not validated
US11375936B2 (en) 2013-04-02 2022-07-05 West Affum Holdings Corp. Wearable medical system to monitor a patient parameter
US11065464B2 (en) 2013-04-02 2021-07-20 West Affum Holdings Corp. Methods for wearable system
US10543375B2 (en) 2013-04-02 2020-01-28 West Affum Holdings Corp. Wearable medical system monitoring blood-related parameter
US9827431B2 (en) 2013-04-02 2017-11-28 West Affum Holdings Corp. Wearable defibrillator with no long-term ECG monitoring
US10016613B2 (en) 2013-04-02 2018-07-10 West Affum Holdings Corp. Wearable cardiac defibrillator system long-term monitoring alternating patient parameters other than ECG
US10022551B1 (en) 2013-04-02 2018-07-17 West Affum Holdings Corp. Wearable defibrillator with no long-term ECG monitoring
US9138592B2 (en) 2013-04-29 2015-09-22 Thinkcloud Digital Technology Co., Ltd. Defibrillation system and method and defibrillator electrode device
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10946185B2 (en) 2013-05-30 2021-03-16 Neurostim Solutions, Llc Topical neurological stimulation
US10918853B2 (en) 2013-05-30 2021-02-16 Neurostim Solutions, Llc Topical neurological stimulation
US10307591B2 (en) 2013-05-30 2019-06-04 Neurostim Solutions, Llc Topical neurological stimulation
US11291828B2 (en) 2013-05-30 2022-04-05 Neurostim Solutions LLC Topical neurological stimulation
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
CN104225791A (en) * 2013-06-06 2014-12-24 云想数位科技股份有限公司 Intelligent mobile device with emergency external defibrillation function
US10806940B2 (en) 2013-06-28 2020-10-20 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US11872406B2 (en) 2013-06-28 2024-01-16 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US9987497B2 (en) 2013-06-28 2018-06-05 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US9579516B2 (en) 2013-06-28 2017-02-28 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US9987496B2 (en) 2014-03-18 2018-06-05 West Affum Holdings Corp. Wearable cardiac defibrillator (WCD) poking the patient when not ready for use
US9757576B2 (en) 2014-03-18 2017-09-12 West Affum Holdings Corp. Reliable readiness indication for a wearable defibrillator
US10426964B2 (en) 2014-03-19 2019-10-01 West Affum Holdings Corp. Wearable cardiac defibrillator system emitting CPR prompts for bystander
US10744335B2 (en) 2014-03-19 2020-08-18 West Affum Holdings Corp. Wearable cardiac defibrillator (WCD) system sounding to bystanders in patient's own voice
US11896832B2 (en) 2014-03-19 2024-02-13 West Affum Holdings Dac Wearable cardiac defibrillator (WCD) system sounding alert to bystanders
US11771909B2 (en) 2014-03-19 2023-10-03 West Affum Holdings Dac Wearable cardiac defibrillator system authenticating person actuating cancel switch
US9878173B2 (en) 2014-03-19 2018-01-30 West Affum Holdings Corp. Wearable cardiac defibrillator system delivering shock upon hearing preset ready word from bystander
US9950184B2 (en) 2014-03-19 2018-04-24 West Affum Holdings Corp. Wearable cardiac defibrillator system sounding louder if sensing no bystander nearby
US10918878B2 (en) 2014-04-02 2021-02-16 West Affum Holdings Corp. Pressure resistant conductive fluid containment
US10265535B2 (en) 2014-04-02 2019-04-23 West Affum Holding Corp. Pressure resistant conductive fluid containment
US9833631B2 (en) 2014-04-02 2017-12-05 West Affum Holdings Corp. Pressure resistant conductive fluid containment
US11896829B2 (en) 2014-05-13 2024-02-13 West Affum Holdings Dac Network-accessible data about patient with wearable cardiac defibrillator system
US11247058B2 (en) 2014-05-13 2022-02-15 West Affum Holdings Corp. Network-accessible data about patient with wearable cardiac defibrillator system
US9757581B2 (en) 2014-05-13 2017-09-12 West Affum Holdings Corp. Wearable cardioverter defibrillator components making aggregate shock/no shock determination from two or more ECG signals
US10449370B2 (en) 2014-05-13 2019-10-22 West Affum Holdings Corp. Network-accessible data about patient with wearable cardiac defibrillator system
USD825060S1 (en) 2014-06-24 2018-08-07 West Affum Holdings Corp. Portable defibrillator carrier
EP3188795A4 (en) * 2014-09-02 2018-06-13 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
US11253714B2 (en) 2014-09-02 2022-02-22 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
WO2016036883A1 (en) * 2014-09-02 2016-03-10 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
US9950183B2 (en) 2014-09-02 2018-04-24 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
US10335605B2 (en) 2014-09-02 2019-07-02 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
US9579514B2 (en) 2014-09-02 2017-02-28 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
US11839769B2 (en) 2014-09-02 2023-12-12 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
US11097094B2 (en) 2014-10-30 2021-08-24 West Affum Holdings Corp. Wearable cardiac defibrillation system with electrode assemblies having pillow structure
US10080886B2 (en) 2014-10-30 2018-09-25 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US10632302B2 (en) 2014-10-30 2020-04-28 West Affum Holdings Corp. Wearable cardiac defibrillation system with electrode assemblies having pillow structure
US11745006B2 (en) 2014-10-30 2023-09-05 West Affum Holdings Dac Wearable cardiac defibrillation system with electrode assemblies having pillow structure
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
WO2016081815A1 (en) * 2014-11-20 2016-05-26 Zoll Medical Corporation External case for a wearable medical device
US9902028B2 (en) 2014-11-20 2018-02-27 Zoll Medical Corporation External case for a wearable medical device
US20160218021A1 (en) * 2015-01-27 2016-07-28 Advanced Semiconductor Engineering, Inc. Semiconductor package and method of manufacturing the same
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US11213211B2 (en) 2015-03-20 2022-01-04 Zoll Medical Corporation Systems and methods for testing a medical device
US11701006B2 (en) 2015-03-20 2023-07-18 Zoll Medical Corporation Systems and methods for testing a medical device
US10744057B2 (en) 2015-03-20 2020-08-18 Zoll Medical Corporation Systems and methods for testing a medical device
US10272010B2 (en) 2015-03-20 2019-04-30 Zoll Medical Corporation Systems and methods for testing a medical device
US11877979B2 (en) 2015-03-30 2024-01-23 Zoll Medical Corporation Modular components for medical devices
US10835449B2 (en) 2015-03-30 2020-11-17 Zoll Medical Corporation Modular components for medical devices
US11666773B2 (en) 2015-05-11 2023-06-06 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system using sensor modules with reassurance code for confirmation before shock
US10478631B2 (en) 2015-05-11 2019-11-19 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system using sensor modules with reassurance code for confirmation before shock
US9901741B2 (en) 2015-05-11 2018-02-27 Physio-Control, Inc. Wearable cardioverter defibrillator (WCD) system using sensor modules with reassurance code for confirmation before shock
US11291850B2 (en) 2015-07-22 2022-04-05 Zoll Medical Corporation Systems for medical device interactions
US10617881B2 (en) 2015-07-22 2020-04-14 Zoll Medical Corporation Systems for medical device interactions
US11666772B2 (en) 2015-09-08 2023-06-06 Zoll Medical Corporation Secure limited components for use with medical devices
US10960221B2 (en) 2015-09-08 2021-03-30 Zoll Medical Corporation Secure limited components for use with medical devices
US10252070B2 (en) 2015-09-08 2019-04-09 Zoll Medical Corporation Secure limited components for use with medical devices
US10105547B2 (en) * 2015-11-02 2018-10-23 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) causing patient's QRS width to be plotted against the heart rate
US10857371B2 (en) * 2015-11-02 2020-12-08 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) causing patient's QRS width to be plotted against the heart rate
US20170128735A1 (en) * 2015-11-02 2017-05-11 West Affum Holdings Corp. Wearable cardioverter defibrillator (wcd) causing patient's qrs width to be plotted against the heart rate
US20190091481A1 (en) * 2015-11-02 2019-03-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (wcd) causing patient's qrs width to be plotted against the heart rate
US10179246B2 (en) 2015-12-04 2019-01-15 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system using security NFC tag for uploading configuration data
US10322291B2 (en) 2015-12-04 2019-06-18 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with isolated patient parameter component
US11000692B2 (en) 2015-12-04 2021-05-11 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with isolated patient parameter component
US10946208B2 (en) 2015-12-04 2021-03-16 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system using security NFC tag for requests of data from memory
US11709747B2 (en) 2016-01-08 2023-07-25 Zoll Medical Corporation Patient assurance system and method
US11617538B2 (en) 2016-03-14 2023-04-04 Zoll Medical Corporation Proximity based processing systems and methods
US10729900B2 (en) 2016-03-29 2020-08-04 Zoll Medical Corporation Configurable electrodes and sensors
US11771887B2 (en) 2016-03-29 2023-10-03 Zoll Medical Corporation Configurable electrodes and sensors
US11432722B2 (en) 2016-03-30 2022-09-06 Zoll Medical Corporation Systems and methods of integrating ambulatory medical devices
US10674911B2 (en) 2016-03-30 2020-06-09 Zoll Medical Corporation Systems and methods of integrating ambulatory medical devices
US11202569B2 (en) 2016-03-31 2021-12-21 Zoll Medical Corporation Remote access for ambulatory medical device
US10426342B2 (en) 2016-03-31 2019-10-01 Zoll Medical Corporation Remote access for ambulatory medical device
US11850438B2 (en) 2016-10-04 2023-12-26 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter
US11077310B1 (en) 2016-10-04 2021-08-03 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter
US10940323B2 (en) 2016-10-04 2021-03-09 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) with power-saving function
US11052241B2 (en) 2016-11-03 2021-07-06 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system measuring patient's respiration
US11154230B2 (en) 2017-01-05 2021-10-26 West Affum Holdings Corp. Wearable cardioverter defibrillator having reduced noise prompts
US11759649B2 (en) 2017-01-05 2023-09-19 West Affum Holdings Dac Wearable cardioverter defibrillator having adjustable alarm time
US11890098B2 (en) 2017-01-05 2024-02-06 West Affum Holdings Dac Wearable cardioverter defibrillator having reduced noise prompts
US11083906B2 (en) 2017-01-05 2021-08-10 West Affum Holdings Corp. Wearable cardioverter defibrillator having adjustable alarm time
US11617880B2 (en) 2017-01-07 2023-04-04 West Affum Holdings Dac Wearable cardioverter defibrillator with breast support
US10926080B2 (en) 2017-01-07 2021-02-23 West Affum Holdings Corp. Wearable cardioverter defibrillator with breast support
US11235143B2 (en) 2017-02-03 2022-02-01 West Affum Holdings Corp. Wearable cardiac defibrillator systems and methods and software for contacting non-witnessing responders
US10967193B2 (en) 2017-02-03 2021-04-06 West Affum Holdings Corp. WCD with pacing analgesia
US11213691B2 (en) 2017-02-27 2022-01-04 Zoll Medical Corporation Ambulatory medical device interaction
US10960220B2 (en) 2017-03-16 2021-03-30 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system evaluating its ECG signals for noise according to tall peak counts
US11865351B2 (en) 2017-03-16 2024-01-09 Physio-Control, Inc. Medical device with enhanced electrocardiogram channel selection
US10589109B2 (en) 2017-04-10 2020-03-17 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system computing patient heart rate by multiplying ECG signals from different channels
US11351390B2 (en) 2017-04-10 2022-06-07 West Affum Holdings Corp. Wearable monitor system computing patient heart rate by multiplying ECG signals from different channels
US10940324B2 (en) 2017-05-03 2021-03-09 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system computing heart rate from noisy ECG signal
US11724118B2 (en) 2017-05-03 2023-08-15 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system computing heart rate from noisy ECG signal
US11648411B2 (en) 2017-05-27 2023-05-16 West Affum Holdings Dac Defibrillation waveforms for a wearable cardiac defibrillator
US10946207B2 (en) 2017-05-27 2021-03-16 West Affum Holdings Corp. Defibrillation waveforms for a wearable cardiac defibrillator
US11607554B2 (en) 2017-07-28 2023-03-21 West Affum Holdings Dac Wearable cardioverter defibrillation (WCD) system with proximate programming device which stores ECG data that the WCD system normally discards
US11103717B2 (en) 2017-07-28 2021-08-31 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system reacting to high-frequency ECG noise
US10918879B2 (en) 2017-07-28 2021-02-16 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise
US10737104B2 (en) 2017-07-28 2020-08-11 West Affum Holdings Corp. WCD system outputting human-visible indication and proximate programming device with screen reproducing the human-visible indication in real time
US11707632B2 (en) 2017-07-28 2023-07-25 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise
US11364387B2 (en) 2017-07-28 2022-06-21 West Affum Holdings Corp. Heart rate calculator with reduced overcounting
US11207538B2 (en) 2017-09-12 2021-12-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system warning ambulatory patient by weak alerting shock
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US11844954B2 (en) 2017-11-09 2023-12-19 West Affum Holdings Dac WCD monitor supporting serviceability and reprocessing
US11794024B2 (en) 2017-11-09 2023-10-24 West Affum Holdings Dac Wearable defibrillator with output stage having diverting resistance
US11260237B1 (en) 2017-11-09 2022-03-01 West Affum Holdings Corp. Wearable defibrillator with output stage having diverting resistance
US11065463B2 (en) 2017-11-10 2021-07-20 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode
US11058885B2 (en) 2017-11-29 2021-07-13 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system detecting ventricular tachycardia and/or ventricular fibrillation using variable heart rate decision threshold
US11771886B2 (en) 2017-11-30 2023-10-03 Zoll Medical Corporation Medical devices with rapid sensor recovery
US10646707B2 (en) 2017-11-30 2020-05-12 Zoll Medical Corporation Medical devices with rapid sensor recovery
US11278730B2 (en) 2017-12-04 2022-03-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from patient's rotational motion
US11400303B2 (en) 2018-01-05 2022-08-02 West Affum Holdings Corp. Detecting walking in a wearable cardioverter defibrillator system
US11844953B2 (en) 2018-02-14 2023-12-19 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD)
US11865354B1 (en) 2018-02-14 2024-01-09 West Affum Holdings Dac Methods and systems for distinguishing VT from VF
US11160990B1 (en) 2018-02-14 2021-11-02 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) alarms
US11471693B1 (en) 2018-02-14 2022-10-18 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals
US11724116B2 (en) 2018-02-15 2023-08-15 West Affum Holdings Dac Wearable cardioverter defibrillator latching connector
USD911527S1 (en) 2018-02-15 2021-02-23 West Affum Holdings Corp. Wearable cardioverter defibrillator connector
US11040214B2 (en) 2018-03-01 2021-06-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having main UI that conveys message and peripheral device that amplifies the message
US10960213B2 (en) 2018-03-12 2021-03-30 Zoll Medical Corporation Verification of cardiac arrhythmia prior to therapeutic stimulation
US11534098B2 (en) 2018-03-13 2022-12-27 Zoll Medical Corporation Telemetry of wearable medical device information to secondary medical device or system
US10602945B2 (en) 2018-03-13 2020-03-31 Zoll Medical Corporation Telemetry of wearable medical device information to secondary medical device or system
US10932726B2 (en) 2018-03-16 2021-03-02 Zoll Medical Corporation Monitoring physiological status based on bio-vibrational and radio frequency data analysis
US11826174B2 (en) 2018-03-16 2023-11-28 Zoll Medical Corporation Monitoring physiological status based on bio-vibrational and radio frequency data analysis
US11666769B2 (en) 2018-04-24 2023-06-06 West Affum Holdings Dac Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system
US11000691B2 (en) 2018-04-24 2021-05-11 West Affum Holdings Corp. Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system
US11298556B2 (en) 2018-04-25 2022-04-12 West Affum Holdings Corp. WCD user interface response to a change in device orientation
US11331508B1 (en) 2018-04-25 2022-05-17 West Affum Holdings Corp. Wearable cardioverter defibrillator with a non-invasive blood pressure monitor
US11198015B2 (en) 2018-04-26 2021-12-14 West Affum Holdings Corp. Multi-sensory alarm for a wearable cardiac defibrillator
US11058884B2 (en) 2018-04-26 2021-07-13 West Affum Holding Corp Wearable medical (WM) system monitoring ECG signal of ambulatory patient for heart condition
US11534615B2 (en) 2018-04-26 2022-12-27 West Affum Holdings Dac Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients
US11324960B2 (en) 2018-04-26 2022-05-10 West Affum Holdings Corp. Permission-based control of interfacing components with a medical device
US11260238B2 (en) 2018-04-26 2022-03-01 West Affum Holdings Corp. Wearable medical device (WMD) implementing adaptive techniques to save power
US11833360B2 (en) 2018-05-29 2023-12-05 West Affum Holdings Dac Carry pack for a wearable cardioverter defibrillator
US11247041B2 (en) 2018-08-10 2022-02-15 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) with ECG preamp having active input capacitance balancing
US11568984B2 (en) 2018-09-28 2023-01-31 Zoll Medical Corporation Systems and methods for device inventory management and tracking
US11894132B2 (en) 2018-09-28 2024-02-06 Zoll Medical Corporation Systems and methods for device inventory management and tracking
US10918877B2 (en) 2018-09-28 2021-02-16 Zoll Medical Corporation Battery lock for ambulatory medical device
US11334826B2 (en) 2019-01-18 2022-05-17 West Affum Holdings Corp. WCD system prioritization of alerts based on severity and/or required timeliness of user response
US11880792B2 (en) 2019-01-18 2024-01-23 West Affum Holdings Dac WCD system prioritization of alerts based on severity and/or required timeliness of user response
US11191971B2 (en) * 2019-03-07 2021-12-07 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with active ECG cable shielding
US11063378B2 (en) 2019-03-07 2021-07-13 West Affum Holdings Corp. Printed circuit board cable clip for signal sensitive applications
US11672996B2 (en) 2019-06-24 2023-06-13 West Affum Holdings Dac Wearable cardioverter defibrillator with AI-based features
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11793440B2 (en) 2019-08-09 2023-10-24 West Affum Holdings Dac Method to detect noise in a wearable cardioverter defibrillator
US10957453B2 (en) 2019-08-15 2021-03-23 West Affum Holdings Corp. WCD system alert issuance and resolution
US11342079B2 (en) 2019-08-15 2022-05-24 West Affum Holdings Corp. WCD system alert issuance and resolution
US11484271B2 (en) 2019-08-20 2022-11-01 West Affum Holdings Dac Alert presentation based on ancillary device conditions
US11771360B2 (en) 2019-08-22 2023-10-03 West Affum Holdings Dac Cardiac monitoring system with normally conducted QRS complex identification
US11730418B2 (en) 2019-08-22 2023-08-22 West Affum Holdings Dac Cardiac monitoring system with supraventricular tachycardia (SVT) classifications
US11839758B2 (en) 2019-12-12 2023-12-12 West Affum Holdings Dac Multichannel posture dependent template based rhythm discrimination in a wearable cardioverter defibrillator
US11344718B2 (en) 2019-12-12 2022-05-31 West Affum Holdings Corp. Multichannel posture dependent template based rhythm discrimination in a wearable cardioverter defibrillator
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
US11717687B2 (en) 2020-01-06 2023-08-08 West Affum Holdings Dac Asystole and complete heart block detection
US11904176B1 (en) 2020-01-27 2024-02-20 West Affum Holdings Dac Wearable defibrillator system forwarding patient information based on recipient profile and/or event type
US11679253B2 (en) 2020-02-16 2023-06-20 West Affum Holdings Dac Wearable medical device with integrated blood oxygen saturation level device
US11819704B2 (en) 2020-08-21 2023-11-21 West Affum Holdings Dac Positive system alerts
US11819703B2 (en) 2020-09-17 2023-11-21 West Affum Holdings Dac Electrocardiogram (ECG) electrode with deposited ink resistive element
US11698385B2 (en) 2020-11-11 2023-07-11 West Affum Holdings Dac Walking intensity detection and trending in a wearable cardioverter defibrillator
US11793469B2 (en) 2020-11-17 2023-10-24 West Affum Holdings Dac Identifying reliable vectors
US11730968B2 (en) 2020-12-14 2023-08-22 West Affum Holdings Dac Wearable medical device with temperature managed electrodes
US11712573B2 (en) 2020-12-16 2023-08-01 West Affum Holdings Dac Managing alerts in a WCD system
US11931591B2 (en) 2022-05-06 2024-03-19 West Affum Holdings Dac Permission-based control of interfacing components with a medical device

Also Published As

Publication number Publication date
US20030004547A1 (en) 2003-01-02
EP1011806A2 (en) 2000-06-28
US20140364918A1 (en) 2014-12-11
US20030055460A1 (en) 2003-03-20
US6374138B1 (en) 2002-04-16
US6148233A (en) 2000-11-14
US6427083B1 (en) 2002-07-30
WO1998039061A3 (en) 1999-01-07
JP2002514107A (en) 2002-05-14
US6304780B1 (en) 2001-10-16
US20030023277A1 (en) 2003-01-30
CA2283339A1 (en) 1998-09-11
US6301502B1 (en) 2001-10-09
US6546285B1 (en) 2003-04-08
US6944498B2 (en) 2005-09-13
US9089718B2 (en) 2015-07-28
WO1998039061A2 (en) 1998-09-11
US20030032988A1 (en) 2003-02-13
US6418342B1 (en) 2002-07-09
CA2283339C (en) 2006-03-14
AU6454798A (en) 1998-09-22
US6671545B2 (en) 2003-12-30

Similar Documents

Publication Publication Date Title
US9089718B2 (en) Defibrillation system
WO1998039061A9 (en) Wearable defibrillation system
US20220080214A1 (en) Ambulatory medical device interaction
US8364260B2 (en) External defibrillator
US20210252292A1 (en) Verification of cardiac arrhythmia prior to therapeutic stimulation
US6125298A (en) Defibrillation system for pediatric patients
US6658290B1 (en) Public access defibrillator
JP2021098084A (en) External defibrillator
US20200316394A1 (en) Patient-worn energy delivery apparatus
EP1642616B1 (en) Integrated resuscitation
US11324443B2 (en) Amplitude spectrum area considerations for an external medical monitoring and treatment device
US11771886B2 (en) Medical devices with rapid sensor recovery
US20220249854A1 (en) Modular ingress protected electrode system for a wearable defibrillator
WO2009147678A2 (en) Pocket defibrillating system
WO2006097923A1 (en) A defibrillation system and method for generating a predetermined voltage pulse for defibrillation

Legal Events

Date Code Title Description
AS Assignment

Owner name: CADENT MEDICAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OWEN, JAMES M;FINCKE, RANDALL W;O'LEARY, JAMES P;AND OTHERS;REEL/FRAME:020699/0134;SIGNING DATES FROM 19981029 TO 20000525

Owner name: CADENT MEDICAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OWEN, JAMES M;FINCKE, RANDALL W;O'LEARY, JAMES P;AND OTHERS;SIGNING DATES FROM 19981029 TO 20000525;REEL/FRAME:020699/0134

AS Assignment

Owner name: CARDIAC SCIENCE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CADENT MEDICAL CORPORATION;REEL/FRAME:020726/0041

Effective date: 20000817

AS Assignment

Owner name: CARDIAC SCIENCE CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:020748/0857

Effective date: 20060224

AS Assignment

Owner name: SILICON VALLEY BANK,CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:024492/0931

Effective date: 20100607

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:024492/0931

Effective date: 20100607

AS Assignment

Owner name: CARDIAC SCIENCE CORPORATION, WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:029389/0937

Effective date: 20121012

AS Assignment

Owner name: DBS BANK LTD., BANGALORE BRANCH, INDIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE CORPORATION;REEL/FRAME:029733/0402

Effective date: 20121228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ZOLL MEDICAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIAC SCIENCE CORPORATION;REEL/FRAME:056391/0439

Effective date: 20210409