US20110016906A1 - Highly efficient cooling systems - Google Patents

Highly efficient cooling systems Download PDF

Info

Publication number
US20110016906A1
US20110016906A1 US12/509,263 US50926309A US2011016906A1 US 20110016906 A1 US20110016906 A1 US 20110016906A1 US 50926309 A US50926309 A US 50926309A US 2011016906 A1 US2011016906 A1 US 2011016906A1
Authority
US
United States
Prior art keywords
container
liquid
foam
cooling system
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/509,263
Inventor
Patrick Zuili
Daren Stabinski
Todd Stabinski
George Bitton
Jim Suggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerQuest Inc
Original Assignee
PowerQuest Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerQuest Inc filed Critical PowerQuest Inc
Priority to US12/509,263 priority Critical patent/US20110016906A1/en
Assigned to Powerquest, Inc. reassignment Powerquest, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BITTON, GEORGE, STABINSKI, DAREN, STABINSKI, TODD, SUGGS, JIM, ZUILI, PATRICK
Priority to CN2010101279339A priority patent/CN101963379A/en
Publication of US20110016906A1 publication Critical patent/US20110016906A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the invention is generally related to the area of air conditioning systems or refrigeration. More particularly, the present invention is related to cooling systems with a unique structure to deliver cooling effect in highly efficient way, where the cooling systems use less energy than the prior art systems do and can be used in air conditioning systems or refrigeration.
  • One other aspect of the traditional air conditioning compressor is its high noise level, which requires the unit to be placed outside and some distance away from the air handler, which in turn causes a loss of efficiency due to temperature lost from its travel from the compressor to the air handler.
  • an air conditioning system runs an energy-efficient water chilled mechanism that can be used on smaller scales as well as large properties.
  • the air conditioning system achieves peak efficiency by using unique physical properties of solid carbon graphite, carbon graphite and/or metallic foam, and misters to achieve maximum thermal conductivity from absorption to water.
  • two cooling units are used to sandwich a container made out of a type of metal, carbon graphite, or combination thereof, with high conductivity.
  • the container is structured to include a metal foam in contact with the container being sandwiched by the two cooling units.
  • liquid in the container is substantially cooled to provide a cooled source for air conditioning or refrigeration.
  • the present invention provides new structures for a cooling system that may be used in air conditioning or refrigeration.
  • the present invention may be implemented in numerous foams.
  • the present invention is a cooling system comprising: a container including an inlet and outlet, a foam included and expanded in the container so that the foam is in close contact with the container, and two cooling units sandwiching the container to transfer cooling effects to the container, where a type of liquid is supplied from the inlet to pass the foam to be cooled, and the cooled liquid exits from the outlet.
  • the present invention is a cooling system comprising: a container including an inlet and outlet, a foam included and expanded in the container so that the foam is in close contact with the container, where the foam is made out of a material with high thermal conductivity, and allows for optimal surface area of cooling, the foam includes open cells, two cooling units sandwiching the container to transfer cooling effects to the container then the foam inside the container, where a type of liquid is supplied from the inlet to be sprayed over the foam that passed through the foam by gravity and/or pressure, and the outlet exits the liquid that has been cooled when going through the container.
  • FIG. 1 shows a cooling unit that may be used in one embodiment of the present invention
  • FIG. 2A shows a side view of a structure with a container being sandwiched by two cooling units
  • FIG. 2B shows a detailed structure of the container used in FIG. 2 ;
  • FIG. 3 shows an embodiment in which a compressor is used.
  • the present invention pertains to new structures of cooling systems that may be used in air conditioning or refrigeration.
  • antifreeze liquid used to absorb the cooling effect is forced to pass a box or container holding an open-cell sponge-like structure or foam, where the foam including holes provides maximum surface contact with the liquid. Further the liquid is sprayed or vaporized onto the foam and the liquid passed through the foam by gravity. The cooled liquid is exited and pumped from the container for use in air conditioning or refrigeration.
  • references herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams or the use of sequence numbers representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
  • the container containing at least a sponge-like structure or foam that is expanded within the container to be closely in contact therewith.
  • the container itself is made out of a type of material with high thermal conductivity.
  • the foam is also made out of a type of material with high thermal conductivity.
  • Each of the cooling units operates on absorptive refrigeration that uses a source of heat to provide the energy needed to drive the cooling process.
  • the source of heat is provided by solar energy. With solar panels being exposed to the sun, electricity is generated to power the source of heat to heat up a type of liquid being used in the cooling units.
  • the source of heat is provided by conventional electric resistance heater. Examples of the liquid used as refrigerant include, but not be limited to, ammonia, hydrogen, and water.
  • FIG. 1 shows a cooling unit 100 that may be used in one embodiment of the present invention.
  • the cooling unit 100 is shown in two views, referred to herein as an inside view 102 and an outside view 104 .
  • the cooling unit 100 comprises a heating area 106 , a cooling area 108 , an absorber tank 110 , and absorber 112 .
  • the heating area 106 includes a boiler (not separately shown) powered by energy provided externally. In one embodiment, the energy is from electricity generated from solar. In another embodiment, the energy is from battery or conventional electric power.
  • the boiler heats up a type of liquid (e.g. ammonia) coming from the absorber tank 110 .
  • a type of liquid e.g. ammonia
  • ammonia will be used herein.
  • the ammonia liquid vaporizes.
  • the ammonia vapor is led to pass into the cooling area 108 , where there is a set of coils or bending pipes 114 that make up a rectifier and an evaporator.
  • the rectifier is just a slightly cooler section of the pipes 114 that cause the vapor to condense and drop back downwards.
  • An optional separator (not shown) at the top of the cooling unit 100 prevents any liquid that might have escaped the rectifier to condense and fall back.
  • a condenser is where the cooled air passing through the ammonia vapor being cooled down.
  • the cooling effect of the condenser with an array of metal fins forces the ammonia vapor to condense to a liquid state.
  • the liquid ammonia enters the evaporator (or a freezer) and trickles down the pipes, wetting the wall thereof.
  • Hydrogen supplied through an inner pipe of the evaporator, passes over the wetted wall, causing the liquid ammonia to evaporate into the hydrogen atmosphere at an initial temperature of around ⁇ 20° F.
  • the evaporation of the ammonia extracts heat from the surrounding (e.g., a freezer).
  • the pressure of the hydrogen is around 350 psi (pounds per square inch), while the pressure of the liquid ammonia is near 14 psi.
  • the ammonia evaporates and continues to trickle down the tube, its pressure and therefore its evaporation temperature rise.
  • the liquid ammonia entering the high temperature evaporator (cooling portion) is around 44 psi while the pressure of the hydrogen has dropped to 325 psi. Under these conditions, the evaporation temperature of the liquid ammonia is +15° F. Heat is removed from the surrounding through the fins attached to the high temperature evaporator. The ammonia vapor created by the evaporation of the liquid ammonia mixes with the already present hydrogen vapor, making it heavier. Since the ammonia and hydrogen vapor mixture is heavier than the purer hydrogen, it drops down through the evaporators, through the return tube to the absorber tank.
  • This weak ammonia solution eventually absorbs all the ammonia from the ammonia and hydrogen mixture as it rises, allowing pure hydrogen to rise up the inner pipe of the evaporator section and once again do its job of passing over the wetted walls of the evaporator.
  • the absorption process in the absorber section generates heat, which is dissipated.
  • FIG. 2A it shows a side view of a structure 200 with a container 202 being sandwiched by two cooling units 204 and 206 according to one embodiment of the present invention.
  • the cooling unit 100 of FIG. 1 may be used.
  • the container 202 is preferably made of graphite, but could also be made of aluminum, copper, or any other thermo-conductive metal or alloy including non-metallic ceramic.
  • the container 202 as further shown in FIG. 2B , includes a foam 214 made out of graphite or a metal material with high thermal conductivity.
  • the foam 214 is expanded within the container 202 to be closely in contact therewith so that coldness or cooling effect from the two cooling units 204 and 206 can be effectively transferred therein.
  • on top of the container 202 there is an optional gasket (for maintenance) and a liquid (or gas) inlet 208 .
  • a mister 210 is employed to be connected to the inlet 208 .
  • a type of liquid e.g., antifreeze liquid
  • a type of liquid is supplied to the inlet 208 that causes the mister 210 to spray or vaporize the liquid into the foam 214 .
  • the mist 220 falls inside cells of the foam 214 .
  • the foam 214 similar to a sponge-like structure, is made out of graphite with open cells measured, for example, between 10-100 PPI (pores per inch) in size.
  • the liquid passed through the foam 214 .
  • the liquid is having the maximum surface contact with the foam 214 .
  • the cooling effect or coldness from the two cooling units 204 and 206 are transferred to the liquid in maximum efficiency.
  • the cooled liquid exits to an outlet 220 at its coldest temperature.
  • thermo-conductive paste is used to ensure that maximum transfer of the cooling effect to the container 202 is achieved.
  • the cooled liquid from the outlet 220 can optionally go to a tank then to a pump, or directly to a pump connected (using any tubing) to an evaporator cooling coil located inside an air handler that receive the cold liquid, pushed by the pump.
  • the liquid goes through copper tubing surrounded by aluminum fins, the air going through the fins becomes cold and pushed by a blower to ducts. The liquid during this process heats up and comes back to the container 202 to get cooled again in a closed loop.
  • the invention as described herein provides an energy efficient liquid chilled system that can be used on smaller scales as well as large properties, and forgoes the high energy consumption of a traditional compressor for the lower energy usage of an absorption cooling system.
  • a system built per the present invention achieves peak efficiency by using the unique physical properties of solid carbon graphite, carbon graphite and/or metallic foam, and misters to achieve the maximum thermal conductivity from the absorption system to the liquid.
  • the present invention is implemented as a central air conditioning system, where a blower (e.g., air handler) receives a cold liquid or gas (less than 45 F), that is pumped from a carbon graphite reservoir that is sandwiched between two or more absorption cooling units, and where the solid carbon graphite reservoir is filled with a graphite and/or metal (copper, aluminum, silver, alloy, etc.) foam.
  • a blower e.g., air handler
  • a carbon graphite reservoir that is sandwiched between two or more absorption cooling units
  • the solid carbon graphite reservoir is filled with a graphite and/or metal (copper, aluminum, silver, alloy, etc.) foam.
  • the thermal conductivity properties of the graphite within the reservoir and the foam transfer the cold temperature from the absorption units to the liquid or gas. This liquid or gas is used to cool the air that blows through the air handler coil.
  • the liquid or gas is then pumped back to the top of the graphite reservoir, where there is a mister (if it is in liquid form) that atomizes the molecules of the liquid, and acts as an initial cooling of the liquid, which is then sprayed back into the graphite reservoir to repeat the cooling cycle.
  • thermodynamic exchange is maximized in the present invention due to the porosity of the foam which increases the surface cooling area exponentially. Furthermore, the unique thermal properties of the carbon graphite within the reservoir and/or the foam stores the cold temperature, therefore allowing a constant thermal conduction, rapid recovery, at a constant temperature, using minimal power.
  • the foam e.g., the foam 214
  • the foam by itself can be made of one metal or graphite or alloy, or a combination of different foams, without any limitations in size or orders. Certain metals such as silver may be included for the additional effect of cleaning the water within the unit and preventing the growth of mold and bacteria.
  • the liquid or gas circulating can be water alone, water with glycol (antifreeze), in any proportion, or any gas like CO2, Helium, or hydrogen. If a gas is used, the unit will be sealed under pressure to maintain gas thermo effectiveness.
  • an optional mechanism of (electronically) controlled tanks is provided before the mist and/or before the pump (cold outlet) to run the pump at an optimal rate, as well as run the absorption cooling units to maintain optimal energy efficiency.
  • the unit may also include an optional compressor, or use an existing compressor, to initially cool the unit if the unit has not been recently used. The energy usage is sufficiently efficient to run on 12 volts, and permit the entire air conditioning system to run on solar panels or other alternative energy source.
  • FIG. 3 it shows a hybrid configuration 300 in which a compressor 302 is used. Due to the absorptions cycles, it may take sometime for the two absorptions units to work at efficient temperatures or setup load, then an optional compressor may be provided to perform the task to cool down the box the container 202 of FIG. 2A or 2 B). As a result, the waiting time after installation or if the unit has been turned off can be minimized to have the system fully ready to cool down the air. In an even that an external temperature rises up to a point that will make the absorptions cycles difficult then the compressor will help maintaining the proper temperature, despite the sporadic usage of the compressor will still provide an high level of energy efficiency while providing an acute temperature control level.
  • a thermostat connected to the air handler is used to control the operations of an air conditioning unit implemented in accordance with the present invention.
  • the surrounding of the two cooling units is vented, the coils or pipes are properly insulated using any material (e.g., insulation foam, closed cells glass foam).

Abstract

Improved structures of cooling systems that may be used in air conditioning or refrigeration are described. To achieve a high efficiency in converting cooling effect from one or more cooling units, antifreeze liquid used to absorb the cooling effect is forced to pass through a box or container made out of graphite or thermally conductive metal or alloy holding a sponge-like structure or foam, also made out of graphite or thermally conductive metal or alloy, where the foam including open cells provides maximum surface contact with the liquid. Further the liquid is sprayed or vaporized onto the foam and passes through the foam by gravity or pressure. The cooled liquid is exited from the container for use in air conditioning or refrigeration.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention is generally related to the area of air conditioning systems or refrigeration. More particularly, the present invention is related to cooling systems with a unique structure to deliver cooling effect in highly efficient way, where the cooling systems use less energy than the prior art systems do and can be used in air conditioning systems or refrigeration.
  • 2. The Background of Related Art
  • Prior to the introduction of Freon in 1928, the air conditioning industry relied on dangerous, toxic, and/or flammable liquids and gases to act as refrigerants. In 1928, chlorofluorocarbon compounds such as Freon were introduced and deemed to be more efficient and effective refrigerants for air conditioning systems. However, such compounds if released into the atmosphere were discovered to cause severe environmental effects, such as the depletion of the ozone layer, and contribute to the global warming.
  • Currently standard refrigerants (e.g., R-22) are scheduled to be phased out in new equipment by 2010, and completely discontinued by 2020. However, the newer refrigerants prove to cause similar environment impact of its predecessors. Moreover, the traditional split air conditioning system, comprised of a compressor and air handler, uses a large amount of electricity to perform the cycle of evaporating and then condensing the chlorofluorocarbon refrigerants to cool down the refrigerants and run them through the air handler. The process causes further environment effects such as depletion of fossil fuels, as well as being expensive to the end user, especially with the recent rises in the cost of such fuels.
  • One other aspect of the traditional air conditioning compressor is its high noise level, which requires the unit to be placed outside and some distance away from the air handler, which in turn causes a loss of efficiency due to temperature lost from its travel from the compressor to the air handler.
  • Water was used as early as in the 2nd century during the Chinese Song Dynasty as a coolant into rudimentary fans as air conditioning. Even today, water is being used in large industrial and commercial water chilled air conditioning systems. However using traditional evaporative and condensing mechanism uses a large amount of energy. Thus there is a need for energy efficient, environmental friendly, and quiet air conditioning systems.
  • SUMMARY OF THE INVENTION
  • This section is for the purpose of summarizing some aspects of the present invention and to briefly introduce some preferred embodiments. Simplifications or omissions in this section as well as in the abstract or the title of this description may be made to avoid obscuring the purpose of this section, the abstract and the title. Such simplifications or omissions are not intended to limit the scope of the present invention.
  • In general, the present invention pertains to highly efficient cooling systems. According to one aspect of the present invention, an air conditioning system runs an energy-efficient water chilled mechanism that can be used on smaller scales as well as large properties. The air conditioning system achieves peak efficiency by using unique physical properties of solid carbon graphite, carbon graphite and/or metallic foam, and misters to achieve maximum thermal conductivity from absorption to water.
  • According to another aspect of the present invention, two cooling units are used to sandwich a container made out of a type of metal, carbon graphite, or combination thereof, with high conductivity. The container is structured to include a metal foam in contact with the container being sandwiched by the two cooling units. As a result, liquid in the container is substantially cooled to provide a cooled source for air conditioning or refrigeration.
  • There are numerous functions, benefits and advantages in the present invention, one of them is that the present invention provides new structures for a cooling system that may be used in air conditioning or refrigeration. The present invention may be implemented in numerous foams. According to one embodiment of the present invention, the present invention is a cooling system comprising: a container including an inlet and outlet, a foam included and expanded in the container so that the foam is in close contact with the container, and two cooling units sandwiching the container to transfer cooling effects to the container, where a type of liquid is supplied from the inlet to pass the foam to be cooled, and the cooled liquid exits from the outlet.
  • According to another embodiment of the present invention, the present invention is a cooling system comprising: a container including an inlet and outlet, a foam included and expanded in the container so that the foam is in close contact with the container, where the foam is made out of a material with high thermal conductivity, and allows for optimal surface area of cooling, the foam includes open cells, two cooling units sandwiching the container to transfer cooling effects to the container then the foam inside the container, where a type of liquid is supplied from the inlet to be sprayed over the foam that passed through the foam by gravity and/or pressure, and the outlet exits the liquid that has been cooled when going through the container.
  • Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
  • FIG. 1 shows a cooling unit that may be used in one embodiment of the present invention;
  • FIG. 2A shows a side view of a structure with a container being sandwiched by two cooling units;
  • FIG. 2B shows a detailed structure of the container used in FIG. 2; and
  • FIG. 3 shows an embodiment in which a compressor is used.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention pertains to new structures of cooling systems that may be used in air conditioning or refrigeration. To achieve a high efficiency in converting cooling effect from one or more cooling units, antifreeze liquid used to absorb the cooling effect is forced to pass a box or container holding an open-cell sponge-like structure or foam, where the foam including holes provides maximum surface contact with the liquid. Further the liquid is sprayed or vaporized onto the foam and the liquid passed through the foam by gravity. The cooled liquid is exited and pumped from the container for use in air conditioning or refrigeration.
  • The detailed description of the present invention is presented largely in terms of procedures, steps, logic blocks, processing, or other symbolic representations that directly or indirectly resemble the operations of devices or systems that produce coldness or cooling effect. These descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art.
  • Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams or the use of sequence numbers representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
  • One of the important features, advantages and objectives in the present invention is the use of two cooling units to cool down a container being sandwiched by the two cooling units. The container containing at least a sponge-like structure or foam that is expanded within the container to be closely in contact therewith. The container itself is made out of a type of material with high thermal conductivity. The foam is also made out of a type of material with high thermal conductivity. Each of the cooling units operates on absorptive refrigeration that uses a source of heat to provide the energy needed to drive the cooling process. According to one embodiment, the source of heat is provided by solar energy. With solar panels being exposed to the sun, electricity is generated to power the source of heat to heat up a type of liquid being used in the cooling units. In another embodiment, the source of heat is provided by conventional electric resistance heater. Examples of the liquid used as refrigerant include, but not be limited to, ammonia, hydrogen, and water.
  • Referring now to the drawings, in which like numerals refer to like parts throughout the several views. FIG. 1 shows a cooling unit 100 that may be used in one embodiment of the present invention. As shown in FIG. 1, the cooling unit 100 is shown in two views, referred to herein as an inside view 102 and an outside view 104. The cooling unit 100 comprises a heating area 106, a cooling area 108, an absorber tank 110, and absorber 112. The heating area 106 includes a boiler (not separately shown) powered by energy provided externally. In one embodiment, the energy is from electricity generated from solar. In another embodiment, the energy is from battery or conventional electric power.
  • The boiler heats up a type of liquid (e.g. ammonia) coming from the absorber tank 110. To facilitate the description of the invention, ammonia will be used herein. As a result of the ammonia liquid being heated, the ammonia liquid vaporizes. The ammonia vapor is led to pass into the cooling area 108, where there is a set of coils or bending pipes 114 that make up a rectifier and an evaporator. The rectifier is just a slightly cooler section of the pipes 114 that cause the vapor to condense and drop back downwards. An optional separator (not shown) at the top of the cooling unit 100 prevents any liquid that might have escaped the rectifier to condense and fall back. After this point, the vapor is delivered to the condenser. A condenser is where the cooled air passing through the ammonia vapor being cooled down. The cooling effect of the condenser with an array of metal fins forces the ammonia vapor to condense to a liquid state.
  • The liquid ammonia enters the evaporator (or a freezer) and trickles down the pipes, wetting the wall thereof. Hydrogen, supplied through an inner pipe of the evaporator, passes over the wetted wall, causing the liquid ammonia to evaporate into the hydrogen atmosphere at an initial temperature of around −20° F. The evaporation of the ammonia extracts heat from the surrounding (e.g., a freezer). In operation, at the beginning stages, the pressure of the hydrogen is around 350 psi (pounds per square inch), while the pressure of the liquid ammonia is near 14 psi. As the ammonia evaporates and continues to trickle down the tube, its pressure and therefore its evaporation temperature rise.
  • The liquid ammonia entering the high temperature evaporator (cooling portion) is around 44 psi while the pressure of the hydrogen has dropped to 325 psi. Under these conditions, the evaporation temperature of the liquid ammonia is +15° F. Heat is removed from the surrounding through the fins attached to the high temperature evaporator. The ammonia vapor created by the evaporation of the liquid ammonia mixes with the already present hydrogen vapor, making it heavier. Since the ammonia and hydrogen vapor mixture is heavier than the purer hydrogen, it drops down through the evaporators, through the return tube to the absorber tank.
  • When the ammonia and hydrogen vapor mixture enters the absorber tank 110 through the returning tube or absorber 112, much of the ammonia vapor is absorbed into the surface of the rich ammonia solution while going through the absorber 112. The rich ammonia solution occupies the lower half of the tank 110 while lighter ammonia and hydrogen mixture (now with less ammonia) begins to rise up in the absorber 112 (coils). The weak ammonia solution trickling down the absorber coils 112 from the top (generated by the boiler) is “hungry” for the ammonia vapor rising up the absorber coils with the hydrogen. This weak ammonia solution eventually absorbs all the ammonia from the ammonia and hydrogen mixture as it rises, allowing pure hydrogen to rise up the inner pipe of the evaporator section and once again do its job of passing over the wetted walls of the evaporator. The absorption process in the absorber section generates heat, which is dissipated.
  • Referring now to FIG. 2A, it shows a side view of a structure 200 with a container 202 being sandwiched by two cooling units 204 and 206 according to one embodiment of the present invention. The cooling unit 100 of FIG. 1 may be used. The container 202 is preferably made of graphite, but could also be made of aluminum, copper, or any other thermo-conductive metal or alloy including non-metallic ceramic. The container 202, as further shown in FIG. 2B, includes a foam 214 made out of graphite or a metal material with high thermal conductivity. The foam 214 is expanded within the container 202 to be closely in contact therewith so that coldness or cooling effect from the two cooling units 204 and 206 can be effectively transferred therein. In one embodiment, on top of the container 202 there is an optional gasket (for maintenance) and a liquid (or gas) inlet 208. A mister 210 is employed to be connected to the inlet 208.
  • In operation, a type of liquid (e.g., antifreeze liquid) is supplied to the inlet 208 that causes the mister 210 to spray or vaporize the liquid into the foam 214. By gravity, the mist 220 falls inside cells of the foam 214. In one embodiment, the foam 214 similar to a sponge-like structure, is made out of graphite with open cells measured, for example, between 10-100 PPI (pores per inch) in size. As the mist 220 falls downwards, the liquid passed through the foam 214. From another perspective, the liquid is having the maximum surface contact with the foam 214. As a result, the cooling effect or coldness from the two cooling units 204 and 206 are transferred to the liquid in maximum efficiency. The cooled liquid exits to an outlet 220 at its coldest temperature.
  • It should be noted in FIG. 2A that the coils or tubes (not shown) in the two cooling units 204 and 206 that produce the cooling effect are entrenched in insulator 218 but in close contact with the container 202 to transfer the cooling effect. According to one embodiment, thermo-conductive paste is used to ensure that maximum transfer of the cooling effect to the container 202 is achieved.
  • The cooled liquid from the outlet 220 can optionally go to a tank then to a pump, or directly to a pump connected (using any tubing) to an evaporator cooling coil located inside an air handler that receive the cold liquid, pushed by the pump. In one embodiment, the liquid goes through copper tubing surrounded by aluminum fins, the air going through the fins becomes cold and pushed by a blower to ducts. The liquid during this process heats up and comes back to the container 202 to get cooled again in a closed loop.
  • As indicated above, the invention as described herein provides an energy efficient liquid chilled system that can be used on smaller scales as well as large properties, and forgoes the high energy consumption of a traditional compressor for the lower energy usage of an absorption cooling system. A system built per the present invention achieves peak efficiency by using the unique physical properties of solid carbon graphite, carbon graphite and/or metallic foam, and misters to achieve the maximum thermal conductivity from the absorption system to the liquid.
  • According to one embodiment, the present invention is implemented as a central air conditioning system, where a blower (e.g., air handler) receives a cold liquid or gas (less than 45 F), that is pumped from a carbon graphite reservoir that is sandwiched between two or more absorption cooling units, and where the solid carbon graphite reservoir is filled with a graphite and/or metal (copper, aluminum, silver, alloy, etc.) foam. The thermal conductivity properties of the graphite within the reservoir and the foam transfer the cold temperature from the absorption units to the liquid or gas. This liquid or gas is used to cool the air that blows through the air handler coil. The liquid or gas is then pumped back to the top of the graphite reservoir, where there is a mister (if it is in liquid form) that atomizes the molecules of the liquid, and acts as an initial cooling of the liquid, which is then sprayed back into the graphite reservoir to repeat the cooling cycle.
  • The thermodynamic exchange is maximized in the present invention due to the porosity of the foam which increases the surface cooling area exponentially. Furthermore, the unique thermal properties of the carbon graphite within the reservoir and/or the foam stores the cold temperature, therefore allowing a constant thermal conduction, rapid recovery, at a constant temperature, using minimal power.
  • Depending on implementation, the foam (e.g., the foam 214) by itself can be made of one metal or graphite or alloy, or a combination of different foams, without any limitations in size or orders. Certain metals such as silver may be included for the additional effect of cleaning the water within the unit and preventing the growth of mold and bacteria.
  • The liquid or gas circulating can be water alone, water with glycol (antifreeze), in any proportion, or any gas like CO2, Helium, or hydrogen. If a gas is used, the unit will be sealed under pressure to maintain gas thermo effectiveness.
  • In one embodiment, an optional mechanism of (electronically) controlled tanks is provided before the mist and/or before the pump (cold outlet) to run the pump at an optimal rate, as well as run the absorption cooling units to maintain optimal energy efficiency. The unit may also include an optional compressor, or use an existing compressor, to initially cool the unit if the unit has not been recently used. The energy usage is sufficiently efficient to run on 12 volts, and permit the entire air conditioning system to run on solar panels or other alternative energy source.
  • Referring now to FIG. 3, it shows a hybrid configuration 300 in which a compressor 302 is used. Due to the absorptions cycles, it may take sometime for the two absorptions units to work at efficient temperatures or setup load, then an optional compressor may be provided to perform the task to cool down the box the container 202 of FIG. 2A or 2B). As a result, the waiting time after installation or if the unit has been turned off can be minimized to have the system fully ready to cool down the air. In an even that an external temperature rises up to a point that will make the absorptions cycles difficult then the compressor will help maintaining the proper temperature, despite the sporadic usage of the compressor will still provide an high level of energy efficiency while providing an acute temperature control level.
  • Like any other HVAC system, a thermostat connected to the air handler is used to control the operations of an air conditioning unit implemented in accordance with the present invention. Typically, the surrounding of the two cooling units is vented, the coils or pipes are properly insulated using any material (e.g., insulation foam, closed cells glass foam). An venting area located at the bottom of the cooling units as well as a small fan located at the top of the units to extract the latent heat to an external air vent located outside a building (outside air).
  • The present invention has been described in sufficient details with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the invention as claimed. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.

Claims (20)

1. A cooling system comprising:
a container including an inlet and outlet;
a foam included and expanded in the container so that the foam is in close contact with the container; and
two cooling units sandwiching the container to transfer cooling effects to the container,
wherein a type of liquid is supplied from the inlet to pass through the foam to be cooled, and the cooled liquid exits from the outlet.
2. The cooling system as recited in claim 1, wherein the container is made out of a material with high thermal conductivity.
3. The cooling system as recited in claim 2, wherein the material is graphite, aluminum, copper, or other thermally conductive metal or alloy.
4. The cooling system as recited in claim 2, wherein the foam is made out of a material with high thermal conductivity and includes open cells, where the liquid passes through.
5. The cooling system as recited in claim 4, wherein the material is graphite or thermally conductive metal or alloy.
6. The cooling system as recited in claim 4, wherein the cells are measured in range of 10-100 PPI (pores per inch).
7. The cooling system as recited in claim 4, wherein the cells provide a maximum surface contact between the liquid and the foam.
8. The cooling system as recited in claim 7, wherein the liquid includes water, antifreeze, or a combination thereof.
9. The cooling system as recited in claim 1, wherein the liquid after being cooled in the container is used to cool down air in an air handling unit.
10. The cooling system as recited in claim 1, wherein the liquid after being cooled in the container is used to cool down an enclosure in a refrigerator.
11. A cooling system comprising:
a container including an inlet and outlet;
a foam included and expanded in the container so that the foam is in close contact with the container, where the foam is made out of a material with high thermal conductivity, the foam includes open cells; and
two cooling units sandwiching the container to transfer cooling effects to the container then the foam inside the container,
wherein a type of liquid is supplied from the inlet to be sprayed over and passes through the foam by gravity or pressure; and
wherein the outlet exits the liquid that has been cooled when going through the container.
12. The cooling system as recited in claim 11, wherein the container is made out of a material with high thermal conductivity.
13. The cooling system as recited in claim 12, wherein the material is graphite, aluminum, copper or other thermally conductive metal or alloy.
14. The cooling system as recited in claim 12, wherein the foam is made out of a material with high thermal conductivity and includes open cells where the liquid passes through.
15. The cooling system as recited in claim 14, wherein the material is graphite or thermally conductive metal or alloy.
16. The cooling system as recited in claim 14, wherein the cells are measured in range of 10-100 PPI (pores per inch).
17. The cooling system as recited in claim 14, wherein the cells provide a maximum surface contact between the liquid and the foam.
18. The cooling system as recited in claim 17, wherein the liquid includes water, antifreeze, or combination thereof.
19. The cooling system as recited in claim 11, wherein the liquid after being cooled in the container is used to cool down air in an air handling unit.
20. The cooling system as recited in claim 11, wherein the liquid after being cooled in the container is used to cool down an enclosure in a refrigerator.
US12/509,263 2009-07-24 2009-07-24 Highly efficient cooling systems Abandoned US20110016906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/509,263 US20110016906A1 (en) 2009-07-24 2009-07-24 Highly efficient cooling systems
CN2010101279339A CN101963379A (en) 2009-07-24 2010-02-22 Cooling systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/509,263 US20110016906A1 (en) 2009-07-24 2009-07-24 Highly efficient cooling systems

Publications (1)

Publication Number Publication Date
US20110016906A1 true US20110016906A1 (en) 2011-01-27

Family

ID=43496098

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/509,263 Abandoned US20110016906A1 (en) 2009-07-24 2009-07-24 Highly efficient cooling systems

Country Status (2)

Country Link
US (1) US20110016906A1 (en)
CN (1) CN101963379A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013078339A3 (en) * 2011-11-23 2013-12-19 Lockheed Martin Corporation Dehumidifier system and method
CN104061648A (en) * 2014-07-15 2014-09-24 林刚 Double-level evaporation-type air conditioning device
US20160195313A1 (en) * 2013-09-12 2016-07-07 Solar Snow Corporation Solar cooling system
US9464847B2 (en) 2011-02-04 2016-10-11 Lockheed Martin Corporation Shell-and-tube heat exchangers with foam heat transfer units
US9513059B2 (en) 2011-02-04 2016-12-06 Lockheed Martin Corporation Radial-flow heat exchanger with foam heat exchange fins
US9951997B2 (en) 2011-02-04 2018-04-24 Lockheed Martin Corporation Staged graphite foam heat exchangers
US20180366479A1 (en) * 2017-06-16 2018-12-20 Allegro Microsystems, Llc Hybrid Electronically Erasable Programmable Read-Only Memory (EEPROM) Systems And Methods For Forming Related Applications
CN111634953A (en) * 2020-06-11 2020-09-08 宁波渤川废液处置有限公司 Anticorrosive cooling arrangement of ferric trichloride in production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226559A (en) * 2011-06-08 2011-10-26 林刚 Air Cooler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040079089A1 (en) * 2002-10-24 2004-04-29 Wallach John M Thermoelectric system to directly regulate the temperature of intravenous solutions and bodily fluids
US7131288B2 (en) * 2000-11-27 2006-11-07 Inco Limited Heat exchanger
US20070107873A1 (en) * 2005-11-11 2007-05-17 Yu-Huang Peng Water-Cooling Head and Method for making the same
US20080156033A1 (en) * 2006-12-28 2008-07-03 Whirlpool Corporation Refrigeration appiance with optional storage module
US7549460B2 (en) * 2004-04-02 2009-06-23 Adaptivenergy, Llc Thermal transfer devices with fluid-porous thermally conductive core
US20090205346A1 (en) * 2008-02-14 2009-08-20 Gm Global Technology Operations, Inc. Air Conditioning System Having Integrated Chiller and Thermal Storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131288B2 (en) * 2000-11-27 2006-11-07 Inco Limited Heat exchanger
US20040079089A1 (en) * 2002-10-24 2004-04-29 Wallach John M Thermoelectric system to directly regulate the temperature of intravenous solutions and bodily fluids
US7549460B2 (en) * 2004-04-02 2009-06-23 Adaptivenergy, Llc Thermal transfer devices with fluid-porous thermally conductive core
US20070107873A1 (en) * 2005-11-11 2007-05-17 Yu-Huang Peng Water-Cooling Head and Method for making the same
US20080156033A1 (en) * 2006-12-28 2008-07-03 Whirlpool Corporation Refrigeration appiance with optional storage module
US20090205346A1 (en) * 2008-02-14 2009-08-20 Gm Global Technology Operations, Inc. Air Conditioning System Having Integrated Chiller and Thermal Storage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464847B2 (en) 2011-02-04 2016-10-11 Lockheed Martin Corporation Shell-and-tube heat exchangers with foam heat transfer units
US9513059B2 (en) 2011-02-04 2016-12-06 Lockheed Martin Corporation Radial-flow heat exchanger with foam heat exchange fins
US9951997B2 (en) 2011-02-04 2018-04-24 Lockheed Martin Corporation Staged graphite foam heat exchangers
WO2013078339A3 (en) * 2011-11-23 2013-12-19 Lockheed Martin Corporation Dehumidifier system and method
US20160195313A1 (en) * 2013-09-12 2016-07-07 Solar Snow Corporation Solar cooling system
US10712056B2 (en) * 2013-09-12 2020-07-14 Solar Snow Corporation Solar cooling system
CN104061648A (en) * 2014-07-15 2014-09-24 林刚 Double-level evaporation-type air conditioning device
US20180366479A1 (en) * 2017-06-16 2018-12-20 Allegro Microsystems, Llc Hybrid Electronically Erasable Programmable Read-Only Memory (EEPROM) Systems And Methods For Forming Related Applications
CN111634953A (en) * 2020-06-11 2020-09-08 宁波渤川废液处置有限公司 Anticorrosive cooling arrangement of ferric trichloride in production

Also Published As

Publication number Publication date
CN101963379A (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US7762101B1 (en) Highly efficient cooling systems
US20110016906A1 (en) Highly efficient cooling systems
Srikhirin et al. Investigation of a diffusion absorption refrigerator
Saha et al. Solar/waste heat driven two-stage adsorption chiller: the prototype
CN102301192B (en) Semiconductor mist-type air-conditioning equipment
US20050150251A1 (en) Personal air conditioning system
US7437875B2 (en) Thermally driven cooling systems
CN103557571A (en) Inner heat pipe heat-exchange type semiconductor refrigeration device
Naveenprabhu et al. Smart Hot Chamber in Refrigeration System Based on Waste Heat Recovery
CN101344078A (en) Device and method for converting thermal energy of air into kinetic energy and electric energy
US20160123650A1 (en) Refrigeration device with a heat circulation system
Zhuravlyov et al. Horizontal vapordynamic thermosyphons, fundamentals, and practical applications
US9194617B2 (en) Intermittent absorption refrigeration system equipped with a waste energy storage unit
US9285144B2 (en) Economizer for an intermittent absorption refrigeration system
CA2692229A1 (en) Thermoeletric 2-phase gravity condenser & methods of improving existing heat pipe systems
CN110274330A (en) A kind of solar energy economical air conditioner
WO2019025873A1 (en) Domestic air cooler with an inbuilt compact/mini compressor water chiller
JP6007455B1 (en) Cold heat supply apparatus and cold heat supply method
JP4383940B2 (en) Water sampling equipment
RU2328842C1 (en) Cabinet for radioelectronic equipment
CN104296417A (en) Refrigerator for heat pipe
EP2856042B1 (en) Energy recovery apparatus
JPH10170094A (en) Refrigerating machine with peltier element
JP2009008382A (en) Decompression boiling/cooling-heat collecting device
Akinbisoye et al. Experimental study of absorptive solar powered refrigerator in IBADAN (Nigeria)-1: performance in actual site

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWERQUEST, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZUILI, PATRICK;STABINSKI, DAREN;STABINSKI, TODD;AND OTHERS;REEL/FRAME:023005/0864

Effective date: 20090723

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION