US20110019304A1 - Tape cartridge auxiliary memeory based library - Google Patents

Tape cartridge auxiliary memeory based library Download PDF

Info

Publication number
US20110019304A1
US20110019304A1 US12/897,469 US89746910A US2011019304A1 US 20110019304 A1 US20110019304 A1 US 20110019304A1 US 89746910 A US89746910 A US 89746910A US 2011019304 A1 US2011019304 A1 US 2011019304A1
Authority
US
United States
Prior art keywords
tape
tape drive
drive
cartridge
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/897,469
Inventor
Ray D. Heineman
Samuel J. Guleff
Matthew Thomas Starr
Michael Jerard Goberis
Walter Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectra Logic Corp
Original Assignee
Spectra Logic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/604,118 priority Critical patent/US7359142B2/en
Priority to US11/877,645 priority patent/US20080043366A1/en
Application filed by Spectra Logic Corp filed Critical Spectra Logic Corp
Priority to US12/897,469 priority patent/US20110019304A1/en
Publication of US20110019304A1 publication Critical patent/US20110019304A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/675Guiding containers, e.g. loading, ejecting cassettes
    • G11B15/68Automatic cassette changing arrangements; automatic tape changing arrangements
    • G11B15/682Automatic cassette changing arrangements; automatic tape changing arrangements with fixed magazines having fixed cassette storage cells, e.g. in racks
    • G11B15/6835Automatic cassette changing arrangements; automatic tape changing arrangements with fixed magazines having fixed cassette storage cells, e.g. in racks the cassettes being transferred to a fixed recorder or player using a moving carriage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the preceding groups
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • G11B33/125Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a plurality of recording/reproducing devices, e.g. modular arrangements, arrays of disc drives
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/22Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records
    • G11B17/225Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records wherein the disks are transferred from a fixed magazine to a fixed playing unit using a moving carriage

Abstract

A data storage library is described including a plurality of tape cartridges wherein each of the tape cartridges possesses an auxiliary radio frequency memory device in which auxiliary digital data is stored. The library also includes at least one drive disposed substantially within the library capable of transferring user data to and from one of the tapes. The library further includes at least one auxiliary radio frequency memory device reader that capable of reading the auxiliary digital data and transmitting the auxiliary digital data to at least one designated location, the reader is independent of the at least one drive.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. Ser. No. 11/877,645, filed Oct. 23, 2007, which is a continuation in part of U.S. Ser. No. 10/604,118, filed Jun. 26, 2003, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to tape libraries using auxiliary memory devices contained in tape storage cartridges in tape libraries.
  • 2. Description of Related Art
  • Data storage libraries, such as tape libraries, are typically used to store and retrieve large amounts of data for data manipulation and archiving purposes. These libraries are generally comprised of drive devices adapted to read and write data to and from tape cartridges that are often housed within the tape libraries. In the interest of obtaining cursory information about a specific tape cartridge without requiring a time-consuming media load and tape threading process to read the on-tape index file, techniques using holes arranged in patterns in the cartridge casing and later electrical pads grounded in a variety of combinations were introduced. The holes and/or electrical pads provided simple information such as tape capacity, manufacturer, etc. Today, these techniques are yielding to the introduction of Radio Frequency chips disposed in the tape cartridges called a Memory-In-Cartridge (MIC) or Medium Auxiliary Memory (MAM), because of increased amounts of information and ease of use. FIG. 1A shows an example of a tape cartridge 100, tape medium 102, and MIC 104, shown here in dashed lines because the MIC 104 and tape medium 102 reside in the interior of the cartridge 100. In this example, the MIC is disposed in an LTO-3 cartridge which can be provided by TDK Corp. of Tustin, Calif.
  • A MIC allows the tape drive to access valuable cartridge data without the use of a physical connection, reducing connector wear for both the drive and the media. The MIC is a memory chip built into the data cartridge that provides a direct and immediate connection to the drive's on-board processors, which speeds access to information related to the data cartridge such as system logs, for example. Information and file search parameters are formatted within the MIC system effectively cutting the data access time down to a fraction from historical techniques.
  • As shown in FIG. 1B, a MIC 104 fundamentally comprises an integrated circuit that includes solid state memory and a transponder 124 attached to an antenna 126, the antenna is typically a small coil of wires. The MIC 104 is considered a passive device because it is energized when subjected to a strong enough RF field produced by a MIC-Reader. Information can be transmitted between the MIC and the MIC-Reader via a specific radio frequency.
  • Currently a MIC, or MAM, is parceled into regions for a medium, device and host. The three regions can accommodate attributes related to a medium with a MIC. For example a medium attribute can be a serial number permanently stored in the MAM during manufacturing, a device attribute can be load count maintained by the tape drive and a host attribute can be a backup date maintained by the application client. These attributes are strictly read and written to by a reader disposed in a drive.
  • In an effort to expand capabilities of a storage element containing a MIC operable with a data storage unit beyond a tape drive both methods and apparatus are disclosed herein. It is to innovations related to this subject matter that the claimed invention is generally directed.
  • SUMMARY OF THE INVENTION
  • The present invention relates generally to tape libraries using auxiliary memory devices contained in tape storage cartridges in tape libraries that overcomes the disadvantages and limitations of the prior art by using at least one radio frequency memory device to read auxiliary memory devices that is independent of that which is used in a tape drive.
  • One embodiment of the present invention can therefore comprise a data storage library comprising: a plurality of tape cartridges wherein each of the tape cartridges possesses an auxiliary radio frequency memory device in which auxiliary digital data is stored; at least one drive disposed substantially within the library capable of transferring user data to and from one of the tapes; at least one auxiliary radio frequency memory device reader that capable of reading the auxiliary digital data and transmitting the auxiliary digital data to at least one designated location, the reader is independent of the at least one drive.
  • Other embodiments of the present invention may additionally comprise a data storage library comprising: a first tape cartridge possessing a first auxiliary radio frequency memory device, the first device containing first attribute data relating to at least a first historical event associated with the first tape cartridge; a second tape cartridge possessing a second auxiliary radio frequency memory device, the second device containing second attribute data relating to at least a second historical event associated with the second tape cartridge; at least one drive disposed substantially within the library that capable of transferring user data to and from the first tape cartridge and to and from the second tape cartridge; at least one auxiliary radio frequency memory device reader independent of the drive capable of reading the first and second attribute data; a designated memory device capable of receiving the first and second attribute data from the reader; and an algorithm adapted to manipulate the first and second attribute data received by the designated memory device.
  • Yet further embodiments of the present invention may comprise a method comprising the steps of: providing a library with a tape drive, a tape drive auxiliary memory reader and writer device associated with the tape drive, a auxiliary memory reader device independent of the tape drive, a designated cumulative auxiliary storage location, and a first tape cartridge that possesses a first auxiliary memory device; loading the first tape cartridge in the tape drive for a first time; recording that the first tape cartridge has been loaded into the tape drive for the first time as a first loading event wherein the recording is to the first auxiliary memory device via the tape drive auxiliary memory reader and writer device; unloading the first tape cartridge from the tape drive; reading the first loading event from the first auxiliary memory device via the auxiliary memory reader device independent of the tape drive; transmitting the first loading event from the auxiliary memory reader device independent of the tape drive to the designated cumulative auxiliary storage location; and recording the first loading event in the designated cumulative auxiliary storage location.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a prior art pictorial representation of a tape cartridge with an auxiliary radio frequency memory device.
  • FIG. 1B is a prior art pictorial representation of an auxiliary radio frequency memory device.
  • FIG. 2A is an illustration of a data storage arrangement constructed in accordance with an embodiment of the present invention.
  • FIG. 2B is an illustration of a populated tape cartridge magazine in accordance with an embodiment of the present invention.
  • FIG. 3 is an illustration an embodiment of a shelf system that comprises an auxiliary memory reader that can be used in combination with a loaded tape cartridge magazine in accordance with an embodiment of the present invention.
  • FIG. 4 is an illustration of a transport unit and auxiliary memory reader arrangement in accordance with an embodiment of the present invention.
  • FIG. 5 shows an embodiment of an auxiliary radio frequency memory device reader located at the library entry/exit port location consistent with embodiments of the present invention.
  • FIG. 6A-6C shows various embodiments of a displayed data table pertaining to performance and/or historical event related information relative to that recorded on auxiliary radio frequency memory devices in accordance with an embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a central data base acting as a repository for information pertaining to a plurality of tape cartridges in a plurality of libraries in accordance with an embodiment of the present invention.
  • FIG. 8 shows a commercial embodiment of one T-950 library unit wherein aspects of the present invention can be practiced.
  • FIG. 9 is a block diagram illustrating a method to practice an embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating an alternative method to practice an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Referring to the drawings in general, and more specifically to FIG. 2A, shown therein is an illustration of a data storage arrangement constructed in accordance with an embodiment of the present invention. In what follows, similar or identical structures may be identified using identical callouts.
  • The data storage arrangement illustrated in FIG. 2A can comprise a user of data 202, such as a client, in communication with a data storage library 200. As illustratively shown, the client 202 is in communication with the library 200 via a communication path 216 and a library interface device 214. The library 200 comprises a plurality of tape cartridges 100 disposed in a tape cartridge magazine 206 wherein each of the tape cartridges contains an auxiliary radio frequency memory device (not shown) capable of storing auxiliary digital data, such as the MIC 104 of FIG. 1B. In this embodiment, the library 200 also comprises several tape drives 222 and 224, each capable of reading and writing data to and from one of a plurality of tape cartridges 100. Each tape drive 222 and 224 can be associated with a tape drive radio frequency memory device 230. As shown here, the loaded tape drive 224 is in radio frequency communication 223 with the auxiliary radio frequency memory device 104 (not shown) associated with tape cartridge 201 via the tape drive radio frequency memory device 230 associated with tape drive 224. The library 200 can further comprise a shelving system 220 capable of archiving the tape cartridge magazines 206 within the library 200. In this embodiment, the shelving system 220 is associated with one or more auxiliary radio frequency memory device readers 232 is capable of at least reading data stored on an auxiliary radio frequency memory device 104 contained by each tape cartridge 100. A transport unit 214 comprises means to transport a tape cartridge magazine 206 from the shelf system 220 to a location that facilitates a tape cartridge 100 to be inserted in one of the drives 222 or 224, such as tape cartridge 201 in a cooperating relationship with drive 224 to read and write data as shown. The transport device 214 can optionally be associated with at least one auxiliary radio frequency memory device reader 234, as shown here, disposed on the transport unit 214. The auxiliary radio frequency memory device reader 234 is one example of a reader independent of a tape drive's reader 230. The library 200 also optionally comprises an entry/exit port 204 whereby tape cartridges 100 or tape cartridge magazines 206 can be transferred between an environment external to the library 200 and an environment internal to the library 200. As shown here, preferably at least one auxiliary radio frequency memory device reader 236 is associated with the entry/exit port 204. In this embodiment, the library 200 can accommodate a graphical user interface 218 and an auxiliary memory 240, such as a disk drive or solid state memory device, capable of storing relevant information related to each tape 100. The auxiliary memory device 240 and/or graphical user interface 218 are linked to each reader, such as the reader 230, via a linking means such as a cable or some other wireless device for example, through which a reader, such as the reader 230, transmits the information stored on an auxiliary radio frequency memory device 104. In one embodiment, the tape cartridges 100 or the tape cartridge magazines may be associated with different user of data such that the storage space in the library 200 is partitioned into two or more parts wherein each part is associated with the different user of data for example.
  • With reference to FIG. 2B, shown therein are tape cartridges 100 supported by a tape cartridge magazine 206. In more detail, a tape cartridge 100, such as an LTO3 category tape cartridge manufactured by IBM of Armonk, New York, comprises magnetic tape that is capable of storing digital data written by a compatible drive 220 or 224, such as an LTO tape drive manufactured by IBM, when in cooperation (i.e. loaded) with the tape cartridge 201 as shown in FIG. 2A. The tape cartridge magazine 206 is shown populated with a plurality of tape cartridges 100. A tape cartridge 100 can be removed from the tape cartridge magazine 206, as shown by the arrow 250, and inserted in to the tape drive 220 or 224 by means of a picker device 402, shown in FIG. 4. Disposed on the tape cartridge magazine 252 is a bar code identifier 254, or other identifying indicia, for identifying the tape cartridge magazine 206 which has utility should the tape cartridge magazine 206 be archived in a media pack storage vault, for example. In this embodiment, all tape cartridges 100 contain an auxiliary radio frequency memory device 104, however, in alternative embodiments, some tape cartridges may not contain an auxiliary radio frequency memory device 104.
  • An auxiliary radio frequency memory device 104, in one embodiment, is parceled into three regions in which data can be stored; a medium device region which contains information such as a serial number, a device region which contains information from the tape drive such as load count, and host/vendor unique region wherein information such as history and/or performance data related to the cartridge 100 can be stored. The information in the regions can be added to with new information via an address related to the arrangement of available storage space in the auxiliary radio frequency memory device 104 or, optionally, the information can be read by an auxiliary memory reader, such as the reader 230, and reassembled with additional information and stored on the auxiliary radio frequency memory device 104 as the reassembled version, just to name two examples. In another example, if the storage limit is reached in the auxiliary radio frequency memory device 104, such as the host/vendor data in the host/vendor unique region, the host/vendor data can be read and stored in an auxiliary storage space, such as the auxiliary memory 240, and the host/vendor unique region purged and made available for new information. In another example, the host/vendor data can be compressed with algorithms to decompress residing in the library 200 or user of data 202, for example.
  • FIG. 3 illustrates an embodiment of a shelf system 220 that comprises an auxiliary memory reader 232 that can be used in combination with a loaded tape cartridge magazine 206. As illustratively shown in arrangement-A, the tape cartridge magazine 206 is in the process of being moved on to the shelf 220 in the direction of the arrow. The auxiliary memory reader 232 is shown transmitting an RF field 304 via an auxiliary radio frequency memory device 104 contained in cartridge A 302. Arrangement-B illustrates the auxiliary radio frequency memory device 104 contained in tape cartridge A 302 transmitting data in the form of an RF signal 306 to the auxiliary memory reader 232 when positioned in the presence of the RF field 304. In one embodiment of the present invention, the auxiliary radio frequency memory device 104 is a passive device because it is energized when subjected to a strong enough RF field produced by the auxiliary memory reader 232. Information is transmitted between the auxiliary radio frequency memory device 104 and the auxiliary memory reader 232 via a specific radio frequency, shown here as 304 and 306. Data can be transferred and stored on the auxiliary radio frequency memory device 104 from the library 200 or alternatively (and in addition to) data from the auxiliary radio frequency memory device 104 can be transferred to the auxiliary memory 240 via the auxiliary memory reader 232. Arrangement-C illustrates the auxiliary radio frequency memory device 104 contained in tape cartridge B 308 transmitting data in the form of an RF signal 307 to the auxiliary memory reader 232 when positioned in the presence of the RF field 304. Arrangement-D illustrates the auxiliary radio frequency memory device 104 contained in tape cartridge C 310 transmitting data in the form of an RF signal 309 to the auxiliary memory reader 232 when positioned in the presence of the RF field 304.
  • With reference to FIG. 4, shown therein is an illustration of the transport unit 214, of FIG. 2A, in greater detail. The transport unit 214 is adapted to transport tape cartridge magazines 206 within the library 200. A cartridge picker 402, which can be associated with the transport unit 214, is adapted to move cartridges 100 from a tape cartridge magazine 206 into a cooperating read/write relationship with a tape drive, such as tape drive 224 of FIG. 2A. The transport unit 214 is illustratively shown herein accommodating an auxiliary memory reader 234 that is transmitting an RF signal 408 (and potentially data) to an auxiliary radio frequency memory device 104 contained in tape cartridge D 404 whereby the auxiliary radio frequency memory device 104 of cartridge D 404 is transmitting data via an RF signal 410 to the auxiliary memory reader 234.
  • FIG. 5 shows an embodiment of the present invention wherein an auxiliary radio frequency memory device reader 236 is capable of providing notice when a tape cartridge 100 is moved to an unintended location. In this embodiment, the library 200 provides an alarm system 500 that is activated when a tape cartridge 100 is moved to an unintended location, such as being moved out of the library 200 through the entry/exit port 204. As shown, the tape cartridge 100, and more specifically, the auxiliary radio frequency memory device 104 contained by the tape cartridge 100, transmits an RF response 502 when activated by the RF field 504 produced by the auxiliary radio frequency memory device reader 236. An algorithm associated with the library 200 can be initiated via the RF response 502 to determine if the tape cartridge 100 is authorized to pass through the entry/exit port 204. In the event of the tape cartridge 100 is displaced without authorization, the alarm 500 linked to the auxiliary radio frequency memory device reader 236 will activate. This measure can provide safeguard against stealing a tape cartridge 100 from the library 200 or inserting an unauthorized tape cartridge 100 having an auxiliary radio frequency memory device 104 into the library 200. In an alternative embodiment, the alarm 506 can be transmitted to a user of data 202 alerting that a tape cartridge 100 has been displaced without authorization. In yet another optional embodiment, one or more auxiliary radio frequency memory device readers (not shown) can be located in different places in or around the library 200 to indicate if a tape cartridge 100 is being moved to an unintended location. Such an arrangement can include a means to alert a user of data 202, or other authority, that something is out of order. In yet another embodiment, the auxiliary radio frequency memory device 104 associated with a tape cartridge can be marked as “moved without authorization” or “stolen”, etc. Optionally, alternative data, such as history and/or performance data related to the cartridge 100 can be obtained during passing passing of the cartridge 100 by the reader 236.
  • Storage space on an auxiliary radio frequency memory device 104 is made available to a host, or user of data 202, in addition to space available for a drive device, such as tape drive 224, and tape cartridge 100. In some embodiments, the space for a host, referred to also as a host region, may contain attributes including, but not limited to, the date the media was generated, or manufactured, the time the cartridge was written (tape writing time), the time the cartridge was last accessed, a list of Single Character Display (SCD) at unload which is an indicia of potential errors with a drive and labeling field, such as a label tagged “Confidential Tape”, library vital statistics, and other performance and/or historical event related data, for example. Library vital statistics can include data related to heat, humidity, voltage levels and the time of a certain activity level, etc.
  • In another embodiment of the present invention, a single bit of data, called a virgin bit, can be toggled in the auxiliary radio frequency memory device 104 when a tape cartridge 100 is used for the first time. A virgin bit can serve as an indicator that a tape has been used at least once which can reduce the number of new tape cartridges accidentally destroyed in the company of heavily used or damaged tape cartridges.
  • Data from each tape cartridge's auxiliary radio frequency memory device 104, obtained by an auxiliary radio frequency memory device reader, such as 230, 232, 234, or the like, can be stored on an auxiliary memory device 240 associated with the library 200. Optionally, the data can be stored in memory associated in an alternative location, such as with the host 202, for example. Because many potential attributes can be stored on an auxiliary radio frequency memory device 104, the manner in which the data can be displayed may be organized in accordance with specific needs. For example, each recorded cartridge can have an associated file where upon opening the file, one can choose which attribute to display. Alternatively, a display can include a handful of most frequently viewed data or data filtered according to specific performance related thresholds. Illustrative examples are shown in FIGS. 6A-6C.
  • With reference to FIG. 6A, shown therein is one example of a displayed data table 600 pertaining to performance and historical event related information contained in an auxiliary radio frequency memory device 104 stored on an auxiliary memory device, such as device 240. The displayed data table 600 can be viewed on the graphical user interface 218 or, optionally, on a monitor accessible by a user of data 202, just to name two viewing examples. The data is sorted by an action to replace a cartridge 608 which, in this example, is either an exceeded threshold of number of loads or soft error count. As illustrated, four columns are displayed, namely; the tape cartridge bar code serial number 602, the number of times a tape cartridge is loaded 604, the number of soft errors counted in a tape 606 (performance related) and the action to replace a tape cartridge 608. Here, the number of loads that may alert a user of data 202 or a library operator is set at more than 10,000 times a tape cartridge 100 is loaded and threaded in a tape drive. Here, an excessive number of soft errors in which the number of times a tape drive has to rewrite a stream of data due to a read error (while writing) is set at a threshold of 30 soft errors. As illustratively shown, bar code serial number AAA has an action to be replaced because of an excess loads, i.e., 10,002. Bar code serial number AAF has an action to be replaced because of an excess of soft errors, i.e., 31. Bar code serial number BCC has an action to be replaced because of both an excess loads, i.e., 10,001, and an excess of soft errors, i.e., 30. A decision to replace the tape cartridge can be left up to an operator or end user or can optionally be automatically accomplished by the library 200.
  • FIG. 6B shows an alternative example of a displayed data table 620 showing all tape cartridges in a library. As illustrated, four columns are displayed, namely; the tape cartridge bar code serial number 602, the number of times a tape cartridge is loaded 604, the number of soft errors counted in a tape 606 and the action to replace a tape cartridge 608. In this example, all of the bar code serial numbers of all the tapes 100 in a library 200 are displayed in succession in the bar code serial number column 602. As in FIG. 6A, cartridge bar code serial number AAA has 10,002 loads, 1 soft error count and has an action to be replaced due to excessive loads. Cartridge AAB has 7,800 loads a soft error count of 3 and there is no action needed regarding tape AAB. Likewise, tape cartridges AAC, AAD and AAE require no further action as their respective number of loads and soft error counts are under the threshold limits requiring further action.
  • FIG. 6C shows an alternative example of a displayed data table 640 showing just tape cartridge AAA and a list of SCD of four tape drives that are used with tape cartridge AAA. Not all tape drives provide an SCD, however some drives do, such as an IBM LTO-3 drive. As illustrated, five columns are displayed, namely; serial number AAA load count arranged in successive loads 642, drive-1 load status 644, drive-2 load status 646, drive-3 load status 648 and drive-4 load status 650. As illustrated for loads 2, 5 and 8, drive-3 is registering error 6 which may be a tape drive or media error displayed by drive-3. As such, an operator or user of data may arrive at the conclusion that drive-3 is broken or may need servicing. The registered SCD of 0 indicates that no error occurred.
  • FIG. 7 is a block diagram illustrating a central data base 702 acting as a repository for information pertaining to at least some of the tape cartridges associated with each library. As shown in the illustrative arrangement, library A 704, B 706, C 708, D 710 and E 712 are each linked to the central data base 702. The central data base 702 can provide storage of any, and all, auxiliary radio frequency memory device information contained in each tape cartridge associated with each library A-E 704-712. In one embodiment, all of the tape cartridges comprised by library A 704 may each comprise an auxiliary radio frequency memory device, such as the device 104. The central data base 702 can, therefore, contain all of the information from each of the auxiliary radio frequency memory devices from library A 704 and further be adapted to sort the information in any number of ways including the exemplary arrangements of FIGS. 6A-6C. Library B 706 may comprise tape cartridges that do not have an auxiliary radio frequency memory device, thus, only those that do have an auxiliary radio frequency memory device can store associated information on the central data base 702. Library C 708 may include some cartridges with an attribute associated with each auxiliary radio frequency memory device that bars storing any associated information on the central data base 702, hence, only those cartridges that are allowed to be stored (i.e., not barred) on the central data base 702 are stored. The auxiliary radio frequency memory device information stored on the central data base can be viewed by an authority, such as an Original Equipment Manufacturer of libraries and/or tapes, for purposes of tape management, such as replacing damaged or worn out tapes or notifying a user of data if something out of the ordinary has occurred.
  • Embodiments of the present invention can be commercially practiced in a Spectra Logic T-950 tape cartridge library manufactured by Spectra Logic of Boulder Colorado. FIG. 8 shows a commercial embodiment of one T-950 unit 800 without an enclosure. The T-950 library 800 comprises a first and second shelf system 830 and 840 that are adapted to support a plurality of the mobile media, such as the tape cartridge magazine 206 comprising a plurality of LTO-3 tape cartridges with MAMs, archived by the library 800. The shelf systems 830 and 840 can each comprise at least one auxiliary memory reader, such as the auxiliary memory reader 232 of FIG. 2A. Furthermore, the second shelf system 840 comprises at least one drive (not shown) adapted to read and write data to and from a tape cartridge. Functionally interposed between the first and second shelf system 830 and 840 is a magazine transport space 810. The magazine transport space 810 is adapted to provide adequate space for a tape cartridge magazine 206 to be moved, via a magazine transport and cartridge picker (not shown), from a position in the first shelf system 830, for example, to a drive. The magazine transport and picker can further accommodate at least one auxiliary radio frequency memory device reader, such as the reader 234 from FIG. 2A. Tape cartridge magazines 206 can be transferred into and out from the T-950 library 800 via an entry/exit port 850. An auxiliary radio frequency memory device reader, such as the reader 236 from FIG. 2A, can be associated with the entry/exit port 850. Transferring tape cartridge magazines 206 in and out of the T-950 library 800 can be accomplished by an operator for example. The T-950 library 800 comprises a means for cooling as shown by the fans 860, located at the base of the library 800. The T-950 library 800 can be linked to a central data base, such as the data base 702, wherein the central data base can provide storage of all of the auxiliary radio frequency memory devices, such as the device 104, contained in each tape cartridge in the T-950 library 800 as read by any one of the auxiliary radio frequency memory device readers. The T-950 library 800 also provides a graphical user interface (not shown) whereon a display table much like those illustrated in FIGS. 6A-6C can be displayed. In an alternative embodiment, simple messages pertaining action associated with a tape cartridge can be displayed, such as an alert accompanying a sound alarm, for example.
  • Referring now to FIG. 9 in conjunction with FIG. 2A, shown therein is a method to practice an embodiment of the present invention. It should be recognized that the steps presented in the described embodiments of the present invention do not necessarily require any particular sequence unless otherwise stated. As shown in step 900, a library 200 is provided with a tape drive 224, a tape drive auxiliary memory reader and writer device 230 associated with the tape drive 224, an auxiliary memory reader device that is independent from the tape drive, such as device 232 or 234, for example, a designated cumulative auxiliary storage location 240, and a first tape cartridge 201 that possesses a first auxiliary memory device 104. In an optional embodiment, the auxiliary memory reader device that is independent from the tape drive can also be capable of writing data to the first auxiliary memory device 104 associated with the first tape cartridge 201. As shown in step 902, the first tape cartridge 201 is loaded in the drive 224 for a first time. A tape cartridge prior to loading in the drive 224 in the tape library 200 for the first time is considered a virgin tape cartridge. As shown in step 904, a “first loading event” is stored to the first auxiliary memory device 104 associated with the tape cartridge 201 via the tape drive auxiliary memory reader and writer device 230. In one embodiment, record of the “first loading event” can be in the form of a single bit, or virgin bit, toggled to indicate the event occurred. As shown in steps 906 and 908, respectively, the first tape cartridge 201 is unloaded from the tape drive 224 followed by reading that the “first loading event” occurred from the first auxiliary memory device 104 via the auxiliary memory reader device that is independent from the tape drive, such as the reader 234 or 232. Once the “first loading event” has been read from the first auxiliary memory device 104, the information that the event took place is transmitted to the designated cumulative auxiliary storage location, as shown in step 910. As shown in step 912, a record that the first loading event took place relative the first tape cartridge 201 is stored in the designated cumulative auxiliary storage location 240. In one embodiment of the method, the steps 900-912 are in order. It should be clear that the reading event of step 908 does not have to occur immediately after the step 906 of unloading the tape cartridge 201; for example, a large amount of time with intervening activity can occur between steps 908, 910 and 912. In an alternative embodiment of the present invention, a second tape cartridge (or more) containing a second auxiliary memory device can progress through steps 900-912 as well with recordation that the second tape cartridge has been used at least once.
  • FIG. 10 shows an alternative method that can add to the method of FIG. 9 or can stand alone. As shown in step 1020, the tape library 200 can be provided with a shelf system 220 wherein the shelf system 220 accommodates a plurality of tape cartridges, such as cartridge 100, wherein each of the tape cartridges 100 possesses an associated auxiliary memory device, such as device 104. As shown in step 1022, each of the plurality of tape cartridges 100 is moved between the shelf system 220 and the tape drive 224 or 222. As shown in step 1024, each of the tape cartridges 100 are read during a portion of the moving step 1022 via the auxiliary memory reader device that is independent from the tape drive, such as device 232 or 234. As shown in steps 1026 and 228, respectively, all information associated with each of the plurality of associated auxiliary memory devices from each of the tape cartridges 100 are reported from the auxiliary memory reader device that is independent from the tape drive, such as devices 232, 234 and/or 236, to the designated cumulative auxiliary storage location 240 where the information can be recorded. As shown in step 1030, at least one parameter from at least one of the tape cartridges is reported to a user of data 202. The at least one reported parameter can be associated with a parameter such as a performance and/or historical event that has a related threshold limit such that when the threshold limit is reached an alert message is also reported to the user of data 202.
  • It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with the details of the structure and function of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, multiple auxiliary memory reader devices that are independent from the tape drive can be used inside of a library with one or more tape cartridge's associated auxiliary memory device at the same time while still maintaining substantially the same functionality without departing from the scope and spirit of the present invention. Another example can include using auxiliary memory reader devices that are independent from the tape drive to check accuracy of data via redundancy not to mention techniques in which data from multiple tape cartridges, via their associated auxiliary memory devices, can be accumulated coincidentally, just to name a few examples while still maintaining substantially the same functionality without departing from the scope and spirit of the present invention. Further, though elements and methods are described herein exemplifying a first and second object or element, for example, this language is used herein to simplify the description indicative of a plurality of objects or elements. Finally, although the preferred embodiments described herein are directed to tape library systems and RF devices, and related technology, it will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other remote communication systems and devices, without departing from the spirit and scope of the present invention.
  • It will be clear that the present invention is well adapted to attain the ends and advantages mentioned as well as those inherent therein. While presently preferred embodiments have been described for purposes of this disclosure, numerous changes may be made which readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the invention disclosed and as defined in the appended claims.

Claims (20)

1. A tape library comprising a first tape drive and a second tape drive, a tape cartridge possessing an auxiliary memory device, said tape library adapted to perform method steps of:
loading said tape cartridge in said first tape drive;
recording to said auxiliary memory device that said tape cartridge has been loaded into said first tape drive as a first loading event;
unloading said tape cartridge from said tape drive;
loading said tape cartridge in said second tape drive;
recording to said auxiliary memory device that said tape cartridge has been loaded into said second tape drive as a second loading event.
2. The method of claim 1 wherein said steps of recording to said auxiliary memory device are accomplished by a first tape drive auxiliary memory reader and writer device associated with said first tape drive and a second tape drive auxiliary memory reader and writer device associated with said second tape drive.
3. The method of claim 1 further comprising recording both of said first and said second loading events to a designated cumulative auxiliary storage location that is further comprised by said tape library.
4. The method of claim 3 wherein said cumulative auxiliary storage location includes a plurality of other loading events wherein some of the plurality of other loading events includes different tape cartridges and different tape drives.
5. The method of claim 3 further comprising transmitting said first and said second loading events to said designated cumulative auxiliary storage location via an auxiliary radio frequency memory device reader that is independent of said first or said second tape drive.
6. The method of claim 1 wherein said first loading event includes, in addition to a record of said first tape drive, an error associated with said first loading event.
7. The method of claim 1 wherein said error is linked to a single character display readout associated with said first tape drive.
8. The method of claim 6 further comprising determining that said first tape drive is faulty based on said recording of said error associated with said first loading event.
9. The method of claim 1 wherein said first loading event includes, in addition to a record of said first tape drive, at least one vital statistic associated with said tape library at the time of said first loading event.
10. The method of claim 1 wherein said auxiliary memory device further includes records of other loading events associated with other tape drives.
11. A library arranged to perform method steps comprising:
engaging a tape cartridge with a first tape drive from when said tape cartridge first encounters said first tape drive to when said tape cartridge is unloaded from said first tape drive;
determining an error based on said engagement of said tape cartridge and said first tape drive wherein said first tape drive causes said error;
making a first record that includes said error and knowledge that said engaging step occurred with said first tape drive;
maintaining said first record in an auxiliary memory device comprised by said tape cartridge.
12. The method of claim 11 wherein said auxiliary memory device further includes at least one other record of an engagement between said tape cartridge and a different tape drive and any records of errors between said tape cartridge and said different tape drive.
13. The method of claim 11 further comprising storing said first record in a designated cumulative auxiliary storage location that is independent of said first tape drive or said tape cartridge.
14. The method of claim 13 wherein said designated cumulative auxiliary storage location contains additional records that include engagements between other tape cartridges and different tape drives and any errors detected between said other tape cartridges and said different tape drives.
15. The method of claim 14 further comprising determining if any of said tape drives is not functioning properly based on said records.
16. The method of claim 11 wherein said error corresponds to a single character display result associated with said first tape drive.
17. A tape library comprising:
a first tape drive adapted to engage a tape cartridge from when said tape cartridge first encounters said first tape drive to when said tape cartridge is unloaded from said first tape drive;
an auxiliary memory device, essentially disposed in said tape cartridge, adapted to retain a record that includes knowledge of said first tape drive, knowledge of said engagement between said tape cartridge and said first tape drive, and knowledge of an error based on said engagement of said tape cartridge and said first tape drive wherein said first tape drive caused said error.
18. The tape library of claim 17 wherein said auxiliary memory device further includes at least one other record of an engagement between said tape cartridge and a different tape drive and any associated record of errors between said tape cartridge and said different tape drive.
19. The tape library of claim 17 further comprising a designated cumulative auxiliary storage location that is adapted to maintain said record in addition to other records that include engagements between other tape cartridges and other tape drives and any between said other tape cartridges and said other tape drives.
20. The tape library of claim 17 further comprising a display device that is adapted to alert a user of data that said first tape drive is faulty based on said record of said error.
US12/897,469 2003-06-26 2010-10-04 Tape cartridge auxiliary memeory based library Abandoned US20110019304A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/604,118 US7359142B2 (en) 2003-06-26 2003-06-26 Magazine-based data cartridge library
US11/877,645 US20080043366A1 (en) 2003-06-26 2007-10-23 Tape cartridge auxiliary memeory based library
US12/897,469 US20110019304A1 (en) 2003-06-26 2010-10-04 Tape cartridge auxiliary memeory based library

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/897,469 US20110019304A1 (en) 2003-06-26 2010-10-04 Tape cartridge auxiliary memeory based library
US13/248,207 US8767330B2 (en) 2003-06-26 2011-09-29 Tape cartridge auxiliary memory based library

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/877,645 Division US20080043366A1 (en) 2003-06-26 2007-10-23 Tape cartridge auxiliary memeory based library

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/248,207 Continuation US8767330B2 (en) 2003-06-26 2011-09-29 Tape cartridge auxiliary memory based library

Publications (1)

Publication Number Publication Date
US20110019304A1 true US20110019304A1 (en) 2011-01-27

Family

ID=46329535

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/877,645 Abandoned US20080043366A1 (en) 2003-06-26 2007-10-23 Tape cartridge auxiliary memeory based library
US12/897,469 Abandoned US20110019304A1 (en) 2003-06-26 2010-10-04 Tape cartridge auxiliary memeory based library
US13/248,207 Active 2024-01-22 US8767330B2 (en) 2003-06-26 2011-09-29 Tape cartridge auxiliary memory based library

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/877,645 Abandoned US20080043366A1 (en) 2003-06-26 2007-10-23 Tape cartridge auxiliary memeory based library

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/248,207 Active 2024-01-22 US8767330B2 (en) 2003-06-26 2011-09-29 Tape cartridge auxiliary memory based library

Country Status (1)

Country Link
US (3) US20080043366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8976479B2 (en) 2011-05-13 2015-03-10 International Business Machines Corporation Writing data to tape storage medium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7673309B2 (en) * 2005-01-20 2010-03-02 Hie Electronics, Inc. Scalable integrated high density optical data/media storage delivery system
US8239059B2 (en) * 2007-10-29 2012-08-07 Spectra Logic Corp. Access records on tape medium auxiliary memory device
US8537484B2 (en) * 2009-04-16 2013-09-17 Spectra Logic Corporation Tape data assessment
US20100321811A1 (en) * 2009-06-19 2010-12-23 Spectra Logic Corporation Drive life cycle management
US20110122527A1 (en) * 2009-11-25 2011-05-26 International Business Machines Corporation Storing and Locating a Self-Describing Storage Cartridge
JP5782767B2 (en) * 2011-03-20 2015-09-24 富士通株式会社 Library equipment
JP5725233B2 (en) * 2014-04-21 2015-05-27 富士通株式会社 Library equipment and the magazine mechanism
CN104537330A (en) * 2014-12-08 2015-04-22 深圳市民德科创科技有限公司 Image type bar code reader with lightweight database arranged inside
CN105069114B (en) * 2015-08-11 2018-11-09 许继电气股份有限公司 One kind of filling station system and method for forwarding data
US10210896B2 (en) 2016-09-27 2019-02-19 International Business Machines Corporation Wireless tape cartridge handling

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864511A (en) * 1987-01-27 1989-09-05 Storage Technology Corporation Automated cartridge system
US5060090A (en) * 1988-07-22 1991-10-22 Hitachi, Ltd. Automatic storage system and method for information recording media
US5592432A (en) * 1995-09-05 1997-01-07 Emc Corp Cache management system using time stamping for replacement queue
US5819309A (en) * 1996-02-09 1998-10-06 Overland Data, Inc. Automated tape cartridge library with accelerated calibration
US5940629A (en) * 1996-07-19 1999-08-17 Sony Corporation System for selecting drive replacement and opening information transmission path after replacement permission of the selected drive is granted
US6010239A (en) * 1996-03-07 2000-01-04 Hardgrave; William David Automatic item-driven system for deposit and pick-up
US6381710B1 (en) * 1995-04-07 2002-04-30 Samsung Electronics Co., Ltd. Error logging method utilizing temporary defect list
US6425042B1 (en) * 1998-07-24 2002-07-23 Sony Corporation Tape drive apparatus for judging an operational mode of the tape based on detected tape management information
US20020159183A1 (en) * 2001-04-26 2002-10-31 Albrecht Thomas Robert Gripper assembly for interfacing with portable storage devices in a storage library
US6476725B2 (en) * 2000-11-30 2002-11-05 Compaq Information Technologies Group, L.P. Visual meter for providing a long-term indication of dynamic parameters
US20030016464A1 (en) * 2001-07-19 2003-01-23 International Business Machines Corporation Apparatus and method to expedite data access from a portable data storage cartridge
US20030090829A1 (en) * 2001-11-14 2003-05-15 Johnson Kristianne E. Apparatus for and method of retrieving data cartridge-related information from a data cartridge memory
US6574641B1 (en) * 2000-09-29 2003-06-03 International Business Machines Corporation Management of physical media volumes in partitions of an automated data storage library
US20030120386A1 (en) * 2001-12-20 2003-06-26 Storage Technology Corporation Automated physical disk storage and management
US20030206107A1 (en) * 1998-08-14 2003-11-06 3M Innovative Properties Company Application for a radio frequency identification system
US20030235000A1 (en) * 2001-08-30 2003-12-25 Yoshihisa Takayama Communication apparatus communicating with recording medium memory and recording medium drive apparatus
US6707630B2 (en) * 1999-09-30 2004-03-16 Fujitsu Limited Method for managing a life of a storage medium, storage device, storage system, and storage medium
US20040088117A1 (en) * 2001-01-05 2004-05-06 Dorsett Jr. David R. Laboratory database system and methods for combinatorial materials research
US20040105187A1 (en) * 2001-10-19 2004-06-03 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040143703A1 (en) * 2003-01-21 2004-07-22 Emberty Robert George Serial EEPROM for volume identification and drive specific information storage in a hard disk drive library
US20040181388A1 (en) * 2003-03-11 2004-09-16 Yung Yip System having tape drive emulator and data tape cartridge housing carrying multiple disk drives
US20040194151A1 (en) * 2003-01-15 2004-09-30 Tod Earhart Supplemental memory having media directory
US6820066B1 (en) * 1998-10-09 2004-11-16 Francotyp-Postalia Ag & Co. Kg Arrangement and method for storing data relating to the usage of a terminal device
US20040264040A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264042A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264041A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264038A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040265039A1 (en) * 2003-06-24 2004-12-30 Buck Janice E Writing implement with integral page-turning element
US20040264037A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20050007692A1 (en) * 2003-06-26 2005-01-13 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20050046989A1 (en) * 2003-08-26 2005-03-03 International Business Machines Corporation Electronically updatable labeling system for data storage
US20050052772A1 (en) * 2003-07-18 2005-03-10 Barbian Douglas F. Methods and systems for providing predictive maintenance, preventative maintenance, and/or failure isolation in a tape storage subsystem
US20050078406A1 (en) * 2003-10-09 2005-04-14 Andrew Topham Storage unit
US20050169126A1 (en) * 2004-01-30 2005-08-04 Duncan Wakelin Library for storing and retrieving removable information storage elements
US20050190660A1 (en) * 2004-01-30 2005-09-01 Duncan Wakelin Library for storing and retrieving removable information storage elements
US20050219964A1 (en) * 2004-04-02 2005-10-06 Spectra Logic Corporation Storage media transferring method and apparatus within a multi-unit storage apparatus
US20060164928A1 (en) * 2005-01-21 2006-07-27 Spectra Logic Corporation Mobile media identification system for use with a storage device
US7177108B2 (en) * 2003-06-03 2007-02-13 Quantum Corporation Emulation of auxiliary memory
US20070039014A1 (en) * 2005-08-12 2007-02-15 Pierce Steven N Apparatus system and method for conducting a data storage library inventory
US7218594B2 (en) * 1999-07-16 2007-05-15 Koninklijke Philips Electronics N.V. Recording medium, and method of and device for recording information on a recording medium and reading information from a recording medium
US20070195447A1 (en) * 2006-02-21 2007-08-23 Spectra Logic Corporation Optional data encryption by partition for a partitionable data storage library
US20080037160A1 (en) * 2005-01-06 2008-02-14 Mcintosh Michael P Media cartridge storage device for an autoloading data storage and retrieval system
US20080091892A1 (en) * 2006-10-13 2008-04-17 Alpha Imaging Technology, R.O.C. Interleaving memory read/write method and apparatus executing same
US7430053B2 (en) * 2003-03-27 2008-09-30 Hewlett-Packard Development Company, L.P. Tracking component usage in a printing device
US7486462B1 (en) * 2007-10-24 2009-02-03 Spectra Logic Corporation Available library capacity
US20090228745A1 (en) * 2008-03-10 2009-09-10 Fujitsu Limited Error backup method
US7630164B2 (en) * 2004-08-20 2009-12-08 Fujitsu Limited Library apparatus, having radio tags for arranging plurality of tape drives
US20110231740A1 (en) * 2005-10-25 2011-09-22 Menahem Lasser Method for Recovering From Errors in Flash Memory

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950230A (en) 1997-05-28 1999-09-07 International Business Machines Corporation RAID array configuration synchronization at power on
US7514046B2 (en) * 2000-10-31 2009-04-07 Caliper Life Sciences, Inc. Methods and systems for processing microscale devices for reuse
US7533214B2 (en) 2002-02-27 2009-05-12 Microsoft Corporation Open architecture flash driver
US7263596B1 (en) * 2002-12-17 2007-08-28 Advanced Digital Information Corporation Logical library architecture for data storage applications and methods of use
US7180701B2 (en) * 2003-06-26 2007-02-20 Spectra Logic Corporation Magazine-based data cartridge library
US7676445B2 (en) * 2003-08-20 2010-03-09 International Business Machines Corporation Apparatus, system and method for developing failure prediction software
GB2419026B (en) * 2004-10-08 2009-05-06 Hewlett Packard Development Co Tape drive apparatus
GB2419221B (en) * 2004-10-14 2009-12-02 Hewlett Packard Development Co Tape drive apparatus
GB2419198A (en) * 2004-10-14 2006-04-19 Hewlett Packard Development Co Identifying performance affecting causes in a data storage system
JP2006164445A (en) * 2004-12-09 2006-06-22 Fujitsu Ltd Monitoring device
US7301718B2 (en) * 2005-01-31 2007-11-27 Hewlett-Packard Development Company, L.P. Recording errors in tape drives
US7789345B2 (en) 2005-03-03 2010-09-07 Nabtesco Corporation Actuator control apparatus
US7386667B2 (en) * 2005-11-09 2008-06-10 International Business Machines Corporation Storing information regarding operation of an automated data storage library to memory and to a reserved cartridge
US7681048B2 (en) * 2006-04-27 2010-03-16 Matthew Thomas Starr Data encryption using a key and moniker for mobile storage media adapted for library storage

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864511A (en) * 1987-01-27 1989-09-05 Storage Technology Corporation Automated cartridge system
US5060090A (en) * 1988-07-22 1991-10-22 Hitachi, Ltd. Automatic storage system and method for information recording media
US6381710B1 (en) * 1995-04-07 2002-04-30 Samsung Electronics Co., Ltd. Error logging method utilizing temporary defect list
US5592432A (en) * 1995-09-05 1997-01-07 Emc Corp Cache management system using time stamping for replacement queue
US5819309A (en) * 1996-02-09 1998-10-06 Overland Data, Inc. Automated tape cartridge library with accelerated calibration
US6010239A (en) * 1996-03-07 2000-01-04 Hardgrave; William David Automatic item-driven system for deposit and pick-up
US5940629A (en) * 1996-07-19 1999-08-17 Sony Corporation System for selecting drive replacement and opening information transmission path after replacement permission of the selected drive is granted
US6425042B1 (en) * 1998-07-24 2002-07-23 Sony Corporation Tape drive apparatus for judging an operational mode of the tape based on detected tape management information
US20030206107A1 (en) * 1998-08-14 2003-11-06 3M Innovative Properties Company Application for a radio frequency identification system
US6820066B1 (en) * 1998-10-09 2004-11-16 Francotyp-Postalia Ag & Co. Kg Arrangement and method for storing data relating to the usage of a terminal device
US7218594B2 (en) * 1999-07-16 2007-05-15 Koninklijke Philips Electronics N.V. Recording medium, and method of and device for recording information on a recording medium and reading information from a recording medium
US6707630B2 (en) * 1999-09-30 2004-03-16 Fujitsu Limited Method for managing a life of a storage medium, storage device, storage system, and storage medium
US6574641B1 (en) * 2000-09-29 2003-06-03 International Business Machines Corporation Management of physical media volumes in partitions of an automated data storage library
US20030030926A1 (en) * 2000-11-30 2003-02-13 Compaq Information Technologies Group, L.P. Visual meter for providing a long-term indication of dynamic parameters
US6476725B2 (en) * 2000-11-30 2002-11-05 Compaq Information Technologies Group, L.P. Visual meter for providing a long-term indication of dynamic parameters
US20040088117A1 (en) * 2001-01-05 2004-05-06 Dorsett Jr. David R. Laboratory database system and methods for combinatorial materials research
US20020159183A1 (en) * 2001-04-26 2002-10-31 Albrecht Thomas Robert Gripper assembly for interfacing with portable storage devices in a storage library
US20030016464A1 (en) * 2001-07-19 2003-01-23 International Business Machines Corporation Apparatus and method to expedite data access from a portable data storage cartridge
US20030235000A1 (en) * 2001-08-30 2003-12-25 Yoshihisa Takayama Communication apparatus communicating with recording medium memory and recording medium drive apparatus
US20040105187A1 (en) * 2001-10-19 2004-06-03 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040223253A1 (en) * 2001-10-19 2004-11-11 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20030090829A1 (en) * 2001-11-14 2003-05-15 Johnson Kristianne E. Apparatus for and method of retrieving data cartridge-related information from a data cartridge memory
US20030120386A1 (en) * 2001-12-20 2003-06-26 Storage Technology Corporation Automated physical disk storage and management
US20040194151A1 (en) * 2003-01-15 2004-09-30 Tod Earhart Supplemental memory having media directory
US20040143703A1 (en) * 2003-01-21 2004-07-22 Emberty Robert George Serial EEPROM for volume identification and drive specific information storage in a hard disk drive library
US7080203B2 (en) * 2003-01-21 2006-07-18 International Business Machines Corporation Serial EEPROM for volume identification and drive specific information storage in a hard disk drive library
US20040181388A1 (en) * 2003-03-11 2004-09-16 Yung Yip System having tape drive emulator and data tape cartridge housing carrying multiple disk drives
US7430053B2 (en) * 2003-03-27 2008-09-30 Hewlett-Packard Development Company, L.P. Tracking component usage in a printing device
US7177108B2 (en) * 2003-06-03 2007-02-13 Quantum Corporation Emulation of auxiliary memory
US20040265039A1 (en) * 2003-06-24 2004-12-30 Buck Janice E Writing implement with integral page-turning element
US20040264037A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20050007692A1 (en) * 2003-06-26 2005-01-13 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264040A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264041A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264038A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20040264042A1 (en) * 2003-06-26 2004-12-30 Spectra Logic Corporation Magazine-Based Data Cartridge Library
US20050052772A1 (en) * 2003-07-18 2005-03-10 Barbian Douglas F. Methods and systems for providing predictive maintenance, preventative maintenance, and/or failure isolation in a tape storage subsystem
US7277246B2 (en) * 2003-07-18 2007-10-02 Quantum Corporation Methods and systems for providing predictive maintenance, preventative maintenance, and/or failure isolation in a tape storage subsystem
US20050046989A1 (en) * 2003-08-26 2005-03-03 International Business Machines Corporation Electronically updatable labeling system for data storage
US20050078406A1 (en) * 2003-10-09 2005-04-14 Andrew Topham Storage unit
US20050169126A1 (en) * 2004-01-30 2005-08-04 Duncan Wakelin Library for storing and retrieving removable information storage elements
US20050190660A1 (en) * 2004-01-30 2005-09-01 Duncan Wakelin Library for storing and retrieving removable information storage elements
US20050219964A1 (en) * 2004-04-02 2005-10-06 Spectra Logic Corporation Storage media transferring method and apparatus within a multi-unit storage apparatus
US7630164B2 (en) * 2004-08-20 2009-12-08 Fujitsu Limited Library apparatus, having radio tags for arranging plurality of tape drives
US20080037160A1 (en) * 2005-01-06 2008-02-14 Mcintosh Michael P Media cartridge storage device for an autoloading data storage and retrieval system
US20060164928A1 (en) * 2005-01-21 2006-07-27 Spectra Logic Corporation Mobile media identification system for use with a storage device
US20070039014A1 (en) * 2005-08-12 2007-02-15 Pierce Steven N Apparatus system and method for conducting a data storage library inventory
US20110231740A1 (en) * 2005-10-25 2011-09-22 Menahem Lasser Method for Recovering From Errors in Flash Memory
US20070195447A1 (en) * 2006-02-21 2007-08-23 Spectra Logic Corporation Optional data encryption by partition for a partitionable data storage library
US20080091892A1 (en) * 2006-10-13 2008-04-17 Alpha Imaging Technology, R.O.C. Interleaving memory read/write method and apparatus executing same
US7486462B1 (en) * 2007-10-24 2009-02-03 Spectra Logic Corporation Available library capacity
US20090228745A1 (en) * 2008-03-10 2009-09-10 Fujitsu Limited Error backup method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8976479B2 (en) 2011-05-13 2015-03-10 International Business Machines Corporation Writing data to tape storage medium

Also Published As

Publication number Publication date
US20120019949A1 (en) 2012-01-26
US20080043366A1 (en) 2008-02-21
US8767330B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US5233576A (en) Multi-function optical disk drive and media
EP0535922A2 (en) Automated library data retrieval system
US8886853B2 (en) Systems and methods for uniquely identifying removable media by its manufacturing defects wherein defects includes bad memory or redundant cells or both
US20040181388A1 (en) System having tape drive emulator and data tape cartridge housing carrying multiple disk drives
US6791910B1 (en) Library controller having stored table indicating attributes of an automated data storage library with respect to media
US6028528A (en) Apparatus and methods for managing transfers of video recording media used for surveillance from vehicles
KR100603157B1 (en) The digital data recording method, and a digital data recording medium,
US6611394B1 (en) Recording medium, tape drive, and method for identifying type of recording medium
EP0340942B1 (en) Hierarchical data storage systems
EP1575049A2 (en) Data structure for control information on rewriteable data storage media
US20030070056A1 (en) Storage structure for storing formatted data on a random access medium
US7133599B2 (en) Realtime data recording method
US5377121A (en) Automated storage library having inventory at picker level
US6201474B1 (en) Magnetic tape storage media having RFID transponders
US5239437A (en) Self identifying universal data storage element
US5363255A (en) Disk drive for communicating with removable media that include media type identification information
US5426284A (en) Apparatus for locating and tracking information storage items using predefined labels
US6108163A (en) Sensitive sensor internally mounted shock for a disk drive
US6965811B2 (en) Media drive module and storage library system
US5699549A (en) Memory card having a card management information area for improved format capability and recording, reproducing, and erasing methods therefor
US20040098244A1 (en) Method and system for emulating tape storage format using a non-tape storage medium
US5157564A (en) Storage module changer for a computer data storage drive
US7403451B2 (en) Media vaulting in an automated data storage library
US4858036A (en) Software protection and identification system
DE60206540T2 (en) Apparatus and method for retrieving data from an information cartridge

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION