US20110017436A1 - Plate type heat exchanger - Google Patents

Plate type heat exchanger Download PDF

Info

Publication number
US20110017436A1
US20110017436A1 US12/506,540 US50654009A US2011017436A1 US 20110017436 A1 US20110017436 A1 US 20110017436A1 US 50654009 A US50654009 A US 50654009A US 2011017436 A1 US2011017436 A1 US 2011017436A1
Authority
US
United States
Prior art keywords
heat transfer
flanges
plates
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/506,540
Inventor
Mun-Jae Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN HAN APEX Corp
Original Assignee
SHIN HAN APEX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN HAN APEX Corp filed Critical SHIN HAN APEX Corp
Priority to US12/506,540 priority Critical patent/US20110017436A1/en
Assigned to SHIN HAN APEX CORPORATION reassignment SHIN HAN APEX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, MUN-JAE
Publication of US20110017436A1 publication Critical patent/US20110017436A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding

Definitions

  • the present invention relates to a plate type heat exchanger, and more particularly, to a plate type heat exchanger, capable of simply and rapidly fabricating a heat transfer assembly to improve workability by bending a pair of heat transfer plates, by welding a pair of heat transfer plates into a heat transfer cell, and by stacking and welding the heat transfer cells in multiple layers, preventing the flaw of welding caused by downward sagging of the heat transfer plate when the welding is performed, reducing the total number of constituent parts and thus production costs, and improving assemblability.
  • heat exchangers are fluid-to-fluid heat recovery apparatuses that recover heat included in gases discharged to the outside in industrial facilities such as air-conditioning facilities and then supply the recovered heat to productive facilities or interiors of buildings.
  • heat exchangers are classified into a plate type heat exchanger, heat pipe type heat exchanger, disc type heat exchanger, etc. according to the type of a heat exchange module that is an internal core part.
  • the plate type heat exchanger is designed to perform heat transfer (heat exchange) between a high-temperature fluid and a low-temperature fluid without a physical contact.
  • the plate type heat exchanger recovers heat by arranging a plurality of heat transfer plates in parallel to each other at predetermined intervals, adopting a gap between every two neighboring heat transfer plates as a channel through which a fluid flows in one direction, and alternately supplying a high-temperature fluid and a low-temperature fluid to the respective channels so as to perform heat transfer (heat exchange) through the respective heat transfer plates.
  • a rigid parallelepiped shaped core is installed in a frame, and the core is formed of a plurality of thin parallel plates that define alternating passages for two different fluid flows.
  • Each of the thin parallel plates is connected to its adjacent plate by parallel bars along side edges thereof, wherein each bar is of stronger construction than each plate.
  • the frame includes a pair of spaced parallel plates and transverse structural connectors. Seal means are provided both between vertical corners and transverse corners of the core and the adjacent surfaces of the frame defined by the pair of plates and by the structural connectors.
  • the plurality of thin parallel plates constituting the core are welded so as to define the fluid passages, i.e. gas flow passages, crossing each other by the horizontal bars. For this reason, when a worker individually welds the parallel plates, a high precision of welding is required, which increases a working burden of the worker. Further, when the parallel plates are disposed and welded in a horizontal direction, the parallel plates sagging downwards due to their weights cause the flaw of welding.
  • Embodiments of the present invention provide a plate type heat exchanger capable of simply and rapidly fabricating a heat transfer assembly to improve workability by bending a pair of heat transfer plates, by welding the pair of heat transfer plates into a heat transfer cell, and by stacking and welding the heat transfer cells in multiple layers, of preventing the flaw of welding caused by downward sagging of the heat transfer plate when the welding is performed, minimizing turbulence at an inlet into which a fluid flows to improve heat exchange efficiency, reducing the total number of constituent parts and thus production costs, and improving assemblability.
  • the heat exchanger includes a heat transfer assembly including a plurality of heat transfer cells stacked in multiple layers, each of the heat transfer cells including a pair of heat transfer plates, wherein each of the heat transfer plates has a pair of first flanges bent from a heat transfer area shaped of a quadrilateral panel in one direction and a pair of second flanges bent from the heat transfer area in a direction opposite the bending direction of the first flanges; wherein each of the heat transfer cells has weld lines formed along one of the first and second flanges of the heat transfer plates disposed so as to be opposite to each other in a minor image, an internal passage between the weld lines, and external recesses outside the heat transfer areas so as to intersect with the internal passage at a right angle; wherein the heat transfer assembly has first fluid passages, each of which is formed by the internal passage, and second fluid passages between the heat transfer cells to intersect with the first fluid passage at a right angle so as to exchange heat with the first fluid passages
  • each of the heat transfer cells may have the weld lines along the first flanges of the heat transfer plates that are opposite to and in contact with each other in the minor image, and the internal passage formed between the heat transfer plates that are opposite to each other so as to be parallel to the weld lines and having an inlet and an outlet defined by the second flanges that are opposite to and spaced apart from each other.
  • each of the heat transfer cells may have first slopes that are inclined toward the weld lines among the first flanges, the first or second heat transfer area, and the second flanges at a predetermined angle, and second slopes that are inclined toward the inlet and the outlet of the internal passage between the second flanges and the first or second heat transfer area at a predetermined angle so as to define the external recesses.
  • the heat transfer assembly may be configured so that the second flanges of the neighboring heat transfer cells which intersect with the internal passages at the right angle are in surface contact with each other, and that the first flanges of the neighboring heat transfer cells are spaced apart from each other, and includes end plates contacting the second flanges and the weld lines at opposite left-hand and right-hand ends of the first flanges.
  • each of the heat transfer cells may have the weld lines along the second flanges of the heat transfer plates that are opposite to and in contact with each other in the mirror image, and the internal passage formed between the heat transfer plates that are opposite to each other so as to be parallel to the weld lines and having an inlet and an outlet defined by the first flanges that are opposite to and spaced apart from each other.
  • each of the heat transfer cells may have first slopes that are inclined toward the inlet and the outlet of the internal passage among the first flanges, the first or second heat transfer area, and the second flanges at a predetermined angle at a predetermined angle so as to define the external recesses, second slopes that are inclined toward the weld lines between the second flanges and the heat transfer area at a predetermined angle, and end plates contacting the second flanges and the weld lines at opposite left-hand and right-hand ends of the first flanges.
  • the heat transfer assembly may be configured so that the second flanges of the neighboring heat transfer cells which intersect with the internal passages at the right angle are in surface contact with each other, and that the first flanges of the neighboring heat transfer cells are spaced apart from each other, and is sealed at opposite left-hand and right-hand ends of the second flanges by the end plates.
  • one of the heat transfer plates may include a spacer set, a height of which is equal to or less than an interval between the neighboring heat transfer areas.
  • the spacer set may include a plurality of stud spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle.
  • the spacer set may include a plurality of strip spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length.
  • the spacer set may include a plurality of stud spacers, a lower end of each of which is welded to one of the heat transfer area so as to intersect with one of the heat transfer areas at a right angle, and a plurality of strip spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle and each of which extends in a flow direction of the fluid at a predetermined length.
  • the sealing panels may include sealing plates facing the outer faces of the heat transfer assembly, reinforcing plates installed on outer surfaces of the sealing plates in a lattice shape, and fastening holes formed in corners of the sealing plates and fastened to ends of the support beams by fastening members.
  • each of the sealing plates may include a glass coating layer on an inner surface thereof.
  • the sealing panels and the support beams may be coupled with a plurality of joint quadrilateral frames so as to be disposed at inlets and outlets of the first and second fluid passages.
  • the first elastic members may include plates having a predetermined length, bonded and fixed to inner surfaces of the sealing panels in contact with leading ends thereof and to the outer face of the heat transfer assembly in contact with trailing ends thereof, and having a contractile section having a curved cross section between the leading and trailing ends thereof.
  • each of the second elastic members may be an elastic plate, which has a predetermined length, which is bonded and fixed to a first lateral face of each of the support beams in contact with a leading end thereof and to the outer face of the heat transfer assembly in contact with a trailing end thereof, and which has a corrugated section between the leading and trailing ends thereof.
  • the elastic support may further include stoppers, each of which has a predetermined length, is fixed to a second lateral face of each of the support beams, which is perpendicular to the first lateral face of each of the support beams on which the second elastic members are installed, and is opposite to an outer edge of the heat transfer assembly.
  • the heat transfer assembly may include planar cover members spaced apart from and parallel to the heat transfer plates at a predetermined interval, so as to define another fluid passage between the heat transfer plates, through which, of the first and second fluids having different temperatures, one having a relatively low temperature flows.
  • the cover members may be installed on corners of the heat transfer plate where the inlet of the fluid passage through which the fluid having the relatively low temperature flows encounters with the outlet of the fluid passage through which the fluid having a relatively high temperature flows in a triangular shape.
  • the heat transfer cell is fabricated by welding a pair of heat transfer plates disposed so as to be opposite to each other in a mirror image to thereby form weld lines along one of first and second flanges of the heat transfer plates disposed so as to be opposite to each other in a mirror image, an internal passage between the weld lines, and external recesses outside the heat transfer areas so as to intersect with the internal passage at a right angle.
  • the heat transfer assembly is fabricated by stacking a plurality of heat transfer cells in multiple layers to thereby form first fluid passages, each of which serves as the internal passage, and second fluid passages between the heat transfer cells so as to intersect with the first fluid passages at a right angle and to exchange heat with the first fluid passages.
  • the elastic support is installed between the sealing panels facing opposite outer faces of the heat transfer assembly and the heat transfer assembly and between the support beams provided between the sealing panels and the heat transfer assembly, thereby absorbing thermal expansion of the heat transfer assembly and preventing fluids from leaking out.
  • the heat exchanger can simply and rapidly fabricated, prevent the flaw of welding when welding is performed, reducing a burden of the welding to improve workability, reducing the total number of constituent parts and thus production costs, and improving assemblability.
  • the heat exchanger can minimize turbulence and resistance of the fluid occurring at the inlets of the fluid passages of the heat transfer assembly, and thereby stably maintain contact between the fluid and the heat transfer plate as the heat transfer member to improve heat exchange efficiency.
  • FIG. 1 is a perspective view illustrating a heat exchanger according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view illustrating a heat exchanger according to an embodiment of the present invention
  • FIGS. 3A through 3C illustrate a heat transfer cell that is applied to a heat exchanger according to a first embodiment of the present invention, wherein FIG. 3A is an entire perspective view, FIG. 3B is a cross-sectional view taken along line 3 b - 3 b′ of FIG. 3A , and FIG. 3C is a cross-sectional view taken along line 3 c - 3 c′ of FIG. 3A ;
  • FIGS. 4A through 4D illustrate a process of fabricating a heat transfer cell for a heat exchanger according to an embodiment of the present invention
  • FIGS. 5A through 5C illustrate another example of a heat transfer cell for a heat exchanger according to a second embodiment of the present invention, wherein FIG. 5A is an entire perspective view, FIG. 5B is a cross-sectional view taken along line 5 b - 5 b′ of FIG. 5A , and FIG. 5B is a cross-sectional view taken along line 5 c - 5 c′ of FIG. 5A ;
  • FIGS. 6A through 6D illustrate a process of fabricating another example of a heat transfer cell for a heat exchanger according to an embodiment of the present invention
  • FIG. 7 is a perspective view illustrating a heat transfer assembly for a heat exchanger according to an embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating another example of a heat transfer assembly for a heat exchanger according to an embodiment of the present invention.
  • FIGS. 9A through 9E are perspective views illustrating a set of spacers installed on a heat transfer plate of a heat transfer cell for a heat exchanger according to an embodiment of the present invention, wherein FIGS. 9A and 9B are for a stud type, FIGS. 9C and 9D are for a strip type, and FIGS. 9E and 9F are for a mixed type;
  • FIGS. 10A and 10B illustrate a framework installed on a heat exchanger according to an embodiment of the present invention, wherein FIG. 10A is a perspective view illustrating sealing panels, and FIG. 10B is a perspective view illustrating a support beam;
  • FIG. 11 is a cross-sectional view illustrating a heat exchanger according to first and second embodiments of the present invention, wherein the heat exchanger is cut in a direction of a first fluid passage;
  • FIG. 12 illustrates an elastic support for a heat exchanger according to an embodiment of the present invention, wherein FIG. 12A is for a first elastic member of the elastic support, and FIG. 12B is for a second elastic member of the elastic support.
  • FIG. 1 is a perspective view illustrating a heat exchanger according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view illustrating a heat exchanger according to an embodiment of the present invention.
  • the heat exchanger 200 includes a hexahedral heat transfer assembly 100 made up of a plurality of heat transfer cells 130 , each of which includes a pair of heat transfer plates 110 and 120 , a framework 140 , and an elastic support 150 .
  • a first fluid passage f 1 refers to a passage through which a first fluid flows from an upper side to a lower side of the heat exchanger, particularly, vertically flows through an internal passage of each heat transfer cell 130 of the hexahedral heat transfer assembly 100 .
  • a second fluid passage f 2 refers to a passage through which a second fluid flows from a left-hand side to a right-hand side of the heat exchanger, particularly, horizontally flows through an internal passage between every two neighboring heat transfer cells 130 of the hexahedral heat transfer assembly 100 .
  • the flows of the first and second fluid are not limited to this configuration. Thus, the flows of the first and second fluids may be opposite to each other.
  • one of the first and second fluid includes air having an atmospheric temperature
  • the other fluid includes waste gas, exhaust gas, or the like that is discharged from any industrial field and has a relatively higher temperature
  • FIGS. 3A through 3C illustrate a heat transfer cell that is applied to a heat exchanger according to a first embodiment of the present invention, wherein FIG. 3A is an entire perspective view, FIG. 3B is a cross-sectional view taken along line 3 b - 3 b′ of FIG. 3A , and FIG. 3C is a cross-sectional view taken along line 3 c - 3 c′ of FIG. 3A .
  • the heat transfer cell 130 is formed by welding a pair of heat transfer plates 110 and 120 , and thus has an internal passage, through which a fluid flows in one direction, defined by the welded heat transfer plates 110 and 120 , which face each other in a mirror image.
  • the heat transfer plate 110 or 120 of the heat transfer cell 130 includes a heat transfer area 111 or 121 shaped of a substantially quadrilateral panel, a pair of first flanges 112 and 113 , or 122 and 123 bent from opposite upper and lower edges of the heat transfer area 111 or 121 in one direction when viewed from FIG. 1 , and a pair of second flanges 114 and 115 , or 124 and 125 bent from opposite left-hand and right-hand edges of the heat transfer area 111 or 121 in the direction opposite the bending direction of the first flanges 112 and 113 , or 122 and 123 .
  • the heat transfer cell 130 includes weld lines S 1 along the first flanges 112 and 122 , and 113 and 123 that are opposite to and in contact with each other on the upper and lower sides when viewed from FIG. 1 , the internal passage P 1 defined between the heat transfer areas 111 and 121 parallel to the weld lines S 1 .
  • An inlet and an outlet of the internal passage P 1 are formed by the second flanges 114 and 124 , and 115 and 125 that are opposite to and spaced apart from each other on opposite left-hand and right-hand sides when viewed from FIG. 1 .
  • first flanges 112 and 113 , and 122 and 123 and the second flanges 114 and 115 , and 124 and 125 are bent from the heat transfer areas 111 and 121 perpendicular to each other.
  • First slopes 116 and 117 , or 126 and 127 are inclined toward the weld lines S 1 among the first flanges 112 and 113 , or 122 and 123 , the heat transfer area 111 or 121 , and the second flanges 114 and 115 , or 124 and 125 at a predetermined angle, and thus smoothly converts a flow of the fluid so as to inhibit the fluid, which flows in a direction perpendicular to the weld lines S 1 , from generating vortex at an inlet of each external passage.
  • second slopes 118 and 119 , or 128 and 129 are inclined toward the inlet 131 and the outlet 132 of the internal passage P 1 between the second flanges 114 and 115 , or 124 and 125 and the heat transfer area 111 or 121 at a predetermined angle so as to define the external recesses 101 and 102 between the second flanges 114 and 115 , or 124 and 125 with a predetermined width.
  • the weld lines Si are formed by seam welding faying surfaces of the first flanges 112 and 122 , and 133 and 123 of the heat transfer plates 110 and 120 facing each other in a mirror image, and the inlet 131 and the outlet 132 of the internal passage P 1 are formed by the second flanges 114 and 124 , and 115 and 125 which are opposite to and spaced apart from each other.
  • FIGS. 4A through 4D illustrate a process of fabricating a heat transfer cell for a heat exchanger according to an embodiment of the present invention.
  • FIG. 4A there is prepared a plate T, which is shaped of a quadrilateral panel.
  • the plate T is placed on a press (not shown), and then is subjected to external force through a die. Thereby, as illustrated in FIG. 4A .
  • the plate T is formed into a heat transfer plate 110 or 120 , which has a heat transfer area 111 or 121 shaped of a quadrilateral panel, a pair of first flanges 112 and 113 , or 122 and 123 bent from opposite upper and lower edges of the heat transfer area 111 or 121 in one direction, and a pair of second flanges 114 and 115 , or 124 and 125 bent from opposite left-hand and right-hand edges of the heat transfer area 111 or 121 in the direction that is perpendicular and opposite to the bending direction of the first flanges 112 and 113 , or 122 and 123 .
  • the heat transfer plates 110 and 120 are disposed in a mirror image such that a distance between the first flanges 112 and 113 , or 122 and 123 is relatively shorter than that between the second flanges 114 and 115 , or 124 and 125 .
  • the first flanges 112 and 122 , and 133 and 123 come into surface contact with each other, and then are welded along the outer ends thereof.
  • the outer ends of the first flanges 112 and 122 , and 133 and 123 have weld lines S 1 that run parallel to the internal passage P 1 when viewed from FIG. 4D .
  • the heat transfer cell 130 is fabricated.
  • FIGS. 5A through 5C illustrates another example of a heat transfer cell for a heat exchanger according to a second embodiment of the present invention, wherein FIG. 5A is an entire perspective view, FIG. 5B is a cross-sectional view taken along line 5 b - 5 b′ of FIG. 5A , and FIG. 5C is a cross-sectional view taken along line 5 c - 5 c′ of FIG. 5A .
  • the heat transfer cell 130 a made up of a pair of heat transfer plates 110 a and 120 a has an internal passage P 2 , through which a fluid flows in one direction, defined by welding the heat transfer plates 110 a and 120 a , which are opposite to each other in a mirror image.
  • the heat transfer plate 110 a or 120 a of the heat transfer cell 130 a includes a heat transfer area 111 a or 121 a shaped of a quadrilateral panel, a pair of first flanges 112 a and 113 a , or 122 a and 123 a bent from opposite upper and lower edges of the heat transfer area 111 a or 121 a in one direction, and a pair of second flanges 114 a and 115 a , or 124 a and 125 a bent from opposite left-hand and right-hand edges of the heat transfer area 111 a or 121 a in the direction that is perpendicular and opposite to the bending direction of the first flanges 112 a and 113 a , or 122 a and 123 a .
  • the heat transfer cell 130 a includes weld lines S 1 along the first flanges 112 a and 122 a , and 113 a and 123 a that are opposite to and in contact with each other on the left-hand and right-hand sides of FIG. 5A , the internal passage P 2 defined between the heat transfer areas 111 a and 121 a parallel to the weld lines S 1 .
  • An inlet and an outlet of the internal passage P 2 are formed by the first flanges 112 a and 122 a , and 113 a and 123 a that are opposite to and spaced apart from each other on upper and lower sides of FIG. 5A .
  • first flanges 112 a and 113 a , and 122 a and 123 a and the second flanges 114 a and 115 a , and 124 a and 125 a are bent from the heat transfer areas 111 a and 121 a in the direction that is perpendicular and opposite to each other.
  • First slopes 116 a and 117 a , or 126 a and 127 a are inclined toward an inlet and an outlet of the internal passage P 2 among the first flanges 112 a and 113 a , or 122 a and 123 a , the heat transfer area 111 a or 121 a , and the second flanges 114 a and 115 a , or 124 a and 125 a at a predetermined angle so as to form external recesses 101 a and 102 a between the first flanges 112 a and 113 a , and 122 a and 123 a with a predetermined width.
  • second slopes 118 a and 119 a , or 128 a and 129 a are inclined toward the weld lines S 2 between the second flanges 114 a and 115 a , or 124 a and 125 a and the heat transfer area 111 a or 121 a at a predetermined angle.
  • the weld lines S 2 are formed by seam welding faying surfaces of the first flanges 114 a and 124 a , and 115 a and 125 a of the heat transfer plates 110 a and 120 a facing each other in a mirror image, and the inlet and the outlet of the internal passage P 2 are formed by the first flanges 112 a and 122 a , or 113 a and 123 a which are opposite to and spaced apart from each other.
  • FIGS. 6A through 6D illustrate a process of fabricating another example of a heat transfer cell for a heat exchanger according to an embodiment of the present invention.
  • a plate T shaped of a quadrilateral panel is prepared.
  • the plate T is placed on a press (not shown), and then is subjected to external force through a die.
  • the plate T is formed into a heat transfer plate 110 a or 120 a , which has a heat transfer area 111 a or 121 a shaped of a quadrilateral panel, a pair of first flanges 112 a and 113 a , or 122 a and 123 a bent from opposite upper and lower edges of the heat transfer area 111 a or 121 a in one direction, and a pair of second flanges 114 a and 115 a , or 124 a and 125 a bent from opposite left-hand and right-hand edges of the heat transfer area 111 a or 121 a in the direction that is perpendicular and opposite to the bending direction of the first flanges 112 a and 113
  • the heat transfer plates 110 a and 120 a are disposed in a mirror image such that a distance between the first flanges 112 a and 113 a , or 122 a and 123 a is relatively longer than that between the second flanges 114 a and 115 a , or 124 a and 125 a.
  • the second flanges 114 a and 124 a , and 115 a and 125 a come into surface contact with each other, and then are welded along the outer ends thereof.
  • the outer ends of the second flanges 114 a and 124 a , and 115 a and 125 a form the weld lines S 2 that run perpendicular to an internal passage P 2 when viewed from FIG. 6 .
  • the heat transfer cell 130 a is fabricated.
  • FIG. 7 is a perspective view illustrating a heat transfer assembly for a heat exchanger according to an embodiment of the present invention.
  • the heat transfer assembly 100 is a hexahedral rigid structure in which a plurality of heat transfer cells 130 , each of which is a unit member fabricated by welding a pair of heat transfer plates 110 and 120 disposed in a minor image, are stacked.
  • This heat transfer assembly 100 is designed to form a passage having a predetermined size such that a fluid can freely flow between two neighboring ones of the heat transfer cells 130 , thereby forming a first fluid passage F 1 through which a first fluid flows one side to the other side.
  • a second fluid passage F 2 intersects with the first fluid passage F 1 , which is formed as an internal passage P 1 in each heat transfer cell 130 , at a right angle.
  • a second fluid flowing through the second fluid passage F 2 flows through the heat transfer assembly 100 without being mixed with the first fluid, so that the first and second fluids having different temperatures can exchange heat with each other.
  • the second flanges 114 and 124 , and 115 and 125 intersecting with the internal passage P 1 of each heat transfer cell 130 at a right angle are in surface contact with and are welded to the second flanges 114 and 124 , and 115 and 125 of the neighboring heat transfer cell 130 , whereas the first flanges 112 and 122 , and 113 and 123 are spaced apart from the first flanges 112 and 122 , and 113 and 123 of the neighboring heat transfer cell 130 .
  • first flanges 112 and 122 , and 113 and 123 are provided with end plates 103 and 104 at left-hand and right-hand ends thereof which connect the first flanges 112 and 122 , and 113 and 123 of the neighboring heat transfer cell 130 and are in contact with the weld lines S 1 .
  • an inlet and an outlet of the second fluid passage F 2 are defined between the heat transfer cell 130 and its neighboring heat transfer cell 130 .
  • FIG. 8 is a perspective view illustrating another example of a heat transfer assembly for a heat exchanger according to an embodiment of the present invention.
  • the heat transfer assembly 100 a is a hexahedral rigid structure in which a plurality of heat transfer cells 130 a , each of which is a unit member fabricated by welding a pair of heat transfer plates 110 a and 120 a disposed in a mirror image, are stacked.
  • This heat transfer assembly 100 a is designed to form a passage having a predetermined size such that a fluid can freely flow between two neighboring ones of the heat transfer cells 130 a , thereby forming a first fluid passage F 1 through which a first fluid flows one side to the other side.
  • the first fluid passage F 1 intersects with a second fluid passage F 2 , which is formed as an internal passage P 2 in each heat transfer cell 130 a , at a right angle.
  • the first fluid flowing through the first fluid passage F 1 flows through the heat transfer assembly 100 a without being mixed with a second fluid, so that the first and second fluids having different temperatures can exchange heat with each other.
  • the first flanges 112 a and 122 a , and 113 a and 123 a intersecting with the internal passage P 1 of each heat transfer cell 130 a at a right angle are in surface contact with and are welded to the first flanges 112 a and 122 a , and 113 a and 123 a of the neighboring heat transfer cell 130 a , whereas the second flanges 114 a and 124 a , and 115 a and 125 a are spaced apart from the second flanges 114 a and 124 a , and 115 a and 125 a of the neighboring heat transfer cell 100 a .
  • the second flanges 114 a and 124 a , and 115 a and 125 a are sealed by end plates 103 a and 104 a contacting the weld lines S 2 at left-hand and right-hand ends thereof.
  • FIGS. 9A through 9F are perspective views illustrating a set of spacers installed on a heat transfer plate of a heat transfer cell for a heat exchanger according to an embodiment of the present invention, wherein FIGS. 9A and 9B are for a stud type, FIGS. 9C and 9D are for a strip type, and FIGS. 9E and 9F are for a mixed type.
  • the heat transfer plate 110 or 120 , or 110 a or 120 a includes a spacer set 160 , which has a height equal to or less than an interval between the two neighboring heat transfer areas 111 and 121 , or 111 a and 121 a so as to be able to constantly maintain an interval from the heat transfer area 121 or 111 , or 121 a or 111 a of the neighboring heat transfer plates 120 or 110 , or 120 a or 110 a.
  • the heat transfer plates 110 and 120 , or 110 a and 120 a disposed in a horizontal direction are subjected to sagging at the central regions thereof due to their own weights in the process of fabricating the heat transfer assembly 100 or 100 a by stacking the heat transfer cells 130 or 130 a in a vertical direction and by welding the flanges of the heat transfer cells 130 or 130 a which are in contact with each other.
  • the spacer set 160 is contacted with and supported on heat transfer area 121 or 111 , or 121 a or 111 a of the neighboring heat transfer plates 120 or 110 , or 120 a or 110 a at an upper end thereof, thereby preventing excessive sagging of the heat transfer plate and maintaining the interval between the heat transfer areas of the heat transfer plates 110 and 120 , or 110 a and 120 a as a design value.
  • the spacer set 160 increases an internal surface area of the heat transfer area, so that it can increase heat exchange efficiency between first and second fluids.
  • the process of welding the flanges of the heat transfer cells 130 or 130 a staked in a vertical direction in order to assemble the heat transfer assembly 100 or 100 a can be more precisely performed without a flaw.
  • the spacer set 160 a includes a plurality of stud spacers 163 , a lower end of each of which is welded to the heat transfer area 111 or 111 a , or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a , or 121 or 121 a at a right angle.
  • Each stud spacer 163 includes a weld strap 161 fixed to the heat transfer area 111 or 111 a , or 121 or 121 a by spot welding, and a support stud 162 vertically extending from the top of the weld strap 161 .
  • the support stud 162 is shown to have, but not limited to, a cylindrical shape.
  • the support stud 162 may have an oval cross section or an angled cross section.
  • the spacer set 160 b includes a plurality of strip spacers 164 , a lower end of each of which is welded to the heat transfer area 111 or 111 a , or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a , or 121 or 121 a at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length.
  • the spacer set 160 c includes a plurality of stud spacers 163 , a lower end of each of which is welded to the heat transfer area 111 or 111 a , or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a , or 121 or 121 a at a right angle, and a plurality of strip spacers 164 , a lower end of each of which is welded to the heat transfer area 111 or 111 a , or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a , or 121 or 121 a at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length, wherein the stud spacers 163 are mixed with the strip spacers 164 .
  • the stud spacers 163 which are selectively installed on either an upper surface, i.e. a front surface, or a lower surface, i.e. a rear surface, of the heat transfer area 111 or 111 a , or 121 or 121 a when viewed from the figure, are arranged to have, but not limited to, a matrix array in order to constantly maintain spacing between the neighboring stud spacers.
  • the heat transfer cells 130 made up of the heat transfer plates 110 and 120 , or 110 a and 120 a are horizontally disposed and welded to each other.
  • the interval between the neighboring stud spacers 163 on the central region of each heat transfer area may be set to be narrower than that on an edge region of each heat transfer area.
  • interval between the neighboring strip spacers 164 is, in one embodiment, set in such a manner that the central region of each heat transfer area is narrower than the edge region of each heat transfer area.
  • the framework 140 includes a pair of sealing panels 141 and 142 disposed so as to face opposite outer faces of the heat transfer assembly 100 or 100 a , and a plurality of support beams 143 , 144 , 145 and 146 connected between the sealing panels 141 and 142 .
  • the sealing panels 141 and 142 include quadrilateral sealing plates 141 a and 142 a facing the opposite outer faces of the heat transfer assembly 100 or 100 a , reinforcing plates 141 b and 142 b installed on outer surfaces of the sealing plates 141 a and 142 a in a lattice shape, and fastening holes 141 c and 142 c through which ends of the support beams 143 , 144 , 145 and 146 disposed between corners of the sealing plates 141 a and 142 a are fastened to the sealing plates 141 a and 142 a using fastening members 141 e and 142 e.
  • the sealing plates 141 a and 142 a facing the heat transfer assembly 100 or 100 a are provided with glass coating layers 141 d and 142 d on inner surfaces thereof which have a predetermined thickness so as to inhibit thermal deformation and corrosion to the maximum extent.
  • the support beams 143 , 144 , 145 and 146 are support members that connect and support the sealing panels 141 and 142 disposed so as to face the heat transfer assembly 100 or 100 a with the heat transfer assembly 100 or 100 a in between and that have a predetermined length.
  • each of the support beams 143 , 144 , 145 and 146 is provided with fastening holes 147 a and 147 b in opposite ends thereof through which the fastening members 141 e and 142 e are fastened corresponding to the fastening holes 141 c and 142 c formed in corners of the sealing panels 141 and 142 .
  • Each of the support beams 143 , 144 , 145 and 146 is provided with reinforcing ribs 148 at regular intervals in a lengthwise direction.
  • sealing panels 141 and 142 and the support beams 143 , 144 , 145 and 146 are coupled with joint quadrilateral frames 149 having a plurality of fastening holes 149 a so as to be disposed at the inlets and outlets of the first and second fluid passages F 1 and F 2 .
  • a plurality of heat exchangers 200 can be continuously connected to each other in a direction of the first or second fluid passage by the joint quadrilateral frames 149 .
  • the elastic support 150 includes first elastic members 151 and second elastic members 154 .
  • the first elastic members 151 are installed between inner surfaces of the sealing panels 141 and 142 and the outermost fluid passages of the heat transfer assembly 100 or 100 a , absorb a change in volume caused by thermal expansion when the heat transfer assembly 100 or 100 a performs heat exchange, and prevent the first fluid and the second fluid, which flow through the first fluid passage F 1 from above to below and through the second fluid passage from left to right when viewed from FIG. 11 , from being mixed with each other and leaking to the outside.
  • the first elastic members 151 are elastic plates, which have a predetermined length, which are bonded and fixed to the inner surfaces of the sealing plates 141 a and 142 a of the sealing panels 141 and 142 in contact with leading ends 151 a thereof and to the outer face of the heat transfer assembly 100 or 100 a in contact with trailing ends 151 c thereof, and which have a contractile section 151 b having a curved cross section between the leading and trailing ends 151 a and 151 c thereof so as to absorb an amount of deformation when the heat transfer assembly 100 or 100 a is subjected to thermal deformation.
  • trailing ends 151 c of the first elastic members 151 are contacted with and welded to the flanges of the outermost heat transfer cells 130 or 130 a of the heat transfer assembly 100 or 100 a.
  • each of the second elastic members 154 is an elastic plate, which has a predetermined length, which is bonded and fixed to a first lateral face of each of the support beams 143 , 144 , 145 and 146 in contact with a leading end 154 a thereof and to the outer face of the heat transfer assembly 100 or 100 a in contact with a trailing end 154 c thereof, and which has a corrugated section 154 b between the leading and trailing ends 154 a and 154 c thereof so as to absorb an amount of deformation when the heat transfer assembly 100 or 100 a is subjected to thermal deformation.
  • the elastic support 150 further includes stoppers 155 , each of which has a predetermined length, is fixed to a second lateral face of each of the support beams 143 , 144 , 145 and 146 , which is perpendicular to the first lateral face of each of the support beams 143 , 144 , 145 and 146 on which each second elastic member 154 is installed, and is opposite to the outer edge of the heat transfer assembly 100 or 100 a.
  • the heat transfer assembly 100 or 100 a may be provided with planar cover members 131 , each of which forms a separate fluid passage between the neighboring heat transfer plates so as to prevent moisture from being generated by a temperature difference between the heat transfer plates 110 and 120 , or 110 a and 120 a when the first and second fluids having different temperatures exchange heat with each other.
  • Each cover member 131 is installed parallel to the heat transfer plates, which define the passage through which the fluid having a relatively low temperature flows, by means of a plurality of spacing pins 131 a thereof.
  • cover members 131 are installed on the corners of the heat transfer plates at which the inlet of the fluid passage F 1 through which a room-temperature fluid such as air in the atmosphere flows encounters with the outlet of the fluid passage F 2 through which the fluid having a relatively high temperature flows.

Abstract

A plate type heat exchanger includes a heat transfer assembly having a plurality of heat transfer cells stacked in multiple layers, first fluid passages, and second fluid passages between the heat transfer cells so as to intersect with the first fluid passage at a right angle and to exchange heat with the first fluid passages, a framework having a plurality of support beams connected between a pair of sealing panels facing opposite outer faces of the heat transfer assembly, and an elastic support having first elastic members installed between the sealing panels and the heat transfer assembly and second elastic members installed between the support beams and the heat transfer assembly, absorbing thermal expansion of the heat transfer assembly, and preventing fluids from leaking out.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a plate type heat exchanger, and more particularly, to a plate type heat exchanger, capable of simply and rapidly fabricating a heat transfer assembly to improve workability by bending a pair of heat transfer plates, by welding a pair of heat transfer plates into a heat transfer cell, and by stacking and welding the heat transfer cells in multiple layers, preventing the flaw of welding caused by downward sagging of the heat transfer plate when the welding is performed, reducing the total number of constituent parts and thus production costs, and improving assemblability.
  • 2. Description of the Related Art
  • In general, heat exchangers are fluid-to-fluid heat recovery apparatuses that recover heat included in gases discharged to the outside in industrial facilities such as air-conditioning facilities and then supply the recovered heat to productive facilities or interiors of buildings.
  • These heat exchangers are classified into a plate type heat exchanger, heat pipe type heat exchanger, disc type heat exchanger, etc. according to the type of a heat exchange module that is an internal core part.
  • In other words, the plate type heat exchanger is designed to perform heat transfer (heat exchange) between a high-temperature fluid and a low-temperature fluid without a physical contact.
  • Among these heat exchangers, the plate type heat exchanger recovers heat by arranging a plurality of heat transfer plates in parallel to each other at predetermined intervals, adopting a gap between every two neighboring heat transfer plates as a channel through which a fluid flows in one direction, and alternately supplying a high-temperature fluid and a low-temperature fluid to the respective channels so as to perform heat transfer (heat exchange) through the respective heat transfer plates.
  • One example of the plate type heat exchanger is disclosed in Korean Patent Publication No. 1993-7002655 (Sep. 9, 1993). According to the plate type heat exchanger of this document, a rigid parallelepiped shaped core is installed in a frame, and the core is formed of a plurality of thin parallel plates that define alternating passages for two different fluid flows. Each of the thin parallel plates is connected to its adjacent plate by parallel bars along side edges thereof, wherein each bar is of stronger construction than each plate. The frame includes a pair of spaced parallel plates and transverse structural connectors. Seal means are provided both between vertical corners and transverse corners of the core and the adjacent surfaces of the frame defined by the pair of plates and by the structural connectors.
  • However, in this related art, the plurality of thin parallel plates constituting the core are welded so as to define the fluid passages, i.e. gas flow passages, crossing each other by the horizontal bars. For this reason, when a worker individually welds the parallel plates, a high precision of welding is required, which increases a working burden of the worker. Further, when the parallel plates are disposed and welded in a horizontal direction, the parallel plates sagging downwards due to their weights cause the flaw of welding.
  • Further, the fluids flowing to the different passages of the core collide with the horizontal bar installed at the inlet of the passage, so that vortex and resistance of the fluid take place outside the inlet of the passage. For this reason, a contact area between the plate as the heat transfer member and the fluid is relatively reduced, and thus heat exchange efficiency is reduced.
  • Further, the total number of parts constituting the conventional plate type heat exchanger is much, and thus processes of welding or joining these parts are very complicated, which increases production costs and reduces workability.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention provide a plate type heat exchanger capable of simply and rapidly fabricating a heat transfer assembly to improve workability by bending a pair of heat transfer plates, by welding the pair of heat transfer plates into a heat transfer cell, and by stacking and welding the heat transfer cells in multiple layers, of preventing the flaw of welding caused by downward sagging of the heat transfer plate when the welding is performed, minimizing turbulence at an inlet into which a fluid flows to improve heat exchange efficiency, reducing the total number of constituent parts and thus production costs, and improving assemblability.
  • According to an aspect of the present invention, the heat exchanger includes a heat transfer assembly including a plurality of heat transfer cells stacked in multiple layers, each of the heat transfer cells including a pair of heat transfer plates, wherein each of the heat transfer plates has a pair of first flanges bent from a heat transfer area shaped of a quadrilateral panel in one direction and a pair of second flanges bent from the heat transfer area in a direction opposite the bending direction of the first flanges; wherein each of the heat transfer cells has weld lines formed along one of the first and second flanges of the heat transfer plates disposed so as to be opposite to each other in a minor image, an internal passage between the weld lines, and external recesses outside the heat transfer areas so as to intersect with the internal passage at a right angle; wherein the heat transfer assembly has first fluid passages, each of which is formed by the internal passage, and second fluid passages between the heat transfer cells to intersect with the first fluid passage at a right angle so as to exchange heat with the first fluid passages; a framework having a plurality of support beams connected between a pair of sealing panels facing opposite outer faces of the heat transfer assembly; and an elastic support having first elastic members installed between the sealing panels and the heat transfer assembly and second elastic members installed between the support beams and the heat transfer assembly, absorbing thermal expansion of the heat transfer assembly, and preventing fluids from leaking out.
  • In an exemplary embodiment of the present invention, each of the heat transfer cells may have the weld lines along the first flanges of the heat transfer plates that are opposite to and in contact with each other in the minor image, and the internal passage formed between the heat transfer plates that are opposite to each other so as to be parallel to the weld lines and having an inlet and an outlet defined by the second flanges that are opposite to and spaced apart from each other.
  • In another exemplary embodiment of the present invention, each of the heat transfer cells may have first slopes that are inclined toward the weld lines among the first flanges, the first or second heat transfer area, and the second flanges at a predetermined angle, and second slopes that are inclined toward the inlet and the outlet of the internal passage between the second flanges and the first or second heat transfer area at a predetermined angle so as to define the external recesses.
  • In another exemplary embodiment of the present invention, the heat transfer assembly may be configured so that the second flanges of the neighboring heat transfer cells which intersect with the internal passages at the right angle are in surface contact with each other, and that the first flanges of the neighboring heat transfer cells are spaced apart from each other, and includes end plates contacting the second flanges and the weld lines at opposite left-hand and right-hand ends of the first flanges.
  • In another exemplary embodiment of the present invention, each of the heat transfer cells may have the weld lines along the second flanges of the heat transfer plates that are opposite to and in contact with each other in the mirror image, and the internal passage formed between the heat transfer plates that are opposite to each other so as to be parallel to the weld lines and having an inlet and an outlet defined by the first flanges that are opposite to and spaced apart from each other.
  • In another exemplary embodiment of the present invention, each of the heat transfer cells may have first slopes that are inclined toward the inlet and the outlet of the internal passage among the first flanges, the first or second heat transfer area, and the second flanges at a predetermined angle at a predetermined angle so as to define the external recesses, second slopes that are inclined toward the weld lines between the second flanges and the heat transfer area at a predetermined angle, and end plates contacting the second flanges and the weld lines at opposite left-hand and right-hand ends of the first flanges.
  • In another exemplary embodiment of the present invention, the heat transfer assembly may be configured so that the second flanges of the neighboring heat transfer cells which intersect with the internal passages at the right angle are in surface contact with each other, and that the first flanges of the neighboring heat transfer cells are spaced apart from each other, and is sealed at opposite left-hand and right-hand ends of the second flanges by the end plates.
  • In another exemplary embodiment of the present invention, one of the heat transfer plates may include a spacer set, a height of which is equal to or less than an interval between the neighboring heat transfer areas.
  • In another exemplary embodiment of the present invention, the spacer set may include a plurality of stud spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle.
  • In another exemplary embodiment of the present invention, the spacer set may include a plurality of strip spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length.
  • In another exemplary embodiment of the present invention, the spacer set may include a plurality of stud spacers, a lower end of each of which is welded to one of the heat transfer area so as to intersect with one of the heat transfer areas at a right angle, and a plurality of strip spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle and each of which extends in a flow direction of the fluid at a predetermined length.
  • In another exemplary embodiment of the present invention, the sealing panels may include sealing plates facing the outer faces of the heat transfer assembly, reinforcing plates installed on outer surfaces of the sealing plates in a lattice shape, and fastening holes formed in corners of the sealing plates and fastened to ends of the support beams by fastening members.
  • In another exemplary embodiment of the present invention, each of the sealing plates may include a glass coating layer on an inner surface thereof.
  • In another exemplary embodiment of the present invention, the sealing panels and the support beams may be coupled with a plurality of joint quadrilateral frames so as to be disposed at inlets and outlets of the first and second fluid passages.
  • In another exemplary embodiment of the present invention, the first elastic members may include plates having a predetermined length, bonded and fixed to inner surfaces of the sealing panels in contact with leading ends thereof and to the outer face of the heat transfer assembly in contact with trailing ends thereof, and having a contractile section having a curved cross section between the leading and trailing ends thereof.
  • In another exemplary embodiment of the present invention, each of the second elastic members may be an elastic plate, which has a predetermined length, which is bonded and fixed to a first lateral face of each of the support beams in contact with a leading end thereof and to the outer face of the heat transfer assembly in contact with a trailing end thereof, and which has a corrugated section between the leading and trailing ends thereof.
  • In another exemplary embodiment of the present invention, the elastic support may further include stoppers, each of which has a predetermined length, is fixed to a second lateral face of each of the support beams, which is perpendicular to the first lateral face of each of the support beams on which the second elastic members are installed, and is opposite to an outer edge of the heat transfer assembly.
  • In another exemplary embodiment of the present invention, the heat transfer assembly may include planar cover members spaced apart from and parallel to the heat transfer plates at a predetermined interval, so as to define another fluid passage between the heat transfer plates, through which, of the first and second fluids having different temperatures, one having a relatively low temperature flows.
  • In another exemplary embodiment of the present invention, the cover members may be installed on corners of the heat transfer plate where the inlet of the fluid passage through which the fluid having the relatively low temperature flows encounters with the outlet of the fluid passage through which the fluid having a relatively high temperature flows in a triangular shape.
  • According to the exemplary embodiments of the present invention, the heat transfer cell is fabricated by welding a pair of heat transfer plates disposed so as to be opposite to each other in a mirror image to thereby form weld lines along one of first and second flanges of the heat transfer plates disposed so as to be opposite to each other in a mirror image, an internal passage between the weld lines, and external recesses outside the heat transfer areas so as to intersect with the internal passage at a right angle. The heat transfer assembly is fabricated by stacking a plurality of heat transfer cells in multiple layers to thereby form first fluid passages, each of which serves as the internal passage, and second fluid passages between the heat transfer cells so as to intersect with the first fluid passages at a right angle and to exchange heat with the first fluid passages. The elastic support is installed between the sealing panels facing opposite outer faces of the heat transfer assembly and the heat transfer assembly and between the support beams provided between the sealing panels and the heat transfer assembly, thereby absorbing thermal expansion of the heat transfer assembly and preventing fluids from leaking out. Thereby, the heat exchanger can simply and rapidly fabricated, prevent the flaw of welding when welding is performed, reducing a burden of the welding to improve workability, reducing the total number of constituent parts and thus production costs, and improving assemblability.
  • Further, the heat exchanger can minimize turbulence and resistance of the fluid occurring at the inlets of the fluid passages of the heat transfer assembly, and thereby stably maintain contact between the fluid and the heat transfer plate as the heat transfer member to improve heat exchange efficiency.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a perspective view illustrating a heat exchanger according to an embodiment of the present invention;
  • FIG. 2 is an exploded perspective view illustrating a heat exchanger according to an embodiment of the present invention;
  • FIGS. 3A through 3C illustrate a heat transfer cell that is applied to a heat exchanger according to a first embodiment of the present invention, wherein FIG. 3A is an entire perspective view, FIG. 3B is a cross-sectional view taken along line 3 b-3 b′ of FIG. 3A, and FIG. 3C is a cross-sectional view taken along line 3 c-3 c′ of FIG. 3A;
  • FIGS. 4A through 4D illustrate a process of fabricating a heat transfer cell for a heat exchanger according to an embodiment of the present invention;
  • FIGS. 5A through 5C illustrate another example of a heat transfer cell for a heat exchanger according to a second embodiment of the present invention, wherein FIG. 5A is an entire perspective view, FIG. 5B is a cross-sectional view taken along line 5 b-5 b′ of FIG. 5A, and FIG. 5B is a cross-sectional view taken along line 5 c-5 c′ of FIG. 5A;
  • FIGS. 6A through 6D illustrate a process of fabricating another example of a heat transfer cell for a heat exchanger according to an embodiment of the present invention;
  • FIG. 7 is a perspective view illustrating a heat transfer assembly for a heat exchanger according to an embodiment of the present invention;
  • FIG. 8 is a perspective view illustrating another example of a heat transfer assembly for a heat exchanger according to an embodiment of the present invention;
  • FIGS. 9A through 9E are perspective views illustrating a set of spacers installed on a heat transfer plate of a heat transfer cell for a heat exchanger according to an embodiment of the present invention, wherein FIGS. 9A and 9B are for a stud type, FIGS. 9C and 9D are for a strip type, and FIGS. 9E and 9F are for a mixed type;
  • FIGS. 10A and 10B illustrate a framework installed on a heat exchanger according to an embodiment of the present invention, wherein FIG. 10A is a perspective view illustrating sealing panels, and FIG. 10B is a perspective view illustrating a support beam;
  • FIG. 11 is a cross-sectional view illustrating a heat exchanger according to first and second embodiments of the present invention, wherein the heat exchanger is cut in a direction of a first fluid passage; and
  • FIG. 12 illustrates an elastic support for a heat exchanger according to an embodiment of the present invention, wherein FIG. 12A is for a first elastic member of the elastic support, and FIG. 12B is for a second elastic member of the elastic support.
  • DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
  • Exemplary embodiments of the present invention will now be described in greater detail with reference to the accompanying drawings.
  • FIG. 1 is a perspective view illustrating a heat exchanger according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view illustrating a heat exchanger according to an embodiment of the present invention.
  • As illustrated in FIGS. 1 and 2, according to an embodiment of the present invention, the heat exchanger 200 includes a hexahedral heat transfer assembly 100 made up of a plurality of heat transfer cells 130, each of which includes a pair of heat transfer plates 110 and 120, a framework 140, and an elastic support 150.
  • In FIG. 1, a first fluid passage f1 refers to a passage through which a first fluid flows from an upper side to a lower side of the heat exchanger, particularly, vertically flows through an internal passage of each heat transfer cell 130 of the hexahedral heat transfer assembly 100. A second fluid passage f2 refers to a passage through which a second fluid flows from a left-hand side to a right-hand side of the heat exchanger, particularly, horizontally flows through an internal passage between every two neighboring heat transfer cells 130 of the hexahedral heat transfer assembly 100. The flows of the first and second fluid are not limited to this configuration. Thus, the flows of the first and second fluids may be opposite to each other.
  • Here, one of the first and second fluid includes air having an atmospheric temperature, and the other fluid includes waste gas, exhaust gas, or the like that is discharged from any industrial field and has a relatively higher temperature.
  • FIGS. 3A through 3C illustrate a heat transfer cell that is applied to a heat exchanger according to a first embodiment of the present invention, wherein FIG. 3A is an entire perspective view, FIG. 3B is a cross-sectional view taken along line 3 b-3 b′ of FIG. 3A, and FIG. 3C is a cross-sectional view taken along line 3 c-3 c′ of FIG. 3A.
  • As illustrated in FIGS. 3A, 3B and 3C, the heat transfer cell 130 is formed by welding a pair of heat transfer plates 110 and 120, and thus has an internal passage, through which a fluid flows in one direction, defined by the welded heat transfer plates 110 and 120, which face each other in a mirror image.
  • In detail, the heat transfer plate 110 or 120 of the heat transfer cell 130 includes a heat transfer area 111 or 121 shaped of a substantially quadrilateral panel, a pair of first flanges 112 and 113, or 122 and 123 bent from opposite upper and lower edges of the heat transfer area 111 or 121 in one direction when viewed from FIG. 1, and a pair of second flanges 114 and 115, or 124 and 125 bent from opposite left-hand and right-hand edges of the heat transfer area 111 or 121 in the direction opposite the bending direction of the first flanges 112 and 113, or 122 and 123. The heat transfer cell 130 includes weld lines S1 along the first flanges 112 and 122, and 113 and 123 that are opposite to and in contact with each other on the upper and lower sides when viewed from FIG. 1, the internal passage P1 defined between the heat transfer areas 111 and 121 parallel to the weld lines S1. An inlet and an outlet of the internal passage P1 are formed by the second flanges 114 and 124, and 115 and 125 that are opposite to and spaced apart from each other on opposite left-hand and right-hand sides when viewed from FIG. 1.
  • Here, the first flanges 112 and 113, and 122 and 123 and the second flanges 114 and 115, and 124 and 125 are bent from the heat transfer areas 111 and 121 perpendicular to each other.
  • First slopes 116 and 117, or 126 and 127 are inclined toward the weld lines S1 among the first flanges 112 and 113, or 122 and 123, the heat transfer area 111 or 121, and the second flanges 114 and 115, or 124 and 125 at a predetermined angle, and thus smoothly converts a flow of the fluid so as to inhibit the fluid, which flows in a direction perpendicular to the weld lines S1, from generating vortex at an inlet of each external passage.
  • Further, second slopes 118 and 119, or 128 and 129 are inclined toward the inlet 131 and the outlet 132 of the internal passage P1 between the second flanges 114 and 115, or 124 and 125 and the heat transfer area 111 or 121 at a predetermined angle so as to define the external recesses 101 and 102 between the second flanges 114 and 115, or 124 and 125 with a predetermined width.
  • At this time, the weld lines Si are formed by seam welding faying surfaces of the first flanges 112 and 122, and 133 and 123 of the heat transfer plates 110 and 120 facing each other in a mirror image, and the inlet 131 and the outlet 132 of the internal passage P1 are formed by the second flanges 114 and 124, and 115 and 125 which are opposite to and spaced apart from each other.
  • FIGS. 4A through 4D illustrate a process of fabricating a heat transfer cell for a heat exchanger according to an embodiment of the present invention.
  • First, as illustrated in FIG. 4A, there is prepared a plate T, which is shaped of a quadrilateral panel. The plate T is placed on a press (not shown), and then is subjected to external force through a die. Thereby, as illustrated in FIG. 4B, the plate T is formed into a heat transfer plate 110 or 120, which has a heat transfer area 111 or 121 shaped of a quadrilateral panel, a pair of first flanges 112 and 113, or 122 and 123 bent from opposite upper and lower edges of the heat transfer area 111 or 121 in one direction, and a pair of second flanges 114 and 115, or 124 and 125 bent from opposite left-hand and right-hand edges of the heat transfer area 111 or 121 in the direction that is perpendicular and opposite to the bending direction of the first flanges 112 and 113, or 122 and 123.
  • Subsequently, as illustrated in FIG. 4C, the heat transfer plates 110 and 120 are disposed in a mirror image such that a distance between the first flanges 112 and 113, or 122 and 123 is relatively shorter than that between the second flanges 114 and 115, or 124 and 125.
  • In this state, the first flanges 112 and 122, and 133 and 123 come into surface contact with each other, and then are welded along the outer ends thereof. As a result, as illustrated in FIG. 4D, the outer ends of the first flanges 112 and 122, and 133 and 123 have weld lines S1 that run parallel to the internal passage P1 when viewed from FIG. 4D. Thereby, the heat transfer cell 130 is fabricated.
  • FIGS. 5A through 5C illustrates another example of a heat transfer cell for a heat exchanger according to a second embodiment of the present invention, wherein FIG. 5A is an entire perspective view, FIG. 5B is a cross-sectional view taken along line 5 b-5 b′ of FIG. 5A, and FIG. 5C is a cross-sectional view taken along line 5 c-5 c′ of FIG. 5A.
  • As illustrated in FIGS. 5A, 5B and 5C, the heat transfer cell 130 a made up of a pair of heat transfer plates 110 a and 120 a has an internal passage P2, through which a fluid flows in one direction, defined by welding the heat transfer plates 110 a and 120 a, which are opposite to each other in a mirror image.
  • In detail, the heat transfer plate 110 a or 120 a of the heat transfer cell 130 a includes a heat transfer area 111 a or 121 a shaped of a quadrilateral panel, a pair of first flanges 112 a and 113 a, or 122 a and 123 a bent from opposite upper and lower edges of the heat transfer area 111 a or 121 a in one direction, and a pair of second flanges 114 a and 115 a, or 124 a and 125 a bent from opposite left-hand and right-hand edges of the heat transfer area 111 a or 121 a in the direction that is perpendicular and opposite to the bending direction of the first flanges 112 a and 113 a, or 122 a and 123 a. The heat transfer cell 130 a includes weld lines S1 along the first flanges 112 a and 122 a, and 113 a and 123 a that are opposite to and in contact with each other on the left-hand and right-hand sides of FIG. 5A, the internal passage P2 defined between the heat transfer areas 111 a and 121 a parallel to the weld lines S1. An inlet and an outlet of the internal passage P2 are formed by the first flanges 112 a and 122 a, and 113 a and 123 a that are opposite to and spaced apart from each other on upper and lower sides of FIG. 5A.
  • Here, the first flanges 112 a and 113 a, and 122 a and 123 a and the second flanges 114 a and 115 a, and 124 a and 125 a are bent from the heat transfer areas 111 a and 121 a in the direction that is perpendicular and opposite to each other.
  • First slopes 116 a and 117 a, or 126 a and 127 a are inclined toward an inlet and an outlet of the internal passage P2 among the first flanges 112 a and 113 a, or 122 a and 123 a, the heat transfer area 111 a or 121 a, and the second flanges 114 a and 115 a, or 124 a and 125 a at a predetermined angle so as to form external recesses 101 a and 102 a between the first flanges 112 a and 113 a, and 122 a and 123 a with a predetermined width.
  • Further, second slopes 118 a and 119 a, or 128 a and 129 a are inclined toward the weld lines S2 between the second flanges 114 a and 115 a, or 124 a and 125 a and the heat transfer area 111 a or 121 a at a predetermined angle.
  • At this time, the weld lines S2 are formed by seam welding faying surfaces of the first flanges 114 a and 124 a, and 115 a and 125 a of the heat transfer plates 110 a and 120 a facing each other in a mirror image, and the inlet and the outlet of the internal passage P2 are formed by the first flanges 112 a and 122 a, or 113 a and 123 a which are opposite to and spaced apart from each other.
  • FIGS. 6A through 6D illustrate a process of fabricating another example of a heat transfer cell for a heat exchanger according to an embodiment of the present invention.
  • First, as illustrated in FIG. 6A, a plate T shaped of a quadrilateral panel is prepared. The plate T is placed on a press (not shown), and then is subjected to external force through a die. Thereby, as illustrated in FIG. 6B, the plate T is formed into a heat transfer plate 110 a or 120 a, which has a heat transfer area 111 a or 121 a shaped of a quadrilateral panel, a pair of first flanges 112 a and 113 a, or 122 a and 123 a bent from opposite upper and lower edges of the heat transfer area 111 a or 121 a in one direction, and a pair of second flanges 114 a and 115 a, or 124 a and 125 a bent from opposite left-hand and right-hand edges of the heat transfer area 111 a or 121 a in the direction that is perpendicular and opposite to the bending direction of the first flanges 112 a and 113 a, or 122 a and 123 a.
  • Subsequently, as illustrated in FIG. 6C, the heat transfer plates 110 a and 120 a are disposed in a mirror image such that a distance between the first flanges 112 a and 113 a, or 122 a and 123 a is relatively longer than that between the second flanges 114 a and 115 a, or 124 a and 125 a.
  • In this state, the second flanges 114 a and 124 a, and 115 a and 125 a come into surface contact with each other, and then are welded along the outer ends thereof. As a result, as illustrated in FIG. 6D, the outer ends of the second flanges 114 a and 124 a, and 115 a and 125 a form the weld lines S2 that run perpendicular to an internal passage P2 when viewed from FIG. 6. Thereby, the heat transfer cell 130 a is fabricated.
  • FIG. 7 is a perspective view illustrating a heat transfer assembly for a heat exchanger according to an embodiment of the present invention.
  • As illustrated in FIG. 7, the heat transfer assembly 100 is a hexahedral rigid structure in which a plurality of heat transfer cells 130, each of which is a unit member fabricated by welding a pair of heat transfer plates 110 and 120 disposed in a minor image, are stacked.
  • This heat transfer assembly 100 is designed to form a passage having a predetermined size such that a fluid can freely flow between two neighboring ones of the heat transfer cells 130, thereby forming a first fluid passage F1 through which a first fluid flows one side to the other side.
  • Here, a second fluid passage F2 intersects with the first fluid passage F1, which is formed as an internal passage P1 in each heat transfer cell 130, at a right angle. Thus, a second fluid flowing through the second fluid passage F2 flows through the heat transfer assembly 100 without being mixed with the first fluid, so that the first and second fluids having different temperatures can exchange heat with each other.
  • In detail, when the heat transfer cells 130, each of which has the weld lines Si of the first flanges 112 and 122, and 113 and 123, are stacked in a vertical direction as in FIG. 7, the second flanges 114 and 124, and 115 and 125 intersecting with the internal passage P1 of each heat transfer cell 130 at a right angle are in surface contact with and are welded to the second flanges 114 and 124, and 115 and 125 of the neighboring heat transfer cell 130, whereas the first flanges 112 and 122, and 113 and 123 are spaced apart from the first flanges 112 and 122, and 113 and 123 of the neighboring heat transfer cell 130.
  • Thus, the first flanges 112 and 122, and 113 and 123 are provided with end plates 103 and 104 at left-hand and right-hand ends thereof which connect the first flanges 112 and 122, and 113 and 123 of the neighboring heat transfer cell 130 and are in contact with the weld lines S1. Thereby, an inlet and an outlet of the second fluid passage F2 are defined between the heat transfer cell 130 and its neighboring heat transfer cell 130.
  • FIG. 8 is a perspective view illustrating another example of a heat transfer assembly for a heat exchanger according to an embodiment of the present invention.
  • As illustrated in FIG. 8, the heat transfer assembly 100 a is a hexahedral rigid structure in which a plurality of heat transfer cells 130 a, each of which is a unit member fabricated by welding a pair of heat transfer plates 110 a and 120 a disposed in a mirror image, are stacked.
  • This heat transfer assembly 100 a is designed to form a passage having a predetermined size such that a fluid can freely flow between two neighboring ones of the heat transfer cells 130 a, thereby forming a first fluid passage F1 through which a first fluid flows one side to the other side.
  • Here, the first fluid passage F1 intersects with a second fluid passage F2, which is formed as an internal passage P2 in each heat transfer cell 130 a, at a right angle. Thus, the first fluid flowing through the first fluid passage F1 flows through the heat transfer assembly 100 a without being mixed with a second fluid, so that the first and second fluids having different temperatures can exchange heat with each other.
  • In detail, when the heat transfer cells 130 a, each of which has the weld lines S2 of the second flanges 114 a and 124 a, and 115 a and 125 a are stacked in a vertical direction as in FIG. 8, the first flanges 112 a and 122 a, and 113 a and 123 a intersecting with the internal passage P1 of each heat transfer cell 130 a at a right angle are in surface contact with and are welded to the first flanges 112 a and 122 a, and 113 a and 123 a of the neighboring heat transfer cell 130 a, whereas the second flanges 114 a and 124 a, and 115 a and 125 a are spaced apart from the second flanges 114 a and 124 a, and 115 a and 125 a of the neighboring heat transfer cell 100 a. The second flanges 114 a and 124 a, and 115 a and 125 a are sealed by end plates 103 a and 104 a contacting the weld lines S2 at left-hand and right-hand ends thereof.
  • FIGS. 9A through 9F are perspective views illustrating a set of spacers installed on a heat transfer plate of a heat transfer cell for a heat exchanger according to an embodiment of the present invention, wherein FIGS. 9A and 9B are for a stud type, FIGS. 9C and 9D are for a strip type, and FIGS. 9E and 9F are for a mixed type.
  • As illustrated in FIGS. 9A through 9F, the heat transfer plate 110 or 120, or 110 a or 120 a includes a spacer set 160, which has a height equal to or less than an interval between the two neighboring heat transfer areas 111 and 121, or 111 a and 121 a so as to be able to constantly maintain an interval from the heat transfer area 121 or 111, or 121 a or 111 a of the neighboring heat transfer plates 120 or 110, or 120 a or 110 a.
  • The heat transfer plates 110 and 120, or 110 a and 120 a disposed in a horizontal direction are subjected to sagging at the central regions thereof due to their own weights in the process of fabricating the heat transfer assembly 100 or 100 a by stacking the heat transfer cells 130 or 130 a in a vertical direction and by welding the flanges of the heat transfer cells 130 or 130 a which are in contact with each other. At this time, the spacer set 160 is contacted with and supported on heat transfer area 121 or 111, or 121 a or 111 a of the neighboring heat transfer plates 120 or 110, or 120 a or 110 a at an upper end thereof, thereby preventing excessive sagging of the heat transfer plate and maintaining the interval between the heat transfer areas of the heat transfer plates 110 and 120, or 110 a and 120 a as a design value.
  • In addition, the spacer set 160 increases an internal surface area of the heat transfer area, so that it can increase heat exchange efficiency between first and second fluids.
  • Accordingly, the process of welding the flanges of the heat transfer cells 130 or 130 a staked in a vertical direction in order to assemble the heat transfer assembly 100 or 100 a can be more precisely performed without a flaw.
  • As illustrated in FIGS. 9A and 9B, the spacer set 160 a includes a plurality of stud spacers 163, a lower end of each of which is welded to the heat transfer area 111 or 111 a, or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a, or 121 or 121 a at a right angle. Each stud spacer 163 includes a weld strap 161 fixed to the heat transfer area 111 or 111 a, or 121 or 121 a by spot welding, and a support stud 162 vertically extending from the top of the weld strap 161.
  • Here, the support stud 162 is shown to have, but not limited to, a cylindrical shape. Thus, the support stud 162 may have an oval cross section or an angled cross section.
  • As illustrated in FIGS. 9C and 9D, the spacer set 160 b includes a plurality of strip spacers 164, a lower end of each of which is welded to the heat transfer area 111 or 111 a, or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a, or 121 or 121 a at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length.
  • Finally, as illustrated in FIGS. 9E and 9F, the spacer set 160 c includes a plurality of stud spacers 163, a lower end of each of which is welded to the heat transfer area 111 or 111 a, or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a, or 121 or 121 a at a right angle, and a plurality of strip spacers 164, a lower end of each of which is welded to the heat transfer area 111 or 111 a, or 121 or 121 a so as to intersect with the heat transfer area 111 or 111 a, or 121 or 121 a at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length, wherein the stud spacers 163 are mixed with the strip spacers 164.
  • Here, the stud spacers 163, which are selectively installed on either an upper surface, i.e. a front surface, or a lower surface, i.e. a rear surface, of the heat transfer area 111 or 111 a, or 121 or 121 a when viewed from the figure, are arranged to have, but not limited to, a matrix array in order to constantly maintain spacing between the neighboring stud spacers.
  • Specifically, in the process of fabricating the heat transfer assembly 100 or 100 a, the heat transfer cells 130 made up of the heat transfer plates 110 and 120, or 110 a and 120 a are horizontally disposed and welded to each other. @ At this time, in consideration of the downward sagging that occurs on a central region of each heat transfer area, the interval between the neighboring stud spacers 163 on the central region of each heat transfer area may be set to be narrower than that on an edge region of each heat transfer area.
  • Further, the interval between the neighboring strip spacers 164 is, in one embodiment, set in such a manner that the central region of each heat transfer area is narrower than the edge region of each heat transfer area.
  • As illustrated in FIGS. 1 and 2, the framework 140 includes a pair of sealing panels 141 and 142 disposed so as to face opposite outer faces of the heat transfer assembly 100 or 100 a, and a plurality of support beams 143, 144, 145 and 146 connected between the sealing panels 141 and 142.
  • As illustrated in FIG. 10A, the sealing panels 141 and 142 include quadrilateral sealing plates 141 a and 142 a facing the opposite outer faces of the heat transfer assembly 100 or 100 a, reinforcing plates 141 b and 142 b installed on outer surfaces of the sealing plates 141 a and 142 a in a lattice shape, and fastening holes 141 c and 142 c through which ends of the support beams 143, 144, 145 and 146 disposed between corners of the sealing plates 141 a and 142 a are fastened to the sealing plates 141 a and 142 a using fastening members 141 e and 142 e.
  • In one embodiment, the sealing plates 141 a and 142 a facing the heat transfer assembly 100 or 100 a are provided with glass coating layers 141 d and 142 d on inner surfaces thereof which have a predetermined thickness so as to inhibit thermal deformation and corrosion to the maximum extent.
  • The support beams 143, 144, 145 and 146 are support members that connect and support the sealing panels 141 and 142 disposed so as to face the heat transfer assembly 100 or 100 a with the heat transfer assembly 100 or 100 a in between and that have a predetermined length.
  • As illustrated in FIG. 10B, each of the support beams 143, 144, 145 and 146 is provided with fastening holes 147 a and 147 b in opposite ends thereof through which the fastening members 141 e and 142 e are fastened corresponding to the fastening holes 141 c and 142 c formed in corners of the sealing panels 141 and 142.
  • Each of the support beams 143, 144, 145 and 146 is provided with reinforcing ribs 148 at regular intervals in a lengthwise direction.
  • Meanwhile, the sealing panels 141 and 142 and the support beams 143, 144, 145 and 146 are coupled with joint quadrilateral frames 149 having a plurality of fastening holes 149 a so as to be disposed at the inlets and outlets of the first and second fluid passages F1 and F2.
  • A plurality of heat exchangers 200 can be continuously connected to each other in a direction of the first or second fluid passage by the joint quadrilateral frames 149.
  • As illustrated in FIGS. 2 and 11, the elastic support 150 includes first elastic members 151 and second elastic members 154. The first elastic members 151 are installed between inner surfaces of the sealing panels 141 and 142 and the outermost fluid passages of the heat transfer assembly 100 or 100 a, absorb a change in volume caused by thermal expansion when the heat transfer assembly 100 or 100 a performs heat exchange, and prevent the first fluid and the second fluid, which flow through the first fluid passage F1 from above to below and through the second fluid passage from left to right when viewed from FIG. 11, from being mixed with each other and leaking to the outside.
  • As illustrated in FIGS. 11 and 12A, the first elastic members 151 are elastic plates, which have a predetermined length, which are bonded and fixed to the inner surfaces of the sealing plates 141 a and 142 a of the sealing panels 141 and 142 in contact with leading ends 151 a thereof and to the outer face of the heat transfer assembly 100 or 100 a in contact with trailing ends 151 c thereof, and which have a contractile section 151 b having a curved cross section between the leading and trailing ends 151 a and 151 c thereof so as to absorb an amount of deformation when the heat transfer assembly 100 or 100 a is subjected to thermal deformation.
  • Here, the trailing ends 151 c of the first elastic members 151 are contacted with and welded to the flanges of the outermost heat transfer cells 130 or 130 a of the heat transfer assembly 100 or 100 a.
  • As illustrated in FIGS. 11 and 12B, each of the second elastic members 154 is an elastic plate, which has a predetermined length, which is bonded and fixed to a first lateral face of each of the support beams 143, 144, 145 and 146 in contact with a leading end 154 a thereof and to the outer face of the heat transfer assembly 100 or 100 a in contact with a trailing end 154 c thereof, and which has a corrugated section 154 b between the leading and trailing ends 154 a and 154 c thereof so as to absorb an amount of deformation when the heat transfer assembly 100 or 100 a is subjected to thermal deformation. The elastic support 150 further includes stoppers 155, each of which has a predetermined length, is fixed to a second lateral face of each of the support beams 143, 144, 145 and 146, which is perpendicular to the first lateral face of each of the support beams 143, 144, 145 and 146 on which each second elastic member 154 is installed, and is opposite to the outer edge of the heat transfer assembly 100 or 100 a.
  • Meanwhile, the heat transfer assembly 100 or 100 a may be provided with planar cover members 131, each of which forms a separate fluid passage between the neighboring heat transfer plates so as to prevent moisture from being generated by a temperature difference between the heat transfer plates 110 and 120, or 110 a and 120 a when the first and second fluids having different temperatures exchange heat with each other.
  • Each cover member 131 is installed parallel to the heat transfer plates, which define the passage through which the fluid having a relatively low temperature flows, by means of a plurality of spacing pins 131 a thereof.
  • Further, the cover members 131 are installed on the corners of the heat transfer plates at which the inlet of the fluid passage F1 through which a room-temperature fluid such as air in the atmosphere flows encounters with the outlet of the fluid passage F2 through which the fluid having a relatively high temperature flows.
  • While the present invention has been shown and described in connection with the exemplary embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (19)

1. A heat exchanger comprising:
a heat transfer assembly including a plurality of heat transfer cells stacked in multiple layers, each of the heat transfer cells including a pair of heat transfer plates, wherein each of the heat transfer plates has a pair of first flanges bent from a heat transfer area shaped of a quadrilateral panel in one direction and a pair of second flanges bent from the heat transfer area in a direction opposite the bending direction of the first flanges;
wherein each of the heat transfer cells has weld lines formed along one of the first and second flanges of the heat transfer plates disposed so as to be opposite to each other in a mirror image, an internal passage between the weld lines, and external recesses outside the heat transfer areas so as to intersect with the internal passage at a right angle;
wherein the heat transfer assembly has first fluid passages, each of which is formed by the internal passage, and second fluid passages between the heat transfer cells to intersect with the first fluid passage at a right angle so as to exchange heat with the first fluid passages;
a framework having a plurality of support beams connected between a pair of sealing panels facing opposite outer faces of the heat transfer assembly; and,
an elastic support having first elastic members installed between the sealing panels and the heat transfer assembly and second elastic members installed between the support beams and the heat transfer assembly, absorbing thermal expansion of the heat transfer assembly, and preventing fluids from leaking out.
2. The heat exchanger of claim 1, wherein each of the heat transfer cells has the weld lines along the first flanges of the heat transfer plates that are opposite to and in contact with each other in the mirror image, and the internal passage formed between the heat transfer plates that are opposite to each other so as to be parallel to the weld lines and having an inlet and an outlet defined by the second flanges that are opposite to and spaced apart from each other.
3. The heat exchanger of claim 2, wherein each of the heat transfer cells has first slopes that are inclined toward the weld lines among the first flanges, the first or second heat transfer area, and the second flanges at a predetermined angle, and second slopes that are inclined toward the inlet and the outlet of the internal passage between the second flanges and the first or second heat transfer area at a predetermined angle so as to define the external recesses.
4. The heat exchanger of claim 3, wherein the heat transfer assembly is configured so that the second flanges of the neighboring heat transfer cells which intersect with the internal passages at the right angle are in surface contact with each other, and that the first flanges of the neighboring heat transfer cells are spaced apart from each other, and includes end plates contacting the second flanges and the weld lines at opposite left-hand and right-hand ends of the first flanges.
5. The heat exchanger of claim 1, wherein each of the heat transfer cells has the weld lines along the second flanges of the heat transfer plates that are opposite to and in contact with each other in the mirror image, and the internal passage formed between the heat transfer plates that are opposite to each other so as to be parallel to the weld lines and having an inlet and an outlet defined by the first flanges that are opposite to and spaced apart from each other.
6. The heat exchanger of claim 5, wherein each of the heat transfer cells has first slopes that are inclined toward the inlet and the outlet of the internal passage among the first flanges, the first or second heat transfer area, and the second flanges at a predetermined angle at a predetermined angle so as to define the external recesses, second slopes that are inclined toward the weld lines between the second flanges and the heat transfer area at a predetermined angle, and end plates contacting the second flanges and the weld lines at opposite left-hand and right-hand ends of the first flanges.
7. The heat exchanger of claim 6, wherein the heat transfer assembly is configured so that the second flanges of the neighboring heat transfer cells which intersect with the internal passages at the right angle are in surface contact with each other, and that the first flanges of the neighboring heat transfer cells are spaced apart from each other, and is sealed at opposite left-hand and right-hand ends of the second flanges by the end plates.
8. The heat exchanger of claim 1, wherein one of the heat transfer plates includes a spacer set, a height of which is equal to or less than an interval between the neighboring heat transfer areas.
9. The heat exchanger of claim 8, wherein the spacer set includes a plurality of stud spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle.
10. The heat exchanger of claim 8, wherein the spacer set includes a plurality of strip spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle, and each of which extends in a flow direction of the fluid at a predetermined length.
11. The heat exchanger of claim 8, wherein the spacer set includes a plurality of stud spacers, a lower end of each of which is welded to one of the heat transfer area so as to intersect with one of the heat transfer areas at a right angle, and a plurality of strip spacers, a lower end of each of which is welded to one of the heat transfer areas so as to intersect with one of the heat transfer areas at a right angle and each of which extends in a flow direction of the fluid at a predetermined length.
12. The heat exchanger of claim 8, wherein the sealing panels include sealing plates facing the outer faces of the heat transfer assembly, reinforcing plates installed on outer surfaces of the sealing plates in a lattice shape, and fastening holes formed in corners of the sealing plates and fastened to ends of the support beams by fastening members.
13. The heat exchanger of claim 12, wherein each of the sealing plates includes a glass coating layer on an inner surface thereof.
14. The heat exchanger of claim 12, wherein the sealing panels and the support beams are coupled with a plurality of joint quadrilateral frames so as to be disposed at inlets and outlets of the first and second fluid passages.
15. The heat exchanger of claim 1, wherein the first elastic members include plates having a predetermined length, bonded and fixed to inner surfaces of the sealing panels in contact with leading ends thereof and to the outer face of the heat transfer assembly in contact with trailing ends thereof, and having a contractile section having a curved cross section between the leading and trailing ends thereof.
16. The heat exchanger of claim 1, wherein each of the second elastic members comprises an elastic plate, which has a predetermined length, which is bonded and fixed to a first lateral face of each of the support beams in contact with a leading end thereof and to the outer face of the heat transfer assembly in contact with a trailing end thereof, and which has a corrugated section between the leading and trailing ends thereof.
17. The heat exchanger of claim 16, wherein the elastic support further includes stoppers, each of which has a predetermined length, is fixed to a second lateral face of each of the support beams, which is perpendicular to the first lateral face of each of the support beams on which the second elastic members are installed, and is opposite to an outer edge of the heat transfer assembly.
18. The heat exchanger of claim 1, wherein the heat transfer assembly includes planar cover members spaced apart from and parallel to the heat transfer plates at a predetermined interval, so as to define another fluid passage between the heat transfer plates, through which, of the first and second fluids having different temperatures, one having a relatively low temperature flows.
19. The heat exchanger of claim 18, wherein the cover members are installed on corners of the heat transfer plate where the inlet of the fluid passage through which the fluid having the relatively low temperature flows encounters with the outlet of the fluid passage through which the fluid having a relatively high temperature flows in a triangular shape.
US12/506,540 2009-07-21 2009-07-21 Plate type heat exchanger Abandoned US20110017436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/506,540 US20110017436A1 (en) 2009-07-21 2009-07-21 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/506,540 US20110017436A1 (en) 2009-07-21 2009-07-21 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
US20110017436A1 true US20110017436A1 (en) 2011-01-27

Family

ID=43496273

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/506,540 Abandoned US20110017436A1 (en) 2009-07-21 2009-07-21 Plate type heat exchanger

Country Status (1)

Country Link
US (1) US20110017436A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062042A1 (en) * 2010-04-16 2013-03-14 Mircea Dinulescu Plate type heat exchanger having outer heat exchanger plates with improved connections to end panels
US20140190664A1 (en) * 2011-03-24 2014-07-10 Innova S.R.L. Heat exchanger
ITUB20160428A1 (en) * 2016-01-20 2017-07-20 Stefano Bandini Device for heat transfer between fluids with interlocking assembly.
US20180033899A1 (en) * 2013-11-08 2018-02-01 Lg Electronics Inc. Solar cell
WO2018077481A1 (en) 2016-10-27 2018-05-03 Linde Aktiengesellschaft Plate heat exchanger
US10047663B2 (en) 2014-04-29 2018-08-14 Dana Canada Corporation Charge air cooler with multi-piece plastic housing
US10113767B1 (en) * 2018-02-01 2018-10-30 Berg Companies, Inc. Air handling unit
US20190390869A1 (en) * 2016-02-19 2019-12-26 Mitsubishi Electric Corporation Heat exchanger and heat exchange ventilator
FR3086742A1 (en) * 2018-10-01 2020-04-03 Heurtey Petrochem S.A. PLATE FOR A PLATE HEAT EXCHANGER
US20220003165A1 (en) * 2020-06-25 2022-01-06 Turbine Aeronautics IP Pty Ltd Heat exchanger

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US799621A (en) * 1905-04-12 1905-09-12 Arthur Wilfred Brewtnall Surface heating or cooling apparatus.
US4099928A (en) * 1975-07-18 1978-07-11 Aktiebolaget Carl Munters Method of manufacturing a heat exchanger body for recuperative exchangers
US4183403A (en) * 1973-02-07 1980-01-15 Nicholson Terence P Plate type heat exchangers
US4442886A (en) * 1982-04-19 1984-04-17 North Atlantic Technologies, Inc. Floating plate heat exchanger
US4503904A (en) * 1983-12-01 1985-03-12 Gte Products Corporation Heat recuperator with triple pass cross-flow ceramic core
US4596285A (en) * 1985-03-28 1986-06-24 North Atlantic Technologies, Inc. Heat exchanger with resilient corner seals
US4719970A (en) * 1984-04-19 1988-01-19 Vicarb Plate exchangers and novel type of plate for obtaining such exchangers
US4805695A (en) * 1986-04-25 1989-02-21 Sumitomo Heavy Industries, Ltd. Counterflow heat exchanger with floating plate
US4858685A (en) * 1982-12-06 1989-08-22 Energigazdalkodasi Intezet Plate-type heat exchanger
US5383516A (en) * 1990-11-23 1995-01-24 Dinulescu; Mircea Heat exchanger apparatus
US5699856A (en) * 1992-05-22 1997-12-23 Packinox Bank of plates for heat exchanger and method of assembling such a bank of plates
US6516874B2 (en) * 2001-06-29 2003-02-11 Delaware Capital Formation, Inc. All welded plate heat exchanger
US20030093900A1 (en) * 2000-03-20 2003-05-22 Huguet Francois Regis Method for assembling the plates of a plate pack and resulting plate pack

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US799621A (en) * 1905-04-12 1905-09-12 Arthur Wilfred Brewtnall Surface heating or cooling apparatus.
US4183403A (en) * 1973-02-07 1980-01-15 Nicholson Terence P Plate type heat exchangers
US4099928A (en) * 1975-07-18 1978-07-11 Aktiebolaget Carl Munters Method of manufacturing a heat exchanger body for recuperative exchangers
US4442886A (en) * 1982-04-19 1984-04-17 North Atlantic Technologies, Inc. Floating plate heat exchanger
US4858685A (en) * 1982-12-06 1989-08-22 Energigazdalkodasi Intezet Plate-type heat exchanger
US4503904A (en) * 1983-12-01 1985-03-12 Gte Products Corporation Heat recuperator with triple pass cross-flow ceramic core
US4719970A (en) * 1984-04-19 1988-01-19 Vicarb Plate exchangers and novel type of plate for obtaining such exchangers
US4596285A (en) * 1985-03-28 1986-06-24 North Atlantic Technologies, Inc. Heat exchanger with resilient corner seals
US4805695A (en) * 1986-04-25 1989-02-21 Sumitomo Heavy Industries, Ltd. Counterflow heat exchanger with floating plate
US5383516A (en) * 1990-11-23 1995-01-24 Dinulescu; Mircea Heat exchanger apparatus
US5699856A (en) * 1992-05-22 1997-12-23 Packinox Bank of plates for heat exchanger and method of assembling such a bank of plates
US20030093900A1 (en) * 2000-03-20 2003-05-22 Huguet Francois Regis Method for assembling the plates of a plate pack and resulting plate pack
US6516874B2 (en) * 2001-06-29 2003-02-11 Delaware Capital Formation, Inc. All welded plate heat exchanger

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273907B2 (en) * 2010-04-16 2016-03-01 Mircea Dinulescu Plate type heat exchanger having outer heat exchanger plates with improved connections to end panels
US20130062042A1 (en) * 2010-04-16 2013-03-14 Mircea Dinulescu Plate type heat exchanger having outer heat exchanger plates with improved connections to end panels
US20140190664A1 (en) * 2011-03-24 2014-07-10 Innova S.R.L. Heat exchanger
US20180033899A1 (en) * 2013-11-08 2018-02-01 Lg Electronics Inc. Solar cell
US10047663B2 (en) 2014-04-29 2018-08-14 Dana Canada Corporation Charge air cooler with multi-piece plastic housing
ITUB20160428A1 (en) * 2016-01-20 2017-07-20 Stefano Bandini Device for heat transfer between fluids with interlocking assembly.
US10907856B2 (en) * 2016-02-19 2021-02-02 Mitsubishi Electric Corporation Heat exchanger and heat exchange ventilator
US20190390869A1 (en) * 2016-02-19 2019-12-26 Mitsubishi Electric Corporation Heat exchanger and heat exchange ventilator
DE102016012842A1 (en) 2016-10-27 2018-05-03 Linde Aktiengesellschaft Plate heat exchanger
WO2018077481A1 (en) 2016-10-27 2018-05-03 Linde Aktiengesellschaft Plate heat exchanger
US10113767B1 (en) * 2018-02-01 2018-10-30 Berg Companies, Inc. Air handling unit
US11041654B2 (en) 2018-02-01 2021-06-22 Berg Companies, Inc. Air handling unit
FR3086742A1 (en) * 2018-10-01 2020-04-03 Heurtey Petrochem S.A. PLATE FOR A PLATE HEAT EXCHANGER
WO2020069880A1 (en) * 2018-10-01 2020-04-09 Axens Plate for a plate heat exchanger
US20220003165A1 (en) * 2020-06-25 2022-01-06 Turbine Aeronautics IP Pty Ltd Heat exchanger
US11639828B2 (en) * 2020-06-25 2023-05-02 Turbine Aeronautics IP Pty Ltd Heat exchanger

Similar Documents

Publication Publication Date Title
US20110017436A1 (en) Plate type heat exchanger
US10054374B2 (en) Heat transfer cell for heat exchanger and assembly, and methods of fabricating the same
CN102947664B (en) Comprise the plate type heat exchanger with the external heat-exchanging plate be connected with the improvement of end plate
KR100865115B1 (en) Plate tpye heat exchanger
KR102299274B1 (en) Plate heat exchanger and method for manufacturing a plate heat exchanger
JP2013205009A (en) Plate type heat exchanger
US20100132929A1 (en) Heat exchanger with welded exchange plates
EP3465049B1 (en) Counter-flow heat exchanger
EP2604962B1 (en) Plate heat exchanger and method for manufacturing a plate heat exchanger
US20230117804A1 (en) Plate heat exchanger
WO2007045719A1 (en) Plate heat exchanger and method for constructing pressure-proof plate heat exchanger
KR101017328B1 (en) Heat plate used heat exchanger and welding type heat exchanger comprising the heat plate
US5909767A (en) Recuperative cross flow plate-type heat exchanger
CN101749971A (en) Fully-welded corrugated sheet tube heat exchanger
CN113167543B (en) Plate for a plate heat exchanger
JP2013050240A (en) Plate heat exchanger and method for manufacturing the same
KR102571485B1 (en) Plate type heat exchanger and Method for fabricating the same
KR100411761B1 (en) Plate type heat exchanger using gas
EP3470762A1 (en) Plate-type heat exchanger
JP5249264B2 (en) Plate heat exchanger
CN217764484U (en) Self-supporting heat exchange plate group with wide channel
KR200237867Y1 (en) Plate type heat exchanger using gas
KR20180031902A (en) Method for manufacturing block type plate heat exchanger
JP2017207237A (en) Heat exchanger
JP5779800B2 (en) Plate heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIN HAN APEX CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHO, MUN-JAE;REEL/FRAME:023747/0994

Effective date: 20091106

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION